On the hardness of proving circuit lower bounds

Agrim Dewan, Dept. of Computer Science and Automation, Indian Institute of Science

Motivation

• One of the goals of complexity theory is to separate complexity classes like P vs NP, PSPACE vs EXP etc.

Motivation

- One of the goals of complexity theory is to separate complexity classes like P vs NP, PSPACE vs EXP etc.
- Early results used logical techniques like diagonalization to prove separation results.

Motivation

- One of the goals of complexity theory is to separate complexity classes like P vs NP, PSPACE vs EXP etc.
- Early results used logical techniques like diagonalization to prove separation results.
- Some examples are:
 - Time Hierarchy Theorem [Hartmannis-Stearns'1965] implying P ⊂ EXP.
 - Space Hierarchy Theorem [Stearns-Hartmannis-Lewis'1965] implying P ≠ SPACE(n) (it is not known if P ⊄ SPACE(n) or P ⊅ SPACE(n)).
 - NEXP^{NP} ⊈ P/poly [Kannan'1981] based on Shannon's counting argument.

Limitations of logical techniques

• Such techniques are abstract and general but limited in scope.

Limitations of logical techniques

- Such techniques are abstract and general but limited in scope.
- Unfortunately, these techniques hit the relativization barrier.

Limitations of logical techniques

- Such techniques are abstract and general but limited in scope.
- Unfortunately, these techniques hit the relativization barrier.
- There exist oracles A, B s.t. $P^A \neq NP^A$ and $P^B = NP^B$ [Baker-Gill-Solovay'1975].

Relativization barrier

- Main insight: diagonalization based proofs must hold w.r.t. oracles. Ironically, the proof uses diagonalization.
- Thus, any proof of $P \neq NP$ will have to be non-relativizing.
- [Wilson'1985] showed that there exists oracle A s.t. NEXP^A ⊆ P^A/poly and every language in NP^A has linear sized circuits with A-oracle gates.
- Thus, proving NEXP $\not\subseteq$ P/poly also requires non-relativizing techniques.

Shift to circuit complexity

• Partly due to the relativization barrier, focus shifted to proving circuit lower bounds.

Shift to circuit complexity

- Partly due to the relativization barrier, focus shifted to proving circuit lower bounds.
- Circuit lower bounds imply lower bounds for algorithms, as circuits can be constructed from Turing Machines without much blowup.

Shift to circuit complexity

- Partly due to the relativization barrier, focus shifted to proving circuit lower bounds.
- Circuit lower bounds imply lower bounds for algorithms, as circuits can be constructed from Turing Machines without much blowup.
- The structured nature of circuits allows for combinatorial analysis.

Some circuit lower bounds

- Monotone circuits for Clique require $\geq n^{\Omega(\log n)}$ gates [Razborov'1985]. Improved to $\exp(\Omega(n/\log n)^{1/3})$ [Andreev'1985, Alon-Boppana'1987].
- [Furst-Saxe-Sipser'1981, Ajtai'1983] Parity is not in AC⁰.
- [Razborov'1987, Smolensky'1987] For distinct primes p and q, MOD_q is not in AC⁰ [p].

• Success in lower bounds for restricted classes, yet limited results for general circuits.

- Success in lower bounds for restricted classes, yet limited results for general circuits.
- [Shannon'1948] showed almost all functions require exponential size circuits.

- Success in lower bounds for restricted classes, yet limited results for general circuits.
- [Shannon'1948] showed almost all functions require exponential size circuits.
- Best known general circuit lower bounds:
 - There is an NP language with lower bound of 5n o(n) [Iwama-Lachish-Morizumi-Raz'2005].
 - For every k > 0, PH contains languages with circuit complexity $\Omega(n^k)$ [Kannan'1981].

- Success in lower bounds for restricted classes, yet limited results for general circuits.
- [Shannon'1948] showed almost all functions require exponential size circuits.
- Best known general circuit lower bounds:
 - There is an NP language with lower bound of 5n o(n) [Iwama-Lachish-Morizumi-Raz'2005].
 - For every k > 0, PH contains languages with circuit complexity $\Omega(n^k)$ [Kannan'1981].
- A natural question arises:

Why is it hard to prove circuit lower bounds?

- Success in lower bounds for restricted classes, yet limited results for general circuits.
- A natural question arises:

Why is it hard to prove circuit lower bounds?

