Computational Complexity Theory

Lecture 20: GNI is in BPNP

Department of Computer Science,
Indian Institute of Science

Recap: Randomized reduction

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, =_L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr [L,(x) = L,(M(x))] = 2/3.

e For arbitrary L, and L,, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive. However,

e Obs. IfL, = L, and L, € BPF then L, € BPF.
(Easy homework)

Recap: Randomized reduction

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, =_L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr [L,(x) = L,(M(x))] = 2/3.

o Obs. If L, = SAI, then we can boost the success
probability from 4 + |x|< to | — exp(-|x|9).
* Proof idea. BPP error reduction trick + Cook-Levin.
(homework)

Recap: Randomized reduction

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, =_L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr [L,(x) = L,(M(x))] = 2/3.

o Obs. If L, = SAI, then we can boost the success
probability from 4 + |x|< to | — exp(-|x|9).

* Recall, NP = {L : L = SAT}. It makes sense to define a
similar class using randomized poly-time reduction.

Recap: Class BP.NP

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, =_L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr [L,(x) = L,(M(x))] = 2/3.

o Obs. If L, = SAI, then we can boost the success
probability from 4 + |x|< to | — exp(-|x|9).
e Definition. BENP = {L : L <_SAT}.

e Class BPNP is also known as AM (Arthur-Merlin
protocol) in the literature.

Recap: Class BP.NP

e Definition. BPNP = {L:L <_SAT}.

* Observe that NP € BPNP and BPP € BPNP.Is BPNP
= NP ? Many believe that the answer is “yes".

e [heorem. If certain reasonable circuit lower bounds
hold, then BPNP = NP.

e Proof idea. Similar to Nisan & Wigderson’s conditional
BPP = P result.

Recap: Class BP.NP

e Definition. BPNP = {L:L <_SAT}.

* Observe that NP € BPNP and BPP € BPNP.Is BPNP
= NP ? Many believe that the answer is “yes".

* We may further ask:
. Is BENP in PH? Recall, BPP is in PH.

2. Is SAT € BPNP? Recall, if SAT € BPP then PH
collapses. (SAT € BPNP as NP € BPNP .)

Recap: Class BP.NP

e Definition. BPNP = {L:L <_SAT}.

e Theorem. BPNP isin) ;. (In fact, BENP isin [],.)

e Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem. (Assignment problem)

* Wondering if BPNP < [], implies BENP < >, ? Is
BPNP = co-BPNP ? (Recall, BPP = co-BPP).

o If BENP = co-BP.NP then co-NP © BPNP. The next
theorem shows that this would lead to PH collapse.

Recap: Class BP.NP

e Definition. BPNP = {L:L <_SAT}.

e Theorem. If SAT € BPNP then PH = ¥, (in fact, PH =
22)-

e Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem. (Assignment problem)

Recap: Class BP.NP

e Definition. BPNP = {L : L <_SAT}.
e Theorem. If SAT € BPNP then PH = ¥,.

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Thus, even without designing an efficient algorithm
for Gl, we know Gl is unlikely to be NP-complete!

Recap: Class BP.NP

e Definition. BPNP = {L : L <_SAT}.
e Theorem. If SAT € BPNP then PH = ¥,.

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Theorem.
GNI € BPNP.

* Proof. We'll prove it today.

Recap: Class BP.NP

e Definition. BPNP = {L : L <_SAT}.
e Theorem. If SAT € BPNP then PH = ¥,.

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Theorem.
GNI € BPNP.

o If Gl is NP-complete then GNI is co-NP-complete. If
so, then the above two theorems imply PH =) ..

Recap: Gl in Quasi-P

e Theorem. There’s a deterministic
exp(O((log n)?)) time algorithm to solve the graph
isomorphism problem.

GNl is in BPNP

Graph Non-isomorphism

e Definition. Let G, and G, be two undirected graphs
on n vertices. ldentify the vertices with [n]. We say
G, is isomorphic to G,, denoted G, = G,, if there’s a
bijection/permutation m:[n] —[n] s.t. for all u, v € [n],
(u,v) is an edge in G, if and only if (rr(u),(v)) is an
edge in G,.

e Definition. GNI ={(G,,G,) : G, Z G,}.

e Clearly, GNI € co-NF, it is not known if GNI € NP.

GNl is in BPNP

e The idea.

