Computational Complexity Theory

Lecture 18: Set lower bound protocol;
Complexity of Counting:
class #P; #P-completeness

Department of Computer Science, Indian Institute of Science

Recap: Randomized reduction

$$Pr[L_1(x) = L_2(M(x))] \ge 2/3.$$

- For arbitrary L_1 and L_2 , we may not be able to boost the success probability 2/3, and so, the above kind of reductions **needn't be transitive**. However,
- Obs. If $L_1 \le_r L_2$ and $L_2 \in BPP$, then $L_1 \in BPP$.

Recap: Randomized reduction

$$Pr[L_1(x) = L_2(M(x))] \ge 2/3.$$

- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |x|^{-c}$ to $|-exp(-|x|^d)$.
- Proof idea. BPP error reduction trick + Cook-Levin.

Recap: Randomized reduction

$$Pr[L_1(x) = L_2(M(x))] \ge 2/3.$$

- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |x|^{-c}$ to $|-exp(-|x|^d)$.
- Recall, $NP = \{L : L \leq_p SAT\}$. It makes sense to define a similar class using randomized poly-time reduction.

$$Pr[L_1(x) = L_2(M(x))] \ge 2/3.$$

- Obs. If $L_2 = SAT$, then we can boost the success probability from $\frac{1}{2} + |x|^{-c}$ to $|-exp(-|x|^d)$.
- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Class BP.NP is also known as AM (Arthur-Merlin protocol) in the literature.

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ? Many believe that the answer is "yes".
- Theorem. If certain reasonable circuit lower bounds hold, then BP.NP = NP.
- Proof idea. Similar to Nisan & Wigderson's conditional
 BPP = P result.

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Observe that NP ⊆ BP.NP and BPP ⊆ BP.NP. Is BP.NP
 = NP ? Many believe that the answer is "yes".

- We may further ask:
- I. Is BP.NP in PH? Recall, BPP is in PH.
- 2. Is SAT \in BP.NP? Recall, if SAT \in BPP then PH collapses. (SAT \in BP.NP as NP \subseteq BP.NP.)

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. BP.NP is in \sum_3 . (In fact, BP.NP is in \prod_2 .)
- Proof idea. Similar to the Sipser-Gacs-Lautemann theorem.

- Wondering if BP.NP $\subseteq \prod_2$ implies BP.NP $\subseteq \sum_2$? Is BP.NP = co-BP.NP? (Recall, BPP = co-BPP).
- If BP.NP = co-BP.NP then co-NP ⊆ BP.NP. The next theorem shows that this would lead to PH collapse.

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. If $\overline{SAT} \in BP.NP$ then $PH = \sum_3$ (in fact, $PH = \sum_2$).
- Proof idea. Similar to Adleman's theorem + Karp-Lipton theorem.

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. If $\overline{\mathsf{SAT}} \in \mathsf{BP.NP}$ then $\mathsf{PH} = \sum_2$.

- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Thus, even without designing an efficient algorithm for GI, we know GI is unlikely to be NP-complete!

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. If $\overline{\mathsf{SAT}} \in \mathsf{BP.NP}$ then $\mathsf{PH} = \sum_2$.
- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Theorem. (Goldwasser-Sipser '87, Boppana, Hastad, Zachos '87) GNI ∈ BP.NP.

- Definition. BP.NP = $\{L : L \leq_r SAT\}$.
- Theorem. If $\overline{\mathsf{SAT}} \in \mathsf{BP.NP}$ then $\mathsf{PH} = \sum_2$.
- We would use the above theorem to show that if GI is NP-complete then PH collapses.
- Theorem. (Goldwasser-Sipser '87, Boppana, Hastad, Zachos '87) GNI ∈ BP.NP.
- If GI is NP-complete then GNI is co-NP-complete. If so, then the above two theorems imply PH = \sum_2 .

