
Computational Complexity Theory

Lecture 19: #P-completeness (contd.);
0/1-Perm is #P-complete

Department of Computer Science,
Indian Institute of Science

Recap: Natural counting problems
� What is the complexity of the following problems?

� #SAT: Count the number of satisfying assignments of a
given Boolean circuit/CNF.

� #HAMCYCLE: Count the number of Hamiltonian
cycles in an undirected graph.

� Observation.The above problems are NP-hard.

Recap: Natural counting problems
� What is the complexity of the following problems?

� #PerfectMatching: Count the number of perfect
matchings in a bipartite graph.

� #CYCLE: Count the number of simple cycles in a
directed graph.

� Observation. The corresponding decision problems
are in P.

Recap: Natural counting problems
� What is the complexity of the following problems?

� #PATH: Count the number of simple paths between
two vertices in a connected graph.

� #SPANTREE: Count the number of spanning trees in a
connected graph.

� Observation. The corresponding decision problems
are trivial.

Recap: An easy counting problem
� Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

� In fact, #SPANTREES is in (functional) NC.

Recap: A hard counting problem
� Theorem. #CYCLE is in NP-hard.

� Lesson. A counting problem can be hard even if the
corresponding decision problem is in P.

Recap: Class #P
� Definition. We say a function f: {0,1}* is in #P if

there’s a poly-time TM M and a polynomial function p:
such that for every x ∈ {0,1}*,

f(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .

� Observation. Problems #SAT, #HAMCYCLE,
#PerfectMatching, #CYCLE, #PATH and #SPANTREE
are in #P.

� In fact, with every language in NP we can associate a
counting problem that is in #P.

Recap: #P-completeness
� Recall, to define completeness of a complexity class,

we need an appropriate notion of a reduction.
� What kind of reductions will be suitable is guided by a
complexity question, like a comparison between the
complexity class under consideration & another class.

� Is #P = FP ?

Recap: #P-completeness
� Definition. A function f: {0,1}* is in #P-complete

if f is in #P and for every g ∈ #P, we have g ∈ FPf i.e., g
is poly-time Cook/Turing reducible to f.

� In other words, for every x ∈ {0,1}*, we can compute
g(x) in polynomial time using oracle access to f.

Recap: #P-completeness
� Definition. A function f: {0,1}* is in #P-complete

if f is in #P and for every g ∈ #P, we have g ∈ FPf i.e., g
is poly-time Cook/Turing reducible to f.

� In other words, for every x ∈ {0,1}*, we can compute
g(x) in polynomial time using oracle access to f.

� Observation. If a #P-complete language is in FP then
#P = FP.

Natural #P-complete problems
� Theorem. #SAT is #P-complete.

� Proof. #SAT is in #P. Let g ∈ #P. We intend to show
that g ∈ FP#SAT.

Natural #P-complete problems
� Theorem. #SAT is #P-complete.

� Proof. #SAT is in #P. Let g ∈ #P. We intend to show
that g ∈ FP#SAT. There’s a poly-time TM M and a poly.
function p: such that for every x ∈ {0,1}*,

g(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .

� Algorithm: On input x, convert M(x, ..) to a 3CNF ϕx
using Cook-Levin theorem. Give ϕx as input to the
#SAT oracle. Output whatever the oracle outputs.

Natural #P-complete problems
� Theorem. #SAT is #P-complete.

� Proof. #SAT is in #P. Let g ∈ #P. We intend to show
that g ∈ FP#SAT. There’s a poly-time TM M and a poly.
function p: such that for every x ∈ {0,1}*,

g(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .

� Algorithm: On input x, convert M(x, ..) to a 3CNF ϕx
using Cook-Levin theorem. Give ϕx as input to the
#SAT oracle. Output whatever the oracle outputs.
Note: Only one query to the oracle. Resembles a poly-time Karp reduction.

Natural #P-complete problems
� Theorem. #SAT is #P-complete.

� Proof. #SAT is in #P. Let g ∈ #P. We intend to show
that g ∈ FP#SAT. There’s a poly-time TM M and a poly.
function p: such that for every x ∈ {0,1}*,

g(x) = |{u∈{0,1}p(|x|) : M(x, u) = 1}| .

