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Recap:  Problems between NP & PSPACE

� There are decision problems that don’t appear to be
captured by nondeterminism alone (i.e., with a single
∃ or ∀ quantifier), unlike problems in NP and co-NP.

� Example.
Eq-DNF = {(ϕ,k): ϕ is a DNF and there’s a DNF ψ

of size ≤ k that is equivalent to ϕ}
� Is Eq-DNF in NP? …if we give a DNF ψ as a

certificate, it is not clear how to efficiently verify that
ψ and ϕ are equivalent. (W.l.o.g. k ≤ size of ϕ .)



Recap: Class ∑2
� Definition. A language L is in ∑2 if there’s a polynomial

function q(.) and a poly-time TM M (the “verifier”) s.t.
x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

� Obs. Eq-DNF is in ∑2.
� Proof. Think of u as another DNF ψ and v as an

assignment to the variables. Poly-time TM M checks if
ψ has size ≤ k and ϕ(v) = ψ(v).

� Remark. (Masek 1979) Even if ϕ is given by its truth-
table, the problem (i.e., DNF-MCSP) is NP-complete.



Recap: Class ∑2
� Definition. A language L is in ∑2 if there’s a polynomial

function q(.) and a poly-time TM M (the “verifier”) s.t.
x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

� Another example.
Succinct-SetCover = {(ϕ1,…ϕm,k): ϕi’s are DNFs and there’s an

S ⊆[m] of size ≤ k s.t.⋁i∈S ϕi is a tautology}



Recap: Class ∑2
� Definition. A language L is in ∑2 if there’s a polynomial

function q(.) and a poly-time TM M (the “verifier”) s.t.
x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

� Obs. (Homework) Succinct-SetCover is in ∑2.

� Other natural problems in PH: “Completeness in the
Polynomial-Time Hierarchy: A Compendium” by Schaefer
and Umans (2008).



Recap: Class ∑2
� Definition. A language L is in ∑2 if there’s a polynomial

function q(.) and a poly-time TM M (the “verifier”) s.t.
x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.

� Obs. P ⊆ NP ⊆ ∑2.



Recap: Class ∑i
� Definition. A language L is in ∑i if there’s a polynomial

function q(.) and a poly-time TM M (the “verifier”) s.t.
x ∈ L ∃u1 ∈ {0,1}q(|x|) ∀u2 ∈ {0,1}q(|x|) Qiui ∈ {0,1}q(|x|)

s.t. M(x,u1,…, ui) = 1,

where Qi is ∃ or ∀ if i is odd or even, respectively.

� Obs.∑i ⊆ ∑i+1 for every i.



Recap: Polynomial Hierarchy
� Definition. A language L is in ∑i if there’s a polynomial

function q(.) and a poly-time TM M (the “verifier”) s.t.
x ∈ L ∃u1 ∈ {0,1}q(|x|) ∀u2 ∈ {0,1}q(|x|) Qiui ∈ {0,1}q(|x|)

s.t. M(x,u1,…, ui) = 1,

where Qi is ∃ or ∀ if i is odd or even, respectively.

� Definition. (Meyer & Stockmeyer 1972)
PH = ∪ ∑i .
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Recap: Class ∏i
� Definition. ∏i = co-∑i = { L : L ∈ ∑i }.

� Obs. A language L is in ∏i if there’s a polynomial
function q(.) and a poly-time TM M (the “verifier”) s.t.
x ∈ L ∀u1 ∈ {0,1}q(|x|) ∃u2 ∈ {0,1}q(|x|) Qiui ∈ {0,1}q(|x|)

s.t. M(x,u1,…, ui) = 1,

where Qi is ∀ or ∃ if i is odd or even, respectively.

� Obs.∑i ⊆ ∏i+1 ⊆ ∑i+2 .



Recap: Polynomial Hierarchy
� Obs. PH = ∪ ∑i = ∪ ∏i .i ∈ N i ∈ N
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Recap: Polynomial Hierarchy
� Claim. PH ⊆ PSPACE .
� Proof. Similar to the proof of TQBF ∈ PSPACE.
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Does PH collapse?
� General belief. Just as many of us believe P ≠ NP (i.e.
∑0 ≠ ∑1) and NP ≠ co-NP (i.e. ∑1 ≠ ∏1), we also
believe that for every i, ∑i ≠ ∑i+1 and ∑i ≠ ∏i .