• [Razborov-Rudich'1994] gave a formal, <u>complexity theoretic</u> explanation for the lack of progress in proving circuit lower bounds which is called the *natural proofs barrier*.

Yet another barrier

- A lower bound proof strategy can be as follows:
 - Show that functions computable by *small size* circuits don't satisfy a certain property,
 - Then show that there is an explicit function with that property.

Yet another barrier

- A lower bound proof strategy can be as follows:
 - Show that functions computable by *small size* circuits don't satisfy a certain property,
 - Then show that there is an explicit function with that property.
- [Razborov-Rudich'1994] showed that if the property satisfies some criteria, which they call "natural", then the strategy won't suffice. Informally, they showed that
 - most of the known lower bounds proofs were "natural" in a sense and,
 - P ≠ NP does not have a "natural" proof assuming pseudorandom functions exist.

• Let F_n be the set of all *n*-variate Boolean functions. Thus, $|F_n| = 2^{2^n}$.

- Let F_n be the set of all *n*-variate Boolean functions. Thus, $|F_n| = 2^{2^n}$.
- Let Γ and Λ be classes of Boolean functions closed under fixing variables. For example, $\Gamma = P$ and $\Lambda = P/poly$.

- Let F_n be the set of all *n*-variate Boolean functions. Thus, $|F_n| = 2^{2^n}$.
- Let Γ and Λ be classes of Boolean functions closed under fixing variables. For example, $\Gamma = P$ and $\Lambda = P/poly$.
- A property $\Phi: F_n \to \{0,1\}$ is said to be Γ -**natural** if the following hold:
 - **Constructivity**: $\Phi \in \Gamma$. Thus, for any $f \in F_n$, $\Phi(f)$ is computable by a circuit in Γ , where f is given as a truth table.
 - Largeness: $\Phi(f) = 1$ for at least $2^{-O(n)}$ fraction of the functions f in F_n .

- Let F_n be the set of all *n*-variate Boolean functions. Thus, $|F_n| = 2^{2^n}$.
- Let Γ and Λ be classes of Boolean functions closed under fixing variables. For example, $\Gamma = P$ and $\Lambda = P/poly$.
- A property $\Phi: F_n \to \{0,1\}$ is said to be Γ -**natural** if the following hold:
 - **Constructivity**: $\Phi \in \Gamma$. Thus, for any $f \in F_n$, $\Phi(f)$ is computable by a circuit in Γ , where f is given as a truth table.
 - Largeness: $\Phi(f) = 1$ for at least $2^{-O(n)}$ fraction of the functions f in F_n .
- Further, Φ is **useful against** Λ if for any $f \in \Lambda$, $\Phi(f) = 0$.

- $\Phi: F_n \to \{0,1\}$ is Γ -natural, if the following hold:
 - **Constructivity**: $\Phi \in \Gamma$, input is the *truth table*.
 - Largeness: $\Phi(f) = 1$ for at least $2^{-O(n)}$ fraction of the functions in F_n .
- Φ is useful against Λ if for any $f \in \Lambda$, $\Phi(f) = 0$.
- A lower bound proof against Λ which uses a property Φ that is Γnatural and useful against Λ is called a natural proof.

• Take Γ and Λ to be AC⁰.

- Take Γ and Λ to be AC⁰.
- Main idea: Parity depends on *all* variables, while functions computable by AC^0 circuits can be made constant by fixing $\leq n n^{\epsilon}$ variables.

- Take Γ and Λ to be AC⁰.
- Main idea: Parity depends on *all* variables, while functions computable by AC^0 circuits can be made constant by fixing $\leq n n^{\epsilon}$ variables.
- The property Φ to be shown as AC⁰-**natural** is

 $\Phi(f) = 1$ iff f cannot be made constant by fixing $\leq n - n^{\epsilon}$ variables.

Note that Φ is useful against AC⁰ by definition.

 $\Phi(f) = 1$ iff f cannot be made constant by fixing $\leq n - n^{\epsilon}$ variables.

• Largeness: The number of functions which become constant after fixing at most n - k variables is at most

$$\binom{n}{k} 2^{2^{n-k}} \le 2^{\frac{n}{2}+2^{n-k}} < 2^{n2^{n-k}} \ll 2^{2^n}.$$

Thus,
$$\Pr_{f \in r F_n} [\Phi(f) = 1] \ge \frac{1}{2^{O(n)}}.$$

 $\Phi(f) = 1$ iff f cannot be made constant by fixing $\leq n - n^{\epsilon}$ variables.

