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Natural counting problems  

 What is the complexity of the following problems?  

 

 #SAT: Count the number of satisfying assignments of a 
given Boolean circuit/CNF. 

 

 #HAMCYCLE: Count the number of Hamiltonian 
cycles in an undirected graph. 

 

 Observation. The above problems are NP-hard.           



Natural counting problems  

 What is the complexity of the following problems?  

 

 #PerfectMatching: Count the number of perfect 
matchings in a bipartite graph. 

 

 #CYCLE: Count the number of simple cycles in a 
directed graph. 

 

 Observation. The corresponding decision problems 
are in P.           



Natural counting problems  

 What is the complexity of the following problems?  

 

 #PATH: Count the number of simple paths between 
two vertices in a connected graph. 

 

 #SPANTREE: Count the number of spanning trees in a 
connected graph. 

 

 Observation. The corresponding decision problems 
are trivial.           



An easy counting problem 

 Theorem. (Kirchhoff 1847)  #SPANTREE is in FP. 

 



An easy counting problem 

 Theorem. (Kirchhoff 1847)  #SPANTREE is in FP. 

 

 Proof sketch. Let G be an n-vertex connected graph 
without self loops. Label the vertices by {1,…, n}. 

 

 Definition. The Laplacian matrix of G is an n x n matrix 
LG defined as 

     LG(i,j) = deg(i)   if i = j, 

   = -1        if there’s an edge (i,j) in G, 

   = 0      otherwise. 



An easy counting problem 

 Theorem. (Kirchhoff 1847)  #SPANTREE is in FP. 

 

 Proof sketch. Let G be an n-vertex connected graph 
without self loops. Label the vertices by {1,…, n}. 

 

 Definition. The Laplacian matrix of G is an n x n matrix 
LG defined as LG = DG – AG, where DG is the degree 
matrix and AG the adjacency matrix of G. 

 

 Observation. It is easy to compute LG from AG. 



An easy counting problem 

 Theorem. (Kirchhoff 1847)  #SPANTREE is in FP. 

 

 Proof sketch. Let G be an n-vertex connected graph 
without self loops. Label the vertices by {1,…, n}. 

 

 Kirchhoff ’s matrix-tree theorem states that 

   no. of spanning trees of G  =  any cofactor of LG. 

 

 (i,j) cofactor of L = (-1)i+j . det(submatrix of L obtained 
by deleting the i-th row and the j-th column from L).  

 



An easy counting problem 

 Theorem. (Kirchhoff 1847)  #SPANTREE is in FP. 

 

 Proof sketch. Let G be an n-vertex connected graph 
without self loops. Label the vertices by {1,…, n}. 

 

 Kirchhoff ’s matrix-tree theorem states that 

   no. of spanning trees of G  =  any cofactor of LG. 

 

 Corollary. As determinant computation is in 
(functional) NC,   #SPANTREES is in (functional) NC. 

 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Lesson. A counting problem can be hard even if the 
corresponding decision problem is in P.  

 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Proof. We will give a poly-time reduction from the 
Hamiltonian cycle problem to the #CYCLE problem. 

 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Proof. Let G be an n-vertex digraph. We’ll efficiently 
construct a new graph G’ from G s.t. the presence of 
a Hamiltonian cycle in G can be readily derived from 
the number of cycles in G’. Construction of G’ : 

i               j 

An edge in G 

replace 
 

   with 

… i j 

m layers G G’ 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn. 

i               j 

An edge in G 

replace 
 

   with 

… i j 

m layers G G’ 

#cycle      no. of cycles 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn. 

 Case2:  If G has no HC, then #cycle(G) ≤ nn-1  

                                             #cycle(G’) ≤ nn-1.2m(n-1) . 

 

i               j 

An edge in G 

replace 
 

   with 

… i j 

m layers G G’ 



A hard counting problem 

 Theorem. #CYCLE is in NP-hard. 

 

 Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn. 

 Case2:  If G has no HC, then #cycle(G) ≤ nn-1  

                                             #cycle(G’) ≤ nn-1.2m(n-1) . 

