{ Computational Complexity Theory

Lecture [8: Set lower bound protocol;
Complexity of Counting:
class #P; #P-completeness

Department of Computer Science,
Indian Institute of Science

Recap: Randomized reduction

° We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, <. L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr[L,(x) = Ly(M(x))] = 2/3.

e For arbitrary L, and L,, we may not be able to boost
the success probability 2/3, and so, the above kind of
reductions needn’t be transitive. However,

o If L, <. L,and L, € BPPF, then L, € BPP.

Recap: Randomized reduction

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, <. L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr[L,(x) = Ly(M(x))] = 2/3.

o Obs. If L, = SAT, then we can boost the success
probability from 2 + |x| to | — exp(-|x|9).
* Proof idea. BPP error reduction trick + Cook-Levin.

Recap: Randomized reduction

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, <. L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr[L,(x) = Ly(M(x))] = 2/3.

o Obs. If L, = SAT, then we can boost the success
probability from 2 + |x|< to | — exp(-[x|9).

* Recall, NP = {L : L =, SAT}. It makes sense to define a
similar class using randomized poly-time reduction.

Recap: Class BP.NP

o Definition. We say a L, reduces to a L, in randomized
bolynomial-time, denoted L, <. L,, if there’s a poly-
time PTM M s.t. for every x € {0, }*

Pr[L,(x) = Ly(M(x))] = 2/3.

o Obs. If L, = SAT, then we can boost the success
probability from 2 + |x|< to | — exp(-[x|9).

e Definition. BPNP = {L : L <, SAT}.

e Class BPNP is also known as AM (Arthur-Merlin
protocol) in the literature.

Recap: Class BP.NP

e Definition. BPNP = {L : L <, SAT}.

* Observe that NP € BPNP and BPP € BP.NP. Is BPNP
= NP ? Many believe that the answer is “yes”.

e Theorem. If certain reasonable circuit lower bounds
hold, then BENP = NP,

e Proof idea. Similar to Nisan & Wigderson’s conditional
BPP = P result.

Recap: Class BP.NP

e Definition. BPNP = {L : L <, SAT}.

e Observe that NP € BPNP and BPP € BPNP Is BPNP
= NP ? Many believe that the answer is “yes”.

* We may further ask:
. Is BPNP in PH? Recall, BPP is in PH.

2. Is SAT € BPNP? Recall, if SAT € BPP then PH
collapses. (SAT € BPNP as NP € BPNP .)

Recap: Class BP.NP

e Definition. BPNP = {L : L <, SAT}.

e Theorem. BPNP isin > ;. (In fact, BPNP is in [],.)

* Proof idea. Similar to the Sipser-Gacs-Lautemann
theorem.

* Wondering if BPNP < [], implies BENP < >, ? Is
BPNP = co-BPNP ? (Recall, BPP = co-BPP).

o If BENP = co-BP.NP then co-NP © BPNP. The next
theorem shows that this would lead to PH collapse.

Recap: Class BP.NP

e Definition. BPNP = {L : L <, SAT}.

o Theorem. If SAT € BPNP then PH = > 5 (in fact, PH =
D)

* Proof idea. Similar to Adleman’s theorem + Karp-
Lipton theorem.

Recap: Class BP.NP

e Definition. BPNP = {L : L <, SAT}.
e Theorem. If SAT € BPNP then PH = ¥,

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Thus, even without designing an efficient algorithm
for Gl, we know Gl is unlikely to be NP-complete!

Recap: Class BP.NP

e Definition. BPNP = {L : L <_SAT).
e Theorem. If SAT € BPNP then PH = ¥,

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Theorem.
GNI € BPNP.

Recap: Class BP.NP

e Definition. BPNP = {L : L <, SAT}.
o Theorem. If SAT € BPNP then PH = > .

e We would use the above theorem to show that if Gl
is NP-complete then PH collapses.

e Theorem.
GNI € BPNP.

o If Gl is NP-complete then GNI is co-NP-complete. If
so, then the above two theorems imply PH = > .

Recap: Gl in Quasi-P

e Theorem. There’s a deterministic
exp(O((log n)?)) time algorithm to solve the graph
isomorphism problem.

Recap: Graph Non-isomorphism

o Definition. Let G, and G, be two undirected graphs
on n vertices. ldentify the vertices with [n]. We say
G, is isomorphic to G,, denoted G, = G,, if there’s a
bijection/permutation m:[n] —[n] s.t. for all u, v € [n],
(u,v) is an edge in G, if and only if (rr(u),(v)) is an
edge in G,.

e Definition. GNI = {(G,, G,) : G| % G,}.

e Clearly, GNI € co-NF, it is not known if GNI € NP.

