Computational Complexity Theory

Lecture 4: More NP-complete problems;

Decision versus Search

Department of Computer Science, Indian Institute of Science

Recap: Polynomial-time reduction

• Definition. We say a language $L_1 \subseteq \{0,1\}^*$ is <u>polynomial-time</u> (Karp) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a polynomial-time computable function f s.t.

$$x \in L_1 \iff f(x) \in L_2$$

Recap: NP-completeness

- Definition. A language L' is NP-hard if for every L in NP, L \leq_p L'. Further, L' is NP-complete if L' is in NP and is NP-hard.
- Observe. If L' is NP-hard and L' is in P then P = NP. If
 L' is NP-complete then L' in P if and only if P = NP.

Recap: Few words on reductions

- As to how we define a reduction from one language to the other (or one function to the other) is usually guided by a <u>question on</u> whether two <u>complexity classes</u> are different or identical.
- For polynomial-time reductions, the question is whether or not P equals NP.
- Reductions help us define complete problems (the 'hardest' problems in a class) which in turn help us compare the complexity classes under consideration.

Class NP: Examples

- Vertex cover (NP-complete)
- 0/1 integer programming (NP-complete)
- 3-coloring planar graphs (NP-complete)
- 2-Diophantine solvability (NP-complete)
- Integer factoring (unlikely to be NP-complete)
- Graph isomorphism (Quasi-P)

Recap: Existence of an NPC problem

- Let L' = { (α, x, I^m, I^t) : there exists a $u \in \{0, I\}^m$ s.t. M_{α} accepts (x, u) in t steps }
- Observation. L' is NP-complete.

The language L' involves Turing machine in its definition.
 Next, we'll see an example of an NP-complete problem that is arguably more natural.

Recap: A natural NP-complete problem

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> Form (CNF) if it is an AND of OR of literals.

e.g.
$$\varphi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

- Definition. Let SAT be the language consisting of all satisfiable CNF formulae.
- Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

Easy to see that SAT is in NP.

Need to show that SAT is NP-hard.

Recap: Cook-Levin theorem

 Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

- Let $L \in \mathbb{NP}$. We intend to come up with a polynomial-time computable function $f: \times \longrightarrow \phi_{\times}$ s.t.,
 - \triangleright x \in L \iff $\phi_x \in SAT$
 - Notation: $|\phi_x| := \text{size of } \phi_x$ $= \text{number of } V \text{ or } \Lambda \text{ in } \phi_x$

Recap: Cook-Levin theorem

• Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x, u) = I

• Idea: For any fixed x, we can <u>capture the computation</u> of M(x, ..) by a CNF ϕ_x such that

```
\exists u \in \{0,1\}^{p(|x|)} s.t. M(x, u) = I \iff \phi_x is satisfiable
```

• For any fixed x, M(x, ..) is a deterministic TM that takes u as input and runs in time polynomial in |u|.

Recap: Cook-Levin theorem

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a CNF $\varphi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \varphi(u, "auxiliary variables")$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = 1.
 - 2. φ is computable in time poly(T(n)) from N,T & n.
- $\varphi(u, "auxiliary variables")$ is satisfiable as a function of all the variables if and only if $\exists u \text{ s.t. } N(u) = I$.

Recap: Main theorem

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1.
 Then,
 - I. There's a Boolean circuit ψ of size poly(T(n)) such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.
- Step 2. "Convert" circuit ψ to a CNF ϕ efficiently by introducing <u>auxiliary variables</u>.

NP complete problems: Examples

- Independent Set
- Clique
- Vertex cover
- 0/1 integer programming
- Max-Cut (NP-hard)

• 3-coloring planar graphs Stockmeyer 1973

• 2-Diophantine solvability Adleman & Manders 1975

Karp 1972

Ref: Garey & Johnson, "Computers and Intractability"

NPC problems from number theory

 SqRootMod: Given natural numbers a, b and c, check if there exists a natural number x ≤ c such that

$$x^2 = a \pmod{b}$$
.

Theorem: SqRootMod is NP-complete.

Manders & Adleman 1976

NPC problems from number theory

Variant_IntFact: Given natural numbers L, U and N, check if there exists a natural number d ∈ [L, U] such that d divides N.

 Claim: Variant_IntFact is NP-hard under <u>randomized</u> <u>poly-time reduction</u>.

• Reference:

https://cstheory.stackexchange.com/questions/4769/an-np-complete-variant-of-factoring/4785

A peculiar NP problem

 Minimum Circuit Size Problem (MCSP): Given the truth table of a Boolean function f and an integer s, check if there is a circuit of size ≤ s that computes f.

- Easy to see that MCSP is in NP.
- Is MCSP NP-complete? Not known!

A peculiar NP problem

 Minimum Circuit Size Problem (MCSP): Given the truth table of a Boolean function f and an integer s, check if there is a circuit of size ≤ s that computes f.

