Computational Complexity Theory Lecture II: Polynomial Hierarchy (contd.) Department of Computer Science, Indian Institute of Science #### Recap: Problems between NP & PSPACE There are decision problems that don't appear to be captured by nondeterminism alone (i.e., with a single ∃ or ∀ quantifier), unlike problems in NP and co-NP. Example. ``` Eq-DNF = \{(\varphi,k): \varphi \text{ is a } DNF \text{ and } \underline{\text{there's}} \text{ a } DNF \psi \} of size \leq k that is \underline{\text{equivalent}} \text{ to } \varphi \} ``` • Is Eq-DNF in NP? ...if we give a DNF ψ as a certificate, it is not clear how to efficiently verify that ψ and ϕ are equivalent. (W.I.o.g. $k \le \text{size of } \phi$.) • Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u,v) = 1.$ - Obs. Eq-DNF is in \sum_{2} . - Proof. Think of u as another DNF ψ and v as an assignment to the variables. Poly-time TM M checks if ψ has size $\leq k$ and $\phi(v) = \psi(v)$. - Remark. (Masek 1979) Even if φ is given by its truth-table, the problem (i.e., DNF-MCSP) is NP-complete. • Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. ``` x \in L \Longrightarrow \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} s.t. M(x,u,v) = I. ``` Another example. ``` Succinct-SetCover = \{(\phi_1, ..., \phi_m, k): \phi_i's are DNFs and there's an S \subseteq [m] of size \leq k s.t. \bigvee_{i \in S} \phi_i is a tautology\} ``` • Definition. A language L is in \sum_{2} if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } M(x,u,v) = 1.$ - Obs. (Homework) Succinct-SetCover is in \sum_{2} . - Other natural problems in PH: "Completeness in the Polynomial-Time Hierarchy: A Compendium" by Schaefer and Umans (2008). • Definition. A language L is in \sum_2 if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. ``` x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v) = 1. ``` • Obs. $P \subseteq NP \subseteq \sum_2$. # Recap: Class ∑i • Definition. A language L is in \sum_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. ``` x \in L \iff \exists u_1 \in \{0,1\}^{q(|x|)} \quad \forall u_2 \in \{0,1\}^{q(|x|)} \quad Q_i u_i \in \{0,1\}^{q(|x|)} s.t. M(x,u_1,...,u_i) = I, ``` where Q_i is \exists or \forall if i is odd or even, respectively. • Obs. $\sum_{i} \subseteq \sum_{i+1}$ for every i. # Recap: Polynomial Hierarchy • Definition. A language L is in \sum_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $$x \in L \iff \exists u_1 \in \{0,1\}^{q(|x|)} \quad \forall u_2 \in \{0,1\}^{q(|x|)} \quad Q_i u_i \in \{0,1\}^{q(|x|)}$$ s.t. $M(x,u_1,...,u_i) = I$, where Q_i is \exists or \forall if i is odd or even, respectively. • Definition. (Meyer & Stockmeyer 1972) $$PH = \bigcup_{i \in N} \sum_{i}.$$ # Recap: Class ∏_i - Definition. $\prod_i = co-\sum_i = \{L : \overline{L} \in \sum_i \}.$ - Obs. A language L is in \prod_i if there's a polynomial function q(.) and a poly-time TM M (the "verifier") s.t. $$x \in L \iff \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \ Q_i u_i \in \{0,1\}^{q(|x|)}$$ s.t. $M(x,u_1,...,u_i) = I$, where Q_i is \forall or \exists if i is odd or even, respectively. • Obs. $\sum_{i} \subseteq \prod_{i+1} \subseteq \sum_{i+2}$. # Recap: Polynomial Hierarchy • Obs. PH = $\bigcup_{i \in \mathbb{N}} \sum_{i \in \mathbb{N}} \prod_{i \in \mathbb{N}} \prod_{i}$. # Recap: Polynomial Hierarchy - Claim. PH ⊆ PSPACE. - Proof. Similar to the proof of TQBF ∈ PSPACE. # Does PH collapse? - General belief. Just as many of us believe $P \neq NP$ (i.e. $\sum_{i} \neq \sum_{i}$) and $NP \neq co-NP$ (i.e. $\sum_{i} \neq \prod_{i}$), we also believe that for every i, $\sum_{i} \neq \sum_{i+1}$ and $\sum_{i} \neq \prod_{i}$. - Definition. We say PH collapses to the i-th level if $\sum_{i=1}^{\infty} \sum_{i+1} \sum_{j+1} \sum$ - Conjecture. There is no i such that PH collapses to the i-th level. # Does PH collapse? - General belief. Just as many of us believe $P \neq NP$ (i.e. $\sum_{i} \neq \sum_{i}$) and $NP \neq co-NP$ (i.e. $\sum_{i} \neq \prod_{i}$), we also believe that for every i, $\sum_{i} \neq \sum_{i+1}$ and $\sum_{i} \neq \prod_{i}$. - Definition. We say PH collapses to the i-th level if $\sum_{i} = \sum_{i+1}$. (justified in the next theorem) - Conjecture. There is no i such that PH collapses to the i-th level. This is stronger than the $P \neq NP$ conjecture. • Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Define L' = $\{(x, u_1): \forall u_2 \dots Q_{i+2}u_{i+2} \text{ s.t. } M(x, u_1, \dots, u_{i+2}) = 1\}$ - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Clearly, L' is in $\prod_{i+1} = \sum_{i}$. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Also, $x \in L \iff \exists u_1 \text{ s.t. } (x, u_1) \in L'$. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. • Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i$ s.t. $N(x, u_1, v_1, \dots, v_i) = 1$, where N is a poly-time TM. - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. - $x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I.$ - Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, u_1, v_1, \dots, v_i) = I$. Merge the quantifiers - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Also, $x \in L \implies \exists v'_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, v'_1 \dots, v_i) = I.$ - Theorem. If $\sum_{i} = \sum_{i+1}$ then PH = \sum_{i} . - Proof. Hence $\sum_{i} = \sum_{i+1} = \prod_{i} = \prod_{i+1}$. Goal is to show that $\sum_{i+1} = \sum_{i+2}$. - Let L be a language in \sum_{i+2} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_{i+2} u_{i+2} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+2}) = I. ``` • Hence, L is a language in $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n}$ • Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} . - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{i+1}$. - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Define L' = $\{(x, u_1): \forall u_2 \dots Q_{i+1}u_{i+1} \text{ s.t. } M(x, u_1, \dots, u_{i+1}) = 1\}$ - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Clearly, L' is in $\prod_i = \sum_i$. - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Also, $x \in L \implies \exists u_1 \text{ s.t. } (x, u_1) \in L'$. - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i$ s.t. $N(x, u_1, v_1, \dots, v_i) = 1$, where N is a poly-time TM. - Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Also, $x \in L \implies \exists u_1 \exists v_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, u_1, v_1, \dots, v_i) = I$. Merge the quantifiers #### PH collapse theorems - Theorem. If $\sum_{i} = \prod_{i}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \longrightarrow \sum_{i} = \sum_{j+1}$. - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Also, $x \in L \iff \exists v'_1 \forall v_2 \dots Q_i v_i \text{ s.t. } N(x, v'_1 \dots, v_i) = I.$ #### PH collapse theorems - Theorem. If $\sum_{i} = \prod_{j}$ then PH = \sum_{i} . - Proof. Goal is to show that $\sum_{i} = \prod_{i} \implies \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i} = \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i} = \sum_{j=1}^{n} \sum_{i} = \sum_{j=1}^{n} \sum_{i} = \sum_{j=1}^{n} \sum_{i} = \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i} = \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i} = \sum_{j=1$ - Let L be a language in \sum_{i+1} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 ... Q_{i+1} u_{i+1} \quad \text{s.t.} \quad M(x, u_1, ..., u_{i+1}) = I. ``` • Hence, L is a language in \sum_{i} . - Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>. - What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class. - Is P = PH? ...use poly-time Karp reduction! - Definition. A language L' is *PH-hard* if for every L in PH, L \leq_D L'. Further, if L' is in PH then L' is *PH-complete*. • Fact. If L is poly-time reducible to a language in \sum_i then L is in \sum_i . (we've seen a similar fact for NP) - Fact. If L is poly-time reducible to a language in \sum_i then L is in \sum_i . (we've seen a similar fact for NP) - Observation. If PH has a complete problem then PH collapses. - Proof. If L is *PH-complete* then L is in \sum_i for some i. Now use the above fact to infer that $PH = \sum_i$. - Fact. If L is poly-time reducible to a language in \sum_i then L is in \sum_i . (we've seen a