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Abstract

We prove an exponential lower bound for expressing a polynomial as a sum of product of low
arity polynomials. Specifically, we show that for the iterated matrix multiplication polynomial,
IMMd,n (corresponding to the product of d matrices of size n × n each), any expression of the
form

IMMd,n =

s∑
i=1

m∏
j=1

Qij ,

where the Qij ’s are of arity at most t ≤
√
d (i.e. each Qij depends on at most t variables), the

number of summands s must be at least dΩ( d
t ).

A special case of this problem where the Qij ’s are further restricted to have degree at most
one was posed as an open problem by Shpilka and Wigderson [SW99] and recently resolved in
[KS15a]. We show that a refinement of the argument in [KS15a] yields the above-mentioned
lower bound on s, regardless of the degrees of the Qij’s (and also regardless of m, the number of
factors in each summand). Lower bounds for the same model were also obtained in an almost
simultaneous but independent work by Kumar and Saraf [KS15b].



1 Introduction

The most natural way to compute a polynomial is via a sequence of basic arithmetic operations
+,−,×. This is formalized via the model of arithmetic circuits: an arithmetic circuit contains
addition (+) and multiplication (×) gates and it naturally computes a polynomial in the input
variables over some underlying field. We typically allow the input edges to a + gate to be labeled
with arbitrary constants from the underlying field F so that a + gate can in fact compute an
arbitrary F-linear combination of its inputs. A major open problem is to prove superpolynomial
lower bounds for the size of a circuit computing some explicit polynomial. As a possible step-
ping stone, researchers have focused on restricted (but still nontrivial and interesting) subclasses
of arithmetic circuits. In particular, circuits of low depth1 are interesting for they correspond to
computation which is highly parallel. An extra motivation for investigating lower bounds for low
depth arithmetic circuits is provided by the depth reduction results initiated by the work of Hyafil
[Hya79] with a significant improvement by Valiant et al. in [VSBR83] and subsequent refinements
and improvements in [AJMV98, AV08, Koi12, GKKS13a, Tav13]. Lower bounds for low depth cir-
cuits enhance our understanding of the limits of depth reduction and strong enough lower bounds
for low depth circuits would even imply lower bounds for general arithmetic circuits2. Note that
proving lower bounds for circuit classes is considered to be among the most challenging problems in
theoretical computer science and in particular, proving superpolynomial lower bounds for bounded
depth arithmetic circuits remains an outstanding open problem.

Previous work on lower bounds. Arithmetic circuits being the most natural model for com-
puting polynomials have been widely investigated and lower bounds are known for many restricted
subclasses of arithmetic circuits such as for monotone circuits [JS82], for noncommutative formulas
and branching programs [Nis91], for multilinear formulas [Raz09] and for regular formulas [KSS14].
See [SY10] for a more comprehensive survey of this area. Most relevant to the present work is a
line of research on lower bounds for low depth arithmetic formulas3.

Lower bounds for low depth formulas. If a formula C of depth ∆ computes a polynomial f(x)
of degree d on N variables4 then it corresponds to an identity of the form5

f(x) =

s∑
i=1

m∏
j=1

Qij , (1)

where the Qij ’s are simpler polynomials in the sense that they are computed by (small) formu-
las of depth (∆ − 2). Nisan and Wigderson [NW97] considered the case where each Qij is of

1 Recall that the depth of a circuit is the maximum length of any path in the circuit.
2 For example, the result of [Tav13] states that a lower bound of Nω(

√
d) for homogeneous depth four circuits

computing an N -variate polynomial f(x) of degree d implies that f has no poly(N)-sized arithmetic circuits.
3 Constant depth circuits can be simulated by constant depth formulas incurring only a polynomial overhead and

hence the two terms - constant depth circuits and constant depth formulas - are often used in an interchangeable
manner.

4 The polynomial f which is supposed to be computed by our circuit is also referred to as the target polynomial
or the output polynomial for C.

