
Computational Complexity Theory

Lecture 4: More NP-complete problems;
Decision versus Search

Department of Computer Science,
Indian Institute of Science

Recap: Polynomial-time reduction
� Definition. We say a language L1 ⊆ {0,1}* is polynomial-

time (Karp) reducible to a language L2 ⊆ {0,1}* if there’s
a polynomial-time computable function f s.t.

x∈L1 f(x)∈L2

L1

L1

L2

L2

f(L1)

f(L1)

Recap: NP-completeness
� Definition. A language L’ is NP-hard if for every L in

NP, L ≤p L’. Further, L’ is NP-complete if L’ is in NP
and is NP-hard.

� Observe. If L’ is NP-hard and L’ is in P then P = NP. If
L’ is NP-complete then L’ in P if and only if P = NP.

P

NPC

NP

Hardest problems inside NP in the sense
that if one NPC problem is in P then all
problems in NP is in P.

Recap: Few words on reductions
� As to how we define a reduction from one language

to the other (or one function to the other) is usually
guided by a question on whether two complexity classes
are different or identical.

� For polynomial-time reductions, the question is
whether or not P equals NP.

� Reductions help us define complete problems (the
‘hardest’ problems in a class) which in turn help us
compare the complexity classes under consideration.

Class NP : Examples

� Vertex cover (NP-complete)

� 0/1 integer programming (NP-complete)

� 3-coloring planar graphs (NP-complete)

� 2-Diophantine solvability (NP-complete)

� Integer factoring (unlikely to be NP-complete)

� Graph isomorphism (Quasi-P)

Recap: Existence of an NPC problem

� Let L’ = { (α, x, 1m, 1t) : there exists a u ∈{0,1}m s.t. Mα
accepts (x, u) in t steps }

� Observation. L’ is NP-complete.

� The language L’ involves Turing machine in its definition.
Next, we’ll see an example of an NP-complete problem
that is arguably more natural.

Recap: A natural NP-complete problem

� Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

� Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

� Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.
Easy to see that SAT is in NP.
Need to show that SAT is NP-hard.

Recap: Cook-Levin theorem
� Main idea: Computation is local; i.e., every step of

computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF
formula.

� Let L ∈ NP. We intend to come up with a polynomial-
time computable function f: x ϕx s.t.,

Ø x ∈ L ϕx ∈ SAT

� Notation: |ϕx| := size of ϕx

= number of ∨ or ∧ in ϕx

Recap: Cook-Levin theorem
� Language L has a poly-time verifier M such that

x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

� Idea: For any fixed x, we can capture the computation
of M(x, ..) by a CNF ϕx such that

∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1 ϕx is satisfiable

� For any fixed x, M(x, ..) is a deterministic TM that
takes u as input and runs in time polynomial in |u|.

Recap: Cook-Levin theorem
� Main Theorem. Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

1. There’s a CNF ϕ(u, “auxiliary variables”) of size
poly(T(n)) such that for every u, ϕ(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. ϕ is computable in time poly(T(n)) from N,T & n.

� ϕ(u, “auxiliary variables”) is satisfiable as a function of
all the variables if and only if ∃u s.t N(u) =1.

Recap: Main theorem
� Step 1. Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/1.
Then,

1. There’s a Boolean circuit ψ of size poly(T(n))
such that ψ(u) = 1 if and only if N(u) =1.

2. ψ is computable in time poly(T(n)) from N,T & n.

� Step 2. “Convert” circuit ψ to a CNF ϕ efficiently by
introducing auxiliary variables.

NP complete problems: Examples

� Independent Set
� Clique
� Vertex cover
� 0/1 integer programming
� Max-Cut (NP-hard)

� 3-coloring planar graphs Stockmeyer 1973
� 2-Diophantine solvability Adleman & Manders 1975

Karp 1972

Ref: Garey & Johnson, “Computers and Intractability” 1979

NPC problems from number theory

� SqRootMod: Given natural numbers a, b and c, check
if there exists a natural number x ≤ c such that

x2 = a (mod b) .

