Computational Complexity Theory

Lecture 6: Diagonalization; Time Hierarchy; Ladner's theorem

Department of Computer Science, Indian Institute of Science

Recap: Class co-NP

- Definition. For every $L \subseteq \{0,1\}^*$ let $\overline{L} = \{0,1\}^* \setminus L$. A language L is in co-NP if \overline{L} is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$.

Recap: Alternate definition of co-NP

• Recall, a language $L \subseteq \{0,1\}^*$ is in NP if there's a poly-time verifier M such that

```
x \in L \Longrightarrow \exists u \in \{0,1\}^{p(|x|)} s.t. M(x,u) = I

x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. M(x,u) = 0

x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. \overline{M}(x,u) = I
```

• Definition. A language $L \subseteq \{0,1\}^*$ is in co-NP if there's a polynomial function p and a poly-time TM M such that

```
x \in L \iff \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x,u) = 1

for NP this was \exists
```

Recap: co-NP-completeness

- Definition. A language L' $\subseteq \{0,1\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

• Theorem. SAT and TAUTOLOGY are co-NP-complete.

Recap: The diagram again

If an NP-complete language belongs to co-NP then

Let C_1 and C_2 be two complexity classes.

If
$$C_1 \subseteq C_2$$
, then $co-C_1 \subseteq co-C_2$.

Obs.
$$co-(co-C) = C$$
.

Recap: FACT in NP ∩ co-NP

Integer factoring.

FACT = $\{(N, U): \text{ there's a prime in } [U] \text{ dividing } N\}$

• Claim. FACT \in NP \cap co-NP

• So, FACT is NP-complete implies NP = co-NP.

Recap: Class EXP

 Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME (2^{n^c})$$

• Observation. P ⊆ NP ⊆ EXP

Recap: Class EXP

 Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME (2^{n^c})$$

Observation. P ⊆ NP ⊆ EXP

• Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta,n}$ time, where $\delta > 0$ is some fixed constant and n is the no. of variables.

In other words, δ cannot be made arbitrarily close to 0.

Recap: Class EXP

 Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME (2^{n^c})$$

Observation. P ⊆ NP ⊆ EXP

We'll address this using diagonalization

Is P ⊊ EXP?

• Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes $\geq 2^{\delta,n}$ time, where $\delta > 0$ is some fixed constant and n is the no. of variables.

 Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a small overhead.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a small overhead.

If M_{α} takes T time on x then U takes $O(T \log T)$ time to simulate M_{α} on x.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - I. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a small overhead.
 - 2. Every string represents some TM, and every TM can be represented by <u>infinitely many</u> strings.

- An application of Diagonalization

• Let f(n) and g(n) be <u>time-constructible</u> functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$

• Theorem. (Hartmanis & Stearns 1965)

$$DTIME(f(n)) \subseteq DTIME(g(n))$$

This type of results are called <u>lower bounds</u>.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. DTIME(f(n)) \subseteq DTIME(g(n))

 Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).

Task: Show that there's a language L decided by a TM D with time complexity O(n²) s.t., any TM M with runtime O(n) cannot decide L.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$

TM D:

I. On input x, compute $|x|^2$.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

D's time steps not M_x 's

time steps.

TM D:

- I. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.

TM D:

- I. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_x stops and outputs b then output 1-b.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.

TM D:

- I. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_x stops and outputs b then output 1-b.
 - b. Otherwise, output 1.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

TM D:

- I. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_{\star} stops and outputs b then output 1-b.
 - b. Otherwise, output 1.

D outputs the **opposite** of what M_x outputs.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - D runs in $O(n^2)$ time as n^2 is <u>time-constructible</u>.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)

 c is a constant

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \triangleright Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \triangleright Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose $M(x) = M_x(x) = b$.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \triangleright Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose $M(x) = M_x(x) = b$.
 - \triangleright D on input x, simulates M_x on x for $|x|^2$ steps.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \triangleright Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - \triangleright Suppose M(x) = M_x(x) = b.
 - ➤ D on input x, simulates M_x on x for $|x|^2$ steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps.

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \triangleright Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose $M(x) = M_x(x) = b$.
 - ➤ D on input x, simulates M_x on x for $|x|^2$ steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps. (as c'.c. |x|. log |x| < $|x|^2$ for sufficiently large x)

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \triangleright Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose M(x) = M_x(x) = b.
 - ➤ D on input x, simulates M_x on x for $|x|^2$ steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps. And D outputs the **opposite** of what M_x outputs!

