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Motivation

* One of the goals of complexity theory is to separate complexity classes like
P vs NP, PSPACE vs EXP etc.

* Early results used logical techniques like diagonalization to prove
separation results.

* Some examples are:
* Time Hierarchy Theorem [Hartmannis-Stearns’1965] implying P € EXP.

e Space Hierarchy Theorem [Stearns-Hartmannis-Lewis’1965] implying P = SPACE(n)
(it is not known if P & SPACE(n) or P  SPACE(n)).

* NEXPN? & P/poly [Kannan’1981] based on Shannon’s counting argument.
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Limitations of logical techniques
e Such techniques are abstract and general but limited in scope.
* Unfortunately, these techniques hit the relativization barrier.

* There exist oracles 4, B s.t. P4 = NP4 and P? = NPB [Baker-Gill-
Solovay’1975].



Relativization barrier

* Main insight: diagonalization based proofs must hold w.r.t. oracles. Ironically,
the proof uses diagonalization.

* Thus, any proof of P = NP will have to be non-relativizing.

« [Wilson’1985] showed that there exists oracle A s.t. NEXP4 € P4 /poly and every
language in NP4 has linear sized circuits with A-oracle gates.

* Thus, proving NEXP & P/poly also requires non-relativizing techniques.
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Shift to circuit complexity

 Partly due to the relativization barrier, focus shifted to proving circuit
lower bounds.

e Circuit lower bounds imply lower bounds for algorithms, as circuits
can be constructed from Turing Machines without much blowup.

* The structured nature of circuits allows for combinatorial analysis.



Some circuit lower bounds

 Monotone circuits for Clique require > n*1°8™) gates [Razborov’1985].
Improved to exp(Q(n/logn )'/3) [Andreev’1985, Alon-Boppana’1987].

o [Furst-Saxe-Sipser’1981, Ajtai’1983] Parity is not in AC°.

* [Razborov'1987, Smolensky 1987] For distinct primes p and g, MOD,, is not
in AC? [p].
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Lack of general lower bounds

 Success in lower bounds for restricted classes, yet limited results for
general circuits.

* A natural question arises:

Why is it hard to prove circuit lower bounds?

e [Razborov-Rudich’1994] gave a formal, complexity theoretic
explanation for the lack of progress in proving circuit lower bounds
which is called the natural proofs barrier.
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Yet another barrier

* A lower bound proof strategy can be as follows:

* Show that functions computable by small size circuits don’t satisfy a certain
property,
* Then show that there is an explicit function with that property.

_ ] showed that if the property satisfies some
criteria, which they call “natural”, then the strategy won’t suffice.
nformally, they showed that

* most of the known lower bounds proofs were “natural” in a sense and,

P # NP does not have a “natural” proof assuming pseudorandom functions
exist.

I”
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Natural proofs
e & : F, — {0,1}is I'-natural, if the following hold:

e Constructivity: ® € I, input is the truth table.
e Largeness: ®(f) = 1 for at least 2720 fraction of the functions in E,.

* @ is useful against A if forany f € A, ®(f) = 0.

* A lower bound proof against A which uses a property ® thatis I'-
natural and useful against A is called a natural proof.
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e Take ' and A to be ACP,

* Main idea: Parity depends on all variables, while functions computable
by ACP circuits can be made constant by fixing < n — n€ variables.

* The property @ to be shown as AC°-natural is

®(f) = 1iff f cannot be made constant by fixing < n — n® variables.

Note that @ is useful against AC® by definition.



Example: Parity & ACY

®(f) = 1iff f cannot be made constant by fixing < n — n® variables.

* Largeness: The number of functions which become constant after
fixing at most n — k variables is at most

— n -k —
(M)22" " <2277 < 22" « 27",

1
Thus, felian[CD(f) =1] > o



Example: Parity & ACY

®(f) = 1iff f cannot be made constant by fixing < n — n® variables.

* Constructivity: Let S be an arbitrary n — k sized subset of the
variables.

* [t is not hard to see that there is a depth-2 circuit, (s, of size 200 g t.
Cs(f) = 1iff f cannot be made constant by fixing the variables in S.

* By combining all (” circuits Cs, @ can be tested by an ACYcircuit of
depth 3 and size 290, which is polynomial in the size of the truth
table.
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Pseudorandom function generator

* Pseudorandom function generator (PRFG): A Boolean function f(x,y) in
n + m variables such that setting the y variables at random gives the n-
variate subfunction £}, (x).