- Constructivity: Let S be an arbitrary n − k sized subset of the variables.
- It is not hard to see that there is a depth-2 circuit, C_S , of size $2^{O(k)}$ s.t. $C_S(f) = 1$ iff f cannot be made constant by fixing the variables in S.
- By combining all $\binom{n}{k}$ circuits C_S , Φ can be tested by an AC⁰ circuit of depth 3 and size $2^{O(n)}$, which is polynomial in the size of the truth table.

• **Pseudorandom function generator** (**PRFG**): A Boolean function f(x, y) in n + m variables such that setting the y variables at random gives the n-variate subfunction $f_y(x)$.

- **Pseudorandom function generator** (**PRFG**): A Boolean function f(x, y) in n + m variables such that setting the y variables at random gives the n-variate subfunction $f_y(x)$.
- Intuitively, the *y*-variables act as an index into a family of functions.

- **Pseudorandom function generator** (**PRFG**): A Boolean function f(x, y) in n + m variables such that setting the y variables at random gives the n-variate subfunction $f_y(x)$.
- Intuitively, the *y*-variables act as an index into a family of functions.
- A PRFG f is **pseudorandom secure against** Γ if for any circuit $C \in \Gamma$,

$$|\Pr_{y \in_R\{0,1\}^m} [C(f_y(x)) = 1] - \Pr_{h \in_R F_n} [C(h) = 1] | < 2^{-n^2}.$$

- **Pseudorandom function generator** (**PRFG**): A Boolean function f(x, y) in n + m variables such that setting the y variables at random gives the n-variate subfunction $f_y(x)$.
- Intuitively, the y-variables act as an index into a family of functions.
- A PRFG f is pseudorandom secure against Γ if for any circuit $C \in \Gamma$, $|\Pr_{y \in n\{0,1\}^m} [C(f_y(x)) = 1] - \Pr_{h \in nF_m} [C(h) = 1] | < 2^{-n^2}.$
- Thus, no circuit from Γ can distinguish f_{ν} from a truly random function.

Natural proofs barrier

• <u>Theorem 1</u>: If Λ contains a PRFG f secure against Γ , then there is no Γ -natural proof against Λ .

Natural proofs barrier

- <u>Theorem 1</u>: If Λ contains a PRFG f secure against Γ , then there is no Γ -natural proof against Λ .
- Alternatively, a natural proof not only proves a lower bound but also upper bounds the complexity of functions!!

Natural proofs barrier

- <u>Theorem 1</u>: If Λ contains a PRFG f secure against Γ , then there is no Γ -natural proof against Λ .
- Alternatively, a natural proof not only proves a lower bound but also upper bounds the complexity of functions!!
- Thus, a P-natural proof against P/poly implies P/poly does not contain PRFGs, contrary to the belief of their existence.
| $\Phi: F_n \to \{0,1\}$ is Γ -natural, if the following hold: | A PRFG f is pseudorandom secure against Γ if for any |
|---|--|
| 1) Constructivity: $\Phi \in \Gamma$. Input is the <i>truth table</i> . | circuit $C \in \Gamma$, |
| 2) Largeness: Φ holds for $\geq \frac{ F_n }{2^{O(n)}}$ functions.
Φ is useful against Λ if for any $f \in \Lambda$, $\Phi(f) = 0$.
Assume Λ is P/poly and Γ is P. | $ \Pr_{y \in_R\{0,1\}^m} [C(f_y(x)) = 1] - \Pr_{h \in_R F_n} [C(h) = 1] < 2^{-n^2}.$ |

• For contradiction, assume there exists a Γ -natural proof against Λ .

$\Phi: F_n \to \{0,1\}$ is Γ -natural, if the following hold:	A PRFG f is pseudorandom secure against Γ if for any
1) Constructivity: $\Phi \in \Gamma$. Input is the <i>truth table</i> .	circuit $C \in \Gamma$,
2) Largeness: Φ holds for $\geq \frac{ F_n }{2^{O(n)}}$ functions. Φ is useful against Λ if for any $f \in \Lambda$, $\Phi(f) = 0$. Assume Λ is P/poly and Γ is P.	$ \Pr_{y \in_R\{0,1\}^m} [C(f_y(x)) = 1] - \Pr_{h \in_R F_n} [C(h) = 1] < 2^{-n^2}.$

- For contradiction, assume there exists a Γ -natural proof against Λ .
- Thus, there is a property Φ which is Γ -natural and useful against Λ .

