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Abstract

An n-variate polynomial g of degree d is a (n, d, t) design polynomial if the degree of the
gcd of every pair of monomials of g is at most t − 1. The power symmetric polynomial
PSymn,d := ∑n

i=1 xd
i and the sum-product polynomial SPs,d := ∑s

i=1 ∏d
j=1 xi,j are instances

of design polynomials for t = 1. Another example is the Nisan-Wigderson design poly-
nomial NW, which has been used extensively to prove various arithmetic circuit lower
bounds. Given black-box access to an n-variate, degree-d polynomial f (x) ∈ F[x], how fast
can we check if there exist an A ∈ GL(n, F) and a b ∈ Fn such that f (Ax + b) is a (n, d, t)
design polynomial? We call this problem "testing equivalence to design polynomials", or
alternatively, "equivalence testing for design polynomials".

In this work, we present a randomized algorithm that finds (A, b) such that f (Ax + b)
is a (n, d, t) design polynomial, if such A and b exist, provided t ≤ d/3. The algorithm
runs in (nd)O(t) time and works over any sufficiently large F of characteristic 0 or > d. As
applications of this test, we show two results – one is structural and the other is algorith-
mic. The structural result establishes a polynomial-time equivalence between the graph
isomorphism problem and the polynomial equivalence problem for design polynomials.
The algorithmic result implies that Patarin’s scheme (EUROCRYPT 1996) can be broken in
quasi-polynomial time if a random sparse polynomial is used in the key generation phase.

We also give an efficient learning algorithm for n-variate random affine projections of
multilinear degree-d design polynomials, provided n ≥ d4. If one obtains an analogous
result under the weaker assumption "n ≥ dε, for any ε > 0", then the NW family is not
VNP-complete unless there is a VNP-complete family whose random affine projections are
learnable. It is not known if random affine projections of the permanent are learnable.

The above algorithms are obtained by using the vector space decomposition frame-
work, introduced by Kayal and Saha (STOC 2019) and Garg, Kayal and Saha (FOCS 2020),
for learning non-degenerate arithmetic circuits. A key technical difference between the
analysis in the papers by Garg, Kayal and Saha (FOCS 2020) and Bhargava, Garg, Kayal
and Saha (RANDOM 2022) and the analysis here is that a certain adjoint algebra, which
turned out to be trivial (i.e., diagonalizable) in prior works, is non-trivial in our case. How-
ever, we show that the adjoint arising here is triangularizable which then helps in carrying
out the vector space decomposition step.

*Partially supported by a MATRICS grant of the Science and Engineering Research Board, DST, India.
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1 Introduction

The polynomial equivalence problem (PE) is a fundamental problem in algebraic complexity
theory. Given two polynomials, f and g, how fast can we check if one is in the orbit of the
other? Orbit of a polynomial f ∈ F[x] is the set { f (Ax) : A ∈ GL(|x|, F)}. In other words, PE
is the problem of checking if f and g are the same function up to a change of the coordinate
system. It can be regarded as the algebraic analog of the graph isomorphism (GI) problem.

Much is unknown about the exact complexity of PE. Over finite fields, PE is unlikely to
be NP-complete [Thi98, Sax06], but no polynomial-time algorithm is known unless f and g are
quadratic forms [Lam04, Ara11]. PE for cubic forms over Q is not known to be decidable. Cubic
form equivalence (CFE) is polynomial-time equivalent to several other fundamental problems
in algebra and linear algebra [GQ23a, GQ23b, AS06]. GI reduces to CFE in polynomial time
[AS05], but the converse is not known to be true. A natural question emerges at this point:

Is GI polynomial-time equivalent to PE for some natural class of polynomials?

We provide an affirmative answer to this question in Theorem 2 by studying the problem of
testing equivalence to design polynomials which we also refer to as the equivalence testing
problem for the family of design polynomials (see Definitions 1.1 and 1.2).

Equivalence testing (ET) is closely related to the PE problem. ET for a polynomial fam-
ily or a circuit class F is a problem wherein we are given a polynomial f , and we wish to
check if f is in the orbit of some polynomial or circuit in F.1 Efficient ET algorithms are
known for a variety of polynomial families and a few circuit classes, namely the permanent
[Kay12], the determinant [Kay12, GGKS19], the iterated matrix multiplication polynomial fam-
ily [KNST19, MNS20], the elementary and power symmetric polynomials [Kay11], the sum-
product polynomial family [MS21], the continuant [MS21], and read-once formulas [GST23].
One important family that is missing from the above list is the Nisan-Wigderson design poly-
nomial family NW (see Equation 1). The NW family has been used in many results on arith-
metic circuit lower bounds in the last decade. But, unlike the other families, NW had no known
ET. In fact, ET for NW over Q was not known to be decidable. We ask a more general question:

Is there an ET algorithm for the family of (general) design polynomials?

Our main result, given in Theorem 1, is an ET algorithm for design polynomials over any field
of zero or sufficiently large characteristic. The algorithm reveals a structural property of in-
vertible transformations between design polynomials that enables us to prove Theorem 2. The
running time of the algorithm also helps us point out a vulnerability of Patarin’s authentication
scheme if a random sparse polynomial is chosen in the key generation phase.

Patarin [Pat96] proposed a zero-knowledge authentication scheme based on the presumed
hardness of PE for random cubic forms (more generally, constant-degree forms). A random
n-variate cubic form f (x) is chosen in the key generation phase along with two random trans-
formations A1, A2 ∈ GL(n, F). The polynomials g1 := f (A1x) and g2 := f (A2x) are then made
public; the secret is the transformation A−1

1 A2, which maps g1 to g2. A random cubic form has
sparsity (i.e., number of monomials) O(n3). It is natural to ask: What if we choose a random
O(n3)-sparse polynomial f of a higher degree (see Definition 1.4) in the key generation step?

Can Patarin’s scheme be broken if a random nO(1)-sparse polynomial is chosen as the key?

1Note that the ET problem for F is not the same as the PE problem for F. In the latter case, we are given two
polynomials f , g ∈ F, and we wish to check if one is in the orbit of the other. One may alternatively call the ET
problem for F as “testing equivalence to F" (as in the title of this article).
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It turns out that a random sparse polynomial is a design polynomial and has no nontrivial per-
mutation symmetry with high probability (see Lemma 3.7 and Proposition 3.7). These features
let us invoke Theorem 1 and answer the above question in Theorem 3 via a reduction to GI.

Our final result is a learning algorithm for random affine projections of design polyno-
mials. An equivalence test for NW is a special case of learning affine projections of NW.
Consider the (qd, d, t) design polynomial NWq,d,t as defined in Equation 1. A polynomial
f = NWq,d,t(Ax + b), where |x| = n ≤ qd, A ∈ Fqd×n and b ∈ Fqd, is an n-variate affine
projection of NWq,d,t. Given access to f , can we learn the unknown A and b? If n = qd and
A ∈ GL(n, F), then the problem is the same as ET for NW. However, for arbitrary n < qd and
A ∈ Fqd×n, the problem can be rather difficult, even for t = 1, as every depth-3 circuit is an
affine projection of NWq,d,1 for some q and d. Learning depth-3 circuits in the worst-case is a
challenging problem due to known depth reduction results (see the discussion in [KS19]). But
does the task of discovering A become easier if A is randomly chosen? In other words:

Can we learn random affine projections of NW efficiently?

Random affine projections of special design polynomials, such as the power symmetric
polynomial and the sum-product polynomial, have been studied, and efficient learning algo-
rithms have been provided in [KS19]. But it is unclear what to expect for NW. The reason
is that, unlike the determinant and the permanent, we do not have a good understanding of
the expressive power of affine projections of NW. The permanent is VNP-complete under p-
projections2 [Val79], but NW is not known to be so. For d = nO(1), no learning algorithm is
known for n-variate random affine projections of the d × d permanent which has time com-
plexity polynomial in (n+d

n ) – the maximum sparsity of any n-variate, degree-d polynomial. In
fact, it is conjectured in [Aar08] that n-variate random affine projections of the d× d determinant

form a pseudorandom function family when d = nO(1). If true, then there is no (n+d
n )

O(1)
-time

learning algorithm for random affine projections of the determinant. If such a conclusion holds
for the determinant, which is VBP-complete, then we expect the same to hold for the perma-
nent or any other VNP-complete family, as VBP ⊆ VNP. So, an efficient learning algorithm for
random affine projections of NW may indicate that NW is not VNP-complete.

In Theorem 4, we give an efficient learning algorithm for n-variate random affine projec-
tions of multilinear degree-d design polynomials, provided n ≥ d4. If we obtain an analogous
result under the weaker assumption "n ≥ dε, for any ε > 0", then the NW family is not VNP-
complete assuming that there is no VNP-complete family whose random affine projections are
efficiently learnable. On the other hand, if NW happens to be VNP-complete, then it is unlikely
that we will be able to weaken the n ≥ d4 condition significantly without compromising the
other parameters of the theorem considerably.

1.1 Our results

We now state our results formally. Assume that an efficient univariate polynomial factoring
algorithm over F is available; this assumption is well justified over Q and Fq [LLL82, Ber70].

Definition 1.1 (Design polynomial). An n-variate, degree-d polynomial g = ∑i∈[s] cimi, where
mi is a monomial and ci ∈ F, is a (n, d, s, t) design polynomial if ∀i 6= j, deg gcd(mi, mj) < t.

Some well-known polynomials that are also design polynomials are the sum-product
polynomial SPs,d := ∑s

i=1 ∏d
j=1 xi,j, which is a (sd, d, s, 1) design polynomial, and the power

2If every row of A has at most one nonzero entry, then it is a p-projection.
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symmetric polynomial PSymn,d := ∑n
i=1 xd

i , which is a (n, d, n, 1) design polynomial. The most
relevant example is the Nisan-Wigderson design polynomial NWq,d,t, which is defined as:

NWq,d,t := ∑
h∈Fq[y], deg h<t

d−1

∏
i=0

xi,h(i) , for t ≤ d ≤ q, where q is a prime. (1)

As two univariate polynomials of degree < t agree at≤ t− 1 points, NWq,d,t is a (qd, d, qt, t)
design polynomial. Whenever the parameter s is not required, we will write (n, d, t) de-
sign polynomial by omitting s. Also, for simplicity, we assume that design polynomials are
homogeneous. Our results hold for non-homogeneous design polynomials as well.

Definition 1.2 (The ET problem for design polynomials). Given black-box access to an n-
variate, degree-d polynomial f ∈ F[x], check if there exist an A ∈ GL(n, F) and a b ∈ Fn

such that f (Ax + b) is a (n, d, t) design polynomial, and if so, recover A and b.

Theorem 1 (ET for design polynomials). Let n, d, s, t ∈ N, d ≥ 3t, char(F) = 0 or > d and
|F| > max(s3, d7). There is a randomized, poly((nd)t)-time3 algorithm that takes input black-box
access to an n-variate, degree-d polynomial f ∈ F[x], with the promise that there exist some (n, d, s, t)
design polynomial g and some A ∈ GL(n, F) such that f = g(Ax), and outputs, with high probability,
a B ∈ GL(n, F) and a (n, d, s, t) design polynomial h such that B = PSA and f = h(Bx), where P, S
are permutation and scaling matrices, respectively.

Remarks. 1. If g is multilinear, then the condition d ≥ 3t can be improved to d > 2t.

2. The condition |F| > max (s3, d7) arises due to the use of the Schwartz–Zippel lemma4

in our analysis and in the factorization algorithm of [KT90]. If f is given as a circuit,
the algorithm can work with an extension field, irrespective of the size of F, and still
obtain a B with entries in F. This feature of the algorithm is explained in Remark 3.1.
A finite field extension can be constructed efficiently (see Section 14.9 in [vzGG03]).

3. The theorem gives an ET algorithm for NW (see Theorem 5). The algorithm also works
over Q, where ET for NW was not known to be decidable.

4. A random sparse polynomial is a (n, d, s, d/3) design polynomial with high probabil-
ity (see Lemma 3.7). Thus, we have ET for random sparse polynomials.

In Section 3, we prove Theorem 1 and elaborate on how non-homogeneous design poly-
nomials and transforms of the form Ax + b, where A ∈ GL(n, F) and b ∈ Fn, are handled.

Definition 1.3 (Symmetries of a polynomial). Let f ∈ F[x] be an n-variate, degree-d polyno-
mial. The set Gf := {A ∈ GL(n, F) : f (Ax) = f } is the group of symmetries of f .

The following corollaries are proven in Section A. The authors of [GS19] studied the sym-
metries of NW by examining the Lie algebra associated with it, while these corollaries of The-
orem 1 (which is proved using a different technique) hold for general design polynomials.

Corollary 1.1 (Symmetries of design polynomials). Let d ≥ 3t, f be a (n, d, t) design polyno-
mial and A ∈ Gf . Then, A = PS, where P is a permutation matrix and S is a scaling matrix.

Corollary 1.2 (Equivalent design polynomials). Let d ≥ 3t, A ∈ GL(n, F) and f , g be (n, d, t)
design polynomials such that f = g(Ax). Then, A = PS, where P, S are as stated above.

3Here, "time" means number of field operations. Over Q, the complexity is poly((nd)t, β), where β is the bit
complexity of the coefficients of f . Also, the time complexity of the algorithm is optimal (see Remark 3.2).

4also known as the DeMillo–Lipton–Schwartz–Zippel lemma [DL78, Zip79, Sch80].
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Our second result, proven in Section 3.5, shows that GI ≡p PE for design polynomials
with all-one coefficients. Here, ≡p denotes polynomial-time, many-one equivalence.

Theorem 2 (GI and PE). GI ≡p PE for (n, 6, 2) design polynomials with all-one coefficients.

Theorem 2 holds for (n, d, t) design polynomials for any d ≥ 6 and t ≤ d/3, and also for
(n, d, t) multilinear design polynomials with d ≥ 5 and t < d/2. Thus, PE for (n, d, t) design
polynomials with all-one coefficients, for d ≥ 6 and t ≤ d/3, polynomial-time reduces to PE
for (n, 6, 2) design polynomials with all-one coefficients.5

Our third result, proven in Section 3.5, shows that if a random sparse polynomial of suffi-
ciently large constant degree is used in Patarin’s scheme for public and private key generations,
then the private key can be recovered in quasi-polynomial time.

Definition 1.4 (Random sparse polynomial). An n-variate, degree-d, s-sparse polynomial f (x)
is a random s-sparse polynomial if each of the s monomials is formed by picking d variables
uniformly and independently at random from x; the coefficients are then chosen arbitrarily.

Theorem 3 (A vulnerability of Patarin’s scheme). Let n, s, d, q ∈ N, n > d8, n3 ≤ s < ( n
d2 )

d/6,
d ≥ 25 be a constant, and q = nO(1). Let f be a random s-sparse polynomial over Fq. If f is used in
Patarin’s scheme for key generation, then the scheme can be broken in quasi-poly(n) time.

Remarks. 1. The bound on s, stated in the theorem, is for simplicity. The precise bound is
n2 log(n) ≤ s ≤

√
ε( n

d2 )
d/6, where ε is the constant from Lemma 3.7. The lower bound

on d can be derived from the inequality n2 log(n) ≤
√

ε( n
d2 )

d/6 and fixing ε = 0.01.

2. Patarin’s scheme was shown to be vulnerable in [Kay11] when using a random constant-
degree multilinear polynomial for key generation. A random polynomial there was
defined by selecting the coefficients of all multilinear monomials randomly and inde-
pendently, while we allow for arbitrary coefficients, non-multilinear monomials, and
a lower number of monomials.

Our fourth and final result, proven in Section 4, gives an algorithm to learn random affine
projections of multilinear design polynomials such as the polynomials in the NW family.

Definition 1.5 (Affine projections). Let m, n ∈ N, m ≥ n. Let f and g be polynomials in n and
m variables, respectively. If f (x) = g(Ax + b) for some A ∈ Fm×n and b ∈ Fm, then f is an
affine projection of g. An affine projection is random if A ∈r Fm×n, where ∈r denotes that the
elements of A are chosen randomly and independently from a sufficiently large subset of F.

Definition 1.6 (Learning affine projections of design polynomials). Given black-box access to
an n-variate f ∈ F[x], which is an affine projection of an unknown (m, d, s, t) design polyno-
mial g, recover B ∈ Fm×n, c ∈ Fm and a (m, d, s, t) design polynomial h such that f = h(Bx+ c).