Recap: GI in Quasi-P

• Theorem. (Babai 2015) There's a deterministic $\exp(O((\log n)^3))$ time algorithm to solve the graph isomorphism problem.

Recap: Graph Non-isomorphism

• Definition. Let G_1 and G_2 be two undirected graphs on n vertices. Identify the vertices with [n]. We say G_1 is <u>isomorphic</u> to G_2 , denoted $G_1 \cong G_2$, if there's a bijection/permutation $\pi:[n] \to [n]$ s.t. for all $u, v \in [n]$, (u,v) is an edge in G_1 if and only if $(\pi(u),\pi(v))$ is an edge in G_2 .

- Definition. GNI = $\{(G_1, G_2) : G_1 \ncong G_2\}$.
- Clearly, GNI \in co-NP, it is not known if GNI \in NP.

- The idea.
- **I.** Step I: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \not\cong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.

- The idea.
- 1. **Step I**: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \not\cong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be <u>certified</u> in $m^{O(1)} = n^{O(1)}$ time.
- 2. **Step 2:** Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".

- **Step I**: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \not\cong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be <u>certified</u> in $m^{O(1)} = n^{O(1)}$ time.
- Defn. Aut(G) = {bijection π :[n] \rightarrow [n] : π (G) = G}.

Permutation $\pi = (1,3,2)$ is in Aut(G).

- **Step I**: Let $x = (G_1, G_2)$. Associate a set S_x with (G_1, G_2) s.t. $|S_x|$ is "large" (2n!) if $G_1 \not\cong G_2$, and $|S_x|$ is "small" (n!) if $G_1 \cong G_2$. Elements of S_x can be represented using $m = n^{O(1)}$ bits. Furthermore, membership in S_x can be certified in $m^{O(1)} = n^{O(1)}$ time.
- Defn. Aut(G) = {bijection π :[n] \rightarrow [n] : π (G) = G}.
- Let $S_x = \{(H, \pi): H \cong G_1 \text{ or } H \cong G_2 \text{ and } \pi \in Aut(H)\}.$
- Obs. S_x satisfies the properties stated in Step 1.

• **Step 2:** Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\varphi_{x,r}$ s.t. over the randomness of r, $\varphi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".

- **Step 2:** Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t.

```
|S_x| = 2n! (large) \Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] <math>\geq 2/3

|S_x| = n! (small) \Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] <math>\geq 2/3.
```

$$r \in \{0,1\}^{q(|x|)}$$
 $y \in \{0,1\}^{q(|x|)}$

- **Step 2:** Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2), y \& r, and a polynomial function <math>q(.)$ s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof. Uses Goldwasser-Sipser set lower bound protocol. We'll see the proof today.

- **Step 2:** Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t.

```
|S_x| = 2n! (large) \rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] <math>\geq 2/3

|S_x| = n! (small) \rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] <math>\geq 2/3.
```

We can think of M's computation as a Boolean circuit $\psi_{x,r}(y)$, which can be computed in randomized $|x|^{O(1)}$ time by fixing x and picking $r \in \{0,1\}^{q(n)}$ randomly. Cook-Levin

- **Step 2:** Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Corollary. There's <u>randomized</u> poly-time reduction that maps x to a Boolean circuit $\psi_{x,r}$ s.t.

```
|S_x| = 2n! (large) \Rightarrow Pr_r[\psi_{x,r}(y) \text{ is satisfiable}] \ge 2/3
|S_x| = n! (small) \Rightarrow Pr_r[\psi_{x,r}(y) \text{ is unsatisfiable}] \ge 2/3.
```

- **Step 2:** Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Corollary. There's <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t.

```
|S_x| = 2n! (large) \Rightarrow Pr_r[\phi_{x,r}(z) \text{ is satisfiable}] \ge 2/3
|S_x| = n! (small) \Rightarrow Pr_r[\phi_{x,r}(z) \text{ is unsatisfiable}] \ge 2/3.
```

```
\phi_{x,r} is a CNF and z = y + auxiliary variables.
```

