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Abstract

The determinant polynomial Det,(x) of degree n is the determinant of a n x n matrix of
formal variables. A polynomial f is equivalent to Det,(x) over a field F if there exists a
A € GL(n%,F) such that f = Det,(A - x). Determinant equivalence test over F is the follow-
ing algorithmic task: Given black-box access to a f € F[x], check if f is equivalent to Det,(x)
over FF, and if so then output a transformation matrix A € GL(nz, IF). In [Kay12], a randomized
polynomial time determinant equivalence test was given over IF = C. But, to our knowledge,
the complexity of the problem over finite fields and over Q was not well understood.

In this work, we give a randomized poly(#,log |F|) time determinant equivalence test over
finite fields IF (under mild restrictions on the characteristic and size of IF). Over Q, we give an
efficient randomized reduction from factoring square-free integers to determinant equivalence
test for quadratic forms (i.e. the n = 2 case), assuming GRH. This shows that designing a
polynomial-time determinant equivalence test over Q is a challenging task. Nevertheless, we
show that determinant equivalence test over Q is decidable: For bounded , there is a random-
ized polynomial-time determinant equivalence test over Q with access to an oracle for integer
factoring. Moreover, for any n, there is a randomized polynomial-time algorithm that takes
input black-box access to a f € Qx| and if f is equivalent to Det, over Q then it returns a
A € GL(n?,1L) such that f = Det, (A - x), where L is an extension field of Q and [L : Q] < n.

The above algorithms over finite fields and over Q are obtained by giving a polynomial-
time randomized reduction from determinant equivalence test to another problem, namely the
full matrix algebra isomorphism problem. We also show a reduction in the converse direction
which is efficient if n is bounded. These reductions, which hold over any [F (under mild restric-
tions on the characteristic and size of IF), establish a close connection between the complexity
of the two problems. This then leads to our results via applications of known results on the full
algebra isomorphism problem over finite fields [R6n87, R6n90] and over Q [IRS12, BR90].



1 Introduction

Two m-variate polynomials f(x) and g(x) with coefficients from a field [F are said to be equivalent
over FF if there exists a A € GL(m, F) such that f = g(A - x). The algorithmic task of determining
if f is equivalent to g, and if so then finding a linear transformation A such that f = g(A - x),
is known as the polynomial equivalence test problem. It is a natural problem arising in algebraic
complexity theory, becoming more important with the advent of Geometric Complexity Theory
(GCT) [MS01] — which proposes the uses of deep tools and insights from group theory, represen-
tation theory and algebraic geometry towards the study of the VP vs VNP question.

A naive approach for equivalence test is to reduce it to solving a system of polynomial equations
over F. But, unfortunately, the complexity of polynomial solvability over FF is quite high!. Never-
theless, it does appear that the complexity of equivalence test is much lower than the complexity
of solving polynomial systems. It is known that over finite fields, the polynomial equivalence
problem is in NP M co-AM (when the polynomials are given as lists of coefficients) [Thi98,5ax06].

Can we hope to solve equivalence test over C and over finite fields ? in (randomized) polynomial
time? Finding such an algorithm is indeed quite demanding as it was shown in [AS05, AS06] that
the graph isomorphism problem reduces in polynomial time to equivalence test for cubic forms
(i.e. homogeneous degree three polynomials) over any field. Over Q, it is not even known if cu-
bic form equivalence is decidable. On the other hand, we have a fairly good understanding of
the complexity of quadratic form equivalence test: Over C and finite fields, equivalence of two
quadratic forms can be tested in polynomial time due to well-known results on classification of
quadratic forms. Quadratic form equivalence over Q can be done in polynomial-time with access
to an oracle for integer factoring (IntFact). Moreover, IntFact reduces in randomized polynomial
time to quadratic form equivalence over Q (see [\Wal13]). Given this state of affairs, designing ef-
ficient equivalence tests for even bounded degree polynomials seems like a difficult proposition.
Indeed, there is a cryptographic authentication scheme based on the presumed average-case hard-
ness of equivalence test for constant degree polynomials (see [’at96]).

The work in [Kay11] initiated the study of a kind of equivalence test in which one polynomial f
is given as input and the other polynomial g belongs to a well-defined polynomial family. Some
of the polynomial families that are well-studied in algebraic complexity theory, particularly in the
context of arithmetic circuit lower bounds, are those defined by the power symmetric polynomial,
the elementary symmetric polynomial, the permanent, the determinant and the iterated matrix
multiplication polynomial. In [Kay11], randomized polynomial time equivalence tests over C
were given for the power symmetric polynomial and the elementary symmetric polynomial fam-
ilies. These equivalence tests, which also hold over finite fields and Q, work even if f is given as
a black-box®. Henceforth, let us assume that the input polynomial f is given as a black-box. Sub-

!Over C and finite fields, polynomial solvability has time complexity exponential in the input parameters. Over Q,
it is not known to be decidable.

>Typically, a computation model over C assumes that basic arithmetic operations with complex numbers and root
finding of univariate polynomials over C can be done efficiently. Also, we will work with finite fields that have suffi-
ciently large size and characteristic.

3 An algorithm with black-box access to a m-variate polynomial f is only allowed to query the black-box for evalua-
tions of f at points in F™.



sequently, in [Kay12], randomized polynomial time equivalence tests over C were given for the
permanent and the determinant polynomial families. The test for the permanent holds over finite
fields and Q, but the same is not true for the determinant equivalence test in [Kay12]. In [KNST17],
an equivalence test for the iterated matrix multiplication (IMM) was given which holds over C,
finite fields and Q (see also [Gro12]). The iterated matrix multiplication and the determinant fam-
ilies have very similar circuit complexity: Both the families are complete under p-projections for
class of algebraic branching programs (ABP) (see [MV97a, MV97b]). But, it was unclear if deter-
minant admits an efficient equivalence test over finite fields and Q, just like the iterated matrix
multiplication polynomial. In this paper, we fill in this gap in our understanding.

It is worth noting that determinant equivalence test is interesting in the context of the permanent
versus determinant problem [Val79], which conjectures that the permanent is not an affine pro-
jection of a polynomial-size determinant. Geometric Complexity Theory [MS01], an approach to
resolving this conjecture, suggests (among other things) to look for an algorithm to determine if
the (padded) permanent is in the orbit closure of a polynomial-size determinant. In this language,
determinant equivalence testing is the related problem of checking if a given polynomial is in the
orbit of the determinant polynomial.

1.1 Ouwur results

Letn € N*, X = (xij)i,je[n} be a n x n matrix of formal variables, and x = (x11 X12 ... X1 Xun) "
a column vector consisting of the variables in X arranged in a row-major fashion. The polynomial
Det, (x) := det(X); we will drop the subscript n whenever it is clear from the context. Hereafter,
we will use the acronym DET for Determinant Equivalence Test.

Theorem 1 (DET over finite fields). Let IF be a finite field such that |IF| > 10n* and char(F) { n(n —1).
There is a randomized poly(n,log |IF|) time algorithm that takes input black-box access to a f € F[x] of
degree n and does the following with high probability: If f is equivalent to Det(x) over [F then it outputs a
A € GL(n?,TF) such that f = Det(A - x); otherwise, it outputs ‘Fail’.

In [KINS18], a DET over a finite field IF, was given that is similar to the equivalence test for the
permanent in [Kay12], but the test outputs a A € GL(nZ, IF;n). Whereas, our algorithm (which is
different and relatively more involved) outputs a A € GL(n?,F,). One consequence of this is that
the average-case ABP reconstruction algorithm in [KIN5S18] holds over the base field FF,.

Theorem 2 (DET over Q). (a) There is a randomized algorithm, with oracle access to IntFact, that takes
input black-box access to a f € Q[x] of degree n and does the following with high probability: If f is
equivalent to Det(x) over Q then it outputs a A € GL(n?,Q) such that f = Det(A - x); otherwise,
it outputs ‘Fail’. If n is bounded then the algorithm runs in time polynomial in the bit length of the

coefficients of f.

(b) There is a randomized algorithm that takes input black-box access toa f € Q[x] of degree n and does the
following with high probability: If f is equivalent to Det(x) over Q then it outputs a A € GL(n?,1L)
such that f = Det(A - x), where IL is an extension field of Q and [IL : Q] < n. The algorithm runs in
time polynomial in n and the bit length of the coefficients of f.

To our knowledge, it was not known if DET over Q is decidable prior to this work. It is natural to
wonder if we can get rid of the IntFact oracle from part (a) of the above theorem. In this regard,
we show the following.



Theorem 3 (IntFact reduces to DET for quadratic forms). Assuming GRH, we give a randomized
polynomial-time reduction from factoring square-free integers to finding a A € My (Q) such that a given
quadratic form f € Q[x] equals Dety(A - x), if f is equivalent to Det,.

In other words, the complexity of IntFact is the same as that of DET over Q for quadratic forms
(modulo GRH and the use of randomization).

