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Recap: Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 For arbitrary L1 and L2, we may not be able to boost 
the success probability 2/3, and so, the above kind of 
reductions needn’t be transitive. However, 

 Obs.  If L1 ≤r L2 and L2 ∈ BPP, then L1 ∈ BPP. 

                                           (Easy homework) 



Recap: Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Proof idea.  BPP error reduction trick + Cook-Levin. 

                                               (homework) 



Recap: Randomized reduction 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 

 Recall, NP = {L : L ≤p SAT}. It makes sense to define a 
similar class using randomized poly-time reduction. 

                                               



Recap: Class BP.NP 

 Definition. We say a L1 reduces to a L2 in randomized 
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}* 

                Pr [L1(x) = L2(M(x))]  ≥  2/3. 

 

 Obs. If L2 = SAT, then we can boost the success 
probability from ½ + |x|-c to 1 – exp(-|x|d). 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Class BP.NP is also known as AM (Arthur-Merlin 
protocol) in the literature.  



Recap: Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 Theorem. If certain reasonable circuit lower bounds 
hold, then BP.NP = NP. 

 Proof idea. Similar to Nisan & Wigderson’s conditional 
BPP = P result. 



Recap: Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP 
= NP ? Many believe that the answer is “yes”.  

 

 We may further ask: 

1. Is BP.NP in PH? Recall, BPP is in PH. 

 

2. Is SAT ∈ BP.NP? Recall, if SAT ∈ BPP then PH 
collapses. (SAT ∈ BP.NP as NP ⊆ BP.NP .) 



Recap: Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem.  BP.NP is in ∑3.  (In fact, BP.NP is in ∏2.) 

 Proof idea. Similar to the Sipser-Gacs-Lautemann 
theorem.       (Assignment problem) 

 

 Wondering if BP.NP ⊆ ∏2 implies BP.NP ⊆ ∑2 ? Is 
BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).  

 If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next 
theorem shows that this would lead to PH collapse. 



Recap: Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑3 (in fact, PH = 
∑2). 

 Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem.     (Assignment problem) 



Recap: Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Thus, even without designing an efficient algorithm 
for GI, we know GI is unlikely to be NP-complete! 



Recap: Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad, 
Zachos ‘87)  GNI ∈ BP.NP. 

 Proof.  We’ll prove it today. 



Recap: Class BP.NP 

 Definition.  BP.NP = {L : L ≤r SAT}.  

 

 Theorem. If SAT ∈ BP.NP then PH = ∑2. 

 

 We would use the above theorem to show that if GI 
is NP-complete then PH collapses. 

 Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad, 
Zachos ‘87)  GNI ∈ BP.NP. 

 If GI is NP-complete then GNI is co-NP-complete. If 
so, then the above two theorems imply PH = ∑2. 



Recap: GI in Quasi-P 

 

 

 

 Theorem. (Babai 2015) There’s a deterministic 
exp(O((log n)3)) time algorithm to solve the graph 
isomorphism problem. 



GNI is in BP.NP 



Graph Non-isomorphism 

 Definition. Let G1 and G2 be two undirected graphs 
on n vertices. Identify the vertices with [n]. We say 
G1 is isomorphic to G2, denoted G1 ≅ G2, if there’s a 
bijection/permutation 𝞹:[n]    [n] s.t. for all u, v ∈ [n], 
(u,v) is an edge in G1 if and only if (𝞹(u),𝞹(v)) is an 
edge in G2. 

 

 Definition. GNI = {(G1, G2) : G1 ≇ G2}. 

 

 Clearly, GNI ∈ co-NP, it is not known if GNI ∈ NP. 



GNI is in BP.NP 

 The idea. 

1. Step 1: Let x = (G1, G2). Associate a set Sx with 
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 



GNI is in BP.NP 

 The idea. 