� Correctness: Follows from the fact that the Cook-
Levin reduction is parsimonious, i.e.,

|{u∈{0,1}p(|x|) : M(x, u) = 1}| = #ϕx .

The no. of satisfying
assignments of ϕx.

Natural #P-complete problems
� Theorem. #HAMCYCLE is #P-complete.

� Most (all?) NP-complete problems known till date
have defining verifiers such that the corresponding
counting problems are #P-complete.

� Open. Does every NP-complete problem have a
defining verifier such that the corresponding counting
problem is #P-complete ?

Issue: The reduction that shows
NP-completeness of a problem
needn’t have to be parsimonious.

Natural #P-complete problems
� Theorem. (Valiant 1979) #PATH is #P-complete.

� In fact, #PATH is #P-complete for both directed and
undirected graphs.

Natural #P-complete problems
� Theorem. (Valiant 1979) #PATH is #P-complete.

� In fact, #PATH is #P-complete for both directed and
undirected graphs.

� Theorem. (Valiant 1979) #PerfectMatching is #P-
complete.

� Proof. We’ll see a proof today.

Relation between #P and other classes

� Observation. #P ⊆ PSPACE.

� Also, PH ⊆ PSPACE. How does #P relate to PH ?

Relation between #P and other classes

� Observation. #P ⊆ PSPACE.

� Also, PH ⊆ PSPACE. How does #P relate to PH ?

� Theorem. (Toda 1991) PH ⊆ P#SAT.
� Proof. We’ll see a proof later.

Relation between #P and other classes

� Observation. #P ⊆ PSPACE.

� Also, PH ⊆ PSPACE. How does #P relate to PH ?

� Theorem. (Toda 1991) PH ⊆ P#SAT.

� Hence, #P is harder than PH.

Approximations of #P functions

� Observation. If #P = FP, then P = NP.
� Open. Does P = NP imply #P = FP ?

� But, we do know that P = NP implies every #P
problem has a randomized polynomial-time
approximation algorithm.

Approximations of #P functions

� Observation. If #P = FP, then P = NP.
� Open. Does P = NP imply #P = FP ?

� But, we do know that P = NP implies every #P
problem has a randomized polynomial-time
approximation algorithm.

Can be derandomized!

Approximations of #P functions

� Definition. A function f: {0,1}* has a Fully
Polynomial-time Randomized Approximation Scheme
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such
that for every x ∈ {0,1}*,
Ø (1-𝛆).f(x) ≤ M(x) ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 ,
Ø M runs in poly(|x|, 𝛆-1, log 𝛅-1) time.

Approximations of #P functions

� Definition. A function f: {0,1}* has a Fully
Polynomial-time Randomized Approximation Scheme
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such
that for every x ∈ {0,1}*,
Ø (1-𝛆).f(x) ≤ M(x) ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 ,
Ø M runs in poly(|x|, 𝛆-1, log 𝛅-1) time.

� Theorem. If P = NP then every #P function has a
FPRAS.

� Proof. We’ll see a proof later.

Approximations of #P functions

� Definition. A function f: {0,1}* has a Fully
Polynomial-time Randomized Approximation Scheme
(FPRAS) if for every 𝛆, 𝛅 > 0, there’s a PTM M such
that for every x ∈ {0,1}*,
Ø (1-𝛆).f(x) ≤ M(x) ≤ (1+𝛆).f(x) with prob. ≥ 1- 𝛅 ,
Ø M runs in poly(|x|, 𝛆-1, log 𝛅-1) time.

� Theorem. If P = NP then every #P function has a
FPRAS.

� Remark. In fact the above FPRAS can be replaced by a
FPTAS (Fully Poly-Time Approximation Scheme).

Approximations of #P functions

� Some #P-complete problems do admit FPRAS
unconditionally!

� Theorem. (Jerrum, Sinclair, Vigoda 2001) #PerfectMatching
has a FPRAS.

� Remark. No derandomization of this algorithm is
known!

Approximations of #P functions

� Some #P-complete problems do admit FPRAS
unconditionally!

� Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a
square matrix with non-negative entries has a FPRAS.

� If X = (xij)i,j∈n then Perm(X) = ∑ ∏ xi 𝞂(i) .
𝞂∈Sn i∈[n]

Approximations of #P functions

� Some #P-complete problems do admit FPRAS
unconditionally!

� Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a
square matrix with non-negative entries has a FPRAS.

� If X = (xij)i,j∈n then Perm(X) = ∑ ∏ xi 𝞂(i) .

� Note. If BG is the biadjacency matrix of a bipartite
graph G, then Perm(BG) = #PerfectMatching(G).

𝞂∈Sn i∈[n]

0/1 matrix

0/1-Permanent is #P-complete

0/1-Permanent is #P-complete

� Theorem. (Valiant 1979) 0/1-Perm is #P-complete.

� Proof. 0/1-Perm is in #P. (Why?)

0/1-Permanent is #P-complete

� Theorem. (Valiant 1979) 0/1-Perm is #P-complete.

� Proof. We’ll show that #3SAT ∈ FP0/1-Perm.

� In fact, we’ll give a poly-time “Karp-like” reduction from
#3SAT to 0/1-Perm, i.e., we’ll give a poly-time
computable function that maps a 3CNF ϕ to a 0/1-
matrix Aϕ s.t. #ϕ is efficiently computable from
Perm(Aϕ)

� This means only one query to the 0/1-Perm oracle is
required.

Graph theoretic interpretation of Perm

� Let A = (aij)i,j∈r , where aij ∈ .
� Then, Perm(A) = ∑ ∏ ai 𝞂(i) .

� Let G be the weighted digraph on r vertices with
adjacency matrix A, i.e., the edge (i, j) in G has weight aij.

𝞂∈Sr i∈[r]

Graph theoretic interpretation of Perm

� Let A = (aij)i,j∈r , where aij ∈ .
� Then, Perm(A) = ∑ ∏ ai 𝞂(i) .

� Let G be the weighted digraph on r vertices with
adjacency matrix A, i.e., the edge (i, j) in G has weight aij.

� Every permutation 𝞂: [r] [r] can be expressed
(uniquely) as a product of disjoint cycles.

𝞂∈Sr i∈[r]

𝞂: 1 2 3 4 1

3 1 2 4 2 3 4

Graph theoretic interpretation of Perm

� Definition. A cycle cover of a digraph G is a subgraph of
G having in-degree and out-degree of every vertex
exactly 1, i.e., the subgraph is a disjoint union of cycles
covering all the vertices of G.

� Weight of a cycle cover C, denoted wt(C), is defined as
the product of the weights of the edges in C.

Graph theoretic interpretation of Perm

� Definition. A cycle cover of a digraph G is a subgraph of
G having in-degree and out-degree of every vertex
exactly 1, i.e., the subgraph is a disjoint union of cycles
covering all the vertices of G.

� Weight of a cycle cover C, denoted wt(C), is defined as
the product of the weights of the edges in C.

� Observation. Perm(A) = ∑ wt(C) .
C: C is cycle
cover of G

Every “contributing” permutation 𝞂 corresponds to a cycle cover C and vice versa.

AG, the adjacency matrix of G

Graph with parallel edges

� Note. We can talk about ‘‘adjacency matrix’’ of a graph
G that has parallel edges by defining a new graph G’:

� Denote the adjacency matrix of a graph H (without
parallel edges) by AH.Then, AG is defined as AG’.

w1

w2
w1

w2
1

G G’

1

Graph with parallel edges

� Note. We can talk about ‘‘adjacency matrix’’ of a graph
G that has parallel edges by defining a new graph G’:

� Denote the adjacency matrix of a graph H (without
parallel edges) by AH.Then, AG is defined as AG’.

� Observation. ∑ wt(C) = ∑ wt(C).
C: C is cycle
cover of G

w1

w2
w1

w2
1

G G’

C: C is cycle
cover of G’

1

0/1-Permanent is #P-complete

� Theorem. (Valiant 1979) 0/1-Perm is #P-complete.
� Proof. Let ϕ be a 3CNF that has n variables and m
clauses. Assume that every clause has exactly 3 literals.

