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Recap: Search version of NP
� Recall: A language L ⊆ {0,1}* is in NP if
ØThere’s a poly-time verifier M and poly. function p s.t.
Ø x∈L iff there’s a u∈{0,1}p(|x|) s.t M(x, u) = 1.

• Search version of L: Given an input x ∈ {0,1}*, find a u
∈{0,1}p(|x|) such that M(x, u) = 1, if such a u exists.

• Example: Given a 3CNF ϕ, find a satisfying assignment
for ϕ if such an assignment exists.



Recap: Decision versus Search
� Is the search version of an NP-problem more difficult

than the corresponding decision version?

� Theorem. Let L ⊆ {0,1}* be NP-complete. Then, the
search version of L can be solved in poly-time if and
only if the decision version can be solved in poly-time.

w.r.t any verifier M !



Recap: Decision versus Search
� Is search equivalent to decision for every NP problem?

� Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then
there’s a language in NP for which search does not
reduce to decision.



Two types of poly-time reductions

� Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

x∈L1 f(x)∈L2

� Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .
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Karp reduction  implies  Cook reduction



Two types of poly-time reductions

� Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Karp or many-one) reducible to a language L2 ⊆ {0,1}*
if there’s a polynomial time computable function f s.t.

x∈L1 f(x)∈L2

� Definition. A language L1 ⊆ {0,1}* is polynomial-time
(Cook or Turing) reducible to a language L2 ⊆ {0,1}* if
there’s a TM that decides L1 in poly-time using poly-
many calls to a “subroutine” for deciding L2 .

Homework:  Read about Levin reduction



NTM:  An alternate characterization of NP



Nondeterministic Turing Machines
� A nondeterministic Turing machine is like a deterministic

Turing machines but with two transition functions.
� It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a

special state qaccept in addition to qstart and qhalt.
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one of two functions δ0 and δ1 arbitrarily.

also called nondeterministically
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this is different from randomly



Nondeterministic Turing Machines
� A nondeterministic Turing machine is like a deterministic

Turing machines but with two transition functions.
� It is formally defined by a tuple (Γ, Q, δ0 , δ1). It has a

special state qaccept in addition to qstart and qhalt.
� At every step of computation, the machine applies

one of two functions δ0 and δ1 arbitrarily.
� Unlike DTMs, NTMs are not intended to be
physically realizable (because of the arbitrary
nature of application of the transition functions).



Nondeterministic Turing Machines
� Definition. An NTM M accepts a string x∈{0,1}* iff on

input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

� Defintion. An NTM M decides a language L ⊆ {0,1}* if
Ø M accepts x x∈L
Ø On every sequence of applications of the transition

functions on input x, M either reaches qaccept or qhalt.
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input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

� Defintion. An NTM M decides a language L ⊆ {0,1}* if
Ø M accepts x x∈L
Ø On every sequence of applications of the transition

functions on input x, M either reaches qaccept or qhalt.

remember in this course we’ll always be dealing with TMs 
that halt on every input.



Nondeterministic Turing Machines
� Definition. An NTM M accepts a string x∈{0,1}* iff on

input x there exists a sequence of applications of the
transition functions δ0 and δ1 (beginning from the
start configuration) that makes M reach qaccept.

� Defintion. An NTM M decides L in T(|x|) time if
Ø M accepts x x∈L
Ø On every sequence of applications of the transition

functions on input x, M either reaches qaccept or qhalt
within T(|x|) steps of computation.



Class NTIME
� Definition. A language L is in NTIME(T(n)) if there’s

an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.



Alternate characterization of NP
� Definition. A language L is in NTIME(T(n)) if there’s

an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

� Theorem. NP = ∪ NTIME (nc).
Proof sketch:  Let L be a language in NP.  Then, there’s 

a poly-time verifier M s.t,  
x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1

c > 0
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Think of an NTM M’ that on input x, at first guesses a u 
∈{0,1}p(|x|) by applying δ0 and δ1 nondeterministically

c > 0
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…. and then simulates M on (x, u) to verify M(x,u) = 1.

c > 0
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Alternate characterization of NP
� Definition. A language L is in NTIME(T(n)) if there’s

an NTM M that decides L in c. T(n) time on inputs of
length n, where c is a constant.

