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Abstract

The determinant polynomial Detn(x) of degree n is the determinant of a n × n matrix of
formal variables. A polynomial f is equivalent to Detn(x) over a field F if there exists a
A ∈ GL(n2, F) such that f = Detn(A · x). Determinant equivalence test over F is the follow-
ing algorithmic task: Given black-box access to a f ∈ F[x], check if f is equivalent to Detn(x)
over F, and if so then output a transformation matrix A ∈ GL(n2, F). In [Kay12], a randomized
polynomial time determinant equivalence test was given over F = C. But, to our knowledge,
the complexity of the problem over finite fields and over Q was not well understood.

In this work, we give a randomized poly(n, log |F|) time determinant equivalence test over
finite fields F (under mild restrictions on the characteristic and size of F). Over Q, we give an
efficient randomized reduction from factoring square-free integers to determinant equivalence
test for quadratic forms (i.e. the n = 2 case), assuming GRH. This shows that designing a
polynomial-time determinant equivalence test over Q is a challenging task. Nevertheless, we
show that determinant equivalence test over Q is decidable: For bounded n, there is a random-
ized polynomial-time determinant equivalence test over Q with access to an oracle for integer
factoring. Moreover, for any n, there is a randomized polynomial-time algorithm that takes
input black-box access to a f ∈ Q[x] and if f is equivalent to Detn over Q then it returns a
A ∈ GL(n2, L) such that f = Detn(A · x), where L is an extension field of Q and [L : Q] ≤ n.

The above algorithms over finite fields and over Q are obtained by giving a polynomial-
time randomized reduction from determinant equivalence test to another problem, namely the
full matrix algebra isomorphism problem. We also show a reduction in the converse direction
which is efficient if n is bounded. These reductions, which hold over any F (under mild restric-
tions on the characteristic and size of F), establish a close connection between the complexity
of the two problems. This then leads to our results via applications of known results on the full
algebra isomorphism problem over finite fields [Rón87, Rón90] and over Q [IRS12, BR90].



1 Introduction

Two m-variate polynomials f (x) and g(x) with coefficients from a field F are said to be equivalent
over F if there exists a A ∈ GL(m, F) such that f = g(A · x). The algorithmic task of determining
if f is equivalent to g, and if so then finding a linear transformation A such that f = g(A · x),
is known as the polynomial equivalence test problem. It is a natural problem arising in algebraic
complexity theory, becoming more important with the advent of Geometric Complexity Theory
(GCT) [MS01] – which proposes the uses of deep tools and insights from group theory, represen-
tation theory and algebraic geometry towards the study of the VP vs VNP question.

A naïve approach for equivalence test is to reduce it to solving a system of polynomial equations
over F. But, unfortunately, the complexity of polynomial solvability over F is quite high1. Never-
theless, it does appear that the complexity of equivalence test is much lower than the complexity
of solving polynomial systems. It is known that over finite fields, the polynomial equivalence
problem is in NP∩ co-AM (when the polynomials are given as lists of coefficients) [Thi98, Sax06].

Can we hope to solve equivalence test over C and over finite fields 2 in (randomized) polynomial
time? Finding such an algorithm is indeed quite demanding as it was shown in [AS05, AS06] that
the graph isomorphism problem reduces in polynomial time to equivalence test for cubic forms
(i.e. homogeneous degree three polynomials) over any field. Over Q, it is not even known if cu-
bic form equivalence is decidable. On the other hand, we have a fairly good understanding of
the complexity of quadratic form equivalence test: Over C and finite fields, equivalence of two
quadratic forms can be tested in polynomial time due to well-known results on classification of
quadratic forms. Quadratic form equivalence over Q can be done in polynomial-time with access
to an oracle for integer factoring (IntFact). Moreover, IntFact reduces in randomized polynomial
time to quadratic form equivalence over Q (see [Wal13]). Given this state of affairs, designing ef-
ficient equivalence tests for even bounded degree polynomials seems like a difficult proposition.
Indeed, there is a cryptographic authentication scheme based on the presumed average-case hard-
ness of equivalence test for constant degree polynomials (see [Pat96]).

