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Recap: Randomized reduction
� Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

Pr [L1(x) = L2(M(x))] ≥ 2/3.

� For arbitrary L1 and L2, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive. However,

� Obs. If L1 ≤r L2 and L2 ∈ BPP, then L1 ∈ BPP.



Recap: Randomized reduction
� Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

Pr [L1(x) = L2(M(x))] ≥ 2/3.

� Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

� Proof idea. BPP error reduction trick + Cook-Levin.



Recap: Randomized reduction
� Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

Pr [L1(x) = L2(M(x))] ≥ 2/3.

� Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

� Recall, NP = {L : L ≤p SAT}. It makes sense to define a
similar class using randomized poly-time reduction.



Recap: Class BP.NP
� Definition. We say a L1 reduces to a L2 in randomized
polynomial-time, denoted L1 ≤r L2, if there’s a poly-
time PTM M s.t. for every x ∈ {0,1}*

Pr [L1(x) = L2(M(x))] ≥ 2/3.

� Obs. If L2 = SAT, then we can boost the success
probability from ½ + |x|-c to 1 – exp(-|x|d).

� Definition. BP.NP = {L : L ≤r SAT}.
� Class BP.NP is also known as AM (Arthur-Merlin
protocol) in the literature.



Recap: Class BP.NP
� Definition. BP.NP = {L : L ≤r SAT}.
� Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP

= NP ? Many believe that the answer is “yes”.

� Theorem. If certain reasonable circuit lower bounds
hold, then BP.NP = NP.

� Proof idea. Similar to Nisan & Wigderson’s conditional
BPP = P result.



Recap: Class BP.NP
� Definition. BP.NP = {L : L ≤r SAT}.
� Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP

= NP ? Many believe that the answer is “yes”.

� We may further ask:
1. Is BP.NP in PH? Recall, BPP is in PH.

2. Is SAT ∈ BP.NP? Recall, if SAT ∈ BPP then PH
collapses. (SAT ∈ BP.NP as NP ⊆ BP.NP .)



Recap: Class BP.NP
� Definition. BP.NP = {L : L ≤r SAT}.

� Theorem. BP.NP is in ∑3. (In fact, BP.NP is in ∏2.)
� Proof idea. Similar to the Sipser-Gacs-Lautemann

theorem.

� Wondering if BP.NP ⊆ ∏2 implies BP.NP ⊆ ∑2 ? Is
BP.NP = co-BP.NP ? (Recall, BPP = co-BPP).

� If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next
theorem shows that this would lead to PH collapse.



Recap: Class BP.NP
� Definition. BP.NP = {L : L ≤r SAT}.

� Theorem. If SAT ∈ BP.NP then PH = ∑3 (in fact, PH =
∑2).

� Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem.



Recap: Class BP.NP
� Definition. BP.NP = {L : L ≤r SAT}.

� Theorem. If SAT ∈ BP.NP then PH = ∑2.

� We would use the above theorem to show that if GI
is NP-complete then PH collapses.

� Thus, even without designing an efficient algorithm
for GI, we know GI is unlikely to be NP-complete!



Recap: Class BP.NP
� Definition. BP.NP = {L : L ≤r SAT}.

� Theorem. If SAT ∈ BP.NP then PH = ∑2.

� We would use the above theorem to show that if GI
is NP-complete then PH collapses.

� Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad,
Zachos ‘87) GNI ∈ BP.NP.



Recap: Class BP.NP
� Definition. BP.NP = {L : L ≤r SAT}.

� Theorem. If SAT ∈ BP.NP then PH = ∑2.

� We would use the above theorem to show that if GI
is NP-complete then PH collapses.

� Theorem. (Goldwasser-Sipser ‘87, Boppana, Hastad,
Zachos ‘87) GNI ∈ BP.NP.

� If GI is NP-complete then GNI is co-NP-complete. If
so, then the above two theorems imply PH = ∑2.



