
Computational Complexity Theory

Lecture 3: Reductions;
NP-completeness;
Cook-Levin theorem

Department of Computer Science,
Indian Institute of Science

Recap: Decision Problems

Decision problems Boolean functions Languages

� Definition. We say a TM M decides a language L ⊆ {0,1}*
if M computes fL, where fL(x) = 1 if and only if x ∈ L.

The characteristic function of L .

Recap: Complexity Class P

� Let T: be some function.

� Definition: A language L is in DTIME(T(n)) if there’s a
TM that decides L in time O(T(n)).

� Defintion: Class P = ∪ DTIME (nc).
c > 0

Deterministic polynomial-time

Recap: Problems in P

� Cycle detection

� Solvabililty of a system of linear equations

� Perfect matching

� Planarity testing

� Primality testing

Recap: Polynomial-time TM

� Definition. A TM M is a polynimial-time TM if there’s a
polynomial function q: such that for every
input x ∈ {0,1}*, M halts within q(|x|) steps.

Polynomial function. q(n) = O(nc) for some constant c.

Recap: Class FP

� What if a problem is not a decision problem? Like
the task of adding two integers.

� One way is to focus on the i-th bit of the output and
make it a decision problem.

� We say that a problem or a function f: {0,1}* {0,1}*
is in FP (functional P) if there’s a polynomial-time TM
that computes f.

Complexity Class FP : Examples

� Greatest Common Divisor

� Counting paths in a DAG

� Maximum matching

� Linear Programming

� Factoring Polynomials

Recap: Class NP

� Solving a problem is generally harder than verifying a
given solution to the problem.

� Class NP captures the set of decision problems
whose solutions are efficiently verifiable.

Nondeterministic polynomial-time

Recap: Class NP

� Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

u is called a certificate or witness
for x (w.r.t L and M), if x ∈ L .

Recap: Class NP

� Definition. A language L ⊆ {0,1}* is in NP if there’s a
polynomial function p: and a polynomial-time
TM M (called the verifier) such that for every x,

x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

� Class NP contains those problems (languages) which
have such efficient verifiers.

Recap: Problems in NP

� Vertex cover

� 0/1 integer programming

� Integer factoring

� Graph isomorphism

� 2-Diophantine solvability

Recap: Is P = NP ?

� Obviously, P ⊆ NP.

� Whether or not P = NP is an outstanding open
question in mathematics and TCS!

� Solving a problem does seem harder than verifying
its solution, so most people believe that P ≠ NP.

Reductions

Polynomial-time reduction
� Definition. We say a language L1 ⊆ {0,1}* is polynomial-

time (Karp) reducible to a language L2 ⊆ {0,1}* if there’s
a polynomial-time computable function f s.t.

x ∈ L1 f(x) ∈ L2

L1

L1

L2

L2

f(L1)

f(L1)

Polynomial-time reduction
� Definition. We say a language L1 ⊆ {0,1}* is polynomial-

time (Karp) reducible to a language L2 ⊆ {0,1}* if there’s
a polynomial time computable function f s.t.

x ∈ L1 f(x) ∈ L2

� Notation. L1 ≤p L2

� Observe. If L1 ≤p L2 and L2 ≤p L3 then L1 ≤p L3 .
(Transitivity)

NP-completeness
� Definition. A language L’ is NP-hard if for every L in

NP, L ≤p L’. Further, L’ is NP-complete if L’ is in NP
and is NP-hard.

� Observe. If L’ is NP-hard and L’ is in P then P = NP. If
L’ is NP-complete then L’ in P if and only if P = NP.

P

NPC

NP

Hardest problems inside NP in the sense
that if one NPC problem is in P then all
problems in NP is in P.

NP-completeness
� Definition. A language L’ is NP-hard if for every L in

NP, L ≤p L’. Further, L’ is NP-complete if L’ is in NP
and is NP-hard.

� Observe. If L’ is NP-hard and L’ is in P then P = NP. If
L’ is NP-complete then L’ in P if and only if P = NP.

� [Homework]. Let L1 ⊆ {0,1}* be any language and L2
be a language in NP. If L1 ≤p L2 then L1 is also in NP.

Few words on reductions
� As to how we define a reduction from one language

to the other (or one function to the other) is usually
guided by a question on whether two complexity classes
are different or identical.

� For polynomial-time reductions, the question is
whether or not P equals NP.

� Reductions help us define complete problems (the
‘hardest’ problems in a class) which in turn help us
compare the complexity classes under consideration.

