{ Computational Complexity Theory

Lecture 4: More NP-complete problems;
Decision versus Search

Department of Computer Science,
Indian Institute of Science

Recap: Polynomial-time reduction

 Definition. We say a language L, € {0, 1 }* is polynomial-
time (Karp) reducible to a language L, € {0, 1}* if there’s
a polynomial-time computable function f s.t.

xEL, = f(x)EL,

-

Recap: NP-completeness

o Definition. A language L is NP-hard if for every L in
NP L <, L. Further, L is NP-complete if L is in NP
and is NP-hard.

e Observe. If ' is NP-hard and L’ is in P then P = NP. If
L' is NP-complete then L in P if and only if P = NP.

— Hardest problems inside NP in the sense
that if one NPC problem is in P then all
NP problems in NP is in P.

(U

Recap: Few words on reductions

* As to how we define a reduction from one language
to the other (or one function to the other) is usually
guided by a guestion on whether two complexity classes
are different or identical.

 For polynomial-time reductions, the question s
whether or not P equals NP,

* Reductions help us define complete problems (the
‘hardest’ problems in a class) which in turn help us
compare the complexity classes under consideration.

Class NP : Examples

e Vertex cover (NP-complete)

e 0/l integer programming (NP-complete)

e 3-coloring planar graphs (NP-complete)

e 2-Diophantine solvability (NP-complete)

e Integer factoring (unlikely to be NP-complete)

 Graph isomorphism (Quasi-P)

Recap: Existence of an NPC problem

e Let L' ={ (o, x, I™ It) : there exists a u €{0,l}™ s.t. M,
accepts (X, u) in t steps }

o L is NP-complete.

e The language L involves Turing machine in its definition.
Next, we'll see an example of an NP-complete problem
that is arguably more natural.

Recap: A natural NP-complete problem

e Definition. A Boolean formula is in Conjunctive Normal
Form (CNF) if it is an AND of OR of literals.

e.g @ = (X VX)) A3V x;)

o Definition. Let SAT be the language consisting of all
satisfiable CNF formulae.

e [heorem. (Cook 1971, Levin 1973) SAT is NP-complete.

Easy to see that SAT is in NP.
Need to show that SAT is NP-hard.

Recap: Cook-Levin theorem

e Main idea: Computation is local; i.e., every step of
computation looks at and changes only constantly many
bits; and this step can be implemented by a small CNF

formula.

e Let L € NP. We intend to come up with a polynomial-
time computable function f: x s @, s.t,

> x€L e @ €SAT

Notation: |@,| := size of @,

= number of V or A in @,

Recap: Cook-Levin theorem

e Language L has a poly-time verifier M such that
xeL &= Ju €{0,1}P() s.t. M(x,u) = |

¢ ldea: For any fixed x, we can capture the computation
of M(x,..) by a CNF @, such that

Ju €{0,1}PIH) s.t. M(x,u) =1 €= @, is satisfiable

e For any fixed x, M(x, ..) is a deterministic TM that
takes u as input and runs in time polynomial in |ul.

Recap: Cook-Levin theorem

o Let N be a deterministic TM that runs

in time T(n) on every input u of length n, and outputs
0/1.Then,

|. There’s a CNF o@(u, “auxiliary variables™) of size
poly(T(n)) such that for every u, @(u, “auxiliary
variables”) is satisfiable as a function of the
“auxiliary variables” if and only if N(u) =1.

2. @ is computable in time poly(T(n)) from N, T & n.

e ©(u, “auxiliary variables™) is satisfiable as a function of
all the variables if and only if Ju s.t N(u) =I.

Recap: Main theorem

o Let N be a deterministic TM that runs in time

T(n) on every input u of length n, and outputs 0/I.
Then,

|. There’s a Boolean circuit U of size poly(T(n))
such that W(u) = | if and only if N(u) =1.

2. U is computable in time poly(T(n)) from N, T & n.

o “Convert” circuit U to a CNF ¢ efficiently by
introducing auxiliary variables.

NP complete problems: Examples

—

* Independent Set
e Clique

e Vertex cover —
e 0/l integer programming
e Max-Cut

—

e 3-coloring planar graphs
e 2-Diophantine solvability

Ref:

NPC problems from number theory

e SqRootMod: Given natural numbers 2, b and c, check
if there exists a natural number x = c such that

x? = a (mod b).

e Theorem: SqRootMod is NP-complete.