- **Step 2:** Devise a <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t. over the randomness of r, $\phi_{x,r}$ is satisfiable w.h.p if S_x is "large" and unsatisfiable w.h.p if S_x is "small".
- Corollary. There's <u>randomized</u> poly-time reduction that maps x to a CNF $\phi_{x,r}$ s.t.

```
|S_x| = 2n! (large) \Rightarrow Pr_r[\phi_{x,r}(z) \text{ is satisfiable}] \ge 2/3
|S_x| = n! (small) \Rightarrow Pr_r[\phi_{x,r}(z) \text{ is unsatisfiable}] \ge 2/3.
```

Hence, GNI is in BP.NP. It remains to prove Lemma *.

• Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2), y \& r, and a polynomial function q(.) s.t. <math display="block">|S_x| = 2n! \text{ (large)} \implies Pr_r [\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n! \text{ (small)} \implies Pr_r [\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$

 $y \in \{0,1\}^{q(|x|)}$

 $r \in \{0,1\}^{q(|x|)}$

• Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$

 $|S_x| = n!$ (small) \Rightarrow $Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] <math>\geq 2/3$.

• Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, $m = \text{size of an element in } S_x$.

The value of k will be fixed in the analysis.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, $m = \text{size of an element in } S_x$.
- Let $t = n^{O(1)}$ be sufficiently large. M interprets r as $(i_1, i_2, ..., i_t)$, where $i_1, ..., i_t$ are indices of hash functions in H.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, $m = \text{size of an element in } S_x$.
- Let $t = n^{O(1)}$ be sufficiently large. M interprets r as $(i_1, i_2, ..., i_t)$, where $i_1, ..., i_t$ are indices of hash functions in H.

$$|\mathbf{r}| = \mathbf{n}^{O(1)}$$

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, $m = \text{size of an element in } S_x$.
- M interprets y as $((u_1,c_1), (u_2,c_2),..., (u_t,c_t))$, where $u_1,..., u_t$ are m-bit strings, and c_p is an alleged certificate of u_p 's membership in S_x for every $p \in [t]$.

$$|y| = n^{O(1)}$$

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, $m = \text{size of an element in } S_x$.
- For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, $m = \text{size of an element in } S_x$.
- For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$. If sufficiently many (say, t^*) of these checks pass, M outputs I, else it o/ps 0.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, $m = \text{size of an element in } S_x$.
- For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$. If sufficiently many (say, t^*) of these checks pass, M outputs I, else it o/ps 0. Intuitively, $\exists y \text{ s.t. } t^*$ of the checks pass iff S_x is large.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2), y \& r, and a polynomial function <math>q(.)$ s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof idea. Let $H = \{h_i\}$ be a "suitable" family of hash functions that map m-bit strings to k-bit strings for an appropriate k. Recall, $m = \text{size of an element in } S_x$.
- For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$. If sufficiently many (say, t^*) of these checks pass, M outputs I, else it o/ps 0. Intuitively, $\exists y$ s.t. t^* of the checks pass iff S_x is large.

Pairwise independent hash functions

• Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is pairwise independent if for every distinct $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$, $Pr_{h \in_r H_{mk}}$ $[h(x) = y \text{ and } h(x') = y'] = 2^{-2k}$.

• Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is pairwise independent if for every distinct $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$, $Pr_{h \in_r H_{mk}}$ $[h(x) = y \text{ and } h(x') = y'] = 2^{-2k}$.