Recap: GNI is in BPNP

e The idea.

Step I: Let x = (G|, G,). Associate a set S, with
(G}, Gy) s.t. |S,]| is “large” (2n!) if G| # G,,and |S, | is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n®") bits. Furthermore,
membership in S, can be certified in m°(") = n®() time.

Recap: GNI is in BPNP

I. Step I: Let x = (G|, G,). Associate a set S, with
(G}, Gy) s.t. |S,]| is “large” (2n!) if G| # G,,and |S, | is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n©®() bits. Furthermore,
membership in S, can be certified in m°(") = n%) time.

2. Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness
of r, ¢, is satisfiable w.h.p if S, is “large” and
unsatisfiable w.h.p if S, is “small”.

Recap: GNI is in BPNP

o Step |:Let x = (G, G,). Associate a set S, with (G|,
G,) s.t. [S,| is “large” (2n!) if G, # G,, and |S,]| is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n®") bits. Furthermore,
membership in S, can be certified in m°(") = n%") time.

o Defn. Aut(G) = {bijection m:[n]— [n]: m(G) = G}.

G G

Permutation m = (1,3,2) is in Aut(G).

Recap: GNI is in BPNP

o Step |:Let x = (G, G,). Associate a set S, with (G|,
G,) s.t. [S,| is “large” (2n!) if G, # G,, and |S,]| is
“small” (n!) if G, = G,. Elements of S, can be
represented using m = n®") bits. Furthermore,
membership in S, can be certified in m°(") = n%") time.

o Defn. Aut(G) = {bijection m:[n]— [n]: m(G) = G}.

e LetS, ={(H,m):H= G, orH = G, and m € Aut(H)}.

o Obs. S, satisfies the properties stated in Step |.

Recap: GNI is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness
of r, ¢, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S, is “small”.

Recap: GNI is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness

of r, ¢, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S, is “small”.

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS,| = 2n! (large) mp Pr [Iy s.t. M(x,y,r) = |] = 2/3
IS, | =n! (small)mp Pr.[Vys.t.M(x,y,r) = 0] = 2/3.

/N

r € {0, 1 }a(ix)) y € {0,1}alxD

Recap: GNI is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness
of r, ¢, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S, is “small”.

° There’s a poly-time TM M that takes input x
= (G|, G,),y & nand a polynomial function q(.) s.t.
IS,| = 2n! (large) mp Pr [Iy s.t. M(x,y,r) = |] = 2/3
IS, | =n! (small)mp Pr.[Vys.t.M(x,y,r) = 0] = 2/3.

* Proof. Uses Goldwasser-Sipser set lower bound
protocol. We'll see the proof today.

Recap: GNI is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness

of r, ¢, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S, is “small”.

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS,| = 2n! (large) mp Pr [Iy s.t. M(x,y,r) = |I] = 2/3

S.|=n! (small)mp Pr.[Vy s.t.= 0] = 2/3.

We can think of M’s computation as a Boolean circuit i, (y), which can be computed
in randomized |x|°(!) time by fixing x and picking r&{0, | }90 randomly.

Recap: GNI is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness
of r, ¢, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S, is “small”.

° There’s randomized poly-time reduction
that maps x to a Boolean circuit ¢, , s.t.

ISy| =2n! (large) mp Pr.[y, (y) is satisfiable] = 2/3
IS,| = n! (small) mp Pr.[1), (y) is unsatisfiable] = 2/3.

Recap: GNI is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness
of r, ¢, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S, is “small”.

° There’s randomized poly-time reduction
that maps x to a CNF ¢, s.t.

IS.| =2n! (large) mp Pr [, (z) is satisfiable] = 2/3
IS,| =n! (small) mp Pr.[e, () is unsatisfiable] = 2/3.

@, is a CNF and z = y + auxiliary variables.

Recap: GNI is in BPNP

o Step 2: Devise a randomized poly-time reduction
that maps x to a CNF ¢, , s.t. over the randomness
of r, ¢, is satisfiable w.h.p if S is “large” and
unsatisfiable w.h.p if S, is “small”.

° There’s randomized poly-time reduction
that maps x to a CNF ¢, s.t.

