
Computational Complexity Theory

Lecture 2: Class P and NP

Department of Computer Science,
Indian Institute of Science

Recap: Turing Machines

� An algorithm is a set of instructions or rules.
� To understand the performance of an algorithm we

need a model of computation. Turing machine is one
such natural model (introduced by Alan Turing in 1936).

� A TM consists of:

� Turing machines A mathematical way to
describe algorithms.

• Memory tape(s)
• A finite set of rules

Recap: Turing Machines

� Definition. A k-tape Turing Machine M is described
by a tuple (Γ, Q, δ) such that

� M has k memory tapes (input/work/output tapes)
with heads;

� Γis a finite set of alphabets. (Every memory cell
contains an element of Γ)

� Q is a finite set of states. (special states: qstart , qhalt)
� δ is a function from Q x Γ to Q x Γ x {L,S,R}k k k

known as transition function; it captures the
dynamics of M

Recap: TM Computation

� Start configuration.
ØAll tapes other than the input tape contain blank symbols.
ØThe input tape contains the input string.
ØAll the head positions are at the start of the tapes.
ØThe machine is in the start state qstart .

� Computation.
ØA step of computation is performed by applying δ.

� Halting.
Ø Once the machine enters qhalt it stops computation.

Recap: TM Running time

� Let f: {0,1}* {0,1}* and T: and M be a
Turing machine.

� Definition. We say M computes f if on every x in
{0,1}*, M halts with f(x) on its output tape beginning
from the start configuration with x on its input tape.

� Definition. M computes f in T(|x|) time, if for every x
in {0,1}*, M halts within T(|x|) steps of computation
and outputs f(x).

Recap: Turing Machines that halt

� In this course, we would be dealing with

ØTuring machines that halt on every input.
Ø Computational problems that can be solved by Turing

machines.

� Can every computational problem be solved using
Turing machines?

Recap: Uncomputability

� There are problems for which there exists no TM
that halts on every input instances of the problem
and outputs the correct answer.

Ø Input: A system of polynomial equations in many variables with
integer coefficients.

Ø Output: Check if the system has integer solutions .

Ø Question: Is there an algorithm to solve this problem?

� Theorem. There doesn’t exist any algorithm (realizable by a
TM) to solve this problem. (Davis, Putnam, Robinson, Matiyasevich 1970)

Recap: Why Turing Machines?

� TMs are natural and intuitive.

� Church-Turing thesis: “Every physically realizable
computation device – whether it’s based on silicon, DNA,
neurons or some other alien technology – can be
simulated by aTuring machine”.

--- [quoted from Arora-Barak’s book]
� Several other computational models can be

simulated by TMs.

Recap: Why Turing Machines?

� TMs are natural and intuitive.

� Strong Church-Turing thesis: “Every physically
realizable computation device – whether it’s based on
silicon, DNA, neurons or some other alien technology –
can be simulated efficiently by aTuring machine”.

Possible exception: Quantum machines!

Recap: Time Constructible functions

� Time constructible functions. A function T:
is time constructible if T(n) ≥ n and there’s a TM that
computes the function that maps x to T(|x|) in
O(T(|x|)) time.

� Examples: T(n) = n2, or 2n, or n log n

in binary

Recap: Robustness of TM

� Let f: {0,1}* {0,1}* and T: be a time
constructible function.

� Binary alphabets suffice.
Ø If a TM M computes f in T(n) time using Γ as the alphabet

set, then there’s another TM M’ that computes f in time
4.log |Γ| .T(n) using {0, 1, blank} as the alphabet set.

� A single tape suffices.
Ø If a TM M computes f in T(n) time using k tapes then

there’s another TM M’ that computes f in time 5k . T(n)2
using a single tape that is used for input, work and output.

Recap: TM as strings

� Every TM can be represented by a finite string over
{0,1}.

� Every string over {0,1} represents some TM.

� Every TM has infinitely many string representations.

α Mα

{0,1} string TM corresponding to α

Recap: TM as strings

� Every TM can be represented by a finite string over
{0,1}.