Theorem 1 and 2 are proved by reducing DET to the full matrix algebra isomorphism problem. A [F-
algebra A has two binary operations + and - defined on its elements such that (.4, +) is a F-vector
space, (A, +, ) is an associative ring, and for every a,b € F and B,C € A it holds that (aB)C =
B(aC) = a(BC). For example, the set M, (IF) of all n x n matrices over F is a [F-algebra with respect
to the usual matrix addition and multiplication operations; it is called the full matrix algebra. Two
F-algebra A; and A, are isomorphic, denoted by A; = A, if there is a bijection ¢ from A; to
Aj such that for every a,b € F and B,C € A it holds that ¢(aB + bC) = a¢(B) + b¢(C) and
$(BC) = ¢(B)¢(C). Any finite dimensional [F-algebra is isomorphic to a [F-algebra A" C M,,(IF),
where m = dimp(.A). A F-algebra A C M,,(IF) can be specified by a F-basis By, ..., B, € M, (F).

Definition 1.1. The full matrix algebra isomorphism (FMAI) problem over F is the following:
Given a basis of a F-algebra A C M,,(F), check if A = M, (F), where n?> = dimg(A). If A =
M, (FF) then output an isomorphism from A to M, ().

In [R6n87, Ron90], a poly(m, log |F|) time randomized algorithm was given to solve FMAI over
a finite field IF. Over Q, the FMAI problem is more difficult. In [IRS12, CFO"15], a randomized
algorithm (with access to a IntFact oracle) was given to solve FMAI over Q. The algorithm runs
in polynomial-time if dimg(.A) is bounded. In [BR90, Ebe89], randomized polynomial time algo-
rithms were given to compute an isomorphism from A ®q IL to M, (IL) for some extension field
L D Q satisfying [L : Q] < n, if A = M,(Q) to begin with. We give a randomized polynomial-
time reduction from DET to FMAI over any sufficiently large F in Sections 4, thereby proving
Theorem 1 and 2. The reduction is obtained by giving an algorithm to decompose the Lie alge-
bra of f into its two simple Lie subalgebras over any sufficiently large FF (see Section 3). We also
show a reduction from FMAI to DET (in Section 7) which is efficient if the dimension 7 is bounded.

The above results underscore the close connection between the DET and the FMAI problems. In
order to get efficient DET over Q for even bounded degree polynomials, we need to solve FMAI
efficiently for Q-algebras of bounded dimensions. Currently, the best known algorithm for FMAI
over Q uses an IntFact oracle [[RS12]. This situation of the determinant is somewhat surprising as
it contrasts that of IMM (the close cousin of the determinant) - IMM equivalence test over Q can
be solved efficiently for polynomials of degree greater than four [KNST17].

2 Preliminaries

2.1 Notations

The set of trace zero or traceless matrices in M, (IF) is denoted by Z,(FF); we will drop F from
M, (F) and Z,(IF) when it is clear from the context. Let I, be the n x n identity matrix. Define,

Mcol =L, M, Mipw:=M,®I1, and Lol = 1, ® 2y, Lrow = 2, ® I
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Observe that Mo, Mow € M, are F-algebras isomorphic to M,,, and %}, Zrow are subspaces
of M1, Miow, respectively, of dimension n? — 1 each. Henceforth, we set m = n? and r = n? — 1.

2.2 Definitions
Definition 2.1. (Lie bracket): For A, B € M, the Lie bracket operation [A, B] := AB — BA.

Definition 2.2. (Lie algebra of a polynomial): The Lie algebra g¢ of a m-variate polynomial f €
IF[x] is the set of matrices B = (b;); jc |,y Satisfying,

of _
. bijex P
ij€[m] !

It is easy to verify that |-, -] is a IF-bilinear map on M,, and gy is an IF-vector space.*

Definition 2.3. (Invariant subspace): Let V be a F-vector space and 7 C Endg(V), where Endg(V) :=
{¢ : ¢ is a F-linear map from V to V}. A subspace U of V is called a T -invariant subspace of V if
forevery p € T, p(U) CU.

If T C My, then the terminology ‘invariant subspace of 7~ means 7T -invariant subspace of F?".

Definition 2.4. (Irreducible invariant subspace): Let V be a F-vector space and 7 C Endg(V).
Then, a T-invariant subspace U of V is irreducible if there do not exist proper 7 -invariant sub-
spaces Uy, Uy of U, such that U = Uy ® Us.

Definition 2.5. (Closure of a vector): Let V be a F-vector space, w € V and 7 C Endg(V). Then,
the closure of w with respect to 7, denoted closures(w), is the smallest 7 -invariant subspace of
V containing w.

2.3 Some basic results

Observation 2.1. Fori,j € [n],i # j, let E;j € My, be such that the (i, j)-th entry is 1 and other entries
are 0, and for ¢ € [2,n], let E; € M, be a diagonal matrix with the (1,1)-th and (¢, )-th entries as 1 and
—1 respectively and other entries as 0. Then,

1. {l, ®Ejj, I, ®E; : i,j € [n],i # j, and £ € [2,n]} is a basis of L. Denote the elements of this
standard basis as S, ...,S;.

2. {Eij @Iy, Eq®1IL, 2 i,j€ [n],i#] andl € [2, n]} is a basis of Lyow. Denote the elements of this
standard basis as Sy11, ..., So;.

Observation 2.2. For every F € My, and L € My, [F,L] = FL — LF = 0.
Observation 2.3. For every L1, Ly € Ly (similarly, Liow), (L1, L2] € Lo (respectively. ZLrpw).

A proof of the following standard fact is given in Section A.1 of the Appendix.

“OverC, g ¢ also turns out to be a Lie algebra i.e. closed under the Lie bracket operation. However, over finite fields,
it is not clear if it is closed under the bracket operation. We still stick with the terminology Lie algebra of a polynomial
since in many cases, it does turn out to be closed under the bracket operation.



Fact1. Let B € M,. Then, the dimension of the space of matrices in M,, that commute with B is at least n,
and the dimension of the space of matrices in Z, that commute with B is at least n — 1.

We would also need the following facts (see [Kay12, KNST17] for their proofs).
Fact 2. If ¢ € FF[x] is m-variate and f(x) = g(A - x) for some A € GL(m,F) then gy = A~ - go - A.

Fact 3. Suppose we have black box access to a m-variate polynomial f € F[x], where |F| > 2n3. Then, a
basis of g5 can be computed in randomized polynomial time.

Fact 4. Let T C My, be a F-vector space. Given a basis {Ty,...,Ts} of T and a w € ¥, a basis of
closure(w) can be computed in time polynomial in r and the bit length of the entries in wand T, . .., Ts.

The following theorem on the Lie algebra of Det is well-known over C. We give a proof over any
tield (with a mild condition on the characteristic) in Section A.2 of the Appendix.

Theorem 4 (Lie algebra of Det). Let n > 2 and FF be a field such that char(IF) { n. Then, the Lie algebra
of Det,, equals the direct sum of the spaces Lo and L, i.e., §pet = Lrow B Lool-

The theorem implies that the set {Sq, ..., Sy}, in Observation 2.1, forms a basis of gpet. The rows
and columns of every element in gpe; are indexed by the x variables, in order. Let f = Det(A - x) for
some A € GL(m,F). Then, Theorem 4 and Fact 2 imply that gr = AV Low AP AT Ly - A
We denote A7l - Zow-Aand A7l - Ly - A by Frow and F o respectively, and refer to Frow and
Feol (similarly, Ziow and %) as the Lie subalgebras of g (respectively, gpet) 5. From Theorem 4,
Observation 2.2 and 2.3, we get the following.

Observation 2.4. For every E, F € gy, [E, F] € gy.

It is also easy to prove the following observation.

Observation 2.5. Let A C M,, be the [F-algebra generated by a basis of F,. Then,
A=A (I,® M,) - A.

Finally, we record a special case of the Skolem-Noether theorem which will be used in Section 4.
The general statement of the theorem can be found in [Lor08] (Theorem 20 on page 173).

Theorem 5 (Skolem-Noether). Let n,s € IN* such that n | s, and A C M; be a F-algebra (containing
I;) that is isomorphic to My, via a map ¢ : M, — A. Then, there exists a K € GL(s, F) such that,

¢(C) =K' (I,;,®C)-K, forevery C € M,.

3 Decomposition of g, into its Lie subalgebras

We show how to compute bases of Frow and F| from black box access to f = Det(A - x).

Theorem 6 (Decomposition of g¢). Let n > 2, |F| > 10n* and char(F) t n(n —1). There is a
randomized algorithm, which takes input black box access to f and outputs bases of Frow and F o with high
probability. The running time is poly(n, ), where <y is the bit length of the coefficients of f.

We first present the proof idea, and then the algorithm and its proof of correctness. The missing
proofs of all the observations, claims and lemmas are given in Sections B, C and D of the Appendix.

SObservation 2.3 implies that Frow and Fy are closed under the Lie bracket operation and hence they are matrix
Lie algebras.



3.1 Proof of Theorem 6: The idea

The algorithm relies on finding the irreducible invariant subspaces of a set of F-linear maps on gy.
These linear maps (a.k.a adjoint homomorphisms of g¢) are defined as follows: For every F € gy,

PE * 8f — 9f
E — [E, F].
It is easy to see that pr is a [F-linear map. Let {By, ..., By} be a basis of g ¢ which can be computed

in randomized polynomial time (by Fact 3). As pr is [F-linear, we can associate a matrix Pr € My,
with pr, after fixing an ordering of the basis (B, ..., By;). Let P := {Pr : F € g¢}.

Claim 3.1. gy and P are isomorphic as F-vector spaces via the map F — Pg for every F € gy.
Its proof is given in Section B.1 of the Appendix. This implies the following.