� Step 1: From ϕ we’ll form a graph H = Hϕ that has edge
weights in {-1, 0, 1, 2, 3} such that

Perm(AH) = ∑ wt(C) = 43m. #ϕ .
C: C is cycle
cover of H

… Eqn (1)

0/1-Permanent is #P-complete

� Theorem. (Valiant 1979) 0/1-Perm is #P-complete.
� Proof. Let ϕ be a 3CNF that has n variables and m
clauses. Assume that every clause has exactly 3 literals.

� Step 1: From ϕ we’ll form a graph H = Hϕ that has edge
weights in {-1, 0, 1, 2, 3} such that

Perm(AH) = ∑ wt(C) = 43m. #ϕ .

� Note. Eqn (1) doesn’t give a FPRAS for #3SAT as the
FPRAS for Perm is for matrices with non-negative entries.

C: C is cycle
cover of H

… Eqn (1)

0/1-Permanent is #P-complete

� Theorem. (Valiant 1979) 0/1-Perm is #P-complete.
� Proof. Let ϕ be a 3CNF that has n variables and m
clauses. Assume that every clause has exactly 3 literals.

� Step 2: We’ll process H further to get a new graph G =
Gϕ with edge weights in {0,1} such that #ϕ can be
efficiently computed from Perm(AG).

� However, unlike Eqn (1), we won’t get an “precise”
equation relating Perm(AG) and #ϕ.

Details of Step 1 and Step 2

Step 1: Construction of H

� Convention. In the figures, edges without labels have
weight 1, and missing edges have weight 0.

� H will be constructed using 3 kinds of gadgets (graphs):

Step 1: Construction of H

� Convention. In the figures, edges without labels have
weight 1, and missing edges have weight 0.

� H will be constructed using 3 kinds of gadgets (graphs):
Ø Variable gadgets (there will be n of them),
Ø Clause gadgets (there will be m of them), and
Ø XOR gadgets.

� XOR gadgets are cleverly constructed 4-vertex graphs
which will be used to connect variable gadgets with
clause gadgets.

A variable gadget

� Let x be a variable. C1, …, Cs be the clauses in which x
appears, and C’1,…,C’t the clauses in which ¬x appears.

C1 C2 Cs

C’1 C’2 C’t

x(1) x(2)

Variable gadget for x

A variable gadget

� Let x be a variable. C1, …, Cs be the clauses in which x
appears, and C’1,…,C’t the clauses in which ¬x appears.

� The external edges (i.e., the red edges) will not be
present in H, they will be used to connect to the Clause
gadgets via the XOR gadgets.

C1 C2 Cs

C’1 C’2 C’t

x(1) x(2)

Variable gadget for x

External
true-edges

External
false-edges

A variable gadget

� Let x be a variable. C1, …, Cs be the clauses in which x
appears, and C’1,…,C’t the clauses in which ¬x appears.

� Observation 1. A variable gadget has exactly 2 cycle
covers corresponding to 0/1 assignment to the variable.

C1 C2 Cs

C’1 C’2 C’t

x(1) x(2)

Variable gadget for x

External
true-edges

External
false-edges

A clause gadget

� Has 4 vertices and 3 external edges (i.e., red edges)
corresponding to the 3 literals of the clause.

� External edges will not be present in H, they will be
used to connect to the Variable gadgets via the XOR
gadgets.

1

32

4

Clause gadget for a clause Ci

External edges corresponding to
the literals of the clause

A clause gadget

� Has 4 vertices and 3 external edges (i.e., red edges)
corresponding to the 3 literals of the clause.

� Observation 2a. The only possible cycle covers of a
clause gadget are those that exclude at least one
external edge.

1

32

4

Clause gadget for a clause Ci

External edges corresponding to
the literals of the clause

A clause gadget

� Has 4 vertices and 3 external edges (i.e., red edges)
corresponding to the 3 literals of the clause.

� Observation 2a. The only possible cycle covers of a
clause gadget are those that exclude at least one
external edge.

