Computational Complexity Theory

Lecture 4: Cook-Levin theorem

Department of Computer Science, Indian Institute of Science

Recap: Complexity Class NP

Definition. A language L ⊆ {0,1}* is in NP if there's a polynomial function p: N → N and a polynomial-time TM M (called the <u>verifier</u>) such that for every x,

$$x \in L$$
 \Longrightarrow $\exists u \in \{0,1\}^{p(|x|)}$ s.t. $M(x,u) = I$

u is called a <u>certificate or witness</u> for x (w.r.t L and M), if $x \in L$.

Recap: Complexity Class NP

• Definition. A language $L \subseteq \{0,1\}^*$ is in NP if there's a polynomial function $p: N \to N$ and a polynomial-time TM M (called the <u>verifier</u>) such that for every x,

```
x \in L \Longrightarrow \exists u \in \{0,1\}^{p(|x|)} s.t. M(x,u) = I
```

 Class NP contains those problems (languages) which have such efficient verifiers.

Class NP: Examples

Vertex cover

0/1 integer programming

Integer factoring

Graph isomorphism

2-Diophantine solvability

Recap: Is P = NP?

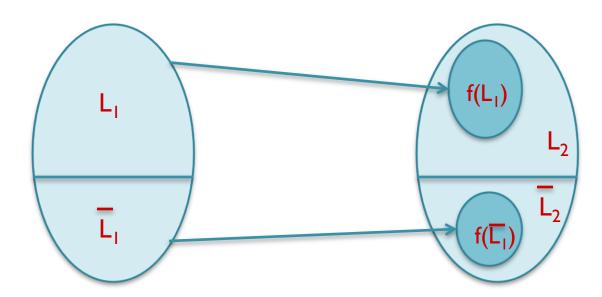
- Obviously, $P \subseteq NP$.
- Whether or not P = NP is an outstanding open question in mathematics and TCS!

• Solving a problem does seem harder than verifying its solution, so most people believe that $P \neq NP$.

Recap: Polynomial-time reduction

• Definition. We say a language $L_1 \subseteq \{0,1\}^*$ is <u>polynomial-time</u> (Karp) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a polynomial-time computable function f s.t.

$$x \in L_1 \iff f(x) \in L_2$$



Recap: NP-completeness

- Definition. A language L' is NP-hard if for every L in NP, L \leq_p L'. Further, L' is NP-complete if L' is in NP and is NP-hard.
- Observe. If L' is NP-hard and L' is in P then P = NP. If
 L' is NP-complete then L' in P if and only if P = NP.



Recap: Few words on reductions

- As to how we define a reduction from one language to the other (or one function to the other) is usually guided by a <u>question on</u> whether two <u>complexity classes</u> are different or identical.
- For polynomial-time reductions, the question is whether or not P equals NP.
- Reductions help us define complete problems (the 'hardest' problems in a class) which in turn help us compare the complexity classes under consideration.

Class NP: Examples

- Vertex cover (NP-complete)
- 0/1 integer programming (NP-complete)
- 3-coloring planar graphs (NP-complete)
- 2-Diophantine solvability (NP-complete)
- Integer factoring (unlikely to be NP-complete)
- Graph isomorphism (Quasi-P)

How to show existence of an NPC problem?

- Let L' = { (α, x, I^m, I^t) : there exists a $u \in \{0, I\}^m$ s.t. M_{α} accepts (x, u) in t steps }
- Observation. L' is NP-complete.

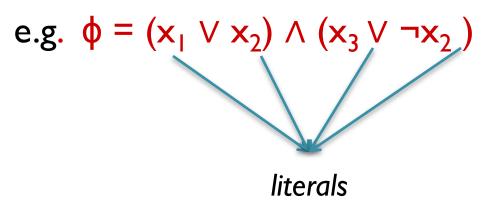
The language L' involves Turing machine in its definition.
 Next, we'll see an example of an NP-complete problem that is arguably more natural.