Observation 3.1. The matrices {Pg,, ..., P, } is a basis of P, which can be efficiently computed from
{B1,..., By} (by considering the elements [B;, B;], fori,j € [2r]).
We intend to study the irreducible invariant subspaces of P in order to compute bases of Fr,w and
Feol- The following Claim 3.2 would be useful in this regard.

It follows from Fact 2 that J; := A - B; - A~!, for i € [2r], is a basis of gpe:. Like pr, we can associate
a [F-linear map (i.e. adjoint homomorphism) x; with every L € gpe; as follows:

XL * 9Det —7 YDet

K+~ [K, L]
Let Q1 € My, be the matrix corresponding to the linear map )1, with respect to the (ordered) basis
(Ji,- -, Jor). The following claim implies that P does not depend on the transformation matrix A.

Thus, it is sufficient to focus on gpet to study the invariant subspaces of P. The proof of the claim
is given in Section B.2 of the Appendix.

Claim 3.2. For every i € [2r], Qj, = Pp, and so the space P = {Qr : L € gpet}-

Like Claim 3.1, gpet and P are isomorphic as IF-vector spaces via the map L — Qp, for L € gpet.
The algorithm computes two invariant subspaces V; and V, of P that are defined as follows.

Vlz{v:(all-'~/a2r)T€IF2r: Zaljlezol}/

ie[2r]

1)
{ blz"~/b2r)T€IF2r : Z b ]ze-iﬁ‘ow}
ie[2r]
Clearly, dim(V;) = dim(V,) =r. As B; = A~ - J;- A, fori € [2r], we get
{ all---IIZZr)TEIFzr' Zal B E’FCOI}I
i€[2r]
2)
:{ .,bZr)TEIFzr' Zb BEFrow}
i€[2r]



From bases of V; and Vs, and (B, ..., Byr), we get bases of Fo and Frow readily. The aspects of
the space P that help in computing V; and V; are the facts that these are the only two irreducible
invariant subspaces of P and bases of these can be computed from a random element of P. These
facts are proved and elaborated upon in the proof of correctness of Algorithm 1.

3.2 The decomposition algorithm

Algorithm 1 Computation of bases of F;,, and Fy

Input: Black box access to f.
Output: Bases of spaces V; and V; (as in Equation (2)).

1. Compute a basis {By, ..., By} of gr (see Fact 3), and form the basis {Pg,,..., P, } of P.

2. Pick a random element Q = r;Pp, + - - - + 12, P, from P, where every r; is chosen uniformly
and independently at random from a fixed subset of IF of size 10n*.

3. Compute the characteristic polynomial &(z) of Q.

4. Factor h(z) into irreducible factors over F. Let h(z) = z2"=1D . Jy(z)---I(z), where
z,hy, ..., h are mutually coprime and irreducible. If i does not split as above, output ‘Fail’.

5. For every i € [k], compute a basis of the null space N; of 1;(Q), pick a vector v from the basis
of N; and compute a basis of C; := closurep(v) (using Fact 4).

6. Remove repetitive spaces from the set {Cy,...,C;}. After this, if we are not left with exactly
two spaces U and U, then output ‘Fail’. Else, output bases of i/ and L.

3.3 Analysis of the algorithm

Let us view the space P through the lens of a convenient basis of gpet, namely the standard basis
{S1,...,S2} (given in Observation 2.1). For K € gpet, let wg, vk € F? be the coordinate vectors
of K with respect to the ordered bases (Sy,...,S2) and (J1,..., Jor) respectively. There is a basis
change matrix H € GL(2r, F), such that for every K € gpet,

vk = H - wg. 3)
Recall Q; from Claim 3.2. Let R, := H~!- Q; - H, for every L € gpet, and
R:={R, : LEgpee} =H ' -P-H. (4)
Observe that {Rg,, ..., Rs,, } is a basis of R. Also,
Rp -wg = WK L]/ 5)
for every L, K € gpet. Let us note a few properties of R.

Observation 3.2. Every R € R C My, is a block diagonal matrix having two blocks of size r X r each, i.e,
the non-zero entries of R are confined to the entries {(S;,S;) : i,j € [r]}and {(S;,S;) : i,j € [r+1,2r]}.

The proof of Observation 3.2 is given in Section C.1 of the Appendix. We refer to the two blocks
of R as RW and R®), corresponding to {Sq,...,S,} and {S,11,..., Sz}, respectively. A snapshot
of R is given in Figure 1. The next observation follows directly from the definition of R.
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Observation 3.3. W is an invariant subspace of R if and only if H - YV is an invariant subspace of P.

It allows us to switch from P to R while studying the invariant subspaces of P. The following
lemmas on the invariant subspaces of R are crucial in arguing the correctness of Algorithm 1.
Their proofs are given in Sections C.2 and C.3 of the Appendix.

Lemma 3.1 (Irreducible invariant subspaces). Let wg & F% for a nonzero K in Lo or in Lo Then,

closureg (wg) = {wp : L€ %Ly} =W, ifKe Ly,
closureg (wg) = {wp : L € L} = Ws, ifKE Low.

Moreover, Wy and W, are the only two irreducible invariant subspaces of R, and F¥ =W, & W,.

Lemma 3.2 (Characteristic polynomial). Let R = Y e £i(71, ..., 72:) - Rs,, where {1, ..., lo, are F-
linearly independent linear forms and rq, . .., ro, are picked uniformly and independently at random from a
fixed subset of F of size 10n*. Then, with high probability, the characteristic polynomial hg(z) of R factors
as 220"V -y (z) - - - i (2), where z, h1(2), . . ., i (2) are mutually coprime irreducible polynomials over FF.

3.3.1 Proof of correctness of Algorithm 1

In Step 2, we choose a random Q from P. By Equation (4), thereisa R € R, such that,
R=H"1. Q-H = 1’1Rh S —|—1’27R]2r = El(i’l,. . .,i’zr) . R51 + - +£27(7’1,. . .,1’2,) . RSZ,/

where /4, ..., {5, are F-linearly independent linear forms in ry, ..., r2,. By Lemma 3.2, Step 4 holds
with high probability. From Observation 3.2, R is a block diagonal matrix with blocks R()) and
R®). Let h(z) = g1(z) - g2(z), where ¢1(z) and g»(z) are the characteristic polynomials of R(!)
and R, respectively. There are a couple of factors of h, say h; and hy, that divide g; and g,
respectively. In Step 5, we compute the null spaces N7 and NV; of h1(Q) and hy(Q) respectively. As
hi(R) = H ' h(Q)-Hand hy(R) = H!- hy(Q) - H, the null spaces of 11 (R) and h,(R), denoted
by O; and O, respectively, satisfy the following (due to Equation (3)):

01 = H_l ./\[1 and 02 = I—I_1 ./\/-2
Claim 3.3. If wx € O (similarly, wx € O,) then K € £ (respectively, K € Lro).

The proof of the claim is given in Section D.1 of the Appendix. In Step 5, we also pick a vector
v from a null space, say N7, and compute closurep(v). Clearly, v = vk for some K € gpet. So,
vk € N if and only if wg = H ' vge©,. AsR=H"1-P.H,Observation 3.3 implies that

closurep(vkg) = H - closurer (wk)
=H-W; (byClaim 3.3 and Lemma 3.1)
=W (by Equations (1) and (3),as V1 = {vL : L € Zq}).
Similarly, if we pick a v € N then closurep(v) = V,. Thus, in Step 6, one of U; and U, is V; and
the other is V. Finally, we can take U; = V; and U, = V), without loss of generality: Let P € M,,

be the permutation matrix corresponding to the transposition map, i.e., P maps x;; to x;; when
multiplied to x. Clearly, P~! = P. The following equation holds because P is a symmetry of Det.

Det(x) = Det(P-x) and hence f(x) = Det(A -x) = Det(PA - x).
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Observe that %,y = P71 - Zow - P. Hence,
Fool = APV Lo -PA and Frow = A~'P71. 2, - PA.

As the transformation matrix is unknown to the algorithm, we can take it to be either A or PA.

A comparison with [AG97b] and [CIK97]: In [dG97b,dG972], a polynomial time algorithm was given
to decompose a semisimple Lie algebra over Q (more generally, a characteristic 0 field) into a di-
rect sum of simple Lie subalgebras. The Lie algebra gp.t is semisimple and %} and %, are its
two simple Lie subalgebras. So, our decomposition problem is a special case of the problem stud-
ied in [dG97b]. However, our algorithm works over any sufficiently large field F (in particular,
finite fields), if char(F) t n(n — 1). It is not quite clear to us if the algorithm in [dG97b] (which is
somewhat different from our algorithm) can be easily adapted to achieve the same result in this
special case. Lemma 3.1 shows that the decomposition of IF*" into irreducible invariant subspaces
of R is unique. Using this information, it is possible to use the module decomposition algorithm
in [CIK97] to compute bases of F, and Frow in randomized polynomial time over finite fields.
However, the module decomposition algorithm in [CIK97] does not work in general over Q with-
out moving to an extension field.

4 Reduction of DET to FMAI

We give a randomized polynomial time reduction from DET to the FMAI problem. Recall the
FMAI problem from Definition 1.1: An algorithm for FMAI takes input an ordered basis (L, ..., L)
of a [F-algebra A C M; such that A = M,, and outputs a [F-algebra isomorphism ¢ : A — M, in
the form of an ordered basis (Cy, ..., Cy) of My, where C; = ¢(L;) fori € [m].