5 Most multivariate polynomials of interest are irreducible and in such a case we can assume without loss of
generality that the output gate of the formula is a + gate. By merging any + gate adjacent to the output gate into
a single + gate (with slightly larger fanin), we can assume without loss of generality that all the gates feeding into
the output gate are × gates.
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degree one (so that C overall corresponds to depth three circuits) and obtained a lower bound

of roughly6
(
N
m

)Ω(d)
. Recently, [GKKS13b, KSS14] (building on [Kay12]) generalized it to Qij ’s

of low degree (degree at most t) and obtained a lower bound of7 roughly
(
N
m

)Ω( d
t
)

(with subse-
quent improvements in the complexity of the target polynomial by [FLMS14, KS14a]). Building on

this, [KLSS14b, KS14c, KLSS14a] obtained a lower bound of roughly8
(
N
m

) d·log d
log t for the case when

the Qij ’s are t-sparse polynomials (with subsequent improvements in the complexity of the target
polynomial in [KS14b]). Now note that when the Qij ’s have degree one (so that C corresponds
to depth three circuits), the overall size of the circuit is O(s · m · N) while the lower bound of
[NW97] degrades rapidly as m increases and becomes trivial as m exceeds the number of variables
N . Shpilka and Wigderson [SW99] pointed out9 that the techniques available at that time did
not seem to yield lower bounds (for large m) even when the Qij ’s are degree one polynomials of
bounded arity10, say of arity t = O(1) and posed this case as an open problem. Recently, [KS15a]
showed that the complexity measure developed in [KLSS14a] (to handle the case of sparse Qij ’s)

also applies to the problem posed in [SW99] and yields a lower bound11 of roughly NΩ( d
t ) (regard-

less of the number of factors m in each term). Also, it follows12 from the work of [GKKS13a] that
any asymptotic improvement in the exponent of the lower bound in [KS15a] would lead to super-
polynomial lower bounds for general arithmetic circuits. While we do not improve the asymptotics
of the lower bound in [KS15a], we show here that a refinement of that argument can be used to
remove the degree restriction on the Qij ’s without incurring any asymptotic loss in the lower bound.

Our results. The target polynomial to which our lower bound applies is the iterated matrix
multiplication polynomial which we now define.

Definition 1. The Iterated Matrix Multiplication Polynomial. Fix any d, n ∈ N with
d, n ≥ 2. Define sets of variables X1, X2, . . . , Xd as follows. If p ∈ {1, d}, Xp = {xj,p} is a
set of n variables; otherwise Xp = {xi,j,p} is a set of n2 variables. We think of X1 and Xd as
row and column vectors of variables respectively and of Xp (for p ∈ {2, 3, . . . , (d − 1)} as n × n
matrices of variables. Now we define IMMd,n as (the unique entry of) the product of the matrices
X1, X2, . . . , Xd. Formally,

IMMd,n =
∑

j1,j2,...,jd−1

xj1,1 · xj1,j2,2 · . . . · xjd−2,jd−1,d−1 · xjd−1,d.

6 for N � d
7 for N � d.
8 For the situation where N ≥ d2. The lower bound is independent of the degree of the Qij ’s but as the lower

bound expression itself indicates, it degrades rapidly with m.
9 [SW99] were motivated in part by the fact that the elementary symmetric polynomials (which are some sort of

arithmetic analogs of threshold gates) can be computed by O(N2)-sized expressions of the form (1) wherein the Qij ’s
have degree one and arity also one.

10 Recall that the arity of a function is the number of variables on which it depends. In particular, for a polynomial
f(x1, x2, . . . , xN ) its arity is the number of variables xi such that degxi

(f) > 0.
11 For arity t upto O(

√
d) and for N � d.

12 It was pointed to us by Ramprasad Saptharishi (personal communication) that the depth reduction result in
[GKKS13a] implies in particular that if an N -variate polynomial f(x) of degree d can be computed by poly(N)-sized
arithmetic circuits then it admits a representation of the form (1) wherein the Qij ’s have degree one, arity at most√
d and s,m ≤ NO(

√
d).
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Throughout the rest of this paper, we will use N = 2n+ (d−2)n2 to denote the number of variables
in IMMd,n and x = (x1, x2, . . . , xN ) to denote the tuple of N variables involved in IMMd,n.

