Computational Complexity Theory

Lecture 7: Nondeterministic TMs;
Class co-NP

Department of Computer Science,
Indian Institute of Science

Recap: Search version of NP

» Recall: A language L € {0,1}*is in NP if
» There’s a poly-time verifier M and poly. function p s.t.
» x€eL iff there’s a ue{0,1}PX) s.t M(x,u) = 1.

- Search version of L: Given an input x € {0,1}, find a u
€{0, I }P(x) such that M(x, u) = 1, if such a u exists.

- Example: Given a 3CNF ¢, find a satisfying assighment
for ¢ if such an assignment exists.

Recap: Decision versus Search

* Is the search version of an NP-problem more difficult
than the corresponding decision version!?

e Let L € {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and

only if the decisio%irsion can be solved in poly-time.

w.r.t any verifier M !

Recap: Decision versus Search

e Is search equivalent to decision for every NP problem!?

e If EE # NEE then
there’s a language in NP for which search does not
reduce to decision.

Two types of poly-time reductions

° A language L, < {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

x€EL, e f(x)EL,

o A language L, < {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0,1}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subroutine” for deciding L, .

Two types of poly-time reductions

° A language L, < {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

x€EL, e f(x)EL,

o A language L, < {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0,1}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subr{cine” for deciding L, .

Will be called an Oracle later

Two types of poly-time reductions

° A language L, < {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

x€EL, e f(x)EL,

o A language L, < {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0,1}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subroutine” for deciding L, .

Karp reduction implies Cook reduction

Two types of poly-time reductions

° A language L, < {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L, < {0, }*
if there’s a polynomial time computable function f s.t.

x€EL, e f(x)EL,

o A language L, < {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L, < {0,1}* if
there’s a TM that decides L, in poly-time using poly-
many calls to a “subroutine” for deciding L, .

Read about Levin reduction

NTM: An alternate characterization of NP

Nondeterministic Turing Machines

* A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

e |t is formally defined by a tuple (I', Q, 0,, 0)). It has a
special state q,..,, in addition to q, and qj,.

Nondeterministic Turing Machines

* A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

e |t is formally defined by a tuple (I', Q, 0,, 0)). It has a
special state q,..,, in addition to q, and qj,.

* At every step of computation, the machine applies
one of two functions 0,and O, arbitrarily.

/

also called nondeterministically

Nondeterministic Turing Machines

* A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

e |t is formally defined by a tuple (I', Q, 0,, 0)). It has a
special state q,..,, in addition to q, and qj,.

* At every step of computation, the machine applies
one of two functions 0,and O, arbitrarily.

/

this is different from randomly

Nondeterministic Turing Machines

* A nondeterministic Turing machine is like a deterministic
Turing machines but with two transition functions.

e |t is formally defined by a tuple (I', Q, 0,, 0)). It has a
special state q,..,, in addition to q, and qj,.

* At every step of computation, the machine applies
one of two functions 0,and O, arbitrarily.

e Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).

Nondeterministic Turing Machines

° An NTM M accepts a string x€{0, | }* iff on
input x there exists a sequence of applications of the
transition functions 0, and 0, (beginning from the
start configuration) that makes M reach q, .,

o . An NTM M decides a language L < {0, }* if
» M accepts x = xEL

» On every sequence of applications of the transition
functions on input x, M either reaches q, .., OF Q.

Nondeterministic Turing Machines

° An NTM M accepts a string x€{0, | }* iff on
input x there exists a sequence of applications of the
transition functions 0, and 0, (beginning from the
start configuration) that makes M reach q, .,

o . An NTM M decides a language L < {0, | }* if
» M accepts x = xEL

» On every sequence of applications of the transition

functions on input x, M either reaches q, .., OF Q.
¢

remember in this course we’ll always be dealing with TMs
that halt on every input.

Nondeterministic Turing Machines

° An NTM M accepts a string x€{0, | }* iff on
input x there exists a sequence of applications of the
transition functions 0, and 0, (beginning from the
start configuration) that makes M reach q, .,

° . An NTM M decides L in T(|x|) time if
» M accepts x = xEL

» On every sequence of applications of the transition
functions on input x, M either reaches q, ... Or G,
within T(|x|) steps of computation.

Class NTIME

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = UONTIME (n°).

Proof sketch: Let L be a language in NF. Then, there’s
a poly-time verifier M s.t,

x€L e 3Ju €{0,1}Px) s.t. M(x,u) = |

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = UONTIME (n°).

