Computational Complexity Theory

Lecture | |: Polynomial Hierarchy (contd.)

Department of Computer Science,
Indian Institute of Science

Recap: Problems between NP & PSPACE

e There are decision problems that don’t appear to be
captured by nondeterminism alone (i.e., with a single
1 or V quantifier), unlike problems in NP and co-NP.

Eq-DNF = {(p,k): ¢ is a DNF and there’s a DNF
of size < k that is equivalent to ¢}

e Is Eq-DNF in NP? ...if we give a DNF U as a

certificate, it is not clear how to efficiently verify that
b and @ are equivalent. (W.l.o.g. k < size of ¢ .)

Recap: Class),

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {0,190 vy e {01} st. M(x,uv) = I.

e Obs. Eq-DNF is in).
* Proof. Think of u as another DNF | and v as an

assighment to the variables. Poly-time TM M checks if
b has size = kkand @(v) = U(v).

e Remark. Even if ¢ is given by its truth-
table, the problem (i.e., DNF-MCSP) is NP-complete.

Recap: Class) ,

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {01} vv e {0,I}x) s.t. M(x,u,v) = I.

e Another example.

Succinct-SetCover = {(®,...®,,k): ©®’s are DNFs and there’s an
S €[m] of size < k s.t. Vs @, is a tautology}

Recap: Class) ,

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {01} vv e {0,I}x) s.t. M(x,u,v) = I.
e Obs. Succinct-SetCover is in) .

o Other natural problems in PH: “Completeness in the
Polynomial-Time Hierarchy: A Compendium” by

Recap: Class) ,

 Definition. A language L is in), if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L <= 3Ju e {01} vv e {0,I}x) s.t. M(x,u,v) = I.

e Obs.PC NPC Y.

Recap: Class) .

» Definition. A language L is in) if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L @»3u, € {0,1}9x) wu, € {0,1}30x) Q,u, € {0, 1}alx)
s.t. M(x,uy,...,u) =1,
where Q, is 3 or V if i is odd or even, respectively.

e Obs.), C >, foreveryi.

Recap: Polynomial Hierarchy

» Definition. A language L is in) if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €EL @»3u, € {0,1}9x) vu, € {0,1}30x) Q,u; € {0, 1}alx)
s.t. M(x,uy,...,u) =1,
where Q, is 3 or V if i is odd or even, respectively.

e Definition. .

PH=U 2;. IZ
|
21 =NP
N\

20=P

Recap: Class [],

o Definition. [], = co-Y;, = {L: L€ ¥,

o Obs. A language L is in [], if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.

x €L ®@Vu, € {0,139 Ju, € {0,1}9(x) Q,u, € {0, 1}alx)
s.t. M(x,uy,...,u) =1,
where Q, is V or 3 if i is odd or even, respectively.

© Obs. 2 S [€ 252

Recap: Polynomial Hierarchy

e Obs.PH=U>,=U[T];.

PH = 22 [
I I
Z| = NP |_|| — CO NP
AN /

Recap: Polynomial Hierarchy

e Claim.PH < PSPACE.
e Proof. Similar to the proof of TQBF € PSPACE.

Does PH collapse!?

o Just as many of us believe P # NP (i.e.

>o#F >) and NP # co-NP (i.e. >, # [],), we also
believe that for every i, >.# >.,, and >.#[]..

° We say PH collapses to the i-th level if

Di= it -

o There is no i such that PH collapses to
the i-th level.

Does PH collapse!?

o Just as many of us believe P # NP (i.e.

>o#F >) and NP # co-NP (i.e. >, # [],), we also
believe that for every i, >.# >.,, and >.#[]..

° We say PH collapses to the i-th level if

Di= it -

o There is no i such that PH collapses to
the i-th level.

This is stronger than the P # NP conjecture.

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

e Proof.

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

e Proof.

§.>< |I'l|.

2 [

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

e Proof.

§.>< |I'l|.

di =[]

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

e Proof.

§.>< |I'l|.

Zi = |_|i

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

e Proof.

Zi = |_|i

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

* Proof.Hence > . => .. =[1] =11+ -
Goal is to show that ., = > .., .

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

* Proof.Hence > . => .. =[1] =11+ -
Goal is to show that ., = > .., .

» Let L be a language in) ,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L ™ JuVu, ... QU st MXup,...,u,,) = 1.

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

* Proof.Hence > . => .. =[1] =11+ -
Goal is to show that ., = > .., .

* Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
X €L eJuVu, ... Quuy st MOGup, ..., Uy = 1.

e Define L' = {(x,u)): Vu, ... Qou, st. MO up,...,uy,) = |}
—

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

* Proof.Hence > . => .. =[1] =11+ -
Goal is to show that ., = > .., .

* Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
X €L eJuVu, ... Quuy st MOGup, ..., Uy = 1.

e Clearly,Lisin [=2, .

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

* Proof.Hence > . => .. =[1] =11+ -
Goal is to show that ., = > .., .

* Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
X €L eJuVu, ... Quuy st MOGup, ..., Uy = 1.

e Also,x e L &3u, st. (x,u)) €L.

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

* Proof.Hence > . => .. =[1] =11+ -
Goal is to show that ., = > .., .

* Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
X €L eJuVu, ... Quuy st MOGup, ..., Uy = 1.

e Also, x € L& 3Ju,3v\Vv, ... Qv; s.t. N(x,u,v,...,v)) = I,
where N is a poly-time TM.

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

* Proof.Hence > . => .. =[1] =11+ -
Goal is to show that ., = > .., .

* Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
X €L eJuVu, ... Quuy st MOGup, ..., Uy = 1.

e Also,x €L @3u,3v,Vv, ... Qv, s.t. N(x,u,,v,...,v) = I.
_'_l

Merge the quantifiers

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

* Proof.Hence > . => .. =[1] =11+ -
Goal is to show that ., = > .., .

* Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
X €L eJuVu, ... Quuy st MOGup, ..., Uy = 1.

e Also,x €L @3V Vv, ... Qv, s.t. N(x,V'|...,v) = I.

PH collapse theorems

o Theorem.lf >, = > ., then PH =} ..

* Proof.Hence > . => .. =[1] =11+ -
Goal is to show that ., = > .., .

* Let L be a language in) .,, . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
X €L eJuVu, ... Quuy st MOGup, ..., Uy = 1.

» Hence, L is a language in), =) ., .

PH collapse theorems

e Theorem.If >, =[] then PH =),.

PH collapse theorems

e Theorem.If >, =[] then PH =),.
* Proof. Goal istoshowthat). =[] == >.= >\ .

PH collapse theorems

e Theorem.If >, =[] then PH =),.
* Proof. Goal istoshowthat). =[] == >.= >\ .

» Let L be a language in) ., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L ®3JuVu, ... Q uy st MOGup,..,uy) =1

PH collapse theorems

e Theorem.If >, =[] then PH =),.
* Proof. Goal istoshowthat). =[] == >.= >\ .

» Let L be a language in) ., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L ®3JuVu, ... Q uy st MOGup,..,uy) =1

e Define L' ={(x,u|):Vu, ... Qi;,u,, s.t. MO uy, ..., uy,) = 1}
-

PH collapse theorems

e Theorem.If >, =[] then PH =),.
* Proof. Goal istoshowthat). =[] == >.= >\ .

» Let L be a language in) ., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L ®3JuVu, ... Q uy st MOGup,..,uy) =1

e Clearly,Lisin[].=D,.

PH collapse theorems

e Theorem.If >, =[] then PH =),.
* Proof. Goal istoshowthat). =[] == >.= >\ .

» Let L be a language in) ., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L ®3JuVu, ... Q uy st MOGup,..,uy) =1

* AISO,X €L “3U| S.t. (X, U|) e L.

PH collapse theorems

e Theorem.If >, =[] then PH =),.
* Proof. Goal istoshowthat). =[] == >.= >\ .

» Let L be a language in) ., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L ®3JuVu, ... Q uy st MOGup,..,uy) =1

e Also, x € L& 3Ju,3v\Vv, ... Qv; s.t. N(x,u,v,...,v) = I,
where N is a poly-time TM.

PH collapse theorems

e Theorem.If >, =[] then PH =),.
* Proof. Goal istoshowthat). =[] == >.= >\ .

» Let L be a language in) ., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L ®3JuVu, ... Q uy st MOGup,..,uy) =1

e Also,x e L @ 3u,3v,Vv, ... Qv s.t. N(x,u,v,...,v) = 1|.
T

Merge the quantifiers

PH collapse theorems

e Theorem.If >, =[] then PH =),.
* Proof. Goal istoshowthat). =[] == >.= >\ .

» Let L be a language in) ., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L ®3JuVu, ... Q uy st MOGup,..,uy) =1

e Also,x e L @3V Vv, ... Qv, s.t. N(x,V'|...,v) = I.