 

 If we choose m such that nn-1.2m(n-1) < 2mn , then we 
can find out if G has a HC from #cycle(G’). 

 Set m = n2. 



Class #P 

 Definition. We say a function f: {0,1}*     is in #P if 
there’s a poly-time TM M and a polynomial function p: 

such that for every x ∈ {0,1}*,  

          f(x) = |{u∈{0,1}p(|x|) :  M(x, u) = 1}| . 
 



Class #P 

 Definition. We say a function f: {0,1}*     is in #P if 
there’s a poly-time TM M and a polynomial function p: 

such that for every x ∈ {0,1}*,  

          f(x) = |{u∈{0,1}p(|x|) :  M(x, u) = 1}| . 
 

 Observation. Problems #SAT, #HAMCYCLE, 
#PerfectMatching, #CYCLE, #PATH and #SPANTREE 
are in #P.  

 In fact, with every language in NP we can associate a 
counting problem that is in #P. 

 

 



#P-completeness 

 Recall, to define completeness of a complexity class, 
we need an appropriate notion of a reduction. 

 What kind of reductions will be suitable is guided by a 
complexity question, like a comparison between the 
complexity class under consideration & another class. 

 Is #P = FP ?  



#P-completeness 

 Definition.  A function f: {0,1}*     is in #P-complete 
if f is in #P and for every g ∈ #P, we have g ∈ FPf i.e., g 
is poly-time Cook/Turing reducible to f.  

 

 In other words, for every x ∈ {0,1}*, we can compute 
g(x) in polynomial time using oracle access to f.  



#P-completeness 

 Definition.  A function f: {0,1}*     is in #P-complete 
if f is in #P and for every g ∈ #P, we have g ∈ FPf i.e., g 
is poly-time Cook/Turing reducible to f.  

 

 In other words, for every x ∈ {0,1}*, we can compute 
g(x) in polynomial time using oracle access to f.  

 

 Observation. If a #P-complete language is in FP then 
#P = FP. 



Natural #P-complete problems 

 Theorem.  #SAT is #P-complete.  

 

 Proof.  #SAT is in #P. Let g ∈ #P.  We intend to show 
that g ∈ FP#SAT.  



Natural #P-complete problems 

 Theorem.  #SAT is #P-complete.  

 

 Proof.  #SAT is in #P. Let g ∈ #P.  We intend to show 
that g ∈ FP#SAT. There’s a poly-time TM M and a poly. 
function p: such that for every x ∈ {0,1}*,  

          g(x) = |{u∈{0,1}p(|x|) :  M(x, u) = 1}| . 
 

 Algorithm: On input x, convert M(x, ..) to a 3CNF ϕx 
using Cook-Levin theorem. Give ϕx as input to the 
#SAT oracle. Output whatever the oracle outputs.   

 



Natural #P-complete problems 

 Theorem.  #SAT is #P-complete.  

 

 Proof.  #SAT is in #P. Let g ∈ #P.  We intend to show 
that g ∈ FP#SAT. There’s a poly-time TM M and a poly. 
function p: such that for every x ∈ {0,1}*,  

          g(x) = |{u∈{0,1}p(|x|) :  M(x, u) = 1}| . 
 

 Algorithm: On input x, convert M(x, ..) to a 3CNF ϕx 
using Cook-Levin theorem. Give ϕx as input to the 
#SAT oracle. Output whatever the oracle outputs.   

 Note:  Only one query to the oracle.  Resembles a poly-time Karp reduction. 



Natural #P-complete problems 

 Theorem.  #SAT is #P-complete.  

 

 Proof.  #SAT is in #P. Let g ∈ #P.  We intend to show 
that g ∈ FP#SAT. There’s a poly-time TM M and a poly. 
function p: such that for every x ∈ {0,1}*,  

          g(x) = |{u∈{0,1}p(|x|) :  M(x, u) = 1}| . 
 

