
Computational Complexity Theory 

 

Lecture 6:  More NP-complete problems; 
Decision vs. Search  

                 

 

 Department of Computer Science, 
Indian Institute of Science 



Recap: 3SAT is NP-complete 

 Definition. A CNF is a called a k-CNF if every clause 
has at most k literals. 

             e.g.    a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 

 Definition. k-SAT is the language consisting of all 
satisfiable k-CNFs.  

 

 Theorem. (Cook-Levin)  3-SAT is NP-complete.  

  

 



Recap:  More NP complete problems 

 Independent Set 

 Clique 

 Vertex cover   

 0/1 integer programming  

 Max-Cut  (NP-hard) 
 

 

 3-coloring planar graphs    Stockmeyer 1973 

 2-Diophantine solvability   Adleman & Manders 1975 
 

Karp 1972 

Ref:  Garey & Johnson,  “Computers and Intractability”  1979 



Recap:  NPC problems from NT 

 SqRootMod: Given natural numbers a, b and c, check 
if there exists a natural number x ≤ c such that  

                       x2  =  a  (mod  b) .   

 

 Theorem:   SqRootMod is NP-complete. 

                              Manders & Adleman 1976 



Recap:  NPC problems from NT 

 Variant_IntFact : Given natural numbers L, U and N, 
check if there exists a natural number d ∈ [L, U] 
such that d divides N. 

 

 Claim: Variant_IntFact is NP-hard under randomized 
poly-time reduction. 

 

 Reference: 
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785 



Recap:  A peculiar NP problem 

 Minimum Circuit Size Problem (MCSP):  Given the 
truth table of a Boolean function f and an integer s, 
check if there is a circuit of size ≤ s that computes f. 

 

 Easy to see that MCSP is in NP. 

 

 Is  MCSP  NP-complete?  Not known!  

 Multi-output MCSP & Partial fn. MCSP are NP-hard 
under poly-time randomized reductions.   



      More NP-complete problems 



Recap:  Independent Set 

 INDSET := {(G, k): G has independent set of size k} 

 

 Theorem:  There’s a poly-time reduction f s.t. 

 

 

 Hence, INDSET is NP-complete. 

x ∈ 3SAT           f(x) ∈ INDSET 



Example 2:  Clique 

 CLIQUE := {(H, k): H has a clique of size k} 

 

 Goal:  Design a poly-time reduction f s.t. 

 

 

 Reduction from INDSET: The reduction algorithm 
computes G from G 

 

x ∈ INDSET           f(x) ∈ CLIQUE 

(G, k) ∈ INDSET           (G, k) ∈ CLIQUE 



Example 3:  Vertex Cover 

 VCover := {(H, k): H has a vertex cover of size k} 

 

 Goal:  Design a poly-time reduction f s.t. 

 

 

 Reduction from INDSET: Let n be the number of 
vertices in G. The reduction algorithm maps (G, k) to 
(G, n-k). 

 

x ∈ INDSET           f(x) ∈ VCover 

(G, k) ∈ INDSET           (G, n-k) ∈ VCover 



Example 4:  0/1 Integer Programming 

 0/1 IProg := Set of satisfiable 0/1 integer programs  

 A 0/1 integer program is a set of linear inequalities 
with rational coefficients and the variables are 
allowed to take only 0/1 values. 

 

 Reduction from 3SAT: A clause is mapped to a linear 
inequality as follows 

 
x1 ∨ x2 ∨ x3                 x1 + (1- x2) + x3  ≥  1 



Example 5: Max Cut 

 MaxCut : Given a graph find a cut with the max size. 

 A cut of G = (V, E) is a tuple (U, V\U), U ⊆ V.  Size of a 
cut (U, V\U) is the number of edges from U to V\U. 

 

 MinVCover: Given a graph H, find a vertex cover in 
H that has the min size. 

 

 Obs: From MinVCover(H), we can readily check if (H, 
k) ∈ VCover, for any k.   

 

 



Example 5: Max Cut 

 MaxCut : Given a graph find a cut with the max size. 

 A cut of G = (V, E) is a tuple (U, V\U), U ⊆ V.  Size of a 
cut (U, V\U) is the number of edges from U to V\U. 

 

 Goal: A poly-time reduction from MinVCover to 
MaxCut. 

 

   Size of a MaxCut(G)  =  2.|E(H)| - |MinVCover(H)| 

 

    H                 G    s.t. 
f 



Example 5: Max Cut 

 The reduction: 

 

 

 

 

 

 

 G is formed by adding a new vertex w and adding 
degH(u) – 1 edges between every u ∈ V(H) and w. 

 

    H                 G    
f 

u u 

w 

degH(u) – 1 edges 
between u and w 

H G 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Let SG(U) := no. of edges in G with exactly one end 
vertex incident on a vertex in U. 

 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Let SG(U) = no. of edges going out of U in G. 

 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Let SG(U) = size of the cut (U, V\U + w). 

 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Let SH(U) := no. of edges in H with exactly one end 
vertex incident on a vertex in U. 

 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = SH(U) + Σ (degH(u) – 1) 

                      

                    = SH(U) + ΣdegH(u) – |U| 

 

u∈U 

u∈U 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = SH(U) + Σ (degH(u) – 1) 

                      

                    = SH(U) + ΣdegH(u) – |U| 

 

u∈U 

u∈U 

Obs: Twice the number of 
edges in H with at least one 
end vertex in U. 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = SH(U) + Σ (degH(u) – 1) 

                      

                    = SH(U) + ΣdegH(u) – |U| 

 

    = 2.|EH(U)| - |U| 

 

u∈U 

u∈U 

EH(U) := Set of edges in H with at 
least one end vertex in U. 
 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = 2.|EH(U)| - |U| 

 

 Proposition: If (U, V\U + w) is a max cut in G then U 
is a vertex cover in H. 

