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Motivation

• One of the goals of complexity theory is to separate complexity classes like 
P vs NP, PSPACE vs EXP etc.

• Early results used logical techniques like diagonalization to prove 
separation results.

• Some examples are:
• Time Hierarchy Theorem [Hartmannis-Stearns’1965] implying P ⊂ EXP. 
• Space Hierarchy Theorem [Stearns-Hartmannis-Lewis’1965]  implying P ≠ SPACE(n) 

(it is not known if P ⊄ SPACE(n) or P ⊅ SPACE(n)).
• NEXPNP ⊈ P/poly [Kannan’1981] based on Shannon’s counting argument. 
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Limitations of logical techniques

• Such techniques are abstract and general but limited in scope.

• Unfortunately, these techniques hit the relativization barrier.

• There exist oracles 𝐴, 𝐵 s.t. 𝑃𝐴 ≠ 𝑁𝑃𝐴 and 𝑃𝐵 = 𝑁𝑃𝐵 [Baker-Gill-
Solovay’1975].



Relativization barrier

• Main insight: diagonalization based proofs must hold w.r.t. oracles. Ironically, 
the proof uses diagonalization.

• Thus, any proof of P ≠ NP will have to be non-relativizing. 

• [Wilson’1985] showed that there exists oracle 𝐴 s.t. NEXP𝐴 ⊆ P𝐴 /poly and every 
language in NP𝐴 has linear sized circuits with 𝐴-oracle gates.

• Thus, proving NEXP ⊈ P/poly also requires non-relativizing techniques.



Shift to circuit complexity

• Partly due to the relativization barrier, focus shifted to proving circuit 
lower bounds. 



Shift to circuit complexity

• Partly due to the relativization barrier, focus shifted to proving circuit 
lower bounds. 

• Circuit lower bounds imply lower bounds for algorithms, as circuits 
can be constructed from Turing Machines without much blowup.



Shift to circuit complexity

• Partly due to the relativization barrier, focus shifted to proving circuit 
lower bounds. 

• Circuit lower bounds imply lower bounds for algorithms, as circuits 
can be constructed from Turing Machines without much blowup.

• The structured nature of circuits allows for combinatorial analysis.



Some circuit lower bounds

• Monotone circuits for Clique require ≥ 𝑛Ω(log 𝑛) gates [Razborov’1985]. 
Improved to exp(Ω 𝑛/ log 𝑛 1/3) [Andreev’1985, Alon-Boppana’1987].

• [Furst-Saxe-Sipser’1981, Ajtai’1983] Parity is not in AC0.

• [Razborov’1987, Smolensky’1987] For distinct primes 𝑝 and 𝑞, MOD𝑞 is not 
in AC0 𝑝 .
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• Success in lower bounds for restricted classes, yet limited results for 
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• A natural question arises: 

Why is it hard to prove circuit lower bounds?

• [Razborov-Rudich’1994] gave a formal, complexity theoretic 
explanation for the lack of progress in proving circuit lower bounds 
which is called the natural proofs barrier.
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Yet another barrier

• A lower bound proof strategy can be as follows:
• Show that functions computable by small size circuits don’t satisfy a certain 

property, 
• Then show that there is an explicit function with that property.

• [Razborov-Rudich’1994] showed that if the property satisfies some 
criteria, which they call “natural”, then the strategy won’t suffice. 
Informally, they showed that
• most of the known lower bounds proofs were “natural” in a sense and,
• P ≠ NP does not have a “natural” proof assuming pseudorandom functions

exist. 
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Natural proofs

• Φ ∶ 𝐹𝑛 → {0,1} is Γ-natural, if the following hold:
• Constructivity: Φ ∈ Γ, input is the truth table.  

• Largeness: Φ 𝑓 = 1 for at least 2−𝑂(𝑛) fraction of the functions in 𝐹𝑛.

• Φ is useful against Λ if for any 𝑓 ∈ Λ, Φ 𝑓 = 0. 