 Correctness: Follows from the fact that the Cook-
Levin reduction is parsimonious, i.e.,   

          |{u∈{0,1}p(|x|) :  M(x, u) = 1}| = #ϕx . 

The no. of satisfying 
assignments of ϕx. 



Natural #P-complete problems 

 Theorem.  #HAMCYCLE is #P-complete.  

 

 Most (all?) NP-complete problems known till date 
have defining verifiers such that the corresponding 
counting problems are #P-complete. 

 

 Open. Does every NP-complete problem have a 
defining verifier such that the corresponding counting 
problem is #P-complete ? 

Issue:  The reduction that shows 
NP-completeness of a problem 
needn’t have to be parsimonious. 



Natural #P-complete problems 

 Theorem. (Valiant 1979) #PATH is #P-complete.  

 

 In fact, #PATH is #P-complete for both directed and 
undirected graphs.  

 



Natural #P-complete problems 

 Theorem. (Valiant 1979) #PATH is #P-complete.  

 

 In fact, #PATH is #P-complete for both directed and 
undirected graphs.  

 

 Theorem. (Valiant 1979) #PerfectMatching is #P-
complete.  

 Proof.  We’ll see a proof later. 

 



Relation between #P and other classes 

 Observation.  #P ⊆ PSPACE.  

 

 Also, PH ⊆ PSPACE.   How does #P relate to PH ? 

 

 



Relation between #P and other classes 

 Observation.  #P ⊆ PSPACE.  

 

 Also, PH ⊆ PSPACE.   How does #P relate to PH ? 

 

 Theorem. (Toda 1991)  PH ⊆ P#SAT. 

 Proof.  We’ll see a proof later. 



Relation between #P and other classes 

 Observation.  #P ⊆ PSPACE.  

 

 Also, PH ⊆ PSPACE.   How does #P relate to PH ? 

 

 Theorem. (Toda 1991)  PH ⊆ P#SAT. 

 

 Hence,  #P is harder than PH. 



Approximations of #P functions 

 Observation. If #P = FP, then P = NP. 

 Open. Does P = NP imply #P = FP ?  

 

 But, we do know that P = NP implies every #P 
problem has a randomized polynomial-time 
approximation algorithm.  



Approximations of #P functions 

 Observation. If #P = FP, then P = NP. 

 Open. Does P = NP imply #P = FP ?  

 

 But, we do know that P = NP implies every #P 
problem has a randomized polynomial-time 
approximation algorithm.  

Can be derandomized! 



Approximations of #P functions 

 Definition. A function f: {0,1}*    has a Fully 
Polynomial-time Randomized Approximation Scheme 
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such 
that for every x ∈ {0,1}*, 

 (1-𝛆).f(x) ≤  M(x)  ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 , 

 M runs in poly(|x|, 𝛆-1, log  𝛅-1) time.  

 



Approximations of #P functions 

 Definition. A function f: {0,1}*    has a Fully 
Polynomial-time Randomized Approximation Scheme 
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such 
that for every x ∈ {0,1}*, 

 (1-𝛆).f(x) ≤  M(x)  ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 , 

 M runs in poly(|x|, 𝛆-1, log  𝛅-1) time.  

 

 Theorem. If P = NP then every #P function has a 
FPRAS. 

 Proof.  We’ll see a proof later.  



Approximations of #P functions 

 Definition. A function f: {0,1}*    has a Fully 
Polynomial-time Randomized Approximation Scheme 
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such 
that for every x ∈ {0,1}*, 

 (1-𝛆).f(x) ≤  M(x)  ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 , 

 M runs in poly(|x|, 𝛆-1, log  𝛅-1) time.  

 

 Theorem. If P = NP then every #P function has a 
FPRAS. 

 Remark. In fact the above FPRAS can be replaced by a 
FPTAS (Fully Poly-Time Approximation Scheme). 



Approximations of #P functions 

 Some #P-complete problems do admit FPRAS 
unconditionally! 

 

 Theorem. (Jerrum, Sinclair, Vigoda 2001) #PerfectMatching 
has a FPRAS. 

