Computational Complexity Theory

Lecture 10: NL = co-NL;
Polynomial Hierarchy

Department of Computer Science,
Indian Institute of Science

Recap: PSPACE-completeness

* Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

» Is P = PSPACE ! ...use poly-time Karp reduction!

° A language L is PSPACE-hard if for every L
in PSPACE, L SP L’. Further, if L is in PSPACE then U
is PSPACE-complete.

Recap: PSPACE-complete problem

° A quantified Boolean formula (QBF) is a
formula of the form

Q% QX ... QX @(X, X, .5 Xp)
J

|

Quantifiers 3 or V Just a formula on
Boolean variables

o A QBF is either true or false as all variables are
quantified. This is unlike a formula we’ve seen before
where variables were unquantified/free.

Recap: PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

Recap: PSPACE-complete problem

e Definition. TQBF is the set of true quantified
Boolean formulas.

e Theorem. TQBF is PSPACE-complete.

e Theorem. (Shamir 1990; Lund, Fortnow, Karloff, Nisan
1990) 1P = PSPACE.

* IP or Interactive Proof is a grand generalization of
NP proof.

Recap: NL-completeness

e Recall again, to define completeness of a complexity
class, we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e Is L =NL? ...poly-time (Karp) reductions are much
too powerful for L.

* We need to define a suitable Jog-space’ reduction.

Recap: Log-space reductions

(X’ |) Log-spaceTM} f (X)i
¢ Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o A function f : {0, }*— {0, | }* is implicitly log-
space computable if

|. |[f(x)| = |x|° for some constant c,

2. The following two languages are in L :

L = {(x,i) :f(x); = 1} and L;={(xi) :i < [f(x)|}

Recap: Log-space reductions

(X’ |) Log-spaceTM> f (X)i
¢ Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).

o A language L, is log-space reducible to a
language L,, denoted L, =, L,, if there’s an implicitly
log-space computable function f such that

XEL| < f(X)ELZ

Recap: Log-space reductions

(X’ |) Log-spaceTM> f (X)i
¢ Issue: A log-space TM may not have enough space to
write down the whole output f(x) in one shot.

 Solution: Have the log-space TM output a bit of f(x).
o Claim: fL, 5, Lyand L, £ Lsthen L, 5, L.

o Claim: fL, 5, Lyand L, € Lthen L, € L.

Recap: NL-completeness

o Definition: A language L is NL-complete if L € NL and
for every L' € NL, L is log-space reducible to L.

PATH = {(G,s,t) : G is a digraph having a path from s to t}.

e [heorem: PATH is NL-complete.

* Reachability in DAGs, checking if a digraph is strongly
connected, and 2SAT are also NL-complete.

An alternate characterization of NL

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

° Suppose L is a language, and
there’s a log-space verifier M & a function g s.t.

x €L e= Ju e {0,1}90D st M(x,u) = I

Should we define q(|x|) as a log function, meaning q(|x|) = O(log |x|) ?

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

° Suppose L is a language, and
there’s a log-space verifier M & a function g s.t.

x €L e= Ju e {0,1}90D st M(x,u) = I

Should we define q(|x|) as a log function, meaning q(|x|) = O(log |x|) ?
...No, that’s too restrictive. That will imply L € L.

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

° Suppose L is a language, and
there’s a log-space verifier M & a poly-function q s.t.

x €L e= Ju e {0,1}90D st M(x,u) = I

s it so that L € NL iff L has such a log-space verifier of the above kind?

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

° Suppose L is a language, and
there’s a log-space verifier M & a poly-function q s.t.

x €L e= Ju e {0,1}90D st M(x,u) = I

s it so that L € NL iff L has such a log-space verifier of the above kind?
Unfortunately not!! L € NP iff L has such a log-space verifier.

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

° Suppose L is a language, and
there’s a log-space verifier M & a poly-function q s.t.

x €L e= Ju e {0,1}90D st M(x,u) = I

Solution: Make the certificate read-one as described next...

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

o A tape is called a read-one tape if the head
moves from left to right and never turns back.

