Computational Complexity Theory

Lecture 20: GNI is in BP.NP

Department of Computer Science, Indian Institute of Science

Recap: Randomized reduction

- Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \leq_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$ $\Pr[L_1(x) = L_2(M(x))] \geq 2/3$.
- For arbitrary L₁ and L₂, we may not be able to boost the success probability 2/3, and so, the above kind of reductions needn't be transitive. However,

• Obs. If
$$L_1 \leq_r L_2$$
 and $L_2 \in BPP$, then $L_1 \in BPP$.
(Easy homework)

Recap: Randomized reduction

- Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \leq_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$ $\Pr[L_1(x) = L_2(M(x))] \geq 2/3$.
- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |\mathbf{x}|^{-c}$ to $| \exp(-|\mathbf{x}|^d)$.
- *Proof idea*. BPP error reduction trick + Cook-Levin.

(homework)

Recap: Randomized reduction

- Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \leq_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$ $\Pr[L_1(x) = L_2(M(x))] \geq 2/3$.
- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |\mathbf{x}|^{-c}$ to $| \exp(-|\mathbf{x}|^d)$.
- Recall, NP = {L : L ≤_p SAT}. It makes sense to define a similar class using randomized poly-time reduction.

- Definition. We say a L_1 reduces to a L_2 in <u>randomized</u> <u>polynomial-time</u>, denoted $L_1 \leq_r L_2$, if there's a polytime PTM M s.t. for every $x \in \{0,1\}^*$ $\Pr[L_1(x) = L_2(M(x))] \geq 2/3$.
- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |\mathbf{x}|^{-c}$ to $| \exp(-|\mathbf{x}|^d)$.
- Definition. BP.NP = {L : $L \leq_r SAT$ }.
- Class **BP.NP** is also known as **AM** (Arthur-Merlin protocol) in the literature.

- Definition. $BP.NP = \{L : L \leq_r SAT\}.$
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ? Many believe that the answer is "yes".
- Theorem. If certain reasonable circuit lower bounds hold, then BP.NP = NP.
- Proof idea. Similar to Nisan & Wigderson's conditional BPP = P result.

- Definition. BP.NP = {L : $L \leq_r SAT$ }.
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ? Many believe that the answer is "yes".
- We may further ask:
- I. Is BP.NP in PH? Recall, BPP is in PH.
- 2. Is SAT \in BP.NP? Recall, if SAT \in BPP then PH collapses. (SAT \in BP.NP as NP \subseteq BP.NP .)

- Definition. $BP.NP = \{L : L \leq_r SAT\}.$
- Theorem. BP.NP is in \sum_{3} . (In fact, BP.NP is in \prod_{2} .)
- **Proof idea.** Similar to the Sipser-Gacs-Lautemann theorem. (Assignment problem)
- Wondering if BP.NP ⊆ ∏₂ implies BP.NP ⊆ ∑₂ ? Is
 BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).
- If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next theorem shows that this would lead to PH collapse.

- Definition. **BP.NP** = {L : $L \leq_r SAT$ }.
- Theorem. If $\overline{SAT} \in BP.NP$ then $PH = \sum_3$ (in fact, $PH = \sum_2$).
- **Proof idea.** Similar to Adleman's theorem + Karp-Lipton theorem. (Assignment problem)

- Definition. $BP.NP = \{L : L \leq_r SAT\}.$
- Theorem. If $\overline{SAT} \in BP.NP$ then $PH = \sum_{2}$.
- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Thus, even without designing an efficient algorithm for GI, we know GI is unlikely to be NP-complete!

- Definition. $BP.NP = \{L : L \leq_r SAT\}.$
- Theorem. If $\overline{SAT} \in BP.NP$ then $PH = \sum_{2}$.
- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Theorem. (Goldwasser-Sipser '87, Boppana, Hastad, Zachos '87) GNI ∈ BP.NP.
- *Proof.* We'll prove it today.

- Definition. $BP.NP = \{L : L \leq_r SAT\}.$
- Theorem. If $\overline{SAT} \in BP.NP$ then $PH = \sum_{2}$.
- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Theorem. (Goldwasser-Sipser '87, Boppana, Hastad, Zachos '87) GNI ∈ BP.NP.
- If GI is NP-complete then GNI is co-NP-complete. If so, then the above two theorems imply PH = \sum_{1}^{2} .

