{ Computational Complexity Theory

Lecture 5: Cook-Levin theorem (contd.);
More NP-complete problems

Department of Computer Science,
Indian Institute of Science

Recap: A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g O = (X V) A(x3Vx,)

o Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

e [heorem. (Cook 1971, Levin 1973) SAT is NP-complete.

Easy to see that SAT is in NP.
Need to show that SAT is NP-hard.

Recap: Cook-Levin theorem

e Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF

formula.

e Let L € NP. We intend to come up with a polynomial-
time computable function f: x - ¢, s.t,

> x€L ¢ ¢ €SAT

Notation: |, | := size of ¢,

= number of V or Ain ¢,

Recap: Cook-Levin theorem

e Language L has a poly-time verifier M such that
x€L &= Ju €{0,1}P(x) s.t. M(x,u) = |

* |dea: For any fixed x, we can capture the computation
of M(x,..) by a CNF ¢, such that

Ju €{0,1}PIx) s.t. M(x,u) =1 4= ¢_is satisfiable

e For any fixed x, M(x, ..) is a deterministic TM that
takes u as input and runs in time polynomial in |ul.

Recap: Cook-Levin theorem

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF ¢(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ¢(u, “auxiliary
variables™) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ¢ is computable in time poly(T(n)) from N, T & n.

o O(u, “auxiliary variables™) is satisfiable as a function of all
the variables if and only if Ju s.t N(u) =1.

Recap: Main theorem

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit W of size poly(T(n))
such that W(u) = | if and only if N(u) =1.

2. W is computable in time poly(T(n)) from N, T & n.

o “Convert” circuit Y to a CNF ¢ efficiently by
introducing auxiliary variables.

Recap: Step |

e Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.

* A step of computation of N consists of
» Changing the content of the current cell

» Changing state

» Changing head position

e Think of a ‘compound’ tape: Every cell stores the
current state, a bit content and head indicator.

Recap: Step |

a cell

A compound tape

Recap: Step |

* Computation of N on inputs of length n can be
completely described by a sequence of T(n)
compound tapes, the i-th of which captures a
‘snapshot’ of N's computation at the i-th step.

a cell

A compound tape

Recap: Step |

emulo
Lo o]

A compound tape

Recap: Step |

* Locality of computation: The bits in hi,j,
b,; and q;; depend only on the bits in
> hi-l,j-l , bi-l,j-l » Qi1 j-1 0
> hi-l,j’ bi-l,j’ Q-1 »
> hi-l,j+| , bi-l,j+| » Qicpj+

i- | qi-l,j-l‘bi-l,j-l|hi-l,j-l 91, bi-l,j hi-l,j qi-l,j+l‘bi-l,j+llhi-l,j+|

T J T
cell j-1 cell | cell j+1

Recap: Step |

Output of W

l
T(n) qaccept‘ °/P| |

A

a cell

Input u-'variables of W

Circuit |

Recall Steps | and 2

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit W of size poly(T(n))
such that W(u) = | if and only if N(u) =1.

2. W is computable in time poly(T(n)) from N, T & n.

o “Convert” circuit Y to a CNF ¢ efficiently by
introducing auxiliary variables.

Main theorem: Step 2

* Think of h;;, b;; and the bits of q;; as formal

Boolean variables.

.

auxiliary variables

Qi b.’. h.’.

cell |

Main theorem: Step 2

* Locality of computation: The variables h;;, b;;
and q;; depend only on the variables

» hi-l,j-l , bi-l,j-l » Qicrj-1

» hijjs by giyrand

7 hijers Bpjers Qe
I ql] bi,j hl]

/ T \
i- | qi-l,j-l‘bi-l,j-l hi-l,j-l 9.1, bi-l,j hi-l,j Q.1 j+1 bi-l,j+| hi-l,j+|
L J L J L J

T T T
cell j-1 cell j cell j+1

Main theorem: Step 2

* Hence,
bij = Bij(hi-l,j-l » Dot Gierjer » hicnys by G hicjers Biyjers qi-l,j+|)
= a fixed function of the arguments depending only

on N’s transition function 0.

* The above equality can be captured by a constant size
CNF ¥, . Also, ¥, is easily computable from 0.

Main theorem: Step 2

* Hence,
bij = Bij(hi-l,j-l » Dot Gierjer » hicnys by G hicjers Biyjers qi-l,j+|)
= a fixed function of the arguments depending only

on N’s transition function 0.

e The above equalit@e captured)by a constant size
CNF ¥, . Also, W, is easily gomputable from 0.

v
x=y iff (xAy)V (xA-qy) =1

Main theorem: Step 2

e Similarly,
hij = Hij(hi-l,j-l » Dot Gierjer » hicrgs by Qs hicer s B qi-l,j+|)
= a fixed function of the arguments depending only

on N’s transition function 0.

* The above equality can be captured by a constant size
CNF @, . Also, @ is easily computable from 0.

Main theorem: Step 2

. k-th bit of q. where | = k = log |Q
e Similarly, K 81

Qijk = Cijk(hi-l,j-l v Bivjors Qicrjer o Py By Qs Bijer s Bicyjar s qi-l,j+|)
= a fixed function of the arguments depending only

on N’s transition function 0.