Step |: Let x = (G|, G,). Associate a set S with
(G, G,) s.t.|S, | is “large” (2n!) if G, # G,,and |S, | is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n©®() bits. Furthermore,
membership in S, can be certified in m°(!) = n%) time.

GNl is in BPNP

e The idea.

I. Step |: Let x = (G|, G,). Associate a set S with
(G, G,) s.t.|S, | is “large” (2n!) if G, # G,,and |S, | is
“small” (n!) if G, = G,. Elements of S can be
represented using m = n®") bits. Furthermore,
membership in S, can be certified in m°(') = n%) time.

l

There’s a poly-time TM V and a polynomial
function q(.) s.t.
u€esS, mpIce{0,1}l) V(x,u,c)
ugS, ™ vcel0, 1190 V(x, u,c)

|
0.

GNl is in BPNP

I. Step |: Let x = (G|, G,). Associate a set S with
(G, G,) s.t.|S, | is “large” (2n!) if G, # G,,and |S, | is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n©®() bits. Furthermore,
membership in S, can be certified in m°(!) = n%) time.

2. Step 2: Devise a randomized poly-time reduction
that maps x to a CNF @, s.t. over the randomness
of r, @, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S_ is “small”.

GNl is in BPNP

o Step |:Let x = (G|, G,). Associate a set S_ with (G|,
G,) s.t. |S,| is “large” (2n!) if G, # G,, and [S | is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n©®) bits. Furthermore,
membership in S, can be certified in m°(!) = n%) time.

e Defn. Aut(G) = {bijection m:[n]—[n]: m(G) = G}.

G G

Permutation m = (1,3,2) is in Aut(G).

GNl is in BPNP

o Step |:Let x = (G|, G,). Associate a set S_ with (G|,
G,) s.t. |S,| is “large” (2n!) if G, # G,, and [S | is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n©®) bits. Furthermore,
membership in S, can be certified in m°(!) = n%) time.

e Defn. Aut(G) = {bijection m:[n]—[n]: m(G) = G}.

e LetS ={(H,m):H=G, orH=G,and m € Aut(H)}.

o Obs. S satisfies the properties stated in Step |.

GNl is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, s.t. over the randomness
of r, @, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S_ is “small”.

GNl is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, s.t. over the randomness

of r, @, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S_ is “small”.

e Lemma *. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS,| = 2n! (large) mp Pr_[Jy s.t. M(x,y,r) = |I] = 2/3
IS,| =n! (small)ym)p Pr. [Vys.t.M(x,y,r) =0] = 2/3.

/N

r € {0, 130D y € {0,1}a(x)

GNl is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, s.t. over the randomness

of r, @, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S_ is “small”.

o There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.
IS,| = 2n! (large) mp Pr_[Jy s.t. M(x,y,r) = |I] = 2/3
IS,| =n! (small)ym)p Pr. [Vys.t.M(x,y,r) =0]=2/3.

e Proof. Uses Goldwasser-Sipser set lower bound
protocol. Ve'll see the proof in a while.

GNl is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, s.t. over the randomness

of r, @, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S_ is “small”.

e Lemma *. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS,| = 2n! (large) mp Pr_[Jy s.t. M(x,y,r) =] = 2/3
S, =n! (small)mp Pr, [Vy st@®(xy)= 0] 2 2/3.

We can think of M’s computation as a Boolean circuit 1), (y), which can be computed
in randomized |x|°(") time by fixing x and picking r&{0, 1} randomly.

GNl is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, s.t. over the randomness
of r, @, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S_ is “small”.

° There’s randomized poly-time reduction
that maps x to a Boolean circuit 1), s.t.

IS, | = 2n! (large) mp Pr [, (y) is satisfiable] = 2/3
IS,| =n! (small) mp Pr [, (y) is unsatisfiable] = 2/3.

GNl is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, s.t. over the randomness
of r, @, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S_ is “small”.

o There’s randomized poly-time reduction
that maps x toa CNF ¢, , s.t.

IS,| = 2n! (large) = Pr.[¢, (z) is satisfiable] = 2/3
IS,| =n! (small) mp Pr, [, (z) is unsatisfiable] = 2/3.

¢, . isa CNF and z = y + auxiliary variables.

GNl is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, s.t. over the randomness
of r, @, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S_ is “small”.

o There’s randomized poly-time reduction
that maps x toa CNF ¢, , s.t.