Recap: GI in Quasi-P

Theorem. (Babai 2015) There's a deterministic exp(O((log n)³)) time algorithm to solve the graph isomorphism problem.

Graph Non-isomorphism

- Definition. Let G_1 and G_2 be two undirected graphs on n vertices. Identify the vertices with [n]. We say G_1 is <u>isomorphic</u> to G_2 , denoted $G_1 \cong G_2$, if there's a bijection/permutation π :[n] \rightarrow [n] s.t. for all u, v \in [n], (u,v) is an edge in G_1 if and only if ($\pi(u), \pi(v)$) is an edge in G_2 .
- Definition. GNI = { $(G_1, G_2) : G_1 \ncong G_2$ }.
- Clearly, $GNI \in co-NP$, it is not known if $GNI \in NP$.

- The idea.
- **I.** Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \ncong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.

- The idea.
- **I.** Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \ncong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.

There's a poly-time TM V and a polynomial function q(.) s.t. $u \in S_x \implies \exists c \in \{0, 1\}^{q(|x|)} \quad V(x, u, c) = 1$ $u \notin S_x \implies \forall c \in \{0, 1\}^{q(|x|)} \quad V(x, u, c) = 0.$

- The idea.
- **I.** Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \ncong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.
- 2. Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".

• Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \ncong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.

• Defn. Aut(G) = {bijection $\pi:[n] \rightarrow [n]: \pi(G) = G$ }.

Permutation $\pi = (1,3,2)$ is in Aut(G).

- Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \ncong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.
- Defn. Aut(G) = {bijection $\pi:[n] \rightarrow [n]: \pi(G) = G$ }.
- Let $S_x = \{(H, \pi) : H \cong G_1 \text{ or } H \cong G_2 \text{ and } \pi \in Aut(H)\}.$

Obs. S_x satisfies the properties stated in Step 1.
 (Homework)

• Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) \Rightarrow $Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) \Rightarrow $Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- Proof. Uses Goldwasser-Sipser set lower bound protocol. We'll see the proof in a while.

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$

We can think of M's computation as a Boolean circuit $\psi_{x,r}(y)$, which can be computed in randomized $|x|^{O(1)}$ time by fixing x and picking $r \in \{0,1\}^{q(n)}$ randomly. Cook-Levin

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Corollary. There's <u>randomized</u> poly-time reduction that maps **x** to a Boolean circuit $\psi_{\rm x,r}$ s.t.
 - $|S_x| = 2n!$ (large) $\implies \Pr_r[\psi_{x,r}(y) \text{ is satisfiable}] \ge 2/3$
 - $|S_x| = n!$ (small) $\Rightarrow \Pr_r[\psi_{x,r}(y) \text{ is unsatisfiable}] \ge 2/3.$

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Corollary. There's <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t.
 - $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\phi_{x,r}(z) \text{ is satisfiable}] \ge 2/3$
 - $|S_x| = n!$ (small) $\implies \Pr_r [\phi_{x,r}(z) \text{ is unsatisfiable}] \ge 2/3.$

 $\phi_{x,r}$ is a CNF and z = y + auxiliary variables.Cook-Levin

- Step 2: Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Corollary. There's <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t.

 $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\Phi_{x,r}(z) \text{ is satisfiable}] \ge 2/3$

 $|S_x| = n!$ (small) $\Rightarrow \Pr_r [\phi_{x,r}(z) \text{ is unsatisfiable}] \ge 2/3.$

• Hence, GNI is in BP.NP. It remains to prove Lemma *.

• Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) \Rightarrow $\Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) \Rightarrow $\Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .

The value of k will be fixed in the analysis.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- Proof idea. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- Let $t = n^{O(1)}$ be sufficiently large. M interprets r as $(i_1, i_2, ..., i_t)$, where $i_1, ..., i_t$ are indices of hash functions in H.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof idea*. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- Let $t = n^{O(1)}$ be sufficiently large. M interprets r as $(i_1, i_2, ..., i_t)$, where $i_1, ..., i_t$ are indices of hash functions in H.

