Computational Complexity Theory

Lecture 9: Ladner’s theorem (contd.);
Relativization

Department of Computer Science,
Indian Institute of Science

Recap: NP-intermediate problems

e Definition. A language L in NP is NP-intermediate if L is
neither in P nor NP-complete.

e Theorem. If P # NP then there is a NP-
intermediate language.

Proof. Let H: N — N be a function.

_H(m)

Let SAT,={¥0I : W e€SATand |¥|=m}

H would be defined in such a way that SAT,, is NP-intermediate
(assuming P # NP)

Recap: Constructing H

e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.
2. If SAT, €P then H(m) = C (a constant).

3. If SAT, € P then H(m)-— o0 with m.

Proof: Later (uses diagonalization).

Let’s see the proof of Ladner’s theorem
assuming the existence of such a “special” H.

Recap: Proof of Ladner’s theorem

P # NP
e Suppose SAT, € P Then Hm) = C.

e This implies a poly-time algorithm for SAT as follows:
» On input ¢, find m = |¢].

_H(m)
» Compute H(m), and construct the string ¢ O |

_H(m)

» Checkif ¢ O | belongs to SAT, .

e As P # NP, it must be that SAT,, ¢ P.

Recap: Proof of Ladner’s theorem

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ O I . Let m, be the largest

‘ , ‘ ' s.t. H(m) = 2c.

|§] =n WO I¥ =nc

Recap: Proof of Ladner’s theorem

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ lf_> LIJ O I . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m/

Either m = m (in which case the task reduces to
checking if a constant-size W is satisfiable),

Recap: Proof of Ladner’s theorem

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT SP SATH ¢ |f_> LIJ 0| . Let m, be the largest

s.t. H(m) = 2c.

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute HQ)‘ and check if k = mH(m),

or H(m) > 2c (as H(m) tends to infinity with m).

Recap: Proof of Ladner’s theorem

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),

» Hence,w.l.o.g. n¢ = [f(®)] = k> m?*

Recap: Proof of Ladner’s theorem

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT < SAT, ¢ WOl

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

Do this recursively! Only O(log log n) recursive steps required.

Recap: Proof of Ladner’s theorem

P # NP
o Suppose SAT, is NP-complete. Then H(m) — oo with m.
e This also implies a poly-time algorithm for SAT:

SAT <, SAT, ¢ —sWO Ik

» On input ¢, compute f(¢) =W 0 I Let m = |Y¥].
» Compute H(m) and check if k = mH(m),
> Hence, Vn = m. Also ¢ € SAT iff W € SAT

» Hence SAT, is not NP-complete,as P # NP.

Ladner’s theorem: Properties of H

e Theorem. There’s a function H: N — N such that

|. H(m) is computable from m in O(m?) time.
2. If SAT, €P then H(m) = C (a constant).

3. If SAT, € P then H(m)-— o0 with m.

_H(m)

o SAT,={W0 1 : Y eSAT and |¥| = m}

Construction of H

° The value of H(m) determines
membership in SAT , of strings whose length is 2 m.

e Therefore, it is OK to define H(m) based on strings in
SAT_, whose lengths are < m (say, log m).

Construction of H

° The value of H(m) determines
membership in SAT , of strings whose length is 2 m.

e Therefore, it is OK to define H(m) based on strings in
SAT_, whose lengths are < m (say, log m).

e Think of computing H(m) sequentially: Compute H(l),
H(2),...,H(m-1). Just before computing H(m), find
SAT, N {0,1}leem,

Construction of H

° The value of H(m) determines
membership in SAT , of strings whose length is 2 m.

e Therefore, it is OK to define H(m) based on strings in
SAT_, whose lengths are < m (say, log m).

° H(m) is the smallest k < log log m s.t.
|. M, decides membership of all length up to
log m strings x in SAT, within k.|x|* time.

2. If no such k exists then H(m) = log log m.

Construction of H

° The value of H(m) determines
membership in SAT , of strings whose length is 2 m.

e Therefore, it is OK to define H(m) based on strings in
SAT_, whose lengths are < m (say, log m).

° Prove that H(m) is computable from m
in O(m?) time.

Construction of H

o Claim. If SAT, € P then H(m) = C (a constant).