NPC problems from number theory

e Variant IntFact : Given natural numbers L, U and N,
check if there exists a natural number d € [L, U]
such that d divides N.

o Claim: Variant IntFact is NP-hard under randomized
boly-time reduction.

e Reference:
https://cstheory.stackexchange.com/questions/4769/an-
np-complete-variant-of-factoring/4785

A peculiar NP problem

e Minimum Circuit Size Problem (MCSP): Given the

truth table of a Boolean function f and an integer s,
check if there is a circuit of size < s that computes f.

e Easy to see that MCSP is in NP.

e Is MCSP NP-complete! Not known!

A peculiar NP problem

e Minimum Circuit Size Problem (MCSP): Given the

truth table of a Boolean function f and an integer s,
check if there is a circuit of size < s that computes f.

e Easy to see that MCSP is in NP.

e Is MCSP NP-complete! Not known!

e Multi-output MCSP is NP-hard under poly-time
randomized reductions. (llango, Loff, Oliveira 2020)

A peculiar NP problem

e Minimum Circuit Size Problem (MCSP): Given the

truth table of a Boolean function f and an integer s,
check if there is a circuit of size < s that computes f.

e Easy to see that MCSP is in NP.

e Is MCSP NP-complete! Not known!

e Partial fn. MCSP is NP-hard under poly-time
randomized reductions. (Hirahara 2022)

More NP-complete problems

Example |: Independent Set

o INDSET := {(G, k): G has independent set of size k}

e Goal: Design a poly-time reduction f s.t.
x € 3SAT e f(x) € INDSET

e Reduction from 3SAT: Recall, a reduction is just an
efficient algorithm that takes input a 3CNF ¢ and
outputs a (G, k) tuple s.t

@ € 3SAT e (G,k) € INDSET

Example |: Independent Set

0 Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Example |: Independent Set

0 Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

A vertex stands for a partial
assignment of the variables in
C, that satisfies the clause

For every clause C; form a complete
graph (cluster) on 7 vertices

Example |: Independent Set

o Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

G

Add an edge between two
vertices in two different clusters if

C the partial assignments they stand Cn
for are incompatible.

Example |: Independent Set

o Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

Graph G on 7/m vertices

Example |: Independent Set

o Reduction: Let ¢ be a 3CNF with m clauses and n
variables. Assume, every clause has exactly 3 literals.

o Obs: @ is satisfiable iff G has an ind. set of size m.

Example 2: Clique

o CLIQUE := {(H, k): H has a clique of size k}

» Goal: Design a poly-time reduction f s.t.

x € INDSET = f(x) € CLIQUE

* Reduction from INDSET: The reduction algorithm
computes G from G

(G,k) € INDSET = (G, k) € CLIQUE

Example 3: Vertex Cover

e VCover := {(H, k): H has a vertex cover of size k}

e Goal: Design a poly-time reduction f s.t.

x € INDSET = f(x) €VCover

e Reduction from INDSET: Let n be the number of

vertices in G. The reduction algorithm maps (G, k) to
(G, n-k).

(G, k) € INDSET = (G,n-k) €VCover

Example 4: 0/1 Integer Programming

e 0/l IProg := Set of satisfiable O/ integer programs

A 0/l integer program is a set of linear inequalities
with rational coefficients and the variables are
allowed to take only 0/1 values.

o A clause is mapped to a linear
inequality as follows

X|V)?2V X3 “ X|+(I_X2)+X3Z I

Example 5: Max Cut

e MaxCut : Given a graph find a cut with the max size.

e Acutof G=(V,E)is a tuple (UV\U),U C V. Size of a
cut (U,V\U) is the number of edges from U to V\U.

* MinVCover: Given a graph H, find a vertex cover in
H that has the min size.

e Obs: From MinVCover(H), we can readily check if (H,
k) € VCover, for any k.

Example 5: Max Cut

e MaxCut : Given a graph find a cut with the max size.

e Acutof G=(V,E)is a tuple (UV\U),U CV. Size of a
cut (U,V\U) is the number of edges from U to V\U.

e Goal:A poly-time reduction from MinVCover to

MaxCut. f
H = G s.t

Size of a MaxCut(G) = 2.|[E(H)| - [MinVCover(H)|

Example 5: Max Cut

f
e The reduction: H = G

degy(u) — | edges
between u and w

H G

* G is formed by adding a new vertex w and adding
degy(u) — | edges between every u € V(H) and w.

Example 5: Max Cut

e Claim: [MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Let S¢(U) := no. of edges in G with exactly one end
vertex incident on a vertex in U.

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

* Let S;(U) = no. of edges going out of U in G.