Theorem 4 (Learning random affine projections of multilinear design polynomials). Let m, n, d,
s, t ∈ N, m ≥ n ≥ d4+ε, where ε > 0, d ≥ 3t, s < (

√
n

d2 )
d

13 . Let char(F) = 0 or > d and
|F| ≥ poly(sd)dt. There is a randomized, poly(m, s, nt)-time algorithm that takes input black-box
access to an n-variate, degree-d polynomial f ∈ F[x], with the promise that there exist some multilinear
(m, d, s, t) design polynomial g and some A ∈r Fm×n such that f = g(Ax), and outputs, with high
probability, a B ∈ Fm×n and a multilinear (m, d, s, t) polynomial h such that B = PSA and f = h(Bx),
where P, S are permutation and scaling matrices, respectively.

5It is worth noting, in [AS05], the authors showed a reduction from PE for degree-d forms to PE for cubic forms
over fields containing d-th roots. However, the reduction there does not seem to preserve the design condition.
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Remarks. 1. For NWq,d,t with t ≤ d/1300, m = qd = n10 and n ≥ d5, it holds that s = qt <

(
√

n
d2 )

d
13 . Thus, we can learn random affine projections of NWq,d,t for m = poly(n),

assuming n ≥ d4+ε. For the precise bound on |F| in the statement, see Remark 4.1.

2. Theorem 4 does not imply that either NW is not VNP-complete or there is a VNP-
complete family whose random affine projections are learnable. The reason is that
the algorithm assumes n ≥ d4+ε, but it may be the case that a VNP polynomial family
is a projection of NW in the setting n < d4.

3. As mentioned before, our motivation for designing a learning algorithm for random
affine projections of multilinear design polynomials originates from NW, which is also
multilinear and design. We believe that a similar theorem holds for non-multilinear
design polynomials as well. Theorem 1 provides evidence towards this belief since it
holds for non-multilinear design polynomials as well.

In Section 4, we elaborate on how non-homogeneous multilinear design polynomials and
general transforms of the form Ax + b, where A ∈r Fm×n and b ∈ Fm, are handled.

1.2 Proof techniques

The core underlying technique, used to prove Theorems 1 and 4, is based on the vector space
decomposition framework introduced in [GKS20, KS19]. Suppose that f can be expressed as:

f = T1 + T2 + . . . + Ts , (2)

and we wish to learn the terms T1, . . . , Ts that are simple in some sense. For example, in
our setting, each Ti is a product of linear forms (see details on next page). The authors in
[GKS20, KS19] reduce the task of learning the Ti’s to the vector space decomposition (VSD)
problem. We define the VSD problem first and then discuss the reduction.

Vector space decomposition (VSD) for (L, U, V): Given bases of vector spaces U, V and a set
of linear maps L from U to V, output a (further indecomposable) decomposition of U, V as:

U = U1 ⊕ · · · ⊕Us and V = V1 ⊕ · · · ⊕Vs , such that 〈L ◦Ui〉 ⊆ Vi for all i ∈ [s].

Reducing the learning problem to VSD: We choose appropriate sets of operators L1 and L2 to
obtain spaces U = 〈L1 ◦ f 〉 and V = 〈L2 ◦U〉 such that the following conditions are satisfied:

• U = U1 ⊕ · · · ⊕Us and V = V1 ⊕ · · · ⊕Vs, where Ui = 〈L1 ◦ Ti〉 and Vi = 〈L2 ◦Ui〉.

• Each pair (Ui, Vi) is indecomposable with respect to L2.

• The (further indecomposable) decomposition is unique up to a reordering of Ui’s and Vi’s.

• Ti’s can be recovered efficiently from the bases of the Ui’s.

If such two sets of operators can be found, then learning T1, . . . , Ts reduces to the VSD problem
for (L2, U, V). We need the (Ui, Vi)’s to be indecomposable and unique as otherwise a VSD
algorithm might output some other decomposition, making the recovery of the Ti’s hard.

Solving the VSD problem: The authors of [CIK97] gave a polynomial-time algorithm for the
symmetric case of the problem when U = V. The algorithm works over finite fields, C, R but
not over Q (if we wish to output a decomposition over Q). The authors of [GKS20] showed a
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reduction of VSD to the symmetric case. The authors of [BGKS22] and [GKS20] exploited the
structure of U and V (arising in their settings) to get a VSD algorithm that also works over Q.

The above VSD framework gives rise to a meta algorithm for learning the "terms". To
use the algorithm for Theorems 1 and 4, we need appropriate sets of operators L1 and L2 that
satisfy the conditions mentioned above. The conditions point to four technical steps in the
analysis; we state these steps first and then discuss how to execute them for Theorems 1 and 4.

Algorithm 1 Meta algorithm [GKS20]

• Input: f = T1 + T2 + ... + Ts, where Ti’s are unknown “simple” terms.

• Output: T′1, T′2 . . . T′s such that T′i = Tπ(i) for some permutation π on [s] .

1. Compute U = 〈L1 ◦ f 〉 and V = 〈L2 ◦L1 ◦ f 〉.
2. Solve VSD for (L2, U, V); find the decompositions U = U1⊕ · · · ⊕Us, V = V1⊕ · · · ⊕Vs.

3. Recover T′i from Ui.

1. Direct sum structure: This means establishing U = U1⊕ · · · ⊕Us and V = V1⊕ · · · ⊕Vs.

2. Uniqueness of decomposition: Once the direct sum holds, it needs to be shown that
the decomposition of U and V is indecomposable with respect to L2 and unique up
to permutations of the Ui’s and Vi’s. Inspired by the Krull-Schmidt theorem [KSB],
[GKS20] analyzed the adjoint algebra6 associated with (L2, U, V) and pointed out a suf-
ficient condition for uniqueness to hold. The adjoint algebra for (L, U, V) is defined as
Adj(L, U, V) := {(D, E) | D : U → U, E : V → V are linear maps, and ∀L ∈ L, LD =
EL}. The authors of [GKS20] noted that if Adj(L, U, V) is block diagonalizable, i.e.,
∀(D, E) ∈ Adj(L, U, V) if D(Ui) ⊆ Ui and E(Vi) ⊆ Vi, then the decomposition is unique.
So, we need to show that Adj(L2, U, V) is block diagonalizable.

3. Vector space decomposition: With 1 and 2 satisfied, an algorithm is required to de-
compose U and V. As mentioned before, the vector space decomposition algorithm in
[CIK97] does not quite work over Q. But fortunately, the adjoint algebra comes to the
rescue again. Suppose, Adj(L2, U, V) is block diagonalizable. If it is further block equi-
triangularizable (refer Definition 2.2) and has an element (D, E), where D has s distinct
eigenvalues, then the Ui’s are the generalized eigenspaces of D which can be computed
efficiently7. Thus, if Adj(L2, U, V) is block equi-triangularizable, then computing vector
space decomposition reduces to computing generalized eigenspaces.

4. Recovery of Ti: Finally, once Ui = 〈L1 ◦ Ti〉 is obtained, we need to derive Ti from it.

Connecting our problems with the learning problem given by Equation (2): Let g = ∑i∈[s] cimi
be a design polynomial and f = g(Ax) = ∑i∈[s] Ti, where Ti = cimi(Ax) is a product of linear
forms. Then, we can learn the unknown transformation A (up to permutation and scaling)
by learning and factoring the terms T1, . . . Ts. We do so by implementing the above steps for
Theorems 1 and 4; we discuss this next.

6The authors of [GKS20] attributed the use of adjoint algebra in their work to a suggestion by Youming Qiao.
7The existence of such an element implies that for a random (D, E) ∈ Adj(L2, U, V), D has s distinct eigenvalues

with high probability by the Schwartz-Zippel lemma.
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1.2.1 Implementing the four steps for Theorem 1

We choose L1 = L2 = ∂t. For a (n, d, s, t) design polynomial g with d ≥ 3t, we show Step 1
in Lemma 3.1 by leveraging the design property, Step 2 by showing that the adjoint is block
diagonalizable (Lemma 3.3), and Step 3 by showing further that the adjoint is block equi-
triangularizable (Proposition 3.3). Since the input f is in the orbit of g, these properties also
hold for f by Lemma 3.2. A term Ti of f is in the orbit of a monomial of g, and so, Ti is a
product of linear forms. The recovery process for Ti from Ui is the same as that in [KS19]. The
transform and the design polynomial are then obtained from the Ti’s (Proposition 3.1).

1.2.2 Implementing the four steps for Theorem 4

We choose L1 = ∂k and L2 = ∂2, where k > t is appropriately chosen in Lemma 4.4. First,
we show that assuming the two non-degeneracy conditions stated in Section 4.1, all the steps
can be implemented. Step 1 is immediate from the first non-degeneracy condition. Lemma
4.1 shows that Adj(∂2, U, V) is block diagonalizable (in fact, block equi-triangularizable) for
non-degenerate affine projections. Hence, both Steps 2 and 3 hold. The process of recovering
the terms (i.e., Step 4) is the same as that for Theorem 1.

Second, we show that random affine projections of design polynomials are non-degenerate
with high probability. The second non-degeneracy condition holds with high probability given
the restriction on the field size. If we show that dim U = s(d

k), then the direct sum structure
holds8. By the Schwartz-Zippel lemma, it is sufficient to show that for every design polyno-
mial, there exists an affine projection such that dim U = s(d

k). We do this by showing that the
probability that dim U = s(d

k) is non-zero if f is chosen from a specific class of affine projections
as described by the two-phase random process in the proof of Lemma 4.4.

1.3 Comparison with previous work

As mentioned earlier, ET has been studied for various polynomial families. ET algorithms for
power symmetric polynomials [Kay11] and read-once formulas [GST23] were given by ana-
lyzing the factors of the Hessian determinant. Analyzing the Lie algebra of the determinant
[Kay12, GGKS19], the permanent [Kay12], and the iterated matrix multiplication [KNST19,
MNS20] polynomials led to ET algorithms for these families. For the elementary symmetric
polynomials, the maximal dimension of the space of second-order partials gave an ET algo-
rithm [Kay11]. It was shown in [Gro12] that over algebraically closed fields of characteristic
0, ET for polynomials characterized by the continuous part of their symmetries is equivalent
to testing matrix isomorphism to their Lie algebras, implying over such fields an efficient ET
exists for such polynomials, provided matrix isomorphism to their Lie algebra can be solved
efficiently. However, for design polynomials, these techniques do not work. For example, the
(2, d, 2, 3) design polynomial x1xd−1

2 + xd−1
1 x2, where d ≥ 3 is odd, has a trivial Lie algebra

and an irreducible Hessian determinant over Q. For d ≥ 3, the (2d, d, 2, 1) design polynomial
∏d

i=1 xi + ∏2d
i=d+1 xi has second-order partials dimension 2(d

2), which is less than the maximum
possible dimension (2d

2 ). Design polynomials, particularly NW, are not characterized by the
continuous part of their symmetries (see [GS19]); hence the ET algorithm implied from [Gro12]
does not apply. Thus, a different technique must be used for design polynomials.

The VSD framework was used previously in [KS19, GKS20, BGKS22] to design learning
algorithms. The authors of [MS21] showed that polynomials in the orbit of the sum-product
polynomial satisfy the non-degeneracy conditions of [KS19], and so, we have an ET algorithm

8as U ⊆ U1 + · · ·+ Us and dim Ui ≤ (d
k).
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for this family. But note that a sum-product polynomial has a read-once formula; an ET al-
gorithm can also be obtained via the Hessian determinant [GST23]. To our knowledge, our
work is the first to use the VSD framework to develop an ET algorithm (in Theorem 1) for a
natural family of polynomials for which none of the other three techniques work. Also, there
is a notable difference between the analysis in [GKS20, BGKS22] and the analysis here. In
[GKS20, BGKS22], the relevant adjoint algebra is diagonalizable, while in our case the adjoint
is block equi-triangularizable. The VSD algorithms of previous works recovered the compo-
nent spaces by computing eigenspaces, while we compute generalized eigenspaces to do so.

We learn affine projections of design polynomials (in Theorem 4) under certain non-
degeneracy conditions similar to those of [KS19]. However, proving the non-degeneracy of
random affine projections of design polynomials requires a more involved analysis than prov-
ing the non-degeneracy of random depth-3 circuits in [KS19] (see Sections 1.2.2 and C.4). The
reason is, unlike the terms of the circuit models studied in [KS19, GKS20, BGKS22], the terms in
our case have shared randomness as the same random affine form can appear in multiple terms.
Theorem 4 is a significant generalization of the main result in [KS19] that handles random
affine projections of the sum-product polynomial, which is a special design polynomial.

The learning algorithm in Theorem 4 is proper as it outputs an appropriate affine map.
It is also an average-case algorithm for learning affine projections of design polynomials as
the input is a random affine projection. This average-case, proper learning algorithm exploits
the property that the space of partial derivatives of an affine projection of a design polyno-
mial is low dimensional (under the technical conditions mentioned in the theorem statement)
to reduce the learning problem to VSD. A natural question arises at this point: is it always
possible to design an average-case, proper learning algorithm (via a reduction to VSD) for
affine projections of a model satisfying such low dimensional partial derivatives space prop-
erty? The answer is unclear. Section A.3 gives an example of affine projections of low width
algebraic branching programs (ABPs) satisfying the technical assumptions of Theorem 4 and
with low dimensional partial derivatives spaces, and for which (to the best of our knowledge)
no average-case, proper learning algorithm is known. The authors of [KNS19] gave such an
algorithm assuming that the widths are the same across the layers of the ABP.

2 Preliminaries

2.1 Notations and definitions

For n ∈ N, [n] is the set {1, 2 . . . n}. We use b.b.a to refer to black-box access. The set of
n × n invertible matrices over F is denoted as GL(n, F). For two polynomials f and g, f ∼
g denotes that f is in the orbit of g. Variable sets are denoted as x, y and z. Permutation
and scaling matrices are denoted as P and S, respectively. A monomial in x is denoted as
xα := xα1

1 xα2
2 . . . xαn

n , which has total degree |α| := ∑n
i=1 αi. The set of degree t derivatives in

x is denoted as ∂t while ∂t f denotes the set of degree t derivatives of the polynomial f . The
vector space spanned by a set of polynomials S over F is denoted as 〈S〉. Typically, g denotes
a (n, d, s, t) design polynomial g = g1 + g2 + · · · + gs where gi are monomials of degree d,
while f denotes the input polynomial f = g(Ax) = T1 + T2 + · · ·+ Ts, where Ti = gi(Ax) for
A ∈ GL(n, F). Define the spaces U, Ui, V, Vi, U′, U′i , V ′, V ′i as follows:

U := 〈L1 ◦ f 〉, U′ := 〈L1 ◦ g〉, V := 〈L2 ◦L1 ◦ f 〉, V ′ := 〈L2 ◦L1 ◦ g〉,

Ui := 〈L1 ◦ Ti〉, U′i := 〈L1 ◦ gi〉, Vi := 〈L2 ◦L1 ◦ Ti〉, V ′i := 〈L2 ◦L1 ◦ gi〉,

where L1 = L2 = ∂t (as defined in Section 1.2.1). These spaces will be used in Section 3.
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Definition 2.1 (Adjoint Algebra). The adjoint algebra associated with (L2, U, V) is defined as
Adj(L2, U, V) := {(D, E) | D : U → U, E : V → V are linear maps, and ∀L ∈ L2, LD = EL}.

Adjoint algebra was introduced in Section 4.3 of [Wil09] as an associative ring to study
the decompositions of bilinear maps and has been used in [BMW17] for developing a fast iso-
morphism testing algorithm for a subclass of finite p-groups. A meta-framework for designing
learning algorithms for arithmetic circuits was given in [GKS20], where the learning problem
was reduced to the vector space decomposition problem, and the uniqueness of vector space
decomposition was proved by analyzing a certain adjoint algebra (refer [GKS20] for details).

Definition 2.2 (Equi-triangular matrix). An equi-triangular matrix is triangular with equal di-
agonal entries. Block equi-triangularizability and simultaneous block equi-triangularizability
are defined similarly as block diagonalizability and simultaneous block diagonalizability.

2.2 Algorithmic preliminaries

Fact 2.1. Given black-box access to an n-variate degree d polynomial f , we can compute black-

box access to ∂k f
∂xα in poly(n, dk) time, where |α| = k. (Refer [KNST19] for a proof idea.)

Fact 2.2. Given black-boxes to n-variate degree d polynomials f1, f2 . . . , fl , there is a random-
ized poly(n, l, d) time algorithm that computes a basis for the vector space

( f1, f2 . . . fl)
⊥ := {(α1, α2, . . . , αl) ∈ Fl :

l

∑
i=1

αi fi = 0}

Refer [Kay11] for a proof of the above fact. A corollary of Fact 2.2 is:

Fact 2.3. Given black-box access to linearly independent polynomials f1, . . . , fl and an f =

∑l
i=1 βi fi, where βi ∈ F, the βi’s can be computed in randomized poly(n, l, d) time.

