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Recap: 3SAT is NP-complete 

 Definition. A CNF is a called a k-CNF if every clause 
has at most k literals. 

             e.g.    a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 )  

 

 Definition. k-SAT is the language consisting of all 
satisfiable k-CNFs.  

 

 Theorem. (Cook-Levin)  3-SAT is NP-complete.  

  

 



Recap:  More NP complete problems 

 Independent Set 

 Clique 

 Vertex cover   

 0/1 integer programming  

 Max-Cut  (NP-hard) 
 

 

 3-coloring planar graphs    Stockmeyer 1973 

 2-Diophantine solvability   Adleman & Manders 1975 
 

Karp 1972 

Ref:  Garey & Johnson,  “Computers and Intractability”  1979 



Recap:  NPC problems from NT 

 SqRootMod: Given natural numbers a, b and c, check 
if there exists a natural number x ≤ c such that  

                       x2  =  a  (mod  b) .   

 

 Theorem:   SqRootMod is NP-complete. 

                              Manders & Adleman 1976 



Recap:  NPC problems from NT 

 Variant_IntFact : Given natural numbers L, U and N, 
check if there exists a natural number d ∈ [L, U] 
such that d divides N. 

 

 Claim: Variant_IntFact is NP-hard under randomized 
poly-time reduction. 

 

 Reference: 
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785 



Recap:  A peculiar NP problem 

 Minimum Circuit Size Problem (MCSP):  Given the 
truth table of a Boolean function f and an integer s, 
check if there is a circuit of size ≤ s that computes f. 

 

 Easy to see that MCSP is in NP. 

 

 Is  MCSP  NP-complete?  Not known!  

 Multi-output MCSP & Partial fn. MCSP are NP-hard 
under poly-time randomized reductions.   



      More NP-complete problems 



Recap:  Independent Set 

 INDSET := {(G, k): G has independent set of size k} 

 

 Theorem:  There’s a poly-time reduction f s.t. 

 

 

 Hence, INDSET is NP-complete. 

x ∈ 3SAT           f(x) ∈ INDSET 



Example 2:  Clique 

 CLIQUE := {(H, k): H has a clique of size k} 

 

 Goal:  Design a poly-time reduction f s.t. 

 

 

 Reduction from INDSET: The reduction algorithm 
computes G from G 

 

x ∈ INDSET           f(x) ∈ CLIQUE 

(G, k) ∈ INDSET           (G, k) ∈ CLIQUE 



Example 3:  Vertex Cover 

 VCover := {(H, k): H has a vertex cover of size k} 

 

 Goal:  Design a poly-time reduction f s.t. 

 

 

 Reduction from INDSET: Let n be the number of 
vertices in G. The reduction algorithm maps (G, k) to 
(G, n-k). 

 

x ∈ INDSET           f(x) ∈ VCover 

(G, k) ∈ INDSET           (G, n-k) ∈ VCover 



Example 4:  0/1 Integer Programming 

 0/1 IProg := Set of satisfiable 0/1 integer programs  

 A 0/1 integer program is a set of linear inequalities 
with rational coefficients and the variables are 
allowed to take only 0/1 values. 

 

 Reduction from 3SAT: A clause is mapped to a linear 
inequality as follows 

 
x1 ∨ x2 ∨ x3                 x1 + (1- x2) + x3  ≥  1 



Example 5: Max Cut 

 MaxCut : Given a graph find a cut with the max size. 

 A cut of G = (V, E) is a tuple (U, V\U), U ⊆ V.  Size of a 
cut (U, V\U) is the number of edges from U to V\U. 

 

 MinVCover: Given a graph H, find a vertex cover in 
H that has the min size. 

 

 Obs: From MinVCover(H), we can readily check if (H, 
k) ∈ VCover, for any k.   

 

 



Example 5: Max Cut 

 MaxCut : Given a graph find a cut with the max size. 

 A cut of G = (V, E) is a tuple (U, V\U), U ⊆ V.  Size of a 
cut (U, V\U) is the number of edges from U to V\U. 