IS,| = 2n! (large) = Pr.[¢, (z) is satisfiable] = 2/3
IS,| =n! (small) mp Pr, [, (z) is unsatisfiable] = 2/3.

e Hence, GNI is in BPNP. It remains to prove

Set lower bound protocol

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.|=n! (small)m Pr [Vys.t.M(xy,r) = 0] = 2/3.

/

r € {0, 1}a(x) y € {0, 1}alx)

Set lower bound protocol

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

The value of k will be
fixed in the analysis.

Set lower bound protocol

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.
* Proof idea. Let H = {h.} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

o Let t = n®) be sufficiently large. M interprets r as
(i),i5,-..i.), Where i|,..., i. are indices of hash functions

in H.

Set lower bound protocol

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.
* Proof idea. Let H = {h.} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

o Let t = n®) be sufficiently large. M interprets r as
(i),i5,...i.), where i|,..., i. are indices of hash functions
in H.

Ir| = n©0),

Set lower bound protocol

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.
IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

e M interprets y as ((u,,c|), (uc,),..., (u,c,)), where
..., U, are m-bit strings, and c, is an alleged
certificate of u,’s membership in S, for every p € [t].

|)'| = no(l).

Set lower bound protocol

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

* For every p € [t]: M uses c, & x to check if u, € S,.
If yes, M checks if h; (u) = 0~

Recall, membership in S, can be efficiently certified.

Set lower bound protocol

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.
IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

* For every p € [t]: M uses c, & x to check if u, € S,.
If yes, M checks if h; (u)) = 0% If sufficiently many (say,
t*) of these checks pass, M outputs |, else it o/ps 0.

Set lower bound protocol

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.
IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

* For every p € [t]: M uses c, & x to check if u, € S,.
If yes, M checks if h; (u)) = 0% If sufficiently many (say,
t*) of these checks pass, M outputs |, else it o/ps 0.
Intuitively, 3y s.t. t* of the checks pass iff S is large.

Set lower bound protocol

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S,/ =nl (small) = Pr [Vys.t.M(x y,r) = 0] =2/3.
* Proof idea. Let H = {h.} be afémily of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

* For every p € [t]: M uses c, & x to check if u, € S,.
If yes, M checks if h; (u)) = 0% If sufficiently many (say,
t*) of these checks pass, M outputs |, else it o/ps 0.
Intuitively, Iy s.t. t* of the checks pass iff S_ is large.

Pairwise independent hash functions

o Definition. A family H_, of (hash) functions from
{0,1}™ to {0,1}* is pairwise independent if for every
distinct x, x’ € {0,1}™ and for every y,y’ € {0, 1}

Pryc iy, [N()=yandh(x) =y]=2%

Pairwise independent hash functions

o Definition. A family H_, of (hash) functions from
{0,1}™ to {0,1}* is pairwise independent if for every
distinct x, x’ € {0,1}™ and for every y,y’ € {0, 1}

Pryc iy, [N()=yandh(x) =y]=2%

e Obs. Let H_, be a pairwise independent hash
function family. For every x € {0,1}™ and y€ {0, 1},

Proen, [h(x)=y]= 27k,

Pairwise independent hash functions

o Definition. A family H_, of (hash) functions from
{0,1}™ to {0,1}* is pairwise independent if for every
distinct x, x’ € {0,1}™ and for every y,y’ € {0, 1}

Pr [h(x) =y and h(x’) = y'] = 272k

h Er Hm,k

=Pry,c H, [h(x) =y] .Prpc v [h(X)=YT.

Pairwise independent hash functions

o Definition. A family H_, of (hash) functions from
{0,1}™ to {0,1}* is pairwise independent if for every
distinct x, x’ € {0,1}™ and for every y,y’ € {0, 1}

Pry vy, 069 = yand he) = y] = 2%

= Prien, [h)=yl.Pricy [h(X)=YyT].

o Example. Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1}* as elements of F are /-
bit strings. For a, b € F define the function h_, as
h,,(x) =ax + b for every x € k. Then,H, ,={h,, :a,b
€ F} is a pairwise independent hash family.

Pairwise independent hash functions

e Example. Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1}* as elements of F are -
bit strings. For a, b € F define the function h_, as
h,,(x) =ax + b for every x € k. Then,H,,={h,, :a,b
€ F} is a pairwise independent hash family.

* Proof. Let x, X’ € F be distinct and y, Y € FE Then,
h,,(x) =y &h, (X)) =y ifand only if a = (y—y’)/(x-x)
and b = (xy’ — xX’y)/(x-x).

