Computational Complexity Theory

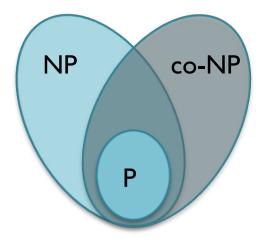
Lecture 8: Class EXP; Time Hierarchy; Ladner's theorem

Department of Computer Science, Indian Institute of Science

Class co-NP and EXP

Recap: Class co-NP

- Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.
 A language L is in co-NP if L is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.



Recap: Alternate definition of co-NP

- Recall, a language L ⊆ {0, I}* is in NP if there's a poly-time verifier M such that
 - $\begin{array}{ll} x \in L & \Longleftrightarrow \exists u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I \\ x \in \overline{L} & \Longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = 0 \\ x \in \overline{L} & \longleftrightarrow \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } \overline{M}(x, u) = I \end{array}$
- Definition. A language $L \subseteq \{0, I\}^*$ is in co-NP if there's a polynomial function p and a poly-time TM M such that

$$x \in L \iff \forall u \in \{0, I\}^{p(|x|)} \text{ s.t. } M(x, u) = I$$

for NP this was \exists

Recap: co-NP-completeness

- Definition. A language L' $\subseteq \{0, I\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. SAT is co-NP-complete.

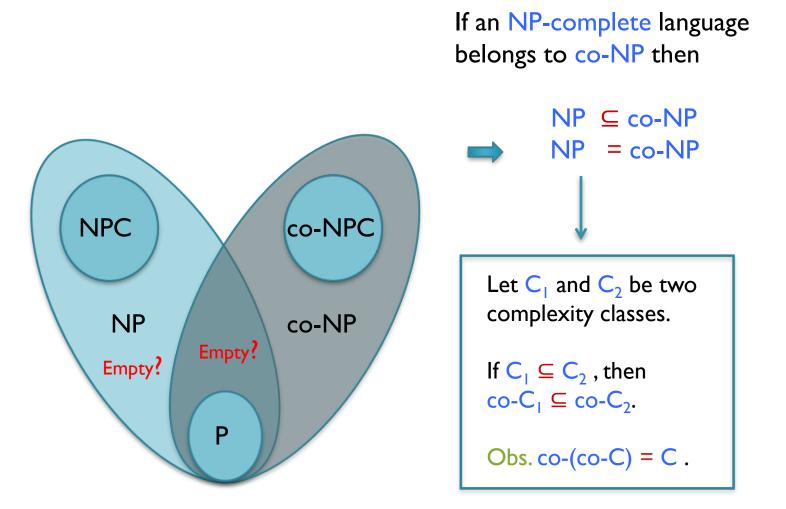
Recap: co-NP-completeness

- Definition. A language L' $\subseteq \{0, I\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. Let
 - TAUTOLOGY = { ϕ : every assignment satisfies ϕ }. TAUTOLOGY is co-NP-complete.
 - Proof. Similar (homework)

Recap: co-NP-completeness

- Definition. A language L' \subseteq {0,1}* is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.
- Theorem. If L in NP-complete then L is co-NP-complete
 Proof. Similar (homework)

Recap: The diagram again



Recap: FACT in NP \cap co-NP

• Integer factoring.

FACT = {(N, U): there's a prime in [U] dividing N}

- Claim. FACT \in NP \cap co-NP
- So, FACT is NP-complete implies NP = co-NP.

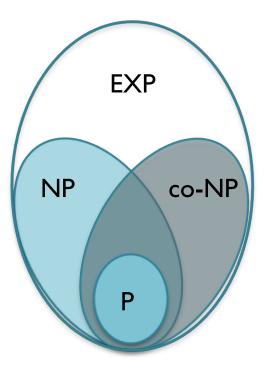
• Definition. Class EXP is the exponential time analogue of class P.

```
EXP = \bigcup_{c \ge 1} DTIME(2^{n^{c}})
```

• Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME(2^{n^{c}})$$

• Observation. $P \subseteq NP \subseteq EXP$



- Definition. Class EXP is the exponential time analogue of class P. EXP = U DTIME ($2^{n^{c}}$)
- Observation. $P \subseteq NP \subseteq EXP$

 $c \geq 1$

• <u>Exponential Time Hypothesis</u>. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta.n}$ time, where $\delta \geq 0$ is <u>some fixed constant</u> and n is the no. of variables.