� Definition. We say PH collapses to the i-th level if
∑i = ∑i+1 . (justified in the next theorem)

� Conjecture. There is no i such that PH collapses to
the i-th level.



Does PH collapse?
� General belief. Just as many of us believe P ≠ NP (i.e.
∑0 ≠ ∑1) and NP ≠ co-NP (i.e. ∑1 ≠ ∏1), we also
believe that for every i, ∑i ≠ ∑i+1 and ∑i ≠ ∏i .

� Definition. We say PH collapses to the i-th level if
∑i = ∑i+1 . (justified in the next theorem)

� Conjecture. There is no i such that PH collapses to
the i-th level.

This is stronger than the P ≠ NP conjecture.
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PH collapse theorems
� Theorem. If ∑i = ∑i+1 then PH = ∑i .
� Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

Goal is to show that ∑i+1 = ∑i+2 .
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� Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+2ui+2 s.t. M(x, u1, …, ui+2) = 1.
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PH collapse theorems
� Theorem. If ∑i = ∑i+1 then PH = ∑i .
� Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

Goal is to show that ∑i+1 = ∑i+2 .

� Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+2ui+2 s.t. M(x, u1, …, ui+2) = 1.

� Also, x ∈ L ∃v’1∀v2 … Qivi s.t. N(x, v’1…, vi) = 1.



PH collapse theorems
� Theorem. If ∑i = ∑i+1 then PH = ∑i .
� Proof. Hence ∑i = ∑i+1 = ∏i = ∏i+1 .

Goal is to show that ∑i+1 = ∑i+2 .

� Let L be a language in ∑i+2 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+2ui+2 s.t. M(x, u1, …, ui+2) = 1.

� Hence, L is a language in ∑i = ∑i+1 .



PH collapse theorems
� Theorem. If ∑i = ∏i then PH = ∑i .



PH collapse theorems
� Theorem. If ∑i = ∏i then PH = ∑i .
� Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .



PH collapse theorems
� Theorem. If ∑i = ∏i then PH = ∑i .
� Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

� Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+1ui+1 s.t. M(x, u1, …, ui+1) = 1.



PH collapse theorems
� Theorem. If ∑i = ∏i then PH = ∑i .
� Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

� Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+1ui+1 s.t. M(x, u1, …, ui+1) = 1.

� Define L’ = {(x, u1):∀u2 … Qi+1ui+1 s.t. M(x, u1, …, ui+1) = 1}



PH collapse theorems
� Theorem. If ∑i = ∏i then PH = ∑i .
� Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

� Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+1ui+1 s.t. M(x, u1, …, ui+1) = 1.

� Clearly, L’ is in ∏i = ∑i .



PH collapse theorems
� Theorem. If ∑i = ∏i then PH = ∑i .
� Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

� Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+1ui+1 s.t. M(x, u1, …, ui+1) = 1.

� Also, x ∈ L ∃u1 s.t. (x, u1) ∈ L’.



PH collapse theorems
� Theorem. If ∑i = ∏i then PH = ∑i .
� Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

� Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+1ui+1 s.t. M(x, u1, …, ui+1) = 1.

� Also, x ∈ L ∃u1 ∃v1∀v2 … Qivi s.t. N(x, u1,v1…, vi) = 1,
where N is a poly-time TM.



PH collapse theorems
� Theorem. If ∑i = ∏i then PH = ∑i .
� Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

� Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+1ui+1 s.t. M(x, u1, …, ui+1) = 1.

� Also, x ∈ L ∃u1 ∃v1∀v2 … Qivi s.t. N(x, u1,v1…, vi) = 1.

Merge the quantifiers



PH collapse theorems
� Theorem. If ∑i = ∏i then PH = ∑i .
� Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

� Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+1ui+1 s.t. M(x, u1, …, ui+1) = 1.

� Also, x ∈ L ∃v’1∀v2 … Qivi s.t. N(x, v’1…, vi) = 1.



PH collapse theorems
� Theorem. If ∑i = ∏i then PH = ∑i .
� Proof. Goal is to show that ∑i = ∏i ∑i = ∑i+1 .

� Let L be a language in ∑i+1 . Then there’s a polynomial
function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qi+1ui+1 s.t. M(x, u1, …, ui+1) = 1.