1

32

4

Clause gadget for a clause Ci

External edges corresponding to
the literals of the clause

Excluding an external edge will indicate that
the corresponding literal is set to 1.

A clause gadget

� Has 4 vertices and 3 external edges (i.e., red edges)
corresponding to the 3 literals of the clause.

� Observation 2b. For any given proper subset of the 3
external edges, there’s a unique cycle cover (of weight
1) that contains them.

1

32

4

Clause gadget for a clause Ci

External edges corresponding to
the literals of the clause

XOR gadget

� We’ll construct an XOR gadget such that the following
features are satisfied:

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

XOR gadget

� We’ll construct an XOR gadget such that the following
features are satisfied:
Ø Feature 1: Consider cycle covers of H that contain a
fixed set of edges outside the XOR gadget but
contain none of (u,1), (1,v’), (v,4), (4,u’). The sum of
the weights of all such cycle covers is 0.

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

XOR gadget

� We’ll construct an XOR gadget such that the following
features are satisfied:
Ø Feature 2: Consider cycle covers of H that contain a
fixed set of edges outside the XOR gadget including
at least one of the pairs ((u,1), (1,v’)) and ((v,4),
(4,u’)). The sum of the weights of all such cycle
covers is 0.

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

XOR gadget

� We’ll construct an XOR gadget such that the following
features are satisfied:
Ø Feature 3: Consider cycle covers of H that contain a
fixed set of edges outside the XOR gadget including
(u,1), (4,u’) but not (v,4), (1,v’). The sum of the
weights of all such cycle covers is 4.(product of the
weights of the fixed set of edges).

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

XOR gadget

� We’ll construct an XOR gadget such that the following
features are satisfied:
Ø Feature 4: Consider cycle covers of H that contain a
fixed set of edges outside the XOR gadget including
(v,4), (1,v’) but not (u,1), (4,u’). The sum of the
weights of all such cycle covers is 4.(product of the
weights of the fixed set of edges).

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

Construction of H

� Size(H) = poly(n,m).

� There are 3m XOR gadgets in H. Every cycle cover of H
“touches” the 3m XOR gadgets.

Variable gadget for x

Clause gadget for a clause Ci that
contains ¬x

+

External edge corresponding to ¬x

External false-edge corresponding to Ci

XOR gadget

� An XOR gadget can be “touched” in 4 possible ways:
a. None of (u,1), (1,v’), (v,4), (4,u’),
b. At least one of the pairs ((u,1),(1,v’)) & ((v,4),(4,u’)),
c. Only (u,1), (4,u’),
d. Only (v,4), (1,v’).
Call these the “touching patterns” of an XOR gadget.

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

XOR gadget

� Every cycle cover of H can be mapped to a specific
choice of the “touching patterns” of the 3m XOR
gadgets.

� Now, let us examine the sum of the weights of all the
cycle covers of H.

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

XOR gadget

� Claim 1a. Cycle covers, which map to a specific choice
of the “touching patterns” of the XOR gadgets s.t. the
“touching pattern” of at least one of the XOR gates is
of type a, do not contribute to the final sum.

� Proof. Follows from Feature 1. (Homework)

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

XOR gadget

� Claim 1b. Cycle covers, which map to a specific choice
of the “touching patterns” of the XOR gadgets s.t. the
“touching pattern” of at least one of the XOR gates is
of type b, do not contribute to the final sum.

� Proof. Follows from Feature 2. (Homework)

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

XOR gadget

� Claim 1c. Cycle covers, which map to a specific choice
of the “touching patterns” of the XOR gadgets s.t. the
“touching pattern” of every XOR gate is of type c or d,
together contribute 43m to the final sum.

� Proof. Follows from Feature 3 & 4, and Observations
2a, 2b & 1. (Homework)

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

XOR gadget

� Claim 1a, 1b and 1c justify the name of the “XOR”
gadget.

� The XOR gadget ensures that either the “edge” (u,u’)
or the “edge” (v,v’) is taken in a potentially contributing
choice of the “touching patterns” of the XOR gadgets.