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

o Let S;(U) = size of the cut (U,V\U + w).

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Let S(U) := no. of edges in H with exactly one end
vertex incident on a vertex in U.

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.
e Then S¢(U) = Sy(U) + 2 (degy(u) — 1)
ueu

= Su(U) + 2degyy(u) — U]

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then Sc(U) = Sy(U) + 3 (degy(u) — 1)

=On(U) + 2degyy(u) 7 U]

Obs: Twice the number of
edges in H with at least one
end vertex in U.

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.
e Then S¢(U) = Sy(U) + 2 (degy(u) — 1)
ueu

= Su(U) + 2degyy(u) — U]

= 2|EH(U)| - |U| En(U) := Set of edges in H with at

least one end vertex in U.

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

o Then|Sc(U) = 2.[E4(U)| - U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|Sc(U) = 2.[E4(U)[- U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.

= S_(U) = [MaxCut(G)| = 2.|[E(H)] - |U|

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|Sc(U) = 2.[E4(U)[- U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H. U must be a minVCover in H

= S (U) = [MaxCut(G)| = 2.|E(H)] - [U]

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

e Then|Sc(U) = 2.[E4(U)[- U] | ... Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.

= S;(U) = |MaxCut(G)| = 2.|[E(H)| - |MinVCover(H)]

Example 5: Max Cut

e Claim: |[MaxCut(G)| = 2.|E(H)| - |MinVCover(H)|
e Proof:LetV(H) =V. ThenV(G) =V + w.
Suppose (U,V\U + w) is a cut in G.

» Then|S(U) = 2.[E4(U)| - |U| | .- Eqn (1)

e Proposition: If (U, VAU + w) is a max cut in G then U
is a vertex cover in H.

Thus, the proof of the above claim follows from the proposition

Example 5: Max Cut

» Proof of the Proposition: Suppose U is not a vertex

cover P

R N degp(u)-1 edges

V\U + w /

U

\
. w
."

Example 5: Max Cut

» Proof of the Proposition: Suppose U is not a vertex

cover
V\U + w

Gain: degy(u)-1 + | edges.
Loss: At most deg,(u)-1 edges, these are the edges going from U to u.
Net gain: At least | edge. Hence the cut is not a max cut.

Search versus Decision

Search version of NP problems

» Recall: A language L € {0,1}* is in NP if
» There’s a poly-time verifier M and poly. function p s.t.
» xeL iff there’sa ue{0,1}PX) st M(x,u) = I.

- Search version of L: Given an input x € {0,1}, find a u
€{0, I }P(x) such that M(x, u) = I, if such a u exists.

- Remarl: Search version of L only makes sense once we
have a verifier M in mind.

Search version of NP problems

» Recall: A language L € {0,1}* is in NP if
» There’s a poly-time verifier M and poly. function p s.t.
» x€eL iff there’sa ue{0,1}PX) st M(x,u) = 1.

- Search version of L: Given an input x € {0,1}, find a u
€{0, I }P(x) such that M(x, u) = I, if such a u exists.

- Example: Given a 3CNF ¢, find a satisfying assignment
for @ if such an assighment exists.

Decision versus Search

* Is the search version of an NP-problem more difficult
than the corresponding decision version!?

Decision versus Search

* Is the search version of an NP-problem more difficult
than the corresponding decision version!?

o Let L € {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision\version can be solved in poly-time.

w.r.t any verifier M !

Decision versus Search

* Is the search version of an NP-problem more difficult
than the corresponding decision version!?

o Let L € {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

e Proof. (search == decision) Obvious.

Decision versus Search

* Is the search version of an NP-problem more difficult
than the corresponding decision version!?

o Let L € {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

e Proof. (decision == search) We’'ll prove this for
L = SAT first.

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

(X5 . Xp)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

(p(X|,...,Xn) Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

(p(X|,...,Xn) Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

(p(X|,...,Xn) Y

/

N ¢@(0,...,x,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

(p(X|,...,Xn) Y

/T

N @(0,....x,) o(l,...,x,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

(p(X|,...,Xn) Y

/T

N @(0,....x,) @(l,....x,) Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

N Y
N @(0,...,x,) o(l,...,x.) Y

/

©(1,0,...,x.)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

P(X)5e-Xn) Alp) =Y

/T

A(9(0.)) =N @(0,....x,) O(l,....x) Alo(l.))=Y

/

A(9(1,0,.)) =Y ¢(1,0,...,x,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

P(X)5e-Xn) Alp) =Y

/T

A(9(0.)) =N @(0,....x,) O(l,....x) Alo(l.))=Y

/

A(9(1,0,.)) =Y ¢(1,0,...,x,)