 

 

… Eqn (1) 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = 2.|EH(U)| - |U| 

 

 Proposition: If (U, V\U + w) is a max cut in G then U 
is a vertex cover in H. 

 

 

… Eqn (1) 

       SG(U) = |MaxCut(G)| = 2.|E(H)| - |U| 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = 2.|EH(U)| - |U| 

 

 Proposition: If (U, V\U + w) is a max cut in G then U 
is a vertex cover in H. 

 

 

… Eqn (1) 

       SG(U) = |MaxCut(G)| = 2.|E(H)| - |U| 

U must be a minVCover in H 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = 2.|EH(U)| - |U| 

 

 Proposition: If (U, V\U + w) is a max cut in G then U 
is a vertex cover in H. 

 

 

… Eqn (1) 

       SG(U) = |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)| 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = 2.|EH(U)| - |U| 

 

 Proposition: If (U, V\U + w) is a max cut in G then U 
is a vertex cover in H. 

 

 

… Eqn (1) 

Thus, the proof of the above claim follows from the proposition 



Example 5: Max Cut 

 Proof of the Proposition: Suppose U is not a vertex 
cover 

 

 

 

u 

v 

w 

degH(u)-1 edges 

U 

V\U + w 



Example 5: Max Cut 

 Proof of the Proposition: Suppose U is not a vertex 
cover 

 

 

 
u 

v 

w 

Gain:  degH(u)-1 + 1 edges. 
Loss:  At most degH(u)-1 edges, these are the edges going from U to u. 
Net gain:  At least 1 edge. Hence the cut is not a max cut. 

U 

V\U + w 



Search versus Decision 



Search version of NP problems 

 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 

 

 



Search version of NP problems 

 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 

 

• Remark:  Search version of L only makes sense once we 
have a verifier M in mind. 

 



Search version of NP problems 

 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 

 

• Example:  Given a 3CNF ϕ, find a satisfying assignment 
for ϕ if such an assignment exists. 

 



Decision versus Search 

 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 



Decision versus Search 

 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

w.r.t any verifier M ! 



Decision versus Search 

 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

 

 Proof.   (search       decision)  Obvious.  

 



Decision versus Search 

 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

 

 Proof.   (decision        search)  We’ll prove this for  

                                                L = SAT first. 

 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)  



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 

ϕ(1,0,…,xn)  



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 

ϕ(1,0,…,xn)   A( ϕ(1,0,..) ) = Y 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 

ϕ(1,0,…,xn)   A( ϕ(1,0,..) ) = Y 

ϕ(1,0,0,…,xn)  



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 

ϕ(1,0,…,xn)   A( ϕ(1,0,..) ) = Y 

ϕ(1,0,0,…,xn)   A( ϕ(1,0,0...) ) = N 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 

ϕ(1,0,…,xn)   A( ϕ(1,0,..) ) = Y 

ϕ(1,0,0,…,xn)   A( ϕ(1,0,0...) ) = N ϕ(1,0,1,…,xn)  



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 

ϕ(1,0,…,xn)   A( ϕ(1,0,..) ) = Y 

ϕ(1,0,0,…,xn)   A( ϕ(1,0,0...) ) = N ϕ(1,0,1,…,xn)   A( ϕ(1,0,0...) ) = Y 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 

ϕ(1,0,…,xn)   A( ϕ(1,0,..) ) = Y 

ϕ(1,0,0,…,xn)   A( ϕ(1,0,0...) ) = N ϕ(1,0,1,…,xn)   A( ϕ(1,0,0...) ) = Y 
. 
. 
. 
. 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 

ϕ(1,0,…,xn)   A( ϕ(1,0,..) ) = Y 

ϕ(1,0,0,…,xn)   A( ϕ(1,0,0...) ) = N ϕ(1,0,1,…,xn)   A( ϕ(1,0,0...) ) = Y 
. 
. 
. 
. 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 

 We can find a satisfying assignment of ϕ with at most 2n 
calls to A. 

 



Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 



Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 



Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 



Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 

From Cook-Levin theorem, we can 
find a certificate of x∈L (w.r.t. M) 
from a satisfying assignment of ϕx. 

Important note:  



Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 

How to find a satisfying assignment for ϕx using algorithm B ? 
  



Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 

How to find a satisfying assignment for ϕx using algorithm B ? 
  
...we know how using  A, which is a poly-time decider for SAT 
 
 



Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 
ϕ           f(ϕ) 

How to find a satisfying assignment for ϕx using algorithm B ? 
  
...we know how using  A, which is a poly-time decider for SAT 
 
Take    A(ϕ)  =  B( f(ϕ) ). 
 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Graph Isomorphism (GI) is in NP and (we’ll see later 
that) it is unlikely to be NP-complete. 

 Yet, the natural search version of GI reduces in 
polynomial-time to the decision version (homework). 

  

 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 
Probably not! 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Let EE = ∪ DTIME (2c.2  )    and  

      

      NEE = ∪ NTIME (2c.2  ) 

 

 

 Class NTIME(T(n)) will be defined formally in the next 
lecture. 

c ≥ 0 

n 

c ≥ 0 

n 

Doubly exponential 
analogues of P and NP 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 

 Checking if a number n is composite can be done in 
polynomial-time, but finding a factor of n is not known 
to be solvable in polynomial-time.  

 We’ll show that Intfact is unlikely to be NP-complete. 

 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 

 Sometimes, the decision version of a problem can be 
trivial but the search version is possibly hard. E.g., 
Computing Nash Equilibrium (see class PPAD).  

 
Homework:  Read about total NP functions 