Lemma 4.1 (Reduction of DET to FMAI). Let n > 2, |F| > 10n* and char(F) { n(n — 1). Then,
there exists a randomized algorithm, with oracle access to FMAI, that takes input black-box access to a
f € x| of degree n and solves DET for f over IF with high probability. The running time of the algorithm
is polynomial in n and the bit length of the coefficients of f.

The proof of this lemma follows from the proof of correctness of the following algorithm.

4.1 The algorithm

Algorithm 2 Reduction of DET to FMAI

Input: Black-box access to a f € F|x] of degree 1, and oracle access to an algorithm for FMAL
Output: A matrix B € GL(m, F) such that f = Det(B - x), if such a B exists. Else, output ‘Fail’.

Invoke Algorithm 1. Let {Uj, ..., U, } be the basis of the space U; returned by Algorithm 1.
Generate a basis {L, ..., Ly} of the algebra A := F[Uy, ..., U,]. If k # m, output ‘Fail’.
Invoke the FMALI oracle on (L, ..., L, ) which returns a basis (Cy,...,Cy) of M,,.

Pick a random M € M, satisfying L;- M = M - (I, ® C;) for every i € [m].

Let b be the evaluation of f(M - x) at x11 = ... = X, = 1 and remaining x;j set to 0.

If M ¢ GL(m,F) or b = 0, output ‘Fail’. Else, set D = diag(b,1,...,1) € M,. Output
(I, ® D) - M.

AN




4.2 Proof of correctness of Algorithm 2

If f is not equivalent to Det then it can be detected with high probability by checking if f(a) =
b - Det(M~'a) at a random point a €, S™, where S C F is sufficiently large. So, assume that f =
Det(A - x) for some A € GL(m, F). The correctness of Algorithm 1 ensure that U; = F, without
loss of generality. Step 2 can be executed efficiently by checking if U;U; € spang{Uy, ..., U,} for
i,j € [r]. Observation 2.5 implies that A = M,, ie., L; = A~!- (I, ® B;) - A for every i € [m],
where {Bj,..., By} is a basis of M,,. In Step 3, the FMAI oracle returns a [F-algebra isomorphism
¢ : A — M, such that {C; = ¢(L;) : i € [m]} is a basis of M,.. The following claim ensures the
existence of a matrix M, computed in Step 4. Its proof is given in Section E.1 of the Appendix.

Claim 4.1. There existsa S € GL(n,F) such that B; = S' - C; - S for every i € [m].

Consider the linear system defined by the equation L; - M = M - (I, ® C;), where the entries of M
are taken as variables. Step 4 is executed by picking the free variables of the solution space of the
system from a sufficiently large subset of IF. Finally, the correctness of Step 6 is argued in the proof
of the following claim which is given in Section E.2 of the Appendix.

Claim 4.2. Suppose f = Det(A - x), where A € GL(m,F). Then, f = Det((I, ® D) - M~! - x) with
high probability.

5 DET over finite fields and over Q

The proofs of Theorem 1 and 2 are completed by replacing the FMAI oracle in Step 3 of Algorithm
2 by known algorithms for FMAI over finite fields and Q. These known results are stated below.

Theorem 7. [Theorem 5.1 of [Ron90]] Let IF be a finite field. Given a basis of a [F-algebra A C M, such
that A = M, an isomorphism ¢ : A — M, can be constructed in randomized poly(m,log |F|) time.

Theorem 8. [Theorem 1 of [IRS12]] There is a randomized algorithm with oracle access to IntFact that
takes input a basis of a Q-algebra A C M,, such that A = M,, and outputs an isomorphism ¢ : A — M,
with high probability. The algorithm runs in time polynomial in the bit length of the input, if n is bounded.

Theorem 9. [Lemma 2.5 of [BRY0]] There is a randomized algorithm that takes input a basis of a Q-
algebra A C M,, such that A = M, and outputs an isomorphism ¢ : A ®qg L — M, (IL) with high
probability, where 1L is an extension field of Q satisfying [IL : Q] < n. The algorithm runs in time
polynomial in the bit length of the input.

6 Factoring hardness of DET over Q

This section is devoted to proving Theorem 3. We show that DET in the 2 x 2 setting over Q is at
least as hard as factoring square-free integers. We will need the following theorem from [R6n87].

Theorem 10 ( [Ron87]). Assuming GRH, there is a randomized polynomial time reduction from the prob-
lem of factoring square-free integers to the following problem: Given non-zero a,b € Q, find rational
numbers x,y,z (not all zero) such that x> — ay? — bz> = 0, if there exists such a solution.

We will also need the following proposition, cited in [Ron87], to prove the next theorem. We give
a proof from [Con16] in Section F.1, for completeness.
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Proposition 6.1. Let a,b € Q be non-zero. Then the equation x> — ay? — bz? = 0 has a non-zero rational
solution if and only if the equation x* — ay* — bz> + abw? = 0 has a non-zero rational solution.

We are now ready to prove integer factoring hardness of DET in the next theorem. The proof is
given in Section F.2.

Theorem 11. Consider the polynomial f,,(x) = xi, — axi, — bx3 | + abx3,, where a,b € Q are non-
zero. Then f,,(x) = Deta(A - x) for some A € GL(4,Q) if and only if the equation x> — ay* — bz> = 0
has a non-zero rational solution (moreover, such a rational solution can be efficiently computed from A).

Combining Theorems 10 and 11, we obtain Theorem 3.

Remark 1. We want to explain how we got to the above reduction. Ronyai [Ron87/] proved that the FMAI
problem over Q is factoring hard even for n = 2 via quaternion algebras. If one takes a specific quaternion
algebra and tries to constructs a polynomial f whose Lie algebra is the traceless part of the quaternion
algebra, then it turns out the polynomial f, ,(x) is the unique homogeneous degree 2 polynomial that comes
out. But in any case, in hindsight, the polynomial f,,(x) seems like a natural candidate to use.

7 Characterization of the determinant by its Lie algebra

In this section, we reduce the FMAI problem to DET under mild restrictions on IF. We start with
the following claim that the Lie algebra of the determinant characterizes the determinant. This is
well known over C, but we give a proof in Section G.1 that works under mild restrictions on IF.

Lemma 7.1. Let f € F[x| be any homogeneous polynomial of degree n such that £, C gy (see Section 2
for definition of Z,,;). Also suppose char(IF) { n. Then f(x) = « - Det,(x) for some a € F.

Remark 2. Note that without the char(IF) t n condition, Lemma 7.1 is not true. For example, the polyno-
mial f(x) = x7, + Dety(x) will have the same Lie algebra as Det, (x) if char (IF) divides n.

We get the following corollary of Lemma 7.1.

Corollary 7.1. Let f € F[x] be any homogeneous polynomial of degree n. Suppose that A~" - Lo+ A C g5
for some A € GL(n?,F) and char(FF) { n. Then f(x) = a - Det, (A - x) for some « € F.

Proof. Consider f'(x) = f(A~!-x). By Fact 2, gp = A-g5- A~ land so % C gp. By Lemma 7.1,
we get that f'(x) = a - Det,,(x) for some « € F and hence f(x) = « - Det, (A - x). O

Corollary 7.1 allows us to reduce the FMAI problem to DET when 7 is constant (see Algorithm 3).

7.1 Proof of correctness of Algorithm 3 when char(FF) t n

The proof of correctness will follow from the following proposition, proved in Section G.2. The
matrices B; j and L;; are as defined in Step 2 of the algorithm.

Proposition 7.1. Suppose the algebra A spanned by B1,, ..., By, is isomorphic to M,,. Then there exist
K € GL(n? ) and matrices Cy,...,Cpn € My such that Ljj = K~' - (I, ® C;;) - K for all i,j € [n].

11



Algorithm 3 Reduction of FMAI to DET

Input: Basis {By, ..., B,} of a F-algebra A C M,,, and access to an algorithm for DET.
Output: 1if A = M, for some n € IN, 0 otherwise. If A = M, then output an isomorphism.

1. If r = dimg A # n? for any n € IN, output 0 and halt.

2. Index the basis elements by [n] x [n], i.e., rename them as By 1,..., B, . Compute n* X n
matrices Ly1,..., Ly, as follows: L;; is the matrix corresponding to the left-multiplication
action of Bl‘,]' on Bl,l/ «ee,Bun. That is Bi,]' . Biz,jz = 21'1,]'1 Li,]’ ((i1,j1), (iz,jz)) . Bilfjl’

3. Compute a basis for the traceless parts of the matrices L; ;. That is, compute a basis Li,..., L

of the space spanned by L, ; Mlnz, R tr(l);%”)lnz. Ifs #n%>—1, output 0 and halt.

4. Find a non-zero homogeneous polynomial of degree n, f(x), satisfying the equations

of _,
axi],]-l

2

Z M((ilfjl)/ (iZ/jZ)) “Xigjp !

i1,]1,2,)2

for every M € {Ly,...,L,2_1} (these give linear equations in the coefficients of f). If no such
non-zero polynomial exists then output 0 and halt.