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

Construction of H

� Observation 3. Every potentially contributing choice of
the “touching patterns” of the XOR gadgets can be
mapped to a unique choice of the cycle covers of the
variable gadgets. (Homework)

Variable gadget for x

Clause gadget for a clause Ci that
contains ¬x

+

External edge corresponding to ¬x

External edge corresponding to Ci

Construction of H

� Recall (from Observation 1) that a variable gadget has
exactly 2 cycle covers corresponding to 0/1 assignment
to the variable.

Variable gadget for x

Clause gadget for a clause Ci that
contains ¬x

+

External edge corresponding to ¬x

External edge corresponding to Ci

Construction of H

� Observation 3. (put differently) Every potentially
contributing choice of the “touching patterns” of the
XOR gadgets can be mapped to a unique 0/1
assignment to the variables.

Variable gadget for x

Clause gadget for a clause Ci that
contains ¬x

+

External edge corresponding to ¬x

External edge corresponding to Ci

Construction of H

� Which of these 0/1 assignments to the variables
correspond to actually contributing choice of the
“touching patterns” of the XOR gadgets?

Variable gadget for x

Clause gadget for a clause Ci that
contains ¬x

+

External edge corresponding to ¬x

External edge corresponding to Ci

Construction of H

� Which of these 0/1 assignments to the variables
correspond to actually contributing choice of the
“touching patterns” of the XOR gadgets?

� Answer. Exactly the satisfying assignments of ϕ. (Why?)

Variable gadget for x

Clause gadget for a clause Ci that
contains ¬x

+

External edge corresponding to ¬x

External edge corresponding to Ci

Construction of H

� Hence, the sum of the weighted cycle covers of H is 43m.
#ϕ.

� In other words, Perm(AH) = 43m. #ϕ. This concludes
Step 1 of the proof of theTheorem.

Variable gadget for x

Clause gadget for a clause Ci that
contains ¬x

+

External edge corresponding to ¬x

External edge corresponding to Ci

Construction of H

� Hence, the sum of the weighted cycle covers of H is 43m.
#ϕ.

� In other words, Perm(AH) = 43m. #ϕ. This concludes
Step 1 of the proof of the Theorem. (Wait! How do we
construct the XOR gadget?)

Variable gadget for x

Clause gadget for a clause Ci that
contains ¬x

+

External edge corresponding to ¬x

External edge corresponding to Ci

XOR gadget

� Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget.
� We need to pick xi,j in a way such that Feature 1, 2, 3
and 4 are satisfied.

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

XOR gadget

� Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget.
� We need to pick xi,j in a way such that Feature 1, 2, 3
and 4 are satisfied.

� Condition 1. Feature 1 implies Perm(X) = 0.

1

2

3

4XOR
gadget

XOR gadget

� Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget.
� We need to pick xi,j in a way such that Feature 1, 2, 3
and 4 are satisfied.

� Condition 2. Feature 2 implies Perm(X{2,3,4}) = 0,
where X{2,3,4} is the submatrix of X restricted to the
rows and columns that are indexed by 2, 3 and 4.

1

2

3

4

XOR gadget

� Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget.
� We need to pick xi,j in a way such that Feature 1, 2, 3
and 4 are satisfied.

� Condition 2. Feature 2 implies Perm(X{1,2,3}) = 0,
where X{1,2,3} is the submatrix of X restricted to the
rows and columns that are indexed by 1, 2 and 3.

1

2

3

4

XOR gadget

� Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget.
� We need to pick xi,j in a way such that Feature 1, 2, 3
and 4 are satisfied.

� Condition 2. Feature 2 implies Perm(X{2,3}) = 0, where
X{2,3} is the submatrix of X restricted to the rows and
columns that are indexed by 2 and 3.

1

2

3

4

XOR gadget

� Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget.
� We need to pick xi,j in a way such that Feature 1, 2, 3
and 4 are satisfied.

� Condition 3. Feature 3 implies Perm(Y) = 4, where Y is
the adjacency matrix of the above 5-vertex graph.

1

2

3

4XOR
gadget

5

XOR gadget

� Let X = (xi,j)4x4 be the adj. matrix of the XOR gadget.
� We need to pick xi,j in a way such that Feature 1, 2, 3
and 4 are satisfied.

