
Computational Complexity Theory

Lecture 6: More NP-complete problems;
Decision vs. Search

 Department of Computer Science,
Indian Institute of Science

Recap: 3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

 e.g. a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

 Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

 Theorem. (Cook-Levin) 3-SAT is NP-complete.

Recap: More NP complete problems

 Independent Set

 Clique

 Vertex cover

 0/1 integer programming

 Max-Cut (NP-hard)

 3-coloring planar graphs Stockmeyer 1973

 2-Diophantine solvability Adleman & Manders 1975

Karp 1972

Ref: Garey & Johnson, “Computers and Intractability” 1979

Recap: NPC problems from NT

 SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x ≤ c such that

 x2 = a (mod b) .

 Theorem: SqRootMod is NP-complete.

 Manders & Adleman 1976

Recap: NPC problems from NT

 Variant_IntFact : Given natural numbers L, U and N,
check if there exists a natural number d ∈ [L, U]
such that d divides N.

 Claim: Variant_IntFact is NP-hard under randomized
poly-time reduction.

 Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785

Recap: A peculiar NP problem

 Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size ≤ s that computes f.

 Easy to see that MCSP is in NP.

 Is MCSP NP-complete? Not known!

 Multi-output MCSP & Partial fn. MCSP are NP-hard
under poly-time randomized reductions.

 More NP-complete problems

Recap: Independent Set

 INDSET := {(G, k): G has independent set of size k}

 Theorem: There’s a poly-time reduction f s.t.

 Hence, INDSET is NP-complete.

x ∈ 3SAT f(x) ∈ INDSET

Example 2: Clique

 CLIQUE := {(H, k): H has a clique of size k}

 Goal: Design a poly-time reduction f s.t.

 Reduction from INDSET: The reduction algorithm
computes G from G

x ∈ INDSET f(x) ∈ CLIQUE

(G, k) ∈ INDSET (G, k) ∈ CLIQUE

Example 3: Vertex Cover

 VCover := {(H, k): H has a vertex cover of size k}

 Goal: Design a poly-time reduction f s.t.

 Reduction from INDSET: Let n be the number of
vertices in G. The reduction algorithm maps (G, k) to
(G, n-k).

x ∈ INDSET f(x) ∈ VCover

(G, k) ∈ INDSET (G, n-k) ∈ VCover

Example 4: 0/1 Integer Programming

 0/1 IProg := Set of satisfiable 0/1 integer programs

 A 0/1 integer program is a set of linear inequalities
with rational coefficients and the variables are
allowed to take only 0/1 values.

 Reduction from 3SAT: A clause is mapped to a linear
inequality as follows

x1 ∨ x2 ∨ x3 x1 + (1- x2) + x3 ≥ 1

Example 5: Max Cut

 MaxCut : Given a graph find a cut with the max size.

 A cut of G = (V, E) is a tuple (U, V\U), U ⊆ V. Size of a
cut (U, V\U) is the number of edges from U to V\U.

 MinVCover: Given a graph H, find a vertex cover in
H that has the min size.

 Obs: From MinVCover(H), we can readily check if (H,
k) ∈ VCover, for any k.

Example 5: Max Cut

 MaxCut : Given a graph find a cut with the max size.

 A cut of G = (V, E) is a tuple (U, V\U), U ⊆ V. Size of a
cut (U, V\U) is the number of edges from U to V\U.

 Goal: A poly-time reduction from MinVCover to
MaxCut.

 Size of a MaxCut(G) = 2.|E(H)| - |MinVCover(H)|

 H G s.t.
f

Example 5: Max Cut

 The reduction:

 G is formed by adding a new vertex w and adding
degH(u) – 1 edges between every u ∈ V(H) and w.

 H G
f

u u

w

degH(u) – 1 edges
between u and w

H G

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Let SG(U) := no. of edges in G with exactly one end
vertex incident on a vertex in U.

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Let SG(U) = no. of edges going out of U in G.

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Let SG(U) = size of the cut (U, V\U + w).

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Let SH(U) := no. of edges in H with exactly one end
vertex incident on a vertex in U.

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Then SG(U) = SH(U) + Σ (degH(u) – 1)

 = SH(U) + ΣdegH(u) – |U|

u∈U

u∈U

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Then SG(U) = SH(U) + Σ (degH(u) – 1)

 = SH(U) + ΣdegH(u) – |U|

u∈U

u∈U

Obs: Twice the number of
edges in H with at least one
end vertex in U.