- Easy to see that MCSP is in NP.
- Is MCSP NP-complete? Not known!
- Multi-output MCSP is NP-hard under poly-time randomized reductions. (Ilango, Loff, Oliveira 2020)

A peculiar NP problem

 Minimum Circuit Size Problem (MCSP): Given the truth table of a Boolean function f and an integer s, check if there is a circuit of size ≤ s that computes f.

- Easy to see that MCSP is in NP.
- Is MCSP NP-complete? Not known!
- Partial fn. MCSP is NP-hard under poly-time randomized reductions. (Hirahara 2022)

More NP-complete problems

INDSET := {(G, k): G has independent set of size k}

Goal: Design a poly-time reduction f s.t.

$$x \in 3SAT \iff f(x) \in INDSET$$

Reduction from 3SAT: Recall, a reduction is just an efficient algorithm that takes input a 3CNF φ and outputs a (G, k) tuple s.t

$$\phi \in 3SAT \iff (G, k) \in INDSET$$

• Reduction: Let φ be a 3CNF with m clauses and n variables. Assume, every clause has exactly 3 literals.

• Reduction: Let φ be a 3CNF with m clauses and n variables. Assume, every clause has exactly 3 literals.

For every clause C_i form a complete graph (cluster) on 7 vertices

• Reduction: Let φ be a 3CNF with m clauses and n variables. Assume, every clause has exactly 3 literals.

• Reduction: Let φ be a 3CNF with m clauses and n variables. Assume, every clause has exactly 3 literals.

Graph G on 7m vertices

• Reduction: Let φ be a 3CNF with m clauses and n variables. Assume, every clause has exactly 3 literals.

Obs: φ is satisfiable iff G has an ind. set of size m.

Example 2: Clique

- CLIQUE := {(H, k): H has a clique of size k}
- Goal: Design a poly-time reduction f s.t.

$$x \in INDSET \iff f(x) \in CLIQUE$$

 Reduction from INDSET: The reduction algorithm computes G from G

$$(G, k) \in INDSET \iff (\overline{G}, k) \in CLIQUE$$

Example 3: Vertex Cover

VCover := {(H, k): H has a vertex cover of size k}

Goal: Design a poly-time reduction f s.t.

 $x \in INDSET \implies f(x) \in VCover$

 Reduction from INDSET: Let n be the number of vertices in G. The reduction algorithm maps (G, k) to (G, n-k).

 $(G, k) \in INDSET \iff (G, n-k) \in VCover$

Example 4: 0/1 Integer Programming

- 0/I IProg := Set of satisfiable 0/I integer programs
- A <u>0/I integer program</u> is a set of linear inequalities with rational coefficients and the variables are allowed to take only 0/I values.
- Reduction from 3SAT: A clause is mapped to a linear inequality as follows

$$x_1 \lor \overline{x}_2 \lor x_3 \longrightarrow x_1 + (1-x_2) + x_3 \ge 1$$

- MaxCut: Given a graph find a cut with the max size.
- A <u>cut</u> of G = (V, E) is a tuple $(U, V \setminus U)$, $U \subseteq V$. <u>Size</u> of a cut $(U, V \setminus U)$ is the number of edges from U to $V \setminus U$.
- MinVCover: Given a graph H, find a vertex cover in H that has the min size.

Obs: From MinVCover(H), we can readily check if (H, k) ∈ VCover, for any k.

- MaxCut: Given a graph find a cut with the max size.
- A cut of G = (V, E) is a tuple $(U, V \setminus U)$, $U \subseteq V$. Size of a cut $(U, V \setminus U)$ is the number of edges from U to $V \setminus U$.
- Goal: A poly-time <u>reduction</u> from MinVCover to MaxCut.

Size of a MaxCut(G) = 2.|E(H)| - |MinVCover(H)|

• The reduction: $H \stackrel{f}{\longrightarrow} G$

G is formed by adding a new vertex w and adding deg_H(u) − I edges between every u ∈ V(H) and w.

• Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Let $S_G(U)$:= no. of edges in G with exactly one end vertex incident on a vertex in U.

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Let $S_G(U)$ = no. of edges going out of U in G.

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Let $S_G(U)$ = size of the cut $(U,V\setminus U + w)$.

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Let S_H(U) := no. of edges in H with <u>exactly one</u> end vertex incident on a vertex in U.

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Then $S_G(U) = S_H(U) + \sum_{u \in U} (deg_H(u) I)$

$$= S_H(U) + \sum_{u \in U} deg_H(u) - |U|$$

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Then $S_G(U) = S_H(U) + \sum_{u \in U} (deg_H(u) I)$

$$= S_H(U) + \sum_{u \in U} deg_H(u) - |U|$$

Obs: Twice the number of edges in H with at least one end vertex in U.