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

o A language L has read-once certificates if
there’s a log-space verifier M & a poly-function q s.t.

x EL &= Ju e {01} st M(x,u) = I,

where u is given on a read-once input tape of M.

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.

* Proof. Suppose L € NL. Let N be an NTM that
decides L. Think of a verifier M that on input (x, u)
simulates N on input x by using u as the
nondeterministic choices of N. Clearly |u| = poly(|x])...

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.

* Proof. (contd.) ...as Gy, has poly(|x|) configurations.
M scans u from left to right without moving its head
backward. So, u is a read-once certificate satisfying,

x €L &= Ju € {0,}P(X) s.t. M(x,u) = |

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.

* Proof. (contd.) Suppose L has read-once certificates,
and M be a log-space verifier s.t.

XEL <= JueE{0I1}90) st M(xu)=1.

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.

* Proof. (contd.) Now, think of an NTM N that on input
x starts simulating M. It guesses the bits of u as and
when required during the simulation. As u is read-
once for M, there’s no need for N to store u.

Certificate definition of NL

o Like NP, it will be useful to have a certificate-verifier
kind of definition for the class NL.

* We’ll see how it helps in proving NL = co-NL i.e., in
showing PATH € NL.

PATH = {(G,s,t): G is a digraph with no path from s to t}

o L € NL iff L has read-once certificates.
* Proof. (contd.) So, N is a log-space NTM deciding L.

NL = co-NL

Class co-NL

o Definition. A language L is in co-NL if L € NL. L is
co-NL-complete if L € co-NL and for every L' € co-
NL, L is log-space reducible to L.

PATH = {(G,s,t): G is a digraph with no path from s to t}

e Obs. PATH is co-NL-complete under log-space
reduction.

Class co-NL

° A language L is in co-NL if L € NL. L is
co-NL-complete if L € co-NL and for every L' € co-
NL, L is log-space reducible to L.

PATH = {(G,s,t): G is a digraph with no path from s to t}

° PATH is co-NL-complete under log-space
reduction.

° If a language L log-space reduces to a language in
NL then L' € NL. () So, if PATH € NL then

NL = co-NL.

NL = co-NL

e Theorem.() PATH € NL.

NL = co-NL

. () PATH € NL.

* Proof. It is sufficient to show that there’s a log-space
verifier M & a poly-function q s.t.
x € PATH &= 34 € {0,1}90X) s.t. M(x,u) = |,

where u is given on a read-once input tape of M.

* Let us focus on forming a read-once certificate u that
convinces a verifier that there’s no path from s to t...

NL = co-NL

e Theorem. () PATH € NL.

e Proof. x = (G,s,t). Let m be the number of nodes in G.
Let k; = no. of nodes reachable from s by a path of

length at most i in G.

Path of
length < i
r
S

l; nodes

NL = co-NL

. () PATH € NL.

e Proof. x = (G,s,t). Let m be the number of nodes in G.
_et ki = no. of nodes reachable from s by a path of

ength at most i in G.
Read-once certificate u is of the form (u;, u,, ..., u., v),

y Um»

where u’s and v are strings s.t.

(I) reading until (u;, u,, ...u;) in a read-once fashion, M knows

correctly the value of k..

NL = co-NL

. () PATH € NL.

e Proof. x = (G,s,t). Let m be the number of nodes in G.
_et ki = no. of nodes reachable from s by a path of

ength at most i in G.
Read-once certificate u is of the form (u;, u,, ..., u., v),

y Um»
where u’s and v are strings s.t.
(I) reading until (u;, u,, ...u;) in a read-once fashion, M knows
correctly the value of k. So, after reading (u;, u,, ...u.), M

knows I, the number of nodes reachable from s.

NL = co-NL

. () PATH € NL.

e Proof. x = (G,s,t). Let m be the number of nodes in G.
_et ki = no. of nodes reachable from s by a path of

ength at most i in G.
Read-once certificate u is of the form (u;, u,, ..., u., v),
where u’s and v are strings s.t.

(I) reading until (u;, u,, ...u;) in a read-once fashion, M knows
correctly the value of k. So, after reading (u;, u,, ...u.), M
knows I, the number of nodes reachable from s.