The work in [Kay11] initiated the study of a kind of equivalence test in which one polynomial f
is given as input and the other polynomial g belongs to a well-defined polynomial family. Some
of the polynomial families that are well-studied in algebraic complexity theory, particularly in the
context of arithmetic circuit lower bounds, are those defined by the power symmetric polynomial,
the elementary symmetric polynomial, the permanent, the determinant and the iterated matrix
multiplication polynomial. In [Kay11], randomized polynomial time equivalence tests over C

were given for the power symmetric polynomial and the elementary symmetric polynomial fam-
ilies. These equivalence tests, which also hold over finite fields and Q, work even if f is given as
a black-box3. Henceforth, let us assume that the input polynomial f is given as a black-box. Sub-

1Over C and finite fields, polynomial solvability has time complexity exponential in the input parameters. Over Q,
it is not known to be decidable.

2Typically, a computation model over C assumes that basic arithmetic operations with complex numbers and root
finding of univariate polynomials over C can be done efficiently. Also, we will work with finite fields that have suffi-
ciently large size and characteristic.

3An algorithm with black-box access to a m-variate polynomial f is only allowed to query the black-box for evalua-
tions of f at points in Fm.
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sequently, in [Kay12], randomized polynomial time equivalence tests over C were given for the
permanent and the determinant polynomial families. The test for the permanent holds over finite
fields and Q, but the same is not true for the determinant equivalence test in [Kay12]. In [KNST17],
an equivalence test for the iterated matrix multiplication (IMM) was given which holds over C,
finite fields and Q (see also [Gro12]). The iterated matrix multiplication and the determinant fam-
ilies have very similar circuit complexity: Both the families are complete under p-projections for
class of algebraic branching programs (ABP) (see [MV97a, MV97b]). But, it was unclear if deter-
minant admits an efficient equivalence test over finite fields and Q, just like the iterated matrix
multiplication polynomial. In this paper, we fill in this gap in our understanding.

It is worth noting that determinant equivalence test is interesting in the context of the permanent
versus determinant problem [Val79], which conjectures that the permanent is not an affine pro-
jection of a polynomial-size determinant. Geometric Complexity Theory [MS01], an approach to
resolving this conjecture, suggests (among other things) to look for an algorithm to determine if
the (padded) permanent is in the orbit closure of a polynomial-size determinant. In this language,
determinant equivalence testing is the related problem of checking if a given polynomial is in the
orbit of the determinant polynomial.

1.1 Our results

Let n ∈N×, X = (xij)i,j∈[n] be a n× n matrix of formal variables, and x = (x11 x12 . . . xn n−1 xnn)T

a column vector consisting of the variables in X arranged in a row-major fashion. The polynomial
Detn(x) := det(X); we will drop the subscript n whenever it is clear from the context. Hereafter,
we will use the acronym DET for Determinant Equivalence Test.

Theorem 1 (DET over finite fields). Let F be a finite field such that |F| ≥ 10n4 and char(F) - n(n− 1).
There is a randomized poly(n, log |F|) time algorithm that takes input black-box access to a f ∈ F[x] of
degree n and does the following with high probability: If f is equivalent to Det(x) over F then it outputs a
A ∈ GL(n2, F) such that f = Det(A · x); otherwise, it outputs ‘Fail’.

In [KNS18], a DET over a finite field Fq was given that is similar to the equivalence test for the
permanent in [Kay12], but the test outputs a A ∈ GL(n2, Fqn). Whereas, our algorithm (which is
different and relatively more involved) outputs a A ∈ GL(n2, Fq). One consequence of this is that
the average-case ABP reconstruction algorithm in [KNS18] holds over the base field Fq.

Theorem 2 (DET over Q). (a) There is a randomized algorithm, with oracle access to IntFact, that takes
input black-box access to a f ∈ Q[x] of degree n and does the following with high probability: If f is
equivalent to Det(x) over Q then it outputs a A ∈ GL(n2, Q) such that f = Det(A · x); otherwise,
it outputs ‘Fail’. If n is bounded then the algorithm runs in time polynomial in the bit length of the
coefficients of f .

(b) There is a randomized algorithm that takes input black-box access to a f ∈ Q[x] of degree n and does the
following with high probability: If f is equivalent to Det(x) over Q then it outputs a A ∈ GL(n2, L)
such that f = Det(A · x), where L is an extension field of Q and [L : Q] ≤ n. The algorithm runs in
time polynomial in n and the bit length of the coefficients of f .