• Definition. A <u>Boolean formula</u> on variables $x_1, ..., x_n$ consists of AND, OR and NOT operations.

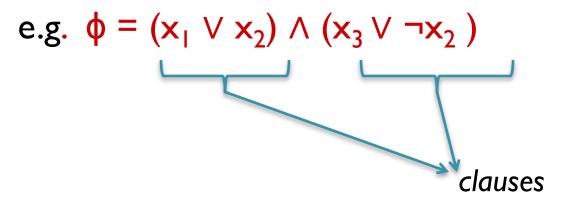
e.g.
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

Definition. A Boolean formula \$\phi\$ is <u>satisfiable</u> if there's a {0, I}-assignment to its variables that makes \$\phi\$ evaluate to I.

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.



 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.



 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.

e.g.
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.

e.g.
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

• Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.

e.g.
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

• Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

Easy to see that SAT is in NP.

Need to show that SAT is NP-hard.

Proof of Cook-Levin Theorem

 Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

• Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

- Let $L \in \mathbb{NP}$. We intend to come up with a polynomial-time computable function $f: \times \longrightarrow \phi_{\times}$ s.t.,
 - \triangleright x \in L \iff $\phi_x \in$ SAT

 Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

- Let $L \in \mathbb{NP}$. We intend to come up with a polynomial-time computable function $f: \times \longrightarrow \phi_{\times}$ s.t.,
 - \rightarrow x \in L \iff $\phi_x \in$ SAT
 - Notation: $|\phi_x| := \text{size of } \phi_x$ $= \text{number of } \lor \text{ or } \land \text{ in } \phi_x$

Language L has a poly-time verifier M such that

$$x \in L$$
 $\Longrightarrow \exists u \in \{0,1\}^{p(|x|)}$ s.t. $M(x, u) = I$

• Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x, u) = I

• Idea: For any fixed x, we can <u>capture the computation</u> of M(x, ...) by a CNF ϕ_x such that

 $\exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x,u) = I $\iff \phi_x$ is satisfiable

• Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x, u) = I

• Idea: For any fixed x, we can <u>capture the computation</u> of M(x, ..) by a CNF ϕ_x such that

```
\exists u \in \{0, I\}^{p(|x|)} s.t. M(x, u) = I \iff \phi_x is satisfiable
```

• For any fixed x, M(x, ..) is a deterministic TM that takes u as input and runs in time polynomial in |u|.

Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then, (think of N = M(x, ..) for a fixed x.)

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a CNF $\phi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \phi(u, "auxiliary variables")$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = I.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a CNF $\phi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \phi(u, "auxiliary variables")$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = 1.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.
- φ(u, "auxiliary variables") is satisfiable as a function of all the variables if and only if ∃u s.t N(u) = I.

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a CNF $\phi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \phi(u, "auxiliary variables")$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = 1.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.
- Cook-Levin theorem follows from above!

Proof of Main Theorem

Main theorem: Proof

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a Boolean circuit ψ of size poly(T(n)) such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.
- Step 2. "Convert" circuit ψ to a CNF ϕ efficiently by introducing <u>auxiliary variables</u>.

Main theorem: Proof

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a Boolean circuit ψ of size poly(T(n)) such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n. The key insight: ψ "encodes" N.
- Step 2. "Convert" circuit ψ to a CNF ϕ efficiently by introducing <u>auxiliary variables</u>.

Main theorem: Step I

 Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.

