{ Computational Complexity Theory

Lecture 3: Reductions;
NP-completeness;
Cook-Levin theorem

Department of Computer Science,
Indian Institute of Science




Recap: Decision Problems

Decision problems & Boolean functions e Languages

» Definition. We say a TM M decides a language L < {0, | }*
if M computes f, where f (x) = | if and only if x € L.

The characteristic function of L .



Recap: Complexity Class P

e LetT: N— N be some function.

o Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

e Defintion: Class P = U DTIME (n®).

\ c>0

Deterministic polynomial-time



Recap: Problems in P

e Cycle detection
 Solvabililty of a system of linear equations
e Perfect matching
 Planarity testing

e Primality testing



Recap: Polynomial-time TM

o Definition. A TM M is a polynimial-time TM if there’s a
polynomial function g: N — N such that for every
input x € {0,1}*, M halts within q(|x|) steps.

Polynomial function. q(n) = O(n°) for some constant c.



Recap: Class FP

* What if a problem is not a decision problem!? Like
the task of adding two integers.

* One way is to focus on the i-th bit of the output and
make it a decision problem.

* We say that a problem or a function f: {0, | }*— {0, | }*

is in FP (functional P) if there’s a polynomial-time TM
that computes f.



Complexity Class FP : Examples

e Greatest Common Divisor
e Counting paths in a DAG

e Maximum matching

e Linear Programming

e Factoring Polynomials



Recap: Class NP

 Solving a problem is generally harder than verifying a
given solution to the problem.

e Class NP captures the set of decision problems
whos%solutions are efficiently verifiable.

Nondeterministic polynomial-time




Recap: Class NP

o Definition. A language L < {0,1}* is in NP if there’s a
polynomial function p: N — N and a polynomial-time
TM M (called the verifier) such that for every x,

XxEL = Ju €{0,IPx) st M(x,u)=1

e

u is called a certificate or witnhess
for x (w.r.t Land M),if x € L.




Recap: Class NP

° A language L € {0,1}* is in NP if there’s a
polynomial function p: N — N and a polynomial-time
TM M (called the verifier) such that for every x,

XxEL = Ju €{0,IPX) st M(x,u)=1

e Class NP contains those problems (languages) which
have such efficient verifiers.




Recap: Problems in NP

e Vertex cover

e 0/l integer programming
¢ Integer factoring

e Graph isomorphism

e 2-Diophantine solvability



Recap: Is P = NP ?

e Obviously, P € NP.

* Whether or not P = NP is an outstanding open
question in mathematics and TCS!

 Solving a problem does seem harder than verifying
its solution, so most people believe that P # NP,



Reductions



Polynomial-time reduction

 Definition. We say a language L, € {0, 1 }* is polynomial-
time (Karp) reducible to a language L, € {0, 1}* if there’s
a polynomial-time computable function f s.t.

xeEL e f(x)€EL

-




Polynomial-time reduction

 Definition. We say a language L, € {0, 1 }* is polynomial-
time (Karp) reducible to a language L, € {0, 1}* if there’s
a polynomial time computable function f s.t.

xeEL e f(x)€EL

e Notation. L, =, L,

e Observe. IfL, =, LyandL, =, Lythenl, = L;.

(Transitivity)



NP-completeness

o Definition. A language L is NP-hard if for every L in
NP L <, L. Further, L is NP-complete if L is in NP
and is NP-hard.

o Observe. If L is NP-hard and L is in P then P = NP. If
L' is NP-complete then L in P if and only if P = NP.

— Hardest problems inside NP in the sense
that if one NPC problem is in P then all
NP problems in NP is in P.

(L



NP-completeness

o Definition. A language L is NP-hard if for every L in
NP L <, L. Further, L is NP-complete if L is in NP
and is NP-hard.

e Observe. If L is NP-hard and L is in P then P = NP. If
L' is NP-complete then L in P if and only if P = NP.

° Let L, < {O,1}* be any language and L,
be a language in NP. If L, =, L, then L, is also in NF.



Few words on reductions

* As to how we define a reduction from one language
to the other (or one function to the other) is usually
guided by a guestion on whether two complexity classes
are different or identical.

 For polynomial-time reductions, the question s
whether or not P equals NP,

* Reductions help us define complete problems (the
‘hardest’ problems in a class) which in turn help us
compare the complexity classes under consideration.