To our knowledge, it was not known if DET over Q is decidable prior to this work. It is natural to
wonder if we can get rid of the IntFact oracle from part (a) of the above theorem. In this regard,
we show the following.
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Theorem 3 (IntFact reduces to DET for quadratic forms). Assuming GRH, we give a randomized
polynomial-time reduction from factoring square-free integers to finding a A ∈ M2(Q) such that a given
quadratic form f ∈ Q[x] equals Det2(A · x), if f is equivalent to Det2.

In other words, the complexity of IntFact is the same as that of DET over Q for quadratic forms
(modulo GRH and the use of randomization).

Theorem 1 and 2 are proved by reducing DET to the full matrix algebra isomorphism problem. A F-
algebraA has two binary operations + and · defined on its elements such that (A,+) is a F-vector
space, (A,+, ·) is an associative ring, and for every a, b ∈ F and B, C ∈ A it holds that (aB)C =
B(aC) = a(BC). For example, the set Mn(F) of all n× n matrices over F is a F-algebra with respect
to the usual matrix addition and multiplication operations; it is called the full matrix algebra. Two
F-algebra A1 and A2 are isomorphic, denoted by A1

∼= A2, if there is a bijection φ from A1 to
A2 such that for every a, b ∈ F and B, C ∈ A it holds that φ(aB + bC) = aφ(B) + bφ(C) and
φ(BC) = φ(B)φ(C). Any finite dimensional F-algebra is isomorphic to a F-algebra A′ ⊆ Mm(F),
where m = dimF(A). A F-algebra A ⊆ Mm(F) can be specified by a F-basis B1, . . . , Br ∈ Mm(F).

Definition 1.1. The full matrix algebra isomorphism (FMAI) problem over F is the following:
Given a basis of a F-algebra A ⊆ Mm(F), check if A ∼= Mn(F), where n2 = dimF(A). If A ∼=
Mn(F) then output an isomorphism from A to Mn(F).

In [Rón87, Rón90], a poly(m, log |F|) time randomized algorithm was given to solve FMAI over
a finite field F. Over Q, the FMAI problem is more difficult. In [IRS12, CFO+15], a randomized
algorithm (with access to a IntFact oracle) was given to solve FMAI over Q. The algorithm runs
in polynomial-time if dimQ(A) is bounded. In [BR90, Ebe89], randomized polynomial time algo-
rithms were given to compute an isomorphism from A⊗Q L to Mn(L) for some extension field
L ⊇ Q satisfying [L : Q] ≤ n, if A ∼= Mn(Q) to begin with. We give a randomized polynomial-
time reduction from DET to FMAI over any sufficiently large F in Sections 4, thereby proving
Theorem 1 and 2. The reduction is obtained by giving an algorithm to decompose the Lie alge-
bra of f into its two simple Lie subalgebras over any sufficiently large F (see Section 3). We also
show a reduction from FMAI to DET (in Section 7) which is efficient if the dimension n is bounded.

The above results underscore the close connection between the DET and the FMAI problems. In
order to get efficient DET over Q for even bounded degree polynomials, we need to solve FMAI
efficiently for Q-algebras of bounded dimensions. Currently, the best known algorithm for FMAI
over Q uses an IntFact oracle [IRS12]. This situation of the determinant is somewhat surprising as
it contrasts that of IMM (the close cousin of the determinant) – IMM equivalence test over Q can
be solved efficiently for polynomials of degree greater than four [KNST17].

2 Preliminaries

2.1 Notations

The set of trace zero or traceless matrices in Mn(F) is denoted by Zn(F); we will drop F from
Mn(F) and Zn(F) when it is clear from the context. Let In be the n× n identity matrix. Define,

Mcol := In ⊗Mn, Mrow := Mn ⊗ In and Lcol := In ⊗Zn, Lrow := Zn ⊗ In.
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Observe thatMcol, Mrow ⊆ Mn2 are F-algebras isomorphic to Mn, and Lcol, Lrow are subspaces
ofMcol, Mrow, respectively, of dimension n2− 1 each. Henceforth, we set m = n2 and r = n2− 1.