- Let f(n) and g(n) be time-constructible functions s.t.,
 f(n) . log f(n) = o(g(n)).
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x) for all x)
 - \rightarrow Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose $M(x) = M_x(x) = b$.
 - \rightarrow Hence, D(x) = I-b.

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n. (i.e., M(x) = D(x)) for all x
 - \rightarrow Think of a <u>sufficiently large</u> \times such that $M = M_{\times}$.
 - ightharpoonup Suppose $M(x) = M_x(x) = b$.
 - \rightarrow Hence, D(x) = I-b.

Contradiction! M does not decide L.

• Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$

- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$

- Let f(n) and g(n) be time-constructible functions s.t., $f(n) \cdot \log f(n) = o(g(n)).$
- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$
- **No** EXP-complete problem (under poly-time Karp reduction) is in P.

E.g., Decide if a TM halts in k steps; generalized versions of games such as chess, checkers, Go, etc.

Is there a <u>natural problem</u> that takes close to n² time?

Is there a <u>natural problem</u> that takes close to n² time?

3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.

- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. **No** algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.

- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. **No** algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.

• However, there's a $\sim O(n^2 / (\log n)^2)$ time algorithm for 3SUM. (" \sim " suppressing a poly(log log n) factor.)

- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. **No** algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.
- kSUM: Given a list of n numbers, check if there exists k numbers in the list that sum to zero.

- Is there a <u>natural problem</u> that takes close to n² time?
- 3SUM: Given a list of n numbers, check if there exists
 3 numbers in the list that sum to zero.
- Conjecture. **No** algorithm solves 3SUM in $O(n^{2-\epsilon})$ time for some constant $\epsilon > 0$.
- kSUM: Given a list of n numbers, check if there exists k numbers in the list that sum to zero.
- Theorem (Patrascu & Williams 2010). ETH implies kSUM requires $n^{\Omega(k)}$ time.

Revisiting NP∩co-NP

General belief: P ≠ NP ∩ co-NP

Revisiting NP∩co-NP


```
Conjecture: NP \neq co-NP

P \neq NP

General belief: P \neq NP \cap co-NP
```

...conjectured $P = NP \cap co-NP$

Edmonds (1966)

Revisiting NP∩co-NP

General belief: $P \neq NP \cap co-NP$

Check:

https://cstheory.stackexchange.com/questions/20 02 | /reasons-to-believe-p-ne-np-cap-conp-or-not

Check if the shortest non-zero vector in an n-dimensional lattice has length at most I or at least \sqrt{n} .

- Integer factoring (FACT)
- Approximate shortest vector in a lattice

Conjecture: $NP \neq co-NP$ $\downarrow \\ P \neq NP$

General belief: P ≠ NP ∩ co-NP

Obs: If NP ≠ co-NP and FACT ∉ P then FACT is NP-intermediate.

- Integer factoring (FACT)
- Approximate shortest vector in a lattice

Conjecture: NP ≠ co-NP

↓

P ≠ NP

General belief: P ≠ NP ∩ co-NP

Obs: If NP ≠ co-NP and FACT ∉ P then FACT is NP-intermediate.

Ladner's theorem: P ≠ NP implies existence of a NP-intermediate language.

- Integer factoring (FACT)
- Approximate shortest vector in a lattice

- Integer factoring (FACT)
- Approximate shortest vector in a lattice

Conjecture: NP ≠ co-NP

↓

P ≠ NP

General belief: $P \neq NP \cap co-NP$

Obs: If NP ≠ co-NP and FACT ∉ P then FACT is NP-intermediate.

Ladner's theorem: P ≠ NP implies existence of a NP-intermediate language.

(proved using diagonalization)

Ladner's Theorem

- Another application of Diagonalization

 Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 - Proof. A delicate argument using diagonalization.

- Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.
- Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.
 - Proof. Let H: $N \rightarrow N$ be a function.

 Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.

Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.

Proof. Let H: $N \rightarrow N$ be a function.

```
Let SAT_H = \{\Psi 0 \mid \Pi^{H(m)} : \Psi \in SAT \text{ and } |\Psi| = m\}
```

 Definition. A language L in NP is NP-intermediate if L is neither in P nor NP-complete.

Theorem. (Ladner 1975) If P ≠ NP then there is a NP-intermediate language.

Proof. Let H: $N \rightarrow N$ be a function.

Let
$$SAT_H = \{\Psi 0 \mid \prod_{m \in SAT \text{ and } |\Psi| = m\}$$

H would be defined in such a way that SAT_H is NP-intermediate (assuming $P \neq NP$)

• Theorem. There's a function $H: \mathbb{N} \to \mathbb{N}$ such that

I. H(m) is computable from m in $O(m^3)$ time.

• Theorem. There's a function H: $N \rightarrow N$ such that

- I. H(m) is computable from m in $O(m^3)$ time.
- 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).

