Computational Complexity Theory

Lecture 9: PSPACE-completeness;

Log-space reductions;

NL-completeness

Department of Computer Science, Indian Institute of Science

Recap: Space bounded computation

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate readonly input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: $N \to N$ be a function. A language L is in DSPACE(S(n)) if there's a TM M that decides L using O(S(n)) work space on inputs of length n.

Recap: Space bounded computation

- Here, we are interested to find out how much of work space is required to solve a problem.
- For convenience, think of TMs with a separate readonly input tape and one or more work tapes. Work space is the number of cells in the work tapes of a TM M visited by M's heads during a computation.
- Definition. Let S: $N \rightarrow N$ be a function. A language L is in NSPACE(S(n)) if there's a NTM M that decides L using O(S(n)) work space on inputs of length n, regardless of M's nondeterministic choices.

Recap: Space bounded computation

- We'll refer to 'work space' as 'space'. For convenience, assume there's a <u>single</u> work tape.
- If the output has many bits, then we will assume that the TM has a separate write-only <u>output tape</u>.
- Definition. Let S: $N \longrightarrow N$ be a function. S is <u>space</u> <u>constructible</u> if $S(n) \ge \log n$ and there's a TM that computes S(|x|) from x using O(S(|x|)) space.

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.

```
    Definition.
    L = DSPACE(log n)
    NL = NSPACE(log n)
    PSPACE = U DSPACE(n<sup>c</sup>)
```

Giving space at least log n gives a TM at least the power to remember the index of a cell.

- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.

```
    Definition.
    L = DSPACE(log n)
    NL = NSPACE(log n)
    PSPACE = U DSPACE(n<sup>c</sup>)
```

Why did we not define NPSPACE?
We saw that unlike P and NP,
PSPACE = NPSPACE

- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.

• Open. Is P ≠ PSPACE?

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

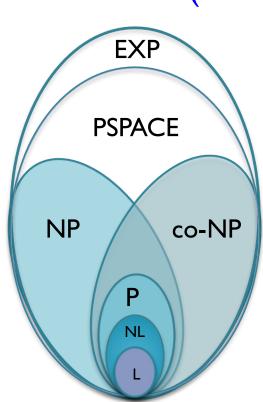
• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is

space constructible.

Homework: Integer addition and multiplication are in (functional) L.

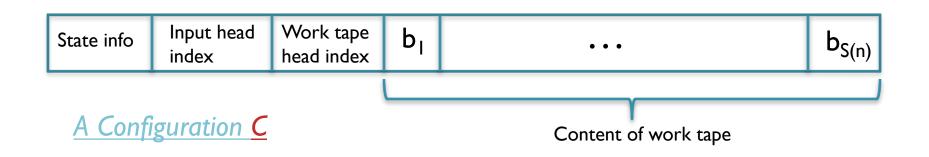
Integer division is also in (functional)

L. (Chiu, Davida & Litow 2001)



- Definition. A configuration of a TM M on input x, at any particular step of its execution, consists of
 - (a) the nonblank symbols of its work tapes,
 - (b) the current state,
 - (c) the current head positions.

It captures a 'snapshot' of M at any particular moment of execution.



- Definition. A configuration of a TM M on input x, at any particular step of its execution, consists of
 - (a) the nonblank symbols of its work tapes,
 - (b) the current state,
 - (c) the current head positions.

It captures a 'snapshot' of M at any particular moment of execution.

Note: A configuration C can be represented using O(S(n)) bits if M uses $S(n) = \Omega(\log n)$ space on n-bit inputs.

• Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).

• Number of nodes in $G_{M,x} = 2^{O(S(n))}$, if M uses S(n) space on n-bit inputs

- Definition. A configuration graph of a TM M on input x, denoted $G_{M,x}$, is a directed graph whose nodes are all the possible configurations of M on input x. There's an edge from one configuration C_1 to another C_2 , if C_2 can be reached from C_1 by an application of M's transition function(s).
- If M is a DTM then every node C in $G_{M,x}$ has at most one outgoing edge. If M is an NTM then every node C in $G_{M,x}$ has at most two outgoing edges.

- Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).
- Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.
- Proof. Let L ∈ NSPACE(S(n)) and M be an NTM deciding L using O(S(n)) space on length n inputs.
- On input x, compute the configuration graph $G_{M,x}$ of M and check if there's a <u>path</u> from C_{start} to C_{accept} . Running time is $2^{O(S(n))}$.

Recap: Natural problems?

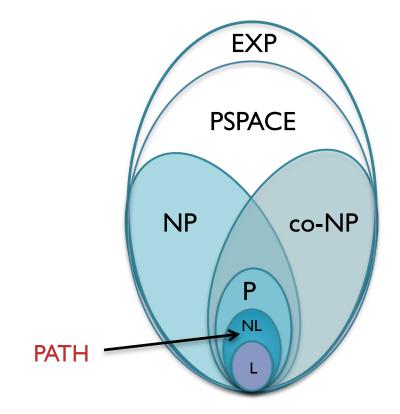
```
    Definition.
    L = DSPACE(log n)
    NL = NSPACE(log n)
    PSPACE = U DSPACE(n<sup>c</sup>)
```

• Theorem. L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP.

Are there natural problems in L, NL and PSPACE?

PATH: A canonical problem in NL

- PATH = {(G,s,t) : G is a directed graph having a path from s to t}.
- Obs. PATH is in NL.



UPATH: A problem in L

UPATH = {(G,s,t) : G is an undirected graph having a path from s to t}.

EXP

• Theorem (Reingold 2005). UPATH is in L.

```
Is PATH in L?
If yes, then L = NL!
(will prove later)
```

Recap: Space Hierarchy Theorem

Theorem. (Stearns, Hartmanis & Lewis 1965) If f and g are space-constructible functions and f(n) = o(g(n)), then SPACE(f(n)) ⊊ SPACE(g(n)).

Proof. Homework.

• Theorem. L ⊊ PSPACE.

Recap: Savitch's theorem

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

```
Proof.
```

```
REACH(C<sub>1</sub>, C<sub>2</sub>, i) {
If i = 0 check if C<sub>1</sub> and C<sub>2</sub> are adjacent.
Else, for every configurations C,
a<sub>1</sub> = REACH(C<sub>1</sub>, C, i-1)
a<sub>2</sub> = REACH(C, C<sub>2</sub>, i-1)
if a<sub>1</sub>=1 & a<sub>2</sub>=1, return 1. Else return 0.
}
```

Recap: Savitch's theorem

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

Proof.

$$Space(i) = Space(i-1) + O(S(n))$$

• Space complexity: $O(S(n)^2)$

$$Time(i) = 2m.2.Time(i-1) + O(S(n))$$

• Time complexity: 2^{O(S(n)²)}

Recall, NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))}). There's an algorithm with time complexity $2^{O(S(n))}$, but higher space requirement.

PSPACE-completeness

PSPACE-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE?

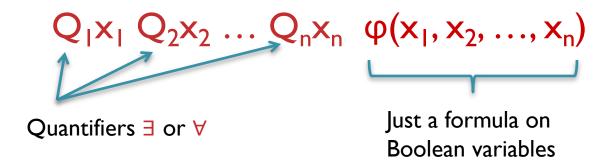
PSPACE-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE ? ...use poly-time Karp reduction!
- Definition. A language L' is *PSPACE-hard* if for every L in PSPACE, L \leq_p L'. Further, if L' is in PSPACE then L' is *PSPACE-complete*.

A PSPACE-complete problem

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE? ...use poly-time Karp reduction!
- Example. L' = {(M,w,I^m) : M accepts w using m space}

• Definition. A quantified Boolean formula (QBF) is a formula of the form



 A QBF is either <u>true</u> or <u>false</u> as all variables are quantified. This is unlike a formula we've seen before where variables were <u>unquantified/free</u>.