IS.| =2n! (large) mp Pr [, (z) is satisfiable] = 2/3
IS,| =n! (small) mp Pr.[e, () is unsatisfiable] = 2/3.

e Hence, GNI is in BPNP. It remains to prove

Set lower bound protocol

Set lower bound protocol

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, =n! (small)m) Pr.[Vys.t. M(x,y,r) =0] = 2/3.

/

r € {0, 1 }a(ix)) y € {0, 1}a(x)

Set lower bound protocol

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for

an appropriate k. Recall, m = size of an element in S,.

The value of k will be
fixed in the analysis.

Set lower bound protocol

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for

an appropriate k. Recall, m = size of an element in S,.

o Let t = n®() be sufficiently large. M interprets r as
(i1,i9,...,ic), where i,..., i. are indices of hash functions
in H.

Set lower bound protocol

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for

an appropriate k. Recall, m = size of an element in S,.

o Let t = n®() be sufficiently large. M interprets r as
(i1,i9,...,ic), where i,..., i. are indices of hash functions
in H.

Ir| = n©0),

Set lower bound protocol

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & nand a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

* M interprets y as ((u,c;), (uyc,),..., (u,c,)), where
uj,..., U, are m-bit strings, and c, is an alleged
certificate of u’s membership in S, for every p € [t].

[y| = n®W.

Set lower bound protocol

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash
functions that map m-bit strings to k-bit strings for

an appropriate k. Recall, m = size of an element in S,.

* For every p € [t]: M uses c, & x to check if u, € S,.
If yes, M checks if h; (u,) = 0.

Recall, membership in S, can be efficiently certified.

Set lower bound protocol

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & nand a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

* For every p € [t]: M uses c, & x to check if u, € S,.
If yes, M checks if by (u;) = 0% If sufficiently many (say,
t*) of these checks pass, M outputs |, else it o/ps 0.

Set lower bound protocol

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & nand a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof idea. Let H = {h.} be a “suitable” family of hash

functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

* For every p € [t]: M uses c, & x to check if u, € S,.
If yes, M checks if by (u;) = 0% If sufficiently many (say,
t*) of these checks pass, M outputs |, else it o/ps O.
Intuitively, Jy s.t. t* of the checks pass iff S, is large.

Set lower bound protocol

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
S =n! (small) = Pr [Vys.t.M(x,y,r)=0]=2/3.

» Proof idea. Let H = {h} be a@suitablefamily of hash
functions that map m-bit strings to k-bit strings for
an appropriate k. Recall, m = size of an element in S,.

* For every p € [t]: M uses c, & x to check if u, € S,.
If yes, M checks if by (u;) = 0% If sufficiently many (say,
t*) of these checks pass, M outputs I, else it o/ps 0.
Intuitively, Iy s.t. t* of the checks pass iff S, is large.

Pairwise independent hash functions

o Definition. A family H_ , of (hash) functions from
{0,1}™ to {O,1}< is pairwise independent if for every
distinct x, x’ € {0,1}™ and for every y,y’ € {0, 1}

Pr [h(X) =y and h(X’) = y’'] = 22,

h € Hpn

Pairwise independent hash functions

o Definition. A family H_ , of (hash) functions from
{0,1}™ to {O,1}< is pairwise independent if for every
distinct x, x’ € {0,1}™ and for every y,y’ € {0, 1}

Pryc.n,, [h6) =y and h(x) = y] = 2%

e Obs. Let H,, be a pairwise independent hash
function family. For every x € {0,1}™ and ye {0, |},

Pry e, [h() =y] = 2%

Pairwise independent hash functions

o Definition. A family H_ , of (hash) functions from
{0,1}™ to {O,1}< is pairwise independent if for every
distinct x, x’ € {0,1}™ and for every y,y’ € {0, 1}

Pr [h(X) =y and h(X’) = y’'] = 22,

h € Hpn

=Procn., [hX)=y].Pricn,., [h(X)=Y].

Pairwise independent hash functions

o Definition. A family H_ , of (hash) functions from
{0,1}™ to {O,1}< is pairwise independent if for every
distinct x, x’ € {0,1}™ and for every y,y’ € {0, 1}

Pr e v, [N =y and h(x) = y] = 2%
=Prycn., [h(xX)=yl.Pricn,, [h(X)=Y].

o Example. Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1}" as elements of F are -
bit strings. For a, b € F define the function h,, as
h,,(x) = ax + b for every x € F. Then,H,,= {h,, :a,b
€ F} is a pairwise independent hash family.