� Every string over {0,1} represents some TM.

� Every TM has infinitely many string representations.

� A TM (i.e., its string representation) can be given as
an input to another TM !!

Recap: Universal Turing Machines

� Theorem. There exists a TM U that on every input x,
α in {0,1}* outputs Mα(x).

� Further, if Mα halts within T steps then U halts within
C. T. log T steps, where C is a constant that depends
only on Mα ’s alphabet size, number of states and
number of tapes.

� Physical realization of UTMs are modern day
electronic computers.

Complexity class P

Decision Problems

� In the initial part of this course, we’ll focus primarily
on decision problems.

Decision Problems

� In the initial part of this course, we’ll focus primarily
on decision problems.

� Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0,1}* to {0,1}.

Decision Problems

� In the initial part of this course, we’ll focus primarily
on decision problems.

� Decision problems can be naturally identified with
Boolean functions, i.e., functions from {0,1}* to {0,1}.

� Boolean functions can be naturally identified with
sets of {0,1} strings, also called languages.

Decision Problems

Decision problems Boolean functions Languages

� Definition. We say a TM M decides a language L ⊆ {0,1}*
if M computes fL, where fL(x) = 1 if and only if x ∈ L.

The characteristic function of L .

Complexity Class P

� Let T: be some function.

� Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

� Defintion: Class P = ∪ DTIME (nc).
c > 0

Complexity Class P

� Let T: be some function.

� Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

� Defintion: Class P = ∪ DTIME (nc).
c > 0

Deterministic polynomial-time

Complexity Class P : Examples

� Cycle detection (DFS)
Ø Check if a given graph has a cycle.

Complexity Class P : Examples

� Cycle detection

� Solvabililty of a system of linear equations (Gaussian elimination)

Ø Given a system of linear equations over check if there exists a
common solution to all the linear equations.

Complexity Class P : Examples

� Cycle detection

� Solvabililty of a system of linear equations

� Perfect matching (Edmonds 1965) (birth of class P)
Ø Check if a given graph has a perfect matching

Complexity Class P : Examples

� Cycle detection

� Solvabililty of a system of linear equations

� Perfect matching

� Planarity testing (Hopcroft & Tarjan 1974)
Ø Check if a given graph is planar

Complexity Class P : Examples

� Cycle detection

� Solvabililty of a system of linear equations

� Perfect matching

� Planarity testing

� Primality testing (Agrawal, Kayal & Saxena 2002)
Ø Check if a number is prime

Polynomial-time Turing Machines

� Definition. A TM M is a polynimial-time TM if there’s a
polynomial function q: such that for every
input x ∈ {0,1}*, M halts within q(|x|) steps.

Polynomial function. q(n) = O(nc) for some constant c.

Class (functional) P

� What if a problem is not a decision problem? Like
the task of adding two integers.

Class (functional) P

� What if a problem is not a decision problem? Like
the task of adding two integers.

� One way is to focus on the i-th bit of the output and
make it a decision problem.

(Is the i-th bit, on input x, 1?)

Class (functional) P

� What if a problem is not a decision problem? Like
the task of adding two integers.

� One way is to focus on the i-th bit of the output and
make it a decision problem.

� Alternatively, we define a class called functional P or
FP.

Class (functional) P

� What if a problem is not a decision problem? Like
the task of adding two integers.

� One way is to focus on the i-th bit of the output and
make it a decision problem.

� We say that a problem or a function f: {0,1}* {0,1}*
is in FP (functional P) if there’s a polynomial-time TM
that computes f.

Complexity Class FP : Examples

� Greatest Common Divisor (Euclid ~300 BC)
Ø Given two integers a and b, find their gcd.

Complexity Class FP : Examples

� Greatest Common Divisor

� Counting paths in a DAG (homework)
Ø Find the number of paths between two vertices in a directed

acyclic graph.