In other words, δ cannot be made arbitrarily close to 0.

- Definition. Class EXP is the exponential time analogue of class P. EXP = U DTIME ($2^{n^{c}}$)
- Observation. $P \subseteq NP \subseteq EXP$

 $c \geq 1$

• <u>Exponential Time Hypothesis.</u> (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta.n}$ time, where $\delta > 0$ is some fixed constant and n is the no. of variables.

ETH \implies P \neq NP

- Definition. Class EXP is the exponential time analogue of class P. EXP = U DTIME ($2^{n^{c}}$)
- Observation. $P \subseteq NP \subseteq EXP$

 $c \geq 1$

• <u>Exponential Time Hypothesis.</u> (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta.n}$ time, where $\delta > 0$ is some fixed constant and n is the no. of variables.

Homework: Read about Strong Exponential Time Hypothesis (SETH).

- Definition. Class EXP is the exponential time analogue of class P.
 EXP = ∪ DTIME (2^{n^C}) We'll address this using diagonalization
 Observation. P ⊆ NP ⊆ EXP Is P ⊊ EXP?
- <u>Exponential Time Hypothesis</u>. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta.n}$ time, where $\delta \geq 0$ is some fixed constant and n is the no. of variables.

• Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.

If M_{α} takes T time on x then U takes O(T log T) time to simulate M_{α} on x.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.
 - 2. Every string represents some TM, and every TM can be represented by *infinitely many* strings.

- An application of Diagonalization

- Let f(n) and g(n) be <u>time-constructible</u> functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. (Hartmanis & Stearns 1965)
 DTIME(f(n)) ⊊ DTIME(g(n))
- Theorem. $P \subsetneq EXP$
- This type of results are called **lower bounds**.

Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n².

Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². Task: Show that there's a language L decided by a TM D with time complexity O(n²) s.t., any TM M with runtime O(n) cannot decide L.

- Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
 Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². TM D :
 - 1. On input x, compute $|x|^2$.

- Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
 Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². TM D : D's time steps not M
 - I. On input x, compute $|x|^2$.

D's time steps not M_x 's time steps.

2. Simulate M_x on x for $|x|^2$ steps.

- Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
 Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². TM D :
 - 1. On input x, compute $|x|^2$.
 - 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_x stops and outputs **b** then output I-b.

- Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
 Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². TM D :
 - 1. On input x, compute $|x|^2$.
 - 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_x stops and outputs **b** then output I-b.
 - b. Otherwise, output 1.

- Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
 Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². TM D :
 - 1. On input x, compute $|x|^2$.
 - 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_x stops and outputs **b** then output I-b.
 - b. Otherwise, output 1.

D outputs the **<u>opposite</u>** of what M_x outputs.

Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². D runs in O(n²) time as n² is <u>time-constructible</u>.

Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n². Claim. There's no TM M with running time O(n) that decides L (the language accepted by D).

Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).

- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$ Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

Let f(n) and g(n) be time-constructible functions s.t., f(n) . log f(n) = o(g(n)).
Theorem. DTIME(f(n)) ⊊ DTIME(g(n)) Proof. We'll prove with f(n) = n and g(n) = n².
Eor contradiction suppose M decides L and runs for at models.

For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

c is a constant

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - > Think of a <u>sufficiently large</u> x such that $M = M_x$.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.
- > Suppose $M(x) = M_x(x) = b$.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.

> Suppose $M(x) = M_x(x) = b$.

> D on input x, simulates M_x on x for $|x|^2$ steps.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - > Think of a <u>sufficiently large</u> x such that $M = M_x$.
 - > Suppose $M(x) = M_x(x) = b$.
 - D on input x, simulates M_x on x for |x|² steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps.

c' is a constant

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.

> Suppose $M(x) = M_x(x) = b$.

D on input x, simulates M_x on x for |x|² steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps. (as c'.c. |x|. log |x| < |x|² for sufficiently large x)

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.

> Suppose $M(x) = M_x(x) = b$.

D on input x, simulates M_x on x for |x|² steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log
 |x| steps. And D outputs the opposite of what M_x outputs!