 

 Goal: A poly-time reduction from MinVCover to 
MaxCut. 

 

   Size of a MaxCut(G)  =  2.|E(H)| - |MinVCover(H)| 

 

    H                 G    s.t. 
f 



Example 5: Max Cut 

 The reduction: 

 

 

 

 

 

 

 G is formed by adding a new vertex w and adding 
degH(u) – 1 edges between every u ∈ V(H) and w. 

 

    H                 G    
f 

u u 

w 

degH(u) – 1 edges 
between u and w 

H G 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 
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   Suppose (U, V\U + w) is a cut in G. 
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vertex incident on a vertex in U. 

 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Let SG(U) = no. of edges going out of U in G. 

 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Let SG(U) = size of the cut (U, V\U + w). 

 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Let SH(U) := no. of edges in H with exactly one end 
vertex incident on a vertex in U. 

 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = SH(U) + Σ (degH(u) – 1) 

                      

                    = SH(U) + ΣdegH(u) – |U| 

 

u∈U 

u∈U 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = SH(U) + Σ (degH(u) – 1) 

                      

                    = SH(U) + ΣdegH(u) – |U| 

 

u∈U 

u∈U 

Obs: Twice the number of 
edges in H with at least one 
end vertex in U. 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = SH(U) + Σ (degH(u) – 1) 

                      

                    = SH(U) + ΣdegH(u) – |U| 

 

    = 2.|EH(U)| - |U| 

 

u∈U 

u∈U 

EH(U) := Set of edges in H with at 
least one end vertex in U. 
 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = 2.|EH(U)| - |U| 

 

 Proposition: If (U, V\U + w) is a max cut in G then U 
is a vertex cover in H. 

 

 

… Eqn (1) 
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… Eqn (1) 

       SG(U) = |MaxCut(G)| = 2.|E(H)| - |U| 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = 2.|EH(U)| - |U| 

 

 Proposition: If (U, V\U + w) is a max cut in G then U 
is a vertex cover in H. 

 

 

… Eqn (1) 

       SG(U) = |MaxCut(G)| = 2.|E(H)| - |U| 

U must be a minVCover in H 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = 2.|EH(U)| - |U| 

 

 Proposition: If (U, V\U + w) is a max cut in G then U 
is a vertex cover in H. 

 

 

… Eqn (1) 

       SG(U) = |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)| 



Example 5: Max Cut 

 Claim:  |MaxCut(G)|  =  2.|E(H)| - |MinVCover(H)| 

 Proof: Let V(H) = V.   Then V(G) = V + w.  

   Suppose (U, V\U + w) is a cut in G. 

    

 Then SG(U) = 2.|EH(U)| - |U| 

 

 Proposition: If (U, V\U + w) is a max cut in G then U 
is a vertex cover in H. 

 

 

… Eqn (1) 

Thus, the proof of the above claim follows from the proposition 



Example 5: Max Cut 

 Proof of the Proposition: Suppose U is not a vertex 
cover 

 

 

 

u 

v 

w 

degH(u)-1 edges 

U 

V\U + w 



Example 5: Max Cut 

 Proof of the Proposition: Suppose U is not a vertex 
cover 

 

 

 
u 

v 

w 

Gain:  degH(u)-1 + 1 edges. 
Loss:  At most degH(u)-1 edges, these are the edges going from U to u. 
Net gain:  At least 1 edge. Hence the cut is not a max cut. 

U 

V\U + w 



Search versus Decision 



Search version of NP problems 

 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 

 

 



Search version of NP problems 

 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 

 

• Remark:  Search version of L only makes sense once we 
have a verifier M in mind. 

 



Search version of NP problems 

 Recall:   A language L ⊆ {0,1}* is in NP if 

 There’s a poly-time verifier M and poly. function p s.t. 

 x∈L  iff  there’s a u∈{0,1}p(|x|)  s.t M(x, u) = 1. 