Proof sketch: Let L be a language in NF. Then, there’s
a poly-time verifier M s.t,

x€EL e 3Ju €{0,1}PX) s.t. M(x,u) = |

Think of an NTM M’ that on input X, at first guesses a u
€{0,1}P(x) by applying &,and ®, nondeterministically

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = UONTIME (n°).

Proof sketch: Let L be a language in NF. Then, there’s
a poly-time verifier M s.t,

x€EL e 3Ju €{0,1}PX) s.t. M(x,u) = |

....and then simulates M on (x, u) to verify M(x,u) = I.

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP = UONTIME (n°).

Proof sketch: Let L be in NTIME (n¢). Then, there’s an
NTM M’ that decides L in p(n) = O(n°) time. (|x| = n)

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP =CL>JONTIME (n°).

Proof sketch: Let L be in NTIME (n¢). Then, there’s an
NTM M’ that decides L in p(n) = O(n) time. (|x| = n)
Think of a verifier M that takes x and u €{0,[}P(" as
Input,

Alternate characterization of NP

e Definition. A language L is in NTIME(T(n)) if there’s
an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

e Theorem. NP =CL>JONTIME (n°).

Proof sketch: Let L be in NTIME (n¢). Then, there’s an
NTM M’ that decides L in p(n) = O(n) time. (|x| = n)
Think of a verifier M that takes x and u €{0,[}P(" as

input, and simulates M’ on x with u as the sequence of
choices for applying 0,and 0, .

Class co-NP and EXP

Class co-NP

o Definition. For every L € {0,1}* let L = {0, 1}*\ L.
A language L is in co-NP if Lis in NP,

e Example. SAT = {® : ¢ is not satisfiable}.

Class co-NP

o Definition. For every L € {0,1}* let L = {0, 1}*\ L.
A language L is in co-NP if Lis in NP,

e Example. SAT = {® : ¢ is not satisfiable}.

e Note: co-NP is not complement of NF. Every language
in P is in both NP and co-NP,

Class co-NP

o Definition. For every L € {0,1}* let L = {0, 1}*\ L.
A language L is in co-NP if Lis in NP,

e Example. SAT = {® : ¢ is not satisfiable}.

Class co-NP

o For every L € {0, 1}*let L = {0,1}*\ L.
A language L is in co-NP if Lis in NP,

e SAT = {0 : ¢ is not satisfiable}.

» Note: SAT is Cook reducible to SAT. But, there’s a
fundamental difference between the two problems that
is captured by the fact that SAT is not known to be
Karp reducible to SAT. In other words, there’s no known
poly-time verification process for SAT.

Class co-NP : Alternate definition

* Recall,a language L € {0,1}* is in NP if there’s a poly-time
verifier M such that

x€L e=»3u €{0,1}P) s t. M(x,u) = |

Class co-NP : Alternate definition

* Recall,a language L € {0,1}* is in NP if there’s a poly-time
verifier M such that

x€L e=»3u €{0,1}P) s t. M(x,u) = |
x€EL > vu €{0,1}P) st. M(x,u) =0

Class co-NP : Alternate definition

* Recall,a language L € {0,1}* is in NP if there’s a poly-time

verifier M such that
xEL <= 3Ju €{0,
xeEL e vu {0,
x€EL = Vu €{0,

P s.t. M(x,u) = |
P s.t. M(x,u) =0
D) s.t. M(x,u) = |

T

M outputs the
opposite of M

Class co-NP : Alternate definition

* Recall,a language L € {0,1}* is in NP if there’s a poly-time
verifier M such that

x€L e=»3u €{0,1}P) s t. M(x,u) = |
x€EL > vu €{0,1}P) st. M(x,u) =0
x€EL e»Vvu €{0,1}P(x) st. M(x,u) = |

T

M is a poly-time TM

Class co-NP : Alternate definition

* Recall,a language L € {0,1}* is in NP if there’s a poly-time

verifier M such that
xEL <= 3Ju €{0,
xeEL e vu {0,
x€EL = Vu €{0,

|

is in co-NP

P s.t. M(x,u) = |
P s.t. M(x,u) =0
D) s.t. M(x,u) = |

Class co-NP : Alternate definition

* Recall,a language L € {0,1}* is in NP if there’s a poly-time

verifier M such that
xEL = 3Ju €{0,
xeEL e vu {0,
x€EL = Vu €{0,

P s.t. M(x,u) = |
i) st M(x,u) =0
P s.t. M(x,u) = |

o Definition. A language L € {0,1}* is in co-NP if there’s a
polynomial function p and a poly-time TM M such that

xeL e vu €{0,1}PX) s.t. M(x,u) = |

for NP this was 3

co-NP-completeness

o Definition. A language L' < {0,1}* is co-NP-complete if
» L isin co-NP
» Every language L in co-NP is polynomial-time (Karp)
reducible to L.