1. Step 1: Let x = (G1, G2). Associate a set Sx with 
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

There’s a poly-time TM  V and a polynomial 
function q(.) s.t. 
  u ∈ Sx       ∃c∈{0,1}q(|x|)   V(x, u, c) = 1 
  u ∉ Sx       ∀c∈{0,1}q(|x|)   V(x, u, c) = 0.   



GNI is in BP.NP 

 The idea. 

1. Step 1: Let x = (G1, G2). Associate a set Sx with 
(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

 

2. Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  



GNI is in BP.NP 

 Step 1: Let x = (G1, G2). Associate a set Sx with (G1, 
G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

 Defn.  Aut(G) = {bijection  𝞹:[n]    [n] :  𝞹(G) = G}. 

G 

1 

2 3 

G 

1 

3 2 

Permutation  𝞹 = (1,3,2) is in Aut(G).  



GNI is in BP.NP 

 Step 1: Let x = (G1, G2). Associate a set Sx with (G1, 
G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is 
“small” (n!) if G1 ≅ G2.  Elements of Sx can be 
represented using m = nO(1) bits. Furthermore, 
membership in Sx can be certified in mO(1) = nO(1) time. 

 Defn.  Aut(G) = {bijection  𝞹:[n]    [n] :  𝞹(G) = G}. 

 

 Let Sx = {(H, 𝞹): H ≅ G1 or H ≅ G2 and 𝞹 ∈ Aut(H)}. 

 

 Obs.  Sx satisfies the properties stated in Step 1. 

                                           (Homework) 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|) 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. Uses Goldwasser-Sipser set lower bound 
protocol.  We’ll see the proof in a while. 

 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 

We can think of M’s computation as a Boolean circuit 𝜓x,r(y), which can be computed 
in randomized |x|O(1) time by fixing x and picking r∈{0,1}q(n) randomly.       Cook-Levin 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Corollary. There’s randomized poly-time reduction 
that maps x to a Boolean circuit 𝜓x,r s.t.  

   |Sx| = 2n!  (large)      Prr [𝜓x,r(y) is satisfiable]  ≥ 2/3 

   |Sx| = n!    (small)     Prr [𝜓x,r(y) is unsatisfiable] ≥ 2/3. 

 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Corollary. There’s randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t.  

   |Sx| = 2n!  (large)      Prr [ϕx,r(z) is satisfiable]  ≥ 2/3 

   |Sx| = n!    (small)     Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3. 

 

 
ϕx,r is a CNF and z = y + auxiliary variables.     
                                   Cook-Levin 



GNI is in BP.NP 

 Step 2: Devise a randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t. over the randomness 
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and 
unsatisfiable w.h.p if Sx is “small”.  

 Corollary. There’s randomized poly-time reduction 
that maps x to a CNF ϕx,r s.t.  

   |Sx| = 2n!  (large)      Prr [ϕx,r(z) is satisfiable]  ≥ 2/3 

   |Sx| = n!    (small)     Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3. 

 

 Hence, GNI is in BP.NP. It remains to prove Lemma *. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|) 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

The value of k will be 
fixed in the analysis. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 Let t = nO(1) be sufficiently large. M interprets r as 
(i1,i2,…,it), where i1,…, it are indices of hash functions 
in H. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 Let t = nO(1) be sufficiently large. M interprets r as 
(i1,i2,…,it), where i1,…, it are indices of hash functions 
in H.  

                                 |r| = nO(1). 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 M interprets y as ((u1,c1), (u2,c2),…, (ut,ct)), where 
u1,…, ut are m-bit strings, and cp is an alleged 
certificate of up’s membership in Sx for every p ∈ [t]. 

                                 |y| = nO(1). 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = 0k. ip 

Recall, membership in Sx can be efficiently certified. 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = 0k. If sufficiently many (say, 
t*) of these checks pass, M outputs 1, else it o/ps 0.  

ip 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = 0k. If sufficiently many (say, 
t*) of these checks pass, M outputs 1, else it o/ps 0. 
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large. 

ip 



Set lower bound protocol 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof idea.  Let H = {hi} be a “suitable” family of hash 
functions that map m-bit strings to k-bit strings for 
an appropriate k. Recall, m = size of an element in Sx. 