Class NP : Examples

e Vertex cover (NP-complete)

e 0/l integer programming (NP-complete)
e 3-coloring planar graphs (NP-complete)
e 2-Diophantine solvability (NP-complete)

e Integer factoring (unlikely to be NP-complete)

e Graph isomorphism (Quasi-P) Babai 2015



How to show existence of an NPC
problem!?

e Let L' ={ (o, x, I™ It) : there exists a u €{0,l}™ s.t. M,
accepts (X, u) in t steps }

e Observation. L' is NP-complete.

e The language L involves Turing machine in its definition.
Next, we’'ll see an example of an NP-complete problem
that is arguably more natural.



A natural NP-complete problem

e A Boolean formula on variables x,, ..., x
consists of AND, OR and NOT operations.

e.g @ = (X V) A(XzV %)

n

o A Boolean formula o is satisfiable if there’s a
{0, | }-assignment to its variables that makes ¢ evaluate
to |.




A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g @ = (X VX)) A(XxzV X))

V4

literals



A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g @ = (X VX)) A3V x;)
| J | J

-

clauses




A natural NP-complete problem

° A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g @ = (X VX)) A(X3V ;)

° Let SAT be the language consisting of all
satisfiable CNF formulae.



A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g @ = (X VX)) A3V x;)

o Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

e [heorem. (Cook 1971, Levin 1973) SAT is NP-complete.



A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g @ = (X VX)) A3V x;)

o Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

e [heorem. (Cook 1971, Levin 1973) SAT is NP-complete.

Easy to see that SAT is in NP.
Need to show that SAT is NP-hard.



Proof of Cook-Levin Theorem



Cook-Levin theorem: Proof

e Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.
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time computable function f: x s @, s.t,

> x€L e @ €SAT



Cook-Levin theorem: Proof

e Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF

formula.

e Let L € NP. We intend to come up with a polynomial-
time computable function f: x s @, s.t,

> x€L e @ €SAT

Notation: |@,| := size of @,

= number of V or A in @,



Cook-Levin theorem: Proof

e Language L has a poly-time verifier M such that
xeL &= Ju €{0,1}P() s.t. M(x,u) = |
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Cook-Levin theorem: Proof

e Language L has a poly-time verifier M such that
xeL &= Ju €{0,1}P() s.t. M(x,u) = |

¢ ldea: For any fixed x, we can capture the computation
of M(x,..) by a CNF @, such that

Ju €{0,1}PIH) s.t. M(x,u) =1 €= @, is satisfiable

e For any fixed x, M(x, ..) is a deterministic TM that
takes u as input and runs in time polynomial in |ul.



Cook-Levin theorem: Proof

e Main Theorem. Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then, (think of N = M(x, ..) for a fixed x.)



Cook-Levin theorem: Proof

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF o@(u, “auxiliary variables™) of size
poly(T(n)) such that for every u, @(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. @ is computable in time poly(T(n)) from N, T & n.



Cook-Levin theorem: Proof

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF o@(u, “auxiliary variables™) of size
poly(T(n)) such that for every u, @(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. @ is computable in time poly(T(n)) from N, T & n.

e ©(u, “auxiliary variables™) is satisfiable as a function of
all the variables if and only if Ju s.t N(u) =I.




Cook-Levin theorem: Proof

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF o@(u, “auxiliary variables™) of size
poly(T(n)) such that for every u, @(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. @ is computable in time poly(T(n)) from N, T & n.

e Cook-Levin theorem follows from above!



Proof of Main Theorem



Main theorem: Proof

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit U of size poly(T(n))
such that W(u) = | if and only if N(u) =1.

2. U is computable in time poly(T(n)) from N, T & n.

o “Convert” circuit U to a CNF ¢ efficiently by
introducing auxiliary variables.




Main theorem: Proof

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit U of size poly(T(n))
such that ‘L|J(u) = | if and only if N(u) =1.

2. U is computable in timelpoly(T(n)) from N, T & n.

The key insight: | “encodes” N.

o “Convert” circuit U to a CNF ¢ efficiently by
introducing auxiliary variables.




Main theorem: Step |

e Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.
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» Changing the content of the current cell

» Changing state

» Changing head position



Main theorem: Step |

e Assume (w.l.o.g) that N has a single tape and it writes
its output on the first cell at the end of computation.

