Computational Complexity Theory

Lecture 3: Reductions;

NP-completeness;

Cook-Levin theorem

Department of Computer Science, Indian Institute of Science

Recap: Decision Problems

Decision problems

Boolean functions

Languages

• Definition. We say a TM M <u>decides a language</u> $L \subseteq \{0,1\}^*$ if M computes f_L , where $f_L(x) = 1$ if and only if $x \in L$.

The characteristic function of L.

Recap: Complexity Class P

Let T: N→ N be some function.

 Definition: A language L is in DTIME(T(n)) if there's a TM that decides L in time O(T(n)).

Defintion: Class P = U DTIME (n^c).
 Deterministic polynomial-time

Recap: Problems in P

- Cycle detection
- Solvability of a system of linear equations
- Perfect matching
- Planarity testing
- Primality testing

Recap: Polynomial-time TM

Definition. A TM M is a polynimial-time TM if there's a polynomial function q: N → N such that for every input x ∈ {0,1}*, M halts within q(|x|) steps.

Polynomial function. $q(n) = O(n^c)$ for some constant c.

Recap: Class FP

- What if a problem is not a decision problem? Like the task of adding two integers.
- One way is to focus on the i-th bit of the output and make it a decision problem.
- We say that a problem or a function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is in FP (functional P) if there's a polynomial-time TM that computes f.

Complexity Class FP: Examples

- Greatest Common Divisor
- Counting paths in a DAG
- Maximum matching
- Linear Programming
- Factoring Polynomials

Recap: Class NP

 Solving a problem is generally harder than verifying a given solution to the problem.

 Class NP captures the set of decision problems whose solutions are <u>efficiently verifiable</u>.

Nondeterministic polynomial-time

Recap: Class NP

Definition. A language L ⊆ {0,1}* is in NP if there's a polynomial function p: N → N and a polynomial-time TM M (called the <u>verifier</u>) such that for every x,

$$x \in L \implies \exists u \in \{0,1\}^{p(|x|)}$$
 s.t. $M(x,u) = I$

u is called a <u>certificate or witness</u> for x (w.r.t L and M), if $x \in L$.

Recap: Class NP

• Definition. A language $L \subseteq \{0,1\}^*$ is in NP if there's a polynomial function $p: N \to N$ and a polynomial-time TM M (called the <u>verifier</u>) such that for every x,

$$x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$$
 s.t. $M(x,u) = I$

 Class NP contains those problems (languages) which have such efficient verifiers.

Recap: Problems in NP

Vertex cover

0/1 integer programming

Integer factoring

Graph isomorphism

2-Diophantine solvability

Recap: Is P = NP?

• Obviously, $P \subseteq NP$.

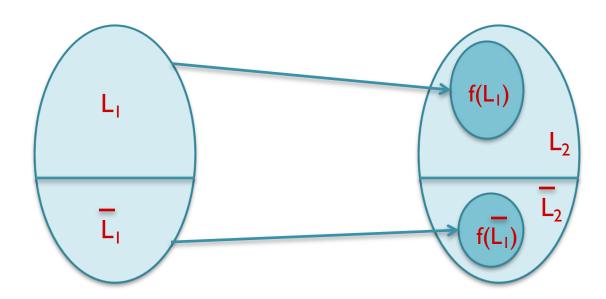
- Whether or not P = NP is an outstanding open question in mathematics and TCS!
- Solving a problem does seem harder than verifying its solution, so most people believe that $P \neq NP$.

Reductions

Polynomial-time reduction

• Definition. We say a language $L_1 \subseteq \{0,1\}^*$ is <u>polynomial-time</u> (Karp) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a polynomial-time computable function f s.t.