Pairwise independent hash functions

e Example. Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1}* as elements of F are -
bit strings. For a, b € F, define the function h_, as

h,,(x) =ax + b for every x € k. Then,H,,={h,, :a,b
€ F} is a pairwise independent hash family.

* Proof. Let x, X’ € F be distinct and y, Y € FE Then,
h,,(x) =y &h, (X)) =y ifand only if a = (y—y’)/(x-x)
and b = (xy’ — x’y)/(x-x’). Therefore,

Prab €. F [ha b(X) =Y & ha b(X’) = y’]

Prover [2= (y-y)/(x-x) &b = (xy’ = Xy)/(x-X)]

22t (as a and b are independently chosen).

Pairwise independent hash functions

° Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1}* as elements of F are -
bit strings. For a, b € F define the function h_, as
h,,(x) =ax + b for every x € k. Then,H,,={h,, :a,b
€ F} is a pairwise independent hash family.

° If m = k, then we can construct a pairwise
independent H_, by considering H as above.

m,k m,m

Truncate the output of a function to the first k bits.

(Homework)

Pairwise independent hash functions

° Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1}* as elements of F are -
bit strings. For a, b € F define the function h_, as
h,,(x) =ax + b for every x € k. Then,H,,={h,, :a,b
€ F} is a pairwise independent hash family.

° If m = k, then we can construct a pairwise
independent H_, by considering H, , as above.
Generate k-bit i/p for a function by padding with O.

(Homework)

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.

* Proof. Let H_,
hash functions.

be a family of pairwise independent

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.
* Proof. Let H_, be a family of pairwise independent

hash functions. Recall, r = (i, iy, ..., 1.), where i|,..., i

are indices of functions in H_ .

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.

e Proof. Let H_, be a family of pairwise independent

m,k
hash functions. Recall, r = (i, iy, ..., 1.), where i|,..., i
are indices of functions in H_,. Also, y = ((u,c)),

(UpC)s---s (Upcy)), where uy,...,u, € {0,1}™,and c is an
alleged certificate of u_’s membership in S_ for every

p € [t].

P

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.|=n! (small)m Pr [Vys.t.M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h (u) = 0%

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.
IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)my Pr_[Vys.t. M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes, M checks if h ip(uP) = 0k,

* For a fixed p, what is the probability (over the
randomness of i) there’s a u, € S, s.t. h; (u))=0"?
We'll upper & lower bound this probability.

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.|=n! (small)m Pr [Vys.t.M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h (u) = 0%

o Simplifying notations. As p is fixed, let h, = h and u, =
u.

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.|=n! (small)m Pr [Vys.t.M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h (u) = 0%

e Upper bound.|Pr, [Tu € S, s.t.h(u) = 0¥] < |S, |/2k

e As H, is pairwise independent, for every ue{0,l}™,
Pr, [h(u) = 0K] = 2°X,

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS,/ =n! (small)mp Pr_[Vys.t.M(x,y,r) =0] = 2/3.
* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h ip(up) = 0k,
e Lower bound.
Pr. [Ju € S, s.t. h(u) = 04]
> Pr, [h(u) =0%] - > Pr, [h(u) = 0K & h(u’) = 0]

ue€s, uu’ €S,
uztu (by inclusion-exclusion principle)

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.|=n! (small)m Pr [Vys.t.M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h ip(up) = 0k,
e Lower bound.
Pr. [Ju € S, s.t. h(u) = 04]

2> |SX|/2k x |Sx|2 / 22k+|, (as H,, is pairwise independent)

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS,/ =n! (small)mp Pr_[Vys.t.M(x,y,r) =0] = 2/3.
* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h ip(up) = 0k,
e Lower bound.
Pr. [Ju € S, s.t. h(u) = 04]
> S |/2%. (I - |S|/2K). (as H_ is pairwise independent)

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.|=n! (small)m Pr [Vys.t.M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h (u) = 0%

o If |S,| = n! then (by the upper bound)
Pr, [Qu € S, s.t. h(u) = 0X] < n!/2k,

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.|=n! (small)m Pr [Vys.t.M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h (u) = 0%

o If |S,| = n! then (by the upper bound)
Pr, [Ju € S, s.t. h(u) = 0] < n!/2%. Hence,
* Exp, [{p€E[t] : Ju € S;s.t.hy(u) = 01}] = t.nl/2%