* A step of computation of N consists of
» Changing the content of the current cell

» Changing state

» Changing head position

e Think of a ‘compound’ tape: Every cell stores the
current state, a bit content and head indicator.




Main theorem: Step |

a cell

A compound tape



Main theorem: Step |

if head points to this cell

h=I
=0 otherwise

/

AN

a cell

A compound tape



Main theorem: Step |

0/1 bit content of this cell

A

a cell

A compound tape



Main theorem: Step |

Current state when h = |

AN

N\

Q b h

a cell

A compound tape



Main theorem: Step |

Constant number of bits

a cell

A compound tape



Main theorem: Step |

* Computation of N on inputs of length n can be
completely described by a sequence of T(n)
compound tapes, the i-th of which captures a
‘snapshot’ of N’s computation at the i-th step.

a cell

A compound tape



Main theorem: Step |

Qstart u I RN a cell

;

first input bit A compound tape



Main theorem: Step |

Qstare | U1 | | a cell

A compound tape



Main theorem: Step |

T(n)

= T(n) cells
Jaccepe | O/P

Qstare | U

Qstare | U| a cell

A compound tape




Main theorem: Step |

* h;; = I iff head points to cell j at i-th step
* b;; = bit content of cell j at i-th step
° q;; = asequence of log |Q| bits which contains the
current state info if h;; = |; otherwise we don't care
9 | bij | hy

cell j



Main theorem: Step |

* Locality of computation: The bits in h;,

b;; and q;; depend only on the bits in

> hi s by Qg s
» hitjs by Qi
» hijers By Qi

i Qi bi; | hi
/ i \
i- Qi-1,j-1 bi-l,j-l hi-l,j-l Gi-1,j bi-l,j hi-l,j Qi-1,j+1 bi-l,]+| hi-l,j+|
L _ J L J L J
T T T
cell j-1 cell j cell j+1




Main theorem: Step |

* Locality of computation: The bits in h;,
b;; and q;; depend only on the bits in
> hi-l,j-l : bi-l,j-l » Qi1 j-1 9
> h'-l,j’ bi-l,j’ qi-1, s

> hi-l,j+| : bi-l,]+| » Qi1 j+1

%ij ‘ bi; ‘ hi,

i- CIi-l,j-l}-)i-l,j-l‘hi-l,j-l

CIi-l,j‘ bi-l,j ‘hi-l,j qi-l,j+l‘bi-l,j+l hi-l,j+|

|
cell j-1

! |
cell j cell j+1




Main theorem: Step |

T(n)

Output of U
|

Qaccept

o/p

. A

Qstart

u

0

. A

A

Qstart

u

a cell

Input u-variables of

1

|

Circuit U




Main theorem: Step |

Output of U
|

T(n) |

o/p

Qaccept

. A " A A

2 Qstart | U] 0
. Ao A A
| Qscare | Uy | | a cell

—

Input u-'variables of Y Observe: Y(u) = | iff N(u) = |




Recall Steps | and 2

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit U of size poly(T(n))
such that W(u) = | if and only if N(u) =1.

2. U is computable in time poly(T(n)) from N, T & n.

o “Convert” circuit U to a CNF ¢ efficiently by
introducing auxiliary variables.




Main theorem: Step 2

* Think of h;;, b;; and the bits of q;; as formal

Boolean variables.

S

auxiliary variables

Qi | bij | hy

cell j



Main theorem: Step 2

* Locality of computation: The variables h;;, b;;
and q;; depend only on the variables
> hi-l,j-l : bi-l,j-l » Qi1 j-1 9
» hiij, by, guy»and
> hi-l,j+| : bi-l,j+| » Qi j+1

i- Qi-1,j-1 bi-l,j-l hi-l,j-l Gi-1,j bi-l,j hi-l,j Qi-1,j+1 bi-l,j+| hi-l,j+|

L J L J L J

| ! |
cell j-1 cell j cell j+1




Main theorem: Step 2

e Hence,
bij = Bij(hi-l,j-l : bi-l,j-l » Gi-p -1 ’hi-l,j’ bi-l,j’ g1, ’hi-l,j+l : bi-l,j+| : qi-l,j+|)
= a fixed function of the arguments depending only
on N’s transition function 6.