$$x \in L_1 \iff f(x) \in L_2$$



Polynomial-time reduction

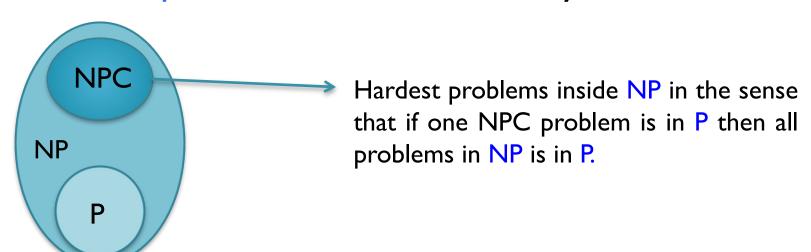
• Definition. We say a language $L_1 \subseteq \{0,1\}^*$ is <u>polynomial-time (Karp) reducible</u> to a language $L_2 \subseteq \{0,1\}^*$ if there's a polynomial time computable function f s.t.

$$x \in L_1 \iff f(x) \in L_2$$

- Notation. $L_1 \leq_{D} L_2$
- Observe. If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$ then $L_1 \leq_p L_3$. (Transitivity)

NP-completeness

- Definition. A language L' is NP-hard if for every L in NP, L \leq_p L'. Further, L' is NP-complete if L' is in NP and is NP-hard.
- Observe. If L' is NP-hard and L' is in P then P = NP. If
 L' is NP-complete then L' in P if and only if P = NP.



NP-completeness

- Definition. A language L' is NP-hard if for every L in NP, L \leq_p L'. Further, L' is NP-complete if L' is in NP and is NP-hard.
- Observe. If L' is NP-hard and L' is in P then P = NP. If
 L' is NP-complete then L' in P if and only if P = NP.
- [Homework]. Let $L_1 \subseteq \{0,1\}^*$ be any language and L_2 be a language in NP. If $L_1 \leq_p L_2$ then L_1 is also in NP.

Few words on reductions

- As to how we define a reduction from one language to the other (or one function to the other) is usually guided by a <u>question on</u> whether two <u>complexity classes</u> are different or identical.
- For polynomial-time reductions, the question is whether or not P equals NP.
- Reductions help us define complete problems (the 'hardest' problems in a class) which in turn help us compare the complexity classes under consideration.

Class NP: Examples

- Vertex cover (NP-complete)
- 0/1 integer programming (NP-complete)
- 3-coloring planar graphs (NP-complete)
- 2-Diophantine solvability (NP-complete)
- Integer factoring (unlikely to be NP-complete)
- Graph isomorphism (Quasi-P) Babai 2015

How to show existence of an NPC problem?

- Let L' = { (α, x, I^m, I^t) : there exists a $u \in \{0, I\}^m$ s.t. M_{α} accepts (x, u) in t steps }
- Observation. L' is NP-complete.

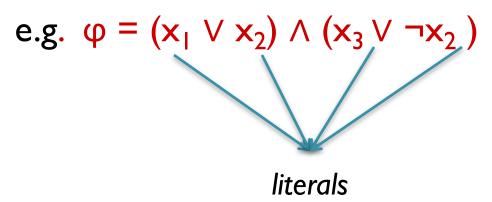
The language L' involves Turing machine in its definition.
 Next, we'll see an example of an NP-complete problem that is arguably more natural.

• Definition. A <u>Boolean formula</u> on variables $x_1, ..., x_n$ consists of AND, OR and NOT operations.

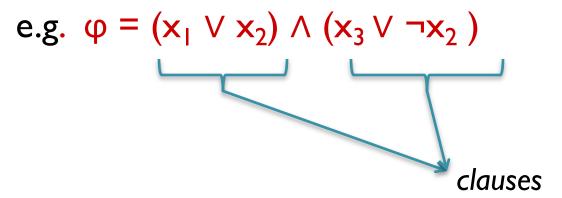
e.g.
$$\varphi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

• Definition. A Boolean formula ϕ is <u>satisfiable</u> if there's a $\{0,1\}$ -assignment to its variables that makes ϕ evaluate to 1.

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.



 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.



 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.

e.g.
$$\varphi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.

e.g.
$$\varphi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

• Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.

e.g.
$$\varphi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

• Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

Easy to see that SAT is in NP.

Need to show that SAT is NP-hard.