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
- > Think of a <u>sufficiently large</u> x such that $M = M_x$.
- > Suppose $M(x) = M_x(x) = b$.
- \rightarrow Hence, D(x) = I-b.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
- > Think of a <u>sufficiently large</u> \times such that M = M_×.
- > Suppose $M(x) = M_x(x) = b$.
- \rightarrow Hence, D(x) = I-b.

Contradiction! M does not decide L.

Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).

- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$
- Theorem. P ⊊ EXP
 Proof. Similar (homework)

Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).

- Theorem. $DTIME(f(n)) \subsetneq DTIME(g(n))$
- Theorem. P \subsetneq EXP
- **No** EXP-complete problem (under poly-time Karp reduction) is in P.

E.g., Decide if a TM halts in k steps; generalized versions of games such as chess, checkers, Go, etc.

• Is there a <u>natural problem</u> that takes close to n² time?

- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.

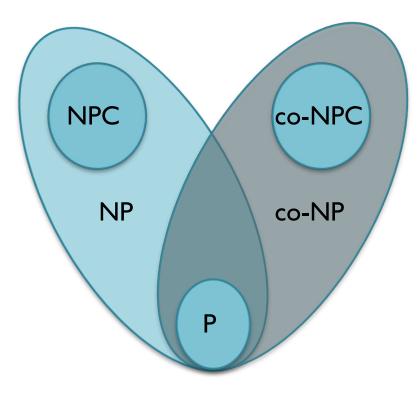
- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. No algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.

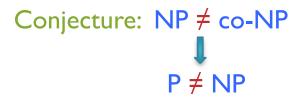
- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. No algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.
- However, there's a ~O(n² / (log n)²) time algorithm for 3SUM. ("~" suppressing a poly(log log n) factor.)

- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. No algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.
- kSUM: Given a list of n numbers, check if there exists
 k numbers in the list that sum to zero.

- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. No algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.
- kSUM: Given a list of n numbers, check if there exists
 k numbers in the list that sum to zero.
- Theorem (Patrascu & Williams 2010). ETH implies kSUM requires $n^{\Omega(k)}$ time.

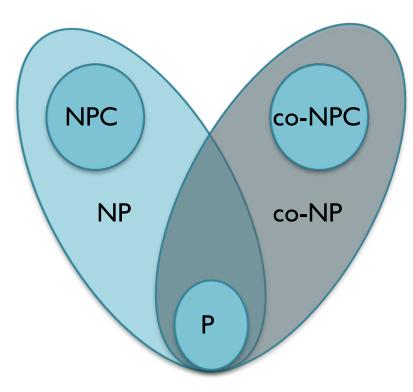
Revisiting NP\co-NP

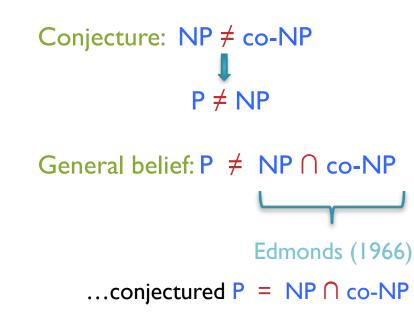




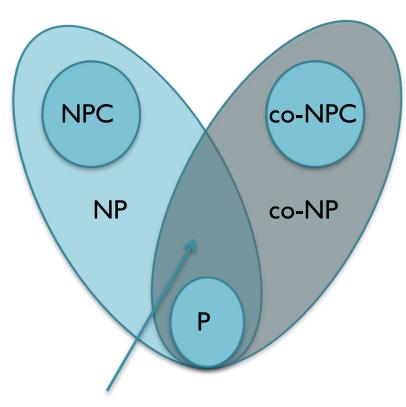
General belief: $P \neq NP \cap co-NP$

Revisiting NP∩co-NP





Revisiting NP∩co-NP



Conjecture: NP \neq co-NP \downarrow P \neq NP

General belief: $P \neq NP \cap co-NP$

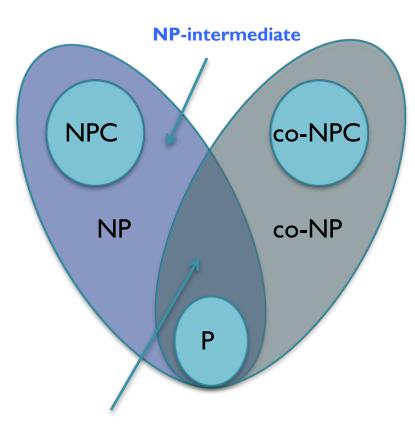
Check:

https://cstheory.stackexchange.com/questions/20 021/reasons-to-believe-p-ne-np-cap-conp-or-not

Check if the shortest non-zero vector in an n-dimensional lattice has length at most I or at least \sqrt{n} .