* Proof. @ There is a poly-time ™M that decides
membership of every x in SAT, within c.|x| time.

Construction of H

o If SAT, € P then H(m) = C (a constant).

* Proof. @ There is a poly-time ™M that decides
membership of every x in SAT, within c.|x| time.

e As M can be represented by infinitely many strings,
there’s ana = c s.t. M = M_ decides membership of
every x in SAT, within a.|x|% time.

* So, for every m satisfying o < log log m, H(m) = a.

Construction of H

e Claim. If Him) = C (a constant) for infinitely many
m, then SAT, € P.

e Proof. There’sa k = C s.t. H(m) = k for infinitely many
m.

Construction of H

e Claim. If Him) = C (a constant) for infinitely many
m, then SAT, € P.

e Proof. There’sa k = C s.t. H(m) = k for infinitely many
m.

* Pick any x € {0,1}*. Think of a large enough m s.t.
x| = log m and H(m) = k.

Construction of H

e Claim. If Him) = C (a constant) for infinitely many
m, then SAT, € P.

e Proof. There’sa k = C s.t. H(m) = k for infinitely many
m.

* Pick any x € {0,1}*. Think of a large enough m s.t.
x| = log m and H(m) = k.

 This means x is correctly decided by M, in k.|x|* time.
So, M, is a poly-time machine deciding SAT ..

Natural NP-intermediate problems ??

e Integer factoring
e Approximate shortest vector in a lattice

e Minimum Circuit Size Problem

(

e Graph isomorphism
()

Natural NP-intermediate problems ??

e Discrete logarithm
* Isomorphism problems (for groups, rings, polynomials)
e Unique games

e Check this link for more candidate problems:

Limits of diagonalization

o Like in the proof of P # EXP can we use
diagonalization to show P # NP ?

Limits of diagonalization

o Like in the proof of P # EXP can we use
diagonalization to show P # NP ?

e The answer is No, if one insists on using only the two
features of diagonalization.

e The proof of this fact uses diagonalization and the
notion of oracle Turing machines!

Oracle Turing Machines

:Let L < {0,1}* be a language. An oracle TM
Mt is a TM with a special query tape and three special
states qg.e» 9yes @aNd q,, such that whenever the
machine enters the q ., state, it immediately transits
to g, or q,, depending on whether the string in the
query tape belongs to L. (M" has oracle access to L)

Oracle Turing Machines

° :Let L < {0,1}* be a language. An oracle TM
Mt is a TM with a special query tape and three special
states qg.e» 9yes @aNd q,, such that whenever the
machine enters the q ., state, it immediately transits
to g, or q,, depending on whether the string in the
query tape belongs to L. (M" has oracle access to L)

» Think of physical realization of M- as a device with
access to a subroutine that decides L. We don’t count
the time taken by the subroutine.

Oracle Turing Machines

* We can define a nhondeterministic Oracle TM similarly.

° Oracle TMs (deterministic or
nondeterministic) have the same two features used in
diagonalization: For any fixed L < {0, | }*,

|. There’s an efficient universal TM with oracle access to L,

2. Every M" has infinitely many representations.

Complexity classes using oracles

0 Let L € {0,1}* be a language. Complexity
classes Pt, NP- and EXP' are defined just as P, NP and
EXP respectively, but with TMs replaced by oracle TMs
with oracle access to L in the definitions of P, NP and
EXP respectively. For e.g., SAT € PSAT.

Complexity classes using oracles

0 Let L € {0,1}* be a language. Complexity
classes Pt, NP- and EXP' are defined just as P, NP and
EXP respectively, but with TMs replaced by oracle TMs
with oracle access to L in the definitions of P, NP and
EXP respectively. For e.g., SAT € PSAT.

e Such complexity classes help us identify a class of
complexity theoretic proofs called relativizing proofs.

Relativization

Relativizing results

o Let L € {0,1}* be an arbitrarily fixed
language. Owing to the “Important note”, the proof of

P # EXP can be easily adapted to prove P- # EXP- by
working with TMs with oracle access to L.

* We say that the P # EXP result/proof relativizes.

Relativizing results

o Let L € {0,1}* be an arbitrarily fixed
language. Owing to the “Important note”, the proof of
P # EXP can be easily adapted to prove P- # EXP- by
working with TMs with oracle access to L.