Proof of Cook-Levin Theorem

• Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

 Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

- Let $L \in \mathbb{NP}$. We intend to come up with a polynomial-time computable function $f: \times \longrightarrow \phi_{\times}$ s.t.,
 - \rightarrow x \in L \iff $\phi_x \in$ SAT

 Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

- Let $L \in \mathbb{NP}$. We intend to come up with a polynomial-time computable function $f: \times \longrightarrow \phi_{\times}$ s.t.,
 - \triangleright x \in L \iff $\phi_x \in SAT$
 - Notation: $|\phi_x| := \text{size of } \phi_x$ $= \text{number of } V \text{ or } \Lambda \text{ in } \phi_x$

Language L has a poly-time verifier M such that

$$x \in L$$
 $\Longrightarrow \exists u \in \{0,1\}^{p(|x|)}$ s.t. $M(x,u) = I$

• Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x, u) = I

• Idea: For any fixed x, we can <u>capture the computation</u> of M(x, ..) by a CNF ϕ_x such that

 $\exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x, u) = 1 $\iff \phi_x$ is satisfiable

• Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x, u) = I

• Idea: For any fixed x, we can <u>capture the computation</u> of M(x, ..) by a CNF ϕ_x such that

```
\exists u \in \{0,1\}^{p(|x|)} s.t. M(x,u) = I \iff \phi_x is satisfiable
```

• For any fixed x, M(x, ..) is a deterministic TM that takes u as input and runs in time polynomial in |u|.

Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then, (think of N = M(x, ..) for a fixed x.)

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a CNF $\varphi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \varphi(u, "auxiliary variables")$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = 1.
 - 2. φ is computable in time poly(T(n)) from N,T & n.

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a CNF $\varphi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \varphi(u, "auxiliary variables")$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = 1.
 - 2. φ is computable in time poly(T(n)) from N,T & n.
- $\varphi(u, "auxiliary variables")$ is satisfiable as a function of all the variables if and only if $\exists u \text{ s.t } N(u) = I$.

Cook-Levin theorem: Proof

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a CNF $\varphi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \varphi(u, "auxiliary variables")$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = 1.
 - 2. φ is computable in time poly(T(n)) from N,T & n.
- Cook-Levin theorem follows from above!

Proof of Main Theorem

Main theorem: Proof

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a Boolean circuit ψ of size poly(T(n)) such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.
- Step 2. "Convert" circuit ψ to a CNF ϕ efficiently by introducing <u>auxiliary variables</u>.

Main theorem: Proof

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a Boolean circuit ψ of size poly(T(n)) such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.

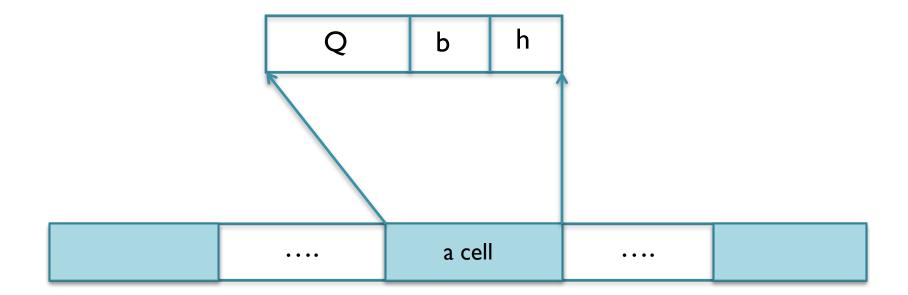
The key insight: ψ "encodes" N.

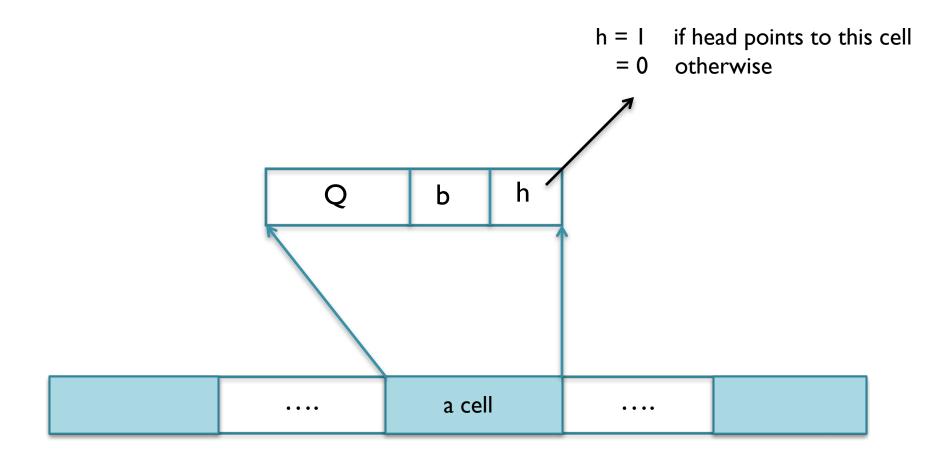
• Step 2. "Convert" circuit ψ to a CNF ϕ efficiently by introducing auxiliary variables.