« Theorem. SAT is co-NP-complete.

co-NP-completeness

o Definition. A language L' < {0,1}* is co-NP-complete if
» Lisin co-NP
» Every language L in co-NP is polynomial-time (Karp)
reducible to L.

« Theorem. SAT is co-NP-complete.
Proof. Let L € co-NP. Then
L €NP

co-NP-completeness

o Definition. A language L' < {0,1}* is co-NP-complete if
» Lisin co-NP
» Every language L in co-NP is polynomial-time (Karp)

reducible to L.

. Theorem. SAT is co-NP-complete.
Proof. Let € co-NP. Then

€ NP

<, SAT

—

co-NP-completeness

o Definition. A language L' < {0,1}* is co-NP-complete if
» Lisin co-NP
» Every language L in co-NP is polynomial-time (Karp)

reducible to L.

. Theorem. SAT is co-NP-complete.
Proof. Let € co-NP. Then

€ NP

= <, SAT

= L <, SAT

co-NP-completeness

o Definition. A language L' < {0,1}* is co-NP-complete if
» Lisin co-NP
» Every language L in co-NP is polynomial-time (Karp)
reducible to L.

» Theorem. Let
TAUTOLOGY = {¢ : every assignment satisfies ¢ }.
TAUTOLOGY is co-NP-complete.

Proof. Similar (homework)

co-NP-completeness

o Definition. A language L' < {0,1}* is co-NP-complete if
» Lisin co-NP
» Every language L in co-NP is polynomial-time (Karp)
reducible to L.

+ Theorem. If L in NP-complete then L is co-NP-complete

Proof. Similar (homework)

The diagram again

If a co-NP-complete language
belongs to NP then

co-NP S NP
=) co-NP =NP

1

Let C, and C, be two
complexity classes.

If C, € C,,then
co-C, € co-C,.

Obs. co-(co-C) = C.

The diagram again

If an NP-complete language
belongs to co-NP then

NP < co-NP
= NP =coNP

1

Let C, and C, be two
complexity classes.

If C, € C,,then
co-C, € co-C,.

Obs. co-(co-C) = C.

The diagram again

If an NP-complete language
belongs to co-NP then

NP < co-NP
= NP =coNP

1

Let C, and C, be two
complexity classes.

If C, € C,,then
co-C, € co-C,.

Obs. co-(co-C) = C.

The diagram again

If an NP-complete language

We'll revisit this question belongs to co-NP then
in the next lecture.

NP < co-NP
= NP =coNP

1

Let C, and C, be two
complexity classes.

If C, € C,,then

C. C co-
We'll address this co-C; € co-C,.

using a technique
known as

diagonalization

Obs. co-(co-C) = C.

Integer factoring in NP (1 co-NP

e Integer factoring.
FACT = {(N, U): there’s a prime in [U] dividing N}

e Claim. FACT € NP N co-NP

e So, FACT is NP-complete implies NP = co-NP.

Integer factoring in NP (1 co-NP

e Integer factoring.
FACT = {(N, U): there’s a prime in [U] dividing N}

e Claim. FACT € NP N co-NP

e Proof. FACT € NP : Give p as a certificate. The
verifier checks if p is prime (AKS test), | < p = U and
p divides N.

Integer factoring in NP (1 co-NP

FACT = {(N, U): there’s a prime in [U] dividing N}

° FACT € NP (1 co-NP

* Proof. FACT € NP : Give the complete prime
factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].

Integer factoring in NP (1 co-NP

FACT = {(N, U): there’s a prime in [U] dividing N}

° FACT € NP (1 co-NP

* Proof. FACT € NP : Give the complete prime
factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].

° If FACT € P, then there’s a algorithm to find the
prime factorization a given n-bit integers in poly(n) time.

Integer factoring in NP (1 co-NP

e Integer factoring.
FACT = {(N, U): there’s a prime in [U] dividing N}

e Factoring algorithm. Dixon’s randomized algorithm
factors an n-bit number in exp(O(Vn log n)) time.