5. Run DET on f. If the output is ‘Fail’ then output 0 and halt. If f(x) = Det, (A - x) then check if
there exist matrices Fy1,...,F;n € My such A-L;;- Al =1,® F;jfor all i,j. If yes, output 1
and the isomorphism ¢(B; ;) = F;; (extended linearly to whole of A). If no, check if there exist
matrices Fi 1, ..., Fyu € Mysuchthat A-L;j- A~' = F; ® I, for all i, j. If yes, output 1 and the
isomorphism ¢(B; ;) = F;; (extended linearly to whole of A). If no, output 0.

Now let us proceed to the proof of correctness of Algorithm 3. First of all, it is easy to ensure that
whenever the algorithm outputs an isomorphism, it is actually an isomorphism. So what we need
to prove is the converse. Suppose the algebra A is isomorphic to M,,. Then by Proposition 7.1, the
space spanned by Li,..., ]:_,nz_l isK1. Zwo! - K. Then by Corollary 7.1, there is a unique solution
to the equations in Step 4 given by f(x) = « - Det, (K - x), for some « € F, and so f is equivalent
to the determinant. Hence, in Step 5, we will get an A € GL(n?,F) s.t. f(x) = Det,(A - x). Since
Li,...,L,» 4 span a Lie algebra of dimension n? —1 and smce they lie 1n51de the Lie algebra of
Detn(A x), we must have that Ly,...,L,2_; span either A~! - Z.,; - Aor A=!. Zow - A. From this,
we get that one of the following conditions should be true:

e There exist matrices Fy1,...,F,, € M, suchthat A-L;; - Al=1,® Fjforalli,j € [n].
e There exist matrices Fy 1, ..., Fyn € My suchthat A-L;; - Al = ij® Iy foralli,j e [n].

The implies that the algorithm will output 1 and an isomorphism into M,,. The complexity of the
reduction is dominated by Step 4 which takes 79" field operations.
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A Proofs from Section 2

A.1 Proof of Fact1

Fact 1 (restated): Let B € M,,. Then, the dimension of the space of matrices in M,, that commute with B
is at least n, and the dimension of the space of matrices in Z,, that commute with B is at least n — 1.

Proof. Let IF be the algebraic closure of IF and B be the Jordan Normal form of B over FF. Then there
exists a G € GL(n,F), such that

B=G-B-GL.
It is easy to see that if S, S are the spaces of n x n matrices that commute with B, B over F and F
respectively, then 3

S=G-S-G L
Thus, it is sufficient to show that the dimension S is at least n. As B is the Jordan normal form of
B, it is a block diagonal matrix, i.e. B = diag(Gy, ..., Gt), where G; is an n; x n; size Jordan block
fori € [t], such that } ;¢ n; = n. For a fixed i € [t], the Jordan block G; € My, (IF) looks like

A 1 0 ... 0 0]
0 A 1 ...0 0
Gi=|: + : : /
0 00 ... A 1
0 0 0 ... 0 A

where A; € F. Clearly, we can write
Gi = Ai-In; + Nj,

where N; (mentioned below) is a nilpotent matrix.

0 1 0 00
001 ..00
Ni= it 1
000 ...01
0 0 0 0 0]

It is easy to see that I,,, N;,..., N i"i_l are F—linearly independent and they commute with G;. Since
B is a block diagonal matrix, the dimension of the space of matrices commuting with B over F is
atleast } ;) n; = n. This proves that the dimension of the space of matrices in M, that commutes
with B is at least n.

Let By, ..., Bs be a basis of the space of matrices commuting with B. We are interested in the space
of traceless matrices that commute with B. Let C be that space, defined as follows

C .= {a1B1+---+asBs :ay,...,0s € F and tr(ZaiBi) :0}.

i€]s]

Observe that the dimension of C is s — 1, which is at least n — 1 as s > n.
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A.2 Proof of Theorem 4

Theorem 4 (restated): Let n > 2 and FF be a field such that char(IF) { n. Then, the Lie algebra of Det,
equals the direct sum of the spaces Ly and Loy, 1.€., 9pet = Lrow © Leol-

Proof. Since Zow N Zeol = {0}, it is sufficient to show gpet = Low + -Zeol- Recall from Definition
2.2 that B € gpe; satisfies

Yo D (i) Xinjp i, Det =0, (6)
i1,j1,i2,j2 € [1]
where 0;, ; pet = aag—lejtl and by

inji), (o) 18 the entry of B whose row and column are indexed by x;, ;,

and x;, ;, respectively. For convenience, if iy = iz and j1 = j, then we denote b,
The following claims and observation imply that gpet = Zrow © Zool-

inj1),(i1,j1) @8 billjl'

Claim A.1. A matrix B € gpe if and only if the following equations are satisfied for i1, iy, j1, jo € [n].

b(illjl)r(injZ) =0 fOI‘ il 7& iz and jl 7& jz P (7a)
Z bio(i) =0 for all permutations o of [n], (7b)
ien]

biiv o) (ino) = Pliasjr) (i) for j1 # fa, (7¢)

biv jo) (i) = Bl jo) ins) foriy #1;. (7d)

The proof of Claim A.1 is given in Section A.2.1.
Observation A.1. Every matrix in Loy © Lo satisfies all the equations mentioned in Claim A.1.
The proof of this observation can be verified easily. This implies that Zjow ® Lol € gDet-

Claim A.2. Suppose B € M, satisfies all the equations given in Claim A.1. Then, there exist M,N € Z,,
such that
B:M®1n+ln®N.

Claim A.2 implies that gpet € Zrow © Zio1- Its proof is given in Section A.2.2. This completes the
proof of Theorem 4. O

Now we give the proofs of Claims A.1 and A.2.

A.2.1 Proof of Claim A.1

It is easy to verify that if B satisfies the given equations then B € gpet. Suppose B € gpet. We prove
the claim by understanding the types of monomials on the L.H.S of Equation (6). The following
observation implies that Equation (7a) holds for every i; # i and j; # j».

Observation A.2. In Equation (6), if iy # ix and j1 # ja then b y=0.

i1,j1),(i2,42
2
12,]2
the term x;, ;, - 9;, j, Det, that appears exactly once in Equation (6). This observation allows us to

categorize the monomials occurring more than once in Equation (6) as follows:

The proof of Observation A.2 follows from the fact that there is a monomial containing x: . in

1. We derive and multiply Det by same variable, i.e. x;; - 9; jDet for i,j € [n].
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2. We derive and multiply Det with the variables having same 1st indices but different 2nd
indices, i.e. Xiyjp * aim Det for il,jl,jz S [Tl],jl 75 jz.

3. We derive and multiply Det with the variables having same 2nd indices but different 1st
indices, i.e. x;, j, - 9;, j, Det for iy, i, j1 € [n],i1 # 1.

Observe that these three categories are pairwise monomial disjoint. This implies that Equation (6)
can be decomposed into the following equations:

Z b,‘,]' “Xij- a,',jDet =0, (8a)
ijen]
Z b(ilrjl)/(illjZ) "Xy ailffl Det =0, (8b)
ij1.j2€[n]
n#j2
2 b(ilrjl)/(iZ/jl) * Xip,jy - 9y j; Det = 0. (8c)
il,iz,]‘1€[n}
i1 #iy
Now we show that the analysis of Equations (8a), (8b) and (8c) imply Equations (7b), (7c) and (7d)
respectively.

Analysis of Equation (8a): Observe that the L.H.S of Equation (8a) only contains the monomials
of Det. As every monomial of Det is associated with a permutation on [#], Equation (8a) implies
that Equation (7b) holds, i.e. for every permutation ¢ on [n],

Z bi,tT(i) - 0
i€[n]

Analysis of Equation (8b): We show here that every monomial in the term x;, ;, - 9;, ; Det occurs
exactly twice in Equation (8b). The following subclaim would be helpful in this regard.

Subclaim A.1. Let y be a monomial of the term x; j, - 9;, ; Det in Equation (8b) such that y contains the
variables x;, ;, and x;, j, for some i € [n], iy # i1. Then y is a monomial of the term xp, 4, - 9p, 4, Det,
where q1 # qo in Equation (8b) if and only if p1 = 1y or p1 = iy, and qo = jo and q1 = j1. Further, the
coefficient of y in x;, j, - 9;, j, Det and x;, ;, - 9;, j, Det are either 1 and -1, or -1 and 1 respectively.

Proof. Observe that the monomial y in x;, j, - 9;, ;, Det has no variable with the second index j; and
has two variables with second index j,. Since q; # g2 in Equation (8b), it must be that q; = j; and
q2 = jo. Further, as x,, ;, is part of every monomial in x,, ;, - d,, ; Det, we have p1 = i; or p; = ip.

We now prove that the signs of the coefficients of y in the two terms x;, , - 9;, j Det and x;, j, -
dj,,j, Det are opposite. Let
= M- Xiyj and Uy = M- Xipjy )
Xiyja Xiy ja
Then, observe that the monomials 1, and p; are actually the monomials of Det, and the coefficient
of pin x; ;, - 9;, j, Det and x;, j, - 9;, ;; Det are the coefficients of 1 and p» respectively in Det. Since

#1, and p are monomials of Det, there are two permutations ¢, T on [1], such that
n n
=[x and po=]] %0
k=1 k=1
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and the coefficient of i, y2 in Det are the signs of the permutation ¢, T respectively. From the
definition of yy and py, for all k € [n], k # i1 and k # ip, o(k) = t(k). Observe that o(i1) = ji,
0’(i2) = jz, T(il) = jz, and T(iz) = jl- Hence

= (j1,]2) 0,

where (j, j2) denotes the transposition that swaps j; and j,. This implies the signs of ¢ and T are
opposite of each other. O

The above subclaim immediately implies that Equation (7c) holds, i.e. for iy, i3, j1, /2 € [n], j1 # J2,

bl ) (ino) = Plia,jr) (i)

The analysis of Equation (8c) is similar to that of Equation (8b) and this implies that Equation (7d)
holds, i.e. for i1, i, i1,ip € [n], i1 # ia,

b = b

i1,j1),(i2,j1) i1,j2),(i2,j2) *

This completes the proof of the claim.