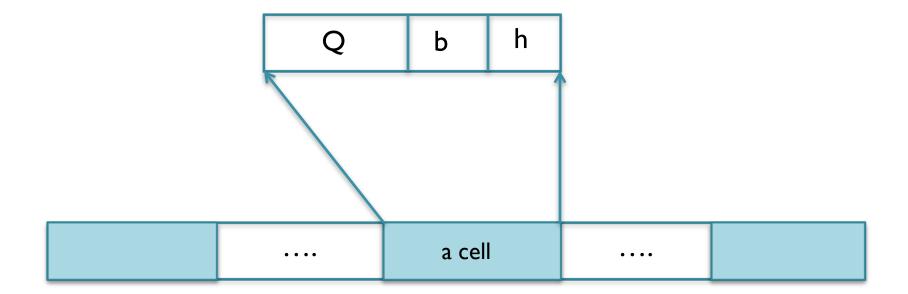
Main theorem: Step I

- Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.
- A step of computation of N consists of
 - Changing the content of the current cell
 - Changing state
 - Changing head position

Main theorem: Step I

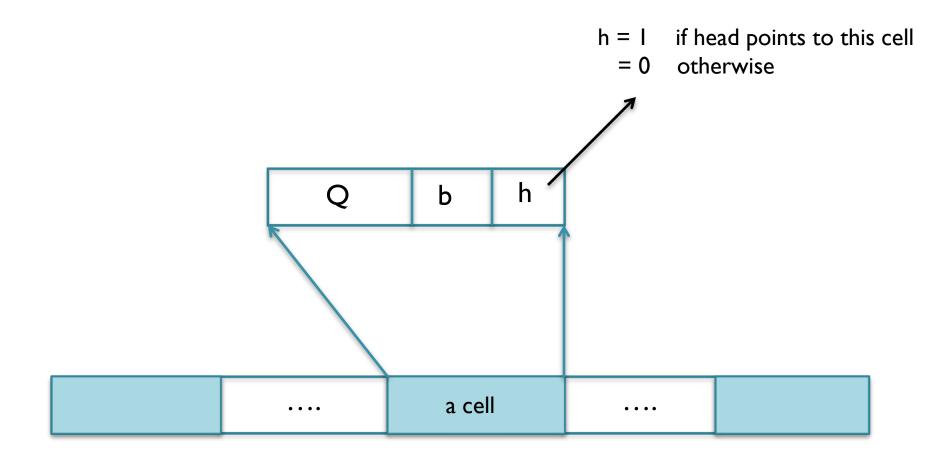
- Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.
- A step of computation of N consists of
 - Changing the content of the current cell
 - Changing state
 - Changing head position
- Think of a 'compound' tape: Every cell stores the current state, a bit content and head indicator.