Fact 2.4. Let d ∈ N, char(F) = 0 or > d and |F| ≥ d6. Given black-box access to an n-
variate degree d polynomial f , black-box access to its irreducible factors can be computed in
randomized poly(n, d) time. (Refer [KT90] for details.)

3 Equivalence testing for design polynomials

We state the ET algorithm in Algorithm 2. The precise time complexity of the algorithm is
poly((n+t

n )dt), we discuss this further in Section 3.2 which analyzes the ET algorithm. Section
3.3 analyzes the adjoint algebra of a design polynomial g. Based on the structure of the adjoint,
Section 3.4 develops and analyses a VSD algorithm. In Section 3.5, Theorems 2, 3 and 5 are
proven. The proofs of all lemmas and propositions in this section can be found in Section B.

3.1 The algorithm

Step 1: As discussed in Section 1.2, L1 = ∂t and L2 = ∂t are used to define U and V. Black-box
access to bases of U and V is computable using Facts 2.1 and 2.2.
Step 2: The vector space decomposition algorithm of Section 3.4 gives b.b.a to bases of Ui’s.
Step 3: Each ∂t f

∂xα is expressible as a sum of uiα ∈ Ui’s, where each uiα is ∂tTi
∂xα . Using Fact 2.3,

b.b.a to ∂t f
∂xα and Ui’s, black-boxes to uiα can be obtained. It can be verified using Lagrange’s

formula that the described black-box for Ti is the correct one.
Step 4: The proof of Proposition 3.1 details the recovery process for B and h.

Proposition 3.1. Assuming b.b.a to the Ti’s, B and h can be recovered in poly(n, s, d) time.
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Algorithm 2 Equivalence testing for design polynomials
Input: Black-box access to an f ∈ F[x], where f = g(Ax) for some unknown (n, d, s, t)

design polynomial g and A ∈ GL(n, F).
Output: A matrix B and a (n, d, s, t) design polynomial h, where B = PSA and f = h(Bx)

for some permutation matrix P and scaling matrix S.
/* Performing VSD */

1. Compute black-box access to bases of U = 〈∂t f 〉 and V = 〈∂tU〉.
2. Perform VSD for (∂t, U, V) using Algorithm 3. Let U = U1⊕ · · · ⊕Us be the decomposition

returned by Algorithm 3.
/* Recovering black-box access to Ti */

3. Express ∂t f
∂xα = u1α + · · · + usα, where uiα ∈ Ui and obtain black-box access to uiα for all

i ∈ [s] and xα of degree t. The black-box for Ti is given by (d−t)!
d! ∑|α|=t (

t
α1 ...αn

)xαuiα(x).
/* Recovering B and h */

4. From black-box access to the Ti’s, recover and return a B ∈ GL(n, F) and a (n, d, s, t) design
polynomial h such that f = h(Bx) using Proposition 3.1.

3.2 Analysis of the algorithm

Each step is randomized with a small probability of error. For the analysis, we assume that
each step executes correctly. An implicit check is made at the end to see if h is a (n, d, s, t)
design polynomial, B is invertible and f = h(Bx), failing which the algorithm is repeated.

The correctness of the algorithm holds if it executes each of the four steps listed in Sec-
tion 1.2 correctly. By Lemmas 3.1 and 3.2 (given below), U and V have the required direct
sum structure. The correctness of the vector space decomposition follows from the correct-
ness of Facts 2.1 and 2.2 and that of the vector space decomposition algorithm of Section 3.4.
The uniqueness of decomposition follows from Proposition 3.3 and Lemmas 3.2 and 3.6. The
correctness of the recovery of Ti’s, B and h follows from Fact 2.3 and Proposition 3.1.

Let U′, U′i , V ′, V ′i be as defined in Section 2.1.

Lemma 3.1. For d ≥ 3t, U′ = U′1 ⊕U′2 · · · ⊕U′s and V ′ = V ′1 ⊕V ′2 · · · ⊕V ′s .

The following proposition gives the time complexity of the algorithm.

Proposition 3.2. Algorithm 2 has a running time of poly((n+t
n )dt).

Typically n > d, in which case the running time is poly(nt).

Remark 3.1. As stated in a remark of Theorem 1, if f is given as a circuit and |F| is small,
we can work over an extension of F. Fact 2.4 returns black-box access to the linear factors, up
to scaling by the extended field elements. By interpolating the linear forms and appropriately
rescaling them, the linear forms can be assumed to be over F. The resulting product of linear
forms is scaled by a constant c, which must belong to F because the product of linear forms is
Ti ∈ F[x]. Thus, Algorithm 2 is unaffected when working over a field extension.

Remark 3.2. The complexity of Algorithm 2 is optimal, if d � n. This can be shown using a
simple information-theoretic argument. For simplicity, we assume that the underlying field is
Fp; an appropriate dimension-based argument holds over other fields. Corollary 1.2 partitions
the set of design polynomials into PS-equivalence classes. Let s = ( n

d )
t. Over Fp, there are
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≥ ps design polynomials9, and the size of an equivalence class is ≤ n!pn. Thus, the number
of classes N ≥ ps−n/n! = Θ(ps) assuming t ≥ 2. Each class needs ≥ log(N) information bits
to represent. Thus, any ET algorithm that identifies the equivalence class of f from black-box
access to f requires time at least log(N) as the black-box needs to communicate ≥ log(N)
information bits. Note, log(N)O(1) = poly(s, log(p)) matches the complexity of Algorithm 2.

3.3 Structure of the adjoint algebra

Once we fix bases of the spaces U, U′, V and V ′, a linear operator from one of these spaces to
another can be naturally viewed as a matrix. Thus, Adj(∂t, U, V) and Adj(∂t, U′, V ′) are sets of
tuples of matrices with respect to appropriately chosen bases. We now show that Adj(∂t, U, V)
is block equi-triangularizable, i.e., the set of matrices {D : (D, E) ∈ Adj(∂t, U, V)} is simulta-
neously block equi-triangularizable. By Lemma 3.2, it suffices to show this for Adj(∂t, U′, V ′).
Note, after fixing bases of U′ and V ′, the operators ∂t : U′ → V ′ are also matrices. When we
say Adj(∂t, U, V) is equal to Adj(∂t, U′, V ′) in the lemma below, we mean they are equal as sets
of tuples of matrices with respect to appropriately chosen bases for U, V, U′ and V ′.

Lemma 3.2. Let U, V, Ui, Vi, U′, V ′, U′i and V ′i be vector spaces as defined in Section 2.1 with
L1 = L2 = ∂t. Define the invertible map φ : F[x]→ F[x] as φ(p) := p(Ax) for p ∈ F[x], where
A ∈ GL(n, F) is as in Algorithm 2. Then,

(i) U′ ∼= U, V ′ ∼= V, U′i ∼= Ui and V ′i ∼= Vi via the map φ. In other words, if B is a basis of
U′, φ(B) is a basis of U. This holds similarly for the other spaces.

(ii) Let B′1 and B′2 be bases for U′ and V ′ respectively, with φ(B′1) and φ(B′2) being basis of
U and V respectively. Then, Adj(∂t, U′ , V ′), with respect to bases B′1 and B′2, is equal to
Adj(∂t, U, V), with respect to bases φ(B′1) and φ(B′2).

Lemma 3.3. If (D′, E′) ∈ Adj(∂t, U′, V ′), then D′(U′i ) ⊆ U′i and E′(V ′i ) ⊆ V ′i for all i ∈ [s].

The direct sum structure of U′ and V ′ implies that every ∂t : U′ → V ′ is block diagonal,
with respect to the monomial basis of U′ and V ′, and by Lemma 3.3, Adj(∂t, U′, V ′) is block
diagonal with respect to these bases. This and the adjoint condition imply that Adj(∂t, U′, V ′)
comprises the adjoints of the gi’s. Thus, it suffices to analyze the adjoint of the gi’s. The adjoint
of a monomial need not be trivial, as shown in Section B.10. We show that the adjoint algebra
of a monomial is equi-triangularizable. For gi, an arbitrary monomial of g, B′i := {∂tgi} is a
basis10 for U′i . For (D′, E′) ∈ Adj(∂t, U′, V ′), let D′i and E′i be the restriction of D′ and E′ to U′i
and V ′i respectively. Represent D′i as a dim(U′i )× dim(U′i ) matrix with respect to B′i , where

D′i [x
α][xβ] is the coefficient of ∂tgi

∂xα in D′i
(

∂tgi
∂xβ

)
. Lemma 3.4 shows when D′i [x

α][xβ] is 0 and that
all entries D′i [x

α][xα] are equal. We use the notation mon(c · xα) := xα, where c ∈ F\{0}; the
definition is naturally extended to a set of monomials. For e.g., mon{2x4

1, 5x1x2} = {x4
1, x1x2}.

Lemma 3.4. Let |α| = |β| = t, ∂tgi
∂xα 6= 0 and ∂tgi

∂xβ 6= 0. Let D′i be as above. Then,

(i) D′i [x
α][xβ] = 0, if mon{∂t( ∂tgi

∂xα )} 6⊆ mon{∂t( ∂tgi
∂xβ )}, and

(ii) D′i [x
α][xα] = D′i [x

β][xβ].

The following proposition shows that Adj(∂t, U′, V ′) is block equi-triangularizable.

9The NWq,d,t polynomial has s = ( n
d )

t monomials; varying the coefficients over Fp gives rise to ps distinct
design polynomials.

10Assume that the set {∂tgi} consists of only the nonzero derivatives.
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Proposition 3.3. A basis B′ for U′ exists with respect to which any D′, where (D′, E′) ∈
Adj(∂t, U′, V ′) for some E′, is block equi-triangular.

As detailed in the proof of the above proposition, reordering each B′i and concatenating
them gives B′. For each B′i , a directed acyclic graph Gi is constructed with vertices as B′i . For
∂tgi
∂xα , ∂tgi

∂xβ ∈ B′i , if mon{∂t
(

∂tgi
∂xα

)
} ⊆ mon{∂t

(
∂tgi
∂xβ

)
} then an edge from ∂tgi

∂xα to ∂tgi
∂xβ exists in Gi.

The topological sort of Gi gives the reordering of B′i . By Lemma 3.4, D′i is equi-triangular with
respect to the reordered B′i implying D′ is block equi-triangular with respect to B′.

3.4 Vector space decomposition

Algorithm 3 Vector space decomposition algorithm
Input: B.b.a to bases of spaces U and V.
Output: B.b.a to bases of spaces W1, . . . , Ws, where Wi = Uπ(i) for some permutation π.

1. Compute a basis D(1), . . . , D(b) of Adj(∂t, U, V)1 := {D | (D, E) ∈ Adj(∂t, U, V)}.
2. Pick c1, . . . , cb ∈r S ⊆ F, where |S| = s3. Let D := c1D(1) + · · ·+ cbD(b).
3. Factorize the characteristic polynomial of D and obtain its eigenvalues λ1, · · · , λs.
4. Compute Wi := Ker((D− λi I)dim U) for all i ∈ [s] and output b.b.a to bases of W1, . . . , Ws.

Step 1 is executed by solving the linear system arising from LD = EL, for L ∈ L2, with the
entries of D and E as the variables. In Step 2, a random linear combination of the D(i)’s gives
a random operator D. The eigenvalues of D can be found by factorization of the characteristic
polynomial.11 Step 4 involves the computation of the generalized eigenspaces of D.

Lemma 3.5. D has s distinct eigenvalues with probability ≥ 1− (s
2)
|S| .

Lemma 3.6. Let D ∈ Adj(∂t, U, V) such that it has s distinct eigenvalues λ1, . . . , λs. Then,
Ker((D− λi I)dim U) = Uπ(i) for all i ∈ [s], and for some permutation π on [s].

Note, Lemma 3.6 proves the uniqueness of decomposition as well as the indecomposabil-
ity of Ui and Vi with respect to ∂t.

Proposition 3.4. Algorithm 3 has a running time of poly((n+t
n )dt).

Handling non-homogeneous polynomials and translations. For non-homogeneous (n, d, s, t)
design polynomials, if the degree of all monomials is ≥ 3t, Lemmas 3.1, 3.3 and Proposition
3.3 hold. When f (x) = g(Ax + b) for b ∈ Fn, then since this transform is also invertible, a
lemma similar to Lemma 3.2 holds. The analysis then proceeds in the same way. Proposition
3.1 can also recover translations. For multilinear (n, d, s, t) design polynomials, L2 = ∂1 with
the adjoint Adj(∂1, U, V) improves the bound on t to d ≥ 2t + 1. Lemmas 3.1, 3.3 and 3.4 hold
with some minor changes, and Adj(∂1, U′, V ′) can be shown to be trivial.

3.5 Applications of the equivalence test

3.5.1 GI ≡p PE for design polynomials: Proof of Theorem 2

GI ≤p PE for design polynomials: Let G1(V1, E1) and G2(V2, E2) be two n-vertex simple
graphs with e edges each. Let there be an arbitrary ordering on the edges of both graphs with

11Here, we need an efficient univariate polynomial factorization algorithm over F.
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I1 an index function mapping E1 to [e] and I2 similarly mapping E2 to [e]. Introduce variables
x1, . . . , xn and y1, . . . , ye. Construct

M1 := {xixjy4
I1(i,j) : (i, j) ∈ E1} and M2 := {xlxky4

I2(l,k) : (l, k) ∈ E2}.

Let h1(z) := ∑m∈M1
m and h2(z) := ∑m∈M2

m, where z = x t y. Clearly, h1 and h2 are
(n + e, 6, e, 2) design polynomials with all-one coefficients constructible in poly(n) time. Using
Corollary 1.2, the coefficients being 1, and y variables having degree 4, Proposition 3.5 holds.

Proposition 3.5. For h1, h2 as above, G1
∼= G2 ⇐⇒ h1 ∼ h2.

PE for design polynomials ≤p GI: Let h1(x) and h2(x) be (n, d, s, t) design polynomials with
all-one coefficients, satisfying d ≥ 3t. If h1 and h2 are multilinear, construct hypergraphs H1
and H2 with x as the vertices and subsets of vertices corresponding to the monomials of h1 and
h2 as the hyperedges, respectively. Observe that h1 ∼ h2 iff H1

∼= H2 as, by Corollary 1.2, if
h1 ∼ h2, then they are equivalent via a permutation matrix. It is well-known that hypergraph
isomorphism reduces to GI (refer [Mil79]). If h1 and h2 are non-multilinear, the argument is a
bit more elaborate: Now the monomials correspond to multisets of x, while hyperedges need
to be subsets of vertices. This can be handled by examining a standard reduction from hyper-
graph isomorphism to GI that uses bipartite graphs (see the opening paragraph of [ADKT15]).
By introducing in-between vertices to handle parallel edges, both graphs G1, G2 can be con-
structed in poly(s) time. More details are given in the proof of the following proposition.

Proposition 3.6. For graphs G1, G2 as above, G1
∼= G2 ⇐⇒ h1 ∼ h2.

3.5.2 Cryptanalysis of Patarin’s scheme: Proof of Theorem 3

Patarin’s authentication scheme [Pat96] is based on the presumed hardness of PE for ran-
dom polynomials of constant degree. It is a provably perfect zero-knowledge authentication
scheme; thus Alice can prove to Bob that she knows a secret without revealing any information
about the secret. The key generation process is as follows:

1. Select an n-variate degree d polynomial f (x) ∈r Fq[x], where d is a constant.

2. Select two matrices A1, A2 ∈r Fn×n
q .12

3. Compute the public key ( f1, f2) := ( f (A1x), f (A2x)) and the private key C = A−1
2 A1.

The authentication procedure is as follows:

1. Alice selects an R ∈r Fn×n
q and computes g := f1(Rx) and sends it to Bob.

2. Bob receives g and picks h := f1 or f2 with probability 1
2 , challenging Alice to show h ∼ g.

3. Alice receives h. If h = f1, she sends R. If h = f2, she sends CR.

The attack. (We elaborate on each of the following three steps below.)

1. Invoking Theorem 1: Invoke Theorem 1 on f1 and f2 to obtain h1 ∼ f1 and h2 ∼ f2.

2. Recovering P: Use Theorem 2 to construct graphs G1 and G2 corresponding to h1 and h2
and use Babai’s algorithm [Bab16] for GI to recover a permutation matrix P.

12A random matrix is invertible with high probability.
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3. Recovering S: Solve the system of monomial equations arising from h2(x) = h1(PSx),
with the entries of S as variables.