 

 Remark. No derandomization of this algorithm is 
known! 



Approximations of #P functions 

 Some #P-complete problems do admit FPRAS 
unconditionally! 

 

 Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a 
square matrix with non-negative entries has a FPRAS. 

 

 If X = (xij)i,j∈n  then  Perm(X) =  ∑     ∏  xi 𝞂(i) .    

 
𝞂∈Sn i∈[n] 



Approximations of #P functions 

 Some #P-complete problems do admit FPRAS 
unconditionally! 

 

 Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a 
square matrix with non-negative entries has a FPRAS. 

 

 If X = (xij)i,j∈n  then  Perm(X) =  ∑     ∏  xi 𝞂(i) .    

 

 Note. If BG is the biadjacency matrix of a bipartite 
graph G, then Perm(BG) = #PerfectMatching(G). 

 

𝞂∈Sn i∈[n] 

0/1 matrix 



0/1-Permanent is #P-complete 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 

 It implies that #PerfectMatching is #P-complete. 

 

 If X = (xij)i,j∈n  then  Perm(X) =  ∑     ∏  xi 𝞂(i) .    

 

 Note. If BG is the biadjacency matrix of a bipartite graph 
G, then Perm(BG) = #PerfectMatching(G). 

 

 

𝞂∈Sn i∈[n] 

0/1 matrix 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 

 

 Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a 
square matrix with non-negative entries has a FPRAS. 

 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 

 Proof. 0/1-Perm is in #P.  (Why?) 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 

 Proof.  We’ll show that #3SAT ∈ FP0/1-Perm. 

 

 In fact, we’ll give a poly-time “Karp-like” reduction from 
#3SAT to 0/1-Perm, i.e., we’ll give a poly-time 
computable function that maps a 3CNF ϕ to a 0/1-
matrix Aϕ s.t. #ϕ is efficiently computable from Perm(Aϕ) 

 

 This means only one query to the 0/1-Perm oracle is 
required.  



Graph theoretic interpretation of Perm 

 Let A = (aij)i,j∈r  , where aij ∈ . 

 Then,  Perm(A) =  ∑     ∏  ai 𝞂(i) .    

 

 Let G be the weighted digraph on r vertices with 
adjacency matrix A, i.e., the edge (i, j) in G has weight aij.  

 

𝞂∈Sr i∈[r] 



Graph theoretic interpretation of Perm 

 Let A = (aij)i,j∈r  , where aij ∈ . 

 Then,  Perm(A) =  ∑     ∏  ai 𝞂(i) .    

 

 Let G be the weighted digraph on r vertices with 
adjacency matrix A, i.e., the edge (i, j) in G has weight aij.  

 

 Every permutation 𝞂: [r]  [r] can be expressed 
(uniquely) as a product of disjoint cycles.  

𝞂∈Sr i∈[r] 

 𝞂:    1   2   3   4          1 
 
      
       3   1   2   4   2 3        4 



Graph theoretic interpretation of Perm 

 Definition. A cycle cover of a digraph G is a subgraph of 
G having in-degree and out-degree of every vertex 
exactly 1, i.e., the subgraph is a disjoint union of cycles 
covering all the vertices of G. 

 

 Weight of a cycle cover C, denoted wt(C), is defined as 
the product of the weights of the edges in C. 



Graph theoretic interpretation of Perm 

 Definition. A cycle cover of a digraph G is a subgraph of 
G having in-degree and out-degree of every vertex 
exactly 1, i.e., the subgraph is a disjoint union of cycles 
covering all the vertices of G. 

 

 Weight of a cycle cover C, denoted wt(C), is defined as 
the product of the weights of the edges in C. 

 

 Observation.  Perm(A) =  ∑       wt(C) . 
C:  C is cycle 
cover of G  

Every “contributing” permutation 𝞂 corresponds to a cycle cover C and vice versa. 



Graph theoretic interpretation of Perm 

 Definition. A cycle cover of a digraph G is a subgraph of 
G having in-degree and out-degree of every vertex 
exactly 1, i.e., the subgraph is a disjoint union of cycles 
covering all the vertices of G. 