• Obs. Let $H_{m,k}$ be a pairwise independent hash function family. For every $x \in \{0,1\}^m$ and $y \in \{0,1\}^k$,

$$Pr_{h \in_r H_{m,k}} [h(x) = y] = 2^{-k}.$$

• Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is pairwise independent if for every distinct $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$,

```
Pr_{h \in_r H_{m,k}} [h(x) = y and h(x') = y'] = 2-2k.
= Pr_{h \in_r H_{m,k}} [h(x) = y] . Pr_{h \in_r H_{m,k}} [h(x') = y'].
```

• Definition. A family $H_{m,k}$ of (hash) functions from $\{0,1\}^m$ to $\{0,1\}^k$ is pairwise independent if for every distinct $x, x' \in \{0,1\}^m$ and for every $y, y' \in \{0,1\}^k$,

$$Pr_{h \in_r H_{m,k}}$$
 [h(x) = y and h(x') = y'] = 2-2k.
= $Pr_{h \in_r H_{m,k}}$ [h(x) = y] $. Pr_{h \in_r H_{m,k}}$ [h(x') = y'].

• Example. Let $\ell > 0$ and F be the <u>finite field</u> of size 2^{ℓ} . We can identify F with $\{0,1\}^{\ell}$ as elements of F are ℓ -bit strings. For a, b \in F, define the function $h_{a,b}$ as $h_{a,b}(x) = ax + b$ for every $x \in F$. Then, $H_{\ell,\ell} = \{h_{a,b} : a,b \in F\}$ is a pairwise independent hash family.

- Example. Let $\ell > 0$ and F be the <u>finite field</u> of size 2^{ℓ} . We can identify F with $\{0,1\}^{\ell}$ as elements of F are ℓ -bit strings. For a, b \in F, define the function $h_{a,b}$ as $h_{a,b}(x) = ax + b$ for every $x \in F$. Then, $H_{\ell,\ell} = \{h_{a,b} : a,b \in F\}$ is a pairwise independent hash family.
- Proof. Let $x, x' \in F$ be distinct and $y, y' \in F$. Then, $h_{a,b}(x) = y \& h_{a,b}(x') = y'$ if and only if a = (y-y')/(x-x') and b = (xy' x'y)/(x-x').

- Example. Let $\ell > 0$ and F be the <u>finite field</u> of size 2^{ℓ} . We can identify F with $\{0,1\}^{\ell}$ as elements of F are ℓ -bit strings. For a, b \in F, define the function $h_{a,b}$ as $h_{a,b}(x) = ax + b$ for every $x \in F$. Then, $H_{\ell,\ell} = \{h_{a,b} : a,b \in F\}$ is a pairwise independent hash family.
- Proof. Let $x, x' \in F$ be distinct and $y, y' \in F$. Then, $h_{a,b}(x) = y \& h_{a,b}(x') = y'$ if and only if a = (y-y')/(x-x') and b = (xy' x'y)/(x-x'). Therefore,

$$Pr_{a,b \in_r F} [h_{a,b}(x) = y \& h_{a,b}(x') = y']$$

- = $Pr_{a,b \in_r F}$ [a = (y-y')/(x-x') & b = (xy' x'y)/(x-x')]
- = $2^{-2\ell}$ (as a and b are independently chosen).

- Example. Let $\ell > 0$ and F be the <u>finite field</u> of size 2^{ℓ} . We can identify F with $\{0,1\}^{\ell}$ as elements of F are ℓ -bit strings. For a, b \in F, define the function $h_{a,b}$ as $h_{a,b}(x) = ax + b$ for every $x \in F$. Then, $H_{\ell,\ell} = \{h_{a,b} : a,b \in F\}$ is a pairwise independent hash family.
- Obs. If $m \ge k$, then we can construct a pairwise independent $H_{m,k}$ by considering $H_{m,m}$ as above. Truncate the output of a function to the first k bits.

(Homework)

- Example. Let $\ell > 0$ and F be the <u>finite field</u> of size 2^{ℓ} . We can identify F with $\{0,1\}^{\ell}$ as elements of F are ℓ -bit strings. For a, b \in F, define the function $h_{a,b}$ as $h_{a,b}(x) = ax + b$ for every $x \in F$. Then, $H_{\ell,\ell} = \{h_{a,b} : a,b \in F\}$ is a pairwise independent hash family.
- Obs. If m ≤ k, then we can construct a pairwise independent H_{m,k} by considering H_{k,k} as above.
 Generate k-bit i/p for a function by padding with 0.