(2) v then convinces M (which already knows k) that t is

not one of the k., vertices reachable from s.

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We’'ll design u, assuming that u, ..., u_, have
already been constructed and M knows k. Let r|,
...r., be the nodes of Gs.t.ry <r, <....<r_..Then,

NL = co-NL

e Theorem. (

* Proof. We’'ll design u, assuming that u,, ...

) PATH € NL.
, U, have

already been constructed and M knows k. Let r|,
...r, be the nodes of G s.t.r, <r, <....<r.,.Then,

\

u; looks like:
path of length No path of path of length
k i <ifromstor, | 2 0 length < i o o o Fm <ifromstor,
fromstor,
A J

J

r

The claimed value of k.
O(log m) bits required.

|

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We’'ll design u, assuming that u, ..., u_, have
already been constructed and M knows k. Let r|,
...r., be the nodes of Gs.t.ry <r, <....<r_..Then,

u; looks like:
path of length No path of path of length
k i I <ifromstor, | 2 0 length < i o o o Fm I <ifromstor,
fromstor,

|

Index of a vertex.
O(log m) bits required.

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We’'ll design u, assuming that u, ..., u_, have
already been constructed and M knows k. Let r|,
...r., be the nodes of Gs.t.ry <r, <....<r_..Then,

u; looks like:
path of length No path of path of length
k i I <ifromstor, | 2 0 length < i o o o Fm I <ifromstor,
fromstor,

|

Indicator bit that
indicates if r| is
reachable from s by a
path of length < i

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We’'ll design u, assuming that u, ..., u_, have
already been constructed and M knows k. Let r|,
...r., be the nodes of Gs.t.ry <r, <....<r_..Then,

u; looks like:

path of length No path of path of length
k i I <ifromstor, | 2 0 length < i o o o Fm I <ifromstor,

fromstor,

If indicator bit is | then
give a path from s to r; of
length < i. O(m log m)
bits required for this.

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We’'ll design u, assuming that u, ..., u_, have
already been constructed and M knows k. Let r|,
...r, be the nodes of G s.t.r, <r, <....<r.,.Then,

u; looks like:

path of length No path of path of length
k i I <ifromstor, | 2 0 length < i o o o Fm I <ifromstor,

fromstor,

|

If indicator bit is O then
give a certificate for
absence of paths from s to
r, of length < i.

NL = co-NL

e Theorem. () PATH € NL.

* Proof. We’'ll design u, assuming that u;, ..., u_, have
already been constructed and M knows I<i_|‘. Let ry,
...r, be the nodes of G s.t.r, <r, <....<r.,.Then,

u; looks like:

path of length No path of path of length
k i I <ifromstor, | 2 0 length < i o o o Fm I <ifromstor,

fromstor,

|

If indicator bit is O then
give a certificate for
absence of paths from s to
r, of length < i.

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We’'ll design u, assuming that u, ..., u_, have
already been constructed and M knows k. Let r|,
...r., be the nodes of Gs.t.ry <r, <....<r_..Then,

u; looks like:

path of length No path of path of length
k i I <ifromstor, | 2 0 length < i o o o Fm I <ifromstor,

fromstor,

|

If. lndlcator. Plt is O then If such certificates
give a certificate for can be given using
absence of paths from s to poly(m) bits then
r, of length < i. |ui| = poly(m)

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We’'ll design u, assuming that u, ..., u_, have
already been constructed and M knows k. Let r|,
...r, be the nodes of G s.t.r, <r, <....<r.,.Then,

u; looks like:

path of length No path of path of length
k i I <ifromstor, | 2 0 length < i o o o Fm I <ifromstor,

fromstor,

* While reading u, M’s work tape remembers the
following info:

l. k., and k,

2.the last read index of a vertex r,

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We’'ll design u, assuming that u, ..., u_, have
already been constructed and M knows k. Let r|,
...r, be the nodes of G s.t.r, <r, <....<r.,.Then,

u; looks like:

path of length No path of path of length
k i I <ifromstor, | 2 0 length < i o o o Fm I <ifromstor,

fromstor,

* While reading u, M’s work tape remembers the
fOI IOWi ng infO: The moment M encounters a new vertex index r, it

checks immediately if r > r;. This ensures that M is not
fooled by repeating info about the same vertex in u..