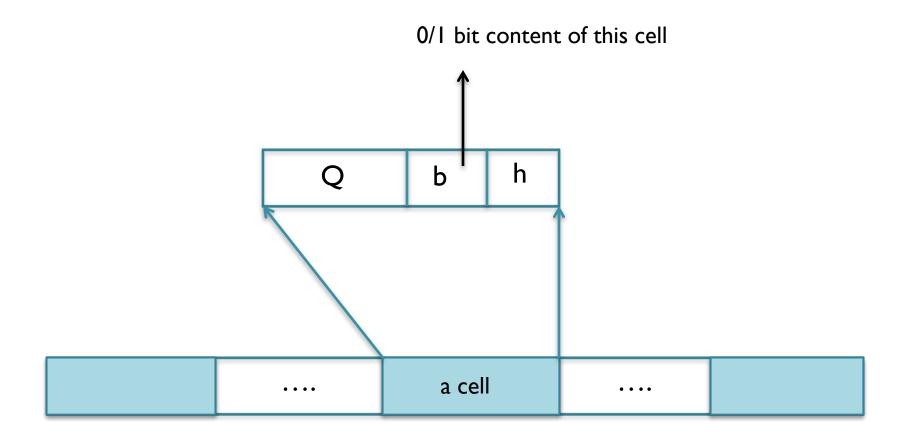
 Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.

- Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.
- A step of computation of N consists of
 - Changing the content of the current cell
 - Changing state
 - Changing head position

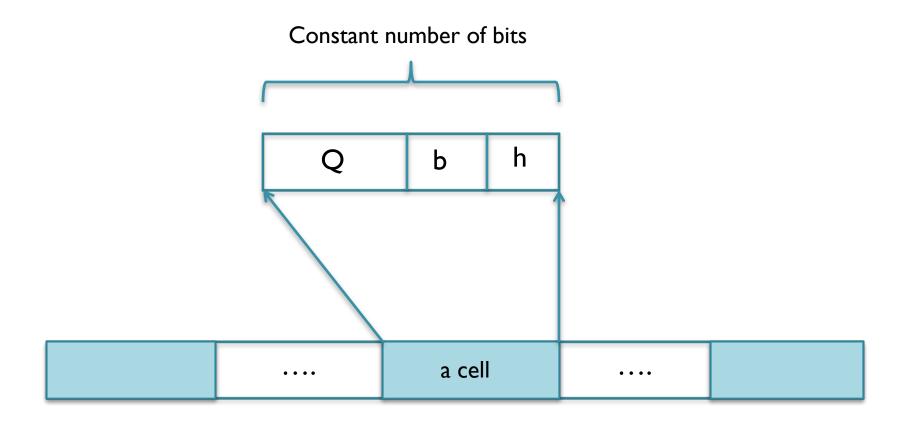
- Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.
- A step of computation of N consists of
 - Changing the content of the current cell
 - Changing state
 - Changing head position
- Think of a 'compound' tape: Every cell stores the current state, a bit content and head indicator.