 For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.    
If yes, M checks if h  (up) = 0k. If sufficiently many (say, 
t*) of these checks pass, M outputs 1, else it o/ps 0. 
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large. 

ip 

?? 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

 
h ∈r Hm,k 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

 

 Obs. Let Hm,k be a pairwise independent hash 
function family. For every x ∈ {0,1}m and y∈ {0,1}k,  

            Pr           [h(x) = y] = 2-k. 

  

h ∈r Hm,k 

h ∈r Hm,k 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

         = Pr           [h(x) = y] . Pr           [h(x’) = y’] . 
 

  

h ∈r Hm,k 

h ∈r Hm,k h ∈r Hm,k 



Pairwise independent hash functions 

 Definition. A family Hm,k of (hash) functions from 
{0,1}m to {0,1}k is pairwise independent if for every 
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,  

            Pr           [h(x) = y and h(x’) = y’] = 2-2k. 

         = Pr           [h(x) = y] . Pr           [h(x’) = y’] . 
 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 

h ∈r Hm,k 

h ∈r Hm,k h ∈r Hm,k 



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F.  Then, 
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’) 
and b = (xy’ – x’y)/(x-x’).  



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F.  Then, 
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’) 
and b = (xy’ – x’y)/(x-x’). Therefore, 

      Pr          [ha,b(x) = y & ha,b(x’) = y’] 
  =  Pr          [a = (y–y’)/(x-x’) & b = (xy’ – x’y)/(x-x’)] 
  =  2-2𝓁   (as a and b are independently chosen). 

 

a,b ∈r F  

a,b ∈r F  



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 

 Obs. If m ≥ k, then we can construct a pairwise 
independent Hm,k by considering Hm,m as above. 
Truncate the output of a function to the first k bits.    

                                              (Homework) 



Pairwise independent hash functions 

 Example. Let 𝓁 > 0 and F be the finite field of size 2𝓁. 
We can identify F with {0,1}𝓁 as elements of F are 𝓁-
bit strings. For a, b ∈ F, define the function ha,b as 
ha,b(x) = ax + b for every x ∈ F.  Then, H𝓁,𝓁 = {ha,b : a,b ∈ F} is a pairwise independent hash family.  

 

 Obs. If m ≤ k, then we can construct a pairwise 
independent Hm,k by considering Hk,k as above. 
Generate k-bit i/p for a function by padding with 0. 

                                              (Homework) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof.  Let Hm,k be a family of pairwise independent 
hash functions.  



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof.  Let Hm,k be a family of pairwise independent 
hash functions. Recall, r = (i1, i2, …, it), where i1,…, it 
are indices of functions in Hm,k.  



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof.  Let Hm,k be a family of pairwise independent 
hash functions. Recall, r = (i1, i2, …, it), where i1,…, it 
are indices of functions in Hm,k. Also, y = ((u1,c1), 
(u2,c2),…, (ut,ct)), where u1,…, ut ∈ {0,1}m, and cp is an 
alleged certificate of up’s membership in Sx for every 
p ∈ [t]. 

 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 
ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 

 For a fixed p, what is the probability (over the 
randomness of ip) there’s a up ∈ Sx s.t. h  (up)=0k? 
We’ll upper & lower bound this probability. 

 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 

 Simplifying notations.  As p is fixed, let h  = h and up = 
u.  

 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 

 Upper bound. Prh [∃u ∈ Sx  s.t. h(u) = 0k] ≤ |Sx|/2
k. 

 As Hm,k is pairwise independent, for every u∈{0,1}m,  
Prh [h(u) = 0k] = 2-k. 

 

 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 Lower bound.  