* The above equality can be captured by a constant size
CNF 0., . Also, 0., is easily computable from 0.

ijk ijk

Main theorem: Step 2

* Let A be the conjunction of ¥, , ®; and 6, for all i,j,
k.
> i €[, T(n)],
> j€[l,T(n)],and
> k€[l log |Ql]

e Ais a CNF in the u-variables and the auxiliary variables
h;j bjand qj; . for all ijjk. [A]is O(T(n)?).

i)

Main theorem: Step 2

* Let A be the conjunction of ¥, , ®; and 6, for all i,j,
k.
> i €[, T(n)],
> j€[l,T(n)],and
> k€[l log |Ql]

e Ais a CNF in the u-variables and the auxiliary variables
h;y bjand qj; . for all ijjk. [A] is O(T(n)?).

i)

* Define ¢ = A A by, -

Main theorem: Step 2

o An assignment to u and the auxiliary variables
satisfies A if and only if it “captures” the computation of
N on the assigned input u for T(n) steps.

Main theorem: Step 2

o An assignment to u and the auxiliary variables
satisfies A if and only if it “captures” the computation of
N on the assigned input u for T(n) steps.

* Hence, an assignment to u and the auxiliary variables
satisfies ¢ if and only if N(u) = |, i.e., for every u,

®(u, “auxiliary variables”) € SAT &= N(u) =1.

Recall the Main Theorem

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF ¢(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ¢(u, “auxiliary
variables™) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ¢ is computable in time poly(T(n)) from N, T & n.

o O(u, “auxiliary variables™) is satisfiable as a function of all
the variables if and only if Ju s.t N(u) =1.

Main theorem: Comments

e ¢ is a CNF of size O(T(n)?) and is also computable
from N,T and n in O(T(n)?) time.

e With some more effort, size ¢ can be
brought down to O(T(n).log T(n)).

o The reduction from x to ¢, is not just a
poly-time reduction, it is actually a log-space reduction
(we’ll define this later).

Main theorem: Comments

e ¢ is a function of u and some “auxiliary variables” (the
b; h; and g, variables).

* Observe that once u is fixed the values of the “auxiliary
variables” are also determined in any satisfying
assignment for ¢.

* Each clause of ¢® has only constantly many
literals!

3SAT is NP-complete

o A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2-CNFd = (x; Vx) A (X3V 7%,)

° k-SAT is the language consisting of all
satisfiable k-CNFs.

3SAT is NP-complete

e Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2-CNF o =(x; Vx)A(X3V 71%,)

e Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

e [heorem. 3-SAT is NP-complete.

Proof sketch: (x, V x, V X3V —x,) is satisfiable iff (x, V
X, V z) A (X3V 7x, V 7z) is satisfiable.

3SAT is NP-complete

e Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2-CNF o =(x; Vx)A(X3V 71%,)

e Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

e Theorem. 3-SAT is NP-complete.

NP complete problems: Examples

—

* Independent Set
e Clique

* Vertex cover p—
e 0/] integer programming
e Max-Cut

e 3-coloring planar graphs
e 2-Diophantine solvability

Ref:

NPC problems from number theory

e SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x = ¢ such that

x> = a (mod b).

e Theorem: SqRootMod is NP-complete.

NPC problems from number theory

e Variant IntFact : Given natural numbers L, U and N,

check if there exists a natural number d € [L, U]
such that d divides N.

e Claim: Variant IntFact is NP-hard under randomized
boly-time reduction.

e Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785

A peculiar NP problem

e Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size = s that computes f.

* Easy to see that MCSP is in NP.

e Is MCSP NP-complete? Not known!

A peculiar NP problem

e Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size = s that computes f.

* Easy to see that MCSP is in NP.

e Is MCSP NP-complete? Not known!

e Multi-output MCSP is NP-hard under poly-time
randomized reductions. (llango, Loff, Oliveira 2020)

A peculiar NP problem

e Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size = s that computes f.

* Easy to see that MCSP is in NP.

e Is MCSP NP-complete? Not known!

e Partial fn. MCSP is NP-hard under poly-time
randomized reductions. (Hirahara 2022)

More NP-complete problems

Example |: Independent Set

o INDSET :={(G, k): G has independent set of size k}

e Goal: Design a poly-time reduction f s.t.
x € 3SAT e f(x) € INDSET

e Reduction from 3SAT: Recall, a reduction is just an
efficient algorithm that takes input a 3CNF ¢ and
outputs a (G, k) tuple s.t

¢ € 3SAT 4= (G, k) € INDSET

Example |: Independent Set

0 Let & be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Example |: Independent Set

0 Let & be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

A vertex stands for a partial
assignment of the variables in
C, that satisfies the clause

For every clause C. form a complete
graph (cluster) on 7 vertices

Example |: Independent Set

e Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

G
Add an edge between two
vertices in two different clusters if

C, the partial assignments they stand C,
for are incompatible.

Example |: Independent Set

e Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Graph G on 7m vertices

Example |: Independent Set

e Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

o Obs: ¢ is satisfiable iff G has an ind. set of size m.