2.2 Definitions

Definition 2.1. (Lie bracket): For A, B ∈ Mn, the Lie bracket operation [A, B] := AB− BA.

Definition 2.2. (Lie algebra of a polynomial): The Lie algebra g f of a m-variate polynomial f ∈
F[x] is the set of matrices B = (bi,j)i,j∈[m] satisfying,

∑
i,j∈[m]

bi,j · xj ·
∂ f
∂xi

= 0.

It is easy to verify that [·, ·] is a F-bilinear map on Mn, and g f is an F-vector space.4

Definition 2.3. (Invariant subspace): Let V be a F-vector space and T ⊆ EndF(V), where EndF(V) :=
{ϕ : ϕ is a F-linear map from V to V}. A subspace U of V is called a T -invariant subspace of V if
for every ϕ ∈ T , ϕ(U ) ⊆ U .

If T ⊆ M2r then the terminology ‘invariant subspace of T ’ means T -invariant subspace of F2r.

Definition 2.4. (Irreducible invariant subspace): Let V be a F-vector space and T ⊆ EndF(V).
Then, a T -invariant subspace U of V is irreducible if there do not exist proper T -invariant sub-
spaces U1,U2 of U , such that U = U1 ⊕U2.

Definition 2.5. (Closure of a vector): Let V be a F-vector space, w ∈ V and T ⊆ EndF(V). Then,
the closure of w with respect to T , denoted closureT (w), is the smallest T -invariant subspace of
V containing w.

2.3 Some basic results

Observation 2.1. For i, j ∈ [n], i 6= j, let Eij ∈ Mn be such that the (i, j)-th entry is 1 and other entries
are 0, and for ` ∈ [2, n], let E` ∈ Mn be a diagonal matrix with the (1, 1)-th and (`, `)-th entries as 1 and
−1 respectively and other entries as 0. Then,

1.
{

In ⊗ Eij, In ⊗ E` : i, j ∈ [n], i 6= j, and ` ∈ [2, n]
}

is a basis of Lcol. Denote the elements of this
standard basis as S1, . . . , Sr.

2.
{

Eij ⊗ In, E` ⊗ In : i, j ∈ [n], i 6= j, and ` ∈ [2, n]
}

is a basis of Lrow. Denote the elements of this
standard basis as Sr+1, . . . , S2r.

Observation 2.2. For every F ∈ Mrow and L ∈ Mcol, [F, L] = FL− LF = 0.

Observation 2.3. For every L1, L2 ∈ Lcol (similarly, Lrow), [L1, L2] ∈ Lcol (respectively. Lrow).

A proof of the following standard fact is given in Section A.1 of the Appendix.

4Over C, g f also turns out to be a Lie algebra i.e. closed under the Lie bracket operation. However, over finite fields,
it is not clear if it is closed under the bracket operation. We still stick with the terminology Lie algebra of a polynomial
since in many cases, it does turn out to be closed under the bracket operation.
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Fact 1. Let B ∈ Mn. Then, the dimension of the space of matrices in Mn that commute with B is at least n,
and the dimension of the space of matrices in Zn that commute with B is at least n− 1.

We would also need the following facts (see [Kay12, KNST17] for their proofs).

Fact 2. If g ∈ F[x] is m-variate and f (x) = g(A · x) for some A ∈ GL(m, F) then g f = A−1 · gg · A.

Fact 3. Suppose we have black box access to a m-variate polynomial f ∈ F[x], where |F| ≥ 2n3. Then, a
basis of g f can be computed in randomized polynomial time.

Fact 4. Let T ⊆ M2r be a F-vector space. Given a basis {T1, . . . , Ts} of T and a w ∈ F2r, a basis of
closureT (w) can be computed in time polynomial in r and the bit length of the entries in w and T1, . . . , Ts.

The following theorem on the Lie algebra of Det is well-known over C. We give a proof over any
field (with a mild condition on the characteristic) in Section A.2 of the Appendix.

Theorem 4 (Lie algebra of Det). Let n ≥ 2 and F be a field such that char(F) - n. Then, the Lie algebra
of Detn equals the direct sum of the spaces Lrow and Lcol, i.e., gDet = Lrow ⊕Lcol.