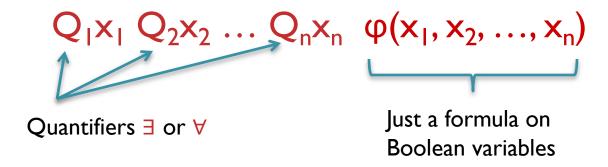
- Example. $\exists x_1 \exists x_2 ... \exists x_n \ \phi(x_1, x_2, ..., x_n)$
- The above QBF is true iff ϕ is satisfiable.

We could have defined SAT as

```
SAT = \{\exists x \phi(x) : \phi \text{ is a CNF and } \exists x \phi(x) \text{ is true} \} instead of
```

SAT = $\{\phi(\mathbf{x}) : \phi \text{ is a CNF and } \phi \text{ is satisfiable}\}$

• Definition. A quantified Boolean formula (QBF) is a formula of the form



• Homework: By using auxiliary variables (as in the proof of Cook-Levin) and introducing some more \exists quantifiers at the end, we can assume w.l.o.g. that φ is a 3CNF.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

Theorem. TQBF is PSPACE-complete.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: Easy to see that TQBF is in PSPACE just think of a suitable <u>recursive procedure</u>. We'll now show that every L ∈ PSPACE reduces to TQBF via poly-time Karp reduction...

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Let M be a TM deciding L using S(n) = poly(n) space. We intend to come up with a poly-time reduction f s.t.

$$x \in L \quad \stackrel{f}{\longleftrightarrow} \psi_x \text{ is a true QBF}$$

Size of ψ_x must be bounded by poly(n), where |x| = n

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Let M be a TM deciding L using S(n) = poly(n) space. We intend to come up with a poly-time reduction f s.t.

$$x \in L \quad \stackrel{f}{\longleftrightarrow} \psi_x \text{ is a true QBF}$$

Idea: Form ψ_x in such a way that ψ_x is true iff there's a path from C_{start} to C_{accept} in $G_{\text{M,x}}$.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in G_{Mx} .

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in $G_{M,x}$. Then, it forms a <u>semi-QBF</u> $\Delta_i(C_1,C_2)$, such that $\Delta_i(C_1,C_2)$ is true iff there's a path from C_1 to C_2 of length at most 2^i in $G_{M,x}$.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in $G_{M,x}$. Then, it forms a <u>semi-QBF</u> $\Delta_i(C_1,C_2)$, such that $\Delta_i(C_1,C_2)$ is true iff there's a path from C_1 to C_2 of length at most 2^i in $G_{M,x}$.

The variables corresponding to the bits of C_1 and C_2 are unquantified/free variables of Δ_i

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF $\Delta_i(C_1,C_2)$ is formed, recursively, as follows:

(first attempt)

$$\Delta_{i}(C_{1},C_{2}) = \exists C \left(\Delta_{i-1}(C_{1},C) \wedge \Delta_{i-1}(C,C_{2})\right)$$

Issue: Size of Δ_i is **twice** the size of Δ_{i-1} !!

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF $\Delta_i(C_1,C_2)$ is formed, recursively, as follows:

(careful attempt)

$$\Delta_{i}(C_{1},C_{2}) = \exists C \forall D_{1} \forall D_{2}$$

$$\left(\left(\left(D_{1} = C_{1} \wedge D_{2} = C \right) \vee \left(D_{1} = C \wedge D_{2} = C_{2} \right) \right) \implies \Delta_{i-1}(D_{1},D_{2}) \right)$$

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF $\Delta_i(C_1,C_2)$ is formed, recursively, as follows:

(careful attempt)

$$\Delta_{i}(C_{1},C_{2}) = \exists C \ \forall D_{1} \forall D_{2}$$

$$\left(\neg \left((D_{1} = C_{1} \land D_{2} = C) \lor (D_{1} = C \land D_{2} = C_{2}) \right) \lor \Delta_{i-1}(D_{1},D_{2}) \right)$$
Note: Size of $\Delta_{i} = O(S(n)) + Size$ of Δ_{i-1}