Main theorem: Step 1



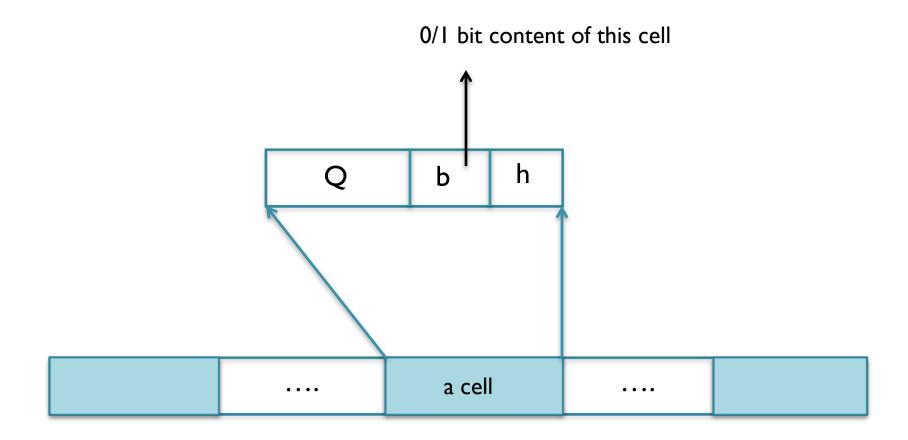
A compound tape

Main theorem: Step 1



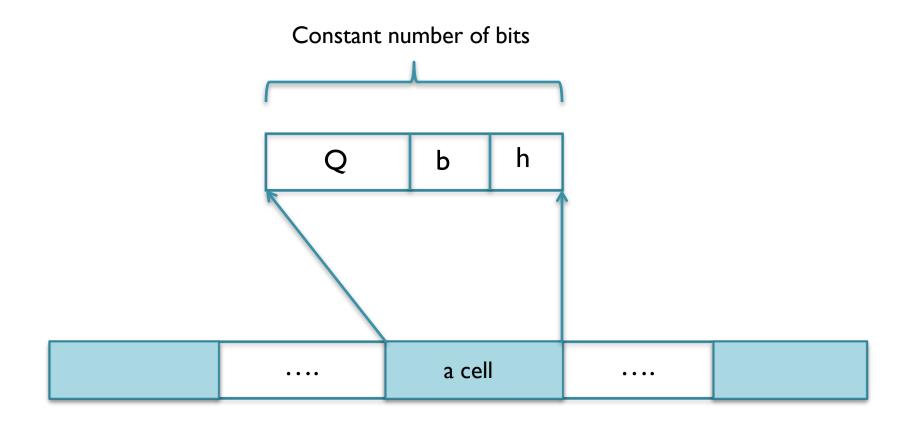
A compound tape

Main theorem: Step 1



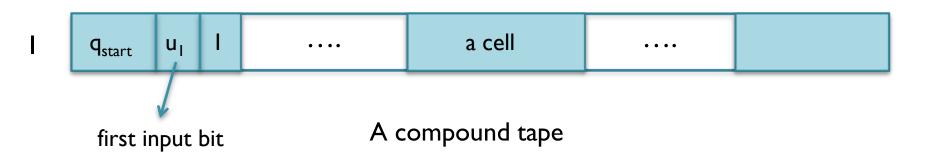
A compound tape

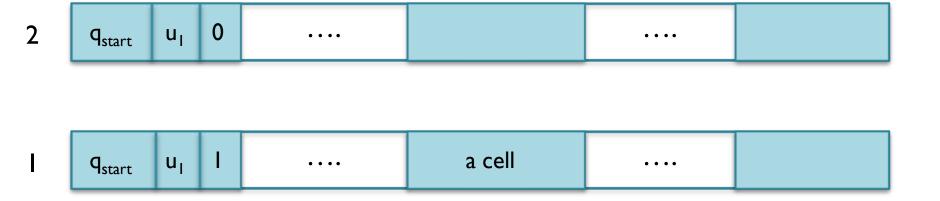
Current state when h = Ih b a cell

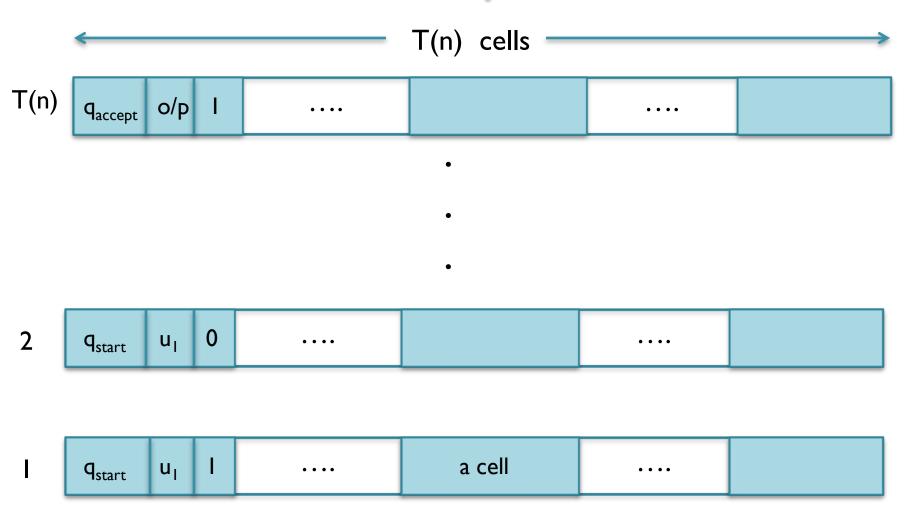


• Computation of N on inputs of length n can be completely described by a sequence of T(n) compound tapes, the i-th of which captures a 'snapshot' of N's computation at the i-th step.