Recap: GI in Quasi-P

� Theorem. (Babai 2015) There’s a deterministic
exp(O((log n)3)) time algorithm to solve the graph
isomorphism problem.



Recap: Graph Non-isomorphism
� Definition. Let G1 and G2 be two undirected graphs

on n vertices. Identify the vertices with [n]. We say
G1 is isomorphic to G2, denoted G1 ≅ G2, if there’s a
bijection/permutation 𝞹:[n] [n] s.t. for all u, v ∈ [n],
(u,v) is an edge in G1 if and only if (𝞹(u),𝞹(v)) is an
edge in G2.

� Definition. GNI = {(G1, G2) : G1 ≇ G2}.

� Clearly, GNI ∈ co-NP, it is not known if GNI ∈ NP.



Recap: GNI is in BP.NP
� The idea.
1. Step 1: Let x = (G1, G2). Associate a set Sx with

(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.
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(G1, G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

2. Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.



Recap: GNI is in BP.NP
� Step 1: Let x = (G1, G2). Associate a set Sx with (G1,

G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

� Defn. Aut(G) = {bijection 𝞹:[n] [n] : 𝞹(G) = G}.

G
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Permutation  𝞹 = (1,3,2) is in Aut(G).



Recap: GNI is in BP.NP
� Step 1: Let x = (G1, G2). Associate a set Sx with (G1,

G2) s.t. |Sx| is “large” (2n!) if G1 ≇ G2, and |Sx| is
“small” (n!) if G1 ≅ G2. Elements of Sx can be
represented using m = nO(1) bits. Furthermore,
membership in Sx can be certified in mO(1) = nO(1) time.

� Defn. Aut(G) = {bijection 𝞹:[n] [n] : 𝞹(G) = G}.

� Let Sx = {(H,𝞹): H ≅ G1 or H ≅ G2 and 𝞹 ∈Aut(H)}.

� Obs. Sx satisfies the properties stated in Step 1.



Recap: GNI is in BP.NP
� Step 2: Devise a randomized poly-time reduction

that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.



Recap: GNI is in BP.NP
� Step 2: Devise a randomized poly-time reduction

that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

� Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|)



Recap: GNI is in BP.NP
� Step 2: Devise a randomized poly-time reduction

that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

� Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. Uses Goldwasser-Sipser set lower bound
protocol. We’ll see the proof today.



Recap: GNI is in BP.NP
� Step 2: Devise a randomized poly-time reduction

that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

� Lemma *. There’s a poly-time TM M that takes input x
= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

We can think of M’s computation as a Boolean circuit 𝜓x,r(y), which can be computed 
in randomized |x|O(1) time by fixing x and picking r∈{0,1}q(n) randomly.       Cook-Levin



Recap: GNI is in BP.NP
� Step 2: Devise a randomized poly-time reduction

that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

� Corollary. There’s randomized poly-time reduction
that maps x to a Boolean circuit 𝜓x,r s.t.
|Sx| = 2n! (large) Prr [𝜓x,r(y) is satisfiable] ≥ 2/3
|Sx| = n! (small) Prr [𝜓x,r(y) is unsatisfiable] ≥ 2/3.



Recap: GNI is in BP.NP
� Step 2: Devise a randomized poly-time reduction

that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

� Corollary. There’s randomized poly-time reduction
that maps x to a CNF ϕx,r s.t.
|Sx| = 2n! (large) Prr [ϕx,r(z) is satisfiable] ≥ 2/3
|Sx| = n! (small) Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3.

ϕx,r is a CNF and z = y + auxiliary variables.    
Cook-Levin



Recap: GNI is in BP.NP
� Step 2: Devise a randomized poly-time reduction

that maps x to a CNF ϕx,r s.t. over the randomness
of r, ϕx,r is satisfiable w.h.p if Sx is “large” and
unsatisfiable w.h.p if Sx is “small”.