(Homework)

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2), y \& r$, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* Let $H_{m,k}$ be a family of pairwise independent hash functions.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* Let $H_{m,k}$ be a family of pairwise independent hash functions. Recall, $\mathbf{r} = (i_1, i_2, ..., i_t)$, where $i_1, ..., i_t$ are indices of functions in $H_{m,k}$.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* Let $H_{m,k}$ be a family of pairwise independent hash functions. Recall, $r = (i_1, i_2, ..., i_t)$, where $i_1, ..., i_t$ are indices of functions in $H_{m,k}$. Also, $y = ((u_1, c_1), (u_2, c_2), ..., (u_t, c_t))$, where $u_1, ..., u_t \in \{0, 1\}^m$, and c_p is an alleged certificate of u_p 's membership in S_x for every $p \in [t]$.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2), y \& r$, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_i(u_p) = 0^k$.
- For a fixed p, what is the probability (over the randomness of i_p) there's a $u_p \in S_x$ s.t. $h_{i_p}(u_p)=0^k$? We'll upper & lower bound this probability.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2), y \& r, and a polynomial function q(.) s.t. <math display="block">|S_x| = 2n! \text{ (large)} \Rightarrow Pr_r [\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n! \text{ (small)} \Rightarrow Pr_r [\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Simplifying notations. As p is fixed, let $h_{i_p} = h$ and $u_p = u$.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Upper bound. $Pr_h [\exists u \in S_x \text{ s.t. } h(u) = 0^k] \leq |S_x|/2^k$.
- As $H_{m,k}$ is pairwise independent, for every $u \in \{0,1\}^m$, $Pr_h[h(u) = 0^k] = 2^{-k}$.

Lemma *. There's a poly-time TM M that takes input x
 = (G₁, G₂), y & r, and a polynomial function q(.) s.t.

$$|S_x| = 2n!$$
 (large) \Rightarrow $Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] $\geq 2/3$
 $|S_x| = n!$ (small) \Rightarrow $Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] $\geq 2/3$.$$

- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Lower bound.

$$\begin{aligned} & \text{Pr}_h \ \big[\exists u \in S_x \ \text{s.t.} \ h(u) = 0^k \big] \\ \geq & \sum_{u \in S_x} \text{Pr}_h \ \big[h(u) = 0^k \big] \ - \sum_{u, u' \in S_x} \text{Pr}_h \ \big[h(u) = 0^k \ \& \ h(u') = 0^k \big] \\ & u \neq u' \end{aligned} \qquad \text{(by inclusion-exclusion principle)}$$

• Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_1| = 2n!$ (large) $\Rightarrow Pr_*[\exists y \text{ s.t. } M(x, y, r) = 11 \ge 2/3$

$$|S_x| = 2n!$$
 (large) \Rightarrow $Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] $\geq 2/3$
 $|S_x| = n!$ (small) \Rightarrow $Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] $\geq 2/3$.$$

- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_i(u_p) = 0^k$.
- Lower bound.

$$Pr_{h} \left[\exists u \in S_{x} \text{ s.t. } h(u) = 0^{k}\right]$$

$$\geq |S_{x}|/2^{k} - |S_{x}|^{2} / 2^{2k+1}. \quad \text{(as } H_{m,k} \text{ is pairwise independent)}$$

• Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t.

```
|S_x| = 2n! (large) \Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] <math>\geq 2/3

|S_x| = n! (small) \Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] <math>\geq 2/3.
```

- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Lower bound.

$$Pr_h [\exists u \in S_x \text{ s.t. } h(u) = 0^k]$$

$$\geq |S_x|/2^k \cdot (1 - |S_x|/2^{k+1}).$$

(as $H_{m,k}$ is pairwise independent)