The theorem implies that the set {S1, . . . , S2r}, in Observation 2.1, forms a basis of gDet. The rows
and columns of every element in gDet are indexed by the x variables, in order. Let f = Det(A · x) for
some A ∈ GL(m, F). Then, Theorem 4 and Fact 2 imply that g f = A−1 ·Lrow · A ⊕ A−1 ·Lcol · A.
We denote A−1 ·Lrow · A and A−1 ·Lcol · A by Frow and Fcol respectively, and refer to Frow and
Fcol (similarly, Lrow and Lcol) as the Lie subalgebras of g f (respectively, gDet) 5. From Theorem 4,
Observation 2.2 and 2.3, we get the following.

Observation 2.4. For every E, F ∈ g f , [E, F] ∈ g f .

It is also easy to prove the following observation.

Observation 2.5. Let A ⊆ Mm be the F-algebra generated by a basis of Fcol. Then,

A = A−1 · (In ⊗Mn) · A.

Finally, we record a special case of the Skolem-Noether theorem which will be used in Section 4.
The general statement of the theorem can be found in [Lor08] (Theorem 20 on page 173).

Theorem 5 (Skolem-Noether). Let n, s ∈ N× such that n | s, and A ⊆ Ms be a F-algebra (containing
Is) that is isomorphic to Mn via a map φ : Mn → A. Then, there exists a K ∈ GL(s, F) such that,

φ(C) = K−1 · (Is/n ⊗ C) · K, for every C ∈ Mn.

3 Decomposition of g f into its Lie subalgebras

We show how to compute bases of Frow and Fcol from black box access to f = Det(A · x).
Theorem 6 (Decomposition of g f ). Let n ≥ 2, |F| ≥ 10n4 and char(F) - n(n − 1). There is a
randomized algorithm, which takes input black box access to f and outputs bases of Frow and Fcol with high
probability. The running time is poly(n, γ), where γ is the bit length of the coefficients of f .

We first present the proof idea, and then the algorithm and its proof of correctness. The missing
proofs of all the observations, claims and lemmas are given in Sections B, C and D of the Appendix.

5Observation 2.3 implies that Frow and Fcol are closed under the Lie bracket operation and hence they are matrix
Lie algebras.
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3.1 Proof of Theorem 6: The idea

The algorithm relies on finding the irreducible invariant subspaces of a set of F-linear maps on g f .
These linear maps (a.k.a adjoint homomorphisms of g f ) are defined as follows: For every F ∈ g f ,

ρF : g f → g f

E 7→ [E, F].

It is easy to see that ρF is a F-linear map. Let {B1, . . . , B2r} be a basis of g f which can be computed
in randomized polynomial time (by Fact 3). As ρF is F-linear, we can associate a matrix PF ∈ M2r
with ρF, after fixing an ordering of the basis (B1, . . . , B2r). Let P := {PF : F ∈ gf}.
Claim 3.1. g f and P are isomorphic as F-vector spaces via the map F 7→ PF for every F ∈ g f .

Its proof is given in Section B.1 of the Appendix. This implies the following.

Observation 3.1. The matrices {PB1 , . . . , PB2r} is a basis of P , which can be efficiently computed from
{B1, . . . , B2r} (by considering the elements [Bi, Bj], for i, j ∈ [2r]).

We intend to study the irreducible invariant subspaces of P in order to compute bases of Frow and
Fcol. The following Claim 3.2 would be useful in this regard.

It follows from Fact 2 that Ji := A · Bi · A−1, for i ∈ [2r], is a basis of gDet. Like ρF, we can associate
a F-linear map (i.e. adjoint homomorphism) χL with every L ∈ gDet as follows:

χL : gDet → gDet

K 7→ [K, L].

Let QL ∈ M2r be the matrix corresponding to the linear map χL, with respect to the (ordered) basis
(J1, . . . , J2r). The following claim implies that P does not depend on the transformation matrix A.
Thus, it is sufficient to focus on gDet to study the invariant subspaces of P . The proof of the claim
is given in Section B.2 of the Appendix.