* Intuitively, the y-variables act as an index into a family of functions.

* A PRFG f is pseudorandom secure against [" if for any circuit C € T,

lyeRF{)oljl}m[C(fy(x)) = 1= heirz;n [(C(h) =1]] <27

* Thus, no circuit from I' can distinguish f,, from a truly random function.
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Natural proofs barrier

* Theorem 1: If A contains a PRFG | secure against [, then there is no
['-natural proof against A.

 Alternatively, a natural proof not only proves a lower bound but also
upper bounds the complexity of functions!!

* Thus, a P-natural proof against P/poly implies P/poly does not contain
PRFGs, contrary to the belief of their existence.



Proof of Theorem 1
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1) Constructivity: ® € I'. Input is the truth table.

2) Largeness: @ holds for > lg’(ﬂ) functions.
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® is useful against A if forany f € A, ®(f) = 0.
Assume A is P/poly and I is P.

A PRFG [ is pseudorandom secure against [" if for any
circuit C €T,

| Pr
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* For contradiction, assume there exists a ['-natural proof against A.
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® : F, = {0,1} is '-natural, if the following hold: A PRFG f is pseudorandom secure against [ if for any
1) Constructivity: ® € I'. Input is the truth table. circuit C €T,
2) Largeness: @ holds for > % functions.

lyeRl{D({ﬂm[C(fy(x)) = 1] heirl‘?n [C(h) =1]] <27
® is useful against A if forany f € A, ®(f) = 0.

Assume A is P/poly and I" is P.

* For contradiction, assume there exists a ['-natural proof against A.

* Thus, there is a property @ which is ['-natural and useful against A.

* As f €A, CID(fy(x)) = 0 forall (x,y) € {0,1}"™ by usefulness.




Proof of Theorem 1

® : F, — {0,1} is '-natural, if the following hold:

1) Constructivity: ® € I'. Input is the truth table.
| Fn|

A PRFG [ is pseudorandom secure against [" if for any
circuit C €T,

2) Largeness: @ holds for = 200 functions. ,
_ . — -n
| yERl{’({l}m[C (fy(x)) = 1] el [C(h) =1]| <27™.
@ is useful against A if for any f € A, ®(f) = 0.
Assume A is P/poly and I" is P.
. . - 1
* Largeness implies Pr [®(h) =1] = o0




Proof of Theorem 1

® : F, — {0,1} is '-natural, if the following hold:

1) Constructivity: ® € I'. Input is the truth table.

|Fnl

2) Largeness: @ holds for = 2000 functions.

@ is useful against A if for any f € A, ®(f) = 0.
Assume A is P/poly and I" is P.

A PRFG [ is pseudorandom secure against [" if for any
circuit C €T,

| Pr
y€gr{0,1}™

[CyG) =11 = Pr [C() =1]]<27™.

* By constructivity, there exists C € I's.t. C(g) = ®(g) forany g € E,. This

leads to the contradiction:

|  Pr
y€Er{0,1}™M

[C(fy(x)) = 1] -

> 1

Pr [C(h) =1]| = 20(n) >
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On the existence of PRFGs

* PRFGs can be constructed from Pseudorandom Generators (PRGs)

[ I,

* PRGs are efficiently computable functions which take as input a short
random seed and stretch it to a longer “random-looking” string.

* PRGS are in turn constructible from One-way functions (OWF) |

].

 OWFs are functions which are “easy to compute” but “hard to invert on the
average”.
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On the existence of PRFGs

* Conjecture 2: There exists an OWF.

* Some candidate OWFs:
* Multiplication: Given a, b € 7Z, compute ab. The inverse is the factoring
problem not known to be in P.

* RSA function: Let N € Z,Zy = {a € Z| gcd(a,N) = 1} and e € Z be co-
prime to |Zy|. Given a € Z), compute a® mod N. Factorization can be used
to invert the function.

» Refer Chapter 9 of the Arora Barak textbook for a detailed discussion.
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What makes “natural” proofs natural?

* A lower bound proof must identify a property not satisfied by small-
size circuits. Thus, usefulness is necessary.

° [ ] gave a formal argument for largeness using
complexity measures.

* The intuition is that if a specific function does not have size s circuits
implies that random functions do not have size s circuits w.h.p.