PH collapse theorems

e Theorem.If >, =[] then PH =),.
* Proof. Goal istoshowthat). =[] == >.= >\ .

» Let L be a language in) ., . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.

x €L ®3JuVu, ... Q uy st MOGup,..,uy) =1

» Hence, L is a language in) ;.

Complete problems in PH ?

* Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e IsP =PH? ...use poly-time Karp reduction!

° A language L is PH-hard if for every L in
PH, L SPL’. Further, if L is in PH then L is PH-complete.

Complete problems in PH ?

o Fact. If L is poly-time reducible to a language in),
then Lisin).

Complete problems in PH ?

2 If L is poly-time reducible to a language in).
then Lisin).

° If PH has a complete problem then PH
collapses.

* Proof. If L is PH-complete then L is in), for some i.
Now use the above fact to infer that PH =) ..

Complete problems in PH ?

o Fact. If L is poly-time reducible to a language in),
then Lisin).

o Corollary. PH & PSPACE unless PH collapses.

Complete problems in).

* Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

e IsP=>.1?.. .use poly-time Karp reduction!

° A language L is) ,-hard if for every L in),
L <, L. Further,if L' is in >, then L' is) ;-complete.

Complete problems in).

» Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) .-complete.

Complete problems in).

» Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) .-complete.

» Proof. Easy to see that) -SAT isin) ..
X =3v,\Vv, ... Qv ©(v,...,v;) € D> -SAT
Ju,Vu, ... Qu;, s.t. M(xuy,...,u)=1,
where M outputs @(u, ..., u).

Complete problems in).

» Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) .-complete.

» Proof. Let L be a language in), . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.
x €L e»3JuVu,...Qu, st. M(xu,...,u)=1.

Complete problems in).

» Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) .-complete.

» Proof. Let L be a language in), . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.

x €L @3JuVu, ... Qu, st o(xup,...,u)=1I.
\ J

I

Boolean circuit

()

Complete problems in).

» Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) .-complete.

» Proof. Let L be a language in), . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.
x €L @»3JuVu, ... Qu, @(xu,...,u)is true.

Complete problems in).

» Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) .-complete.

» Proof. Let L be a language in), . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.
x €L @»3JuVu, ... Qu, @(xu,...,u)is true.

e |ssue: @ needn’t be a formula.

Complete problems in).

» Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) .-complete.

» Proof. Let L be a language in), . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.
x €L @»3JuVu, ... Qu, @(xu,...,u)is true.

o Observation. From the proof of the Cook-Levin
theorem, we can assume that ¢ is a CNF (if i is odd)
or a DNF (if i is even). (Homework)

Complete problems in).

» Definition. The language) -SAT contains all true QBF
with i alternating quantifiers starting with 3.

e Theorem.) -SAT is) .-complete.

» Proof. Let L be a language in), . Then there’s a
polynomial function q(.) and a poly-time TM M s.t.
x €L e»3JuVu,...Qu @(xu,...,u) € > -SAT.

Other complete problems in),

o Ref. “Completeness in the Polynomial-Time Hierarchy: A
Compendium” by

e Theorem. Eq-DNF and Succinct-SetCover are
> 5 -complete.

An alternate characterization of PH

Oracle definition of).

> -SAT

e Definition. A language L is in NP if there is a poly-
time NTM with oracle access to) -SAT that decides L.

5 -SAT

e Theorem.)4, = NP ,

Oracle definition of).

S -SAT

° A language L is in NP if there is a poly-
time NTM with oracle access to) -SAT that decides L.

5 -SAT

® Zi+| — NP .

» Observe that) -SAT = SAT. Weé'll prove the special
case » , = NPT, The proof of the theorem is similar.

Oracle definition of).

e Theorem.), = NPSAT

» Proof. Let L be a language in) ,. There’s a polynomial
function q(.) and a poly-time TM M s.t.

x EL <m3Iu € {0,139 vv e {0,1}9x) s.t. M(x,u,v) = I.

Oracle definition of).

e Theorem.), = NPSAT

» Proof. Let L be a language in) ,. There’s a polynomial
function q(.) and a poly-time TM M s.t.

x EL <= 3Ju € {0,1}90X) vv € {0,119 st. @(x,uv) = 1.