• A lower bound proof against Λ which uses a property Φ that is Γ-
natural and useful against Λ is called a natural proof.
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• Take Γ and Λ to be AC0. 

• Main idea: Parity depends on all variables, while functions computable 
by AC0 circuits can be made constant by fixing  ≤ 𝑛 − 𝑛𝜖 variables. 

• The property Φ to be shown as AC0-natural is
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Note that Φ is useful against AC0 by definition.



Example: Parity ∉ AC0

Φ 𝑓 = 1 iff 𝑓 cannot be made constant by fixing ≤ 𝑛 − 𝑛𝜖 variables.

• Largeness: The number of functions which become constant after 
fixing at most 𝑛 − 𝑘 variables is at most 

𝑛
𝑘

22𝑛−𝑘
≤ 2

𝑛

2
+2𝑛−𝑘

< 2𝑛2𝑛−𝑘
≪ 22𝑛

. 

Thus, Pr
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Φ 𝑓 = 1 ≥
1

2𝑂(𝑛).



Example: Parity ∉ AC0

Φ 𝑓 = 1 iff 𝑓 cannot be made constant by fixing ≤ 𝑛 − 𝑛𝜖 variables.

• Constructivity: Let 𝑆 be an arbitrary 𝑛 − 𝑘 sized subset of the 
variables. 

• It is not hard to see that there is a depth-2 circuit, 𝐶𝑆, of size 2𝑂(𝑘) s.t.
𝐶𝑆 𝑓 = 1 iff 𝑓 cannot be made constant by fixing the variables in 𝑆.

• By combining all 𝑛
𝑘

circuits 𝐶𝑆, Φ can be tested by an AC0 circuit of 
depth 3 and size 2𝑂(𝑛), which is polynomial in the size of the truth 
table. 
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• Pseudorandom function generator (PRFG): A Boolean function 𝑓(𝑥, 𝑦) in 
𝑛 + 𝑚 variables such that setting the 𝑦 variables at random gives the 𝑛-
variate subfunction 𝑓𝑦 𝑥 .

• Intuitively, the 𝑦-variables act as an index into a family of functions.

• A PRFG 𝑓 is pseudorandom secure against Γ if for any circuit 𝐶 ∈ Γ,

| Pr
𝑦∈𝑅 0,1 𝑚

[𝐶(𝑓𝑦 𝑥 ) = 1] − Pr
ℎ∈𝑅𝐹𝑛

[𝐶 ℎ = 1] | < 2−𝑛2
.

• Thus, no circuit from Γ can distinguish 𝑓𝑦 from a truly random function.
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Natural proofs barrier

• Theorem 1: If Λ contains a PRFG 𝑓 secure against Γ, then there is no 
Γ-natural proof against Λ.

• Alternatively, a natural proof not only proves a lower bound but also 
upper bounds the complexity of functions!!

• Thus, a P-natural proof against P/poly implies P/poly does not contain 
PRFGs, contrary to the belief of their existence.



Proof of Theorem 1

• For contradiction, assume there exists a Γ-natural proof against Λ.

Φ ∶ 𝐹𝑛 → {0,1} is Γ-natural, if the following hold:
1) Constructivity: Φ ∈ Γ. Input is the truth table. 

2) Largeness: Φ holds for ≥
𝐹𝑛

2𝑂 𝑛  functions.

Φ is useful against Λ if for any 𝑓 ∈ Λ, Φ 𝑓 = 0.
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Proof of Theorem 1

• For contradiction, assume there exists a Γ-natural proof against Λ.

• Thus, there is a property Φ which is Γ-natural and useful against Λ.