 $Φ : F_n → {0,1}$ is **Γ-natural**, if the following hold: 1) **Constructivity**: Φ ∈ Γ. Input is the *truth table*. 2) **Largeness**: Φ holds for $\ge \frac{|F_n|}{2^{O(n)}}$ functions.

```
Φ is useful against Λ if for any f ∈ Λ, Φ(f) = 0.
Assume Λ is P/poly and Γ is P.
```

A **PRFG** f is **pseudorandom secure against** Γ if for any circuit $C \in \Gamma$,

$$\Pr_{y \in_R\{0,1\}^m} [C(f_y(x)) = 1] - \Pr_{h \in_R F_n} [C(h) = 1] | < 2^{-n^2}.$$

- For contradiction, assume there exists a Γ -natural proof against Λ .
- Thus, there is a property Φ which is Γ -natural and useful against Λ .
- As $f \in \Lambda$, $\Phi(f_y(x)) = 0$ for all $(x, y) \in \{0, 1\}^{n+m}$ by usefulness.

 $Φ : F_n → {0,1}$ is **Γ-natural**, if the following hold: 1) **Constructivity**: Φ ∈ Γ. Input is the *truth table*. 2) **Largeness**: Φ holds for $\ge \frac{|F_n|}{2^{O(n)}}$ functions.

Φ is **useful against** Λ if for any f ∈ Λ, Φ(f) = 0. Assume Λ is P/poly and Γ is P. A **PRFG** f is **pseudorandom secure against** Γ if for any circuit $C \in \Gamma$,

$$\Pr_{y \in_R\{0,1\}^m} [C(f_y(x)) = 1] - \Pr_{h \in_R F_n} [C(h) = 1] | < 2^{-n^2}.$$

• Largeness implies $\Pr_{h \in {}_R F_n} [\Phi(h) = 1] \ge \frac{1}{2^{O(n)}}.$

 $Φ : F_n → {0,1} is Γ-natural, if the following hold:$ 1) Constructivity: Φ ∈ Γ. Input is the*truth table*. $2) Largeness: Φ holds for ≥ <math>\frac{|F_n|}{2^{O(n)}}$ functions. Φ is useful against Λ if for any f ∈ Λ, Φ(f) = 0. Assume Λ is P/poly and Γ is P. A PRFG f is pseudorandom secure against Γ if for any circuit C ∈ Γ, $<math display="block">Pr_{y∈_R{0,1}m}[C(f_y(x)) = 1] - Pr_{h∈_RF_n}[C(h) = 1] | < 2^{-n^2}.$

• By constructivity, there exists $C \in \Gamma$ s.t. $C(g) = \Phi(g)$ for any $g \in F_n$. This leads to the contradiction:

$$|\Pr_{y \in R^{\{0,1\}^m}} [C(f_y(x)) = 1] - \Pr_{h \in R^F_n} [C(h) = 1] | \ge \frac{1}{2^{O(n)}} \ge \frac{1}{2^{n^2}}.$$

 PRFGs can be constructed from Pseudorandom Generators (PRGs) [Goldreich-Goldwasser-Micali'1984],

- PRFGs can be constructed from **Pseudorandom Generators** (**PRG**s) [Goldreich-Goldwasser-Micali'1984],
- PRGs are efficiently computable functions which take as input a short random seed and stretch it to a longer "random-looking" string.

- PRFGs can be constructed from **Pseudorandom Generators** (**PRG**s) [Goldreich-Goldwasser-Micali'1984],
- PRGs are efficiently computable functions which take as input a short random seed and stretch it to a longer "random-looking" string.
- PRGS are in turn constructible from **One-way functions** (**OWF**) [Hastad-Impagliazzo-Levin-Luby'1999].

- PRFGs can be constructed from **Pseudorandom Generators** (**PRG**s) [Goldreich-Goldwasser-Micali'1984],
- PRGs are efficiently computable functions which take as input a short random seed and stretch it to a longer "random-looking" string.
- PRGS are in turn constructible from **One-way functions** (**OWF**) [Hastad-Impagliazzo-Levin-Luby'1999].
- OWFs are functions which are "easy to compute" but "hard to invert on the average".

• **Conjecture 2**: There exists an OWF.