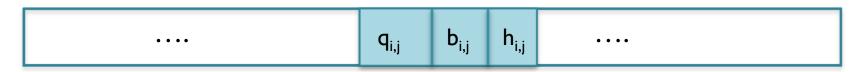
···· a cell ····





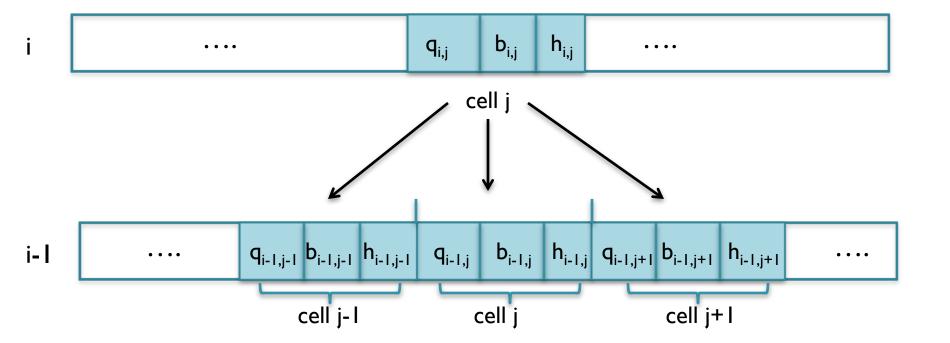


- $h_{i,j} = I$ iff head points to cell j at i-th step
- b_{i,i} = bit content of cell j at i-th step
- $q_{i,j} = a$ sequence of log |Q| bits which contains the current state info if $h_{i,j} = I$; otherwise we don't care