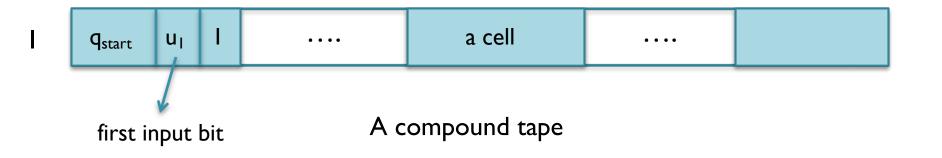


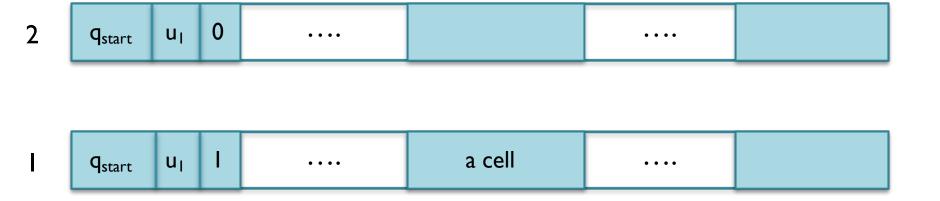
Current state when h = Ih b a cell

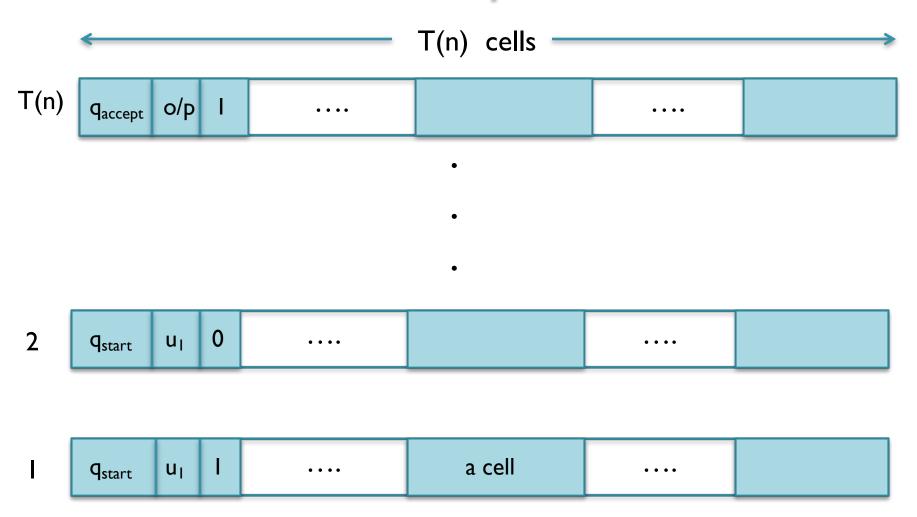


• Computation of N on inputs of length n can be completely described by a sequence of T(n) compound tapes, the i-th of which captures a 'snapshot' of N's computation at the i-th step.