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_{x} = \Delta_{m}(C_{\text{start}}, C_{\text{accept}})$$

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_{x} = \Delta_{m}(C_{\text{start}}, C_{\text{accept}})$$

- But, we need to specify how to form $\Delta_0(C_1,C_2)$.
- Size of $\psi_{\times} = O(S(n)^2) + Size of \Delta_0$

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_{x} = \Delta_{m}(C_{\text{start}}, C_{\text{accept}})$$

- But, we need to specify how to form $\Delta_0(C_1,C_2)$.
- Size of $\psi_{\times} = O(S(n)^2) + Size of \Delta_0$

Remark: We can easily bring all the quantifiers at the beginning in ψ_{x} (as in a prenex normal form).

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_{x} = \Delta_{m}(C_{\text{start}}, C_{\text{accept}})$$

- But, we need to specify how to form $\Delta_0(C_1, C_2)$.
- Size of $\psi_{\times} = O(S(n)^2) + Size of \Delta_0$??

Adjacent configurations

- Claim. There's an $O(S(n)^2)$ -size circuit $\phi_{M,x}$ on O(S(n)) inputs such that for every inputs C_1 and C_2 , $\phi_{M,x}(C_1, C_2) = I$ iff C_1 and C_2 encode two neighboring configurations in $G_{M,x}$.
- Proof. Think of a <u>linear time</u> algorithm that has the knowledge of M and x, and on input C_1 and C_2 it checks if C_2 is a neighbor of C_1 in G_{Mx} .

Adjacent configurations

- Claim. There's an $O(S(n)^2)$ -size circuit $\phi_{M,x}$ on O(S(n)) inputs such that for every inputs C_1 and C_2 , $\phi_{M,x}(C_1, C_2) = I$ iff C_1 and C_2 encode two neighboring configurations in $G_{M,x}$.
- Proof. Think of a <u>linear time</u> algorithm that has the knowledge of M and x, and on input C_1 and C_2 it checks if C_2 is a neighbor of C_1 in $G_{M,x}$. Applying ideas from the proof of Cook-Levin theorem, we get our desired $\phi_{M,x}$ of size $O(S(n)^2)$.

Size of Δ_0

- Obs. We can convert the circuit $\phi_{M,x}(C_1, C_2)$ to a quantified CNF $\Delta_0(C_1, C_2)$ by introducing auxiliary variables (as in the proof of Cook-Levin theorem).
- Hence, size of $\Delta_0(C_1,C_2)$ is $O(S(n)^2)$.
- Therefore, size of $\psi_{x} = O(S(n)^{2})$.

Other PSPACE complete problems

- Checking if a player has a winning strategy in certain two-player games, like (generalized) Hex, Reversi, Geography etc.
- Integer circuit evaluation (Yang 2000).
- Implicit graph reachability.
- Check the wiki page: https://en.wikipedia.org/wiki/List_of_PSPACEcomplete_problems

- Recall again, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is L = NL?

- Recall again, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is L = NL? ...poly-time (Karp) reductions are much too powerful for L.
- We need to define a suitable 'log-space' reduction.

$$x \xrightarrow{\text{Log-space TM}} f(x)$$

 Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.

...unless we restrict $|f(x)| = O(\log |x|)$, in which case we're severely restricting the power of the reduction.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output \underline{a} bit of f(x).