l. k., and k,

2.the last read index of a vertex r,

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We’'ll design u, assuming that u, ..., u_, have
already been constructed and M knows k. Let r|,
...r., be the nodes of Gs.t.ry <r, <....<r_..Then,

u; looks like:
path of length No path of path of length
k i I <ifromstor, | 2 0 length < i o o o Fm I <ifromstor,
fromstor,

* While reading u, M’s work tape remembers the
fol IOWi ng info: While reading u;, M keeps a count of the number of indicator

bits that are | and finally checks if this number is k.

/>

l. k., and k,

2.the last read index of a vertex r,

NL = co-NL

e Theorem. () PATH € NL.

e Proof. We’'ll design u, assuming that u, ..., u_, have
already been constructed and M knows k. Let r|,
...r., be the nodes of Gs.t.ry <r, <....<r_..Then,

u; looks like:
path of length No path of path of length
k i I <ifromstor, | 2 0 length < i o o o Fm I <ifromstor,
fromstor,
\ J \ J
| |
This part of the n

certificate is easy
to give and verify

NL = co-NL

e Theorem.() PATH € NL.

* Proof. Recall, M knows k| = k’ (say) while reading u.

No path of

Ui o o o lrz O length < i

fromstor,

qi path of length l . o e l Qi path of length

< i-l from s to q < i-l from s to qp

gy <Qqy; <...<qy

NL = co-NL

e Theorem.() PATH € NL.

* Proof. Recall, M knows k| = k’ (say) while reading u.

No path of

Ui o o o IrZ O length < i

fromstor,

qi path of length | . o e

< i-l from s to q

| Qi path of length

< i-l from s to qp

\ J \ J

| <g, <...<qgp '
9 = 9 <% Easy to give and verify

NL = co-NL

e Theorem. () PATH € NL.

* Proof. Recall, M knows k| = k’ (say) while reading u.

No path of
o o o) 0 length < i

fromstor,

path of length , | path of length
qai < i-1 from s to q ¢ Ak < i-1 from s to q,

gy <Qqy; <...<qy

* While reading the ‘No path...r,’ part of u, M
remembers the last g, read and checks that the next g
> q;. This ensures M is not fooled by repeating g’s.

NL = co-NL

e Theorem. (

) PATH € NL.

* Proof. Recall, M knows k| = k’ (say) while reading u.

ui o o o |r2

No path of
length < i
fromstor,

path of length
< i-1 from s to q

qi

| qi

path of length
< i-1 from s to q,

gy <Qqy; <...<qy

* For every j € [l,k_], after verifying the path of length
< i-1 from s to q;, M checks that r; is not adjacent to
q; by looking at G’s adjacency matrix.

NL = co-NL

e Theorem. () PATH € NL.

* Proof. Recall, M knows k| = k’ (say) while reading u.

No path of
o o o |r2 0 length < i

fromstor,

path of length , | path of length
qai < i-1 from s to q ¢ Qe < i-1 from s to q,

Q<qQ<...<q
At the end of reading the ‘No path...r,” part, M

checks that the number of g’s read is exactly k.

NL = co-NL

e Theorem. () PATH € NL.

* Proof. Recall, M knows k| = k’ (say) while reading u.

No path of

Ui o 0o 0) O length < i
fromstor,

qi path of length |

< i-1 from s to q

| Qi path of length
k

< i-1 from s to q,

Q<9< ...<qy
e This convinces M that there is no path of length < |

from s to r,. Length of the ‘No path...r;,’ part of u; is
O(m? log m).

NL = co-NL

. () PATH € NL.

* Proof. So, after reading (u,, ..., u,), the verifier M
knows k., the number of vertices reachable from s.

e The v part of the certificate u is similar to the ‘No
path...r,’ part of u, described before. The details here
are easy to fill in ().

* We stress again that M is able to verify nonexistence
of a path between s and t by reading u once from left
to right and never moving its head backward.