The attack relies on Lemma 3.7, Propositions 3.7, 3.8, Theorems 1, 2 and Corollary 1.2.

Lemma 3.7. A random s-sparse polynomial, as per Definition 1.4, is a (n, d, s, t) design poly-
nomial with probability at least 1− ε, if n > d2 and s ≤

√
ε( n

d2 )
t
2 where 0 < ε < 1.

Proposition 3.7. If f is a random s-sparse polynomial as per Lemma 3.7 with s ≥ n3, n > d8,
d ≥ 25, t = d

3 and ε = 0.01, f has no non-trivial permutation symmetry with high probability.13

Proposition 3.8. Let f be as in Proposition 3.7. For h1(x) = f (P1S1x) and h2(x) = f (P2S2x),
where P1, P2 are permutation matrices and S1, S2 are scaling matrices, there exists a unique
permutation matrix P such that h2(x) = h1(PSx) for some scaling matrix S.

Remark 3.3. For a sparse polynomial, s = poly(n). If d < n1/2−δ (where δ ∈ (0, 1/2)) is
greater than a sufficiently large constant, and ε = 0.01, then t can be chosen to be a con-
stant ≤ d/3 such that s ≤

√
ε( n

d2 )
t
2 . So, by Lemma 3.7, a random sparse polynomial satis-

fying the above degree constraint is a (n, d, s, t) design polynomial. Theorem 1 then gives a
O(poly(nt)) = poly(n) time ET algorithm for random sparse polynomials.

Let us now discuss the steps of the above-mentioned attack on Patarin’s scheme.

Invoking Theorem 1. For n > d8, ε = 0.01, t = d/3, d ≥ 25 and n3 ≤ s ≤ 0.1( n
d2 )

d
6 , Lemma 3.7

implies f is, with high probability, a (n, d, s, d/3) design polynomial. Thus, invoking Theorem
1 on f1 and f2 gives h1, h2, P1S1A1 and P2S2A2 where f1 = h1(P1S1A1x) and f2 = h2(P2S2A2x).
Clearly, h1 ∼ h2 by the transform P1S1(P2S2)−1 = PS for appropriate P and S. If P and S can
be recovered, then A−1

1 A2 = (P1S1A1)
−1PS(P2S2A2) can be recovered. As n > d8 and d is a

constant, this step requires poly(n) time.

Recovering P. Note that P maps the monomials of h1 to h2 while S scales the coefficients ac-
cordingly. To recover P, treat h1 and h2 as design polynomials with all-one coefficients and use
Theorem 2 and the GI algorithm of [Bab16]. This step can be done in quasi-poly(s) time. The
uniqueness of P, which holds by Propositions 3.8 and 3.7, implies the correctness of this step.

Recovering S. Let h1(x) = ∑s
i=1 cimi and h2(x) = ∑s

i=1 c̃imi. Now h2(x) = h1(PSx) = h1(S′Px)
for an appropriate scaling matrix S′. Treat the diagonal entries of S′ as variables {z1, z2 . . . zn}.
Equating the coefficients of the monomials, we get cimi(z1, · · · , zn) = c̃j where mj = mi(Px). If
mi = xαi,1

1 xαi,2
2 . . . xαi,n

n , we get the following monomial equations:

zαi,1
1 zαi,2

2 . . . zαi,n
n = c̃jc−1

i ∀ i ∈ [s]. (3)

There are s such equations in n variables, which is converted to a system of linear equa-
tions by taking log(zj) as variables and αi,j and log(c̃jc−1

i ) as constants. Computing log(a)
over Fq is finding the discrete logarithm of a with respect to a generator γ of F×q .14 Since
q = O(poly(n)), γ can be found and discrete log can be computed in O(poly(n)) time. We
get a system of s linear equations over Zq−1 which can be solved in poly(s, q) time using the
Chinese Remainder Theorem, refer Chapter 5 of [vzGG03] for details.

13meaning, for any permutation matrix P, f (Px) = f (x) implies P is the identity matrix.
14that is finding a b ∈ [0, q− 2] such that γb = a.
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3.5.3 Equivalence testing for NW

The PS-equivalence testing problem for NW is as follows: given a polynomial f , check if f =
NWq,d,t(PSx) for some permutation P and scaling S, and recover them if so. Theorem 5, which
is proved in Section B.18, follows from Theorems 1 and 2, and the GI algorithm in [Bab16].

Theorem 5. Let q, d, t ∈N, q ≥ d, t ≤ d/3, |F| ≥ q3t, char(F) = 0 or > d. ET for NWq,d,t reduces
to PS-equivalence testing for NWq,d,t in poly(qt) time. Further, PS-equivalence testing for NWq,d,t
reduces to S-equivalence testing for NWq,d,t in quasi-poly(qt) time.

S-equivalence testing for NW. The S-equivalence testing problem for NW is as follows: Given
a polynomial f , check if f = NWq,d,t(Sx) for some scaling S, and recover it if so. Over R

and Fp, S-equivalence testing for NW can be done by the algorithm of [BRS17] in poly(q, β)
time, where β is the bit complexity of the coefficients of f , and also by an algorithm of [GS19].
Over Q, S-equivalence testing of NW can be done in poly(qt, β) time, assuming oracle access
to integer-factoring. This combined with Theorem 5 gives a quasi-poly(qt) time algorithm for
ET for NW. Here is a proof sketch of S-equivalence test for NWq,d,t over Q: If f is S-equivalent
to NWq,d,t, then f = ∑h∈Fq[y], deg h<t ch ∏d−1

i=0 xi,h(i), where ch ∈ F. With the entries of S as z
variables, we get the following equations:

z0,h(0)z1,h(1) . . . zd−1,h(d−1) = c−1
h for h ∈ Fq[y]<t .

There are qt many equations in qd variables. Since c−1
h ∈ Q, c−1

h = a/b for some a, b ∈ Z.
Using the integer-factoring oracle, factor the integers a, b into primes p1, p2 . . . pl . Now, reduce
it to solving an appropriate Diophantine linear system by taking logarithms to the base pi,
with logpi

(zj,h(j)) as variables wj,h(j),i. This Diophantine linear system has lqd variables and
lqt equations. Treating this system as a matrix, check its consistency and then determine the
linearly independent rows (say there are k of them). A k × k submatrix with non-zero deter-
minant m can be formed from these rows, which corresponds to expressing the Diophantine
linear system as linear equations in k of the wj,h(j),i variables with constants as affine forms in
the remaining wj,h(j),i variables. By Cramer’s rule, a solution to such a system is a fraction with
the numerator as the affine forms and the denominator as m. The problem then further reduces
to solving a linear system determined by the affine forms over the ring Zm since wj,h(j),i must
be integers. This whole process can be done in poly(qt, β) time.

Therefore, ET for NW can be solved in time quasi-polynomial in the sparsity of NWq,d,t.

4 Learning random affine projections of design polynomials

In this section, Theorem 4 is proven. Section 4.1 lists the non-degeneracy conditions imposed
on affine projections of design polynomials. In Sections 4.2 and 4.4, we state and analyze the
learning algorithm and the vector space decomposition algorithm, respectively. The adjoint of
non-degenerate affine projections is analyzed in Section 4.3. In Section 4.5, we show random
affine projections of multilinear design polynomials are non-degenerate with high probability.

4.1 Non-degeneracy conditions

Let g(y) = g1 + · · ·+ gs be a multilinear (m, d, s, t) design polynomial with gi’s as monomials.
Let f (x) = g(l1, l2 . . . lm) = T1 + · · · + Ts be an n-variate affine projection of g with Ti =
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gi(l1, · · · , lm), a product of d linear forms and Li be the set of linear forms in Ti. We say f is a
random affine projection if the coefficients of the li’s are randomly chosen from F. Define:

U := 〈∂k f 〉, V := 〈∂k+2 f 〉, Ui := 〈∂kTi〉, Vi := 〈∂k+2Ti〉,

where k is as in Lemma 4.4 and d ≥ 2k + 2. We say f is non-degenerate if the following holds:

1. U = U1 ⊕ · · · ⊕Us and V = V1 ⊕ · · · ⊕Vs.

2. The set Li is F-linearly independent for all i ∈ [s].

4.2 The algorithm and its analysis

Algorithm 4 is similar to Algorithm 2, except L1 = ∂k and L2 = ∂2 define U and V respec-
tively and Algorithm 5 for vector space decomposition computes eigenspaces. Each step of the
algorithm is randomized with a small error probability. An implicit check is run at the end of
Step 4 to see if h is a multilinear (m, d, s, t) design polynomial and the linear forms per Ti are
linearly independent, failing which the algorithm is repeated.

Algorithm 4 Learning random affine projections of multilinear design polynomials
Input: B.b.a to f = g(Ax), where A ∈ Fm×n and g is some unknown (m, d, s, t) polynomial.
Output: A matrix B and (m, d, s, t) design polynomial h, where B = PSA and f = h(Bx).

/* Performing VSD */
1. Compute black-box access to some bases of U = 〈∂k f 〉 and V = 〈∂2U〉.
2. Perform VSD for (∂2, U, V): let U = U1 ⊕ · · · ⊕Us.

/* Recovering black-box access to Ti */

3. Express ∂k f
∂xα = u1α + · · · + usα, where uiα ∈ Ui and obtain black-box access to uiα for all

i ∈ [s] and xα of degree k. The black box for Ti is (d−k)!
d! ∑|α|=k (

k
α1 ...αn

)xαuiα(x).
/* Recovering B and h */

4. From black box access to the Ti’s, recover and return B ∈ Fm×n and (m, d, s, t) design
polynomial h using Proposition 4.1.

Analysis and Time complexity: We assume that each step executes without error and f
is non-degenerate, which holds for a random affine projection with high probability by Lemma
4.4. The correctness of Algorithm 4 holds if it executes each of the four steps listed in Section
1.2 correctly. Non-degeneracy condition 1 implies the direct sum structure of U and V. The
correctness of VSD follows from that of Facts 2.1, 2.2 and Algorithm 5. The uniqueness of
decomposition follows from Lemmas 4.1 and 4.3. The correctness of the recovery of Ti’s, B and
h follows from Fact 2.3 and Proposition 4.1. Proposition 4.2 gives the time complexity.

Proposition 4.1. The matrix B and polynomial h are recoverable in poly(m, n, s, d) time, as-
suming b.b.a to the Ti’s.

Proposition 4.2. Algorithm 4 has a running time of poly(m, s, nt).

Remark 4.1. The precise bound on |F| is |F| ≥ max(s3, d7, dt+4s1+4/ε), where ε is the constant
from n ≥ d4+ε. The use of Schwartz-Zippel lemma in Algorithm 5 imposes |F| ≥ s3, Fact 2.4
imposes |F| ≥ d7 and for a random affine projection to be non-degenerate, |F| ≥ dt+4s1+4/ε

is required which follows from the proof of Lemma 4.4. Unlike the ET algorithm, we cannot
work over a field extension because the input itself is random.
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Remark 4.2. Unlike ET for NW, the permutation and scaling matrices are not recovered as
the motivation for learning random affine projections of multilinear design polynomials is to
understand the expressive power of the affine projections of NW. Theorem 4 proves that when
n ≥ d4+ε, the random affine projections of NW are distinguishable from random polynomials.

4.3 Structure of the adjoint algebra

Lemma 4.1 states that Adj(∂2, U, V) is trivial15 for a non-degenerate f . The idea is to leverage
the fact that each Ti is an affine projection of a multilinear monomial. By condition 2, there
exists an Ai ∈ GL(n, F), such that in f (Aix), Ti(Aix) is a multilinear monomial. By Lemma 3.2,
the adjoint of f (Aix) and that of f (x) are equal as sets of matrices with respect to appropriate
bases of their respective derivative spaces.16 The operators in the adjoint of f (Aix) are shown
to be invariant on the derivative spaces of Ti(Aix) by using the fact that the derivative space
of Ti(Aix) is the space of multilinear polynomials in d variables. The block diagonality then
holds. Because of the direct sum structure, the block diagonality of the adjoint and the block
diagonality of ∂2 operators, it suffices to analyze the adjoint of individual Ti’s. Since Ti(Aix) is
a multilinear monomial, its adjoint is trivial and thus so is the adjoint of Ti.

Lemma 4.1. Let g and f be as defined in Section 4.1. If f is non-degenerate, then Adj(∂2, U, V)
is block-diagonal and is also trivial (thus, also block equi-triangular).

4.4 Vector space decomposition

Algorithm 5 Vector space decomposition algorithm
Input: B.b.a to bases of spaces U and V.
Output: B.b.a to bases of W1, . . . , Ws where Wi = Uπ(i) for some permutation π.

1. Compute a basis D(1), . . . , D(b) of Adj(∂2, U, V)1 = {D | (D, E) ∈ Adj(∂2, U, V)}.
2. Select c1, . . . , cb ∈r S ⊆ F, |S| = s3 and let D = c1D(1) + · · ·+ cbD(b).
3. Factorize the characteristic polynomial of D to obtain eigenvalues λ1, . . . , λs.
4. Compute Wi := Ker(D− λi I) for all i ∈ [s] and output b.b.a to the bases of W1, . . . , Ws.

Analysis and time complexity: Algorithm 5 is similar to Algorithm 3 except it uses ∂2

operators and computes the eigenspaces of D, instead of generalized eigenspaces. Thus, the
analysis for Algorithm 5 is the same as for Algorithm 3. Lemmas 4.1 and 4.2 prove that algo-
rithm 5 works with high probability. Proposition 4.3 gives the time complexity.

Lemma 4.2. D has s distinct eigenvalues with probability ≥ 1− (s
2)
|S| .

Lemma 4.3. Let D ∈ Adj(∂k, U, V) such that it has s distinct eigenvalues denoted λ1, . . . , λs.
Then Ker(D− λi I) = Uπ(i) for all i ∈ [s], where π is some permutation on [s].

Proposition 4.3. Algorithm 5 has a running time of poly(n, s, dt).

Handling non-homogeneous polynomials and translation. The non-degeneracy conditions
are the same for non-homogeneous multilinear (m, d, s, t) design polynomials and when f (x) =
g(Ax + b) for A ∈r Fm×n and b ∈ Fm. For the non-homogeneous case, if the degree of all
monomials is ≥ 2k + 2, then Lemmas 4.1 and 4.4 hold, and the analysis proceeds in the same
way. Proposition 4.1 can also recover translations.

15This is a special case of being block equi-triangularizable.
16Lemma 3.2 holds more generally for any two polynomials equivalent by invertible linear transforms.
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4.5 Random affine projections are non-degenerate

Lemma 4.4 states that a random affine projection f is non-degenerate with high probability.
Showing f is non-degenerate reduces to showing certain matrices, with entries as the coeffi-
cients of the li’s, are full rank with high probability when the entries are chosen randomly. The
main technical challenge is in proving condition 1 because the gi’s share variables, thus Ti’s
share the li’s. A two-stage random process is used to show the existence of an affine projection
which satisfies condition 1. The Schwartz-Zippel lemma then implies that a random affine
projection also satisfies condition 1 with high probability.

Lemma 4.4. Let g be a polynomial as defined in Section 4.1 and f be its random affine projec-
tion. For k = t +

⌊
2 log(s)

log (
√

n
d2 )

⌋
+ 1, f is non-degenerate with high probability.

5 Conclusion

In this work, we design an ET algorithm for general design polynomials (Theorem 1) and a
learning algorithm for random affine projections of multilinear design polynomials (Theorem
4). As an application of the ET algorithm, we show that GI is polynomial-time equivalent to PE
for design polynomials with all-one coefficients (Theorem 2). As another application, we show
that Patarin’s authentication scheme can be broken if it uses a higher degree sparse polynomial
for key generation (Theorem 3). We also give an ET algorithm for the NW design polynomial
using Theorem 1 (Theorem 5). Theorem 4 is a significant generalization of the main result
in [KS19] that gave a learning algorithm for random affine projections of the sum-product
polynomial, which is a special multilinear design polynomial.

Both the algorithms are based on the vector space decomposition framework of [KS19,
GKS20]. This work’s main technical contributions include analysing a non-trivial adjoint alge-
bra associated with design polynomials and developing a VSD algorithm based on generalized
eigenspaces. We end by listing some related questions:

1. ET for sparse polynomial: What is the complexity of ET for the class of sparse polyno-
mials? That is, given black-box access to a polynomial f and a parameter s, what is the
complexity of testing whether f is in the orbit of some s-sparse polynomial? The authors
of [CGS23] showed that the shift equivalence problem for sparse polynomials (i.e., when
f = g(x + b) for some sparse polynomial g and b ∈ Fn) is undecidable over Z.