A.2.2 Proof of Claim A.2

Let B = (b in] - We define the matrices M = (m;); jc[n), N = (i); je[n as follows:

ilrjl),(izsz))i1,]'1,i2,]'z€
1. Fori,j € [n]andi # j
mij = b1y and nij = b ).

2. Fori € [n],
/
mi;:=a; and mn;;:=by; ,

where a; := Z]%]b” (assuming char(IF) 1 n), and for i,j € [n], bg,j = b;; —a;.

Now we argue that B = M® I, + [, ® N, and M,N € Z,. Since B € gpet, the non-diagonal
entries of B satisfy Equations (7a), (7c) and (7d). Hence, the non-diagonal entries of B are equal
to the non-diagonal entries of I, ® M + N ® I,. Note that Y ;c(, b1 ; = 0, which implies N € 2.
Let t = } icjy ai- Consider the following equations we get from Equation (7b) corresponding to

different permutations on [n].

1. Equation with respect to the identity permutation on [n]:

b]',]' + 2 bq,q = b;,]- + ( 2 b;,q) +t+t=0. 9)
q€n] q€n]
q#] q#]

2. Equation corresponding to the transposition (i, j) for i,j € [n]:

bii+bij+ Y, bog = b +bi;+( ), byg)+t=0. (10)
q€ln] q€ln]
qFLF] qFiq7]
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3. Equations corresponding to the transposition (p, i) for distinct i, j, p € [n]:

bij+bpit+bip+ ), by = bbb, (), b )+t=0. (11)
qe[n\{ijp} q€[n\{ijp}

4. Equations corresponding to the cycle (p, i, j) for distinct i, j, p € [n]:

bp,i + bi,]' + b]',p + Z bq,q = b;a,i —+ b;,]- + b;,p + ( Z b;q) +t=0. (12)
qe[n\{ijp} qen]\{ijp}

On subtracting Equation (10) from Equation (9), we have
Similarly on subtracting Equation (12) from Equation (11), forall p € [n], and p # i, p # j we have
/ !’ 1 /
bjj = bjp = bij = Uiy (14)
Adding Equation (13), and Equation (14) for all p € [n]\{i, ]}, we have

pEnl p#j pE€n],p#j

This implies,

nbi— ) b, =n-bi;— ) b, .
pE(n] peE(n]

Since )] b;,p = 0and Y ,cy bg,p = 0 (by definition of bl(,j), and char(F) { n, it follows that

b;; = bj;. Since b;; = b; ; for all i, j € [n], from Equation (9) we have t = Y ;c,) a; = 0 (once again
by using the fact that Y[, b} g = 0), and hence M € Z,. This completes the proof.

B Proofs from Section 3.1

B.1 Proof of Claim 3.1
Claim 3.1 (restated) gy and P are isomorphic as [F-vector spaces via the map F — P for every F € gy.

Proof. It is easy to see that P is a F-vector space. Consider the map 7(F) = Pr. Observe that T
is F-linear and onto. Let F € Ker(t). Then Pr = 0, i.e, [E,F] = 0 for every E € gf, and hence
L:= A-F-A~! € gpe commutes with every element of gpe;. This implies L € %51 N Zow, and so
L=wa-1I, forsomew € F. As tr(L) = 0 and char(F) t n, we have L = 0. Hence, 7 is injective. [J

B.2 Proof of Claim 3.2
Claim 3.2 (restated): For every i € [2r], Qj, = Pp, and so the space P = {QL : L € gpet }-

Proof. LetE € g, K € gpetand E= A - K- A~1. Observe that ur = vg, where ug, vg are the coor-
dinate vectors of E, K with respect to the bases (B, ..., By) and (J1, ..., Jor) respectively. Hence,
Qy, - VK = Vx5 = W] = P, - ug = Pp, - vk, implying Qj, = Pp,. o
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C Proofs from Section 3.3

C.1 Proof of Observation 3.2

Observation 3.2 (restated): Every R € R C Moy, is a block diagonal matrix having two blocks of sizer X r
each, i.e, the non-zero entries of R are confined to {(S;,S;) : i,j € [r]} and {(S;,S;) : i,j € [r+1,2r]}.

Proof. Let L = L1 + Ly € gpet, where Ly € £, Ly € ZLiow. From Equation (5), Ry - wg, = W5, 1] =
WisiL,]+[S,L,]- Thus, Ry - ws, is either wig, ;1 if i € [r], or wg, 1,1 if i € [r+1,2r]. By Observation
2.3,[Si,L1] € Lo fori € [r] and [S;, La] € Zow fori € [r+1,2r]. Hence Ry is block diagonal. [

Sl S;’Sr-i-l SZT
S\ [T
R A A A S A A A
////(l)//// .
OO RD 0 matrix
S A A A A a2
S,iq
-+
A A A A S A A A A
A A A A S A A A e
. ////(2////
0 matrix S RR2Y
A A A A O A a4
2r

Figure 1: Structure of a matrix R € R

C.2 Proof of Lemma 3.1
Lemma 3.1 (restated) Let wg € F?" for a nonzero K € L5 or K € L. Then,
closureg(wg) = {wp : L€ L} =W, ifKe %,
closureg (wg) = {wp : L € Zow} = Ws, ifKE Low.
Moreover, Wy and W) are the only two irreducible invariant subspaces of R, and F*" = W; & W).

Proof. We use the following three claims to prove the lemma. Their proofs are given in Sections
C.2.1,C.2.2 and C.2.3 respectively. We prove these claims for .7, similar proofs hold for Zo.

Claim C.1. Let w be such that the entry indexed by 1, ® Ej; (similarly, E;; ® I,,) is nonzero for some
i,j € [n],i # j. Then closureg (W) contains the unit vector wy, gk, (respectively, W, 1,).

The next claim complements the previous one.
Claim C.2. Let p,q € [n] and p # q. Then
closurer (Wy,oE, ) = {wL : L€ %y} =W

Similarly, closureg (Wg, o1,) = {WL : L € Loy} = Wa.
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Claim C.3. Suppose wy € F?" is such that the entry indexed by I, @ E, (similarly, E; ® I,,) for £ € [2,n]
is nonzero, and the entries indexed by I, ® E;j (similarly, E;; ® 1) are zero for every i,j € [n],i # j. Then,
forsome i # ¢,

Wi, eF, € closurer(wg) (respectively, wg, s, € closurer (wk)).
Claims C.1, C.2 and C.3 imply that for a nonzero K € %, closureg (wg) = W; (similarly, for a
nonzero K € Zow, closurer (wg) = Wh). This completes the proof of the lemma. O
C.2.1 Proof of Claim C.1

Consider the following subclaim whose proof is given in Section C.2.4.

Subclaim C.1. There is a diagonal matrix R € R such that R(I, ® E;, I, ® Ey) = R(E;® I,, E, @ I,) =
0 for every £ € [2,n], and the remaining 2n* — 2n diagonal entries are distinct nonzero field elements.

Let R € R be the diagonal matrix mentioned above. Consider the following equation in the

variables ai, ..., a,2_5,,
2n2—2n )
i
W1n®El.], = Z a;- R - WK.
i=1

As the resulting system is a Vandermonde system, there is a solution over F. Thus, wi,gf, €
closureg (wk).
C.2.2 Proof of Claim C.2

We would show that the vectors wg,,..., ws, are in closureR(WIn@)EW). The three observations
below follow from the structure of matrices in ‘R mentioned in Fact 7.

1. If S = I, ® E;j, where j # p then Rg “WIL,@E,, = WIL,E,- (From Fact 7 item 2(a))
2. If S = I, ® Ejp, where i # g then Rg “WL@E, = ~WILgE,- (From Fact 7 item 2(b))

3. Ifqg#1,p=1thenforS =1, ® Ej, Rs “WIL,QE,, = WI,QE,- Similarly, if p # 1,q = 1 then for
S = I, ® E1p, Rs - Wi,eE,, = —Wi,cE,. (From Fact 7 item 2(d))

These properties immediately imply that

forj € [nl,j # p.
fori € [n],i #q,

WI,gE, € closurer W1, @E,,

Wi,eE, € closurep W1, &E,,

( )

( ) (15)
Wi,eE, € closureR(wln@@qu) forg#1,p=1,

( )

forp #1,q=1.

Now we show that for S = I, ® Eg;, wg € ClOSUI‘eR(W]n@)EW) for any s,t € [n], s # t. If
(s,t) = (p,q), there is nothing to prove. Suppose (s,t) # (p,q)-

W,gE, € closurep W1, &E,,

Case 1: Suppose ¢ # p, then from Equation (15), wy,¢r, € closurer(wy,cE,, ). Further, applying
Equation (15) on wy, g, we get Wy,gE,, € closurer (Wy,gE, ) ass # t.
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Case 2: Suppose s # g then from Equation (15), wi,gE,, € closureg (wy,gE, ). Further, applying
Equation (15) on wy, g, , we get wy, g, € closurer (W, gk, ) ass # t.