� Theorem: SqRootMod is NP-complete.
Manders & Adleman 1976

NPC problems from number theory

� Variant_IntFact : Given natural numbers L, U and N,
check if there exists a natural number d ∈ [L, U]
such that d divides N.

� Claim: Variant_IntFact is NP-hard under randomized
poly-time reduction.

� Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785

A peculiar NP problem

� Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size ≤ s that computes f.

� Easy to see that MCSP is in NP.

� Is MCSP NP-complete? Not known!

A peculiar NP problem

� Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size ≤ s that computes f.

� Easy to see that MCSP is in NP.

� Is MCSP NP-complete? Not known!
� Multi-output MCSP is NP-hard under poly-time

randomized reductions. (Ilango, Loff, Oliveira 2020)

A peculiar NP problem

� Minimum Circuit Size Problem (MCSP): Given the
truth table of a Boolean function f and an integer s,
check if there is a circuit of size ≤ s that computes f.

� Easy to see that MCSP is in NP.

� Is MCSP NP-complete? Not known!
� Partial fn. MCSP is NP-hard under poly-time

randomized reductions. (Hirahara 2022)

More NP-complete problems

Example 1: Independent Set

� INDSET := {(G, k): G has independent set of size k}

� Goal: Design a poly-time reduction f s.t.

� Reduction from 3SAT: Recall, a reduction is just an
efficient algorithm that takes input a 3CNF ϕ and
outputs a (G, k) tuple s.t

x ∈ 3SAT f(x) ∈ INDSET

ϕ ∈ 3SAT (G, k) ∈ INDSET

Example 1: Independent Set

� Reduction: Let ϕ be a 3CNF with m clauses and n
variables.Assume, every clause has exactly 3 literals.

Example 1: Independent Set

� Reduction: Let ϕ be a 3CNF with m clauses and n
variables.Assume, every clause has exactly 3 literals.

For every clause Ci form a complete
graph (cluster) on 7 vertices

A vertex stands for a partial
assignment of the variables in
Ci that satisfies the clause

Example 1: Independent Set

� Reduction: Let ϕ be a 3CNF with m clauses and n
variables.Assume, every clause has exactly 3 literals.

Ci

C1 Cm

Add an edge between two
vertices in two different clusters if
the partial assignments they stand
for are incompatible.

Example 1: Independent Set

� Reduction: Let ϕ be a 3CNF with m clauses and n
variables.Assume, every clause has exactly 3 literals.

Ci

C1 Cm
Graph G on 7m vertices

Example 1: Independent Set

� Reduction: Let ϕ be a 3CNF with m clauses and n
variables.Assume, every clause has exactly 3 literals.

� Obs:ϕ is satisfiable iff G has an ind. set of size m.

Ci

C1 Cm

Example 2: Clique

� CLIQUE := {(H, k): H has a clique of size k}

� Goal: Design a poly-time reduction f s.t.

� Reduction from INDSET: The reduction algorithm
computes G from G

x ∈ INDSET f(x) ∈ CLIQUE

(G, k) ∈ INDSET (G, k) ∈ CLIQUE

Example 3: Vertex Cover

� VCover := {(H, k): H has a vertex cover of size k}

� Goal: Design a poly-time reduction f s.t.

� Reduction from INDSET: Let n be the number of
vertices in G. The reduction algorithm maps (G, k) to
(G, n-k).

x ∈ INDSET f(x) ∈VCover

(G, k) ∈ INDSET (G, n-k) ∈VCover

Example 4: 0/1 Integer Programming

� 0/1 IProg := Set of satisfiable 0/1 integer programs
� A 0/1 integer program is a set of linear inequalities

with rational coefficients and the variables are
allowed to take only 0/1 values.

� Reduction from 3SAT: A clause is mapped to a linear
inequality as follows

x1 ∨ x2 ∨ x3 x1 + (1- x2) + x3 ≥ 1

Example 5: Max Cut

� MaxCut : Given a graph find a cut with the max size.
� A cut of G = (V, E) is a tuple (U, V\U), U ⊆V. Size of a

cut (U, V\U) is the number of edges from U to V\U.