 

 Weight of a cycle cover C, denoted wt(C), is defined as 
the product of the weights of the edges in C. 

 

 Observation.  Perm(A) =  ∑       wt(C) . 
C:  C is cycle 
cover of G  

Every “contributing” permutation 𝞂 corresponds to a cycle cover C and vice versa. 

We can denote A as AG, the adjacency matrix of G  



Graph with parallel edges 

 Note. We can talk about ‘‘adjacency matrix’’ of a graph 
G that has parallel edges by defining a new graph G’: 
 

 

 

 Denote the adjacency matrix of a graph H (without 
parallel edges) by AH. Then,  AG is defined as AG’.  

 

w1 

w2 

w1 
w2 

1 

G G’ 

1 



Graph with parallel edges 

 Note. We can talk about ‘‘adjacency matrix’’ of a graph 
G that has parallel edges by defining a new graph G’: 
 

 

 

 Denote the adjacency matrix of a graph H (without 
parallel edges) by AH. Then,  AG is defined as AG’.  

 

 Observation.     ∑       wt(C)  =  ∑       wt(C). 

C:  C is cycle 
cover of G  

w1 

w2 

w1 
w2 

1 

G G’ 

C:  C is cycle 
cover of G’  

1 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 Proof.  Let ϕ be a 3CNF that has n variables and m 
clauses.  Assume that every clause has exactly 3 literals. 

 

 Step 1: From ϕ we’ll form a graph H = Hϕ that has edge 
weights in {-1, 0, 1, 2, 3} such that 

    Perm(AH)  =  ∑       wt(C)  =  43m. #ϕ . 
C:  C is cycle 
cover of H  

… Eqn (1) 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 Proof.  Let ϕ be a 3CNF that has n variables and m 
clauses.  Assume that every clause has exactly 3 literals. 

 

 Step 1: From ϕ we’ll form a graph H = Hϕ that has edge 
weights in {-1, 0, 1, 2, 3} such that 

    Perm(AH)  =  ∑       wt(C)  =  43m. #ϕ . 

 

 Note. Eqn (1) doesn’t give a FPRAS for #3SAT as the 
FPRAS for Perm is for matrices with non-negative entries.   

C:  C is cycle 
cover of H  

… Eqn (1) 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 Proof.  Let ϕ be a 3CNF that has n variables and m 
clauses.  Assume that every clause has exactly 3 literals. 

 

 Step 2:  We’ll process H further to get a new graph G = 
Gϕ with edge weights in {0,1} such that #ϕ can be 
efficiently computed from Perm(AG).  

 

 However, unlike Eqn (1), we won’t get an “precise” 
equation relating Perm(AG) and #ϕ.   



Details of Step 1 and Step 2 



Step 1: Construction of H 

 Convention. In the figures, edges without labels have 
weight 1, and missing edges have weight 0. 

 

 H will be constructed using 3 kinds of gadgets (graphs): 

 



Step 1: Construction of H 

 Convention. In the figures, edges without labels have 
weight 1, and missing edges have weight 0. 

 

 H will be constructed using 3 kinds of gadgets (graphs): 

 Variable gadgets (there will be n of them), 

 Clause gadgets (there will be m of them), and 

 XOR gadgets. 

 

 XOR gadgets are cleverly constructed 4-vertex graphs 
which will be used to connect variable gadgets with 
clause gadgets.  



A variable gadget 

 Let x be a variable. C1, …, Cs be the clauses in which x 
appears, and C’1,…,C’t the clauses in which ¬x appears.  

 

 

 

 

 

 

C1 C2 Cs 

C’1 C’2 C’t 

x(1) x(2) 

Variable gadget for x 



A variable gadget 

 Let x be a variable. C1, …, Cs be the clauses in which x 
appears, and C’1,…,C’t the clauses in which ¬x appears.  