� Condition 4. Feature 4 implies Perm(Z) = 4, where Z
is the adjacency matrix of the above 5-vertex graph.

1

2

3

4XOR
gadget

5

XOR gadget

� Set X as follows to satisfy Condition 1, 2, 3 and 4.

� X =

+

u

u’

vv’

u

u’

vv’

1

2

3

4XOR
gadget

0 1 -1 -1

1 -1 1 1

0 1 1 2

0 1 3 0

0/1-Permanent is #P-complete

� Theorem. (Valiant 1979) 0/1-Perm is #P-complete.
� Proof. Let ϕ be a 3CNF that has n variables and m
clauses. Assume that every clause has exactly 3 literals.

� Step 1: From ϕ we’ll form a graph H = Hϕ that has edge
weights in {-1, 0, 1, 2, 3} such that

Perm(AH) = ∑ wt(C) = 43m. #ϕ .

� We have completed Step 1.

C: C is cycle
cover of H

0/1-Permanent is #P-complete

� Theorem. (Valiant 1979) 0/1-Perm is #P-complete.
� Proof. Let ϕ be a 3CNF that has n variables and m
clauses. Assume that every clause has exactly 3 literals.

� Step 2: We’ll process H further to get a new graph G =
Gϕ with edge weights in {0,1} such that #ϕ can be
efficiently computed from Perm(AG).

� Let us now focus on Step 2.

Step 2

� Covert H to H’ that has edge weights from {-1, 0, 1} by
first introducing parallel edges, and then, introducing
extra vertices to get rid of the parallel edges. Let p =
poly(n,m) be the number of vertices of H’.

Step 2

� Covert H to H’ that has edge weights from {-1, 0, 1} by
first introducing parallel edges, and then, introducing
extra vertices to get rid of the parallel edges. Let p =
poly(n,m) be the number of vertices of H’.

� Observe that Perm(AH) = Perm(AH’) ∈ [0, p!]. Set r = p2

and note that 2r + 1 > p!.

Step 2

� Covert H to H’ that has edge weights from {-1, 0, 1} by
first introducing parallel edges, and then, introducing
extra vertices to get rid of the parallel edges. Let p =
poly(n,m) be the number of vertices of H’.

� Observe that Perm(AH) = Perm(AH’) ∈ [0, p!]. Set r = p2

and note that 2r + 1 > p!.
� Hence, Perm(AH’) is the same as Perm(AH’) mod (2r+1).

Step 2

� Covert H to H’ that has edge weights from {-1, 0, 1} by
first introducing parallel edges, and then, introducing
extra vertices to get rid of the parallel edges. Let p =
poly(n,m) be the number of vertices of H’.

� Observe that Perm(AH) = Perm(AH’) ∈ [0, p!]. Set r = p2

and note that 2r + 1 > p!.
� Hence, Perm(AH’) is the same as Perm(AH’) mod (2r+1).
� As -1 = 2r mod (2r + 1), we can replace the weights of
the edges in H’ that are labelled by -1 with 2r to form a
graph G’ and compute Perm(AG’) mod (2r+1).

Step 2

� Covert H to H’ that has edge weights from {-1, 0, 1} by
first introducing parallel edges, and then, introducing
extra vertices to get rid of the parallel edges. Let p =
poly(n,m) be the number of vertices of H’.

� Finally, transform G’ to G with 0/1 edge weights by
Ø replacing every edge with weight 2r by a sequence
of r edges each having weight 2, and then

Ø replacing every edge with weight 2 by a pair of
parallel weight 1 edges, and then

Ø removing parallel edges like before.

Step 2

� Covert H to H’ that has edge weights from {-1, 0, 1} by
first introducing parallel edges, and then, introducing
extra vertices to get rid of the parallel edges. Let p =
poly(n,m) be the number of vertices of H’.

� In the end, we get Perm(AG) = 4m. #ϕ mod (2r + 1),
where G is a graph with 0/1 edge weights.

� It is because of the modulus “mod (2r + 1)” that an
FPRAS for 0/1-Perm doesn’t imply an FPRAS for #3SAT.