� Hence, L is a language in ∑i .



Complete problems in PH ?
� Recall, to define completeness of a complexity class,

we need an appropriate notion of a reduction.
� What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

� Is P = PH ? …use poly-time Karp reduction!

� Definition. A language L’ is PH-hard if for every L in
PH, L ≤pL’. Further, if L’ is in PH then L’ is PH-complete.
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� Fact. If L is poly-time reducible to a language in ∑i

then L is in ∑i . (we’ve seen a similar fact for NP)



Complete problems in PH ?
� Fact. If L is poly-time reducible to a language in ∑i

then L is in ∑i . (we’ve seen a similar fact for NP)
� Observation. If PH has a complete problem then PH

collapses.
� Proof. If L is PH-complete then L is in ∑i for some i.

Now use the above fact to infer that PH = ∑i .



Complete problems in PH ?
� Fact. If L is poly-time reducible to a language in ∑i

then L is in ∑i . (we’ve seen a similar fact for NP)
� Corollary. PH ⊊ PSPACE unless PH collapses.
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Complete problems in ∑i
� Recall, to define completeness of a complexity class,

we need an appropriate notion of a reduction.
� What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

� Is P = ∑i ? …use poly-time Karp reduction!

� Definition. A language L’ is ∑i -hard if for every L in ∑i ,
L ≤p L’. Further, if L’ is in ∑i then L’ is ∑i -complete.



Complete problems in ∑i
� Definition. The language ∑i-SAT contains all true QBF

with i alternating quantifiers starting with ∃.

� Theorem. ∑i-SAT is ∑i -complete. (∑1-SAT is just SAT)



Complete problems in ∑i
� Definition. The language ∑i-SAT contains all true QBF

with i alternating quantifiers starting with ∃.

� Theorem. ∑i-SAT is ∑i -complete.
� Proof. Easy to see that ∑i-SAT is in ∑i .

x = ∃v1∀v2 … Qivi ϕ(v1, …, vi) ∈ ∑i-SAT
∃u1∀u2 … Qiui s.t. M(x, u1, …, ui) = 1,

where M outputs ϕ(u1, …, ui).
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Boolean circuit
(by Cook-Levin)



Complete problems in ∑i
� Definition. The language ∑i-SAT contains all true QBF

with i alternating quantifiers starting with ∃.

� Theorem. ∑i-SAT is ∑i -complete.
� Proof. Let L be a language in ∑i . Then there’s a

polynomial function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qiui ϕ(x, u1, …, ui) is true .



Complete problems in ∑i
� Definition. The language ∑i-SAT contains all true QBF

with i alternating quantifiers starting with ∃.

� Theorem. ∑i-SAT is ∑i -complete.
� Proof. Let L be a language in ∑i . Then there’s a

polynomial function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qiui ϕ(x, u1, …, ui) is true .

� Issue: ϕ needn’t be a formula.



Complete problems in ∑i
� Definition. The language ∑i-SAT contains all true QBF

with i alternating quantifiers starting with ∃.

� Theorem. ∑i-SAT is ∑i -complete.
� Proof. Let L be a language in ∑i . Then there’s a

polynomial function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qiui ϕ(x, u1, …, ui) is true .

� Observation. From the proof of the Cook-Levin
theorem, we can assume that ϕ is a CNF (if i is odd)
or a DNF (if i is even). (Homework)



Complete problems in ∑i
� Definition. The language ∑i-SAT contains all true QBF

with i alternating quantifiers starting with ∃.

� Theorem. ∑i-SAT is ∑i -complete.
� Proof. Let L be a language in ∑i . Then there’s a

polynomial function q(.) and a poly-time TM M s.t.
x ∈ L ∃u1∀u2 … Qiui ϕ(x, u1, …, ui) ∈ ∑i-SAT .



Other complete problems in ∑2
� Ref. “Completeness in the Polynomial-Time Hierarchy: A
Compendium” by Schaefer and Umans (2008).

� Theorem. Eq-DNF and Succinct-SetCover are
∑2 -complete.



An alternate characterization of PH



Oracle definition of ∑i
� Definition. A language L is in NP if there is a poly-

time NTM with oracle access to ∑i-SAT that decides L.