� Theorem. NP = ∪ NTIME (nc).
Proof sketch:  Let L be in NTIME (nc).  Then, there’s an 

NTM M’ that decides L in p(n) = O(nc) time.    (|x| = n) 
Think of a verifier M that takes x and u ∈{0,1}p(n) as 
input, and simulates M’ on x with u as the sequence of 
choices for applying δ0 and δ1 .

c > 0



Class co-NP and EXP



Class co-NP
� Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

A language L is in co-NP if L is in NP.

� Example. SAT = {ϕ :ϕ is not satisfiable}.



Class co-NP
� Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

A language L is in co-NP if L is in NP.

� Example. SAT = {ϕ :ϕ is not satisfiable}.

� Note: co-NP is not complement of NP. Every language
in P is in both NP and co-NP.
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Class co-NP
� Definition. For every L ⊆ {0,1}* let L = {0,1}* \ L.

A language L is in co-NP if L is in NP.

� Example. SAT = {ϕ :ϕ is not satisfiable}.

� Note: SAT is Cook reducible to SAT. But, there’s a
fundamental difference between the two problems that
is captured by the fact that SAT is not known to be
Karp reducible to SAT. In other words, there’s no known
poly-time verification process for SAT.



Class co-NP :  Alternate definition
� Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1
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verifier M such that
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x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0



Class co-NP :  Alternate definition
� Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1
x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0
x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

M outputs the 
opposite of M



Class co-NP :  Alternate definition
� Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that
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x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0
x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

M is a poly-time TM



Class co-NP :  Alternate definition
� Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that
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x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

is in co-NP



Class co-NP :  Alternate definition
� Recall, a language L ⊆ {0,1}* is in NP if there’s a poly-time
verifier M such that

x∈L ∃u ∈{0,1}p(|x|) s.t. M(x, u) = 1
x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 0
x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

� Definition. A language L ⊆ {0,1}* is in co-NP if there’s a
polynomial function p and a poly-timeTM M such that

x∈L ∀u ∈{0,1}p(|x|) s.t. M(x, u) = 1

for NP this was ∃



co-NP-completeness
� Definition. A language L’ ⊆ {0,1}* is co-NP-complete if
Ø L’ is in co-NP
Ø Every language L in co-NP is polynomial-time (Karp)

reducible to L’.

• Theorem. SAT is co-NP-complete.
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Ø Every language L in co-NP is polynomial-time (Karp)

reducible to L’.

• Theorem. SAT is co-NP-complete.
Proof. Let L ∈ co-NP. Then

L ∈ NP
L ≤p SAT



co-NP-completeness
� Definition. A language L’ ⊆ {0,1}* is co-NP-complete if
Ø L’ is in co-NP
Ø Every language L in co-NP is polynomial-time (Karp)

reducible to L’.

• Theorem. SAT is co-NP-complete.
Proof. Let L ∈ co-NP. Then

L ∈ NP
L ≤p SAT
L ≤p SAT



co-NP-completeness
� Definition. A language L’ ⊆ {0,1}* is co-NP-complete if
Ø L’ is in co-NP
Ø Every language L in co-NP is polynomial-time (Karp)

reducible to L’.

• Theorem. Let
TAUTOLOGY = {ϕ : every assignment satisfies ϕ }.

TAUTOLOGY is co-NP-complete.
Proof. Similar (homework)



co-NP-completeness
� Definition. A language L’ ⊆ {0,1}* is co-NP-complete if
Ø L’ is in co-NP
Ø Every language L in co-NP is polynomial-time (Karp)

reducible to L’.