 

 

 

 

 

 

 The external edges (i.e., the red edges) will not be 
present in H, they will be used to connect to the Clause 
gadgets via the XOR gadgets. 

C1 C2 Cs 

C’1 C’2 C’t 

x(1) x(2) 

Variable gadget for x 

External 
true-edges 

External 
false-edges 



A variable gadget 

 Let x be a variable. C1, …, Cs be the clauses in which x 
appears, and C’1,…,C’t the clauses in which ¬x appears.  

 

 

 

 

 

 

 Observation 1. A variable gadget has exactly 2 cycle 
covers corresponding to 0/1 assignment to the variable. 

C1 C2 Cs 

C’1 C’2 C’t 

x(1) x(2) 

Variable gadget for x 

External 
true-edges 

External 
false-edges 



A clause gadget 

 Has 4 vertices and 3 external edges (i.e., red edges) 
corresponding to the 3 literals of the clause.  

 

 

 

 

 

 External edges will not be present in H, they will be 
used to connect to the Variable gadgets via the XOR 
gadgets. 

 

1 

3 2 

4 

Clause gadget for a clause Ci 

External edges corresponding to 
the literals of the clause 



A clause gadget 

 Has 4 vertices and 3 external edges (i.e., red edges) 
corresponding to the 3 literals of the clause.  

 

 

 

 

 

 Observation 2a. The only possible cycle covers of a 
clause gadget are those that exclude at least one 
external edge. 

 

1 

3 2 

4 

Clause gadget for a clause Ci 

External edges corresponding to 
the literals of the clause 



A clause gadget 

 Has 4 vertices and 3 external edges (i.e., red edges) 
corresponding to the 3 literals of the clause.  

 

 

 

 

 

 Observation 2a. The only possible cycle covers of a 
clause gadget are those that exclude at least one 
external edge. 

 

1 

3 2 

4 

Clause gadget for a clause Ci 

External edges corresponding to 
the literals of the clause 

Excluding an external edge will indicate that 
the corresponding literal is set to 1. 



A clause gadget 

 Has 4 vertices and 3 external edges (i.e., red edges) 
corresponding to the 3 literals of the clause.  

 

 

 

 

 

 Observation 2b. For any given proper subset of the 3 
external edges, there’s a unique cycle cover (of weight 
1) that contains them. 

 

1 

3 2 

4 

Clause gadget for a clause Ci 

External edges corresponding to 
the literals of the clause 



XOR gadget  

 

 

 

 

 We’ll construct an XOR gadget such that the following 
features are satisfied: 

 

+ 

u 

u’ 

v v’ 

u 

u’ 

v v’ 

1 

2 

3 

4 
XOR 
gadget 



XOR gadget  

 

 

 

 

 We’ll construct an XOR gadget such that the following 
features are satisfied: 

 Feature 1: Consider cycle covers of H that contain a 
fixed set of edges outside the XOR gadget but 
contain none of (u,1), (1,v’), (v,4), (4,u’). The sum of 
the weights of all such cycle covers is 0.  

 

+ 

u 

u’ 

v v’ 

u 

u’ 

v v’ 

1 

2 

3 

4 
XOR 
gadget 



XOR gadget  

 

 

 

 

 We’ll construct an XOR gadget such that the following 
features are satisfied: 

 Feature 2: Consider cycle covers of H that contain a 
fixed set of edges outside the XOR gadget including 
at least one of the pairs ((u,1), (1,v’)) and ((v,4), 
(4,u’)). The sum of the weights of all such cycle 
covers is 0.  

 

+ 

u 

u’ 

v v’ 

u 

u’ 

v v’ 

1 

2 

3 

4 
XOR 
gadget 



XOR gadget  

 

 

 

 

 We’ll construct an XOR gadget such that the following 
features are satisfied: 

 Feature 3: Consider cycle covers of H that contain a 
fixed set of edges outside the XOR gadget including 
(u,1), (4,u’) but not (v,4), (1,v’). The sum of the 
weights of all such cycle covers is 4.(product of the 
weights of the fixed set of edges).  
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 We’ll construct an XOR gadget such that the following 
features are satisfied: 

 Feature 4: Consider cycle covers of H that contain a 
fixed set of edges outside the XOR gadget including 
(v,4), (1,v’) but not (u,1), (4,u’). The sum of the 
weights of all such cycle covers is 4.(product of the 
weights of the fixed set of edges).  
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Construction of H 

 

 

 

 

 

 

 Size(H) = poly(n,m). 