a cell ····



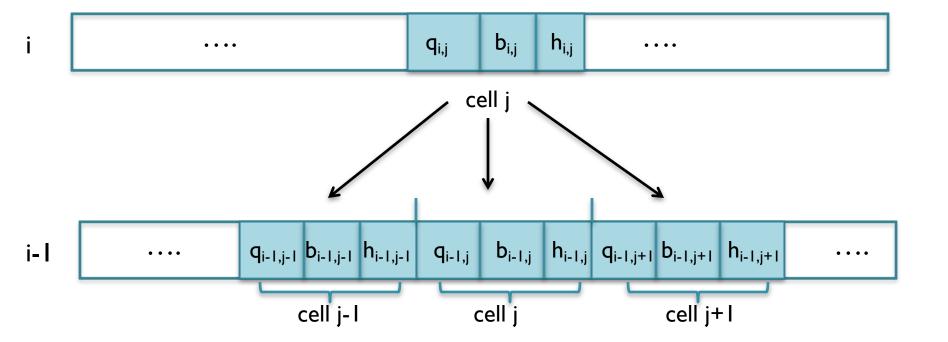




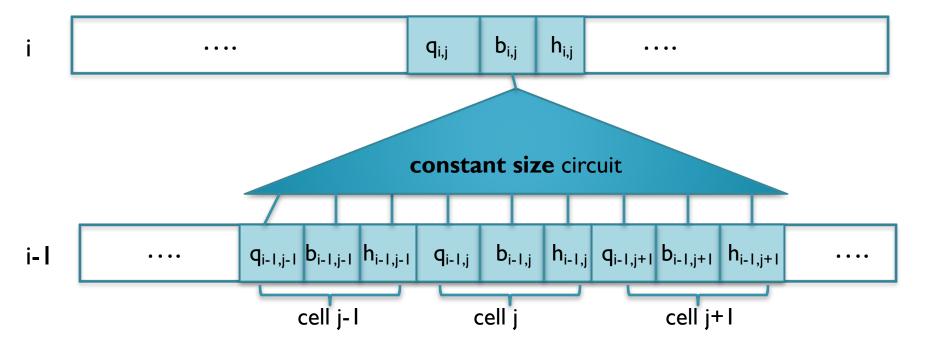
- $h_{i,j} = I$ iff head points to cell j at i-th step
- b_{i,i} = bit content of cell j at i-th step
- $q_{i,j} = a$ sequence of log |Q| bits which contains the current state info if $h_{i,j} = I$; otherwise we don't care

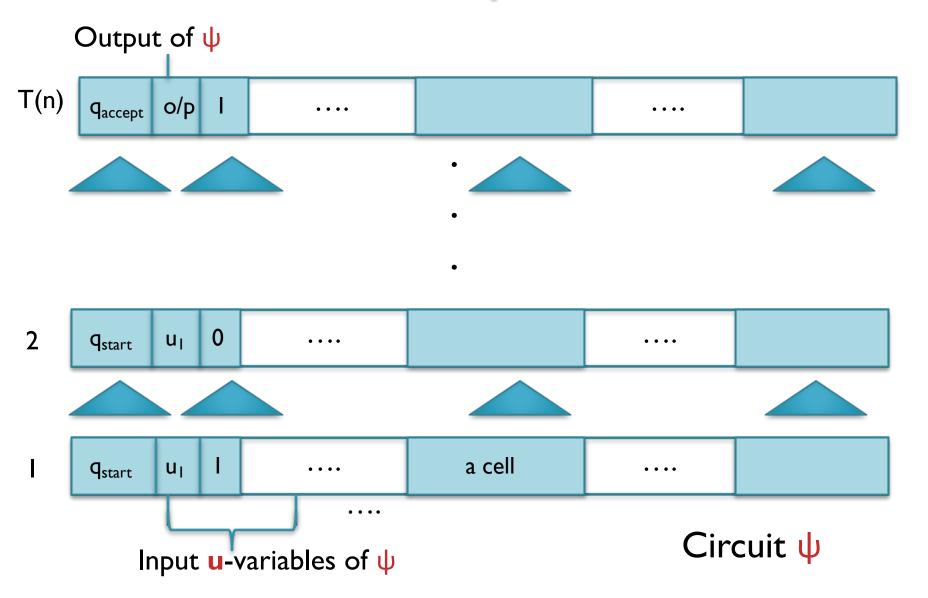
cell i

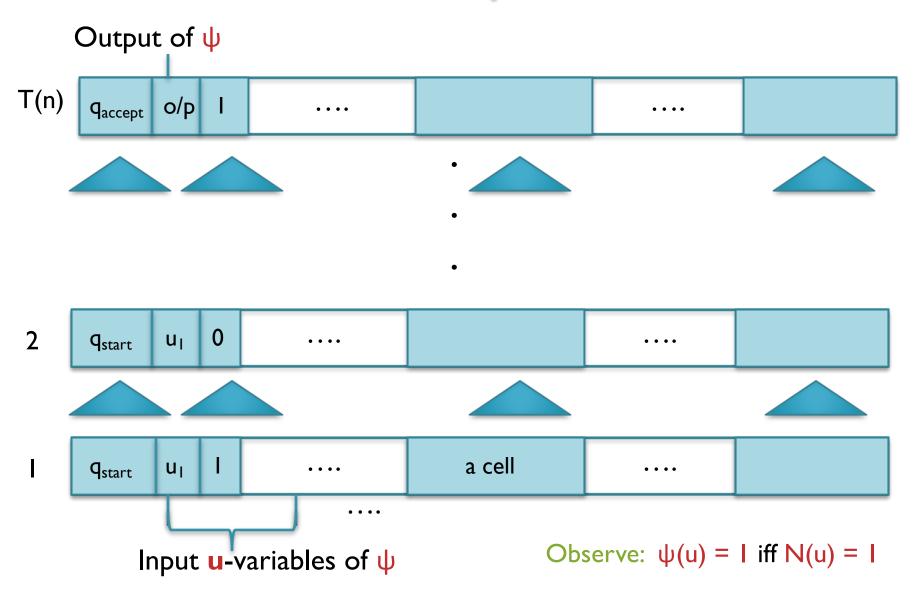
- Locality of computation: The bits in h_{i,j},
 b_{i,j} and q_{i,j} depend <u>only on</u> the bits in
 - $\triangleright h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},$
 - $\triangleright h_{i-1,j}, b_{i-1,j}, q_{i-1,j},$
 - $\triangleright h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}$