(A recent update: In an ongoing work [BDSS24], Pulkit Sinha and the authors of this
paper have resolved this question by showing that this problem is NP-hard.)

2. Weakening n ≥ d4+ε: Can the condition n ≥ d4+ε in Theorem 4 be changed to n ≥ dδ for
arbitrary δ > 0? Doing so would give stronger evidence that NW is not VNP-complete.

3. Efficient ET for NW: Theorem 5 gives an ET for NW, but it is not a polynomial-time algo-
rithm. Is there a polynomial-time ET algorithm for NW? Our ET algorithm is for general
design polynomials; it is possible that analyzing the properties of the NW polynomial
may yield an efficient ET algorithm specifically for NW.
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A Missing proofs from Section 1

A.1 Proof of Corollary 1.1

Let f (x) be a (n, d, t) design polynomial with d ≥ 3t. As f = f (Ix), where I is the n× n identity
matrix, the algorithm in Theorem 1 outputs B = PSI = PS with high probability on input f .
Now suppose that f (x) = f (Ax) for some A ∈ GL(n, F). But then again, by Theorem 1,
the output is P1S1A with high probability. As both the statements hold with high probability,
there is a choice of randomness such that the algorithm outputs B = PS = P1S1A for some
permutation matrices P, P1 and scaling matrices S, S1. This implies that A = (P1S1)

−1PS =
P2S2 for appropriate permutation matrix P2 and scaling matrix S2.

A.2 Proof of Corollary 1.2

Let f and g be (n, d, t) design polynomials with d ≥ 3t. Let f (x) = g(Ax), for some A ∈
GL(n, F). As f = f (Ix) is a design polynomial, the algorithm in Theorem 1 outputs B = PS
with high probability on input f . Also, since f (x) = g(Ax), the algorithm outputs P1S1A with
high probability. As both statements hold with high probability, there is a choice of random-
ness such that the algorithm outputs B = PS = P1S1A for some permutation matrices P, P1 and
scaling matrices S, S1. This implies that A = (P1S1)

−1PS = P2S2 for appropriate permutation
matrix P2 and scaling matrix S2.

A.3 Affine projections of low width ABPs

Let IMMw,d denote the iterated matrix multiplication polynomial of degree d and width vector
w = (w1, . . . , wd−1). If wi ≤ w for all i ∈ [d− 1], then we say that IMMw,d has width bounded
by w. Let m be the number of variables in IMMw,d. As mentioned in Section 1.2, the authors of
[KNS19] gave an algorithm for learning random affine projections of low width IMMw,d in the
uniform width case, i.e., when w1 = . . . = wd−1 = w ≤

√
n/2. Their algorithm crucially relies

on uniformity of the width (i.e., w1 = . . . = wd−1), and the time complexity of the algorithm is
dominated by poly(dw3

). However, to our knowledge, a learning algorithm for random affine
projections of non-uniform width IMMw,d is not known, even in the low-width case.

We show that for any d > 32, we can choose k, n ≤ m, and w such that the n-variate
affine projections of IMMw,d have low dimensional k-th order partial derivative spaces, and the
technical assumption n ≥ d4 (as in Theorem 4) is satisfied. But, unlike Theorem 4, we do not
know how to leverage this “low dimensional derivatives space" property to design a learning
algorithm for random affine projections of non-uniform width IMMw,d, even if w ≤

√
n/2.

Proposition A.1. Let d > 32, d0.6 ≤ k < d, n ∈ N such that n ≥ d5.17 Let w = (1 + ε)
√ n

d

17The lower bound of d0.6 on k has been stated for simplicity, k > d0.5+δ for δ > 0 also suffices.
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where ε = k
5d .18 For this choice of parameters, there exists IMMw,d with width bounded by w

and with m = w1 + wd−1 + ∑d−2
i=1 wiwi+1 variables, where 2w + w2(d− 2) ≥ m > n, such that

the following hold:

(i) 2w + w2(d− 2)� n.

(ii) The k-th order partial derivative space of an n-variate affine projection of IMMw,d is of
low dimension. That is,

w2k
(

d
k

)
�
(

n + k− 1
k

)
.

Proof. (i) We show that the gap between 2w + w2(d− 2) and n is super constant. Note that,

2w + w2(d− 2) > w2(d− 2) = (1 + ε)2(d− 2)
n
d
> (1 + 2ε)(1− 2

d
)n.

Further, as d > 32 and ε = k
5d , we have

(1 + 2ε)(1− 2
d
)n > (1 +

ε

4
)n =

(
1 +

k
20d

)
n.

Thus,

2w + w2(d− 2)− n >
kn
20d
≥ n

20d0.4

showing a super constant gap.

(ii) Let f be an n-variate affine projection of IMMw,d. Using the chain rule of differentiation
and the fact that 〈∂k f 〉 is spanned by the order k derivatives of IMMw,d with variables
substituted by the affine forms of the affine projection map, we get that

dim〈∂k f 〉 ≤ w2k
(

d
k

)
.

For any n-variate degree d polynomial f , dim〈∂k f 〉 ≤ (n+k−1
k ). As (n+k−1

k ) ≥ (n
k) for k > 0,

w2k
(

d
k

)
�
(

n
k

)
=⇒ w2k

(
d
k

)
�
(

n + k− 1
k

)
.

Now,

w2k
(

d
k

)
�
(

n
k

)
⇐⇒ w2k �

k−1

∏
i=0

n− i
d− i

⇐⇒ (1 + ε)2k(
n
d
)k �

k−1

∏
i=0

n− i
d− i

⇐⇒ (1 + ε)2k �
k−1

∏
i=1

1− i/n
1− i/d

. (4)

We lower bound the RHS of inequality (4) as

18Ceiling and floor notations have been omitted for simplicity.
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k−1

∏
i=1

1− i/n
1− i/d

≥
k−1

∏
i=1

e
−2i

n

e
−i
d

.

If this lower bound is much larger than the LHS of inequality (4), then inequality (4)
holds. Thus, we need

(1 + ε)2k �
k−1

∏
i=1

e
−2i

n

e
−i
d
⇐⇒ (1 + ε)2k �

k−1

∏
i=1

e
−2i

n + i
d ⇐⇒ (1 + ε)k � e

k(k−1)
4 ( 1

d−
2
n ).

Note (1 + ε)k = (1 + k
5d )

k < e
k2
5d and 1

d −
2
n > 7

8d for d > 2 and n ≥ d5. Hence if

e
k2
5d � e

7k(k−1)
32d

then inequality (4) holds. Dividing e
7k(k−1)

32d by e
k2
5d shows,

e
7k(k−1)

32d −
k2
5d = e

3k2−35k
160d .

As k ≥ d0.6, e
7k(k−1)

32d > e
k2
5d by an exponential factor in d0.2, implying inequality (4). Thus,

w2k
(

d
k

)
�
(

n + k− 1
k

)
.

The condition 2w + w2(d− 2) � n for the given choice of w, n and k establishes that the
gap between the maximum possible variables in IMMw,d and n is large enough such that an
IMMw,d with non-uniform width exists. An ABP with non-uniform width can be viewed as an
ABP with uniform width where nodes have been removed from the layers of the ABP. Each
removal of a node results in a reduction of at most 2w many variables. We need to ensure that
the removal of the nodes preserves the condition m > n, as we are considering n-variate affine
projections of an m-variate polynomial.

As proven, 2w + w2(d− 2) > n by kn
20d ≥

n
20d0.4 . Note that,

1
2w

kn
20d
≥
√

nd0.1

40(1 + ε)
.

Thus, the gap between 2w + w2(d− 2) and n is larger than the maximum possible loss in
variables incurred due to the removal of a node by a super-constant factor. This shows that
an IMMw,d with non-uniform width and with width bounded by w and having m variables,
where w2(d− 2) + 2w ≥ m > n, exists for the given choice of w, n and k. So, Proposition A.1
applies to such an IMMw,d.

B Missing proofs from Section 3

B.1 Proof of Lemma 3.1

The linearity of ∂t operator implies U′ ⊆ U′1 +U′2 · · ·+U′s. To show the direct sum and equality,
it suffices to show U′i ⊆ U′ and U′1 + · · ·+ U′s = U′1 ⊕ · · · ⊕U′s. A monomial basis B′i for U′i
can be formed from {∂tgi}, where gi is a monomial of the design polynomial g.
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Since deg gcd(gi, gj) < t for i 6= j, for every xα of degree t such that ∂tgi
∂xα 6= 0, ∂tgj

∂xα = 0 for
all j 6= i. For every such xα,

∂tg
∂xα

=
s

∑
j=1

∂tgj

∂xα
=

∂tgi

∂xα
.

Thus, {∂tgi} ⊆ {∂tg} which implies U′i ⊆ U′. The condition d ≥ 3t ≥ 2t ensures that

for any i 6= j, there do not exist xα, xβ such that ∂tgi
∂xα 6= 0, ∂tgj

∂xβ 6= 0 and ∂tgi
∂xα =

∂tgj

∂xβ (up to scalar
multiples), as the contrary implies that deg gcd(gi, gj) ≥ t. This shows that U′1 + · · ·+ U′s =
U′1 ⊕ · · · ⊕U′s. A similar argument shows V ′ = V ′1 ⊕V ′2 · · · ⊕V ′s as d ≥ 3t.

B.2 Proof of Lemma 3.2

1. If f = g(Ax), then for Wk = 〈∂k f 〉 and W ′k = 〈∂kg〉, we have W ′k ∼= Wk via the linear map
φ. Indeed, from the chain rule for derivatives and the invertibility of A it follows that
{p1, . . . , pl} is a basis of W ′k if and only if {φ(p1), . . . , φ(pl)} is a basis of Wk.

2. In this proof, whenever we say ‘basis’, we will mean ‘ordered basis’. Let B′1 = (p1, p2 . . . pl)
be a basis of U′ and B′2 = (q1, q2 . . . qm) be a basis of V ′. Since U′ ∼= U and V ′ ∼=
V, B1 := φ(B′1) = (p1(Ax), p2(Ax) . . . pl(Ax)) is a basis of U and B2 := φ(B′2) =
(q1(Ax), q2(Ax) . . . qm(Ax)) is a basis of V. Fixing B′1 and B′2 as bases of U′ and V ′

respectively, the operators ∂t : U′ → V ′ and the elements of Adj(∂t, U′, V ′) can be rep-
resented as matrices and tuples of matrices, respectively. Similarly, fixing B1 and B2 as
bases of U and V respectively, the operators ∂t : U → V and the elements of Adj(∂t, U, V)
can be represented as matrices and tuples of matrices, respectively.

With the bases fixed, the idea is to use the adjoint condition LD = EL, as stated in Section
1.2 for the adjoint, which gives rise to a system of linear equations with the entries of D
and E being variables. Since dim(U) = dim(U′) and dim(V) = dim(V ′), the number of
variables in the system ∂tD = E∂t, where (D, E) ∈ Adj(∂t, U, V), is the same as that of
the system ∂tD′ = E′∂t, where (D′, E′) ∈ Adj(∂t, U′, V ′). To infer that both these systems
have the same solution space, showing that the matrix of every operator in ∂t : U → V,
with respect to bases B1 and B2, is a linear combination of the matrices of the operators
in ∂t : U′ → V ′, with respect to bases B′1 and B′2, suffices as the invertibility of A implies
that the converse is also true.

Suppose xα is a degree t monomial and Lα be the matrix corresponding to the operator
∂t

∂xα : U → V with respect to bases B1 and B2. Let

∂t pi(Ax)
∂xα

=
m

∑
j=1

aj,i,αqj(Ax),

where (a1,i,α, . . . , am,i,α)
T is the i-th column of Lα. From the chain rule of derivatives, it

also holds that:

∂t pi(Ax)
∂xα

= ∑
|β|=t

cα,β
∂t pi

∂xβ
(Ax), for cα,β ∈ F.

Further, since ∂t pi
∂xβ = ∑m

j=1 bj,i,βqj, where (b1,i,β, . . . , bm,i,β)
T is the i-th column of L′β, the

matrix of the operator ∂t

∂xβ : U′ → V ′ with respect to the bases B′1 and B′2, we have
∂t pi
∂xβ (Ax) = ∑m

j=1 bj,i,βqj(Ax). Thus,
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∂t pi(Ax)
∂xα

= ∑
|β|=t

cα,β

m

∑
j=1

bj,i,βqj(Ax).

Hence, aj,i,α = ∑|β|=t cα,βbj,i,β. This implies Lα = ∑|β|=t cα,βL′β.

B.3 Proof of Lemma 3.3

Let (D′, E′) ∈ Adj(∂t, U′, V ′). Let B′i be the basis of monomials for U′i obtained from {∂tgi}.
Showing that D′(bi) ∈ U′i for any bi ∈ B′i suffices to prove the lemma.

Let D′(bi) = u′1 + · · ·+ u′s where u′j ∈ U′j and is expressed in the basis B′j . Suppose u′j 6= 0
for some j 6= i. By the design condition and the fact that d ≥ 3t, deg gcd(bj, bk) < t for any

bj ∈ B′j and bk ∈ B′k, where j 6= k. Thus, there exists a degree t monomial xβ such that
∂tu′j
∂xβ 6= 0

and ∂tbi
∂xβ = 0 and ∂tu′k

∂xβ = 0 for all k 6= j.
Using xβ for the derivative map,

∂tD′(bi)

∂xβ
=

∂tu′1
∂xβ

+ · · ·+ ∂tu′s
∂xβ

.

Because ∂t

∂xβ D′ = E′ ∂t

∂xβ ,

E′
(∂tbi

∂xβ

)
=

∂tu′j
∂xβ

=⇒ E′(0) =
∂tu′j
∂xβ

=⇒
∂tu′j
∂xβ

= 0

This contradicts
∂tu′j
∂xβ 6= 0. Thus, u′j = 0 for all j 6= i implying D′(bi) ∈ U′i .

A monomial basis can be formed for V ′i from {∂2tgi}. For any e from this basis, e = ∂tbi
∂xα ,

for some bi ∈ B′i and xα with |α| = t. Using this and the adjoint condition we get

E′(e) = E′
(∂tbi

∂xα

)
=

∂tD′(bi)

∂xα
.

As D′(U′i ) ⊆ U′i and 〈∂tU′i 〉 = V ′i , we have E′(e) ∈ V ′i . Repeating for all such e in the
monomial basis of V ′i , E′(V ′i ) ⊆ V ′i holds.

B.4 Proof of Lemma 3.4

(i) Assume mon{∂t(
∂tgi
∂xα )} 6⊆ mon{∂t(

∂tgi
∂xβ )}. Then there exists xγ, where |γ| = t, such that

∂t

∂xγ (
∂tgi
∂xα ) 6= 0 and mon( ∂t

∂xγ (
∂tgi
∂xα )) 6∈ mon{∂t(

∂tgi
∂xβ )}. Consider the following cases:

• Suppose ∂t

∂xγ (
∂tgi
∂xβ ) = 0 then,

∂t

∂xγ
D′i
(∂tgi

∂xβ

)
= E′i

( ∂t

∂xγ

(∂tgi

∂xβ

))

=⇒ ∂t

∂xγ
D′i
(∂tgi

∂xβ

)
= 0
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=⇒ ∂t

∂xγ

(
∑ cδ

∂tgi

∂xδ

)
= 0,

where cδ = D′i [x
δ][xβ]. Hence, by the assumption ∂t

∂xγ (
∂tgi
∂xα ) 6= 0, D′i [x

α][xβ] = 0.

• Suppose ∂t

∂xγ

(
∂tgi
∂xβ

)
6= 0. Using the adjoint condition, we have

∂t

∂xγ
D′i
(∂tgi

∂xβ

)
= E′i

( ∂t

∂xγ

(∂tgi

∂xβ

))
=

∂t

∂xβ
D′i
(∂tgi

∂xγ

)
.

The coefficient of ∂t

∂xγ (
∂tgi
∂xα ) in ∂t

∂xγ D′i
(

∂tgi
∂xβ

)
is D′i [x

α][xβ]. In ∂t

∂xβ D′i
(

∂tgi
∂xγ

)
, the coefficient

of mon( ∂t

∂xγ (
∂tgi
∂xα )) must be 0 because the contrary would imply mon( ∂t

∂xγ (
∂tgi
∂xα )) ∈

mon{∂t( ∂tgi
∂xβ )}. By the equality above, D′i [x

α][xβ] = 0.