Pairwise independent hash functions

o Example. Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1}" as elements of F are ¢-
bit strings. For a, b € F define the function h,, as
h,,(x) = ax + b for every x € F. Then,H,,= {h,, :a,b
€ F} is a pairwise independent hash family.

* Proof. Let x, X’ € F be distinct and y, Y € E Then,
h,p(x) =y & h,,(X) =y ifand only if a = (y—y’)/(x-x')
and b = (xy’ — xX'y)/(x-x).

Pairwise independent hash functions

o Example. Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1}" as elements of F are ¢-
bit strings. For a, b € F define the function h,, as
h,,(x) = ax + b for every x € F. Then,H,,= {h,, :a,b
€ F} is a pairwise independent hash family.

* Proof. Let x, X’ € F be distinct and y, Y € E Then,
h,p(x) =y & h,,(X) =y ifand only if a = (y—y’)/(x-x')
and b = (xy’ — x’y)/(x-x"). Therefore,

Prape r [hap(}) =y & hyp(X') = y]

Prope s [2= (y=))/(x-X) &b = (xy’ = Xy)/(x-X)]

= 2% (as a and b are independently chosen).

Pairwise independent hash functions

° Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1}" as elements of F are ¢-
bit strings. For a, b € F define the function h,, as
h,,(x) = ax + b for every x € F. Then,H,,= {h,, :a,b
€ F} is a pairwise independent hash family.

o If m = k, then we can construct a pairwise
independent H_, by considering H_ . as above.
Truncate the output of a function to the first k bits.

(Homework)

Pairwise independent hash functions

° Let £ > 0 and F be the finite field of size 2°.
We can identify F with {0,1}" as elements of F are ¢-
bit strings. For a, b € F define the function h,, as
h,,(x) = ax + b for every x € F. Then,H,,= {h,, :a,b
€ F} is a pairwise independent hash family.

o If m = k, then we can construct a pairwise
independent H,_ , by considering H,, as above.
Generate k-bit i/p for a function by padding with O.

(Homework)

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

 Proof. Let H, be a family of pairwise independent
hash functions.

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & nand a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

 Proof. Let H, be a family of pairwise independent
hash functions. Recall, r = (i}, iy, ..., i,), where i,..., i
are indices of functions in H

m,k*

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G,, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.
 Proof. Let H, be a family of pairwise independent

hash functions. Recall, r = (i}, iy, ..., i,), where i,..., i
are indices of functions in H_ . Also, y = ((u}c)),
(U2C9)s- .05 (UpCy)), where uy,...,u. € {0,1}™ and c; is an

alleged certificate of u,’s membership in S, for every
p € [t].

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, =n! (small)m) Pr.[Vys.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & nand a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

 For a fixed p, what is the probability (over the
randomness of i) there’s a u, € S, s.t. h; (u,)=0"?
We'll upper & lower bound this probability.

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, =n! (small)m) Pr.[Vys.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

o Simplifying notations. As p is fixed, let hip= h and u, =
u.

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, =n! (small)m) Pr.[Vys.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

e Upper bound.Pr,, [Ju € S, s.t.h(u) = 0X] < |S, |/2X.

* As H,_ is pairwise independent, for every u€{0,!}™,
Pr,, [h(u) = 0K] = 2°k,

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & nand a polynomial function q(.) s.t.
IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS,/ =n! (small)mp Pr.[Vys.t.M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€S, If yes,M checks ifh (u;) = 0k,

e Lower bound.

Pr, [3u € S, s.t. h(u) = 04]
> Pr, [h(u) =0<] - > Pr, [h(u) = 0% & h(u’) = 04]

ue€s, u,u’ € S,
u#u (by inclusion-exclusion principle)

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, =n! (small)m) Pr.[Vys.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

e Lower bound.
Pr, [3u € S, s.t. h(u) = 04]
> |SX|/2k - |Sx|2 | 22k+1 (as H,,, is pairwise independent)

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, =n! (small)m) Pr.[Vys.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

e Lower bound.
Pr, [3u € S, s.t. h(u) = 04]
> |SX|/2k . (l = |Sx|/2k+|)' (as H,, is pairwise independent)

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

o If |S,| = n! then (by the upper bound)
Pr, [Qu € S, s.t. h(u) = 0K] < n!/2k,

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

o If |S,| = n! then (by the upper bound)
Pr, [Ju € S, s.t. h(u) = 0] < n!/2%. Hence,
 Exp. [{p€[t] : Fu € Sy s.t.h(uy) = 0}] = t.nl/2k