We consider representations of the form

IMMd,n(x) =

s∑
i=1

Qi1(x) ·Qi2(x) · . . . ·Qim(x), where arity of Qij ≤ t ∀ i, j. (2)

and give an exponential lower bound on the number of summands s in any such representation.
Formally, we have:

Theorem 1. Lower Bound for sums of product of low arity polynomials. Let F be a field
and let IMMd,n be the polynomial corresponding to the iterated product of d matrices of size n× n
each as defined above. Then for n = d5, in any expression of the form

IMMn,d =

s∑
i=1

Qi1 ·Qi2 · . . . ·Qim,

where each Qij is a polynomial of arity at most t ≤
√
d (i.e. Qij depends on at most t variables),

the number of summands s must be at least dΩ( d
t ).

As indicated above, our argument is a refined (and a bit more subtle) version of the argument in
[KS15a] and we highlight the difference in the proofs in more detail in remark 10, after giving the
proof of our main theorem.

A recent independent result. Very recently, an independent and almost simultaneous piece
of work by Kumar and Saraf [KS15b], has results and techniques which are very similar to this
work. In particular both employ the complexity measure called the dimension of projected shifted
partials (DPSP for short) for proving the lower bound in this model. There are a few (perhaps
relatively minor) differences though. [KS15b] seek to allow the arity of the Qij ’s to be as large as
possible while still obtaining a nontrivial lower bound and so they chose the target polynomial to
be the Nisan-Wigderson design polynomial from [KS15a] and this allows them, over a field F of
characteristic zero, to have the arity of the Qij ’s to be as large as Nµ for any constant µ < 1. On
the other hand, we wanted our target polynomial to be easy to compute and the lower bound to
hold over any field and hence choose the target polynomial to be the iterated-matrix multiplication
polynomial which is easy to compute and for which a lower bound on the DPSP-complexity over
any field F was obtained in an earlier work by Kumar and Saraf [KS14b]. This then yields a lower
bound over any field F but wherein the arity of the Qij ’s is substantially smaller compared to
[KS15b]. The proofs are also similar but there are some small technical differences which then
allow our lower bound to be independent of m. Meanwhile, Kumar and Saraf [KS15b] go on to
apply the lower bound techniques to do identity testing of similar circuits and obtain further nice
results in that direction.

2 Preliminaries

Homogeneous components of polynomials. Let f(x) ∈ F[x] be a polynomial of degree d. The
r-th homogeneous component of f , which we denote by f [r] is the sum of all monomials of (total)
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degree exactly r with corresponding coefficients from f , i.e. the coefficient of any monomial m in
f [r] is the same as the coefficient of m in f if m has degree r and is zero otherwise. Note that any
f admits a unique decomposition into homogeneous components as follows:

f(x) = f [0] + f [1] + . . .+ f [d−1] + f [d].

A numerical estimate. The following numerical estimate from [GKKS13b] will be useful.

Lemma 2. Let a(n), b(n), c(n): Z>0 7→ Z be integer valued functions such that (|b|+ |c|) = o(a).
Then

ln
(a+ b)!

(a− c!)
= (b+ c) ln a±O

(
b2 + c2

a

)
The proof is a simple application of Stirling’s formula for estimating factorials.

3 Proof of theorem 1

In this section, we give a proof our main theorem, namely theorem 1. We want to prove lower
bounds for representations of the form

IMMd,n(x) =

s∑
i=1

Qi1(x) ·Qi2(x) · . . . ·Qim(x), where arity of Qij ≤ t ∀ i, j. (3)

We give an outline of the proof before filling in the details.

3.1 Proof Outline

We first do some preprocessing to ensure that each Qij has a nonzero constant term as follows.
Starting from equation (3), we do a random translation x 7→ x + a to obtain another identity of
the form

IMMd,n(x) =

s∑
i=1

T
[d]
i , where Ti =

m∏
j=1

Q̂ij(x) and Q̂ij(0) 6= 0, arity(Q̂ij) ≤ t. (4)

for all 1 ≤ i ≤ s, 1 ≤ j ≤ m. We then employ a suitable complexity measure DPSP : F[x] 7→ R≥0

and compare the value of DPSP for the two sides of an identity of the form (4) to obtain the lower
bound. In a bit more detail we have:

1. [Step 1]: We formally define the DPSP measure and note down its basic properties, including
the fact that DPSP is sub-additive, i.e. for any two polynomials f and g and for all α, β ∈ F
it holds that DPSP(α · f + β · g) ≤ DPSP(f) + DPSP(g).