(ii) Let xδ := lcm(xα, xβ). Since xα and xβ are degree t monomials, t + 1 ≤ deg(xδ) ≤ 2t. Let
xγ := xδxδ′ such that deg(xγ) = 2t. Clearly xγ = xγ1 xα = xγ2 xβ for appropriate γ1 and
γ2. Using the adjoint condition, we get

∂t

∂xγ1
D′i
(∂tgi

∂xα

)
= E′i

( ∂t

∂xγ1

(∂tgi

∂xα

))
= E′i

( ∂t

∂xγ2

(∂tgi

∂xβ

))
=

∂t

∂xγ2
D′i
(∂tgi

∂xβ

)
.

The coefficient of ∂t

∂xγ1 (
∂tgi
∂xα ) in ∂t

∂xγ2 D′i
(

∂tgi
∂xβ

)
is D′i [x

α][xα] and that of ∂t

∂xγ2 (
∂tgi
∂xβ ) in ∂t

∂xγ2 D′i
(

∂tgi
∂xβ

)
is D′i [x

β][xβ]. The equality above and xαxγ1 = xβxγ2 imply D′i [x
α][xα] = D′i [x

β][xβ].

B.5 Proof of Lemma 3.5

By the discussion in Section 3.3, there is a basis B with respect to which D is block equi-
triangular. In this basis, since each block of D has equal diagonal entries and there are s
blocks, showing that any two distinct blocks have different diagonal entries suffices. Let
{D(1), D(2) . . . D(b)} be the elements of the basis computed for Adj(∂t, U, V)1 := {D | (D, E) ∈
Adj(∂t, U, V)}. A random element of Adj(∂t, U, V)1 is of form ∑b

j=1 cjD(j), where cj’s are chosen
uniformly at random from S ⊆ F. Note that:

• Let 1Ui and 1Ui be the projection operator to the spaces Ui and Vi, respectively. In the
basis B, the i-th block of 1Ui is the identity matrix while the rest are all 0 blocks. Then,
(1Ui , 1Vi) ∈ Adj(∂t, U, V) because for any u ∈ U and any ∂t operator, where u = u1 +
· · ·+ us, ∂t(u) = v = v1 + · · ·+ vs, and ui ∈ Ui, vi ∈ Vi, we have

∂t(1Ui(u)) = ∂t(ui) = vi and 1Vi(∂
tu) = 1Vi(v) = vi.

Therefore, (∑s
i=1 λi1Ui ,∑

s
i=1 λi1Vi ) is an element of Adj(∂t, U, V), where λi 6= λj for i 6= j.

Clearly, ∑s
i=1 λi1Ui is a block-diagonal matrix with each block being a scalar multiple of

identity, hence it has s distinct eigenvalues.

• Let i1 6= i2 and D(j)[i][i] be the diagonal entry of the i-th block of D(j). The difference of
the diagonal entries of the i1-th and i2-th block is ∑b

j=1 cj(D(j)[i1][i1]− D(j)[i2][i2]) which
is a linear polynomial in cj’s. As 1Ui is in the adjoint, this polynomial in cj’s is non-zero.
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Applying the Schwartz-Zippel lemma on this polynomial, the i1-th and i2-th block have
the same diagonal entries with probability ≤ 1

|S| . By applying union bound on all (s
2) possible

pairs of i1 and i2, the probability that some pair of blocks have equal diagonal entries is ≤ (s
2)
|S| .

Hence, D has s distinct eigenvalues with probability ≥ 1− (s
2)
|S| .

B.6 Proof of Lemma 3.6

By the discussion in Section 3.3, there exists a basis B where D is equi-triangular. We will
prove the lemma with respect to this basis B. With respect to B, the diagonal entries of the
i-th block (up to a permutation π on [s]) of (D− λi I) are 0. It is easily seen that the i-th block
of (D − λi I) is a nilpotent19 matrix, as all the diagonal entries are zero and the (dim U)-th
power of (D − λi I) leads to the columns of the i-th block becoming 0. The other blocks in
(D− λi I)dim U have non-zero diagonal entries as λ1, . . . , λs are distinct (by Lemma 3.5). Hence,
Ker((D− λi I)dim U) = Ui.

B.7 Proof of Lemma 3.7

Let f = c1m1 + · · ·+ csms be formed as per Definition 1.4 where mi are degree d monomials in
x and ci are arbitrary constants. For i 6= j, let Fi,j be the event that deg gcd(mi,mj) ≥ t.

For some fixed i and j, Fi,j happens if and only if there exists a monomial m of degree t
such that m|mi and m|mj , where | denotes monomial division. Thus, bounding the probability
of the latter event bounds that of Fi,j.

By choosing d variables uniformly at random with repetition, mi can be formed in nd

ways. Suppose, a particular m = ∏n
i=1 xαi

i of degree t divides mi. Such an mi can be formed by
first selecting the variables of m, which can be done in (d

t)(
t

α1,...,αn
) and then choosing the rest of

the variables of mi in nd−t ways. Thus,

Pr[m|mi] ≤
(d

t)(
t

α1,...,αn
)nd−t

nd =
(d

t)(
t

α1,...,αn
)

nt ,

where ( t
α1,...,αn

) ≤ t! is the multinomial coefficient corresponding to m. Since mi and mj are
selected independently of one another,

Pr[m|mi and m|mj] ≤
(d

t)
2
( t

α1,...,αn
)

2

n2t .

Applying union bound on all (n+t−1
t ) degree t monomials, we have

Pr[Fi,j] ≤ ∑
∑ αi=t

(d
t)

2
( t

α1···αn
)

2

n2t .

Using union bound on the (s
2) possible pairs of monomials we get:

Pr[∃ i, j ∈ [s] : Fi,j] ≤ ∑
1≤i<j≤s

∑
∑ αi=t

(d
t)

2
( t

α1···αn
)

2

n2t

=

(
s
2

)
∑

∑ αi=t

(d
t)

2
( t

α1···αn
)

2

n2t

19A linear operator T is nilpotent if Tk is the zero operator for some positive integer k.
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≤ s2 (
d
t)

2

n2t ∑
∑ αi=t

(
t

α1 · · · αn

)2

≤ s2 (
d
t)

2

n2t ∑
∑ αi=t

(t!)2 = s2 (
d
t)

2
(t!)2(n+t−1

t )

n2t

≤ s2 d2t(n+t−1
t )

n2t = s2 d2t

n2t

t

∏
j=1

(n + j− 1
j

)
.

As n ≥ 1 and n+j
j+1 ≤

n+j−1
j for all j ≥ 1, therefore n+j−1

j ≤ n. Thus

s2 d2t

n2t

t

∏
j=1

(n + j− 1
j

)
≤ s2 d2tnt

n2t =
s2d2t

nt .

By assumption s ≤
√

ε
(

n
d2

)t/2
. Thus,

s2 d2t

nt ≤ ε.

Hence with probability ≥ 1− ε, f is a (n, d, s, t) design polynomial.

B.8 Proof of Proposition 3.1

Assume that black-box access to the Ti’s is available. Fact 2.4 gives20 black-box access to the
irreducible factors of Ti up to scaling by field elements. Since Ti is in the orbit of a monomial, it
must factor into a product of linear forms. From black-box access to the factors of Ti, the linear
forms can be recovered by querying the black-box at the set of points {ei : i ∈ [n]}, where ei
is the point with i-th coordinate 1 and the rest as 0. Normalize the coefficients of all the linear
forms across all the black-boxes of the Ti’s for all i ∈ [s]. Thus, per Ti we get a product of linear
forms Qi which is multiplied by some field element due to the normalization process.

Now, assign to each linear form an x-variable while maintaining the consistency of as-
signment across Ti’s, to get a transform B. Since it is not known which variable is mapped to a
particular linear form in the original transformation A, the recovered linear forms are assigned
to a permutation of the variables. Thus, the transform B is related to A as B = PSA, for some
permutation matrix P and scaling matrix S, where the scaling is due to the normalization.

Finally, for each Ti, form a monomial hi by replacing each linear form of Qi with the x
variable corresponding to it in the transform B. This forms the polynomial h = f (B−1x) =
c1h1 + · · ·+ cshs, where the ci are constants resulting from normalization of the linear forms.
The polynomial h = g((PS)−1x) as well, and so it is a (n, d, s, t) design polynomial.

For the time complexity, Fact 2.4 is executed s times, and each invocation requires time
poly(n, d). The linear forms can be recovered and normalized in poly(n, d, s) time. Similarly, h
can be formed in poly(n, d, s) time. Hence, the recovery process takes poly(n, d, s) time.

When the input is f = g(Ax + b), the recovery of the translation vector b is similar, as
the returned black-box factors are affine forms and can be queried at all 0’s to recover b, again
up to scaling. Thus, the recovered transform B = PSA and the translation vector is c = PSb.

20This assumes that there is an efficient univariate polynomial factorization algorithm over F.
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B.9 Proof of Proposition 3.2

The time complexity of the algorithm is dominated by Steps 1 and 2. Step 1 uses Fact 2.1 to
compute black-box access to bases of U and V. The precise time complexity of Fact 2.1 for a
single invocation is poly(n, dl) time, where l is the number of variables in the monomial xα,
with respect to which differentiation is done. Note l ≤ min(t, n). Since there are (n+t−1

t ) many
order t derivatives, this step needs poly((n+t

n )dmin(t, n)) time to execute. The complexity of Step
2 is poly((n+t

n )dt) as proven in Proposition 3.4.
Using Fact 2.3, Step 3 can be executed. There are O(sdt) many linearly independent poly-

nomials (since dim U ≤ s(d
t) = O(sdt)) of degree d− t and (n+t−1

t ) many derivatives of degree
t; hence this step requires poly(s, (n+t

t )dt) time. The running time of the recovery procedure is
poly(n, d, s) by Proposition 3.1.

Thus, the overall complexity of the algorithm is poly(s(n+t
n )dt). Note, s < (n+t

n ) for
(n, d, s, t) design polynomials21. Hence, the running time is poly((n+t

n )dt).

B.10 Monomial with non-trivial adjoint

Proposition B.1. For g = x6
1x2

2, Adj(∂2, U′, V ′) is non-trivial, where U′ = 〈∂2g〉 and V ′ = 〈∂4g〉.

Proof. Consider the monomial g = x6
1x2

2. We show for L1 = L2 = ∂2, Adj(∂2, U′, V ′) is non-
trivial by solving the linear system arising from ∂2D′ = E′∂2, where (D′, E′) ∈ Adj(∂2, U′, V ′).

A basis for U′ is {x6
1, x5

1x2, x4
1x2

2} and that for V ′ is {x4
1, x3

1x2, x2
1x2

2}. Any operator D′ :
U′ → U′ can be represented as a 3× 3 matrix:d11 d12 d13

d21 d22 d23
d31 d32 d33

 .

Similarly, for E′ : V ′ → V ′, the representation is:e11 e12 e13
e21 e22 e23
e31 e32 e33

 .

The three possible order 2 derivative maps in x1 and x2 are ∂2

∂x2
1
, ∂2

∂x1x2
and ∂2

∂x2
2
, which form

a basis of 〈∂2〉. The matrix representation of these maps (call them L1, L2 and L3, respectively)
with respect to these bases is as:

L1 =

30 0 0
0 20 0
0 0 12

 ,

L2 =

0 5 0
0 0 8
0 0 0

 ,

L3 =

0 0 2
0 0 0
0 0 0

 .

21This can be proved via a counting argument: a degree t monomial can divide at most one monomial of a
(n, d, s, t) design polynomial and there are (n+t−1

t ) degree t monomials.
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Applying the adjoint condition on these operators gives the following equations:

L1D = EL1 =⇒

30d11 30d12 30d13
20d21 20d22 20d23
12d31 12d32 12d33

 =

30e11 20e12 12e13
30e21 20e22 12e23
30e31 20e32 12e33


L2D = EL2 =⇒

5d21 5d22 5d23
8d31 8d32 8d33

0 0 0

 =

0 5e11 8e12
0 5e21 8e22
0 5e31 8e32


L3D = EL3 =⇒

2d31 2d32 2d33
0 0 0
0 0 0

 =

0 0 2e11
0 0 2e21
0 0 2e31

 .

From these equations, we get that d11 = d22 = d33 = e11 = e22 = e33 and d21, d31, d32, e21,
e31 and e32 are all 0. The remaining equations are 5d23 = 8e12, 20d23 = 12e23, 30d12 = 20e12 and
30d13 = 12e13. It can be easily checked that the resulting adjoint operators look like:

D =

d11 d12 d13
0 d11

12
5 d12

0 0 d11

 E =

d11
3
2 d12

5
2 d13

0 d11 4d12
0 0 d11

 .

B.11 Proof of Proposition 3.3

To show that D′ is equi-triangular, it is enough to show that D′i is equi-triangular. We do this by

re-ordering the elements of B′i = {
∂tgi
∂xα : |α| = t and ∂tgi

∂xα 6= 0} (note that this is a basis of U′i ).

Consider a directed graph G = (V, E) where V = B′i and E = {( ∂tgi
∂xα , ∂tgi

∂xβ ) : mon{ ∂t( ∂tgi
∂xα )} ⊆

mon{∂t( ∂tgi
∂xβ )}}. The graph G is acyclic for if G had a cycle ∂tgi

∂xα1 , . . . , ∂tgi
∂xαk , then by the defi-

nition of the edge set, this is equivalent to saying that mon{∂t( ∂tg
∂xα1 )} ⊆ mon{∂t( ∂tg

∂xαk )} ⊆
mon{∂t( ∂tg

∂xα1 )} which implies mon{∂t( ∂tg
∂xα1 )} = mon{∂t( ∂tg

∂xαk )} – a contradiction as xα1 and xαk

are distinct monomials and d ≥ 3t.
Let Top(.) denote the topological sort of a graph. Define Topi := Top(B′i , Ei) = (xα1 , . . . , xαb),

where b = dim U′i . Observe that if j > k then D′i [x
αj ][xαk ] = 0 by Lemma 3.4. This is because

of the fact that D′i [x
αj ][xαk ] 6= 0 would imply mon{∂t( ∂tgi

∂xαj )} ⊆ mon{∂t( ∂tgi
∂xαk )} which implies

that there is an edge from ∂tgi
∂xαj to ∂tgi

∂xαk when j > k contradicting that Topi is a topological sort.
A basis B′ of U′ can be formed by concatenating all the re-ordered B′i bases. Note that

D′i [x
αj ][xαk ] = 0 for j > k. Thus, D′ in the basis B′ is a block diagonal matrix with each

block being upper-triangular with all diagonal entries equal. Hence, Adj(∂t, U′, V ′) is block
equi-triangularizable.

B.12 Proof of Proposition 3.4

The dominant time complexity is that of step 1, which involves solving a system of linear
equations in dim(U)2 + dim(V)2 variables with (n+t−1

t ) · dim(V) · dim(U) many equations.
Since dim(U) ≤ s(d

t) < sdt and dim(V) ≤ s( d
2t) < sd2t, there are (n+t−1

t )poly(sd)t linear
equations and poly(sdt) variables in the system.22 Thus, such a system can be solved in

22For a degree d multilinear monomial h, dim〈∂th〉 = (d
t) and any non-multilinear monomial of degree d is a

p-projection of a degree d multilinear monomial. This gives the upper bound on the dimensions of U and V.
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poly(s(n+t−1
t )dt) time. The computation of the eigenvalues requires factoring a univariate

polynomial of degree < sdt, which can be done in (randomized) poly(sdt) time, and com-
puting the null spaces can also be done in poly(sdt) time. Thus, the overall time complexity
is poly(s(n+t−1

t )dt) = poly((n+t−1
t )dt) as s ≤ (n+t−1

t ) (a degree-t monomial in n variables can
divide at most one monomial of an (n, d, s, t) polynomial).

B.13 Proof of Proposition 3.5

Suppose G1
∼= G2, then there is a permutation π : V1 → V2 which also preserves edges. Clearly,

π is also a permutation on x, where π(xi) := xπ(i). Extend π to a function σ : z→ z as:

1. σ(xi) := xπ(i).

2. σ(yI1(i,j)) := yI2(π(i),π(j)), where (i, j) ∈ E1 and (π(i), π(j)) ∈ E2.

Clearly, σ is a permutation on z as well as from M1 to M2. If P is the permutation matrix
corresponding to σ, then h2(z) = h1(Pz). Hence, h1 ∼ h2 via P.

Conversely, suppose h1 ∼ h2. By Corollary 1.2, h2(z) = h1(PSz); the corollary can be ap-
plied here as d = 6, t = 2, and so, the d ≥ 3t condition is satisfied. Since the coefficient of every
monomial of h1 and h2 is 1, we can assume S to be the identity matrix, thus h2(z) = h1(Pz) and
P induces a permutation from M1 to M2. Suppose P maps some x variable to some y variable.
Since the degree of a y variable is 4 in any monomial of both polynomials, h1(Pz) contains a
monomial where the degree of some x variable is 4. This contradicts h1(Pz) = h2(z). Thus,
P must permute the x variables amongst themselves and y variables amongst themselves.
Hence, P induces a permutation π from V1 to V2. Because P also induces a permutation from
M1 to M2, which correspond to E1 and E2 respectively, therefore π is a permutation from V1 to
V2 preserving edges. Hence, G1

∼= G2 via π.