Class NP : Examples

� Vertex cover (NP-complete)

� 0/1 integer programming (NP-complete)

� 3-coloring planar graphs (NP-complete)

� 2-Diophantine solvability (NP-complete)

� Integer factoring (unlikely to be NP-complete)

� Graph isomorphism (Quasi-P) Babai 2015

How to show existence of an NPC
problem?

� Let L’ = { (α, x, 1m, 1t) : there exists a u ∈{0,1}m s.t. Mα
accepts (x, u) in t steps }

� Observation. L’ is NP-complete.

� The language L’ involves Turing machine in its definition.
Next, we’ll see an example of an NP-complete problem
that is arguably more natural.

A natural NP-complete problem

� Definition. A Boolean formula on variables x1, …, xn
consists of AND, OR and NOT operations.

e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

� Definition. A Boolean formula ϕ is satisfiable if there’s a
{0,1}-assignment to its variables that makes ϕ evaluate
to 1.

A natural NP-complete problem
� Definition. A Boolean formula is in Conjunctive Normal

Form (CNF) if it is an AND of OR of literals.
e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

literals

A natural NP-complete problem
� Definition. A Boolean formula is in Conjunctive Normal

Form (CNF) if it is an AND of OR of literals.
e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

clauses

A natural NP-complete problem
� Definition. A Boolean formula is in Conjunctive Normal

Form (CNF) if it is an AND of OR of literals.
e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

� Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

A natural NP-complete problem
� Definition. A Boolean formula is in Conjunctive Normal

Form (CNF) if it is an AND of OR of literals.
e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

� Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

� Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

A natural NP-complete problem
� Definition. A Boolean formula is in Conjunctive Normal

Form (CNF) if it is an AND of OR of literals.
e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

� Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

� Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.
Easy to see that SAT is in NP.
Need to show that SAT is NP-hard.

Proof of Cook-Levin Theorem

Cook-Levin theorem: Proof
� Main idea: Computation is local; i.e., every step of

computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.

Cook-Levin theorem: Proof
� Main idea: Computation is local; i.e., every step of

computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.

� Let L ∈ NP. We intend to come up with a polynomial-
time computable function f: x ϕx s.t.,

Ø x ∈ L ϕx ∈ SAT

Cook-Levin theorem: Proof
� Main idea: Computation is local; i.e., every step of

computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.

� Let L ∈ NP. We intend to come up with a polynomial-
time computable function f: x ϕx s.t.,

Ø x ∈ L ϕx ∈ SAT

� Notation: |ϕx| := size of ϕx

= number of ∨ or ∧ in ϕx

Cook-Levin theorem: Proof
� Language L has a poly-time verifier M such that

x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

Cook-Levin theorem: Proof
� Language L has a poly-time verifier M such that

x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

� Idea: For any fixed x, we can capture the computation
of M(x, ..) by a CNF ϕx such that

∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1 ϕx is satisfiable

Cook-Levin theorem: Proof
� Language L has a poly-time verifier M such that

x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

� Idea: For any fixed x, we can capture the computation
of M(x, ..) by a CNF ϕx such that

∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1 ϕx is satisfiable

� For any fixed x, M(x, ..) is a deterministic TM that
takes u as input and runs in time polynomial in |u|.

Cook-Levin theorem: Proof
� Main Theorem. Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then, (think of N = M(x, ..) for a fixed x.)

Cook-Levin theorem: Proof
� Main Theorem. Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N,T & n.

Cook-Levin theorem: Proof
� Main Theorem. Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N,T & n.

� ϕ(u, “auxiliary variables”) is satisfiable as a function of
all the variables if and only if ∃u s.t N(u) =1.

Cook-Levin theorem: Proof
� Main Theorem. Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N,T & n.

� Cook-Levin theorem follows from above!

Proof of Main Theorem

Main theorem: Proof
� Step 1. Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/1.
Then,

1. There’s a Boolean circuit ψ of size poly(T(n))
such that ψ(u) = 1 if and only if N(u) =1.

2. ψ is computable in time poly(T(n)) from N,T & n.

� Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by
introducing auxiliary variables.

Main theorem: Proof
� Step 1. Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/1.
Then,

1. There’s a Boolean circuit ψ of size poly(T(n))
such that ψ(u) = 1 if and only if N(u) =1.

2. ψ is computable in time poly(T(n)) from N,T & n.

� Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by
introducing auxiliary variables.

The key insight: ψ “encodes” N.

Main theorem: Step 1
� Assume (w.l.o.g) that N has a single tape and it writes

its output on the first cell at the end of computation.

Main theorem: Step 1
� Assume (w.l.o.g) that N has a single tape and it writes

its output on the first cell at the end of computation.