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3

IS,/ =n! (small)mp Pr_[Vys.t.M(x,y,r) =0] = 2/3.
* Proof. For every p € [t]: M uses ¢, & x to check if u;

€S,. If yes,M checks if h (u)) = 0~
e Choosing k.|Fix k s.t. 24?2 < 2n! < 2|
o If |S,| = 2n! then (by the lower bound)

Pr. [Ju €S, s.t. h(u) = 0] = |S,|/2%. (I-|S,|/2%*")

> |S, |/2" . %4 = 3/2.n!/2k

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS.| =n! (small)m Pr [Vys.t.M(x,y,r)=0]=2/3.
* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h ip(up) = 0k,
e Choosing k. Fix k s.t. 2k? < 2n! < 2k,
o If |S,| = 2n! then (by the lower bound)
Pr, [Ju €S, s.t. h(u) = 0<] = 3/2 .n!/2*. Hence,
o Exp.[[{p€[t] : Ju € S, s.t.hi(u)) = 0K} 1= 3/2 .t .nl/2%

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)m Pr_ [Vys.t. M(x,y,r) =0] = 2/3.
* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h ip(up) = 0k,
o If |S,| = 2n! then
Exp, [{p€[t] : u,€ S, s.t.h; (u)) = 04412 3/2.t.nl/2%
o If |S,| = n! then
Exp, [{p€[t] : Ju € S, s.t.h; (u;) = 01}] < t.nl/2x

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS,/ =n! (small)mp Pr_[Vys.t.M(x,y,r) =0] = 2/3.
* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h ip(up) = 0k,
o If |S,| = 2n! then
Exp, [{p€[t] : u,€ S, s.t.h; (u)) = 04412 3/2.t.nl/2%
o If |S,| = n! then 1gap
Exp, [{p€[t] : Ju € S, s.t.h; (u)) = 0}] < t.nl/2x

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS, =n! (small)m Pr_ [Vys.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses ¢, & x to check if u;
€ S,. If yes,M checks if h ip(up) = 0k,

 If |S. | = 2n!, by Chernoff bd. & n!/2* € [1/8,1/4],
Pr.[{p€lt] : Fu € Sy s.t.h; (uy) =04} 2 1.4.¢. n!/2K] = 2/3.

o If |S | = n!, by Chernoff/Markov bd. & n!/2*€[1/8,1/4]
Pr. [{p€[t] : Fu € S, s.t. h; (u)) =0} < 1.4.t.nl/2] 2 2/3.

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.|=n! (small)m Pr [Vys.t.M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u
€ S,. If yes,M checks if h (u)) = 0% |t*=1.4.tn!/2"

 If |S.| = 2n!, by Chernoff bd. & n!/2* € [1/8,1/4],
Pr.[{p€lt] : Fu € Sy s.t.h; (uy) =04} 2 1.4.¢. n!/2K] = 2/3.

o If |S | = n!, by Chernoff/Markov bd. & n!/2*€[1/8,1/4]
Pr. [{p€[t] : Fu € S, s.t. h; (u)) =0} < 1.4.t.nl/2] 2 2/3.

P

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
S.|=n! (small)m Pr [Vys.t.M(xy,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u
€ S,. If yes,M checks if h (u)) = 0% |t*=1.4.tn!/2"

o If |S,| = 2n! then

Pr. [{p€l[t] : Ju € S, s.t. h; (u,) = 04} = t*] = 2/3.
o If |S,| = n! then

Pr. [{p€[t] : u € S, s.t.h; (u;)) = 04} < t¥] =2 2/3.

P

Set lower bound protocol (contd.)

e Lemma ™. There’s a poly-time TM M that takes input x
=(G,, G,),y & r,and a polynomial function q(.) s.t.

IS.| = 2n! (large) ™ Pr_[Jy s.t. M(x,y,r) = 1] =2/3
IS,/ =n! (small)mp Pr_[Vys.t.M(x,y,r) =0] = 2/3.
* Proof. For every p € [t]: M uses c, & x to check if u

€ S,. If yes,M checks if h ip(up) = 0k,
o If |S,| = 2n! then

Pr [Jy s.t. M(x,y,r) = |] 2 2/3.
o If |S,| = n! then

Pr_[Vy s.t. M(x,y,r) = 0] =2 2/3.

t* = | .4.t. n!/2k

P