- **Conjecture 2**: There exists an OWF.
- Some candidate OWFs:
 - Multiplication: Given a, b ∈ Z, compute ab. The inverse is the factoring problem not known to be in P.
 - RSA function: Let $N \in \mathbb{Z}$, $\mathbb{Z}_N^* = \{a \in \mathbb{Z} | \operatorname{gcd}(a, N) = 1\}$ and $e \in \mathbb{Z}$ be coprime to $|\mathbb{Z}_N^*|$. Given $a \in \mathbb{Z}_N^*$, compute $a^e \mod N$. Factorization can be used to invert the function.

- **Conjecture 2**: There exists an OWF.
- Some candidate OWFs:
 - Multiplication: Given a, b ∈ Z, compute ab. The inverse is the factoring problem not known to be in P.
 - RSA function: Let $N \in \mathbb{Z}$, $\mathbb{Z}_N^* = \{a \in \mathbb{Z} | \operatorname{gcd}(a, N) = 1\}$ and $e \in \mathbb{Z}$ be coprime to $|\mathbb{Z}_N^*|$. Given $a \in \mathbb{Z}_N^*$, compute $a^e \mod N$. Factorization can be used to invert the function.
- Refer Chapter 9 of the Arora Barak textbook for a detailed discussion.

What makes "natural" proofs natural?

• A lower bound proof must identify a property not satisfied by smallsize circuits. Thus, usefulness is necessary.

What makes "natural" proofs natural?

- A lower bound proof must identify a property not satisfied by smallsize circuits. Thus, usefulness is necessary.
- [Razborov-Rudich'1994] gave a formal argument for largeness using *complexity measures*.

What makes "natural" proofs natural?

- A lower bound proof must identify a property not satisfied by smallsize circuits. Thus, usefulness is necessary.
- [Razborov-Rudich'1994] gave a formal argument for largeness using *complexity measures*.
- The intuition is that if a specific function does not have size *s* circuits implies that random functions do not have size *s* circuits w.h.p.

• A complexity measure $\mu: F_n \to \mathbb{Z}^{\geq 0}$ is a function such that

- A complexity measure $\mu: F_n \to \mathbb{Z}^{\geq 0}$ is a function such that
 - Small for trivial functions: Let \overline{x} be the complement of x. Then,

 $\mu(x) \leq 1$ and $\mu(\bar{x}) \leq 1$.

- A complexity measure $\mu: F_n \to \mathbb{Z}^{\geq 0}$ is a function such that
 - Small for trivial functions: Let \overline{x} be the complement of x. Then,

 $\mu(x) \leq 1$ and $\mu(\bar{x}) \leq 1$.

• **Sub-additive**: For all functions *f* and *g*,

 $\mu(f \land g) \le \mu(f) + \mu(g)$ and

 $\mu(f \lor g) \le \mu(f) + \mu(g).$

- For example, let S(f) denote the smallest formula size for f.
- The function $\rho(f) = 1 + S(f)$ is a complexity measure (Easy exercise).
- More generally, if μ is a complexity measure, then $\mu(f)$ is a lower bound on S(f).

Largeness via complexity measure

• Lemma 3. Let μ be a complexity measure. Suppose there exist a function f such that $\mu(f) \ge t$ for some number t. Then, for at least $\frac{1}{4}$ fraction of all functions $g \in F_n$, $\mu(g) \ge \frac{t}{4}$.

Largeness via complexity measure

- Lemma 3. Let μ be a complexity measure. Suppose there exist a function f such that $\mu(f) \ge t$ for some number t. Then, for at least $\frac{1}{4}$ fraction of all functions $g \in F_n$, $\mu(g) \ge \frac{t}{4}$.
- If a lower bound result uses a complexity measure, which also has the constructivity feature, then the measure is natural.

• Suppose for contradiction, the conclusion is false.

• Suppose for contradiction, the conclusion is false.

• Thus,
$$\mu(g) \ge \frac{t}{4}$$
 for $< \frac{1}{4}$ -th fraction of functions $g \in F_n$.

• Suppose for contradiction, the conclusion is false.

• Thus,
$$\mu(g) \ge \frac{t}{4}$$
 for $< \frac{1}{4}$ -th fraction of functions $g \in F_n$.

• For $h \in_r F_n$, we can write $f = h \oplus g$, where $g = f \oplus h$.

• Suppose for contradiction, the conclusion is false.

• Thus,
$$\mu(g) \ge \frac{t}{4}$$
 for $< \frac{1}{4}$ -th fraction of functions $g \in F_n$.

- For $h \in_r F_n$, we can write $f = h \oplus g$, where $g = f \oplus h$.
- Observe that *g* is also a random function.