similar fact for NP) - Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>. - What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class. - Is $P = \sum_{i}$? ...use poly-time Karp reduction! - Definition. A language L' is \sum_{i} -hard if for every L in \sum_{i} , L \leq_{D} L'. Further, if L' is in \sum_{i} then L' is \sum_{i} -complete. • Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . • Theorem. \sum_{i} -SAT is \sum_{i} -complete. (\sum_{i} -SAT is just SAT) • Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Easy to see that \sum_{i} -SAT is in \sum_{i} . ``` x = \exists v_1 \forall v_2 \dots Q_i v_i \ \phi(v_1, \dots, v_i) \in \sum_i -SAT \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad s.t. \quad M(x, u_1, \dots, u_i) = I, where M outputs \phi(u_1, \dots, u_i). ``` - Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad \text{s.t.} \quad M(x, u_1, \dots, u_i) = I. ``` - Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \implies \exists u_1 \forall u_2 \dots Q_i u_i s.t. \phi(x, u_1, \dots, u_i) = I. Boolean circuit (by Cook-Levin) ``` - Definition. The language \sum_{i} -SAT contains all *true* QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_i u_i \quad \phi(x, u_1, ..., u_i) is true. ``` • Definition. The language \sum_{i} -SAT contains all *true* QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_i u_i \quad \phi(x, u_1, ..., u_i) \text{ is true }. ``` • Issue: φ needn't be a formula. - Definition. The language \sum_{i} -SAT contains all *true* QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_i . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 ... Q_i u_i \quad \phi(x, u_1, ..., u_i) \text{ is true }. ``` • Observation. From the proof of the Cook-Levin theorem, we can assume that ϕ is a CNF (if i is odd) or a DNF (if i is even). (Homework) - Definition. The language \sum_{i} -SAT contains all true QBF with i alternating quantifiers starting with \exists . - Theorem. \sum_{i} -SAT is \sum_{i} -complete. - Proof. Let L be a language in \sum_{i} . Then there's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u_1 \forall u_2 \dots Q_i u_i \quad \varphi(x, u_1, \dots, u_i) \in \sum_i -SAT. ``` # Other complete problems in \sum_{2} - Ref. "Completeness in the Polynomial-Time Hierarchy: A Compendium" by Schaefer and Umans (2008). - Theorem. Eq-DNF and Succinct-SetCover are \sum_2 -complete. #### An alternate characterization of PH • Definition. A language L is in $NP^{\sum_{i}-SAT}$ if there is a polytime NTM with oracle access to $\sum_{i}-SAT$ that decides L. • Theorem. $\sum_{i+1} = NP^{\sum_{i-SAT}}$. • Definition. A language L is in $NP^{\sum_{i}-SAT}$ if there is a polytime NTM with oracle access to $\sum_{i}-SAT$ that decides L. • Theorem. $\sum_{i+1} = NP^{\sum_{i-SAT}}$. • Observe that \sum_{i} -SAT = SAT. We'll prove the special case \sum_{i} = NPSAT. The proof of the theorem is similar. - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in \sum_2 . There's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v) = 1. ``` - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in \sum_2 . There's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \Longrightarrow \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} s.t. \phi(x,u,v) = 1. Boolean circuit (by Cook-Levin) ``` • In fact, owing to the proof of the Cook-Levin theorem, we can assume that ϕ is a DNF. - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in \sum_{2} . There's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \Longrightarrow \exists u \in \{0,1\}^{q(|x|)} \quad \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } \neg \phi(x,u,v) = 0. ``` • Think of a NTM N that has the knowledge of M. On input x, it guesses $u \in \{0,1\}^{q(|x|)}$ non-deterministically and computes the circuit $\phi(x,u,v)$. Then, it queries the SAT oracle with $\neg \phi(x,u,v)$. - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in \sum_2 . There's a polynomial function q(.) and a poly-time TM M s.t. ``` x \in L \iff \exists u \in \{0,1\}^{q(|x|)} \quad \forall v \in \{0,1\}^{q(|x|)} \text{ s.t. } \neg \phi(x,u,v) = 0. ``` - Think of a NTM N that has the