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Recap: 3SAT is NP-complete

e Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2-CNF o =(x; Vx)A(X3V 71%,)

e Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

e Theorem. 3-SAT is NP-complete.



Recap: More NP complete problems

—

* Independent Set
e Clique

* Vertex cover p—
e 0/] integer programming
e Max-Cut

e 3-coloring planar graphs
e 2-Diophantine solvability

Ref:



Recap: NPC problems from NT

e SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x = ¢ such that

x> = a (mod b).

e Theorem: SqRootMod is NP-complete.



Recap: NPC problems from NT

e Variant IntFact : Given natural numbers L, U and N,

check if there exists a natural number d € [L, U]
such that d divides N.

e Claim: Variant IntFact is NP-hard under randomized
boly-time reduction.

e Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785



Recap: A peculiar NP problem

e Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size = s that computes f.

* Easy to see that MCSP is in NP.

e Is MCSP NP-complete? Not known!

e Multi-output MCSP & Partial fn. MCSP are NP-hard
under poly-time randomized reductions.



More NP-complete problems



Recap: Independent Set

o INDSET :={(G, k): G has independent set of size k}

e [heorem: There’s a poly-time reduction f s.t.
x € 3SAT e f(x) € INDSET

e Hence, INDSET is NP-complete.



Example 2: Clique

e CLIQUE :={(H, k): H has a clique of size k}

e Goal: Design a poly-time reduction f s.t.

x € INDSET  «= f(x) € CLIQUE

* Reduction from INDSET: The reduction algorithm
computes G from G

(G, k) € INDSET &= (G, k) € CLIQUE



Example 3: Vertex Cover

e VCover := {(H, k): H has a vertex cover of size k}

e Goal: Design a poly-time reduction f s.t.

x € INDSET &= f(x) €VCover

e Reduction from INDSET: Let n be the number of
vertices in G. The reduction algorithm maps (G, k) to

(G, n-k).
(G, k) € INDSET &= (G,n-k) €VCover



Example 4: 0/1 Integer Programming

e 0/1 IProg := Set of satisfiable 0/| integer programs

* A 0O/l integer program is a set of linear inequalities
with rational coefficients and the variables are
allowed to take only 0/1 values.

° A clause is mapped to a linear
inequality as follows



Example 5: Max Cut

e MaxCut : Given a graph find a cut with the max size.

° Acutof G=(V,E)is atuple (UV\U),U CV. Size of a
cut (U,V\U) is the number of edges from U to V\U.

e MinVCover: Given a graph H, find a vertex cover in
H that has the min size.

e Obs: From MinVCover(H), we can readily check if (H,
k) € VCover, for any k.



Example 5: Max Cut

e MaxCut : Given a graph find a cut with the max size.

e Acutof G = (V,E) is a tuple (U,V\U),U C V. Size of a
cut (U,V\U) is the number of edges from U to V\U.

o GGoal:A poly-time reduction from MinVCover to
MaxCut.

f
H = G s.t

Size of a MaxCut(G) = 2.|E(H)| - [MinVCover(H)|




Example 5: Max Cut

f
e The reduction: H = G

deg,(u) — | edges
between u and w

H G

e G is formed by adding a new vertex w and adding
deg,,(u) — | edges between every u € V(H) and w.



Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - [MinVCover(H)|
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e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.
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e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

o Let S;(U) := no. of edges in G with exactly one end
vertex incident on a vertex in U.
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e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Let S;(U) = no. of edges going out of U in G.



Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

o Let S;(U) = size of the cut (U,V\U + w).
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e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
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Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then Sc(U) = S,(U) + £ (deg,(u) — 1)

uelU

=Sp(U) + uzeglegH(U) U

Obs: Twice the number of
edges in H with at least one
end vertex in U.




Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then Sc(U) = S,(U) + £ (deg,(u) — 1)

uelU

=5y(U) + uzeglegH(U) - [U]

= 2|EH(U)| - |U| E,,(U) := Set of edges in H with at
least one end vertex in U.



Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|Sc(U) = 2[E4(U)] - U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.




Example 5: Max Cut
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e Proof: LetV(H) =V. ThenV(G) =V + w.
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Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|S.(U) = 2[E(U)| - |U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U

IS a yertex cover in H U must be a minVCover in H

B
= S_(U) = |MaxCut(G)| = 2.|[E(H)| - |U]



Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|S.(U) = 2[E(U)| - |U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.

= S_(U) = |MaxCut(G)| = 2.|E(H)| - [MinVCover(H)|



Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|[E(H)| - [MinVCover(H)|
e Proof: LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|Sc(U) = 2[E4(U)] - U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.

Thus, the proof of the above claim follows from the proposition



Example 5: Max Cut

e Proof of the Proposition: Suppose U is not a vertex

cover Fm o
VWU +w o \ degu(u)-! edges

\
. w

U

I' "




Example 5: Max Cut

e Proof of the Proposition: Suppose U is not a vertex

cover
V\U + w

Gain: deg,(u)-1 + | edges.
Loss: At most deg,,(u)-| edges, these are the edges going from U to u.
Net gain: At least | edge. Hence the cut is not a max cut.