Claim 3.2. For every i ∈ [2r], QJi = PBi and so the space P = {QL : L ∈ gDet}.
Like Claim 3.1, gDet and P are isomorphic as F-vector spaces via the map L 7→ QL, for L ∈ gDet.
The algorithm computes two invariant subspaces V1 and V2 of P that are defined as follows.

V1 =

{
v = (a1, . . . , a2r)

T ∈ F2r : ∑
i∈[2r]

ai · Ji ∈ Lcol

}
,

V2 =

{
v = (b1, . . . , b2r)

T ∈ F2r : ∑
i∈[2r]

bi · Ji ∈ Lrow

}
.

(1)

Clearly, dim(V1) = dim(V2) = r. As Bi = A−1 · Ji · A, for i ∈ [2r], we get

V1 =

{
v = (a1, . . . , a2r)

T ∈ F2r : ∑
i∈[2r]

ai · Bi ∈ Fcol

}
,

V2 =

{
v = (b, . . . , b2r)

T ∈ F2r : ∑
i∈[2r]

bi · Bi ∈ Frow

}
.

(2)

6



From bases of V1 and V2, and (B1, . . . , B2r), we get bases of Fcol and Frow readily. The aspects of
the space P that help in computing V1 and V2 are the facts that these are the only two irreducible
invariant subspaces of P and bases of these can be computed from a random element of P . These
facts are proved and elaborated upon in the proof of correctness of Algorithm 1.

3.2 The decomposition algorithm

Algorithm 1 Computation of bases of Frow and Fcol

Input: Black box access to f .
Output: Bases of spaces V1 and V2 (as in Equation (2)).

1. Compute a basis {B1, . . . , B2r} of g f (see Fact 3), and form the basis {PB1 , . . . , PB2r} of P .
2. Pick a random element Q = r1PB1 + · · ·+ r2rPB2r from P , where every ri is chosen uniformly

and independently at random from a fixed subset of F of size 10n4.
3. Compute the characteristic polynomial h(z) of Q.
4. Factor h(z) into irreducible factors over F. Let h(z) = z2(n−1) · h1(z) · · · hk(z), where

z, h1, . . . , hk are mutually coprime and irreducible. If h does not split as above, output ‘Fail’.
5. For every i ∈ [k], compute a basis of the null space Ni of hi(Q), pick a vector v from the basis

of Ni and compute a basis of Ci := closureP (v) (using Fact 4).
6. Remove repetitive spaces from the set {C1, . . . , Ck}. After this, if we are not left with exactly

two spaces U1 and U2 then output ‘Fail’. Else, output bases of U1 and U2.

3.3 Analysis of the algorithm

Let us view the space P through the lens of a convenient basis of gDet, namely the standard basis
{S1, . . . , S2r} (given in Observation 2.1). For K ∈ gDet, let wK, vK ∈ F2r be the coordinate vectors
of K with respect to the ordered bases (S1, . . . , S2r) and (J1, . . . , J2r) respectively. There is a basis
change matrix H ∈ GL(2r, F), such that for every K ∈ gDet,

vK = H ·wK. (3)

Recall QL from Claim 3.2. Let RL := H−1 ·QL · H, for every L ∈ gDet, and

R := {RL : L ∈ gDet} = H−1 · P · H. (4)

Observe that {RS1 , . . . , RS2r} is a basis ofR. Also,

RL ·wK = w[K,L], (5)

for every L, K ∈ gDet. Let us note a few properties ofR.

Observation 3.2. Every R ∈ R ⊆ M2r is a block diagonal matrix having two blocks of size r× r each, i.e,
the non-zero entries of R are confined to the entries {(Si, Sj) : i, j ∈ [r]} and {(Si, Sj) : i, j ∈ [r + 1, 2r]}.

The proof of Observation 3.2 is given in Section C.1 of the Appendix. We refer to the two blocks
of R as R(1) and R(2), corresponding to {S1, . . . , Sr} and {Sr+1, . . . , S2r}, respectively. A snapshot
of R is given in Figure 1. The next observation follows directly from the definition ofR.
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Observation 3.3. W is an invariant subspace ofR if and only if H · W is an invariant subspace of P .

It allows us to switch from P to R while studying the invariant subspaces of P . The following
lemmas on the invariant subspaces of R are crucial in arguing the correctness of Algorithm 1.
Their proofs are given in Sections C.2 and C.3 of the Appendix.