NL = co-NL

e Hence, both PATH and
PATH € NL < SPACE((log n)?)

by Savitch’s theorem.

Polynomial Hierarchy

Problems between NP & PSPACE

e There are decision problems that don’t appear to be
captured by nondeterminism alone (i.e., with a single
1 or V quantifier), unlike problems in NP and co-NP.

Eq-DNF = {(p,k): ¢ is a DNF and there’s a DNF

of size < k that is equivalent to ¢}

* Two Boolean formulas on the same input variables are
equivalent if their evaluations agree on every
assignment to the variables.

Problems between NP & PSPACE

e There are decision problems that don’t appear to be
captured by nondeterminism alone (i.e., with a single
1 or V quantifier), unlike problems in NP and co-NP.

Eq-DNF = {(p,k): ¢ is a DNF and there’s a DNF
of size < k that is equivalent to ¢}

e Is Eq-DNF in NP? ...if we give a DNF U as a

certificate, it is not clear how to efficiently verify that
b and @ are equivalent. (W.l.o.g. k < size of ¢ .)

Class),

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {0,190 vy e {01} st. M(x,uv) = I.

Class),

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {0,190 vy e {01} st. M(x,uv) = I.

e Obs. Eq-DNF is in).
* Proof. Think of u as another DNF | and v as an

assighment to the variables. Poly-time TM M checks if
b has size = kkand @(v) = U(v).

Class),

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {0,190 vy e {01} st. M(x,uv) = I.

e Obs. Eq-DNF is in).
* Proof. Think of u as another DNF | and v as an

assighment to the variables. Poly-time TM M checks if
b has size = kkand @(v) = U(v).

e Remark. Even if ¢ is given by its truth-
table, the problem (i.e., DNF-MCSP) is NP-complete.

Class),

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {01} vv e {0,I}x) s.t. M(x,u,v) = I.

e Another example.

Succinct-SetCover = {(®,...®,,k): ©®’s are DNFs and there’s an
S €[m] of size < k s.t. Vs @, is a tautology}

Class),

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {01} vv e {0,I}x) s.t. M(x,u,v) = I.

e Obs. Succinct-SetCover is in) .

Class),

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {01} vv e {0,I}x) s.t. M(x,u,v) = I.
e Obs. Succinct-SetCover is in) .

o Other natural problems in PH: “Completeness in the
Polynomial-Time Hierarchy: A Compendium” by

Class),

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {01} vv e {0,I}x) s.t. M(x,u,v) = I.

e Obs.PC NPC Y.

Class).

» Definition. A language L is in) if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L @»3u, € {0,1}9x) wu, € {0,1}30x) Q,u, € {0, 1}alx)
s.t. M(x,uy,...,u) =1,
where Q, is 3 or V if i is odd or even, respectively.

e Obs.), C >, foreveryi.

Polynomial Hierarchy

» Definition. A language L is in) if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €EL @»3u, € {0,1}9x) vu, € {0,1}30x) Q,u; € {0, 1}alx)
s.t. M(x,uy,...,u) =1,
where Q, is 3 or V if i is odd or even, respectively.

e Definition. .

PH=U 2;. IZ
|
21 =NP
N\

20=P

Class []

o Definition. [], = co-Y;, = {L: L€ ¥,

o Obs. A language L is in [], if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L ®vu, € {0,1}90) Ju, € {0,1}190x) Q.u. € {0, }a(xD
s.t. M(x,uy,...,u) =1,
where Q, is V or 3 if i is odd or even, respectively.

Class []

o Definition. [], = co-Y;, = {L: L€ ¥,

o Obs. A language L is in [], if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L ®@Vu, € {0,139 Ju, € {0,1}9(x) Q,u, € {0, 1}alx)
s.t. M(x,uy,...,u) =1,
where Q, is V or 3 if i is odd or even, respectively.

© Obs. 2 S [€ 252

Polynomial Hierarchy

e Obs.PH=U>,=U[T];.

PH = 22 [
I I
>1=NP [1) = co-NP
AN /

Polynomial Hierarchy

e Claim.PH < PSPACE.
e Proof. Similar to the proof of TQBF € PSPACE.