2. [Step 2]: For all 1 ≤ i ≤ s we have DPSP(T
[d]
i ) is relatively small (see lemma 8 for the

quantitative bound).

3. [Step 3]: DPSP(IMMd,n) is relatively large (see lemma 9 for the quantitative bound).

We then fit these pieces together in section 3.6 to obtain the lower bound given in theorem 1.
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3.2 The preprocessing step

Consider the identity given by equation (3). First note that we can assume without loss of generality
that every Qij is a nonzero polynomial (else the corresponding term vanishes and we obtain a similar
but smaller identity). Now apply the translation x 7→ x + a. We then have:

IMMd,n(x + a) =

s∑
i=1

Qi1(x + a) ·Qi2(x + a) · . . . ·Qim(x + a).

Let Q̂ij(x)
def
= Qij(x+a) and let Ti(x)

def
=
∏m
j=1 Q̂ij(x). Note that for each i, j we have arity(Q̂ij) =

arity(Qij) ≤ t and moreover that Q̂ij(0) = Qij(a). By a simple application of the DeMillo-Lipton-
Schwartz-Zippel lemma we get that for most points a ∈ FN , it holds that Q̂ij(0) = Qij(a) 6= 0. Fix

a point a ∈ FN such that Q̂ij(0) 6= 0 for all 1 ≤ i ≤ s and 1 ≤ j ≤ m. Let Ti
def
=
∏
j∈[m] Q̂ij . Then

we have

IMMd,n(x + a) =
s∑
i=1

Ti(x).

Comparing the homogeneous components of degree d on the two sides of the above identity we
have:

IMM
[d]
d,n(x + a) =

s∑
i=1

T
[d]
i (x).

Now since IMMd,n is homogeneous of degree d to begin with, we have that IMM
[d]
d,n(x + a) =

IMMd,n(x). This yields an identity of the form given in equation (4), as required.

3.3 Step 1: A subadditive complexity measure

The complexity measure that we employ here, called projected shifted partials was first defined
in [KLSS14a] and subsequently used again in [KS14b, KS15a, BC15]. Let m = xi1 · · ·xik be a

monomial in x. Denote ∂k

∂xi1 ···∂xik
f by ∂mf and define

∂=k
ml f := {∂mf |m is a multilinear monomial of degree k}

We will refer to ∂=k
ml f as the set of all multilinear k-th order partial derivatives of f ∈ F[x]. Let x=`

be the set of all multilinear monomials in x of degree equal to `. We denote by x=`·∂=k
ml f the set of all

polynomials of the form m·g where m ∈ x=` and g ∈ ∂=k
ml f . Define a map π : F[x] 7→ F[x] such that

when π acts on a polynomial f , it retains only and exactly the multilinear monomials of f . More
precisely, let Mf be the set of all monomials with nonzero coefficients in f . Then, π(f) :=

∑
u cumu

where mu is a multilinear monomial in Mf and coefficient of mu in f is cu. Naturally, π is a linear
map, i.e. π(af + bg) = a · π(f) + b · π(g) for every a, b ∈ F and f, g ∈ F[x]. The definition of π
extends naturally to sets of polynomials: For A ⊆ F[x], let π(A) := {π(f) | f ∈ A}. For integers k
and `, the space of projected shifted partials of f is the linear span (i.e. F-span) of the polynomials
in π(x=` · ∂=k

ml f). The measure we use is the dimension of this space of projected shifted partials,
denoted by DPSPk,` (or simply DPSP assuming parameters k and ` are fixed suitably):

DPSPk,`(f) := dim(π(x=` · ∂=k
ml f)).

Observe that the measure DPSPk,` obeys subadditivity, i.e.
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Proposition 3. (in [KLSS14a, KS14b, KS15a]): For any pair of polynomials f, g ∈ F[x] and
for all integers k, ` ≥ 0 and for all α, β ∈ F it holds that:

DPSPk,`(α · f + β · g) ≤ DPSPk,`(f) + DPSPk,`(g).

In particular, this means that in order to bound how large our measure can be for the right hand

side of the equation (4), it suffices to obtain an upper bound on a single term T
[d]
i , where the

corresponding Ti is a product of polynomials of low arity. We will also use the following property

of DPSP in order to obtain an upper bound on DPSP(T
[d]
i ).