� A step of computation of N consists of
Ø Changing the content of the current cell
Ø Changing state
Ø Changing head position

Main theorem: Step 1
� Assume (w.l.o.g) that N has a single tape and it writes

its output on the first cell at the end of computation.

� A step of computation of N consists of
Ø Changing the content of the current cell
Ø Changing state
Ø Changing head position

� Think of a ‘compound’ tape: Every cell stores the
current state, a bit content and head indicator.

Main theorem: Step 1

…. ….

A compound tape

a cell

hbQ

Main theorem: Step 1

…. ….

A compound tape

a cell

hbQ

h = 1 if head points to this cell
= 0 otherwise

Main theorem: Step 1

…. ….

A compound tape

a cell

hbQ

0/1 bit content of this cell

Main theorem: Step 1

…. ….

A compound tape

a cell

hbQ

Current state when h = 1

Main theorem: Step 1

…. ….

A compound tape

a cell

hbQ

Constant number of bits

Main theorem: Step 1

…. ….

A compound tape

a cell

• Computation of N on inputs of length n can be
completely described by a sequence of T(n)
compound tapes, the i-th of which captures a
`snapshot’ of N’s computation at the i-th step.

Main theorem: Step 1

…. ….

A compound tape

a cellqstart u1 11

first input bit

Main theorem: Step 1

…. ….

A compound tape

a cellqstart u1 11

…. ….qstart u1 02

Main theorem: Step 1

…. ….

A compound tape

a cellqstart u1 11

…. ….qstart u1 02

…. ….T(n) qaccept o/p 1

.

.

.

T(n) cells

Main theorem: Step 1

….

cell j

qi,j bi,j hi,ji ….

• hi,j = 1 iff head points to cell j at i-th step
• bi,j = bit content of cell j at i-th step
• qi,j = a sequence of log |Q| bits which contains the

current state info if hi,j = 1; otherwise we don’t care

Main theorem: Step 1

….

cell j

qi,j bi,j hi,ji ….

• Locality of computation: The bits in hi,j,
bi,j and qi,j depend only on the bits in
Ø hi-1,j-1 , bi-1,j-1 , qi-1,j-1 ,
Ø hi-1,j , bi-1,j , qi-1,j ,
Ø hi-1,j+1 , bi-1,j+1 , qi-1,j+1

….

cell j

qi-1,j bi-1,j hi-1,ji-1 …. qi-1,j-1 bi-1,j-1 hi-1,j-1 qi-1,j+1 bi-1,j+1 hi-1,j+1

cell j-1 cell j+1

Main theorem: Step 1

….qi,j bi,j hi,ji ….

• Locality of computation: The bits in hi,j,
bi,j and qi,j depend only on the bits in
Ø hi-1,j-1 , bi-1,j-1 , qi-1,j-1 ,
Ø hi-1,j , bi-1,j , qi-1,j ,
Ø hi-1,j+1 , bi-1,j+1 , qi-1,j+1

….

cell j

qi-1,j bi-1,j hi-1,ji-1 …. qi-1,j-1 bi-1,j-1 hi-1,j-1 qi-1,j+1 bi-1,j+1 hi-1,j+1

cell j-1 cell j+1

constant size circuit

Main theorem: Step 1

…. ….

Circuit ψ

a cellqstart u1 11

…. ….qstart u1 02

…. ….T(n) qaccept o/p 1

.

.

.

Output of ψ

….

Input u-variables of ψ

Main theorem: Step 1

…. ….

Observe: ψ(u) = 1 iff N(u) = 1

a cellqstart u1 11

…. ….qstart u1 02

…. ….T(n) qaccept o/p 1

.

.

.

Output of ψ

….

Input u-variables of ψ

Recall Steps 1 and 2
� Step 1. Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/1.
Then,

1. There’s a Boolean circuit ψ of size poly(T(n))
such that ψ(u) = 1 if and only if N(u) =1.

2. ψ is computable in time poly(T(n)) from N,T & n.

� Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by
introducing auxiliary variables.

Main theorem: Step 2

….

cell j

qi,j bi,j hi,ji ….

• Think of hi,j, bi,j and the bits of qi,j as formal
Boolean variables.

auxiliary variables

Main theorem: Step 2

….

cell j

qi,j bi,j hi,ji ….

• Locality of computation: The variables hi,j, bi,j
and qi,j depend only on the variables
Ø hi-1,j-1 , bi-1,j-1 , qi-1,j-1 ,
Ø hi-1,j , bi-1,j , qi-1,j , and
Ø hi-1,j+1 , bi-1,j+1 , qi-1,j+1

….

cell j

qi-1,j bi-1,j hi-1,ji-1 …. qi-1,j-1 bi-1,j-1 hi-1,j-1 qi-1,j+1 bi-1,j+1 hi-1,j+1

cell j-1 cell j+1

Main theorem: Step 2
� Hence,

bij = Bij(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)
= a fixed function of the arguments depending only

on N’s transition function δ.