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- If $|S_x| = n!$ then (by the upper bound) $Pr_h [\exists u \in S_x \text{ s.t. } h(u) = 0^k] \le n!/2^k$.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- If $|S_x| = n!$ then (by the upper bound) $Pr_h [\exists u \in S_x \text{ s.t. } h(u) = 0^k] \le n!/2^k$. Hence,
- Exp_r [$|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}|] \le t. n!/2^k$.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t.
 - $|S_x| = 2n!$ (large) \Rightarrow $Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] <math>\geq 2/3$ $|S_x| = n!$ (small) \Rightarrow $Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] <math>\geq 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Choosing k. Fix k s.t. $2^{k-2} < 2n! \le 2^{k-1}$
- If $|S_x| = 2n!$ then (by the lower bound)

$$\begin{aligned} \text{Pr}_{h} \ [\exists u \in S_{x} \ \text{s.t.} \ h(u) &= 0^{k}] \geq |S_{x}|/2^{k} \, . \, (1 - |S_{x}|/2^{k+1}) \\ &\geq |S_{x}|/2^{k} \, . \, ^{3}\!\! /_{4} = 3/2. \, n!/2^{k} \end{aligned}$$

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- Choosing k. Fix k s.t. $2^{k-2} < 2n! \le 2^{k-1}$.
- If $|S_x| = 2n!$ then (by the lower bound) $Pr_h [\exists u \in S_x \text{ s.t. } h(u) = 0^k] \ge 3/2 \cdot n!/2^k$. Hence,
- $\operatorname{Exp}_{r}[|\{p \in [t] : \exists u_{p} \in S_{x} \text{ s.t. } h_{i_{p}}(u_{p}) = 0^{k}\}|] \ge 3/2 \cdot t \cdot n!/2^{k}$.

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_i(u_p) = 0^k$.
- If $|S_x| = 2n!$ then $\exp_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}|] \ge 3/2 \cdot t \cdot n!/2^k.$

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- Proof. For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_i(u_p) = 0^k$.
- If $|S_x| = n!$ then $\int_{\mathbb{R}^n} g^{ap} dx$ $\exp_r [|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}|] \le t. n!/2^k.$

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$.
- If $|S_x| = 2n!$, by Chernoff bd. & $n!/2^k \in [1/8, 1/4]$, $Pr_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}| \ge 1.4. \text{ t. } n!/2^k] \ge 2/3.$
- If $|S_x| = n!$, by Chernoff/Markov bd. & $n!/2^k \in [1/8, 1/4]$ $Pr_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}| < 1.4. \text{ t. } n!/2^k] \ge 2/3.$

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$. $t^* = 1.4$. t. $n!/2^k$
- If $|S_x| = 2n!$, by Chernoff bd. & $n!/2^k \in [1/8, 1/4]$, $Pr_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}| \ge 1.4. \text{ t. } n!/2^k] \ge 2/3.$
- If $|S_x| = n!$, by Chernoff/Markov bd. & $n!/2^k \in [1/8, 1/4]$ $Pr_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}| < 1.4. \text{ t. } n!/2^k] \ge 2/3.$

- Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2), y \& r$, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$
 - $|S_x| = n!$ (small) \Rightarrow $Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] <math>\geq 2/3$.
- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$. $t^* = 1.4$. t. $n!/2^k$
- If $|S_x| = 2n!$ then $\Pr_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}| \ge t^*] \ge 2/3.$
- If $|S_{\downarrow}| = n!$ then
 - $Pr_r[|\{p \in [t] : \exists u_p \in S_x \text{ s.t. } h_{i_p}(u_p) = 0^k\}| < t^*] \ge 2/3.$

• Lemma *. There's a poly-time TM M that takes input $x = (G_1, G_2)$, y & r, and a polynomial function q(.) s.t. $|S_x| = 2n!$ (large) $\Rightarrow Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3$ $|S_x| = n!$ (small) $\Rightarrow Pr_r[\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3$.