• Theorem. There's a function H: $N \rightarrow N$ such that

- I. H(m) is computable from m in $O(m^3)$ time.
- 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

• Theorem. There's a function $H: \mathbb{N} \to \mathbb{N}$ such that

- I. H(m) is computable from m in $O(m^3)$ time.
- 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.
- Proof: Later (uses diagonalization).

Let's see the proof of Ladner's theorem assuming the existence of such a "special" H.

$$P \neq NP$$

• Suppose $SAT_H \in P$. Then $H(m) \leq C$.

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input φ , find $m = |\varphi|$.

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input φ , find $m = |\varphi|$.
 - \triangleright Compute H(m), and construct the string $\varphi \circ I^{m^{1/(m)}}$

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input φ , find $m = |\varphi|$.
 - \triangleright Compute H(m), and construct the string $\varphi \circ I^{m^{\square(1)}}$
 - ightharpoonup Check if $\phi \circ I$ belongs to SAT_H .

```
P \neq NP
```

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input φ , find $m = |\varphi|$.
 - \triangleright Compute H(m), and construct the string $\varphi \circ I^{m^{(1)}}$
 - Check if $\phi 0 I$ belongs to SAT_H .

 length at most $m + I + m^C$

$$P \neq NP$$

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input φ , find $m = |\varphi|$.
 - \rightarrow Compute H(m), and construct the string $\varphi \circ I^{m^{(1)}}$
 - ightharpoonup Check if $\phi \circ I$ belongs to SAT_H .
- As $P \neq NP$, it must be that $SAT_H \notin P$.

$$P \neq NP$$

• Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^k$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

 \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^k$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if k = m^{H(m)}.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^k$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.
- ightharpoonup Compute H(m) and check if $k = m^{H(m)}$. (Homework: Verify that this can be done in poly(n) time.)

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.
- \rightarrow Compute H(m) and check if $k = m^{H(m)}$.

Either $m \le m_0$ (in which case the task reduces to checking if a constant-size Ψ is satisfiable),

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

Let m_0 be the largest s.t. $H(m_0) \le 2c$.

- \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if k = m^{H(m)}.

or H(m) > 2c (as H(m) tends to infinity with m).

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

- \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.
- ightharpoonup Hence, w.l.o.g. $|f(\phi)| \ge k > m^{2c}$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

- \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.
- ightharpoonup Hence, w.l.o.g. $n^c = |f(\phi)| \ge k > m^{2c}$

> Hence, \sqrt{n} ≥ m.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

SAT
$$\leq_p$$
 SAT_H $\varphi \mapsto^f \Psi \circ I^k$
> On input φ , compute $f(\varphi) = \Psi \circ I^k$. Let $m = |\Psi|$.
> Compute H(m) and check if $k = m^{H(m)}$.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H$$

$$\phi \stackrel{f}{\longmapsto} \Psi 0 I^{k}$$

- \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.
- ightharpoonup Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^k$$

- \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.
- ightharpoonup Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$

Thus, checking if an n-size formula φ is satisfiable reduces to checking if a \sqrt{n} -size formula Ψ is satisfiable.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi \circ I^k$$

- \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m^{H(m)}$.
- \triangleright Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$

Do this recursively! Only O(log log n) recursive steps required.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(m) \rightarrow \infty$ with m.
- This also implies a poly-time algorithm for SAT:

$$SAT \leq_p SAT_H \qquad \qquad \phi \stackrel{f}{\longmapsto} \Psi 0 I^k$$

- \triangleright On input φ , compute $f(\varphi) = \Psi \cup I^k$. Let $m = |\Psi|$.
- ightharpoonup Compute H(m) and check if $k = m^{H(m)}$.
- \triangleright Hence, \sqrt{n} ≥ m. Also $\phi \in SAT$ iff $\Psi \in SAT$
- Hence SAT_H is not NP-complete, as $P \neq NP$.

Ladner's theorem: Properties of H

• Theorem. There's a function $H: \mathbb{N} \to \mathbb{N}$ such that

- I. H(m) is computable from m in $O(m^3)$ time.
- 2. If $SAT_H \in P$ then $H(m) \leq C$ (a constant).
- 3. If $SAT_H \notin P$ then $H(m) \rightarrow \infty$ with m.

• $SAT_H = \{\Psi 0 \mid \prod_{m \in M(m)}^{m^{H(m)}} : \Psi \in SAT \text{ and } |\Psi| = m\}$