Proposition 4. For any polynomial f(x) ∈ F[x] and for all k, `, r ≥ 0 we have

DPSPk,`(f
[r]) ≤ DPSPk,`(f)

Proof. For a set of polynomials A ⊆ F[x], let

A[r] def
= {f [r] : f ∈ A}.

From the definition above, it follows that

π(x=` · ∂=k
ml f

[r]) = π(x=` · ∂=k
ml f)[r−k+`].

Consequently

DPSPk,`(f
[r]) = dim

(
F-span

(
π(x=` · ∂=k

ml f
[r])
))

= dim
(
F-span

(
π(x=` · ∂=k

ml f)[r−k+`]
))

≤ dim
(
F-span

(
π(x=` · ∂=k

ml f)
))

where the last inequality follows from the fact that

dim(F-span
(
A[r]

)
) ≤ dim(F-span (A)) for any A ⊆ F[x] and any r ≥ 0.

Remark 5. We note in passing that a similar statement holds in much more generality. Suppose
that π : F[x] 7→ R≥0 is any complexity measure that is subadditive, i.e.

π(α · f + β · g) ≤ π(f) + π(g), for any α, β ∈ F

and scale-invariant, i.e.

π(f(α · x1, α · x2, . . . , α · xN ) = π(f(x1, x2, . . . , xN )) for any α ∈ F \ {0}.

Then for all inetgers r ≥ 0 we have

π(f [r]) ≤ (1 + deg(f)) · π(f).

This is because any homogeneous component of f can be expressed as a linear combination of
(deg(f) + 1)-many scaled versions of f(x) (polynomials of the form f(α · x) for α ∈ F). The
advantage of DPSP is that we do not incur even the (1 + deg(f))-factor in going from f to its
homogeneous components.
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3.4 Step 2: Upper bounding DPSP for a single term.

Our upper bound for the DPSP-complexity of a term is a refined (and more subtle) version of the
argument in [KS15a]. We first recall the elementary symmetric polynomials -

ESymd(y1, y2, . . . , ym)
def
=

∑
S⊆{1,2,...,m}
|S|=d

∏
i∈S

yi

is the elementary symmetric polynomial of degree d on the m formal variables y1, y2, . . . , ym. We
will need the following lemma which is implicit in [KS15a].

Lemma 6. Let R1(x), R2(x), . . . , Rm(x) ∈ F[x1, x2, . . . , xN ] be any set of m polynomials each of
arity at most t. Then for all r ≥ 0, all k ≥ 0 and all ` ≤ N

2 − 2kt we have

DPSPk,`(ESymr(R1, R2, . . . , Rm)) ≤ 3
√
r ·
(√

2r + k

k

)
·
(

N

`+ 2kt

)
Remark 7. This upper bound is obtained in [KS15a] by expressing ESymr(R1, R2, . . . , Rm) as a
sum of (3

√
r)-many sums of products of low support polynomials (i.e. polynomials in which every

monomial has only a few distinct variables). For the bound stated here, we need to also observe
that for bounding the DPSP-complexity of a product of low support polynomials P = L1 ·L2 ·. . . Lm,
it is essentially only the number of distinct Lj ’s that is important and in this case this quantity can
be upper-bounded by

√
2r.

Lemma 8. Consider a term

Ti(x) = Q̂i1(x) · Q̂i2(x) · . . . · Q̂im(x),

where each Q̂ij has arity at most t and Q̂ij(0) 6= 0. Then for all d ≥ 0 and all k ≥ 0 and all
` ≤ N

2 − 2kt, it holds that

DPSPk,`(T
[d]
i ) ≤ d · 3

√
d ·
(√

2d+ k

k

)
·
(

N

`+ 2kt

)
.