 $|r| = n^{O(1)}$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- Proof idea. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- M interprets y as $((u_1,c_1), (u_2,c_2),..., (u_t,c_t))$, where $u_1,..., u_t$ are m-bit strings, and c_p is an alleged certificate of u_p 's membership in S_x for every $p \in [t]$. $|y| = n^{O(1)}$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof idea*. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.

Recall, membership in S_x can be efficiently certified.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof idea*. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$. If sufficiently many (say, t^*) of these checks pass, M outputs I, else it o/ps 0.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof idea*. Let $H = \{h_i\}$ be a "suitable" <u>family of hash</u> <u>functions</u> that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- For every p ∈ [t]: M uses c_p & x to check if u_p ∈ S_x. If yes, M checks if h_{i_p} (u_p) = 0^k. If sufficiently many (say, t*) of these checks pass, M outputs I, else it o/ps 0. Intuitively, ∃y s.t. t* of the checks pass iff S_x is large.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r)] = 0] \ge 2/3.$
- Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, m = size of an element in S_x .
- For every p ∈ [t]: M uses c_p & x to check if u_p ∈ S_x. If yes, M checks if h_{i_p} (u_p) = 0^k. If sufficiently many (say, t*) of these checks pass, M outputs I, else it o/ps 0. Intuitively, ∃y s.t. t* of the checks pass iff S_x is large.

• Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is *pairwise independent* if for every <u>distinct</u> $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$,

$$Pr_{h \in_r H_{m,k}}$$
 [h(x) = y and h(x') = y'] = 2^{-2k}.

- Definition. A family H_{m,k} of (hash) functions from {0,1}^m to {0,1}^k is *pairwise independent* if for every distinct x, x' ∈ {0,1}^m and for every y, y' ∈ {0,1}^k,
 Pr_{h∈nHmk} [h(x) = y and h(x') = y'] = 2^{-2k}.
- Obs. Let $H_{m,k}$ be a pairwise independent hash function family. For every $x \in \{0, I\}^m$ and $y \in \{0, I\}^k$, $\Pr_{h \in_r H_{m,k}} [h(x) = y] = 2^{-k}$.

• Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is *pairwise independent* if for every <u>distinct</u> $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$,

$$\begin{array}{l} \mathsf{Pr}_{h \in_{r} \mathsf{H}_{m,k}} & [h(x) = y \text{ and } h(x') = y'] = 2^{-2k}. \\ = \mathsf{Pr}_{h \in_{r} \mathsf{H}_{m,k}} & [h(x) = y] \cdot \mathsf{Pr}_{h \in_{r} \mathsf{H}_{m,k}} & [h(x') = y'] \end{array}$$

• Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is *pairwise independent* if for every <u>distinct</u> $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$,

$$\begin{array}{l} \Pr_{h \in_{r} H_{m,k}} & [h(x) = y \text{ and } h(x') = y'] = 2^{-2k}. \\ = \Pr_{h \in_{r} H_{m,k}} & [h(x) = y] \cdot \Pr_{h \in_{r} H_{m,k}} & [h(x') = y'] \end{array}$$

• Example. Let $\ell > 0$ and F be the <u>finite field</u> of size 2^{ℓ} . We can identify F with $\{0,1\}^{\ell}$ as elements of F are ℓ bit strings. For a, b \in F, define the function $h_{a,b}$ as $h_{a,b}(x) = ax + b$ for every $x \in F$. Then, $H_{\ell,\ell} = \{h_{a,b} : a, b \in F\}$ is a pairwise independent hash family.

- Example. Let ℓ > 0 and F be the <u>finite field</u> of size 2^ℓ. We can identify F with {0,1}^ℓ as elements of F are ℓ-bit strings. For a, b ∈ F, define the function h_{a,b} as h_{a,b}(x) = ax + b for every x ∈ F. Then, H_{ℓ,ℓ} = {h_{a,b} : a,b ∈ F} is a pairwise independent hash family.
- Proof. Let x, x' \in F be distinct and y, y' \in F. Then, $h_{a,b}(x) = y \& h_{a,b}(x') = y'$ if and only if a = (y-y')/(x-x')and b = (xy' - x'y)/(x-x').