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, =n! (small)m) Pr.[Vys.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0~

e Choosing k.[Fix k s.t. 2«2 < 2n! < 2|
o If |S,| = 2n! then (by the lower bound)
Pr, [Qu €S, s.t. h(u) = 0K] = [S,|/2%. (1-|S,|/2)
> |S, /2% . %4 = 3/2.n!/2k

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, =n! (small)m) Pr.[Vys.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

e Choosing k. Fix k s.t. 22 < 2n! < 2k,
o If |S,| = 2n! then (by the lower bound)

Pr, [Ju € S, s.t. h(u) = 0] = 3/2 .n!/2k. Hence,
o Exp.[{p€[t] : Ju,€ S, s.t.hi(u;) = 0}]2 3/2 .t.nl/2x

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, =n! (small)m) Pr.[Vys.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

o If|S,
Exp,
o If|S,
Exp,

= 2n!

L {pelt:
=nlt

| [{PE[t]

then
:3u,€ S, st hy (up) = 0]2 372 ¢.nl/2

NenN

13U € S, s.t.hy (u) = 04|] < t.nl/2k

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, =n! (small)m) Pr.[Vys.t. M(x,y,r) =0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

o If|S,
Exp,
o If|S,
Exp,

= 2n!

L {pelt:
=nlt

| [{PE[t]

then
13U € S, st hy (U,) = 0412 3/2 .t nl/2k
nen I gap

:3u,€ S, s.t.h; (u) = 04|] < t.nl/2k

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if uj
€ S,. If yes,M checks if h (u,) = 0.

 If |S,| = 2n!, by Chernoff bd. & n!/2<€ [1/8,1/4],
Pr, [{pEt] : Ju,€ Sy sit.h, (up) = 0K} = 1.4.¢.nl/24] = 3.
o If |S,| = n!, by Chernoff/Markov bd. & n!/2€[1/8,1/4]
Pr. [[{p€[t] : Ju,€ S, s.t.h; (u;) = 0K} < 1.4.t.n!/2] = 2/3.

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u
€ S,. If yes,M checks if h (u)) = 0% |¢* = 1.4.t.nl/2"

 If |S,| = 2n!, by Chernoff bd. & n!/2< € [1/8,1/4],
Pr, [{PELE] : u,€ S, st.hy (u,) = 0] = 1.4..nl/24 = 3.

o If |S,| = n!, by Chernoff/Markov bd. & n!/2€[1/8,1/4]
Pr. [[{p€[t] : Ju,€ S, s.t.h; (u;) = 0K} < 1.4.t.n!/2] = 2/3.

P

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u
€ S,. If yes,M checks if h (u)) = 0% |¢* = 1.4.t.nl/2"

o If |S,| = 2n! then

Pr, [KPELL] : Jup€ S, s.t.hy (u,) = 0K} 2 t¥] = 2/3.
o If |S,| = n! then

Pr.[{p€[t] : Fu,€ S, s.t. h; (u;) = 0} < t*] 2 2/3.

P

Set lower bound protocol (contd.)

e Lemma *. There’s a poly-time TM M that takes input x
= (G|, G,),y & r,and a polynomial function q(.) s.t.

IS, | = 2n! (large) ™ Pr [Ty s.t. M(x,y,r) = 1] = 2/3
IS, | =n! (small)m) Pr. [Vy s.t.M(x,y,r) = 0] = 2/3.

* Proof. For every p € [t]: M uses c, & x to check if u
€ S,. If yes,M checks if h (u,) = 0.

o If |S,| = 2n! then

Pr. [Ty s.t. M(x,y,r) =] = 2/3.
o If |S,| = n! then

Pr.[Vy s.t. M(x,y,r) = 0] =2 2/3.

= |.4.t.n!/2¥

P

Complexity of Counting

Natural counting problems

* What is the complexity of the following problems?

o #SAT: Count the number of satisfying assignments of a
given Boolean circuit/CNF.

o #HAMCYCLE: Count the number of Hamiltonian
cycles in an undirected graph.

° The above problems are NP-hard.