� Theorem. ∑i+1 = NP .
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Oracle definition of ∑i
� Definition. A language L is in NP if there is a poly-

time NTM with oracle access to ∑i-SAT that decides L.

� Theorem. ∑i+1 = NP .

� Observe that ∑1-SAT = SAT. We’ll prove the special
case ∑2 = NPSAT. The proof of the theorem is similar.

∑i-SAT

∑i-SAT



Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in ∑2. There’s a polynomial

function q(.) and a poly-time TM M s.t.
x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. M(x,u,v) = 1.
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� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in ∑2. There’s a polynomial

function q(.) and a poly-time TM M s.t.
x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. ϕ(x,u,v) = 1.

� In fact, owing to the proof of the Cook-Levin
theorem, we can assume that ϕ is a DNF.

Boolean circuit
(by Cook-Levin)



Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in ∑2. There’s a polynomial

function q(.) and a poly-time TM M s.t.
x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. ¬ϕ(x,u,v) = 0.

� Think of a NTM N that has the knowledge of M. On
input x, it guesses u ∈ {0,1}q(|x|) non-deterministically
and computes the circuit ϕ(x,u,v). Then, it queries the
SAT oracle with ¬ϕ(x,u,v).
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� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in ∑2. There’s a polynomial

function q(.) and a poly-time TM M s.t.
x ∈ L ∃u ∈ {0,1}q(|x|) ∀v ∈ {0,1}q(|x|) s.t. ¬ϕ(x,u,v) = 0.

� Think of a NTM N that has the knowledge of M. On
input x, it guesses u ∈ {0,1}q(|x|) non-deterministically
and computes the circuit ϕ(x,u,v). Then, it queries the
SAT oracle with ¬ϕ(x,u,v).

� Note that ¬ϕ(x,u,v) is a CNF.
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that decides L with oracle access to SAT.
� Special case: N asks at most one query to the SAT

oracle on every computation path on input x.
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� Proof. Let L be a language in NPSAT. There’s a NTM N

that decides L with oracle access to SAT.
� Special case: N asks at most one query to the SAT

oracle on every computation path on input x.
� We need to construct a ∑2-statement that captures

N’s computation on input x.
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� Think of a TM M that takes input x and w ∈ {0,1}q(|x|),

a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:
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� M simulates N on input x with w as the non-
deterministic choices.



Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in NPSAT. There’s a NTM N

that decides L with oracle access to SAT.
� Special case: N asks at most one query to the SAT

oracle on every computation path on input x.
� Think of a TM M that takes input x and w ∈ {0,1}q(|x|),

a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:

� M simulates N on input x with w as the computation
path. Suppose ϕ is the query asked by N on the path
of computation defined by w.



Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in NPSAT. There’s a NTM N

that decides L with oracle access to SAT.
� Special case: N asks at most one query to the SAT

oracle on every computation path on input x.
� Think of a TM M that takes input x and w ∈ {0,1}q(|x|),

a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:

Ø If a1 = 1 and ϕ(u1) = 1, M continues the simulation;
else it stops and outputs 0. (In this case, M ignores v1.)



Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in NPSAT. There’s a NTM N

that decides L with oracle access to SAT.
� Special case: N asks at most one query to the SAT

oracle on every computation path on input x.
� Think of a TM M that takes input x and w ∈ {0,1}q(|x|),

a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:

Ø If a1 = 0 and ϕ(v1) = 0, M continues the simulation;
else it stops and outputs 0. (In this case, M ignores u1.)



Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in NPSAT. There’s a NTM N

that decides L with oracle access to SAT.
� Special case: N asks at most one query to the SAT

oracle on every computation path on input x.
� Think of a TM M that takes input x and w ∈ {0,1}q(|x|),

a1∈ {0,1} and u1, v1∈ {0,1}q(|x|), where q(|x|) is the
runtime of N on input x, and does the following:

� At the end of the simulation, M outputs whatever N
outputs. Note: M is a poly-time TM.



Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in NPSAT. There’s a NTM N

that decides L with oracle access to SAT.
� Special case: N asks at most one query to the SAT

oracle on every computation path on input x.
� Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},
Ø N on computation path w gets answer a1 from the

SAT oracle and accepts x
∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

(…will prove the observation shortly. Let’s finish the proof.)



Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in NPSAT. There’s a NTM N

that decides L with oracle access to SAT.
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oracle on every computation path on input x.
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Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in NPSAT. There’s a NTM N

that decides L with oracle access to SAT.
� Special case: N asks at most one query to the SAT

oracle on every computation path on input x.
� x ∈ L ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t
Ø N on computation path w gets answer a1 from the

SAT oracle and accepts x ∃w ∈ {0,1}q(|x|) , a1∈ {0,1}

∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

Call it u



Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in NPSAT. There’s a NTM N

that decides L with oracle access to SAT.
� Special case: N asks at most one query to the SAT

oracle on every computation path on input x.
� x ∈ L ∃w ∈ {0,1}q(|x|) , a1∈ {0,1} s.t
Ø N on computation path w gets answer a1 from the

SAT oracle and accepts x
∃u ∈ {0,1}2q(|x|)+1 ∀v1 ∈ {0,1}q(|x|) s.t. M(x,u,v1) = 1.

� Therefore, L is in ∑2 .



Proof of the observation
� Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},
Ø N on computation path w gets answer a1 from the

SAT oracle and accepts x
∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.( ) M simulates N on computation path w.
Let ϕ be the query asked by N to SAT.

• If a1 = 1, ∃u1 ∈ {0,1}q(|x|) ϕ(u1) = 1 and N accepts x.



Proof of the observation
� Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},
Ø N on computation path w gets answer a1 from the

SAT oracle and accepts x
∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.( ) M simulates N on computation path w.
Let ϕ be the query asked by N to SAT.

• If a1 = 1, ∃u1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

In this case, M ignores v1.



Proof of the observation
� Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},
Ø N on computation path w gets answer a1 from the

SAT oracle and accepts x
∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.( ) M simulates N on computation path w.
Let ϕ be the query asked by N to SAT.

• If a1 = 0,∀v1 ∈ {0,1}q(|x|) ϕ(v1) = 0 and N accepts x.



Proof of the observation
� Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},
Ø N on computation path w gets answer a1 from the

SAT oracle and accepts x
∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.( ) M simulates N on computation path w.
Let ϕ be the query asked by N to SAT.

• If a1 = 0,∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

In this case, M ignores u1.



Proof of the observation
� Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},
Ø N on computation path w gets answer a1 from the

SAT oracle and accepts x
∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.( ) M simulates N on computation path w.
Let ϕ be the query asked by N to SAT.

• Irrespective of the value of a1,
∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.



Proof of the observation
� Observation. For any w ∈ {0,1}q(|x|) and a1∈ {0,1},
Ø N on computation path w gets answer a1 from the

SAT oracle and accepts x
∃u1 ∈ {0,1}q(|x|) ∀v1 ∈ {0,1}q(|x|) s.t. M(x,w, a1,u1,v1) = 1.

• Proof.( ) Need to show that N on computation
path w gets answer a1 from the SAT oracle.
(Homework)



Oracle definition of ∑i
� Theorem.∑2 = NPSAT .
� Proof. Let L be a language in NPSAT. There’s a NTM N

that decides L with oracle access to SAT.
� General case: N asks at most q(|x|) queries to SAT

oracle on every computation path on input x.
� Homework: Prove the general case. Define the poly-

time machine M appropriately.



Oracles versus efficient algorithms
� Definition. A language L is in PSAT if there is a poly-

time TM with oracle access to SAT that decides L.
� ∆2 := PSAT ⊆ ∑2∩ ∏2 .
� A SAT oracle gives us the ability to solve SAT

efficiently “much like” a poly-time algorithm for SAT.
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� Yet, in the first case we believe PSAT ≠ NPSAT,
(otherwise, PH collapses to ∑2)
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� Yet, in the first case we believe PSAT ≠ NPSAT, whereas
in the second case PH collapses to P, i.e., PSAT= NPSAT.



Oracles versus efficient algorithms
� Definition. A language L is in PSAT if there is a poly-

time TM with oracle access to SAT that decides L.
� ∆2 := PSAT ⊆ ∑2∩ ∏2 .
� A SAT oracle gives us the ability to solve SAT

efficiently “much like” a poly-time algorithm for SAT.

� Yet, in the first case we believe PSAT ≠ NPSAT, whereas
in the second case PH collapses to P, i.e., PSAT= NPSAT.

� Why? Think to understand the difference between
oracles and poly-time algorithms for SAT (Homework).