- *Proof.* For every $p \in [t]$: M uses $c_p \& x$ to check if $u_p \in S_x$. If yes, M checks if $h_{i_p}(u_p) = 0^k$. $t^* = 1.4$. t. $n!/2^k$
- If $|S_x| = 2n!$ then $Pr_r[\exists y \text{ s.t. } M(x, y, r) = 1] \ge 2/3.$
- If $|S_x| = n!$ then $Pr_r [\forall y \text{ s.t. } M(x, y, r) = 0] \ge 2/3.$

Complexity of Counting

Natural counting problems

- What is the complexity of the following problems?
- #SAT: Count the number of satisfying assignments of a given Boolean circuit/CNF.
- #HAMCYCLE: Count the number of Hamiltonian cycles in an undirected graph.

Observation. The above problems are NP-hard.

Natural counting problems

- What is the complexity of the following problems?
- #PerfectMatching: Count the number of perfect matchings in a bipartite graph.
- #CYCLE: Count the number of simple cycles in a directed graph.
- Observation. The corresponding decision problems are in P.

Natural counting problems

- What is the complexity of the following problems?
- #PATH: Count the number of simple paths between two vertices in a connected graph.
- #SPANTREE: Count the number of spanning trees in a connected graph.
- Observation. The corresponding decision problems are trivial.

Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

- Theorem. (Kirchhoff 1847) #SPANTREE is in FP.
- Proof sketch. Let G be an n-vertex connected graph without self loops. Label the vertices by {1,..., n}.
- Definition. The Laplacian matrix of G is an $n \times n$ matrix L_G defined as

```
L_G(i,j) = deg(i) if i = j,

= -1 if there's an edge (i,j) in G,

= 0 otherwise.
```

- Theorem. (Kirchhoff 1847) #SPANTREE is in FP.
- Proof sketch. Let G be an n-vertex connected graph without self loops. Label the vertices by {1,..., n}.
- Definition. The Laplacian matrix of G is an $n \times n$ matrix L_G defined as $L_G = D_G A_G$, where D_G is the degree matrix and A_G the adjacency matrix of G.

• Observation. It is easy to compute L_G from A_G .

- Theorem. (Kirchhoff 1847) #SPANTREE is in FP.
- Proof sketch. Let G be an n-vertex connected graph without self loops. Label the vertices by {1,..., n}.
- Kirchhoff's matrix-tree theorem states that no. of spanning trees of $G = \text{any cofactor of } L_G$.
- (i,j) cofactor of $L = (-1)^{i+j}$. det(submatrix of L obtained by deleting the i-th row and the j-th column from L).

- Theorem. (Kirchhoff 1847) #SPANTREE is in FP.
- Proof sketch. Let G be an n-vertex connected graph without self loops. Label the vertices by {1,..., n}.
- Kirchhoff's matrix-tree theorem states that no. of spanning trees of $G = \text{any cofactor of } L_G$.
- Corollary. As determinant computation is in (functional) NC, #SPANTREES is in (functional) NC.

Theorem. #CYCLE is in NP-hard.

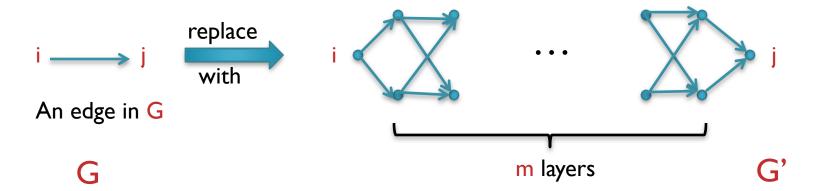
 Lesson. A counting problem can be hard even if the corresponding decision problem is in P.

Theorem. #CYCLE is in NP-hard.

 Proof. We will give a poly-time reduction from the Hamiltonian cycle problem to the #CYCLE problem.