- Locality of computation: The bits in h_{i,j},
 b_{i,j} and q_{i,j} depend <u>only on</u> the bits in
 - $\triangleright h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},$
 - $\triangleright h_{i-1,j}, b_{i-1,j}, q_{i-1,j},$
 - $\triangleright h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}$







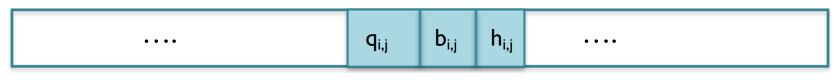
Recall Steps I and 2

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1.
 Then,
 - I. There's a Boolean circuit ψ of size poly(T(n)) such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.

• Step 2. "Convert" circuit ψ to a CNF ϕ efficiently by introducing auxiliary variables.

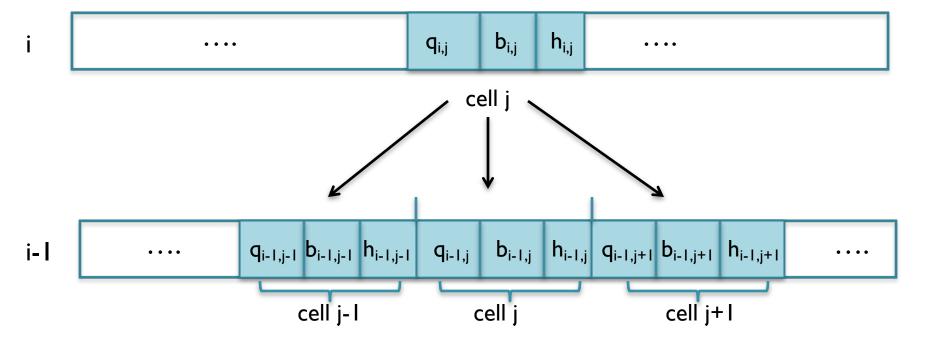
• Think of $h_{i,j}$, $b_{i,j}$ and the bits of $q_{i,j}$ as formal Boolean variables.

auxiliary variables



cell j

- Locality of computation: The variables $h_{i,j}$, $b_{i,j}$ and $q_{i,j}$ depend only on the variables
 - $\triangleright h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},$
 - \triangleright h_{i-1,i}, b_{i-1,i}, q_{i-1,i}, and
 - $\triangleright h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}$



Hence,

$$b_{ij} = B_{ij}(h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1}, h_{i-1,j}, b_{i-1,j}, q_{i-1,j}, h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1})$$

= a fixed function of the arguments depending only on N's transition function δ .

• The above equality can be captured by a constant size CNF Ψ_{ij} . Also, Ψ_{ij} is easily computable from δ .

Hence,

$$b_{ij} = B_{ij}(h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1}, h_{i-1,j}, b_{i-1,j}, q_{i-1,j}, h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1})$$

= a fixed function of the arguments depending only on N's transition function δ .

• The above equality can be captured by a constant size CNF Ψ_{ij} . Also, Ψ_{ij} is easily computable from δ .

```
x = y iff (x \wedge y) \vee (\neg x \wedge \neg y) = 1.
```

Similarly,

$$\mathbf{h}_{ij} = \mathbf{H}_{ij}(\mathbf{h}_{i-1,j-1}, \mathbf{b}_{i-1,j-1}, \mathbf{q}_{i-1,j-1}, \mathbf{h}_{i-1,j}, \mathbf{b}_{i-1,j}, \mathbf{q}_{i-1,j}, \mathbf{h}_{i-1,j+1}, \mathbf{b}_{i-1,j+1}, \mathbf{q}_{i-1,j+1})$$

= a fixed function of the arguments depending only on N's transition function δ .