� MinVCover: Given a graph H, find a vertex cover in
H that has the min size.

� Obs: From MinVCover(H), we can readily check if (H,
k) ∈VCover, for any k.

Example 5: Max Cut

� MaxCut : Given a graph find a cut with the max size.
� A cut of G = (V, E) is a tuple (U, V\U), U ⊆V. Size of a

cut (U, V\U) is the number of edges from U to V\U.

� Goal:A poly-time reduction from MinVCover to
MaxCut.

Size of a MaxCut(G) = 2.|E(H)| - |MinVCover(H)|

H G s.t.
f

Example 5: Max Cut

� The reduction:

� G is formed by adding a new vertex w and adding
degH(u) – 1 edges between every u ∈V(H) and w.

H G
f

u u
w

…
.

degH(u) – 1 edges
between u and w

H G

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Let SG(U) := no. of edges in G with exactly one end
vertex incident on a vertex in U.

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Let SG(U) = no. of edges going out of U in G.

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Let SG(U) = size of the cut (U,V\U + w).

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Let SH(U) := no. of edges in H with exactly one end
vertex incident on a vertex in U.

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Then SG(U) = SH(U) + Σ (degH(u) – 1)

= SH(U) + ΣdegH(u) – |U|

u∈U

u∈U

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Then SG(U) = SH(U) + Σ (degH(u) – 1)

= SH(U) + ΣdegH(u) – |U|

u∈U

u∈U

Obs: Twice the number of
edges in H with at least one
end vertex in U.

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Then SG(U) = SH(U) + Σ (degH(u) – 1)

= SH(U) + ΣdegH(u) – |U|

= 2.|EH(U)| - |U|

u∈U

u∈U

EH(U) := Set of edges in H with at
least one end vertex in U.

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Then SG(U) = 2.|EH(U)| - |U|

� Proposition: If (U, V\U + w) is a max cut in G then U
is a vertex cover in H.

… Eqn (1)

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Then SG(U) = 2.|EH(U)| - |U|

� Proposition: If (U, V\U + w) is a max cut in G then U
is a vertex cover in H.

… Eqn (1)

SG(U) = |MaxCut(G)| = 2.|E(H)| - |U|

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Then SG(U) = 2.|EH(U)| - |U|

� Proposition: If (U, V\U + w) is a max cut in G then U
is a vertex cover in H.

… Eqn (1)

SG(U) = |MaxCut(G)| = 2.|E(H)| - |U|

U must be a minVCover in H

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Then SG(U) = 2.|EH(U)| - |U|

� Proposition: If (U, V\U + w) is a max cut in G then U
is a vertex cover in H.

… Eqn (1)

SG(U) = |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

Example 5: Max Cut

� Claim: |MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
� Proof: LetV(H) =V. ThenV(G) =V + w.

Suppose (U,V\U + w) is a cut in G.

� Then SG(U) = 2.|EH(U)| - |U|

� Proposition: If (U, V\U + w) is a max cut in G then U
is a vertex cover in H.

… Eqn (1)

Thus, the proof of the above claim follows from the proposition

Example 5: Max Cut

� Proof of the Proposition: Suppose U is not a vertex
cover

u

v
w

degH(u)-1 edges

U

V\U + w

Example 5: Max Cut

� Proof of the Proposition: Suppose U is not a vertex
cover

u

v
w

Gain: degH(u)-1 + 1 edges.
Loss: At most degH(u)-1 edges, these are the edges going from U to u.
Net gain: At least 1 edge. Hence the cut is not a max cut.

U

V\U + w

Search versus Decision

Search version of NP problems
� Recall: A language L ⊆ {0,1}* is in NP if
ØThere’s a poly-time verifier M and poly. function p s.t.
Ø x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u
∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Remark: Search version of L only makes sense once we
have a verifier M in mind.