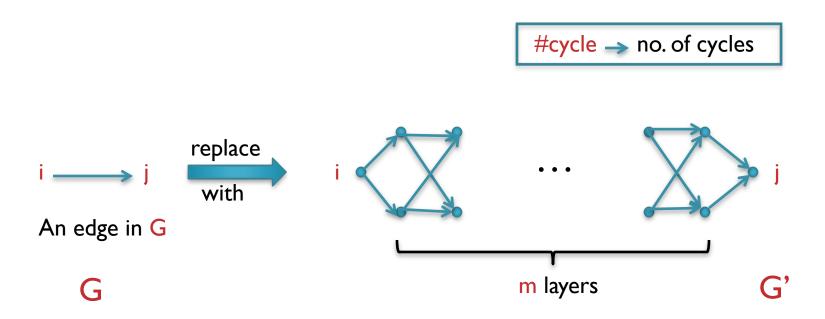
Theorem. #CYCLE is in NP-hard.

• Proof. Let G be an n-vertex digraph. We'll efficiently construct a new graph G' from G s.t. the presence of a Hamiltonian cycle in G can be readily derived from the number of cycles in G'. Construction of G':



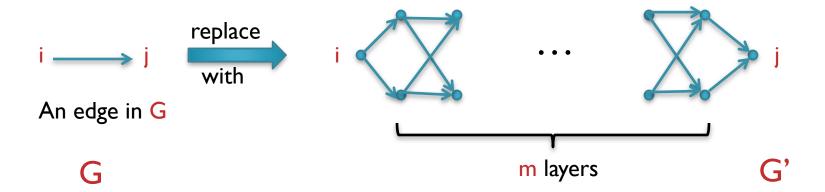
Theorem. #CYCLE is in NP-hard.

Proof. Case I: If G has a HC, then #cycle(G') ≥ 2^{mn}.



Theorem. #CYCLE is in NP-hard.

- Proof. Case I: If G has a HC, then #cycle(G') ≥ 2^{mn}.
- Case2: If G has no HC, then $\#\text{cycle}(G) \le n^{n-1}$ $\#\text{cycle}(G') \le n^{n-1}.2^{m(n-1)}$.



Theorem. #CYCLE is in NP-hard.

- Proof. Case I: If G has a HC, then #cycle(G') ≥ 2^{mn}.
- Case2: If G has no HC, then $\# cycle(G) \le n^{n-1}$ $\# cycle(G') \le n^{n-1}.2^{m(n-1)}$.
- If we choose m such that $n^{n-1}.2^{m(n-1)} < 2^{mn}$, then we can find out if G has a HC from #cycle(G').
- Set $m = n^2$.

Class #P

Definition. We say a function f: {0,1}* → N is in #P if there's a poly-time TM M and a polynomial function p: N → N such that for every x ∈ {0,1}*,

$$f(x) = |\{u \in \{0,1\}^{p(|x|)} : M(x,u) = 1\}|$$
.

Class #P

Definition. We say a function f: {0,1}* → N is in #P if there's a poly-time TM M and a polynomial function p: N → N such that for every x ∈ {0,1}*,

$$f(x) = |\{u \in \{0,1\}^{p(|x|)} : M(x,u) = 1\}|.$$

- Observation. Problems #SAT, #HAMCYCLE, #PerfectMatching, #CYCLE, #PATH and #SPANTREE are in #P.
- In fact, with every language in NP we can associate a counting problem that is in #P.

#P-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is #P = FP?

#P-completeness

- Definition. A function $f: \{0,1\}^* \to \mathbb{N}$ is in #P-complete if f is in #P and for every $g \in \#P$, we have $g \in FP^f$ i.e., g is poly-time Cook/Turing reducible to f.
- In other words, for every $x \in \{0,1\}^*$, we can compute g(x) in polynomial time using oracle access to f.