- Example. Let ℓ > 0 and F be the <u>finite field</u> of size 2^ℓ. We can identify F with {0,1}^ℓ as elements of F are ℓ-bit strings. For a, b ∈ F, define the function h_{a,b} as h_{a,b}(x) = ax + b for every x ∈ F. Then, H_{ℓ,ℓ} = {h_{a,b} : a,b ∈ F} is a pairwise independent hash family.
- Proof. Let x, x' \in F be distinct and y, y' \in F. Then, $h_{a,b}(x) = y \& h_{a,b}(x') = y'$ if and only if a = (y-y')/(x-x')and b = (xy' - x'y)/(x-x'). Therefore,

 $Pr_{a,b \in_r F} [h_{a,b}(x) = y \& h_{a,b}(x') = y']$

- = $Pr_{a,b \in_r F}$ [a = (y-y')/(x-x') & b = (xy' x'y)/(x-x')]
- = $2^{-2\ell}$ (as a and b are independently chosen).

- Example. Let ℓ > 0 and F be the <u>finite field</u> of size 2^ℓ. We can identify F with {0,1}^ℓ as elements of F are ℓ-bit strings. For a, b ∈ F, define the function h_{a,b} as h_{a,b}(x) = ax + b for every x ∈ F. Then, H_{ℓ,ℓ} = {h_{a,b} : a,b ∈ F} is a pairwise independent hash family.
- Obs. If m ≥ k, then we can construct a pairwise independent H_{m,k} by considering H_{m,m} as above. Truncate the output of a function to the first k bits.

(Homework)

- Example. Let ℓ > 0 and F be the <u>finite field</u> of size 2^ℓ. We can identify F with {0,1}^ℓ as elements of F are ℓ-bit strings. For a, b ∈ F, define the function h_{a,b} as h_{a,b}(x) = ax + b for every x ∈ F. Then, H_{ℓ,ℓ} = {h_{a,b} : a,b ∈ F} is a pairwise independent hash family.
- Obs. If m ≤ k, then we can construct a pairwise independent H_{m,k} by considering H_{k,k} as above. Generate k-bit i/p for a function by padding with 0.

(Homework)

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- **Proof.** Let $H_{m,k}$ be a family of pairwise independent hash functions.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* Let $H_{m,k}$ be a family of pairwise independent hash functions. Recall, $r = (i_1, i_2, ..., i_t)$, where $i_1, ..., i_t$ are indices of functions in $H_{m,k}$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* Let $H_{m,k}$ be a family of pairwise independent hash functions. Recall, $r = (i_1, i_2, ..., i_t)$, where $i_1, ..., i_t$ are indices of functions in $H_{m,k}$. Also, $y = ((u_1,c_1), (u_2,c_2),..., (u_t,c_t))$, where $u_1,..., u_t \in \{0,1\}^m$, and c_p is an alleged certificate of u_p 's membership in S_x for every $p \in [t]$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- For a fixed p, what is the probability (over the randomness of i_p) there's a $u_p \in S_x$ s.t. $h_{i_p} (u_p)=0^k$? We'll upper & lower bound this probability.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Simplifying notations. As p is fixed, let $h_{i_p} = h$ and $u_p = u$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Upper bound. $\Pr_h [\exists u \in S_x \text{ s.t. } h(u) = 0^k] \le |S_x|/2^k$.
- As $H_{m,k}$ is pairwise independent, for every $u \in \{0, I\}^m$, $Pr_h [h(u) = 0^k] = 2^{-k}$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Lower bound.

 $\Pr_{h} [\exists u \in S_{x} \text{ s.t. } h(u) = 0^{k}] \geq \sum_{u \in S_{x}} \Pr_{h} [h(u) = 0^{k}] - \sum_{u,u' \in S_{x} \atop u \neq u'} \Pr_{h} [h(u) = 0^{k} \& h(u') = 0^{k}]$ (by inclusion-exclusion principle)

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Lower bound.

 $Pr_{h} [∃u \in S_{x} \text{ s.t. } h(u) = 0^{k}]$ ≥ $|S_{x}|/2^{k} - |S_{x}|^{2} / 2^{2k+1}.$

(as $H_{m,k}$ is pairwise independent)

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Lower bound.

$$Pr_{h} [∃u \in S_{x} \text{ s.t. } h(u) = 0^{k}]$$

≥ $|S_{x}|/2^{k} . (I - |S_{x}|/2^{k+1}).$

(as $H_{m,k}$ is pairwise independent)

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- If $|S_x| = n!$ then (by the upper bound) $Pr_h [\exists u \in S_x \text{ s.t. } h(u) = 0^k] \le n!/2^k$.