Proof. Let Q̂ij(x) = αij · (1 + Rij(x)), where αij 6= 0 and Rij(x) consists only of monomials of

(total) degree at least one. Let α
def
=
∏
j∈[m] αij and R

def
= (Ri1(x), Ri2(x), . . . , Rim(x)). We then

have

Ti(x) = α · (1 +Ri1) · (1 +Ri2) · . . . · (1 +Rm1)

= α · (1 + ESym1(R) + ESym2(R) + . . .+ ESymm(R))

Thus

T
[d]
i (x) = α · (ESym[d]

1 (R) + . . .+ ESym
[d]
d (R) + . . .+ ESym[d]

m (R))

= α · (ESym[d]
1 (R) + ESym

[d]
2 (R) + . . .+ ESym

[d]
d (R))

where the last equality holds for the following reason: since each Rij(x) consists of monomials
degree at least one, it follows that any degree-r homogeneous expression in R (and ESymr(R)
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in particular) consists only of monomials of degree r or more and hence ESym
[d]
r (R) = 0 for any

r > d. By subadditivity of the DPSP-measure we have

DPSPk,`(T
[d]
i ) ≤

d∑
r=1

DPSPk,`(ESym
[d]
r (R))

≤
d∑
r=1

DPSPk,`(ESymr(R)) (via Proposition 4)

≤
d∑
r=1

3
√
r ·
(√

2r + k

k

)
·
(

N

`+ 2kt

)
(via Lemma 6)

≤ d · 3
√
d ·
(√

2d+ k

k

)
·
(

N

`+ 2kt

)
, as required.

This proves our upper bound on the DPSP-complexity of a term.

3.5 Step 3: Lower bounding DPSP for IMM.

The work by Kumar and Saraf [KS14b] studied the dimension of projected shifted partials of iter-
ated matrix multiplication and they obtained a lower bound on DPSP-complexity of IMMd,n over
any field F, for the appropriate choice of parameters.

Choice of parameters. We choose our parameters as follows.

n = d5, k =
d

32t
, ` =

N

2
·

(
1− d

1
32t − 1

d
1

32t + 1

)
(5)

Lemma 9. implicit in [KS14b]. Let F be any field. Then for the choice of parameters as in (5)
above, we have

DPSPk,`(IMMd,n) ≥ 1

d5
· d

7
8
·k ·
(
N

`

)
3.6 Putting everything together

With these bounds on the DPSP-complexity of the circuit and of IMMd,n in our hand, we are
ready to obtain a proof of theorem 1. Consider representations of the form given by equation (4).
Comparing the DPSP-complexity of the two sides we have:

DPSPk,`(IMMd,n) = DPSPk,`(
s∑
i=

T
[d]
i )

≤
s∑
i=1

DPSPk,`(T
[d]
i ) (via lemmas 3)

≤ s · 3
√
d ·
(√

2d+ k

k

)
·
(

N

`+ 2kt

)
(via lemma 8).
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so that

s ≥
DPSPk,`(IMMd,n)

3
√
d ·
(√

2d+k
k

)
·
(

N
`+2kt

)
s ≥

1
d5
· d

7
8
·k ·
(
N
`

)
3
√
d ·
(√

2d+k
k

)
·
(

N
`+2kt

) (via lemma 9 and for n, k as in equation (5) )

=
1

d5 · 3
√
d
· d

7
8
·k(√

2d+k
k

) · (`+ 2kt)!

(`)!
· (N − `− 2kt)!

(N − `)!

Now plugging in the choice of parameters n, k, ` as given by (5) and then using lemma 2 to estimate
the relevant ratios of factorials we get that for t = O(

√
d):

s ≥ exp

(
7

8
· d log d

32t
− 1

16
· d log d

32t
−O(

√
d)

)
≥ dΩ( d

t )
(

for t = O(
√
d)
)
.

This completes the proof of theorem 1.

Remark 10. Comparison with the proof in [KS15a]. Our proof here is very similar to the
proof in [KS15a] but there is one crucial difference that we want to highlight. Consider a term

T = Q1 ·Q2 · . . . ·Qm,

where each Qj has low arity. In the case of [KS15a], the Qj ’s are of degree 1 and hence have only
two homogeneous components - the constant term and the linear part. In that case, [KS15a] gives
an explicit way of writing T [d] in terms of the homogeneous components of the Qj ’s and this in turn

yields an expression for T
[d]
i as a sum of a relatively small (exp(

√
d)-many) number of products of

low support (homogeneous) polynomials. When the Qj ’s have larger degree then each Qj itself has
many more homogeneous components and it is not clear whether T [d] can now also be written as
a sum of a small number of products of low support polynomials. Fortunately, we are able to get
around this difficulty by the somewhat indirect argument given in section 3.4.
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