• Now, $f = (\bar{g} \lor h) \land (g \lor \bar{h})$ implies

 $\mu(f) \le \mu(\bar{g}) + \mu(h) + \mu(g) + \mu(\bar{h}).$

• Now, $f = (\bar{g} \lor h) \land (g \lor \bar{h})$ implies

 $\mu(f) \le \mu(\bar{g}) + \mu(h) + \mu(g) + \mu(\bar{h}).$

• As $\Pr_{h \in_r F_n} [\mu(h) \ge \frac{t}{4}] < \frac{1}{4}$ (also holds for \overline{h} , g and \overline{g}), by union bound, all four functions have measure $< \frac{t}{4}$ with non-zero probability.

• Now, $f = (\bar{g} \lor h) \land (g \lor \bar{h})$ implies

 $\mu(f) \le \mu(\bar{g}) + \mu(h) + \mu(g) + \mu(\bar{h}).$

• As $\Pr_{h \in_r F_n} [\mu(h) \ge \frac{t}{4}] < \frac{1}{4}$ (also holds for \overline{h} , g and \overline{g}), by union bound, all four functions have measure $< \frac{t}{4}$ with non-zero probability.

• This implies $\mu(\bar{g}) + \mu(h) + \mu(g) + \mu(\bar{h}) < \frac{t}{4}$, a contradiction.

• Unlike largeness, [Razborov-Rudich'1994] gave no formal argument for constructivity.

- Unlike largeness, [Razborov-Rudich'1994] gave no formal argument for constructivity.
- They point out that known lower bound proofs use combinatorial properties satisfying constructivity.

- Unlike largeness, [Razborov-Rudich'1994] gave no formal argument for constructivity.
- They point out that known lower bound proofs use combinatorial properties satisfying constructivity.
- [Williams'2013] showed that proving NEXP ⊄ Γ is equivalent to the existence of a constructive property against Γ.

• [Fan-Li-Yang'2021] initiated the study of *black-box natural properties*, with a stronger notion of constructivity which they call *black-box constructivity*.

- [Fan-Li-Yang'2021] initiated the study of *black-box natural properties*, with a stronger notion of constructivity which they call *black-box constructivity*.
- [Chen-Williams-Yang'2023] show the equivalence result of [Williams'2013] in the stronger notion as well, among other results.

Circumventing the Barrier

• Need to bypass largeness or constructivity.

Circumventing the Barrier

- Need to bypass largeness or constructivity.
- Arithmetization is a non-relativizing, non-natural technique used to prove IP = PSPACE.

Circumventing the Barrier

- Need to bypass largeness or constructivity.
- Arithmetization is a non-relativizing, non-natural technique used to prove IP = PSPACE.
- [Buhrman-Fortnow-Thierauf'1998] showed, using IP = PSPACE, that MA_{EXP} ⊄ P/poly, where MA_{EXP} is an exponential version of MA.
Circumventing the Barrier

- Need to bypass largeness or constructivity.
- Arithmetization is a non-relativizing, non-natural technique used to prove IP = PSPACE.
- [Buhrman-Fortnow-Thierauf'1998] showed, using IP = PSPACE, that MA_{EXP} ⊄ P/poly, where MA_{EXP} is an exponential version of MA.
- Unfortunately, arithmetization falls prey to a different barrier called *algebrization* [Aaronson-Wigderson'2008].

Circumventing the Barrier

- [Williams'2011] proved NEXP ⊄ ACC by a combination of structural complexity and algorithmic ideas, where ACC = U_pAC⁰[p].
- Proof technique bypasses the relativization, natural proofs and algebrization barrier.
- Later, [Murray-Williams'2018] showed that NQP ⊄ ACC, where NQP is non-deterministic *quasi-polynomial* time.

Circumventing the Barrier

- Some other approaches include Algebraic Complexity Theory, Geometric Complexity Theory and Descriptive Complexity Theory.
- Refer Scott Aaronson's 2017 survey on P vs NP for a more detailed discussion.

Some perspectives

- Lance Fortnow and William Gasarch's blog <u>https://blog.computationalcomplexity.org/2024/09/natural-proofs-is-not-barrier-you-think.html</u>
- Richard Lipton's blog <u>https://rjlipton.com/2009/03/25/whos-afraid-of-natural-proofs/</u>
- Luca Trevisan's blog <u>https://in-theory.blogspot.com/2006_07_30_archive.html</u>