         Prh [∃u ∈ Sx  s.t.  h(u) = 0k] 

≥  ∑  Prh [h(u) = 0k]  -  ∑    Prh [h(u) = 0k & h(u’) = 0k]   

 

ip 

u ∈ Sx u,u’ ∈ Sx  
  u ≠ u’ (by inclusion-exclusion principle) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 Lower bound.  

         Prh [∃u ∈ Sx  s.t.  h(u) = 0k] 

   ≥   |Sx|/2
k -  |Sx|

2 / 22k+1. 

 

ip 

(as Hm,k is pairwise independent) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 Lower bound.  

         Prh [∃u ∈ Sx  s.t.  h(u) = 0k] 

   ≥   |Sx|/2
k . (1 -  |Sx|/2

k+1). 

 

ip 

(as Hm,k is pairwise independent) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 

 If |Sx| = n! then (by the upper bound) 

     Prh [∃u ∈ Sx  s.t.  h(u) = 0k] ≤ n!/2k . 

                                                     

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 

 If |Sx| = n! then (by the upper bound) 

     Prh [∃u ∈ Sx  s.t.  h(u) = 0k] ≤ n!/2k .  Hence, 

 Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| ] ≤ t. n!/2k. 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 Choosing k. Fix k s.t.  2k-2 < 2n! ≤ 2k-1. 

 If |Sx| = 2n! then (by the lower bound) 

   Prh [∃u ∈ Sx  s.t.  h(u) = 0k] ≥ |Sx|/2
k . (1- |Sx|/2

k+1) 

                                              ≥  |Sx|/2
k . ¾ = 3/2. n!/2k           

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 Choosing k. Fix k s.t.  2k-2 < 2n! ≤ 2k-1. 

 If |Sx| = 2n! then (by the lower bound) 

    Prh [∃u ∈ Sx  s.t.  h(u) = 0k] ≥ 3/2 . n!/2k . Hence, 

 Expr [ |{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| ] ≥ 3/2 . t . n!/2k. 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 If |Sx| = 2n! then  

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| ] ≥ 3/2 . t . n!/2k. 

 If |Sx| = n! then 

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| ] ≤ t. n!/2k. 

 

ip 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 If |Sx| = 2n! then  

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| ] ≥ 3/2 . t . n!/2k. 

 If |Sx| = n! then 

   Expr [ |{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| ] ≤ t. n!/2k. 

 

ip 

ip 

ip 

gap 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.  

 If |Sx| = 2n!,  by Chernoff bd. & n!/2k ∈ [1/8,1/4], 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| ≥ 1.4. t. n!/2k] ≥ 2/3. 

 If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4] 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| < 1.4. t. n!/2k] ≥ 2/3. 

 

ip 

ip 

ip 

(Easy homework) 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.    t* = 1.4. t. n!/2k 

 If |Sx| = 2n!,  by Chernoff bd. & n!/2k ∈ [1/8,1/4], 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| ≥ 1.4. t. n!/2k] ≥ 2/3. 

 If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4] 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| < 1.4. t. n!/2k] ≥ 2/3. 

 

ip 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.    t* = 1.4. t. n!/2k 

 If |Sx| = 2n! then  

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| ≥ t*] ≥ 2/3. 

 If |Sx| = n! then 

  Prr [|{p∈[t] : ∃up∈ Sx s.t. h  (up) = 0k}| < t*] ≥ 2/3. 

 

ip 

ip 

ip 



Set lower bound protocol (contd.) 

 Lemma *. There’s a poly-time TM M that takes input x 
= (G1, G2), y & r, and a polynomial function q(.) s.t. 

   |Sx| = 2n!  (large)      Prr [∃y s.t. M(x, y, r) = 1]  ≥ 2/3 

   |Sx| = n!    (small)      Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 Proof. For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.  If yes, M checks if h  (up) = 0k.    t* = 1.4. t. n!/2k 

 If |Sx| = 2n! then  

  Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3. 

 If |Sx| = n! then 

  Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3. 

 

ip 