Lemma 3.1 (Irreducible invariant subspaces). Let wK ∈ F2r for a nonzero K in Lcol or in Lrow. Then,

closureR(wK) = {wL : L ∈ Lcol} =:W1, if K ∈ Lcol,
closureR(wK) = {wL : L ∈ Lrow} =:W2, if K ∈ Lrow.

Moreover,W1 andW2 are the only two irreducible invariant subspaces ofR, and F2r =W1 ⊕W2.

Lemma 3.2 (Characteristic polynomial). Let R = ∑i∈[2r] `i(r1, . . . , r2r) · RSi , where `1, . . . , `2r are F-
linearly independent linear forms and r1, . . . , r2r are picked uniformly and independently at random from a
fixed subset of F of size 10n4. Then, with high probability, the characteristic polynomial hR(z) of R factors
as z2(n−1) · h1(z) · · · hk(z), where z, h1(z), . . . , hk(z) are mutually coprime irreducible polynomials over F.

3.3.1 Proof of correctness of Algorithm 1

In Step 2, we choose a random Q from P . By Equation (4), there is a R ∈ R, such that,

R = H−1 ·Q · H = r1RJ1 + · · ·+ r2rRJ2r = `1(r1, . . . , r2r) · RS1 + · · ·+ `2r(r1, . . . , r2r) · RS2r ,

where `1, . . . , `2r are F-linearly independent linear forms in r1, . . . , r2r. By Lemma 3.2, Step 4 holds
with high probability. From Observation 3.2, R is a block diagonal matrix with blocks R(1) and
R(2). Let h(z) = g1(z) · g2(z), where g1(z) and g2(z) are the characteristic polynomials of R(1)

and R(2), respectively. There are a couple of factors of h, say h1 and h2, that divide g1 and g2,
respectively. In Step 5, we compute the null spacesN1 andN2 of h1(Q) and h2(Q) respectively. As
h1(R) = H−1 · h1(Q) · H and h2(R) = H−1 · h2(Q) · H, the null spaces of h1(R) and h2(R), denoted
by O1 and O2 respectively, satisfy the following (due to Equation (3)):

O1 = H−1 · N1 and O2 = H−1 · N2.

Claim 3.3. If wK ∈ O1 (similarly, wK ∈ O2) then K ∈ Lcol (respectively, K ∈ Lrow).

The proof of the claim is given in Section D.1 of the Appendix. In Step 5, we also pick a vector
v from a null space, say N1, and compute closureP (v). Clearly, v = vK for some K ∈ gDet. So,
vK ∈ N1 if and only if wK = H−1 · vK ∈ O1. AsR = H−1 · P · H, Observation 3.3 implies that

closureP (vK) = H · closureR(wK)

= H · W1 ( by Claim 3.3 and Lemma 3.1)
= V1 ( by Equations (1) and (3), as V1 = {vL : L ∈ Lcol}).

Similarly, if we pick a v ∈ N2 then closureP (v) = V2. Thus, in Step 6, one of U1 and U2 is V1 and
the other is V2. Finally, we can take U1 = V1 and U2 = V2 without loss of generality: Let P ∈ Mm
be the permutation matrix corresponding to the transposition map, i.e., P maps xij to xji when
multiplied to x. Clearly, P−1 = P. The following equation holds because P is a symmetry of Det.

Det(x) = Det(P · x) and hence f (x) = Det(A · x) = Det(PA · x).
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Observe that Lcol = P−1 ·Lrow · P. Hence,

Fcol = A−1P−1 ·Lrow · PA and Frow = A−1P−1 ·Lcol · PA.

As the transformation matrix is unknown to the algorithm, we can take it to be either A or PA.

A comparison with [dG97b] and [CIK97]: In [dG97b,dG97a], a polynomial time algorithm was given
to decompose a semisimple Lie algebra over Q (more generally, a characteristic 0 field) into a di-
rect sum of simple Lie subalgebras. The Lie algebra gDet is semisimple and Lcol and Lrow are its
two simple Lie subalgebras. So, our decomposition problem is a special case of the problem stud-
ied in [dG97b]. However, our algorithm works over any sufficiently large field F (in particular,
finite fields), if char(F) - n(n− 1). It is not quite clear to us if the algorithm in [dG97b] (which is
somewhat different from our algorithm) can be easily adapted to achieve the same result in this
special case. Lemma 3.1 shows that the decomposition of F2r into irreducible invariant subspaces
of R is unique. Using this information, it is possible to use the module decomposition algorithm
in [CIK97] to compute bases of Fcol and Frow in randomized polynomial time over finite fields.
However, the module decomposition algorithm in [CIK97] does not work in general over Q with-
out moving to an extension field.