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Then $S_G(U) = S_H(U) + \sum_{u \in U} (deg_H(u) I)$

$$= S_H(U) + \sum_{u \in U} deg_H(u) - |U|$$

$$= 2.|E_{H}(U)| - |U|$$

 $E_H(U) := Set of edges in H with <u>at</u> <u>least one</u> end vertex in U.$

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Then $S_G(U) = 2.|E_H(U)| |U|$... Eqn (I)
- Proposition: If (U, V\U + w) is a max cut in G then U is a vertex cover in H.

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Then $S_G(U) = 2.|E_H(U)| |U|$... Eqn (I)
- Proposition: If (U, V\U + w) is a max cut in G then U is a vertex cover in H.

$$\longrightarrow$$
 S_G(U) = |MaxCut(G)| = 2.|E(H)| - |U|

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Then $S_G(U) = 2.|E_H(U)| |U|$... Eqn (I)
- Proposition: If (U, V\U + w) is a max cut in G then U is a vertex cover in H.

$$\rightarrow$$
 S_G(U) = |MaxCut(G)| = 2.|E(H)| - |U|

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Then $S_G(U) = 2.|E_H(U)| |U|$... Eqn (I)
- Proposition: If (U, V\U + w) is a max cut in G then U is a vertex cover in H.
 - \longrightarrow $S_G(U) = |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|$

- Claim: |MaxCut(G)| = 2.|E(H)| |MinVCover(H)|
- Proof: Let V(H) = V. Then V(G) = V + w.
 Suppose (U,V\U + w) is a cut in G.
- Then $S_G(U) = 2.|E_H(U)| |U|$... Eqn (I)
- Proposition: If (U, V\U + w) is a max cut in G then U is a vertex cover in H.

Thus, the proof of the above claim follows from the proposition

Proof of the Proposition: Suppose U is not a vertex

Proof of the Proposition: Suppose U is not a vertex cover

Gain: $deg_H(u)-I+I$ edges.

Loss: At most $deg_H(u)-I$ edges, these are the edges going from U to u.

Net gain: At least I edge. Hence the cut is not a max cut.

Search versus Decision

Search version of NP problems

- Recall: A language $L \subseteq \{0, 1\}^*$ is in NP if
 - > There's a poly-time verifier M and poly. function p s.t.
 - \triangleright x \in L iff there's a u \in {0,1} $^{p(|x|)}$ s.t M(x, u) = 1.
- Search version of L: Given an input $x \in \{0,1\}^*$, find a $u \in \{0,1\}^{p(|x|)}$ such that M(x,u) = 1, if such a u exists.
- Remark: Search version of L only makes sense once we have a verifier M in mind.

Search version of NP problems

- Recall: A language $L \subseteq \{0,1\}^*$ is in NP if
 - > There's a poly-time verifier M and poly. function p s.t.
 - \triangleright x \in L iff there's a u \in {0,1} $^{p(|x|)}$ s.t M(x, u) = 1.
- Search version of L: Given an input $x \in \{0,1\}^*$, find a $u \in \{0,1\}^{p(|x|)}$ such that M(x,u) = 1, if such a u exists.

• Example: Given a 3CNF ϕ , find a satisfying assignment for ϕ if such an assignment exists.

 Is the search version of an NP-problem more difficult than the corresponding decision version?

- Is the search version of an NP-problem more difficult than the corresponding decision version?
- Theorem. Let $L \subseteq \{0,1\}^*$ be NP-complete. Then, the search version of L can be solved in poly-time if and only if the decision version can be solved in poly-time.

w.r.t any verifier M!

- Is the search version of an NP-problem more difficult than the corresponding decision version?
- Theorem. Let $L \subseteq \{0,1\}^*$ be NP-complete. Then, the search version of L can be solved in poly-time if and only if the decision version can be solved in poly-time.
- Proof. (search becision) Obvious.

- Is the search version of an NP-problem more difficult than the corresponding decision version?
- Theorem. Let $L \subseteq \{0,1\}^*$ be NP-complete. Then, the search version of L can be solved in poly-time if and only if the decision version can be solved in poly-time.
- Proof. (decision search) We'll prove this for
 L = SAT first.