Search versus Decision



Search version of NP problems

» Recall: A language L € {0,1}*is in NP if
» There’s a poly-time verifier M and poly. function p s.t.
» x€eL iff there’s a ue{0,1}PX) s.t M(x,u) = 1.

- Search version of L: Given an input x € {0,1}, find a u
€{0, I }P(x) such that M(x, u) = 1, if such a u exists.



Search version of NP problems

» Recall: A language L € {0,1}*is in NP if
» There’s a poly-time verifier M and poly. function p s.t.
» x€eL iff there’s a ue{0,1}PX) s.t M(x,u) = 1.

- Search version of L: Given an input x € {0,1}), find a u
€{0, I }P(x) such that M(x, u) = 1, if such a u exists.

- Remark: Search version of L only makes sense once we
have a verifier M in mind.



Search version of NP problems

» Recall: A language L € {0,1}*is in NP if
» There’s a poly-time verifier M and poly. function p s.t.
» x€eL iff there’s a ue{0,1}PX) s.t M(x,u) = 1.

- Search version of L: Given an input x € {0,1}, find a u
€{0, I }P(x) such that M(x, u) = 1, if such a u exists.

- Example: Given a 3CNF ¢, find a satisfying assighment
for ¢ if such an assignment exists.



Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version!?



Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version!?

e Let L € {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and

only if the decisio%irsion can be solved in poly-time.

w.r.t any verifier M !



Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version!?

e Let L € {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

* Proof. (search == decision) Obvious.



Decision versus Search

 Is the search version of an NP-problem more difficult
than the corresponding decision version!?

e Let L € {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

* Proof. (decision == search) We’'ll prove this for
L = SAT first.
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e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.
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e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.
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A($(1,0,.) ) =Y ¢(1,0,...,x.)

ACO(1,00.))=N  ¢(1,0,0,...,x.)
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e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.
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SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

O(Xps--0X,)  A) =Y

s

AC00.)) =N §(0,....x) O(l,....x) A1) =Y
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SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

O(Xps--0X,)  A) =Y

/T

AC00.)) =N §(0,....x) O(l,....x) A1) =Y

/

A($(1,0,.) ) =Y ¢(1,0,...,x.)

T,

ACO(1,00.))=N  ¢(1,0,0,...,x.) o(1,0,1,...,x.)  A(6(1,00.))=Y



SAT is downward self-reducible

e Proof. (decision == search) Let L = SAT, and A be a
poly-time algorithm to decide if ¢(x,,...,x.) is satisfiable.

* We can find a satisfying assignment of ¢ with at most 2n
calls to A.
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decide if xEL.
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decide if xEL.

SAT <. L L <, SAT

X|_>¢x



Decision = Search for NPC problems

e Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to

decide if xEL.
SAT <, L

Important note:

L <, SAT

X|_>¢x

From Cook-Levin theorem,we can
find a certificate of xEL (w.rt. M)
from a satisfying assignment of ¢..




Decision = Search for NPC problems

e Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <. L L <, SAT

X —> ¢,

How to find a satisfying assignment for ¢, using algorithm B ?
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be a verifier for L, and B be a poly-time algorithm to
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How to find a satisfying assignment for ¢, using algorithm B ?

...we know how using A, which is a poly-time decider for SAT



Decision = Search for NPC problems

e Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <. L L <, SAT

¢ — f(9) X pb—> ¢X

How to find a satisfying assignment for ¢, using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Take A(0) = B(f(0)).



Decision versus Search

e Is search equivalent to decision for every NP problem!?

e Graph Isomorphism (Gl) is in NP and (we’ll see later
that) it is unlikely to be NP-complete.

e Yet, the natural search version of Gl reduces in
polynomial-time to the decision version (homework).



Decision versus Search

e Is search equivalent to decision for every NP problem!?

Probably not!



Decision versus Search

e Is search equivalent to decision for every NP problem!?

e Let EE = U DTIME (2¢2') _ and

c=20
Doubly exponential
NEE = U NTIME (2c.2n) analogues of P and NP

c=20

e Class NTIME(T(n)) will be defined formally in the next
lecture.



Decision versus Search

e Is search equivalent to decision for every NP problem!?

e If EE # NEE then
there’s a language in NP for which search does not
reduce to decision.



Decision versus Search

* Is search equivalent to decision for every NP problem?

e If EE # NEE then
there’s a language in NP for which search does not
reduce to decision.

e Checking if a number n is composite can be done in
polynomial-time, but finding a factor of n is not known
to be solvable in polynomial-time.

* WEe'll show that Intfact is unlikely to be NP-complete.



Decision versus Search

e Is search equivalent to decision for every NP problem!?

e Theorem. If EE # NEE then
there’s a language in NP for which search does not
reduce to decision.

e Sometimes, the decision version of a problem can be
trivial but the search version is possibly hard. E.g.,
Computing Nash Equilibrium (see class PPAD).

Read about total NP functions