* We say that the P # EXP result/proof relativizes.

e Let L € {0,1}* be an arbitrarily fixed
language. Owing to the ‘Important note’, any
proof/result that uses only the two features of
diagonalization relativizes.

Relativizing results

e If there is a resolution of the P vs. NP problem using
only the two features of diagonalization, then such a
proof must relativize.

e Is it true that
- either P- = NP* for every L € {0, | }*,
-or P-# NP-for every L € {0,1}*?

Relativizing results

e If there is a resolution of the P vs. NP problem using
only the two features of diagonalization, then such a
proof must relativize.

e Is it true that
- either P- = NP* for every L € {0, | }*,
-or P-# NP-for every L € {0,1}*?

: The answer is No.
Any proof of P = NP or P # NP must not relativize.

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: Using diagonalization!

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: Let A ={(M,x,I™M): M accepts x in 2™ steps}.

e A is an EXP-complete language under poly-time Karp
reduction.

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: Let A ={(M,x,I™M): M accepts x in 2™ steps}.

e A is an EXP-complete language under poly-time Karp
reduction.

e Then, PA = EXP.
e Also, NP* = EXP. Hence PA» = NPA,

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: Let A ={(M,x,I™M): M accepts x in 2™ steps}.

e A is an EXP-complete language under poly-time Karp
reduction.

e Then, PA = EXP.
e Also, NP* = EXP. Hence PA» = NPA,

Why isn’t EXPA = EXP ?

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: The construction of B uses diagonalization.

Baker-Gill-Solovay theorem

e [heorem: There exist languages A and B such that
PA = NP* but P® # NP&,

* Proof: For any language B let
Lg = {I" : there’s a string of length n in B}.

Baker-Gill-Solovay theorem

° There exist languages A and B such that
PA = NPA but PB # NP&,
* Proof: For any language B let
Lg = {I" : there’s a string of length n in B}.

» Observe, L, € NP for any B. (Guess the string, check
if it has length n, and ask oracle B to verify
membership.)

Baker-Gill-Solovay theorem

° There exist languages A and B such that
PA = NPA but PB # NP&,

* Proof: For any language B let
Lg = {I" : there’s a string of length n in B}.

» Observe, L, € NP® for any B.

* WEe'll construct B (using diagonalization) in such a way
that L, & PB, implying P® # NP®,

Constructing B

o WEe'll construct B in stages, starting from Stage |.

e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.
Moreover, n will grow monotonically with stages.

Constructing B

o WEe'll construct B in stages, starting from Stage |.

e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M® doesn’t
decide |I" correctly (for some n) within 210 steps.
Moreover, n will grow monotonically with stages.

whether or not a string belongs to B The machine with oracle access to B
that is represented by i

Constructing B

o WEe'll construct B in stages, starting from Stage |.
e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.
Moreover, n will grow monotonically with stages.

» Clearly, a B satisfying the above implies L, & PE.

Constructing B

o WEe'll construct B in stages, starting from Stage |.
e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.
Moreover, n will grow monotonically with stages.

» Clearly, a B satisfying the above implies L, & PE.

* ...because M?® has infinitely many representations, and
for sufficiently large n, 2"/10 >> n®0),

Constructing B

o WEe'll construct B in stages, starting from Stage |.
e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.
Moreover, n will grow monotonically with stages.

o Stage i: Choose n larger than the length of any string
whose status has already been decided. Simulate M?
on input |" for 2"/10 steps.

Constructing B

o WEe'll construct B in stages, starting from Stage |.

e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.

o Stage i: If MP queries oracle B with a string whose
status has already been decided, answer consistently.

If MB queries oracle B with a string whose
status has not been decided yet, answer ‘No’.

Constructing B

o WEe'll construct B in stages, starting from Stage |.

e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.

o Stage i: If M® outputs | within 2"/10 steps then don’t
put any string of length n in B.

If M.B outputs 0 or doesn’t halt, put a string of
length n in B. 2/10

n

Constructing B

o WEe'll construct B in stages, starting from Stage |.

e Each stage determines the status of finitely many
strings.

* In Stage i, we’'ll ensure that the oracle TM M* doesn’t
decide |" correctly (for some n) within 2"/10 steps.

o In fact, we can assume that B € EXP.