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Then SG(U) = SH(U) + Σ (degH(u) – 1)

 = SH(U) + ΣdegH(u) – |U|

 = 2.|EH(U)| - |U|

u∈U

u∈U

EH(U) := Set of edges in H with at
least one end vertex in U.

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Then SG(U) = 2.|EH(U)| - |U|

 Proposition: If (U, V\U + w) is a max cut in G then U
is a vertex cover in H.

… Eqn (1)

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Then SG(U) = 2.|EH(U)| - |U|

 Proposition: If (U, V\U + w) is a max cut in G then U
is a vertex cover in H.

… Eqn (1)

 SG(U) = |MaxCut(G)| = 2.|E(H)| - |U|

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Then SG(U) = 2.|EH(U)| - |U|

 Proposition: If (U, V\U + w) is a max cut in G then U
is a vertex cover in H.

… Eqn (1)

 SG(U) = |MaxCut(G)| = 2.|E(H)| - |U|

U must be a minVCover in H

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Then SG(U) = 2.|EH(U)| - |U|

 Proposition: If (U, V\U + w) is a max cut in G then U
is a vertex cover in H.

… Eqn (1)

 SG(U) = |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

Example 5: Max Cut

 Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

 Proof: Let V(H) = V. Then V(G) = V + w.

 Suppose (U, V\U + w) is a cut in G.

 Then SG(U) = 2.|EH(U)| - |U|

 Proposition: If (U, V\U + w) is a max cut in G then U
is a vertex cover in H.

… Eqn (1)

Thus, the proof of the above claim follows from the proposition

Example 5: Max Cut

 Proof of the Proposition: Suppose U is not a vertex
cover

u

v

w

degH(u)-1 edges

U

V\U + w

Example 5: Max Cut

 Proof of the Proposition: Suppose U is not a vertex
cover

u

v

w

Gain: degH(u)-1 + 1 edges.
Loss: At most degH(u)-1 edges, these are the edges going from U to u.
Net gain: At least 1 edge. Hence the cut is not a max cut.

U

V\U + w

Search versus Decision

Search version of NP problems

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

Search version of NP problems

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Remark: Search version of L only makes sense once we
have a verifier M in mind.

Search version of NP problems

 Recall: A language L ⊆ {0,1}* is in NP if

 There’s a poly-time verifier M and poly. function p s.t.

 x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Example: Given a 3CNF ϕ, find a satisfying assignment
for ϕ if such an assignment exists.

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

w.r.t any verifier M !

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

 Proof. (search decision) Obvious.

Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version?

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

 Proof. (decision search) We’ll prove this for

 L = SAT first.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn)

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y
.
.
.
.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y
.
.
.
.

SAT is downward self-reducible

 Proof. (decision search) Let L = SAT, and A be a
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

 We can find a satisfying assignment of ϕ with at most 2n
calls to A.

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

From Cook-Levin theorem, we can
find a certificate of x∈L (w.r.t. M)
from a satisfying assignment of ϕx.

Important note:

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

How to find a satisfying assignment for ϕx using algorithm B ?

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx

How to find a satisfying assignment for ϕx using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Decision ≡ Search for NPC problems

 Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

 SAT ≤p L L ≤p SAT

x ϕx
ϕ f(ϕ)

How to find a satisfying assignment for ϕx using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Take A(ϕ) = B(f(ϕ)).

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Graph Isomorphism (GI) is in NP and (we’ll see later
that) it is unlikely to be NP-complete.

 Yet, the natural search version of GI reduces in
polynomial-time to the decision version (homework).

Decision versus Search

 Is search equivalent to decision for every NP problem?

Probably not!

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Let EE = ∪ DTIME (2c.2) and

 NEE = ∪ NTIME (2c.2)

 Class NTIME(T(n)) will be defined formally in the next
lecture.

c ≥ 0

n

c ≥ 0

n

Doubly exponential
analogues of P and NP

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

 Checking if a number n is composite can be done in
polynomial-time, but finding a factor of n is not known
to be solvable in polynomial-time.

 We’ll show that Intfact is unlikely to be NP-complete.

Decision versus Search

 Is search equivalent to decision for every NP problem?

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

 Sometimes, the decision version of a problem can be
trivial but the search version is possibly hard. E.g.,
Computing Nash Equilibrium (see class PPAD).

Homework: Read about total NP functions