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- If $|S_x| = n!$ then (by the upper bound) $Pr_h [\exists u \in S_x \text{ s.t. } h(u) = 0^k] \le n!/2^k$. Hence,
- $\operatorname{Exp}_{r} \left[|\{ p \in [t] : \exists u_{p} \in S_{x} \text{ s.t. } h_{i_{p}}(u_{p}) = 0^{k} \} | \right] \le t. n!/2^{k}.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Choosing k. Fix k s.t. $2^{k-2} < 2n! \le 2^{k-1}$
- If $|S_x| = 2n!$ then (by the lower bound) $\Pr_h [\exists u \in S_x \text{ s.t. } h(u) = 0^k] \ge |S_x|/2^k \cdot (1 - |S_x|/2^{k+1})$ $\ge |S_x|/2^k \cdot \frac{3}{4} = 3/2 \cdot n!/2^k$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_x}(u_p) = 0^k$.
- Choosing k. Fix k s.t. $2^{k-2} < 2n! \le 2^{k-1}$.
- If $|S_x| = 2n!$ then (by the lower bound) $Pr_h [\exists u \in S_x \text{ s.t. } h(u) = 0^k] \ge 3/2 \cdot n!/2^k$. Hence,
- $\operatorname{Exp}_{r}[|\{p\in[t]: \exists u_{p}\in S_{x} \text{ s.t. } h_{i_{p}}(u_{p}) = 0^{k}\}|] \geq 3/2 . t . n!/2^{k}.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- If $|S_x| = 2n!$ then $Exp_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}|] \ge 3/2 . t . n!/2^k.$
- If $|S_x| = n!$ then $Exp_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}|] \le t. n!/2^k.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- If $|S_x| = 2n!$ then $Exp_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}|] \ge 3/2 \cdot t \cdot n!/2^k.$
- If $|S_x| = n!$ then $Exp_r [|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}|] \le t. n!/2^k.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- If $|S_x| = 2n!$, by Chernoff bd. & $n!/2^k \in [1/8, 1/4]$, $\Pr_r[|\{p\in[t]: \exists u_p\in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}| \ge 1.4. \text{ t. } n!/2^k] \ge 2/3.$
- If $|S_x| = n!$, by Chernoff/Markov bd. & $n!/2^k \in [1/8, 1/4]$ $\Pr_r [|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}| < 1.4. \text{ t. } n!/2^k] \ge 2/3.$

(Easy homework)

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$. $t^* = 1.4. t. n!/2^k$
- If $|S_x| = 2n!$, by Chernoff bd. & $n!/2^k \in [1/8, 1/4]$, $\Pr_r[|\{p\in[t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}| \ge 1.4. \text{ t. } n!/2^k] \ge 2/3.$
- If $|S_x| = n!$, by Chernoff/Markov bd. & $n!/2^k \in [1/8, 1/4]$ $\Pr_r [|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}| < 1.4. \text{ t. } n!/2^k] \ge 2/3.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$. $t^* = 1.4. t. n!/2^k$
- If $|S_x| = 2n!$ then

 $\Pr_{r}[|\{p\in[t]: \exists u_{p}\in S_{x} \text{ s.t. } h_{i_{p}}(u_{p}) = 0^{k}\}| \ge t^{*}] \ge 2/3.$

• If $|S_x| = n!$ then

 $\Pr_{r}[|\{p \in [t] : \exists u_{p} \in S_{x} \text{ s.t. } h_{i_{p}}(u_{p}) = 0^{k}\}| < t^{*}] \ge 2/3.$

- Lemma *. There's a poly-time TM M that takes input x = (G_1, G_2) , y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\implies Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\implies Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$. $t^* = 1.4. t. n!/2^k$
- If $|S_x| = 2n!$ then
 - $\Pr_{r}[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3.$
- If $|S_x| = n!$ then

 $\Pr_{r} [\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$