Case 3: Let (s,f) = (q,p). If n > 3 then pick a j € [n]\{p,q}. By applying Equation (15)
repeatedly, we have wy,qp, € closureR(w1n®EW), Wi,gE,; € closureR(wln@)Em.) and wy,c,, €
closureg (Wi, oE,;). If n = 2 then either p or g is 1. Suppose p = 1and s = g # 1, then wy,«E, €
closurer (wy,cE,, ) (from Equation (15)). On applying Fact 7 item 3(d), wy, ¢, € closurer (W, cF, )
(note that char(IF) # 2 as char(F) { n(n — 1)).

To complete the proof of the claim, we would like to show that wy,qr, € closureg(wy,sE,,) for
every ¢ € [2,n]. It follows from what we have shown so far that wy,«,, € closureg(wy, g, ). We
conclude from Equation (15) that wy g, € closureg (Wr,sE,, )-

C.2.3 Proof of Claim C.3
Let K € %, and wg = Ypelon Ap " WI,E,, where a, € IF and a; # 0. Then, fori ¢ {1, ¢},

Ri,2E, Wk = Z ap - Ri,0E, " WI,E, = (ap —a;) - Wi,oF,, from Fact7 items 3(a) and 3(b), and
pE2n]

Ri,eE, WKk = Z ap - Ri,0E, " WI,E, = (ap+---+2ap+---+ay) WpeE, fromFact? item 3(c).
pE2n]

If R0k, Wk =0foralli € [n]\ {1,£} thena; = a, foralli € [n] \ {1, £}, implying R}, oF,, - Wk =
n-ag; - Wi,ek,,, which is non-zero as char(IF) { n.
C.2.4 Proof of Subclaim C.1

The proof of the subclaim depends on the following facts, their proofs are given at the end of this
section. We state these facts for %, similar statements hold for Zow.

Fact5. Let S = I, ® Ey for ¢ € [2,n]. Then Rs € R is a diagonal matrix satisfying the following:

1. Rgz) is an all zero matrix.
2. IfS¢ = I, @ Ep, U € [2,n], then the (S, St)-th entry of Rg is 0.
3. IfSi =1L, ®E,ij€ [n] and i # j, then the (S, Si)-th entry of Rg is
(@) =1 ifi=1andj & {1,¢},orj="Candi ¢ {1,(},
() 1ifi=Candj & {1,0},0orj=1andi & {1,(},
(c) =2 if (i,j) = (1,¢),
@ 2 if (i,f) = (6,1),
(e) 0 otherwise.
The next claim follows immediately from Fact 5.
Fact 6. Let Ry = Zfe[zln] ag - Ry, o, , where ay, ..., a, € F. Then Ry is a diagonal matrix satisfying the

following properties:
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1.

Rgz) is a zero block.

2. IfS; =1, ® Ep, V' € [2,n], then the (St, St)-th entry of Ry is 0.

3. If St = I, ® Eyj, 1, € [n],i # j, then the (S;, St)-th entry of Ry is

(a) a; —aj, ifi,j € [2,n],
(b) —(Ck—pak+aj) ifi=1,
(©) (Lk—pax+ai) ifj=1.

Fact7. Let S = I, ® Ejj for i,j € [n],i # j. Then, Rs satisfies the following properties:

1.

Réz) is an all zero matrix.

2. A column indexed by I, ® Epg, p,q € [n], p # q has the following structure:

(a) If p # jand q = i then the column contains exactly one nonzero entry, namely a 1 at the row
indexed by I, ® Ep;.

(b) If q # iand p = j then the column contains exactly one nonzero entry, namely a —1 at the row
indexed by I, ® Ej; .

(c) If (p,q) = (j,i) and i,j # 1 then the column has exactly two nonzero entries, namely a 1 and
a —1 at the rows indexed by I, ® E; and I, ® E; respectively.

d) If (p,q) = (j,i) and j = 1 (similarly, (p,q) = (j,i) and i = 1) then the column has exactly
one nonzero entry, a 1 (respectively, a —1) at the row indexed by I, ® E; (respectively, I, @ E;).

(e) Otherwise the entire column is zero.

3. A column indexed by I, @ E;, £ € [2,n] has the following structure:

(a) Ifi,j # 1, and ¢ = i then the column has exactly one nonzero entry, namely a —1 at the row
indexed by I, ® Ej;.

(b) Ifi,j # 1, and ¢ = j then the column has exactly one nonzero entry, namely a 1 at the row
indexed by I, ® Ejj.

(c) Ifi = 1and { = j then the column has exactly one nonzero entry, namely a 2 at the row indexed
by Iy ® Ejj. Ifi = 1and £ # j, then the column exactly one nonzero entry, a 1 at the row
indexed by I, ® Ejj.

(d) If j = 1and £ = i, then it has exactly one nonzero entry, a —2 at the row indexed by I, ® E;;. If
| = 1and ¢ # i, then the column contains exactly one nonzero entry, a —1 at the row indexed
b]/ I, ® El]

(e) Otherwise the column has all zero entries.

Now we are ready to prove Subclaim C.1. We wish to show that R contains a diagonal matrix
R such that R(I, ® E;, I, ® E;) = R(E;® I,, E; ® I,) = 0 for every ¢ € [2,n], and the remaining
2n? — 2n entries of R are distinct nonzero field elements. Let

R = Z (ar-RpeE, + b Reer,),
le(2,n]
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where ay,by € F. From Fact 6 (for both £, and Z,w), R is a diagonal matrix with exactly
2(n — 1) zero diagonal entries and the remaining diagonal entries are distinct nonzero linear forms
inay,...,a,and by, ..., by, (as char(FF) # 2). As |F| > (2”25 2”), the Schwartz-Zippel lemma implies
that if we substitute a,...,a, and by, ..., b, randomly from a fixed subset of FF of size 10n*, then
R has the desired property.

The following is an immediate implication of the proof of Observation 3.2.

Observation C.1. Foralli € [r],Rg) = 0. Similarly, forall i € [r +1,2r], R(Sf) =0.

Proof of Fact 5. Recall that S = I, ® E; for £ € [2,n]. It follows from Observation C.1 that Rg) =0.
To prove other parts of the fact, let us consider a generic element T = I,, ® Z in .Z,, such that
Z = (a,-]-)z-,]-e[n}. Clearly, [T, S] =, ® [Z, Eg].

a1 ... Ain 1 ... 0 ... 0 1 ... 0 ... 0 ailr ... dip
[Z,Eg]: ap;p ... Qe | - o ... -1 ... 0{—-10 ... =1 ... 0O}- app ... Ay
w1 .o apn| |0 ... 0 ... 0] 0o ... 0 ... 0] [4m1 --- aun]
From this, we get
_all 0 ... —ay ... 0] [ a1 ain ce Ajp oo My ]
(Z,E)= |21 O ..o —aw ..o O — Vg —ap .. —ay ... —ag
an 0 ... —ayu 1 0] | 0 o ... 0 ... 0 ]
This implies
0 —daip ... —2611[ . —a1p
[Z, Eg] = Zﬂgl ap 0 Ay
an 0 R 1 0

Restricting Z to Ey and Ej; for different settings of i, j, ¢ imply the result.

Proof of Fact 7. Part 1 follows from Observation C.1. Let us consider a generic element T = [, ® Z
in £, such that Z = (ajj); jc|n)- Clearly, [T,S] = I, ® [Z, E;j|. A derivation similar to that in the
proof of Fact 5, implies the following.

0O 0 ... a; ... 0
[Z, Ez]] = —ﬂ]'i —IZ]'Z R a]-]- e —El]'n ,
00 i 0 |
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where the rows and columns other than the i-th row and the j-th column are 0. Restricting Z to
Ep; and E, for various settings of p, q, £ imply the result.

C.3 Proof of Lemma 3.2

Lemma 3.2 (restated). Let R = Yic[2r] li(r1,...,12r) - Rg,, where ¢y, ..., Ly, are F-linearly independent
linear forms in ry,..., 1y that are picked uniformly and independently at random from a fixed subset of
IF of size 10n*. Then, with high probability, the characteristic polynomial hy(z) of R factors as z2"~1) .
hi(z) - - - hi(z), where z,h1(z), . . ., hx(z) are mutually coprime irreducible polynomials over IF.

Proof. Let R = Ry, for some L € gpet and e be the maximum power of z dividing hg(z). Clearly,
e is greater than equal to the dimension of the null space of R;. Let us now lower bound the
dimension of this null space. Suppose wg is in the null space of Ry, where K € gpet. Then,

Ry -wg =0,

which along with Equation (5) implies wig ;) = 0. This means [K, L] = 0, i.e., K commutes with
L. Thus, the dimension of the null space of R;, is exactly equal to the dimension of the subspace
of gpet, that commute with L. We know that L = L + L, and K = K; + K3, where L1, Ky € %
and Ly, Ky € Zow. Observation 2.2 implies that [K, L] = 0 if and only if [K3, L1] = [Ky, Lp] = 0. It
follows from Fact 1 thate > 2(n —1).