� Corollary. There’s randomized poly-time reduction
that maps x to a CNF ϕx,r s.t.
|Sx| = 2n! (large) Prr [ϕx,r(z) is satisfiable] ≥ 2/3
|Sx| = n! (small) Prr [ϕx,r(z) is unsatisfiable] ≥ 2/3.

� Hence, GNI is in BP.NP. It remains to prove Lemma *.



Set lower bound protocol



Set lower bound protocol
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

r ∈ {0,1}q(|x|) y ∈ {0,1}q(|x|)



Set lower bound protocol
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

The value of k will be 
fixed in the analysis.
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� Lemma *. There’s a poly-time TM M that takes input x
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|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.
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functions that map m-bit strings to k-bit strings for
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� Let t = nO(1) be sufficiently large. M interprets r as
(i1,i2,…,it), where i1,…, it are indices of hash functions
in H.



Set lower bound protocol
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

� Let t = nO(1) be sufficiently large. M interprets r as
(i1,i2,…,it), where i1,…, it are indices of hash functions
in H.

|r| = nO(1).



Set lower bound protocol
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

� M interprets y as ((u1,c1), (u2,c2),…, (ut,ct)), where
u1,…, ut are m-bit strings, and cp is an alleged
certificate of up’s membership in Sx for every p ∈ [t].

|y| = nO(1).



Set lower bound protocol
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

� For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = 0k.ip

Recall, membership in Sx can be efficiently certified.
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If yes, M checks if h (up) = 0k. If sufficiently many (say,
t*) of these checks pass, M outputs 1, else it o/ps 0.

ip
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� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
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an appropriate k. Recall, m = size of an element in Sx.

� For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = 0k. If sufficiently many (say,
t*) of these checks pass, M outputs 1, else it o/ps 0.
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large.

ip



Set lower bound protocol
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof idea. Let H = {hi} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in Sx.

� For every p ∈ [t]: M uses cp & x to check if up ∈ Sx.
If yes, M checks if h (up) = 0k. If sufficiently many (say,
t*) of these checks pass, M outputs 1, else it o/ps 0.
Intuitively, ∃y s.t. t* of the checks pass iff Sx is large.

ip

??



Pairwise independent hash functions
� Definition. A family Hm,k of (hash) functions from

{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

Pr [h(x) = y and h(x’) = y’] = 2-2k.h ∈r Hm,k



Pairwise independent hash functions
� Definition. A family Hm,k of (hash) functions from

{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

Pr [h(x) = y and h(x’) = y’] = 2-2k.

� Obs. Let Hm,k be a pairwise independent hash
function family. For every x ∈ {0,1}m and y∈ {0,1}k,

Pr [h(x) = y] = 2-k.

h ∈r Hm,k

h ∈r Hm,k



Pairwise independent hash functions
� Definition. A family Hm,k of (hash) functions from
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Pairwise independent hash functions
� Definition. A family Hm,k of (hash) functions from

{0,1}m to {0,1}k is pairwise independent if for every
distinct x, x’ ∈ {0,1}m and for every y, y’ ∈ {0,1}k,

Pr [h(x) = y and h(x’) = y’] = 2-2k.
= Pr [h(x) = y] . Pr [h(x’) = y’] .

� Example. Let ℓ > 0 and F be the finite field of size 2ℓ.
We can identify F with {0,1}ℓ as elements of F are ℓ-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, Hℓ,ℓ= {ha,b : a,b
∈ F} is a pairwise independent hash family.

h ∈r Hm,k

h ∈r Hm,k h ∈r Hm,k



Pairwise independent hash functions
� Example. Let ℓ > 0 and F be the finite field of size 2ℓ.

We can identify F with {0,1}ℓ as elements of F are ℓ-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, Hℓ,ℓ= {ha,b : a,b
∈ F} is a pairwise independent hash family.

� Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F. Then,
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’)
and b = (xy’ – x’y)/(x-x’).



Pairwise independent hash functions
� Example. Let ℓ > 0 and F be the finite field of size 2ℓ.

We can identify F with {0,1}ℓ as elements of F are ℓ-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, Hℓ,ℓ= {ha,b : a,b
∈ F} is a pairwise independent hash family.

� Proof. Let x, x’ ∈ F be distinct and y, y’ ∈ F. Then,
ha,b(x) = y & ha,b(x’) = y’ if and only if a = (y–y’)/(x-x’)
and b = (xy’ – x’y)/(x-x’).Therefore,

Pr [ha,b(x) = y & ha,b(x’) = y’]
= Pr [a = (y–y’)/(x-x’) & b = (xy’ – x’y)/(x-x’)]
= 2-2ℓ (as a and b are independently chosen).

a,b ∈r F 

a,b ∈r F 



Pairwise independent hash functions
� Example. Let ℓ > 0 and F be the finite field of size 2ℓ.

We can identify F with {0,1}ℓ as elements of F are ℓ-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, Hℓ,ℓ= {ha,b : a,b
∈ F} is a pairwise independent hash family.

� Obs. If m ≥ k, then we can construct a pairwise
independent Hm,k by considering Hm,m as above.
Truncate the output of a function to the first k bits.

(Homework)



Pairwise independent hash functions
� Example. Let ℓ > 0 and F be the finite field of size 2ℓ.

We can identify F with {0,1}ℓ as elements of F are ℓ-
bit strings. For a, b ∈ F, define the function ha,b as
ha,b(x) = ax + b for every x ∈ F. Then, Hℓ,ℓ= {ha,b : a,b
∈ F} is a pairwise independent hash family.

� Obs. If m ≤ k, then we can construct a pairwise
independent Hm,k by considering Hk,k as above.
Generate k-bit i/p for a function by padding with 0.

(Homework)



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. Let Hm,k be a family of pairwise independent
hash functions.



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. Let Hm,k be a family of pairwise independent
hash functions. Recall, r = (i1, i2, …, it), where i1,…, it
are indices of functions in Hm,k.



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. Let Hm,k be a family of pairwise independent
hash functions. Recall, r = (i1, i2, …, it), where i1,…, it
are indices of functions in Hm,k. Also, y = ((u1,c1),
(u2,c2),…, (ut,ct)), where u1,…, ut ∈ {0,1}m, and cp is an
alleged certificate of up’s membership in Sx for every
p ∈ [t].



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� For a fixed p, what is the probability (over the
randomness of ip) there’s a up ∈ Sx s.t. h (up)=0k?
We’ll upper & lower bound this probability.

ip

ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� Simplifying notations. As p is fixed, let h = h and up =
u.

ip

ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� Upper bound. Prh [∃u ∈ Sx s.t. h(u) = 0k] ≤ |Sx|/2k.
� As Hm,k is pairwise independent, for every u∈{0,1}m,

Prh [h(u) = 0k] = 2-k.

ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� Lower bound.
Prh [∃u ∈ Sx s.t. h(u) = 0k]

≥ ∑ Prh [h(u) = 0k] - ∑ Prh [h(u) = 0k & h(u’) = 0k]

ip

u ∈ Sx u,u’ ∈ Sx
u ≠ u’ (by inclusion-exclusion principle)



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� Lower bound.
Prh [∃u ∈ Sx s.t. h(u) = 0k]

≥ |Sx|/2k - |Sx|2 / 22k+1.

ip

(as Hm,k is pairwise independent)



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� Lower bound.
Prh [∃u ∈ Sx s.t. h(u) = 0k]

≥ |Sx|/2k . (1 - |Sx|/2k+1).

ip

(as Hm,k is pairwise independent)



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� If |Sx| = n! then (by the upper bound)
Prh [∃u ∈ Sx s.t. h(u) = 0k] ≤ n!/2k .

ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� If |Sx| = n! then (by the upper bound)
Prh [∃u ∈ Sx s.t. h(u) = 0k] ≤ n!/2k . Hence,

� Expr [ |{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| ] ≤ t. n!/2k.

ip

ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� Choosing k. Fix k s.t. 2k-2 < 2n! ≤ 2k-1.
� If |Sx| = 2n! then (by the lower bound)

Prh [∃u ∈ Sx s.t. h(u) = 0k] ≥ |Sx|/2k . (1- |Sx|/2k+1)
≥ |Sx|/2k .¾ = 3/2. n!/2k

ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� Choosing k. Fix k s.t. 2k-2 < 2n! ≤ 2k-1.
� If |Sx| = 2n! then (by the lower bound)

Prh [∃u ∈ Sx s.t. h(u) = 0k] ≥ 3/2 . n!/2k . Hence,
� Expr [ |{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| ] ≥ 3/2 . t . n!/2k.

ip

ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� If |Sx| = 2n! then
Expr [ |{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| ] ≥ 3/2 . t . n!/2k.

� If |Sx| = n! then
Expr [ |{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| ] ≤ t. n!/2k.

ip

ip

ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� If |Sx| = 2n! then
Expr [ |{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| ] ≥ 3/2 . t . n!/2k.

� If |Sx| = n! then
Expr [ |{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| ] ≤ t. n!/2k.

ip

ip

ip

gap



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k.

� If |Sx| = 2n!, by Chernoff bd. & n!/2k∈ [1/8,1/4],
Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| ≥ 1.4. t. n!/2k] ≥ 2/3.

� If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4]
Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| < 1.4. t. n!/2k] ≥ 2/3.

ip

ip

ip

(Easy homework)



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k. t* = 1.4. t. n!/2k

� If |Sx| = 2n!, by Chernoff bd. & n!/2k∈ [1/8,1/4],
Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| ≥ 1.4. t. n!/2k] ≥ 2/3.

� If |Sx| = n!, by Chernoff/Markov bd. & n!/2k∈[1/8,1/4]
Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| < 1.4. t. n!/2k] ≥ 2/3.

ip

ip

ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k. t* = 1.4. t. n!/2k

� If |Sx| = 2n! then
Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| ≥ t*] ≥ 2/3.

� If |Sx| = n! then
Prr [|{p∈[t] : ∃up∈ Sx s.t. h (up) = 0k}| < t*] ≥ 2/3.

ip

ip

ip



Set lower bound protocol (contd.)
� Lemma *. There’s a poly-time TM M that takes input x

= (G1, G2), y & r, and a polynomial function q(.) s.t.
|Sx| = 2n! (large) Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3
|Sx| = n! (small) Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

� Proof. For every p ∈ [t]: M uses cp & x to check if up
∈ Sx. If yes, M checks if h (up) = 0k. t* = 1.4. t. n!/2k

� If |Sx| = 2n! then
Prr [∃y s.t. M(x, y, r) = 1] ≥ 2/3.

� If |Sx| = n! then
Prr [∀y s.t. M(x, y, r) = 0] ≥ 2/3.

ip



Complexity of Counting



Natural counting problems 
� What is the complexity of the following problems?

� #SAT: Count the number of satisfying assignments of a
given Boolean circuit/CNF.

� #HAMCYCLE: Count the number of Hamiltonian
cycles in an undirected graph.

� Observation.The above problems are NP-hard.



Natural counting problems 
� What is the complexity of the following problems?

� #PerfectMatching: Count the number of perfect
matchings in a bipartite graph.

� #CYCLE: Count the number of simple cycles in a
directed graph.

� Observation. The corresponding decision problems
are in P.



Natural counting problems 
� What is the complexity of the following problems?

� #PATH: Count the number of simple paths between
two vertices in a connected graph.

� #SPANTREE: Count the number of spanning trees in a
connected graph.