Complexity Class FP : Examples

� Greatest Common Divisor

� Counting paths in a DAG

� Maximum matching (Edmonds 1965)
Ø Find a maximum matching in a given graph

Complexity Class FP : Examples

� Greatest Common Divisor

� Counting paths in a DAG

� Maximum matching

� Linear Programming (Khachiyan 1979, Karmarkar 1984)
ØOptimize a linear objective function subject to linear (in)equality

constraints

Complexity Class FP : Examples

� Greatest Common Divisor

� Counting paths in a DAG

� Maximum matching

� Linear Programming (Khachiyan 1979, Karmarkar 1984)
ØOptimize a linear objective function subject to linear (in)equality

constraints

Not known if LP has a strongly
polynomial-time algorithm.

Homework: Read about the
differences between strongly poly-
time, weakly poly-time and pseudo
poly-time algorithms.

Complexity Class FP : Examples

� Greatest Common Divisor

� Counting paths in a DAG

� Maximum matching

� Linear Programming

� Factoring Polynomials (Lenstra, Lenstra, Lovasz 1982)
Ø Compute the irreducible factors of a univariate polynomial over

Complexity class NP

Complexity Class NP

� Solving a problem is generally harder than verifying a
given solution to the problem.

� Class NP captures the set of decision problems
whose solutions are efficiently verifiable.

Complexity Class NP

� Solving a problem is generally harder than verifying a
given solution to the problem.

� Class NP captures the set of decision problems
whose solutions are efficiently verifiable.

Nondeterministic polynomial-time

Complexity Class NP

� Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

Complexity Class NP

� Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

u is called a certificate or witness
for x (w.r.t L and M), if x ∈ L .

Complexity Class NP

� Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

� It follows that verifier M cannot be fooled !

Complexity Class NP

� Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

� Class NP contains those problems (languages) which
have such efficient verifiers.

Class NP : Examples

� Vertex cover
Ø Given a graph G and an integer k, check if G has a vertex

cover of size k.

Class NP : Examples

� Vertex cover

� 0/1 integer programming
Ø Given a system of linear (in)equalities with integer

coefficients, check if there’s a 0-1 assignment to the
variables that satisfy all the (in)equalities.

Class NP : Examples

� Vertex cover

� 0/1 integer programming

� Integer factoring
Ø Given two numbers n and U, check if n has a prime factor

less than or equal to U.

Class NP : Examples

� Vertex cover

� 0/1 integer programming

� Integer factoring

� Graph isomorphism
ØGiven two graphs, check if they are isomorphic.

Class NP : Examples

� 2-Diophantine solvability
Ø Given three integers a, b and c, check if the equation ax2 +

by + c = 0 has a solution (x, y), where both x and y are
positive integers.

[Homework]: Show that the above problem is in NP.

Hint: If (x, y) is a solution, then so is (x + b, y - a(2x + b)).

Is P = NP ?

� Obviously, P ⊆ NP.

� Whether or not P = NP is an outstanding open
question in mathematics and TCS!

Is P = NP ?

� Obviously, P ⊆ NP.

� Whether or not P = NP is an outstanding open
question in mathematics and TCS!

� Solving a problem does seem harder than verifying
its solution, so most people believe that P ≠ NP.

Is P = NP ?

� Obviously, P ⊆ NP.

� Whether or not P = NP is an outstanding open
question in mathematics and TCS!

� P = NP has many weird consequences, and if true,
will pose a serious threat to secure and efficient
cryptography (and e-commerce).

Is P = NP ?

� Obviously, P ⊆ NP.

� Whether or not P = NP is an outstanding open
question in mathematics and TCS!

� Mathematics has gained much from attempts to
prove such “negative” statements—Galois theory,
Godel’s incompleteness, Fermat’s Last Theorem,
Turing’s undecidability, Continuum hypothesis etc.

Is P = NP ?

� Obviously, P ⊆ NP.

� Whether or not P = NP is an outstanding open
question in mathematics and TCS!

� Complexity theory has several of such intriguing
unsolved questions.
The history and status of the P versus NP question

-- survey by Michael Sipser (1992)