• Theorem. If L in NP-complete then L is co-NP-complete
Proof. Similar (homework)



The diagram again

NP co-NP

P

NPC co-NPC

If a co-NP-complete language 
belongs to NP then

co-NP  ⊆ NP
co-NP = NP

Let C1 and C2 be two 
complexity classes.

If C1 ⊆ C2 , then 
co-C1 ⊆ co-C2.

Obs. co-(co-C) = C .
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The diagram again

NP co-NP

P

NPC co-NPC

If an NP-complete language 
belongs to co-NP then

NP  ⊆ co-NP
NP = co-NP

Let C1 and C2 be two 
complexity classes.

If C1 ⊆ C2 , then 
co-C1 ⊆ co-C2.

Obs. co-(co-C) = C .

Empty?
Empty?

We’ll address this 
using a technique 
known as 
diagonalization

We’ll revisit this question.



Integer factoring in NP ∩ co-NP
� Integer factoring.

FACT = {(N, U): there’s a prime in [U] dividing N}

� Claim. FACT ∈ NP ∩ co-NP

� So, FACT is NP-complete implies NP = co-NP.



Integer factoring in NP ∩ co-NP
� Integer factoring.

FACT = {(N, U): there’s a prime in [U] dividing N}

� Claim. FACT ∈ NP ∩ co-NP
� Proof. FACT ∈ NP : Give p as a certificate. The

verifier checks if p is prime (AKS test), 1 ≤ p ≤ U and
p divides N.
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� Integer factoring.

FACT = {(N, U): there’s a prime in [U] dividing N}
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� Proof. FACT ∈ NP : Give the complete prime

factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].



Integer factoring in NP ∩ co-NP
� Integer factoring.

FACT = {(N, U): there’s a prime in [U] dividing N}

� Claim. FACT ∈ NP ∩ co-NP
� Proof. FACT ∈ NP : Give the complete prime

factorization of N as a certificate. The verifier checks
the correctness of the factorization, and then checks if
none of the prime factors is in [U].

� Homework: If FACT ∈ P, then there’s a algorithm to find the
prime factorization a given n-bit integers in poly(n) time.



Integer factoring in NP ∩ co-NP
� Integer factoring.

FACT = {(N, U): there’s a prime in [U] dividing N}

� Factoring algorithm. Dixon’s randomized algorithm
factors an n-bit number in exp(O(√n log n)) time.



Class EXP
� Definition. Class EXP is the exponential time

analogue of class P.
EXP = ∪ DTIME ( 2n )

c

c ≥ 1



Class EXP
� Definition. Class EXP is the exponential time

analogue of class P.
EXP = ∪ DTIME ( 2n )

� Observation. P ⊆ NP ⊆ EXP

c

c ≥ 1

NP co-NP

P

EXP



Class EXP
� Definition. Class EXP is the exponential time

analogue of class P.
EXP = ∪ DTIME ( 2n )

� Observation. P ⊆ NP ⊆ EXP

� Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

In other words, δ cannot be made arbitrarily close to 0.
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� Definition. Class EXP is the exponential time

analogue of class P.
EXP = ∪ DTIME ( 2n )

� Observation. P ⊆ NP ⊆ EXP

� Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

ETH          P ≠ NP



Class EXP
� Definition. Class EXP is the exponential time

analogue of class P.
EXP = ∪ DTIME ( 2n )

� Observation. P ⊆ NP ⊆ EXP

� Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

Homework:  Read about Strong Exponential Time Hypothesis (SETH).          



Class EXP
� Definition. Class EXP is the exponential time

analogue of class P.
EXP = ∪ DTIME ( 2n )

� Observation. P ⊆ NP ⊆ EXP

� Exponential Time Hypothesis. (Impagliazzo & Paturi 1999)
Any algorithm for 3-SAT takes ≥ 2δ.n time, where δ> 0
is some fixed constant and n is the no. of variables.

c

c ≥ 1

Is P ⊊ EXP ? 

We’ll address this using 
diagonalization