 

• Search version of L:  Given an input x ∈ {0,1}*, find a u ∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists. 

 

• Example:  Given a 3CNF ϕ, find a satisfying assignment 
for ϕ if such an assignment exists. 

 



Decision versus Search 

 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 



Decision versus Search 

 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

w.r.t any verifier M ! 



Decision versus Search 

 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

 

 Proof.   (search       decision)  Obvious.  

 



Decision versus Search 

 Is the search version of an NP-problem more difficult 
than the corresponding decision version? 

 

 Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the 
search version of L can be solved in poly-time if and 
only if the decision version can be solved in poly-time. 

 

 Proof.   (decision        search)  We’ll prove this for  

                                                L = SAT first. 

 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 
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ϕ(x1,…,xn)  
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ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)  



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 
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ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 
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 Proof.  (decision      search)  Let L = SAT,  and A be a 
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 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 
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SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 
ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 

ϕ(1,0,…,xn)   A( ϕ(1,0,..) ) = Y 

ϕ(1,0,0,…,xn)  



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 
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ϕ(1,0,…,xn)   A( ϕ(1,0,..) ) = Y 

ϕ(1,0,0,…,xn)   A( ϕ(1,0,0...) ) = N 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 
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ϕ(x1,…,xn)  A(ϕ) = Y 

ϕ(0,…,xn)  A( ϕ(0,..) ) = N ϕ(1,…,xn)   A( ϕ(1,..) ) = Y 

ϕ(1,0,…,xn)   A( ϕ(1,0,..) ) = Y 

ϕ(1,0,0,…,xn)   A( ϕ(1,0,0...) ) = N ϕ(1,0,1,…,xn)   A( ϕ(1,0,0...) ) = Y 
. 
. 
. 
. 



SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 
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SAT is downward self-reducible 

 Proof.  (decision      search)  Let L = SAT,  and A be a 
poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable. 

 

 We can find a satisfying assignment of ϕ with at most 2n 
calls to A. 
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Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 

From Cook-Levin theorem, we can 
find a certificate of x∈L (w.r.t. M) 
from a satisfying assignment of ϕx. 

Important note:  
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How to find a satisfying assignment for ϕx using algorithm B ? 
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 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 

How to find a satisfying assignment for ϕx using algorithm B ? 
  
...we know how using  A, which is a poly-time decider for SAT 
 
 



Decision ≡ Search for NPC problems 

 Proof. (decision       search)  Let L be NP-complete,  M 
be a verifier for L, and B be a poly-time algorithm to 
decide if x∈L. 

 SAT  ≤p  L L  ≤p  SAT 

x             ϕx 
ϕ           f(ϕ) 

How to find a satisfying assignment for ϕx using algorithm B ? 
  
...we know how using  A, which is a poly-time decider for SAT 
 
Take    A(ϕ)  =  B( f(ϕ) ). 
 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Graph Isomorphism (GI) is in NP and (we’ll see later 
that) it is unlikely to be NP-complete. 

 Yet, the natural search version of GI reduces in 
polynomial-time to the decision version (homework). 

  

 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 
Probably not! 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Let EE = ∪ DTIME (2c.2  )    and  

      

      NEE = ∪ NTIME (2c.2  ) 

 

 

 Class NTIME(T(n)) will be defined formally in the next 
lecture. 

c ≥ 0 

n 

c ≥ 0 

n 

Doubly exponential 
analogues of P and NP 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 

 Checking if a number n is composite can be done in 
polynomial-time, but finding a factor of n is not known 
to be solvable in polynomial-time.  

 We’ll show that Intfact is unlikely to be NP-complete. 

 



Decision versus Search 

 Is search equivalent to decision for every NP problem? 

 

 Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then 
there’s a language in NP for which search does not 
reduce to decision. 

 

 Sometimes, the decision version of a problem can be 
trivial but the search version is possibly hard. E.g., 
Computing Nash Equilibrium (see class PPAD).  

 
Homework:  Read about total NP functions 