B.14 Proof of Proposition 3.6

Let M1 and M2 be the set of monomials of h1 and h2 respectively, with |M1| = |M2| = s.
Construct graph G1(V1, E1) for h1, where initially V1 := x tM1. If ai,j is the exponent of xi ∈ x
in mj ∈ M1, then introduce ai,j many vertices, y1, y2 . . . yai,j and connect xi and mj to all these
y-vertices. Do this for all xi and mj. G1 is similar to a bipartite graph where edges exist only
between x and M1, except for an intermediary set of y vertices to make G1 a simple graph.
Finally, attach each xi ∈ x to a complete graph on ns vertices and similarly attach each mj ∈ M1
to a complete graph on ns + 1 vertices. Construct G2(V2, E2) for h2 similarly.

Suppose h2 ∼ h1. By Corollary 1.2, h2(x) = h1(PSx). Since all coefficients are one, we can
assume S to be the identity matrix, hence h2(x) = h1(Px). Now, P permutes the x variables
and is also a permutation from M1 to M2. Construct the function π : V1 → V2 as follows:

1. ∀xi ∈ x, π(xi) = xj, where P maps xi to xj.

2. ∀mi ∈ M1, π(mi) = mj, where P maps mi to mj.

3. π maps the y vertices and the gadget vertices while preserving edges accordingly.

Clearly, π is a permutation from V1 to V2 which preserves edges. Hence G1
∼= G2.

Now, suppose G1
∼= G2 via permutation π : V1 → V2. Clearly, π must map a vertex from

the variable vertices of G1 to the variable vertices of G2 because of the attached gadgets to these
vertices. Similarly, π must map a vertex from M1 to a vertex in M2 due to the attached gadgets.
Finally, π must also preserve the edge between a variable vertex xi and a monomial vertex mj,
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including the intermediary y vertex. Thus, π describes a permutation P on the x variables such
that P is also a permutation from M1 to M2. Hence, h1(Px) = h2(x) implying h1 ∼ h2.

B.15 Probability bound on a permutation mapping monomials to monomials

Let π be a permutation on [n]. For a monomial mi = ∏n
i=1 xαi

i , let π(mi) := ∏n
i=1 xαi

π(i). Let Eπ
i,j

denote the event mj = π(mi) for random degree d monomials mi and mj (as per Definition 1.4).
Lemma B.1 bounds the probability that a non-trivial permutation π maps monomial mi to mj;
Lemma B.2 bounds the probability that π fixes a monomial mi.

Lemma B.1. For i 6= j, Pr[Eπ
i,j] < ( d

n )
d.

Proof. Once the variables for mi are chosen, π(mi) determines a unique monomial. Let mi =

∏n
i=1 xαi

i , where ∑n
i=1 αi = d, then π(mi) = ∏n

i=1 xαi
π(i). Thus, for mj = π(mi) to happen, once

mi is chosen, the choices of variables for mj are fixed by π, with only the order of the choices
varying. The number of ways to choose the variables of mj is then given by ( d

α1···αn
). Hence

Pr[Eπ
i,j] =

( d
α1···αn

)

nd ≤ d!
nd <

( d
n

)d
.

Lemma B.2. Let τ be the permutation on [n] as: τ(1) = 2, τ(2) = 1 and τ(i) = i for i ≥ 3. Let
π be a non-trivial permutation on [n]. Then, for any i ∈ [s], Pr[Eπ

i,i] ≤ Pr[Eτ
i,i] < e−d/n.

Proof. Let π = π1 · · ·πk be the decomposition of π into cycles. Since π is a non-trivial permu-
tation on [n], there exists at least one cycle of length ≥ 2. Let πq be a cycle of length l ≥ 2. If
π(mj) = mj and if variable xp is present in mj and p is part of the cycle πq, then all the variables
corresponding to the elements of πq must be present in mj with the same multiplicities.

The event Eπ
j,j happens when all the elements of πq are chosen i times, for some 0 ≤ i ≤

d/l, and then the remaining choices are made from the rest of the variables, which are at most
(n− l)d−li many. Thus,

Pr[Eπ
j,j] ≤

d/l

∑
i=0

(d
li)(

li
i···i)(n− l)d−li

nd =
d!(n− l)d

nd

(
d/l

∑
i=0

1
(i!)l(d− li)!(n− l)li

)
,

where ( li
i···i) is the multinomial coefficient denoting the number of arrangements of the elements

of πq, which are li in count. For the permutation τ,

Pr[Eτ
j,j] =

d/2

∑
i=0

( d
2i)(

2i
i )(n− 2)d−2i

nd =
d!(n− 2)d

nd

(
d/2

∑
i=0

1
(i!)2(d− 2i)!(n− 2)2i

)
.

The first equality holds because τ fixes all variables other than x1, x2 and choosing any
of these variables for mj automatically means they are fixed by τ. For 2 < l ≤ d, (n− l)d <

(n− 2)d. Thus, showing that

1
(i!)l(d− li)!(n− l)li <

1
(i!)2(d− 2i)!(n− 2)2i

for all 1 ≤ i ≤ d/l suffices, as for i = 0 equality holds. Now,

1
(i!)l(d− li)!(n− l)li <

1
(i!)2(d− 2i)!(n− 2)2i

33



⇐⇒ (i!)l(d− li)!(n− l)li > (i!)2(d− 2i)!(n− 2)2i

⇐⇒ (i!)l−2(n− l)li >
(d− 2i)!
(d− li)!

(n− 2)2i. (5)

As l ≤ d and n > d2,the left hand side of inequality (5) can be lower bounded as:

(i!)l−2(n− l)li > (n− d)li >
(n

2

)li
,

while the right hand side can be upper bounded as:

(d− 2i)!
(d− li)!

(n− 2)2i < d(l−2)in2i.

Thus, if
nli > 2lid(l−2)in2i ⇐⇒ nl−2 > 2dl−2,

then we are done. Since d ≥ l ≥ 3 and n > d2, the last inequality and, consequentially,
inequality (5) holds implying that

Pr[Eπ
j,j] ≤

d!(n− l)d

nd

( d/l

∑
i=0

1
(i!)l(d− li)!(n− l)li

)
≤ d!(n− 2)d

nd

( d/2

∑
i=0

1
(i!)2(d− 2i)!(n− 2)2i

)
= Pr[Eτ

j,j].

Now as n > d2 (and also assuming d ≥ 3),

Pr[Eτ
j,j] =

d!(n− 2)d

nd

( d/2

∑
i=0

1
(i!)2(d− 2i)!(n− 2)2i

)
<

(n− 2)d

nd

(
1 +

d2(d− 1)
2(n− 2)2

)
<
(

1− 2
n

)d(
1 +

d3

n2

)
< e−2d/ned3/n2

< e−2d/n+d/n = e−d/n.

B.16 Proof of Proposition 3.7

Fix an arbitrary non-trivial permutation π on [n] and let Fπ denote the event that π is a per-

mutation symmetry of f . Let q = e−d/n and p =
(

d
n

)d
, q and p are the upper bounds on Pr[Eπ

i,i]

and Pr[Eπ
i,j] from Lemma B.2 and Lemma B.1, respectively.

Without loss of generality, let m1, m2 . . . , mi be i monomials which are permuted amongst
themselves in cycles of length ≥ 2 by π, thus π does not fix any of these monomials. Let
there be k cycles with lengths l1, l2 . . . , lk. In the ith cycle, mi1 maps to mi2 , mi2 maps to mi3 , · · · ,
mili−1 maps to mili

and mili
maps to mi1 , which is precisely the event

⋂li−1
j=1 Eπ

ij,ij+1

⋂
Eπ

ili
,i1 . The

probability that a cycle of length li occurs, with some fixed ordering of the monomials, is:

Pr
[ li−1⋂

j=1

Eπ
ij,ij+1

⋂
Eπ

ili
,i1

]
≤ Pr

[ li−1⋂
j=1

Eπ
ij,ij+1

]
=

li−1

∏
j=1

Pr
[

Eπ
ij,ij+1

]
≤ pli−1,
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where the equality holds because the events Eπ
ij,ij+1

for j = 1 to li − 1 are independent as each
monomial is sampled independently of the others.

Suppose π is a permutation symmetry of f . In that case, π induces a permutation on the
s monomials, with i of the monomials lying in cycles of length ≥ 2 and the remaining s − i
monomials being fixed, where i = 0 or 2 ≤ i ≤ s. Thus,

Pr[Fπ] ≤ qs +
s

∑
i=2

(
s
i

)
qs−i

i/2

∑
k=1

∑
∑j lj=i,lj≥2

(
i

l1 · · · lk

) k

∏
j=1

((lj − 1)!plj−1)

≤ qs +
s

∑
i=2

(
s
i

)
qs−i

i/2

∑
k=1

∑
∑j lj=i,lj≥2

i!pi−k

≤ qs +
s

∑
i=2

siqs−i
i/2

∑
k=1

∑
∑j lj=i,lj≥2

pi−k.

The total number of terms in the innermost sum is equal to the number of solutions to
∑j lj = i, lj ≥ 2, which is upper bounded by (i+k−1

k−1 ). Thus,

qs +
s

∑
i=2

siqs−i
i/2

∑
k=1

∑
∑j lj=i,lj≥2

pi−k ≤ qs +
s

∑
i=2

siqs−i
i/2

∑
k=1

(
i + k− 1

k− 1

)
pi−k.

Note that for 1 ≤ k ≤ i/2− 1, (i+k−1
k−1 )pi−k < (i+k

k )pi−k−1 as this condition is equivalent to
p < i+k

k , which is certainly true because i+k
k > 3. Thus, the last term in the internal summation

is the largest. Hence,

qs +
s

∑
i=2

siqs−i
i/2

∑
k=1

(
i + k− 1

k− 1

)
pi−k ≤ qs +

s

∑
i=2

siqs−i
i/2

∑
k=1

(
3i/2− 1
i/2− 1

)
pi/2

≤ qs +
s

∑
i=2

siqs−i
i/2

∑
k=1

i/2−1

∏
j=1

( i + j
j

)
pi/2.

As i+j
j ≤ i + 1,

qs +
s

∑
i=2

siqs−i
i/2

∑
k=1

i/2−1

∏
j=1

( i + j
j

)
pi/2 ≤ qs +

s

∑
i=2

siqs−i
i/2

∑
k=1

(i + 1)i/2−1 pi/2

= qs + qs
s

∑
i=2

i
2
(i + 1)i/2−1

( s
√

p
q

)i
≤ qs + qs

s

∑
i=2

( s2√p
q

)i
.

This inequality follows because i
2 (i + 1)i/2−1 < ii ≤ si for 2 ≤ i ≤ s. Now, s2√p

q < 1

because s <
(

n
d2

)d/6
due to the assumption that f is a random s-sparse polynomial as per

Lemma 3.7 and
(

n
d2

)d/3
< e−d/n

(
n
d

)d/2
for n > d8 and d ≥ 25. Therefore,

qs + qs
s

∑
i=2

( s2√p
q

)i
≤ sqs.

Thus Pr[Fπ] ≤ sqs. By union bound on all non-trivial permutations π,
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Pr[ f has a permutation symmetry] ≤∑
π

Pr[Fπ] < n!qss < nnqss.

We require that

nnqss� 1 ⇐⇒ nns� eds/n.

Since s = Ω(n3), the last inequality holds.

B.17 Proof of Proposition 3.8

Clearly h1 ∼ h2 via the transform S−1
1 P−1

1 P2S2 = PS, where P = P−1
1 P2 and S is an appropriate

scaling. Suppose h2(x) = h1(P′S′x), for some permutation P′ and scaling S′. Then, f (P2S2x) =
h2(x) = h1(P′S′x) = f (P1S1P′S′x). This implies f (x) = f (P1S1P′S′S−1

2 P−1
2 x) = f (P1P′P−1

2 S̃x),
where S̃ is an appropriate scaling matrix. Note that P1P′P−1

2 permutes the monomials of f
amongst themselves, thus P1P′P−1

2 is a permutation symmetry of f . By Proposition 3.7, only
the trivial permutation is a permutation symmetry of f . Thus P1P′P−1

2 = I =⇒ P′ = P−1
1 P2 =

P, proving uniqueness of P.

B.18 Proof of Theorem 5

Invoke Theorem 1 on the polynomial f to obtain a (n, d, s, t) design polynomial h. If f is in
the orbit of NWq,d,t, then h = NWq,d,t(PSx) for some permutation P and scaling S. Thus, the
problem reduces to testing if f is PS-equivalent to NWq,d,t. Note, the permutation P maps the
monomials of NWq,d,t to that of h and there may exist multiple such permutations.

Construct graphs G1 and G2 for h and NWq,d,t using the reduction of Theorem 2, ignoring
the coefficients of h. Invoke the GI algorithm of [Bab16] to obtain a permutation P̃ such that P̃
maps the monomials of h to those of NWq,d,t. Now, we show that there exists a scaling matrix
S̃ for P̃, such that h(P̃S̃x) = NWq,d,t. We already have that

h(x) = NWq,d,t(PSx)

=⇒ h(P̃x) = NWq,d,t(PSP̃x).

Take S̃ := P̃−1S−1P̃, which is a diagonal matrix. Then

h(P̃S̃x) = NWq,d,t(PSP̃S̃x) = NWq,d,t(PSP̃(P̃−1S−1P̃)x) = NWq,d,t(PP̃x).

Now, P maps the monomials of NWq,d,t to those of h and P̃ maps the monomials of h to
those of NWq,d,t. The transform PP̃ in effect maps the monomials of NWq,d,t amongst them-
selves. Further, since the coefficients of all the monomials in NWq,d,t are 1, therefore PP̃ is
actually a permutation symmetry of NWq,d,t. Thus, h(P̃S̃x) = NWq,d,t(PP̃x) = NWq,d,t(x) and
the problem reduces to testing if f is S-equivalent to NWq,d,t.

For the time complexity of the reduction, Theorem 1 requires O(poly(qt)), since for NWq,d,t,
n = qd > d > t. Since the sparsity of NWq,d,t is qt, therefore the graph isomorphism algorithm
has a running time of quasi-poly(qt). Thus, overall the reduction requires quasi-poly(qt) time.
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C Missing proofs from Section 4

C.1 Proof of Lemma 4.1

Let f be a non-degenerate n-variate affine projection of g, where

f = T1 + · · ·+ Ts,

Ti = ∏d
j=1 lij with lij ∈ Li. The set Li is linearly independent for all i ∈ [s] by the non-

degeneracy conditions. Fix an i and choose Ai ∈ GL(n, F), such that Ti(Aix) = ∏d
j=1 xij ,

by extending the linear forms in Li to a set of n linearly independent linear forms. Consider,

h = f (Aix) = T̃1 + · · ·+ T̃s

where T̃j = Tj(Aix) for all j ∈ [s], and define

Ũ := 〈∂kh(x)〉, Ũj := 〈∂kTj(Aix)〉, Ṽ := 〈∂k+2h(x)〉, Ṽj := 〈∂k+2Tj(Aix)〉.
By Lemma 3.2 (see footnote 16), Ũ ∼= U, Ũj

∼= Uj, Ṽ ∼= V and Ṽj
∼= Vj. Further, Adj(∂2, U, V), as

a set of tuples of matrices with respect to appropriate bases for U and V, is equal to Adj(∂2, Ũ, Ṽ),
as a set of tuples of matrices with respect to appropriate bases for Ũ and Ṽ. Thus, showing
D̃(Ũi) ⊆ Ũi implies D(Ui) ⊆ Ui, where D̃ ∈ Adj(∂2, Ũ, Ṽ) and D ∈ Adj(∂2, U, V).

As T̃i = ∏d
j=1 xij , a basis of Ũi, call it B̃i, is the set of all degree d− k multilinear monomials

in {xi1 , · · · xid}. Extend B̃i to a basis of Ũ. Let ũ ∈ Ũi which is a multilinear polynomial in
{xi1 , · · · xid}. Suppose

D̃(ũ) = ũ1 + ũ2 · · ·+ ũs,

where ũj ∈ Ũj. Choose xα such that ∂2ũ
∂xα = 0. Such a monomial exists because ũ is a multilinear

polynomial in {xi,1, xi,2 . . . xi,d}. Then

∂2(D̃ũ)
∂xα

=
∂2ũ1

∂xα
+ · · ·+ ∂2ũs

∂xα

=⇒ Ẽ
(∂2ũ

∂xα

)
=

∂2ũ1

∂xα
+ · · ·+ ∂2ũs

∂xα

=⇒ ∑
j 6=i

∂2ũj

∂xα
= 0

=⇒
∂2ũj

∂xα
= 0 ∀j 6= i.