The above equality can be captured by a constant size

CNF W, . Also, W;is easily computable from 6.



Main theorem: Step 2

e Hence,
bij = Bij(hi-l,j-l : bi-l,j-l » Gi-p -1 ’hi-l,j’ bi-l,j’ g1, ’hi-l,j+l : bi-l,j+| : qi-l,j+|)
= a fixed function of the arguments depending only
on N’s transition function 6.

e The above equality@e captured)by a constant size
CNF W, . Also, W;is easily computable from 6.

v
x=y iff (xAy)V (xA-qy) =1



Main theorem: Step 2

e Similarly,

hij = Hij(hi-l,j-l ; bi-l,j-l » Qi-1j-1 ’hi-l,j’ bi-l,j’ 9.1, hi-l,j+| , bi-l,j+| , qi-l,j+|)
= a fixed function of the arguments depending only
on N’s transition function 6.

e The above equality can be captured by a constant size

CNF @; . Also, ©; is easily computable from 6.



Main theorem: Step 2

e Similarly,

qijk = Cijk(hi-l,j-l ’ bi-l,j-l » Qi-1j-1 ’hi-l,j’ bi-l,j’ 91, » hi-l,j+| ’ bi-l,j+| ’ qi-l,j+|)
= a fixed function of the arguments depending only

k-th bit of q; where | < k = log |Q]

on N’s transition function 0.

e The above equality can be captured by a constant size

CNF 6., . Also, 8, is easily computable from 6.

ijl< * ijk



Main theorem: Step 2

* Let A be the conjunction of W, , ®; and B, for all i,j, k.
> ie[I,T(n)],
> je€[l,T(n)],and
> k€[l log|Q]]

e A is a CNF in the u-variables and the auxiliary variables
h;» bij and q;; . for all i,j,k. [A] is O(T(n)?).

I,)?




Main theorem: Step 2

* Let A be the conjunction of W, , ®; and B, for all i,j, k.
> ie[I,T(n)],
> je€[l,T(n)],and
> k€[l log|Q]]

e A is a CNF in the u-variables and the auxiliary variables
h;» bij and q;; . for all i,j,k. [A] is O(T(n)?).

I,)?

* Define @ = A A by, -



Main theorem: Step 2

° An assignment to u and the auxiliary variables
satisfies A if and only if it “captures” the computation of
N on the assigned input u for T(n) steps.



Main theorem: Step 2

° An assignment to u and the auxiliary variables
satisfies A if and only if it “captures” the computation of
N on the assigned input u for T(n) steps.

e Hence, an assignment to u and the auxiliary variables
satisfies @ if and only if N(u) = 1, i.e., for every u,

¢@(u, “auxiliary variables”) € SAT &= N(u) =1.



Recall the Main Theorem

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF o@(u, “auxiliary variables™) of size
poly(T(n)) such that for every u, @(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. @ is computable in time poly(T(n)) from N, T & n.

e ©(u, “auxiliary variables™) is satisfiable as a function of
all the variables if and only if Ju s.t N(u) =I.




Main theorem: Comments

e @ is a CNF of size O(T(n)?) and is also computable
from N,T and n in O(T(n)?) time.

0 With some more effort, size ¢ can be
brought down to O(T(n).log T(n)).

g The reduction from x to ¢, is not just a
poly-time reduction, it is actually a log-space reduction
(we’'ll define this later).




Main theorem: Comments

e @ is a function of u and some “auxiliary variables” (the
b; h; and gy variables).

* Observe that once u is fixed the values of the “auxiliary
variables” are also determined in any satisfying
assignment for @.

» Each clause of ¢ has only constantly many
literals!




3SAT is NP-complete

o A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2-CNFo=(x;Vx)A(X3Vx,)

° k-SAT is the language consisting of all
satisfiable k-CNFs.



3SAT is NP-complete

e Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2-CNFo=(x;Vx)A(X3Vx,)

o Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

e Theorem. 3-SAT is NP-complete.
Proof sketch: (x; V X, V X3V x4 ) is satisfiable iff (x, V
X, V z) A ( X3V x4 V 71z) is satisfiable.



3SAT is NP-complete

e Definition. A CNF is a called a k-CNF if every clause
has at most k literals.

eg. a2-CNFo=(x;Vx)A(X3Vx,)

o Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

e Theorem. 3-SAT is NP-complete.