� Observation. The corresponding decision problems
are trivial.



An easy counting problem
� Theorem. (Kirchhoff 1847) #SPANTREE is in FP.



An easy counting problem
� Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

� Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {1,…, n}.

� Definition. The Laplacian matrix of G is an n x n matrix
LG defined as

LG(i,j) = deg(i) if i = j,
= -1 if there’s an edge (i,j) in G,
= 0 otherwise.



An easy counting problem
� Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

� Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {1,…, n}.

� Definition. The Laplacian matrix of G is an n x n matrix
LG defined as LG = DG – AG, where DG is the degree
matrix and AG the adjacency matrix of G.

� Observation. It is easy to compute LG from AG.



An easy counting problem
� Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

� Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {1,…, n}.

� Kirchhoff ’s matrix-tree theorem states that
no. of spanning trees of G = any cofactor of LG.

� (i,j) cofactor of L = (-1)i+j . det(submatrix of L obtained
by deleting the i-th row and the j-th column from L).



An easy counting problem
� Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

� Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {1,…, n}.

� Kirchhoff ’s matrix-tree theorem states that
no. of spanning trees of G = any cofactor of LG.

� Corollary. As determinant computation is in
(functional) NC, #SPANTREES is in (functional) NC.



A hard counting problem
� Theorem. #CYCLE is in NP-hard.

� Lesson. A counting problem can be hard even if the
corresponding decision problem is in P.



A hard counting problem
� Theorem. #CYCLE is in NP-hard.

� Proof. We will give a poly-time reduction from the
Hamiltonian cycle problem to the #CYCLE problem.



A hard counting problem
� Theorem. #CYCLE is in NP-hard.

� Proof. Let G be an n-vertex digraph. We’ll efficiently
construct a new graph G’ from G s.t. the presence of
a Hamiltonian cycle in G can be readily derived from
the number of cycles in G’. Construction of G’ :

i j

An edge in G

replace

with
…i j

m layersG G’



A hard counting problem
� Theorem. #CYCLE is in NP-hard.

� Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn.

i j

An edge in G

replace

with
…i j

m layersG G’

#cycle no. of cycles



A hard counting problem
� Theorem. #CYCLE is in NP-hard.

� Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn.
� Case2: If G has no HC, then #cycle(G) ≤ nn-1

#cycle(G’) ≤ nn-1.2m(n-1) .

i j

An edge in G

replace

with
…i j

m layersG G’



A hard counting problem
� Theorem. #CYCLE is in NP-hard.

� Proof. Case1: If G has a HC, then #cycle(G’) ≥ 2mn.
� Case2: If G has no HC, then #cycle(G) ≤ nn-1

#cycle(G’) ≤ nn-1.2m(n-1) .

� If we choose m such that nn-1.2m(n-1) < 2mn , then we
can find out if G has a HC from #cycle(G’).

� Set m = n2.



Class #P
� Definition. We say a function f: {0,1}* is in #P if

there’s a poly-time TM M and a polynomial function p:
such that for every x ∈ {0,1}*,

f(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .



Class #P
� Definition. We say a function f: {0,1}* is in #P if

there’s a poly-time TM M and a polynomial function p:
such that for every x ∈ {0,1}*,

f(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .

� Observation. Problems #SAT, #HAMCYCLE,
#PerfectMatching, #CYCLE, #PATH and #SPANTREE
are in #P.

� In fact, with every language in NP we can associate a
counting problem that is in #P.



#P-completeness
� Recall, to define completeness of a complexity class,

we need an appropriate notion of a reduction.
� What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

� Is #P = FP ?



#P-completeness
� Definition. A function f: {0,1}* is in #P-complete

if f is in #P and for every g ∈ #P, we have g ∈ FPf i.e., g
is poly-time Cook/Turing reducible to f.

� In other words, for every x ∈ {0,1}*, we can compute
g(x) in polynomial time using oracle access to f.