knowledge of M. On input x, it guesses $u \in \{0,1\}^{q(|x|)}$ non-deterministically and computes the circuit $\phi(x,u,v)$. Then, it queries the SAT oracle with $\neg \phi(x,u,v)$. - Note that $\neg \phi(x,u,v)$ is a CNF. - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most <u>one</u> query to the SAT oracle on every computation path on input x. - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most <u>one</u> query to the SAT oracle on every computation path on input x. - We need to construct a ∑₂-statement that captures N's computation on input x. - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most one query to the SAT oracle on every computation path on input x. - Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following: - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most one query to the SAT oracle on every computation path on input x. - Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following: - M simulates N on input x with w as the nondeterministic choices. - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most one query to the SAT oracle on every computation path on input x. - Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following: - M simulates N on input x with w as the computation path. Suppose φ is the query asked by N on the path of computation defined by w. - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most one query to the SAT oracle on every computation path on input x. - Think of a TM M that takes input x and $w \in \{0, I\}^{q(|x|)}$, $a_1 \in \{0, I\}$ and $u_1, v_1 \in \{0, I\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following: - Fig. If $a_1 = I$ and $φ(u_1) = I$, M continues the simulation; else it stops and outputs 0. (In this case, M ignores v_1 .) - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most one query to the SAT oracle on every computation path on input x. - Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following: - > If $a_1 = 0$ and $φ(v_1) = 0$, M continues the simulation; else it stops and outputs 0. (In this case, M ignores u_1 .) - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most one query to the SAT oracle on every computation path on input x. - Think of a TM M that takes input x and $w \in \{0,1\}^{q(|x|)}$, $a_1 \in \{0,1\}$ and $u_1, v_1 \in \{0,1\}^{q(|x|)}$, where q(|x|) is the runtime of N on input x, and does the following: - At the end of the simulation, M outputs whatever N outputs. Note: M is a poly-time TM. - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most one query to the SAT oracle on every computation path on input x. - Observation. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$, - > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$ ``` \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1. ``` (...will prove the observation shortly. Let's finish the proof.) - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most one query to the SAT oracle on every computation path on input x. - $x \in L \iff \exists w \in \{0,1\}^{q(|x|)}, a_1 \in \{0,1\} \text{ s.t.}$ - Non computation path w gets answer a_1 from the SAT oracle and accepts $x \iff \exists w \in \{0,1\}^{q(|x|)}, a_1 \in \{0,1\}$ ``` \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1. ``` - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most one query to the SAT oracle on every computation path on input x. - $x \in L \iff \exists w \in \{0,1\}^{q(|x|)}, a_1 \in \{0,1\} \text{ s.t.}$ - Non computation path w gets answer a_1 from the SAT oracle and accepts $x \iff \exists w \in \{0,1\}^{q(|x|)}, a_1 \in \{0,1\}$ Call it u $$\exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1.$$ - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - Special case: N asks at most one query to the SAT oracle on every computation path on input x. - $x \in L \iff \exists w \in \{0,1\}^{q(|x|)}, a_1 \in \{0,1\} \text{ s.t.}$ - > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$ ``` \exists u \in \{0,1\}^{2q(|x|)+1} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,u,v_1) = 1. ``` • Therefore, L is in \sum_{2} . - Observation. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$, - > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$ ``` \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1. ``` - Proof.(→) M simulates N on computation path w. Let φ be the query asked by N to SAT. - If $a_1 = I$, $\exists u_1 \in \{0, I\}^{q(|x|)} \varphi(u_1) = I$ and N accepts x. - Observation. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$, - > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$ ``` \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1. ``` - Proof.(→) M simulates N on computation path w. Let φ be the query asked by N to SAT. - If $a_1 = 1, \exists u_1 \in \{0,1\}^{q(|x|)}$ s.t. $M(x,w,a_1,u_1,v_1) = 1$. In this case, M ignores V_I. - Observation. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$, - > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \longleftrightarrow$ ``` \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1. ``` - Proof.(→) M simulates N on computation path w. Let φ be the query asked by N to SAT. - If $a_1 = 0$, $\forall v_1 \in \{0,1\}^{q(|x|)} \varphi(v_1) = 0$ and N accepts x. - Observation. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$, - > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$ ``` \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1. ``` - Proof.(→) M simulates N on computation path w. Let φ be the query asked by N to SAT. - If $a_1 = 0$, $\forall v_1 \in \{0,1\}^{q(|x|)}$ s.t. $M(x,w,a_1,u_1,v_1) = 1$. In this case, M ignores u_1 . - Observation. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$, - > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$ ``` \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1. ``` - Proof.(→) M simulates N on computation path w. Let φ be the query asked by N to SAT. - Irrespective of the value of a₁, ``` \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1. ``` - Observation. For any $w \in \{0,1\}^{q(|x|)}$ and $a_1 \in \{0,1\}$, - > N on computation path w gets answer a_1 from the SAT oracle and accepts $x \iff$ ``` \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall v_1 \in \{0,1\}^{q(|x|)} \ \text{s.t.} \ M(x,w,a_1,u_1,v_1) = 1. ``` Proof. () Need to show that N on computation path w gets answer a₁ from the SAT oracle. (Homework) - Theorem. $\sum_{2} = NP^{SAT}$. - Proof. Let L be a language in NPSAT. There's a NTM N that decides L with oracle access to SAT. - General case: N asks at most q(|x|) queries to SAT oracle on every computation path on input x. - Homework: Prove the general case. Define the polytime machine M appropriately. - Definition. A language L is in PSAT if there is a polytime TM with oracle access to SAT that decides L. - $\Delta_2 := \mathsf{P}^{\mathsf{SAT}} \subseteq \sum_2 \cap \bigcap_2$. - A SAT oracle gives us the ability to solve SAT efficiently "much like" a poly-time algorithm for SAT. - Definition. A language L is in PSAT if there is a polytime TM with oracle access to SAT that decides L. - $\Delta_2 := \mathsf{P}^{\mathsf{SAT}} \subseteq \sum_2 \cap \prod_2$. - A <u>SAT</u> oracle gives us the ability to solve <u>SAT</u> efficiently much like" a poly-time algorithm for <u>SAT</u>. - Yet, in the <u>first case</u> we believe $P^{SAT} \neq NP^{SAT}$, (otherwise, PH collapses to \sum_{2}) - Definition. A language L is in PSAT if there is a polytime TM with oracle access to SAT that decides L. - $\Delta_2 := \mathsf{P}^{\mathsf{SAT}} \subseteq \sum_2 \cap \bigcap_2$. - A SAT oracle gives us the ability to solve SAT efficiently "much like" a poly-time algorithm for SAT. - Yet, in the first case we believe PSAT ≠ NPSAT, whereas in the second case PH collapses to P, i.e., PSAT = NPSAT. - Definition. A language L is in PSAT if there is a polytime TM with oracle access to SAT that decides L. - $\Delta_2 := \mathsf{P}^{\mathsf{SAT}} \subseteq \sum_2 \cap \bigcap_2$. - A SAT oracle gives us the ability to solve SAT efficiently "much like" a poly-time algorithm for SAT. - Yet, in the first case we believe PSAT ≠ NPSAT, whereas in the second case PH collapses to P, i.e., PSAT = NPSAT. - Why? Think to understand the difference between oracles and poly-time algorithms for SAT (Homework).