$$\varphi(x_1,...,x_n)$$

$$\phi(x_1,...,x_n)$$
 $A(\phi) = Y$

$$\varphi(x_1,...,x_n) \quad A(\varphi) = Y$$

$$\varphi(0,...,x_n)$$

$$\phi(x_1,...,x_n) \qquad A(\phi) = Y$$

$$A(\phi(0,..)) = N \qquad \phi(0,...,x_n)$$

$$\phi(x_1,...,x_n) \quad A(\phi) = Y$$

$$A(\phi(0,...)) = N \quad \phi(0,...,x_n) \quad \phi(1,...,x_n) \quad A(\phi(1,...)) = Y$$

$$A(\phi(1,0,...)) = N \quad \phi(1,0,0,...,x_n)$$

$$\phi(x_1,...,x_n) \quad A(\phi) = Y$$

$$A(\phi(0,...)) = N \quad \phi(0,...,x_n) \quad \phi(1,...,x_n) \quad A(\phi(1,...)) = Y$$

$$A(\phi(1,0,0...)) = N \quad \phi(1,0,0,...,x_n) \quad \phi(1,0,1,...,x_n) \quad A(\phi(1,0,0...)) = Y$$

$$\phi(x_{1},...,x_{n}) \quad A(\phi) = Y$$

$$A(\phi(0,..)) = N \quad \phi(0,...,x_{n}) \quad \phi(1,...,x_{n}) \quad A(\phi(1,...)) = Y$$

$$A(\phi(1,0,...)) = N \quad \phi(1,0,0,...,x_{n}) \quad \phi(1,0,1,...,x_{n}) \quad A(\phi(1,0,0...)) = Y$$

- Proof. (decision \implies search) Let L = SAT, and A be a poly-time algorithm to decide if $\phi(x_1,...,x_n)$ is satisfiable.
- We can find a satisfying assignment of ϕ with at most 2n calls to A.

• Proof. (decision \Longrightarrow search) Let L be NP-complete, M be a verifier for L, and B be a poly-time algorithm to decide if $x \in L$.

• Proof. (decision \Longrightarrow search) Let L be NP-complete, M be a verifier for L, and B be a poly-time algorithm to decide if $x \in L$.

• Proof. (decision \Longrightarrow search) Let L be NP-complete, M be a verifier for L, and B be a poly-time algorithm to decide if $x \in L$.

$$SAT \leq_{p} L$$

$$L \leq_{p} SAT$$

$$\times \longmapsto \phi_{x}$$

• Proof. (decision \Longrightarrow search) Let L be NP-complete, M be a verifier for L, and B be a poly-time algorithm to decide if $x \in L$.

$$SAT \leq_p L$$

$$x \mapsto \phi$$

Important note:

From Cook-Levin theorem, we can find a certificate of $x \in L$ (w.r.t. M) from a satisfying assignment of ϕ_x .

• Proof. (decision \Longrightarrow search) Let L be NP-complete, M be a verifier for L, and B be a poly-time algorithm to decide if $x \in L$.

$$SAT \leq_{p} L$$

$$L \leq_{p} SAT$$

$$\times \longmapsto \phi_{x}$$

How to find a satisfying assignment for ϕ_x using algorithm B?

• Proof. (decision \Longrightarrow search) Let L be NP-complete, M be a verifier for L, and B be a poly-time algorithm to decide if $x \in L$.

$$SAT \leq_{p} L$$

$$L \leq_{p} SAT$$

$$\times \longmapsto \phi_{x}$$

How to find a satisfying assignment for φ_x using algorithm B?

...we know how using A, which is a poly-time decider for SAT

• Proof. (decision \Longrightarrow search) Let L be NP-complete, M be a verifier for L, and B be a poly-time algorithm to decide if $x \in L$.

$$SAT \leq_{p} L$$

$$L \leq_{p} SAT$$

$$\phi \longmapsto f(\phi)$$

$$x \longmapsto \phi_{x}$$

How to find a satisfying assignment for ϕ_x using algorithm B?

...we know how using A, which is a poly-time decider for SAT

Take
$$A(\phi) = B(f(\phi))$$
.

- Is search equivalent to decision for every NP problem?
- Graph Isomorphism (GI) is in NP and (we'll see later that) it is unlikely to be NP-complete.
- Yet, the natural search version of GI reduces in polynomial-time to the decision version (homework).

• Is search equivalent to decision for every NP problem?

Probably not!

• Is search equivalent to decision for every NP problem?

• Let
$$EE = \bigcup_{c \ge 0} DTIME (2^{c.2^n})$$
 and Doubly exponential analogues of P and NP $c \ge 0$

 Class NTIME(T(n)) will be defined formally in the next lecture.

- Is search equivalent to decision for every NP problem?
- Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then there's a language in NP for which search does not reduce to decision.

- Is search equivalent to decision for every NP problem?
- Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then there's a language in NP for which search does not reduce to decision.

- Checking if a number n is composite can be done in polynomial-time, but finding a factor of n is not known to be solvable in polynomial-time.
- We'll show that Intfact is unlikely to be NP-complete.

- Is search equivalent to decision for every NP problem?
- Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then there's a language in NP for which search does not reduce to decision.

 Sometimes, the decision version of a problem can be trivial but the search version is possibly hard. E.g., Computing Nash Equilibrium (see class PPAD).

Homework: Read about total NP functions