 

 There are 3m XOR gadgets in H. Every cycle cover of H 
“touches” the 3m XOR gadgets. 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External false-edge corresponding to Ci 



XOR gadget  

 

 

 

 

 An XOR gadget can be “touched” in 4 possible ways:  

a. None of (u,1), (1,v’), (v,4), (4,u’),  
b. At least one of the pairs ((u,1),(1,v’)) & ((v,4),(4,u’)),  
c. Only (u,1), (4,u’), 
d. Only (v,4), (1,v’).  

Call these the “touching patterns” of an XOR gadget. 
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 Every cycle cover of H can be mapped to a specific 
choice of the “touching patterns” of the 3m XOR 
gadgets. 

 

 Now, let us examine the sum of the weights of all the 
cycle covers of H. 
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 Claim 1a. Cycle covers, which map to a specific choice 
of the “touching patterns” of the XOR gadgets s.t. the 
“touching pattern” of at least one of the XOR gates is 
of type a,  do not contribute to the final sum. 

 Proof.  Follows from Feature 1.  (Homework) 
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 Claim 1b. Cycle covers, which map to a specific choice 
of the “touching patterns” of the XOR gadgets s.t. the 
“touching pattern” of at least one of the XOR gates is 
of type b,  do not contribute to the final sum. 

 Proof.  Follows from Feature 2.  (Homework) 
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 Claim 1c. Cycle covers, which map to a specific choice 
of the “touching patterns” of the XOR gadgets s.t. the 
“touching pattern” of every XOR gate is of type c or d, 
together contribute 43m or 0 to the final sum. 

 Proof.  Follows from Feature 3 & 4, and Observations 
2a, 2b & 1.  (Homework) 
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 Claim 1a, 1b and 1c  justify the name of the “XOR” 
gadget. 

 

 The XOR gadget ensures that either the “edge” (u,u’) 
or the “edge” (v,v’) is taken in a potentially contributing 
choice of the “touching patterns” of the XOR gadgets. 
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Construction of H 

 

 

 

 

 

 

 

 Observation 3. Every potentially contributing choice of 
the “touching patterns” of the XOR gadgets can be 
mapped to a unique choice of the cycle covers of the 
variable gadgets.  (Homework) 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 

 Recall (from Observation 1) that a variable gadget has 
exactly 2 cycle covers corresponding to 0/1 assignment 
to the variable. 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 

 Observation 3. (put differently) Every potentially 
contributing choice of the “touching patterns” of the 
XOR gadgets can be mapped to a unique 0/1 
assignment to the variables. 

 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 Which of these 0/1 assignments to the variables 
correspond to actually contributing choice of the 
“touching patterns” of the XOR gadgets? 

 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 Which of these 0/1 assignments to the variables 
correspond to actually contributing choice of the 
“touching patterns” of the XOR gadgets? 

 Answer. Exactly the satisfying assignments of ϕ.   (Why?) 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 Hence, the sum of the weighted cycle covers of H is 43m. 
#ϕ.  

 In other words, Perm(AH) = 43m. #ϕ. This concludes Step 
1 of the proof of the Theorem. 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



Construction of H 

 

 

 

 

 

 

 Hence, the sum of the weighted cycle covers of H is 43m. 
#ϕ.  

 In other words, Perm(AH) = 43m. #ϕ. This concludes Step 
1 of the proof of the Theorem. (Wait! How do we 
construct the XOR gadget?) 