• As 𝑓 ∈ Λ, Φ 𝑓𝑦(𝑥) = 0  for all 𝑥, 𝑦 ∈ 0,1 𝑛+𝑚 by usefulness.
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[Φ ℎ = 1] ≥
1

2𝑂(𝑛). 
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Proof of Theorem 1

• By constructivity, there exists 𝐶 ∈ Γ s.t. 𝐶 𝑔 = Φ(𝑔) for any 𝑔 ∈ 𝐹𝑛. This 
leads to the contradiction:

      | Pr
𝑦∈𝑅 0,1 𝑚

[𝐶(𝑓𝑦 𝑥 ) = 1] − Pr
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[𝐶 ℎ = 1] | ≥
1

2𝑂 𝑛 ≥
1

2𝑛2.
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On the existence of PRFGs

• PRFGs can be constructed from Pseudorandom Generators (PRGs) 
[Goldreich-Goldwasser-Micali’1984],

• PRGs are efficiently computable functions which take as input a short 
random seed and stretch it to a longer “random-looking” string.

• PRGS are in turn constructible from One-way functions (OWF) [Hastad-
Impagliazzo-Levin-Luby’1999].

• OWFs are functions which are “easy to compute” but “hard to invert on the 
average”.
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• Conjecture 2: There exists an OWF.

• Some candidate OWFs: 
• Multiplication: Given 𝑎, 𝑏 ∈ ℤ, compute 𝑎𝑏. The inverse is the factoring 

problem not known to be in P. 

• RSA function: Let 𝑁 ∈ ℤ , ℤ𝑁
∗ = 𝑎 ∈ ℤ gcd 𝑎, 𝑁 = 1} and 𝑒 ∈ ℤ be co-

prime to |ℤ𝑁
∗ |. Given 𝑎 ∈ ℤ𝑁
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On the existence of PRFGs

• Conjecture 2: There exists an OWF.

• Some candidate OWFs: 
• Multiplication: Given 𝑎, 𝑏 ∈ ℤ, compute 𝑎𝑏. The inverse is the factoring 

problem not known to be in P. 

• RSA function: Let 𝑁 ∈ ℤ , ℤ𝑁
∗ = 𝑎 ∈ ℤ gcd 𝑎, 𝑁 = 1} and 𝑒 ∈ ℤ be co-

prime to |ℤ𝑁
∗ |. Given 𝑎 ∈ ℤ𝑁

∗ , compute 𝑎𝑒 mod 𝑁. Factorization can be used 
to invert the function.

• Refer Chapter 9 of the Arora Barak textbook for a detailed discussion.
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What makes “natural” proofs natural?

• A lower bound proof must identify a property not satisfied by small-
size circuits. Thus, usefulness is necessary.

• [Razborov-Rudich’1994] gave a formal argument for largeness using 
complexity measures.

• The intuition is that if a specific function does not have size 𝑠 circuits 
implies that random functions do not have size 𝑠 circuits w.h.p. 
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Complexity measures

• A complexity measure 𝜇: 𝐹𝑛 → ℤ≥0 is a function such that
• Small for trivial functions: Let ҧ𝑥 be the complement of 𝑥. Then, 

                 
                                          𝜇 𝑥 ≤ 1 and 𝜇 ҧ𝑥 ≤ 1.

• Sub-additive: For all functions 𝑓 and 𝑔, 

                                        𝜇 𝑓 ∧ 𝑔 ≤ 𝜇 𝑓 + 𝜇(𝑔)        and

  

                                           𝜇 𝑓 ∨ 𝑔 ≤ 𝜇 𝑓 + 𝜇(𝑔).



Complexity measures

• For example, let 𝑆(𝑓) denote the smallest formula size for 𝑓.

• The function 𝜌 𝑓 = 1 + 𝑆 𝑓  is a complexity measure (Easy 
exercise). 

• More generally, if 𝜇 is a complexity measure, then 𝜇(𝑓) is a lower 
bound on 𝑆(𝑓).



Largeness via complexity measure

• Lemma 3. Let 𝜇 be a complexity measure. Suppose there exist a 

function 𝑓 such that 𝜇 𝑓 ≥ 𝑡 for some number 𝑡. Then, for at least 
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Largeness via complexity measure

• Lemma 3. Let 𝜇 be a complexity measure. Suppose there exist a 

function 𝑓 such that 𝜇 𝑓 ≥ 𝑡 for some number 𝑡. Then, for at least 
1

4
 

fraction of all functions 𝑔 ∈ 𝐹𝑛, 𝜇 𝑔 ≥
𝑡

4
.