Complexity measures

* A complexity measure u: E, — Z=Y is a function such that



Complexity measures

* A complexity measure u: E, — Z=Y is a function such that
e Small for trivial functions: Let X be the complement of x. Then,

u(x) <1andu(x) < 1.



Complexity measures

* A complexity measure u: E, — Z=Y is a function such that
e Small for trivial functions: Let X be the complement of x. Then,

u(x) <1andu(x) < 1.

* Sub-additive: For all functions f and g,

u(f Ag) <p(f)+p(g)  and

u(fvg) <p(f)+p(g)



Complexity measures

* For example, let S(f) denote the smallest formula size for f.

* The function p(f) = 1 + S(f) is a complexity measure (Easy
exercise).

* More generally, if i is a complexity measure, then u(f) is a lower
bound on S(f).



Largeness via complexity measure

* Lemma 3. Let 1 be a complexity measure. Suppose there exist a
. 1
function f such that u(f) = t for some number t. Then, for at least -

fraction of all functions g € E,, u(g) = i.



Largeness via complexity measure

* Lemma 3. Let 1 be a complexity measure. Suppose there exist a
. 1
function f such that u(f) = t for some number t. Then, for at least -

fraction of all functions g € F,, u(g) = i.

* If a lower bound result uses a complexity measure, which also has the
constructivity feature, then the measure is natural.
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Proof of Lemma 3

e Suppose for contradiction, the conclusion is false.
* Thus, u(g) = %for < %—th fraction of functions g € E,.

*Forh €, F,, wecanwrite f = h @ g, whereg = @ h.

* Observe that g is also a random function.



Proof of Lemma 3
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u(f) < p(@ + uCh) + u(g) + u(h).
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Proof of Lemma 3

* Now, f = (g V h) A (g V h) implies

u(f) < u(@ + ph) + ulg) + u(h).

* As hEPrF [uCh) = %] < % (also holds for h, g and §), by union bound,

: t . .
all four functions have measure < ” with non-zero probability.

* This implies u(g) + u(Ch) + u(g) + ,u(f_L) < i, a contradiction.
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Why constructivity?

e Unlike largeness, | ] gave no formal argument
for constructivity.

* They point out that known lower bound proofs use combinatorial
properties satisfying constructivity.

| ] showed that proving NEXP & ' is equivalent to the
existence of a constructive property against I'.
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Why constructivity?

e [Fan-Li-Yang’2021] initiated the study of black-box natural properties,
with a stronger notion of constructivity which they call black-box
constructivity.

e [Chen-Williams-Yang'2023] show the equivalence result of
[Williams’2013] in the stronger notion as well, among other results.
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Circumventing the Barrier

* Need to bypass largeness or constructivity.

* Arithmetization is a non-relativizing, non-natural technique used to
prove |IP = PSPACE.

e [Buhrman-Fortnow-Thierauf’1998] showed, using |IP = PSPACE, that
MAL» & P/poly, where MA_, is an exponential version of MA.

e Unfortunately, arithmetization falls prey to a different barrier called
algebrization [Aaronson-Wigderson'2008].



Circumventing the Barrier

e [Williams’2011] proved NEXP & ACC by a combination of structural
complexity and algorithmic ideas, where ACC = U,,AC°[p].

* Proof technique bypasses the relativization, natural proofs and
algebrization barrier.

e Later, [Murray-Williams’2018] showed that NQP & ACC, where NQP is
non-deterministic quasi-polynomial time.



Circumventing the Barrier

* Some other approaches include Algebraic Complexity Theory,
Geometric Complexity Theory and Descriptive Complexity Theory.

» Refer Scott Aaronson’s 2017 survey on P vs NP for a more detailed
discussion.



Some perspectives

* Lance Fortnow and William Gasarch’s blog
https://blog.computationalcomplexity.org/2024/09/natural-proofs-is-not-
barrier-you-think.html

* Richard Lipton’s blog
https://rjlipton.com/2009/03/25/whos-afraid-of-natural-proofs/

* Luca Trevisan’s blog
https://in-theory.blogspot.com/2006 07 30 archive.html



https://blog.computationalcomplexity.org/2024/09/natural-proofs-is-not-barrier-you-think.html
https://blog.computationalcomplexity.org/2024/09/natural-proofs-is-not-barrier-you-think.html
https://rjlipton.com/2009/03/25/whos-afraid-of-natural-proofs/
http://in-theory.blogspot.com/2006_07_30_archive.html
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