� The above equality can be captured by a constant size
CNF Ψij . Also,Ψij is easily computable from δ.

Main theorem: Step 2
� Hence,

bij = Bij(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)
= a fixed function of the arguments depending only

on N’s transition function δ.

� The above equality can be captured by a constant size
CNF Ψij . Also,Ψij is easily computable from δ.

x = y iff (x ∧ y) ∨ (¬x ∧ ¬y) = 1.

Main theorem: Step 2
� Similarly,

hij = Hij(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)
= a fixed function of the arguments depending only

on N’s transition function δ.

� The above equality can be captured by a constant size
CNF Φij . Also,Φij is easily computable from δ.

Main theorem: Step 2
� Similarly,
qijk = Cijk(hi-1,j-1 , bi-1,j-1 , qi-1,j-1 , hi-1,j , bi-1,j , qi-1,j , hi-1,j+1 , bi-1,j+1 , qi-1,j+1)

= a fixed function of the arguments depending only
on N’s transition function δ.

� The above equality can be captured by a constant size
CNF θijk . Also, θijk is easily computable from δ.

k-th bit of qij where 1 ≤ k ≤ log |Q|

Main theorem: Step 2
� Let λ be the conjunction of Ψij ,Φij and θijk for all i, j, k.

Ø i ∈ [1,T(n)] ,
Ø j ∈ [1,T(n)] , and
Ø k ∈ [1, log |Q|]

� λ is a CNF in the u-variables and the auxiliary variables
hi,j, bi,j and qi,j,k. for all i,j,k. |λ| is O(T(n)2).

Main theorem: Step 2
� Let λ be the conjunction of Ψij ,Φij and θijk for all i, j, k.

Ø i ∈ [1,T(n)] ,
Ø j ∈ [1,T(n)] , and
Ø k ∈ [1, log |Q|]

� λ is a CNF in the u-variables and the auxiliary variables
hi,j, bi,j and qi,j,k. for all i,j,k. |λ| is O(T(n)2).

� Define ϕ = λ ∧ bT(n),1 .

Main theorem: Step 2
� Observe: An assignment to u and the auxiliary variables

satisfies λ if and only if it “captures” the computation of
N on the assigned input u for T(n) steps.

Main theorem: Step 2
� Observe: An assignment to u and the auxiliary variables

satisfies λ if and only if it “captures” the computation of
N on the assigned input u for T(n) steps.

� Hence, an assignment to u and the auxiliary variables
satisfies ϕ if and only if N(u) = 1, i.e., for every u,

ϕ(u, “auxiliary variables”) ∈ SAT N(u) =1.

Recall the Main Theorem
� Main Theorem. Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N,T & n.

� ϕ(u, “auxiliary variables”) is satisfiable as a function of
all the variables if and only if ∃u s.t N(u) =1.

Main theorem: Comments
� ϕ is a CNF of size O(T(n)2) and is also computable

from N,T and n in O(T(n)2) time.

� Remark 1. With some more effort, size ϕ can be
brought down to O(T(n). log T(n)).

� Remark 2. The reduction from x to ϕx is not just a
poly-time reduction, it is actually a log-space reduction
(we’ll define this later).

Main theorem: Comments
� ϕ is a function of u and some “auxiliary variables” (the

bij, hij and qijk variables).

� Observe that once u is fixed the values of the “auxiliary
variables” are also determined in any satisfying
assignment for ϕ.

� Each clause of ϕ has only constantly many
literals!

3SAT is NP-complete
� Definition. A CNF is a called a k-CNF if every clause

has at most k literals.
e.g. a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

� Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

3SAT is NP-complete
� Definition. A CNF is a called a k-CNF if every clause

has at most k literals.
e.g. a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

� Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

� Theorem. 3-SAT is NP-complete.
Proof sketch: (x1 ∨ x2 ∨ x3∨ ¬x4) is satisfiable iff (x1 ∨
x2 ∨ z) ∧ (x3 ∨ ¬x4 ∨ ¬z) is satisfiable.

3SAT is NP-complete
� Definition. A CNF is a called a k-CNF if every clause

has at most k literals.
e.g. a 2-CNF ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

� Definition. k-SAT is the language consisting of all
satisfiable k-CNFs.

� Theorem. (Cook-Levin) 3-SAT is NP-complete.