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Definition: A function $f: \{0, 1\}^* \rightarrow \{0, 1\}^*$ is <u>implicitly log-space computable</u> if
 - 1. $|f(x)| \le |x|^c$ for some constant c,
 - 2. The following two languages are in L:

$$L_f = \{(x, i) : f(x)_i = I\}$$
 and $L'_f = \{(x, i) : i \le |f(x)|\}$

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Definition: A language L_1 is <u>log-space reducible</u> to a language L_2 , denoted $L_1 \le_l L_2$, if there's an implicitly log-space computable function f such that

$$x \in L_1 \longrightarrow f(x) \in L_2$$

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: Let f be the reduction from L_1 to L_2 , and g the reduction from L_2 to L_3 . We'll show that the function h(x) = g(f(x)) is implicitly log-space computable which will suffice as,

$$x \in L_1 \iff f(x) \in L_2 \iff g(f(x)) \in L_3$$

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ... Think of the following log-space TM that computes $h(x)_i$ from (x, i). Let
 - \triangleright M_f be the log-space TM that computes $f(x)_i$ from (x, j),
 - \triangleright M_g be the log-space TM that computes $g(y)_i$ from (y, i).

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j).

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).

stores Mg's current configuration

- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). Space usage = $O(\log |f(x)|) + O(\log |x|)$.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). Space usage = $O(\log |x|)$.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). This shows L_h is in L.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...Similarly, L'_h is in L and so h is implicitly log-space computable.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \leq_l L_2$ and $L_2 \in L$ then $L_1 \in L$.
- Proof: Same ideas. (Homework)

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

- Theorem: PATH is NL-complete.
- Proof: We've already shown that PATH \in NL. Now we'll show that for every $L \in NL$, $L \leq_l PATH$. We need to come up with an implicitly log-space computable function f s.t.

$$x \in L \iff f(x) \in PATH$$

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let M be a log-space NTM deciding L. Define, $f(x) = (G_{M,x}, C_{start}, C_{accept})$, where $G_{M,x}$ is given as an adjacency matrix.

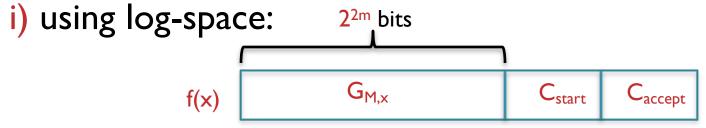
 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let M be a log-space NTM deciding L. Define, $f(x) = (G_{M,x}, C_{start}, C_{accept})$, where $G_{M,x}$ is given as an adjacency matrix. Let $m = O(\log |x|)$ be the no. of bits required to represent a configuration. Then, $|f(x)| = 2^{2m} + 2m = poly(|x|)$.

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

PATH = $\{(G,s,t): G \text{ is a digraph having a path from } s \text{ to } t\}$.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let's see how to compute $f(x)_i$ from (x,

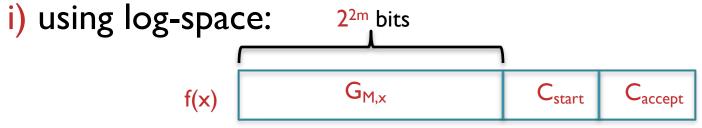


If $i > 2^{2m}$ then i indexes a bit in the (C_{start}, C_{accept}) part of f(x); so $f(x)_i$ can be computed by simply writing down C_{start} and C_{accept} .

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

PATH = $\{(G,s,t): G \text{ is a digraph having a path from } s \text{ to } t\}$.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Let's see how to compute $f(x)_i$ from (x,



If $i \le 2^{2m}$ then write i as (C_1, C_2) , where C_1 and C_2 are m bits each, and check if C_2 is a neighbor of C_1 in $G_{M,x}$. This takes O(m) space.

 Definition: A language L is NL-complete if L ∈ NL and for every L' ∈ NL, L' is log-space reducible to L.

- Theorem: PATH is NL-complete.
- Proof: (contd.) Thus, we've argued that |f(x)| has poly(|x|) length and $L_f \in L$. Similarly, $L'_f \in L$. So, f defines a log-space reduction from L to PATH.

Other NL-complete problems

Reachability in directed acyclic graphs.

Checking if a directed graph is strongly connected.

2SAT.

Determining if a word is accepted by a NFA.