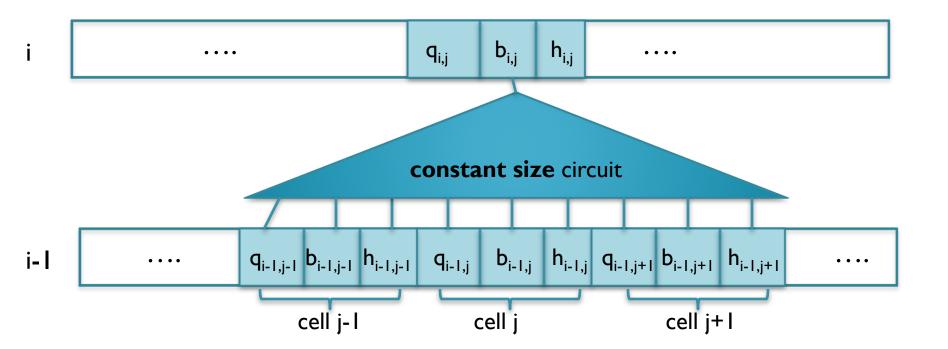


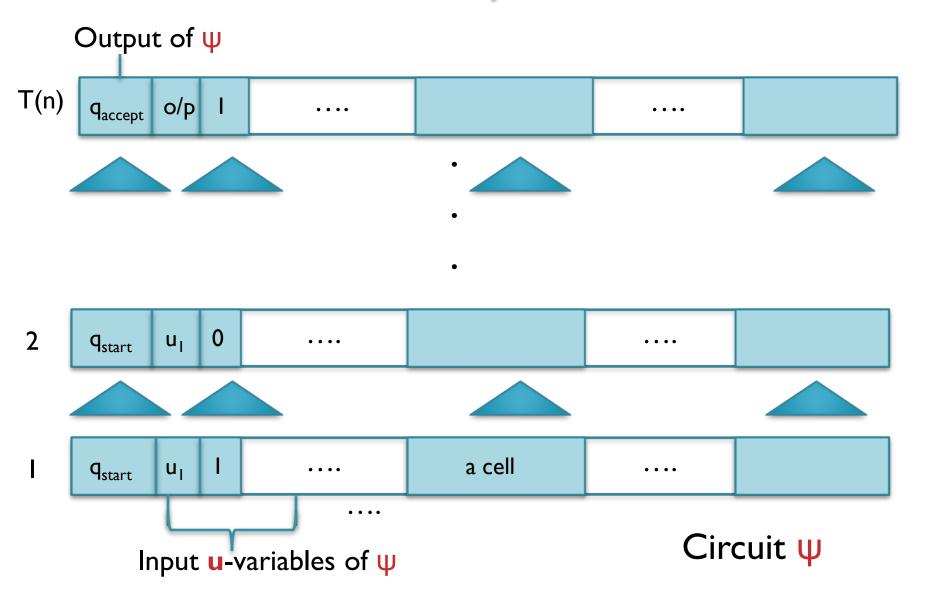
cell i

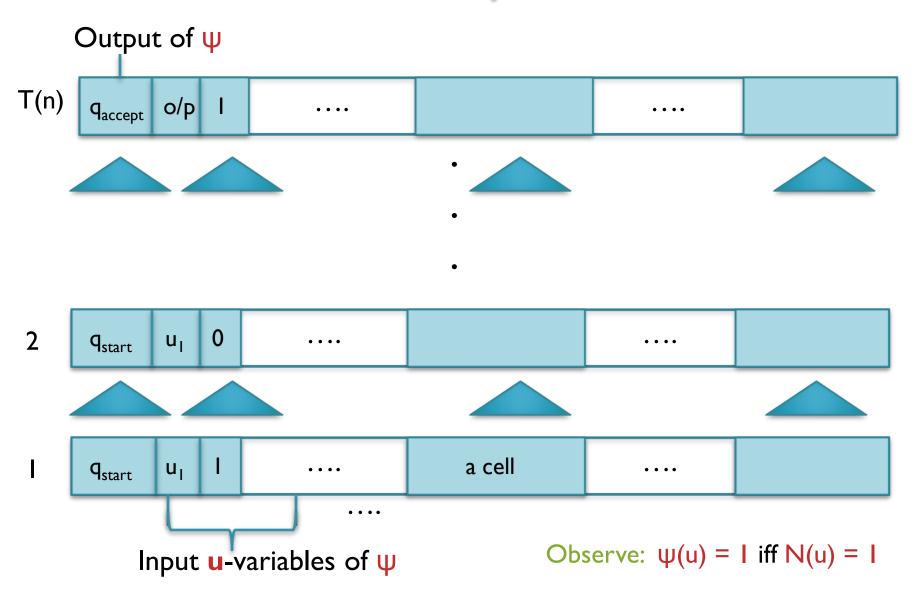
- Locality of computation: The bits in h_{i,j},
 b_{i,j} and q_{i,j} depend <u>only on</u> the bits in
 - $\triangleright h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},$
 - $> h_{i-1,j}, b_{i-1,j}, q_{i-1,j},$
 - $\triangleright h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}$



- Locality of computation: The bits in h_{i,j},
 b_{i,j} and q_{i,j} depend <u>only on</u> the bits in
 - $\triangleright h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},$
 - $> h_{i-1,j}, b_{i-1,j}, q_{i-1,j},$
 - $\triangleright h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}$







Recall Steps I and 2

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1.
 Then,
 - I. There's a Boolean circuit ψ of size poly(T(n)) such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. Ψ is computable in time poly(T(n)) from N,T & n.

• Step 2. "Convert" circuit ψ to a CNF ϕ efficiently by introducing auxiliary variables.