• The above equality can be captured by a constant size CNF Φ_{ii} . Also, Φ_{ii} is easily computable from δ .

• Similarly, k-th bit of q_{ij} where $1 \le k \le \log |Q|$

$$q_{ijk} = C_{ijk}(h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1}, h_{i-1,j}, b_{i-1,j}, q_{i-1,j}, h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1})$$

= a fixed function of the arguments depending only on N's transition function δ .

• The above equality can be captured by a constant size CNF θ_{iik} . Also, θ_{iik} is easily computable from δ .

• Let λ be the conjunction of Ψ_{ij} , Φ_{ij} and θ_{ijk} for all i, j, k.

```
    i ∈ [I,T(n)],
    j ∈ [I,T(n)], and
    k ∈ [I, log |Q|]
```

• λ is a CNF in the u-variables and the <u>auxiliary variables</u> $h_{i,j}$, $b_{i,j}$ and $q_{i,j,k}$ for all i,j,k. $|\lambda|$ is $O(T(n)^2)$.

• Let λ be the conjunction of Ψ_{ij} , Φ_{ij} and θ_{ijk} for all i, j, k.

```
    i ∈ [I,T(n)],
    j ∈ [I,T(n)], and
    k ∈ [I, log |Q|]
```

- λ is a CNF in the u-variables and the <u>auxiliary variables</u> $h_{i,j}$, $b_{i,j}$ and $q_{i,j,k}$. for all i,j,k. $|\lambda|$ is $O(T(n)^2)$.
- Define $\varphi = \lambda \wedge b_{T(n), 1}$.

Observe: An assignment to u and the auxiliary variables satisfies λ if and only if it "captures" the computation of N on the assigned input u for T(n) steps.

Observe: An assignment to u and the auxiliary variables satisfies λ if and only if it "captures" the computation of N on the assigned input u for T(n) steps.

• Hence, an assignment to u and the auxiliary variables satisfies φ if and only if N(u) = I, i.e., for every u,

 $\varphi(u, \text{``auxiliary variables''}) \in SAT \iff N(u) = I.$

Recall the Main Theorem

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a CNF $\varphi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \varphi(u, "auxiliary variables")$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = 1.
 - 2. φ is computable in time poly(T(n)) from N,T & n.
- $\varphi(u, "auxiliary variables")$ is satisfiable as a function of all the variables if and only if $\exists u \text{ s.t. } N(u) = I$.

Main theorem: Comments

- ϕ is a CNF of size $O(T(n)^2)$ and is also computable from N,T and n in $O(T(n)^2)$ time.
- Remark I. With some more effort, size ϕ can be brought down to $O(T(n), \log T(n))$.
- Remark 2. The reduction from x to ϕ_x is not just a poly-time reduction, it is actually a <u>log-space reduction</u> (we'll define this later).

Main theorem: Comments

- ϕ is a function of u and some "auxiliary variables" (the b_{ij} , h_{ij} and q_{ijk} variables).
- Observe that once u is fixed the values of the "auxiliary variables" are also determined in any satisfying assignment for ϕ .
- Each clause of φ has only <u>constantly</u> many literals!

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause has at most k literals.

e.g. a 2-CNF
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. k-SAT is the language consisting of all satisfiable k-CNFs.

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause has at most k literals.

e.g. a 2-CNF
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

- Definition. k-SAT is the language consisting of all satisfiable k-CNFs.
- Theorem. 3-SAT is NP-complete.

Proof sketch: $(x_1 \lor x_2 \lor x_3 \lor \neg x_4)$ is satisfiable iff $(x_1 \lor x_2 \lor z) \land (x_3 \lor \neg x_4 \lor \neg z)$ is satisfiable.

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause has at most k literals.

e.g. a 2-CNF
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. k-SAT is the language consisting of all satisfiable k-CNFs.

• Theorem. (Cook-Levin) 3-SAT is NP-complete.