Variable gadget for x 

Clause gadget for a clause Ci that 

contains ¬x 

+ 

External edge corresponding to ¬x 

External edge corresponding to Ci 



XOR gadget  

 

 

 

 

 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 
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 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 

 

 Condition 1.    Feature 1 implies Perm(X) = 0. 
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 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 

 

 Condition 2.    Feature 2 implies Perm(X{2,3,4}) = 0, 
where X{2,3,4} is the submatrix of X restricted to the 
rows and columns that are indexed by 2, 3 and 4. 
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 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 

 

 Condition 2.    Feature 2 implies Perm(X{1,2,3}) = 0, 
where X{1,2,3} is the submatrix of X restricted to the 
rows and columns that are indexed by 1, 2 and 3. 
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 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 

 

 Condition 2.    Feature 2 implies Perm(X{2,3}) = 0, where 
X{2,3} is the submatrix of X restricted to the rows and 
columns that are indexed by 2 and 3. 
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 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 

 

 Condition 3.    Feature 3 implies Perm(Y) = 4, where Y is 
the adjacency matrix of the above 5-vertex graph. 
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 Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget. 

 We need to pick xi,j in a way such that Feature 1, 2, 3 
and 4 are satisfied. 

 

 Condition 4.    Feature 4 implies Perm(Z) = 4, where Z 
is the adjacency matrix of the above 5-vertex graph. 
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 Set X as follows to satisfy Condition 1, 2, 3 and 4. 

 

 

     X =  
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0 1 -1 -1 

1 -1 1 1 

0 1 1 2 

0 1 3 0 



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 Proof.  Let ϕ be a 3CNF that has n variables and m 
clauses.  Assume that every clause has exactly 3 literals. 

 

 Step 1: From ϕ we’ll form a graph H = Hϕ that has edge 
weights in {-1, 0, 1, 2, 3} such that 

    Perm(AH)  =  ∑       wt(C)  =  43m. #ϕ . 

 

 

 We have completed Step 1. 

C:  C is cycle 
cover of H  



0/1-Permanent is #P-complete 

 Theorem. (Valiant 1979) 0/1-Perm is #P-complete.  

 Proof.  Let ϕ be a 3CNF that has n variables and m 
clauses.  Assume that every clause has exactly 3 literals. 

 

 Step 2:  We’ll process H further to get a new graph G = 
Gϕ with edge weights in {0,1} such that #ϕ can be 
efficiently computed from Perm(AG).  

 

 Let us now focus on Step 2. 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 Observe that Perm(AH) = Perm(AH’) ∈ [0, p!]. Set r = p2 
and note that 2r + 1 > p!.  

 

 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 Observe that Perm(AH) = Perm(AH’) ∈ [0, p!]. Set r = p2 
and note that 2r + 1 > p!.  

 Hence, Perm(AH’) is the same as Perm(AH’) mod (2r+1). 

 

 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 Observe that Perm(AH) = Perm(AH’) ∈ [0, p!]. Set r = p2 
and note that 2r + 1 > p!.  

 Hence, Perm(AH’) is the same as Perm(AH’) mod (2r+1). 

 As -1 = 2r mod (2r + 1), we can replace the weights of 
the edges in H’ that are labelled by -1 with 2r to form a 
graph G’ and compute Perm(AG’) mod (2r+1). 

 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 Finally, transform G’ to G with 0/1 edge weights by 

 replacing every edge with weight 2r by a sequence 
of r edges each having weight 2, and then 

 replacing every edge with weight 2 by a pair of 
parallel weight 1 edges, and then 

 removing parallel edges like before. 



Step 2 

 Covert H to H’ that has edge weights from {-1, 0, 1} by 
first introducing parallel edges, and then, introducing 
extra vertices to get rid of the parallel edges. Let p = 
poly(n,m) be the number of vertices of H’.  
 

 In the end, we get Perm(AG) = 4m. #ϕ  mod (2r + 1), 
where G is a graph with 0/1 edge weights. 

 

 It is because of the modulus “mod (2r + 1)” that an 
FPRAS for 0/1-Perm doesn’t imply an FPRAS for #3SAT. 

 

 