- Integer factoring (FACT)
- Approximate shortest vector in a lattice

Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)



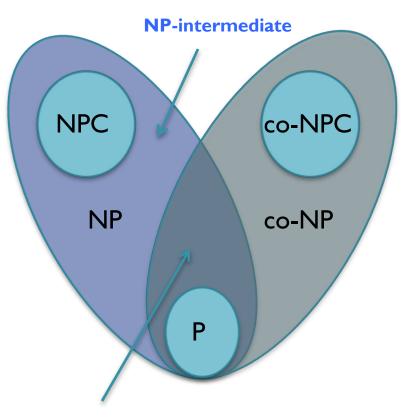
Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

General belief: $P \neq NP \cap co-NP$

Obs: If NP \neq co-NP and FACT \notin P then FACT is NP-intermediate.

- Integer factoring (FACT)
- Approximate shortest vector in a lattice

Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)



- Integer factoring (FACT)
- Approximate shortest vector in a lattice

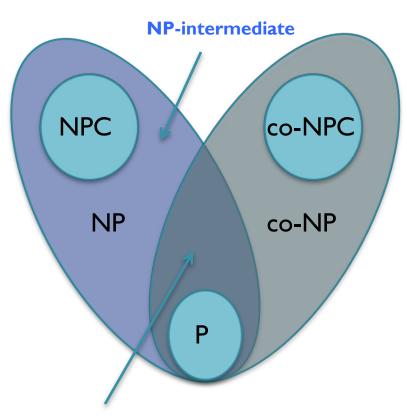
Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)

Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

General belief: $P \neq NP \cap co-NP$

Obs: If NP \neq co-NP and FACT \notin P then FACT is NP-intermediate.

Ladner's theorem: $P \neq NP$ implies existence of a NP-intermediate language.



- Integer factoring (FACT)
- Approximate shortest vector in a lattice

Ref: "Lattice problems in NP∩co-NP" by Aharonov & Regev (2005)

Conjecture: $NP \neq co-NP$ \downarrow $P \neq NP$

General belief: $P \neq NP \cap co-NP$

Obs: If NP \neq co-NP and FACT \notin P then FACT is NP-intermediate.

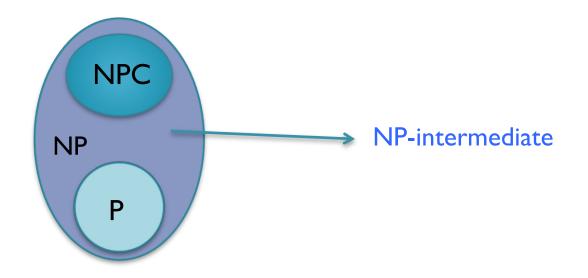
Ladner's theorem: $P \neq NP$ implies existence of a NP-intermediate language.

(proved using **diagonalization**)

Ladner's Theorem

- Another application of Diagonalization

 Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.



- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NPintermediate language.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NPintermediate language.
 - **Proof.** A delicate argument using diagonalization.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 Proof. Let H: N → N be a function.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 Proof. Let H: N → N be a function.

Let $SAT_{H} = \{\Psi 0 \mid \overset{m^{H(m)}}{:} \Psi \in SAT \text{ and } |\Psi| = m\}$

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 Proof. Let H: N → N be a function.

Let
$$SAT_H = \{\Psi 0 \mid m^{H(m)} : \Psi \in SAT \text{ and } |\Psi| = m\}$$

H would be defined in such a way that SAT_{H} is NP-intermediate (assuming P \neq NP)

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant). for every m

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
 - 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

- Theorem. There's a function H: $N \rightarrow N$ such that
 - I. H(m) is computable from m in $O(m^3)$ time.
 - 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
 - 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

Proof: Later (uses <u>diagonalization</u>).