Natural counting problems

* What is the complexity of the following problems?

o #PerfectMatching: Count the number of perfect
matchings in a bipartite graph.

o #CYCLE: Count the number of simple cycles in a
directed graph.

o The corresponding decision problems
are in P,

Natural counting problems

* What is the complexity of the following problems?

o #PATH: Count the number of simple paths between
two vertices in a connected graph.

o #SPANTREE: Count the number of spanning trees in a
connected graph.

° The corresponding decision problems
are trivial.

An easy counting problem

e Theorem. HSPANTREE is in FP.

An easy counting problem

e Theorem. H#SPANTREE is in FP.

e Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {I,..., n}.

o Definition. The Laplacian matrix of G is an n x n matrix
L defined as

Ls(i,j) = deg(i) ifi=j,
= .| if there’s an edge (i,j) in G,
=0 otherwise.

An easy counting problem

e Theorem. H#SPANTREE is in FP.

e Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {I,..., n}.

o Definition. The Laplacian matrix of G is an n x n matrix
L; defined as L = D — Ag, where D is the degree
matrix and A the adjacency matrix of G.

o Observation. It is easy to compute L from Ac.

An easy counting problem

° #SPANTREE is in FP.

e Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {I,..., n}.

 Kirchhoff’s matrix-tree theorem states that

no. of spanning trees of G = any cofactor of L.

s (i,j) cofactor of L = (-1)"*I. det(submatrix of L obtained
by deleting the i-th row and the j-th column from L).

An easy counting problem

° #SPANTREE is in FP.

e Proof sketch. Let G be an n-vertex connected graph
without self loops. Label the vertices by {I,..., n}.

 Kirchhoff’s matrix-tree theorem states that

no. of spanning trees of G = any cofactor of L.
»

° As determinant computation is in
(functional) NC, #SPANTREES is in (functional) NC.

A hard counting problem

e [heorem.#CYCLE is in NP-hard.

e Lesson. A counting problem can be hard even if the
corresponding decision problem is in P.

A hard counting problem

e [heorem.#CYCLE is in NP-hard.

e Proof. We will give a poly-time reduction from the
Hamiltonian cycle problem to the #CYCLE problem.

A hard counting problem

e [heorem.#CYCLE is in NP-hard.

* Proof. Let G be an n-vertex digraph. We'll efficiently
construct a new graph G’ from G s.t. the presence of
a Hamiltonian cycle in G can be readily derived from
the number of cycles in G’. Construction of G’ :

replace
| —
W|th

An edge in G

G m Iayers G’

A hard counting problem

e Theorem.#CYCLE is in NP-hard.

e Proof. Casel: If G has a HC, then #cycle(G’) = 2mn,

#cycle —» no. of cycles

replace
| —
W|th

An edge in G

G m Iayers G’

A hard counting problem

e Theorem.#CYCLE is in NP-hard.

e Proof. Casel: If G has a HC, then #cycle(G’) = 2mn,
o Case2: If G has no HC, then #cycle(G) < n™!
#Hcycle(G’) < n!.2m(-1)

replace
| —
W|th

An edge in G

G m Iayers G’

A hard counting problem

e Theorem.#CYCLE is in NP-hard.

e Proof. Casel: If G has a HC, then #cycle(G’) = 2mn,
o Case2: If G has no HC, then #cycle(G) < n™!
#Hcycle(G’) < n!.2m(-1)

e If we choose m such that n™!.2mM-I) < 2mn then we
can find out if G has a HC from #cycle(G’).

o Set m = nZ

Class #P

» Definition. We say a function f: {0,1}* — N is in #P if
there’s a poly-time TM M and a polynomial function p:
N — N such that for every x € {0, 1},

f(x) = [{ue{0,1}p0D : M(x,u) = I}] .

Class #P

» Definition. We say a function f: {0,1}* — N is in #P if
there’s a poly-time TM M and a polynomial function p:
N — N such that for every x € {0, 1},

f(x) = [{ue{0,1}p0D : M(x,u) = I}] .

e Observation. Problems H#SAT, #HAMCYCLE,
#PerfectMatching, #CYCLE, #PATH and #SPANTREE

are in #P,

* In fact, with every language in NP we can associate a
counting problem that is in #P.

#P-completeness

* Recall, to define completeness of a complexity class,
we need an appropriate notion of a reduction.

* What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

o Is #P = FP?

#P-completeness

o A function f: {0,1}* — N is in #P-complete
if f is in #P and for every g € #P, we have g € FP'ie, g
is poly-time Cook/Turing reducible to f.

* In other words, for every x € {0, }*, we can compute
g(x) in polynomial time using oracle access to f.