/

¢(1,0,0,...,x,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

P(X)5e-Xn) Alp) =Y

A(9(0.)) =N @(0,....x,) O(l,....x) Alo(l.))=Y

/

A(9(1,0,.)) =Y ¢(1,0,...,x,)

/

Alo(1,00.))=N @(1,0,0,...,x,)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

P(X)5e-Xn) Alp) =Y

/T

A(9(0.)) =N @(0,....x,) O(l,....x) Alo(l.))=Y

/

A(9(1,0,.)) =Y ¢(1,0,...,x,)

T~

Alo(1,00.))=N @(1,0,0,...,x,) o(1,0,1,...,x,.)

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

P(X)5e-Xn) Alp) =Y

/T

A(9(0.)) =N @(0,....x,) O(l,....x) Alo(l.))=Y

/

A(9(1,0,.)) =Y ¢(1,0,...,x,)

T~

Alo(1,00.))=N @(1,0,0,...,x,) @(1,0,1,...,x) A(o(1,00.))=Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

P(X)5e-Xn) Alp) =Y

/T

A(9(0.)) =N @(0,....x,) O(l,....x) Alo(l.))=Y

/

A(9(1,0,.)) =Y ¢(1,0,...,x,)

T~

Alo(1,00.))=N @(1,0,0,...,x,) @(1,0,1,...,x) A(o(1,00.))=Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

P(X)5e-Xn) Alp) =Y

/T

A(9(0.)) =N @(0,....x,) O(l,....x) Alo(l.))=Y

/

A(9(1,0,.)) =Y ¢(1,0,...,x,)

T,

Alo(1,00.))=N @(1,0,0,...,x,) @(1,0,1,...,x) A(o(1,00.))=Y

SAT is downward self-reducible

e Proof. (decision == search) Let L = SAI, and A be a
poly-time algorithm to decide if ¢(x,,...,x,) is satisfiable.

* We can find a satisfying assignment of ¢ with at most 2n
calls to A.

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, M

be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, M

be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <, L L <, SAT

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, M

be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <, L L <, SAT

X p—> Py

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, M
be a verifier for L, and B be a poly-time algorithm to

decide if xEL.
SAT <. L

Important note:

L <, SAT

X p—> Py

From Cook-Levin theorem,we can
find a certificate of xeL (w.rt. M)
from a satisfying assignment of o,.

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, M

be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <, L L <, SAT

X p—> Py

How to find a satisfying assignment for ¢, using algorithm B ?

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, M

be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <, L L <, SAT

X p—> Py

How to find a satisfying assighment for ¢, using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Decision = Search for NPC problems

* Proof. (decision == search) Let L be NP-complete, M

be a verifier for L, and B be a poly-time algorithm to
decide if xEL.

SAT <, L L <, SAT

¢ — f(p) X p—as O,

How to find a satisfying assighment for ¢, using algorithm B ?

...we know how using A, which is a poly-time decider for SAT

Take A(®) = B(f(®)).

Decision versus Search

* Is search equivalent to decision for every NP problem!?

e Graph Isomorphism (Gl) is in NP and (we’ll see later
that) it is unlikely to be NP-complete.

e Yet, the natural search version of G| reduces in
polynomial-time to the decision version (homework).

Decision versus Search

* Is search equivalent to decision for every NP problem!?

Probably not!

Decision versus Search

* Is search equivalent to decision for every NP problem!?

o Let EE = U DTIME (22") and

c=20
Doubly exponential
NEE = U NTIME (2C-2n) analogues of P and NP

c=20

e Class NTIME(T(n)) will be defined formally in the next
lecture.

Decision versus Search

* Is search equivalent to decision for every NP problem!?

e If EE # NEE then

there’s a language in NP for which search does not
reduce to decision.

Decision versus Search

* Is search equivalent to decision for every NP problem!?

e If EE # NEE then

there’s a language in NP for which search does not
reduce to decision.

e Checking if a number n is composite can be done in
polynomial-time, but finding a factor of n is not known
to be solvable in polynomial-time.

o WEe'll show that Intfact is unlikely to be NP-complete.

Decision versus Search

* Is search equivalent to decision for every NP problem!?

e Theorem. If EE # NEE then
there’s a language in NP for which search does not
reduce to decision.

e Sometimes, the decision version of a problem can be
trivial but the search version is possibly hard. E.g,
Computing Nash Equilibrium (see class PPAD).

Read about total NP functions