Let's see the proof of Ladner's theorem assuming the existence of such a "special" H.

 $P \neq NP$

• Suppose $SAT_H \in P$. Then $H(m) \leq C$.

$P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:

 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

> Compute H(m), and construct the string $\phi 0 I$

 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 On input \$\overline{\phi}\$, find \$m = |\$\overline{\phi}\$].

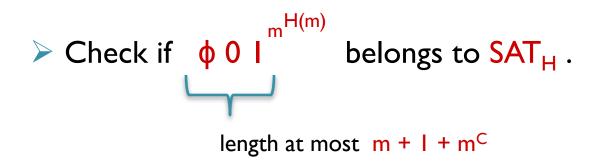
> Compute H(m), and construct the string $\phi 0 I^{m^{H(m)}}$

> Check if $\phi 0 I$ belongs to SAT_{H} .

 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 > On input φ , find m = |φ|.

> Compute H(m), and construct the string $\phi 0 I^{m^{H(m)}}$



 $P \neq NP$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 ➢ On input ϕ , find m = |ϕ|.

> Compute H(m), and construct the string $\phi 0 I^{m^{H(m)}}$

> Check if $\phi 0 I$ belongs to SAT_{H} .

• As $P \neq NP$, it must be that $SAT_H \notin P$.

 $P \neq NP$

• Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

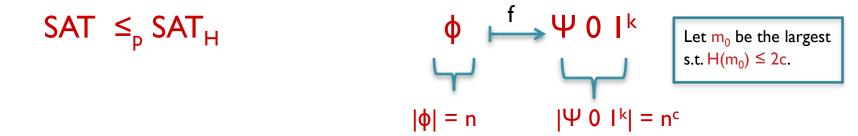
SAT
$$\leq_p SAT_H \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^k$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$

 $\varphi \xrightarrow{f} \Psi 0 I^{k}$
 $|\varphi| = n$ $|\Psi 0 I^{k}| = n^{c}$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:



 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \phi \stackrel{t}{\longmapsto} \Psi \circ I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

> On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

> On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.

> Compute H(m) and check if $k = m^{H(m)}$.

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{t}{\longmapsto} \Psi 0 I^{k}$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- Compute H(m) and check if k = m^{H(m)}. (Homework: Verify that this can be done in poly(n) time.)

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.

Either $m \le m_0$ (in which case the task reduces to checking if a constant-size Ψ is satisfiable),

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

> On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.

> Compute H(m) and check if $k = m^{H(m)}$.

or H(m) > 2c (as H(m) tends to infinity with m).

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- > Hence, w.l.o.g. $|f(\phi)| \ge k > m^{2c}$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- > Hence, w.l.o.g. $n^{c} = |f(\phi)| \ge k > m^{2c}$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$

 \Rightarrow On input ϕ , compute $f(\phi) = \Psi \circ I^{k}$. Let $m = |\Psi|$.
 \Rightarrow Compute H(m) and check if $k = m^{H(m)}$.
 \Rightarrow Hence, $\sqrt{n} \geq m$.

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- ≻ Hence, $\sqrt{n} \ge m$. Also $φ \in SAT$ iff $Ψ \in SAT$

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H}$$
 $\phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$

- > On input ϕ , compute $f(\phi) = \Psi 0 | k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- ≻ Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$

Thus, checking if an n-size formula ϕ is satisfiable reduces to checking if a \sqrt{n} -size formula Ψ is satisfiable.

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$.
- > Compute H(m) and check if $k = m^{H(m)}$.
- ➢ Hence, √n ≥ m. Also φ ∈ SAT iff Ψ ∈ SAT

Do this recursively! Only O(log log n) recursive steps required.

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_{p} SAT_{H} \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^{k}$$

- > On input ϕ , compute $f(\phi) = \Psi 0 I^k$. Let $m = |\Psi|$. > Compute H(m) and check if $k = m^{H(m)}$.
- ≻ Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$
- Hence SAT_H is not NP-complete, as P \neq NP.

Natural NP-intermediate problems ??

- Integer factoring
- Approximate shortest vector in a lattice
- Minimum Circuit Size Problem

("Multi-output MCSP is NP-hard", Ilango, Loff & Oliveira 2020)

• Graph isomorphism

("GI in QuasiP time", Babai 2015)