• If a lower bound result uses a complexity measure, which also has the 
constructivity feature, then the measure is natural.
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• Suppose for contradiction, the conclusion is false.

• Thus, 𝜇 𝑔 ≥
𝑡

4
 for <

1

4
-th fraction of functions 𝑔 ∈ 𝐹𝑛.

• For ℎ ∈𝑟 𝐹𝑛, we can write 𝑓 = ℎ ⊕ 𝑔, where 𝑔 = 𝑓 ⊕ ℎ. 

• Observe that 𝑔 is also a random function.
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• Now, 𝑓 = ҧ𝑔 ∨ ℎ ∧ (𝑔 ∨ തℎ) implies
                             
                       𝜇 𝑓 ≤ 𝜇 ҧ𝑔 + 𝜇 ℎ + 𝜇 𝑔 + 𝜇 തℎ .

• As Pr
ℎ∈𝑟 𝐹𝑛

[𝜇 ℎ ≥
𝑡

4
] <

1

4
 (also holds for തℎ, 𝑔 and ҧ𝑔), by union bound, 

all four functions have measure <
𝑡

4
 with non-zero probability.

• This implies 𝜇 ҧ𝑔 + 𝜇 ℎ + 𝜇 𝑔 + 𝜇 തℎ <
𝑡

4
 , a contradiction. 
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Why constructivity?

• Unlike largeness, [Razborov-Rudich’1994] gave no formal argument 
for constructivity.

• They point out that known lower bound proofs use combinatorial 
properties satisfying constructivity.

• [Williams’2013] showed that proving NEXP ⊄ Γ  is equivalent to the 
existence of a constructive property against Γ.
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Why constructivity?

• [Fan-Li-Yang’2021] initiated the study of black-box natural properties, 
with a stronger notion of constructivity which they call black-box 
constructivity.

• [Chen-Williams-Yang’2023] show the equivalence result of 
[Williams’2013] in the stronger notion as well, among other results.
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Circumventing the Barrier

• Need to bypass largeness or constructivity. 

• Arithmetization is a non-relativizing, non-natural technique used to 
prove IP = PSPACE.  

• [Buhrman-Fortnow-Thierauf’1998] showed, using IP = PSPACE, that 
MAEXP ⊄ P/poly, where MAEXP is an exponential version of MA. 

• Unfortunately, arithmetization falls prey to a different barrier called 
algebrization [Aaronson-Wigderson’2008].



Circumventing the Barrier

• [Williams’2011] proved NEXP ⊄ ACC by a combination of structural 
complexity and algorithmic ideas, where ACC = ∪𝑝AC0[𝑝].

• Proof technique bypasses the relativization, natural proofs and 
algebrization barrier. 

• Later, [Murray-Williams’2018] showed that NQP ⊄ ACC, where NQP is 
non-deterministic quasi-polynomial time.



Circumventing the Barrier

• Some other approaches include Algebraic Complexity Theory, 
Geometric Complexity Theory and Descriptive Complexity Theory.

• Refer Scott Aaronson’s 2017 survey on P vs NP for a more detailed 
discussion.



Some perspectives

• Lance Fortnow and William Gasarch’s blog 
https://blog.computationalcomplexity.org/2024/09/natural-proofs-is-not-
barrier-you-think.html

• Richard Lipton’s blog
https://rjlipton.com/2009/03/25/whos-afraid-of-natural-proofs/

• Luca Trevisan’s blog
https://in-theory.blogspot.com/2006_07_30_archive.html

https://blog.computationalcomplexity.org/2024/09/natural-proofs-is-not-barrier-you-think.html
https://blog.computationalcomplexity.org/2024/09/natural-proofs-is-not-barrier-you-think.html
https://rjlipton.com/2009/03/25/whos-afraid-of-natural-proofs/
http://in-theory.blogspot.com/2006_07_30_archive.html
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