We know
R = Z ﬁ 1’1,.. 7’27/ RS,-~

i€[2r]

Treat ry, ..., 1y, as formal variables. Then, from the above discussion, we get
hr(z) =20V - g(2),

where the coefficients of g(z), which is a monic polynomial of degree 2n(n — 1), are polynomials
inry,...,ry of degree at most 2r. As the linear forms ¢;(r4, ...,r2),i € [2r], are F-linearly indepen-
dent, Subclaim C.1 implies that there is a way to set the r variables to field constants, such that g(z)
is square-free and is not divisible by z. This means that the determinant of the Sylvester matrix
of ¢(z) and g ( ) is a nonzero polynomial in r variables of degree at most 8n*. As ¢ is monic and
char(F) 1 n(n — 1), the dimension of the Sylvester matrix does not change with various settings
of the r variables to field constants. Hence, from the Schwartz-Zippel lemma, if we plug ry, ..., 12,
with random values from a subset of IF of size 10n*, then with high probability the characteristic
polynomial hir(z) factors as

hr(z) = 22070 iy (2) - - - hye(2),
where z, hy, ..., hy are mutually coprime irreducible polynomials over . ]
D Proof from Section 3.3.1
D.1 Proof of Claim 3.3

Claim 3.3 (restated): If wy € O1 (similarly, wy € O3) then K € £, (respectively, K € Lyow).

25



Proof. We give the proof for O, a similar proof holds for O,. Recall that wg is the coordinate
vector of K with respect to the ordered basis (S, ..., S2) of gpet- Let wg),wf) € F" be the sub
vectors obtained from wg by restricting it to the indices Sy, ..., S, and Sy41, ..., So respectively. It
is sufficient to show wg) = 0 to prove K € Z,. Let R € R. Then, R is a block diagonal matrix

with R, R(?) as the blocks. By definition, /;(R) - wg = 0, which implies
hy(RMW) -wg) = h1(R?) -w}?) =0.

As ¢(z) is the characteristic polynomial of R(?), from Cayley-Hamilton theorem g»(R(?)) = 0,
which implies
g2(R@) -wg) =0.

Since h1(z) and g»(z) are coprime polynomials, there exist p1, p» € [F[z], such that

h(z) - p1(2) + g2(2) - pa(2) = 1.

This implies
hi(R®) - pr(RP)) + (R®) - po(RP)) = ..
On multiplying the above equation with wg), we get wg) = 0 showing K € Zq. O

E Proofs from Section 4
E.1 Proof of Claim 4.1
Claim 4.1 (restated): There existsa S € GL(n,F) such that B; = S~1- C; - S for every i € [m].

Proof. Recall that L; = A~!- (I, ® B;) - A, for i € [m], where {Ly,...,Ly,} and {By,..., By} are
bases of A and M, respectively. Consider the following [F-algebra isomorphism from M, to A

T:M,— A
B— A"l (I, ® B) - A.

LetI' = ¢ o T, where ¢ : A — M, is the [F-algebra isomorphism constructed in Step 3 of Algorithm
2. Clearly, I' is an [F-algebra isomorphism from M, to M,. On applying the Skolem-Noether
theorem (Theorem 5) on I', we geta S € GL(n, F) such that for every i € [m],

Bi=S"1-G-S, (16)
where I'(B;) = ¢(L;) = C;. O
E.2 Proof of Claim 4.2
Claim 4.2 (restated): Suppose f = Det(A - x), where A € GL(m,F). Then, with high probability

f =Det((I, ®D)- M1 -x).
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Proof. Recall that L; = A~!. (I, ® B;) - A, where Ly,..., L, and By, ..., B, are bases of the FF-
algebras A and M, respectively, and M satisfies the following equation for every i € [m],

This implies, for all i € [m],
(I, ® B)) - AM = AM - (I, ® C). 17)

We view the matrix AM as a block matrix of block size n x n. Let My € M, be the (¢, k)-th block
of AM. Then, from Equation (17), we get the following equation for every £,k € [n] and i € [m]:

B; - My = My - C; (18)

Observation E.1. The block My € M,, is an invertible matrix with high probability.
Claim 4.1 implies that A1 (I, ® S71) is a candidate for M, and for this choice of M, My; = S~ 1.
The Schwartz-Zippel lemma then implies the above observation.

From Observation E.1 and Equation (18), we get the next equation for every ¢,k € [n] and i € [m],
B - My - Mﬁl = My - Mﬁl - Bj.

As By, ..., By is abasis of the M,,, the above equation implies that Myy - Ml_l1 commutes with every
matrix in M,,. Thus, according to the following observation, My - Mﬁl = by - I, for some by, € F.
Observation E.2. If C € M,, commutes with every B € M,, then C = c - I,, for some c € IF.

Observation E.2 can be easily proved by considering the basis {E;; : i,j € [n]} of M, where E;; is
the matrix having (i, j)-th entry 1 and other entries 0. Thus, we get the following

A-M= G®M11 = (G@In) . (In®Mll)/
where G = (by) g kejn)- As f = Det(A - x), we get

f(M-x) = Det(A-M-x)
= Det((G®I,) - (I, ® My1) - x)
=det(G- X - M%)
=b-det(X)
= b - Det(x)
= Det((I, ® D) - x),

where D = diag(b,1,...,1) € M,,. This implies

f(x) = Det((I, ® D) - M~ -x).
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F Proofs from Section 6

E1 Proof of Proposition 6.1

One direction is trivial. For the other direction, we can assume g, b are not perfect squares. Other-
wise, the equation x> — ay? — bz?> = 0 has a non-zero rational solution and we are done. Suppose
(x,y,z,w) is a non-zero rational solution to the equation x> — ay? — bz* + abw? = 0. We have

X — ay* = b(z* — aw?).

Now suppose that z2 — aw? = 0. Then since a is not a perfect square, we get that y = w = 0. But
then x2 = bz2. Since b is not a perfect square, x = z = 0 which contradicts the fact that (x,y, z, w)
is non-zero. Hence z2 — aw? is non-zero. We get that,

b X2 —ay?  (¥*—ay?) (22 —aw?)  (xz+ayw)* —a(xw +yz)?
22 —auw? (22 —aw?)? B (22 — aw?)?

[ xz+ayw 2—a xw+yz 2
o\ 22 — aw? 22 —quw?)

Hence we have a non-zero rational solution to the equation x> — ay”? — bz'? = 0.

FE2 Proof of Theorem 11

First consider the case when f,;(x) = Dety(A - x) for some A € GL(4,Q). Then the equation

x? — ay? — bz? + abw? = 0 has a non-zero rational solution given by

X 1
vyl _ 4,10
z =4 0
w 0

Then by Proposition 11, the equation x> — ay? — bz?> = 0 also has a non-zero rational solution.

In the other direction, suppose that the equation x> — ay? — bz?> = 0 also has a non-zero rational
solution. Then at least one of the two equations, u? — av® = b or u® — bv* = a has a rational
solution. Without loss of generality, assume it is the former. Then one can verify that

X110 + UXp1 — avxop X1+ VX1 — UXp2

x) = Det .
f ab ( ) 2 axip — aAvXpy1 + auxpp X1, — UXp1 + AVXp)2

To prove that the resulting transformation is invertible, denote

Y11 X1, + UXp1 — aAvxap
Yiz2| _ X1 + 0Xp1 — UX2
You|  |axip —avxoy +auxsp
Y22 X1,1 — UXp1 +avxyp

Then a tedious calculation reveals that

x1,1 (Y11 +y22)/2

X12| _ (y12 +a 1y21)/2

X2,1 (uy11 — avyip + Y1 — uyrp)/2b
X272 (vy11 — uy12 + a4 tuya — vy22)/2b
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G Proofs of Section 7

G.1 Proof of Lemma 7.1
We have that

of _
axy 0, (19)

Y Mij) ko) Xee
ikl

forall M € Z. Plugging in M = I, ® Ej; for j # £ (recall Ej; is the elementary matrix with an 1
at position (j, £), 0 everywhere else) into (19) gives that

of ,
Xi:xz,z : T 0, Vj # L. (20)
Plugging in M = I, ® (Ej; — n™'I,) (char(F) { n and hence n~! exists) into (19) gives that

9f
L0 B,

_ d .
=n L. in/,]'/ . 7]( = f(X), V], (21)
i, axz’,]’
where the second equality follows from Euler’s identity (and the fact that char(IF) { n). Let us
denote by L, the matrix of polynomials, whose (j, i)-th entry is %{j. Then equations (20) and (21)
tell us that®

LX = f(x) - L.
Hence %)
L= Detn(x) : Xadj,

where X,4; is the adjoint of the matrix X. Now entries of L and X,4; are homogeneous degree n — 1
polynomials. Since Det,(x) is an irreducible polynomial, we get that Det,(x) divides f(x). Since
both are homogeneous of degree 1, we get that f(x) = « - Det, (x) for some « € F.

G.2 Proof of Proposition 7.1

Let £ be the algebra generated by the matrices L1 1, ..., Ly . As L isisomorphic to Aand A = M,
we have £ = M,,. Moreover, £ contains the identity matrix I,.. Hence, by applying the Skolem-
Noether theorem (Theorem 5), we get that there exist K € GL(n?,F) and matrices Cy 1, ...,Cpy €
My such that L;j = K~!- (I, ® C;j) - K forall i,j € [n].

®Recall the notation: X is a matrix whose (i, j)-th entry is the variable x;,j and x is the vectorized version with entries
arranged in a row major fashion.
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