Boolean circuit

()

* In fact, owing to the proof of the Cook-Levin
theorem, we can assume that ¢ is a DNFE

Oracle definition of).

e Theorem.), = NPSAT

» Proof. Let L be a language in) ,. There’s a polynomial

function q(.) and a poly-time M-s:t.
x €L <=3u € {0,119 &v e {0,190 s.t. -l(p(x,E

e Think of a NTM N that has the knowledge of M. On
input x, it guesses u € {0,1}90x) non-deterministically
and computes the circuit ©(x,u,v). Then, it queries the
SAT oracle with =p(x,u,v).

Oracle definition of).

e Theorem.), = NPSAT

» Proof. Let L be a language in) ,. There’s a polynomial
function q(.) and a poly-time TM M s.t.

x EL <= 3u € {0,1}90) vv € {0,1}9x) s.t. ~¢p(x,u,v) = 0.

e Think of a NTM N that has the knowledge of M. On
input x, it guesses u € {0,1}90X) non-deterministically

and computes the circuit ©(x,u,v). Then, it queries the
SAT oracle with =p(x,u,v).

e Note that —¢(x,u,v) is a CNFE

Oracle definition of).

e Theorem.), = NPSAT

 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

Oracle definition of).

. Y, = NPSAT
» Proof. Let L be a language in NP>*". There’s a NTM N
that decides L with oracle access to SAT.

° N asks at most one query to the SAT
oracle on every computation path on input x.

* We need to construct a) ,-statement that captures
N’s computation on input x.

Oracle definition of).

e Theorem.), = NPSAT

 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

e Think of a TM M that takes input x and w € {0, | }a(x)),
a,€ {0,1} and u,, v,€ {0,1}90X), where g(|x|) is the
runtime of N _on input x, and does the following:

Oracle definition of).

o Y5 = NPAT,

* Proof. Let L be a language in NP>, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

e Think of a TM M that takes input x and w € {0, | }a(x)),
a,€ {0,1} and u,, v,€ {0,1}190X), where q(|x|) is the
runtime of N on input x, and does the following:

e M simulates N on input x with w as the non-
deterministic choices.

Oracle definition of).

. Y, = NPSAT
 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

° N asks at most one query to the SAT
oracle on every computation path on input x.

e Think of a TM M that takes input x and w € {0, | }a(x)),
a,€ {0,1} and u,, v,€ {0,1}190X), where q(|x|) is the
runtime of N on input x, and does the following:

e M simulates N on input x with w as the computation
path. Suppose ¢ is the query asked by N on the path
of computation defined by w.

Oracle definition of).

o Y5 = NPAT,
 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

e Think of a TM M that takes input x and w € {0, | }a(x)),
a,€ {0,1} and u,, v,€ {0,1}190X), where q(|x|) is the
runtime of N on input x, and does the following:

> Ifa, =1 and @(u;) = I, M continues the simulation;
else it stops and outputs 0. (In this case, M ignores v,.)

Oracle definition of).

o Y5 = NPAT,
 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

e Think of a TM M that takes input x and w € {0, | }a(x)),
a,€ {0,1} and u,, v,€ {0,1}190X), where q(|x|) is the
runtime of N on input x, and does the following:

> Ifa; = 0 and ¢(v|) = 0, M continues the simulation;
else it stops and outputs 0. (In this case, M ignores u,.)

Oracle definition of).

o Y5 = NPAT,
 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

e Think of a TM M that takes input x and w € {0, | }a(x)),
a,€ {0,1} and u,, v,€ {0,1}190X), where q(|x|) is the
runtime of N on input x, and does the following:

* At the end of the simulation, M outputs whatever N
outputs. M is a poly-time TM.

Oracle definition of).

e Theorem.), = NPSAT

 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

o Observation. Forany w € {0,1}90X) and a,€ {0,1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9) vy, € {0,1}9:) s.t. M(x,w,a,u,v,) = 1.

(...will prove the observation shortly. Let’s finish the proof.)

Oracle definition of).

e Theorem.), = NPSAT

 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

e xEL e»Iwe{0I}) ae{0Il}s.t

> N on computation path w gets answer a, from the
SAT oracle and accepts x 3w € {0,119 ,a,€ {0,1}

Ju, € {0,1}9) vy, € {0,1}9:) s.t. M(x,w,a,u,v,) = 1.

Oracle definition of).

e Theorem.), = NPSAT

 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

e xEL e»Iwe{0I}) ae{0Il}s.t

> N on computation path w gets answer a, from the
SAT oracle and accepts x 3w € {0,119 ,a,€ {0,1}

Ju, € {0,1}9) vy, € {0,1}9(:) s.t. M(x,w,a,u,v,) = 1.