Search version of NP problems
� Recall: A language L ⊆ {0,1}* is in NP if
ØThere’s a poly-time verifier M and poly. function p s.t.
Ø x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u
∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Example: Given a 3CNF ϕ, find a satisfying assignment
for ϕ if such an assignment exists.

Decision versus Search
� Is the search version of an NP-problem more difficult

than the corresponding decision version?

Decision versus Search
� Is the search version of an NP-problem more difficult

than the corresponding decision version?

� Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

w.r.t any verifier M !

Decision versus Search
� Is the search version of an NP-problem more difficult

than the corresponding decision version?

� Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

� Proof. (search decision) Obvious.

Decision versus Search
� Is the search version of an NP-problem more difficult

than the corresponding decision version?

� Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

� Proof. (decision search) We’ll prove this for
L = SAT first.

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn)

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn)

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn)

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn)

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn)

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn)

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y
.
.
.
.

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

ϕ(x1,…,xn) A(ϕ) = Y

ϕ(0,…,xn) A(ϕ(0,..)) = N ϕ(1,…,xn) A(ϕ(1,..)) = Y

ϕ(1,0,…,xn) A(ϕ(1,0,..)) = Y

ϕ(1,0,0,…,xn) A(ϕ(1,0,0...)) = N ϕ(1,0,1,…,xn) A(ϕ(1,0,0...)) = Y
.
.
.
.

SAT is downward self-reducible
� Proof. (decision search) Let L = SAT, and A be a

poly-time algorithm to decide if ϕ(x1,…,xn) is satisfiable.

� We can find a satisfying assignment of ϕ with at most 2n
calls to A.

Decision ≡ Search for NPC problems

� Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

Decision ≡ Search for NPC problems

� Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

SAT ≤p L L ≤p SAT

Decision ≡ Search for NPC problems

� Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

SAT ≤p L L ≤p SAT

x ϕx

Decision ≡ Search for NPC problems

� Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

SAT ≤p L L ≤p SAT

x ϕx

From Cook-Levin theorem,we can
find a certificate of x∈L (w.r.t. M)
from a satisfying assignment of ϕx.

Important note:

Decision ≡ Search for NPC problems

� Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

SAT ≤p L L ≤p SAT

x ϕx

How to find a satisfying assignment for ϕx using algorithm B ?

Decision ≡ Search for NPC problems

� Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

SAT ≤p L L ≤p SAT

x ϕx

How to find a satisfying assignment for ϕx using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Decision ≡ Search for NPC problems

� Proof. (decision search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to
decide if x∈L.

SAT ≤p L L ≤p SAT

x ϕx
ϕ f(ϕ)

How to find a satisfying assignment for ϕx using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Take A(ϕ) = B(f(ϕ)).

Decision versus Search
� Is search equivalent to decision for every NP problem?

� Graph Isomorphism (GI) is in NP and (we’ll see later
that) it is unlikely to be NP-complete.

� Yet, the natural search version of GI reduces in
polynomial-time to the decision version (homework).

Decision versus Search
� Is search equivalent to decision for every NP problem?

Probably not!

Decision versus Search
� Is search equivalent to decision for every NP problem?

� Let EE = ∪ DTIME (2c.2) and

NEE = ∪ NTIME (2c.2)

� Class NTIME(T(n)) will be defined formally in the next
lecture.

c ≥ 0

n

c ≥ 0

n

Doubly exponential
analogues of P and NP

Decision versus Search
� Is search equivalent to decision for every NP problem?

� Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

Decision versus Search
� Is search equivalent to decision for every NP problem?

� Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

� Checking if a number n is composite can be done in
polynomial-time, but finding a factor of n is not known
to be solvable in polynomial-time.

� We’ll show that Intfact is unlikely to be NP-complete.

Decision versus Search
� Is search equivalent to decision for every NP problem?

� Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.

� Sometimes, the decision version of a problem can be
trivial but the search version is possibly hard. E.g.,
Computing Nash Equilibrium (see class PPAD).

Homework: Read about total NP functions