The last implication follows from the direct sum of the Ṽj spaces. Thus, for all mono-
mials xα which are not multilinear monomials in {xi1 , · · · xid}, the last equality holds. Since

char(F) = 0 or > d, for any polynomial p(x), ∂2 p
∂xα is 0 for the set of monomials just mentioned

iff p is a multilinear polynomial in {xi1 , · · · xid}. Thus, ũj is a degree d − k multilinear poly-
nomial in {xi1 , . . . xid}. Hence, ũj ∈ Ui which implies ũj = 0 by the direct sum condition.
Thus, D̃(Ũi) ⊆ Ũi implying D(Ui) ⊆ Ui. Repeating this argument for all i ∈ [s], we get that
D(Ui) ⊆ Ui for all i ∈ [s]. It easily follows from the direct sum structure of U and V and
∂2 : U → V being block diagonal that E(Vi) ⊆ Vi for all i ∈ [s].

Because of the direct sum structure of U and V and the fact that the Ui and Vi spaces are
invariant under the adjoint operators, bases can be found for U and V where Adj(∂2, U, V) is a
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set of tuples of block diagonal matrices with respect to these bases. Further, every ∂2 : U → V is
also block diagonal. Thus, Adj(∂2, U, V)) is comprised of Adj(∂2, Ui, Vi)’s which are the adjoint
of the individual Ti’s. As each Ti is equivalent to a multilinear monomial T̃i and Adj(∂2, Ũi, Ṽi)
is trivial (provable by a modified Lemma 3.4), by Lemma 3.2 it follows that Adj(∂2, Ui, Vi) is
trivial and thus so is Adj(∂2, U, V).

C.2 Proof of Lemma 4.2

The proof is similar to that of Lemma 3.5. By Lemma 4.1, there exists a basis B with respect to
which D is a block diagonal matrix, with each block being a constant multiple of the identity
matrix. Since each block of D has equal diagonal entries and there are s blocks, showing that
any two distinct blocks have different diagonal entries suffices. Let {D(1), D(2) . . . D(b)} be the
elements of the basis computed for Adj(∂2, U, V)1 = {D | (D, E) ∈ Adj(∂2, U, V)}. A random
element of Adj(∂2, U, V)1 is of form ∑b

j=1 cjD(j), where cj ∈r S ⊆ F. Note that:-

• Define 1Ui and 1Vi as the projection operator to the spaces Ui and Vi, respectively. In
the basis B, the i-th block of 1Ui is the identity matrix while the rest are all 0 blocks.
Then (1Ui , 1Vi) ∈ Adj(∂2, U, V) because for any u ∈ U and any ∂2 operator, where u =
u1 + · · ·+ us, v = v1 + · · ·+ vs, ∂2(u) = v, ui ∈ Ui and vi ∈ Vi, it holds that:

∂2(1Ui(u)) = ∂2(ui) = vi and 1Vi(∂
2u) = 1Vi(v) = vi

Therefore, (∑s
i=1 λi1Ui) belongs to Adj(∂2, U, V), where λi 6= λj for i 6= j. Clearly,

∑s
i=1 λi1Ui is a block-diagonal matrix with each block being a scalar multiple of identity,

hence it has s distinct eigenvalues.

• Let i1 6= i2 and D[i1][i1] denote the diagonal entry of the i1-th block of an operator D.
The difference of the diagonal entry of the i1-th and i2-th block is ∑b

j=1 cj(D(j)[i1][i1] −
D(j)[i2][i2]) which is a linear polynomial in cj’s. As 1Ui is in the adjoint, this polynomial
in cj’s is non-zero.

Applying the Schwartz-Zippel lemma on this polynomial, the i1-th and i2-th block have
the same diagonal entries with probability ≤ 1

|S| . By applying union bound on all (s
2) possible

pairs of i1 and i2, the probability that some pair of blocks have equal diagonal entries is ≤ (s
2)
|S| .

Hence, D has s distinct eigenvalues with probability ≥ 1− (s
2)
|S| .

C.3 Proof of Lemma 4.3

By Lemma 4.1, there exists a basis B where D is a block diagonal matrix where each block is
a scalar multiple of the identity matrix. In B, the i-th block of (D− λi I) is the 0 matrix while
the other blocks in D − λi I are non-zero multiples of the identity matrix as by Lemma 4.2, D
has s distinct eigenvalues. Thus, Ker(D− λi I) = Ui.

C.4 Proof of Lemma 4.4

Let the y variables be assigned the linear forms {l1, . . . , lm}, where lq = ∑n
r=1 aq,rxq. Let the

matrix A ∈ Fm×n represent the linear forms. Then,

f (x) = g(Ax) = T1 + · · ·+ Ts

38



is a polynomial with Ti := ∏d
j=1 lij and lij ∈ Li.

Note that the set Li can be expressed as a d × n matrix Ai, with entries as aq,r. If there
exists a d× d minor of Ai with a non-zero determinant, then Li is linearly independent. By the
Schwartz-Zippel lemma, with probability ≥ 1− d

|S| , where S ⊆ F, there exists a d× d minor
in Ai which has a non-zero determinant when the aq,r are chosen randomly from S. By union
bound on all s sets, the probability that all Li are linearly independent for i ∈ [s] is ≥ 1− ds

|S| .

For non-degeneracy condition 1, consider the (n+k−1
k )× s(d

k) matrix B1, with rows indexed
by degree k monomials in x and columns indexed by the degree k derivatives of the monomials
of g with li’s substituted. Each row of C1 represents an element of {∂k f } expressed as a linear
combination of the elements of {∂kg(Ax)}with the entries as polynomials in aq,r. Similarly, we
have the (n+k+1

k+2 )× s( d
k+2) matrix B2 for the space V with entries as polynomials in aq,r.

If there exists a minor of dimension23 s(d
k)× s(d

k) with non-zero determinant in B1, then
dim U = s(d

k). This determinant is a polynomial of degree ds(d
k) in mn variables. By the

Schwartz-Zippel lemma, if this determinant is non-zero for some choice of aq,r’s, then with

probability ≥ 1− ds(d
k)
|S| , this determinant is non-zero for a random choice of aq,r from S ⊆ F.

Similarly, if B2 has a minor of dimension s( d
k+2)× s( d

k+2) with non-zero determinant for some

choice of aq,r, then dim V = s( d
k+2) with probability ≥ 1− ds( d

k+2)

|S| . For |S| ≥ sdk+3, both the
non-degeneracy conditions hold with high probability. We now show that there exists a choice
of aq,r’s for which B1 and B2 have full column rank.

Consider the following two-stage process of assigning linear forms to y:

1. Each of the y variables of g are assigned
√

n partition variables {p1, p2 . . . p√n} of the n
variables where each pi corresponds to a

√
n size partition Wi of x.

2. For each pi, a linear form is chosen in the variables contained in Wi.

The two-stage random process involves assigning to each y variable a pi chosen uniformly
at random and then replacing pi with a random linear form in the variables of Wi. The claim is
that under this random process, dim U = s(d

k) and dim V = s( d
k+2) with non-zero probability.

Let gi and gj be two arbitrary monomials of g with gcd hi,j. By the design condition, hi,j

has < t variables. Let hi := gi
hi,j

and hj := gj
hi,j

. After assigning partition variables to gi and gj, let
Mi and Mj denote the monomials in the partition variables respectively and similarly denote
M̃i and M̃j for hi and hj.

Let N =
√

n and Fi,j be the event deg gcd(Mi,Mj)≥ t+ c. Note that the common variables
in gi and gj are already assigned the same partition, thus deg gcd(Mi,Mj) rises iff there are
variables in the variable disjoint monomials g̃i and g̃j which get assigned the same partition
variable. Thus,

deg gcd(M̃i, M̃j) ≥ c ⇐⇒ deg gcd(Mi, Mj) ≥ t + c.

Clearly, deg gcd(M̃i,M̃j) ≥ c if and only if ∃M such that deg M = c and M|M̃i and M|M̃j.
A monomial in N variables of degree d can be formed by choosing d variables uniformly at
random with repetition in Nd ways. Suppose M divides M̃i for some degree c monomial M.
Such an M̃i can be formed by first forming the degree c monomial M, which can be done in
≤ (d

c)(
c

α1 ...αN
), and then choosing the remaining variables in Nd−c ways. Thus

23Note that k will be chosen such that the number of rows is greater than the number of columns to ensure this
is possible.
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Pr[M|M̃i, deg M = c] ≤
(d

c)(
c

α1...αN
)Nd−c

Nd =
(d

c)(
c

α1...αN
)

Nc ,

where ( c
α1 ...αN

) ≤ c! is the multinomial coefficient corresponding to M.
Since M̃i and M̃i are selected independently of one another (as g̃i and g̃j are variable

disjoint), therefore

Pr[M|M̃i, M|M̃j] ≤
(d

c)
2
( c

α1 ...αN
)

2

N2c .

Using union bound on all possible degree c monomials ((N+c−1
c ) of them) gives

Pr[Fi,j] ≤ ∑
∑ αi=c

(d
c)

2
( c

α1 ...αN
)

2

N2c .

Finally, applying union bound on the (s
2) possible pairs of monomials:

Pr[∃ i, j ∈ [s] : Fi,j] ≤ ∑
1≤i<j≤s

∑
∑ αi=c

(d
c)

2
( c

α1...αN
)

2

N2c

=

(
s
2

)
∑

∑ αi=c

(d
c)

2
( c

α1...αN
)

2

N2c

≤ s2 (
d
c)

2

N2c ∑
∑ αi=c

(
c

α1 · · · αN

)2

≤ s2 (
d
c)

2

N2c ∑
∑ αi=c

(c!)2 = s2 (
d
c)

2
(c!)2(N+c−1

c )

N2c

≤ s2 d2c(N+c−1
c )

N2c = s2 d2c

N2c

c

∏
j=1

(N + j− 1
j

)
.

As n > d4 ≥ 1 and N+j
j+1 ≤

N+j−1
j for all j ≥ 1, therefore N+j−1

j ≤ N. Thus

s2 d2c

N2c

c

∏
j=1

(N + j− 1
j

)
≤ s2 d2cNc

N2c =
s2d2c

Nc .

We need that

s2d2c

Nc < 1 ⇐⇒ s2 <
(N

d2

)c
.

Using N =
√

n and taking c =
⌊

2 log(s)
log(
√

n/d2)

⌋
+ 1, the gi’s after being mapped to monomials in p

have gcd of degree < t + c with non-zero probability as:

s2d2c

Nc =
d2
√

n
< 1.

and n > d4. Since the partitions are variable disjoint, the linear forms assigned to each mono-
mial are linearly independent. Let k = t + c. When the Ti’s, which are product of linear
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forms, are expanded, the gcd of any two monomials from different Ti’s is of degree < k. Also,

d ≥ 2k + 2. Hence, for any xα with |α| = k, ∂k f
∂xα = ∂kTi

∂xα for some i. Thus, for k = c + t,
the direct sum and equality hold for U and V by a proof similar to that of Lemma 3.1. Due
to non-degeneracy condition 2 and Lemma 3.2 (see footnote 16), dim Ui = (d

k). Therefore
dim U = s(d

k) and similarly dim V = s( d
k+2). Finally, the number of rows is greater than the

number of columns in B1 for this choice of k as:(
n + k− 1

k

)
≥
(n

k

)k
and s

(
d
k

)
≤ s
( ed

k

)k

Thus, if

s
( ed

k

)k
<
(n

k

)k
⇐⇒ s <

( n
ed

)k

then we are done. Now, k > 2 log(s)
log(
√

n/d2)
, therefore

( n
ed

)k
>
( n

ed

) 2 log(s)
log(
√

n/d2) > s.

Similarly, the number of rows is greater than the number of columns in B2 as well. The con-
straint on |F| can be easily derived from |S| ≥ sdk+3, n ≥ d4+ε and the choice of k.

C.5 Proof of Proposition 4.1

The proof is similar to that of Proposition 3.1. Assume black-box access to the Ti’s is available.
Fact 2.4 gives black-box access to the irreducible factors of Ti up to scaling by field elements.
Since Ti is in the orbit of a monomial, it must factor into a product of linear forms. From black-
box access to the factors of Ti, the linear forms can be recovered by querying the black-box at
the set of points {ei : i ∈ [n]}, where ei is the point with i-th coordinate 1 and the rest as 0.
Normalize the coefficients of all the linear forms across all the black-boxes of the Ti’s for all
i ∈ [s]. Thus, per Ti we get a product of linear forms Qi which is multiplied by some field
element due to the normalization process.

Now, assign to each linear form a y variable while maintaining the consistency of assign-
ment across Ti’s, to get a transform B ∈ Fm×n. Since it is not known which variable is mapped
to a particular linear form in the original transformation, the recovered linear forms are as-
signed to a permutation of the variables. Thus, the transform B that is returned is related to
A as B = PSA, for some permutation matrix P and scaling matrix S, where both are m × m
matrices and the scaling is due to the normalization.

Finally, for each Ti, form a monomial hi by replacing each linear form of Qi with the y
variable corresponding to it in the transform B. This forms the polynomial h(y) = c1h1 +
· · ·+ cshs, with ci’s being constants resulting from the normalization of the linear forms, such
that f = h(Bx). The polynomial h is a multilinear (m, d, s, t) design polynomial as each Ti is a
product of d distinct linear forms mapped to distinct y variables.

For the time complexity, Fact 2.4 is executed s times, and each invocation requires time
poly(n, d). The linear forms can be recovered and normalized in poly(m, n, d, s) time. Similarly,
h can be formed in poly(m, n, d, s) time. Hence, the recovery process takes poly(m, n, d, s) time.

When the input is f = g(Ax + b), the recovery of the translation vector b is similar, as
the returned black-box factors are affine forms and querying them at all 0’s recovers b up to
scaling. Thus, the recovered transform B is PSA, and the recovered translation vector c is PSb.
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C.6 Proof of Proposition 4.2

The time complexity of Algorithm 4 is dominated by Steps 1 and 2. Step 1 uses Fact 2.1 to
compute black-box access to the basis. The precise time complexity of Fact 2.1 for a single
invocation is poly(n, dl) where l is the number of variables in xα with respect to which differ-
entiation is done. Note l ≤ min(k, n). Since there are (n+k−1

k ) many order k derivatives and
k < n, Step 1 needs poly((n+k

n )dk time to execute. The complexity of Step 2 is poly(n, s, dt) by
Proposition 4.3.

Using Fact 2.3, Step 3 can be executed. There are O(sdk) many linearly independent poly-
nomials (since dim U = s(d

k) = O(sdk)) of degree d− k and (n+k−1
k ) many derivatives of degree

k, hence Step 3 requires poly(s, (n+k
k )dk) time. The running time of the recovery procedure is

poly(m, n, s, d) by Proposition 4.1.
Thus, the overall complexity of the algorithm is poly(m, s, (n+k

k )dk). Further, since n >

d > k, this simplifies to poly(m, s, (nd)k). For the given choice of k and because n ≥ d4+ε,
(nd)k = poly(nt, s). Hence, the complexity is poly(m, s, nt).

C.7 Proof of Proposition 4.3

The dominant time complexity is that of Step 1, which involves solving a system of (n+1
2 ) ·

dim(V) · dim(U) many linear equations in dim(U)2 + dim(V)2 variables. Since dim(U) =

s(d
k) < sdk and dim(V) = s( d

k+2) < sdk+2, there are poly(nsdk) linear equations and poly(sdk)

variables in the system. Thus, such a system can be solved in poly(nsdk) time. The computa-
tion of the eigenvalues requires factoring a univariate polynomial of degree sdk, which can be
done in (randomized) poly(sdk) time, and computing the null spaces, which can also be done
in poly(sdk) time. Thus, the overall time complexity is poly(nsdk). Now,

k = t +
⌊ 2 log s

log(
√

n/d2)

⌋
+ 1 < t +

2 log s
log(
√

n/d2)
+ 1.

Thus,

dk < dt+1d
2 log s

log(
√

n/d2) = dt+1s
2 log(d)

log(
√

n/d2) < dt+1s4/ε.

The last inequality follows because n ≥ d4+ε. Thus, the time complexity is poly(n, s, dt).
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