Call it u

Oracle definition of).

e Theorem.), = NPSAT

 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

e Special case: N asks at most one query to the SAT
oracle on every computation path on input x.

e xEL ¢ 3IweE{0I}I) ae{0Il}s.t

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=
Ju € {0, 1 }2alD*! vy, € {0,1}9x) s.t. M(x,u,v,) = 1.
Therefore, Lisin),.

Proof of the observation

o Observation. Forany w € {0,1}90X) and a,€ {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9) vy, € {0,1}9(x) s.t. M(x,w,a,u,v,) = 1.

Proof.(=») ™ simulates N on computation path w.
_et @ be the query asked by N to SAT.

fa, = 1,3u, € {0,1}90) @(u;) = | and N accepts x.

Proof of the observation

o Observation. Forany w € {0,1}90X) and a,€ {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9) vy, € {0,1}9(x) s.t. M(x,w,a,u,v,) = 1.

Proof.(=») M simulates N on computation path w.
Let @ be the query asked by N to SAT.

Ifa, = I, 3u, € {0,1}9(x) s.t. M(x,w, a,,u;,v,) = I.

In this case, M ignores v;.

Proof of the observation

o Observation. Forany w € {0,1}90X) and a,€ {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9) vy, € {0,1}9(x) s.t. M(x,w,a,u,v,) = 1.

Proof.(=») ™ simulates N on computation path w.
_et @ be the query asked by N to SAT.

fa, =0,Vv, € {0,1}190) ¢(v,) = 0 and N accepts x.

Proof of the observation

o Observation. Forany w € {0,1}90X) and a,€ {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9) vy, € {0,1}9(x) s.t. M(x,w,a,u,v,) = 1.

Proof.(=») M simulates N on computation path w.
Let @ be the query asked by N to SAT.

If a, = 0, Vv, € {0,1}90) s.t. M(x,w,a,u,v,) = I.

In this case, M ignores u,.

Proof of the observation

o Observation. Forany w € {0,1}90X) and a,€ {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9) vy, € {0,1}9(x) s.t. M(x,w,a,u,v,) = 1.

Proof.(=») ™ simulates N on computation path w.
_et @ be the query asked by N to SAT.

rrespective of the value of a,,
Ju, € {0,1}190x) vy, € {0,1}90) s.t. M(x,w,a,,u,v,) = I.

Proof of the observation

o Observation. Forany w € {0,1}90X) and a,€ {0, 1},

> N on computation path w gets answer a, from the
SAT oracle and accepts x &=

Ju, € {0,1}9) vy, € {0,1}9(x) s.t. M(x,w,a,u,v,) = 1.

Proof.(¢=) Need to show that N on computation
path w gets answer a, from the SAT oracle.

()

Oracle definition of).

. Y, = NPSAT
 Proof. Let L be a language in NP*AT, There’s a NTM N
that decides L with oracle access to SAT.

° N asks at most q(|x|) queries to SAT
oracle on every computation path on input x.

° : Prove the general case. Define the poly-
time machine M appropriately.

Oracles versus efficient algorithms

o A language L is in P°AT if there is a poly-
time TM with oracle access to SAT that decides L.
® AZ —_ PSAT C Zzn |_|2.

e A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

Oracles versus efficient algorithms

o A language L is in P°AT if there is a poly-
time TM with oracle access to SAT that decides L.

e Ay =PATC S NT],.

e A SAT oracle gives us the ability to solve SAT
efficiently wch like” a poly-time algorithm for SAT.

* Yet, in the first case we believe PSAT # NPSAT
(otherwise, PH collapses to) »)

Oracles versus efficient algorithms

o A language L is in P°AT if there is a poly-
time TM with oracle access to SAT that decides L.
® AZ —_ PSAT C Zzn |_|2.

e A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

e Yet, in the first_case we believe PSAT # NP*AT, whereas
in the second case PH collapses to P,i.e., PAT = NPAT,

Oracles versus efficient algorithms

o A language L is in P°AT if there is a poly-
time TM with oracle access to SAT that decides L.

e Ay =PATC S NT],.

e A SAT oracle gives us the ability to solve SAT
efficiently “much like” a poly-time algorithm for SAT.

e Yet, in the first case we believe PSAT # NP*AT, whereas
in the second case PH collapses to P,i.e., P°AT = NP4,

* Why! Think to understand the difference between
oracles and poly-time algorithms for SAT ().