4 Reduction of DET to FMAI

We give a randomized polynomial time reduction from DET to the FMAI problem. Recall the
FMAI problem from Definition 1.1: An algorithm for FMAI takes input an ordered basis (L1, . . . , Lm)
of a F-algebra A ⊆ Ms such that A ∼= Mn, and outputs a F-algebra isomorphism φ : A → Mn in
the form of an ordered basis (C1, . . . , Cm) of Mn, where Ci = φ(Li) for i ∈ [m].

Lemma 4.1 (Reduction of DET to FMAI). Let n ≥ 2, |F| > 10n4 and char(F) - n(n − 1). Then,
there exists a randomized algorithm, with oracle access to FMAI, that takes input black-box access to a
f ∈ F[x] of degree n and solves DET for f over F with high probability. The running time of the algorithm
is polynomial in n and the bit length of the coefficients of f .

The proof of this lemma follows from the proof of correctness of the following algorithm.

4.1 The algorithm

Algorithm 2 Reduction of DET to FMAI
Input: Black-box access to a f ∈ F[x] of degree n, and oracle access to an algorithm for FMAI.
Output: A matrix B ∈ GL(m, F) such that f = Det(B · x), if such a B exists. Else, output ‘Fail’.

1. Invoke Algorithm 1. Let {U1, . . . , Ur} be the basis of the space U1 returned by Algorithm 1.
2. Generate a basis {L1, . . . , Lk} of the algebra A := F[U1, . . . , Ur]. If k 6= m, output ‘Fail’.
3. Invoke the FMAI oracle on (L1, . . . , Lm) which returns a basis (C1, . . . , Cm) of Mn.
4. Pick a random M ∈ Mm satisfying Li ·M = M · (In ⊗ Ci) for every i ∈ [m].
5. Let b be the evaluation of f (M · x) at x11 = . . . = xnn = 1 and remaining xij set to 0.
6. If M 6∈ GL(m, F) or b = 0, output ‘Fail’. Else, set D = diag(b, 1, . . . , 1) ∈ Mn. Output

(In ⊗ D) ·M−1.
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4.2 Proof of correctness of Algorithm 2

If f is not equivalent to Det then it can be detected with high probability by checking if f (a) =
b · Det(M−1a) at a random point a ∈r Sm, where S ⊆ F is sufficiently large. So, assume that f =
Det(A · x) for some A ∈ GL(m, F). The correctness of Algorithm 1 ensure that U1 = Fcol without
loss of generality. Step 2 can be executed efficiently by checking if UiUj ∈ spanF{U1, . . . , Ur} for
i, j ∈ [r]. Observation 2.5 implies that A ∼= Mn, i.e., Li = A−1 · (In ⊗ Bi) · A for every i ∈ [m],
where {B1, . . . , Bm} is a basis of Mn. In Step 3, the FMAI oracle returns a F-algebra isomorphism
φ : A → Mn such that {Ci = φ(Li) : i ∈ [m]} is a basis of Mn. The following claim ensures the
existence of a matrix M, computed in Step 4. Its proof is given in Section E.1 of the Appendix.

Claim 4.1. There exists a S ∈ GL(n, F) such that Bi = S−1 · Ci · S for every i ∈ [m].

Consider the linear system defined by the equation Li ·M = M · (In ⊗ Ci), where the entries of M
are taken as variables. Step 4 is executed by picking the free variables of the solution space of the
system from a sufficiently large subset of F. Finally, the correctness of Step 6 is argued in the proof
of the following claim which is given in Section E.2 of the Appendix.

Claim 4.2. Suppose f = Det(A · x), where A ∈ GL(m, F). Then, f = Det((In ⊗ D) · M−1 · x) with
high probability.

5 DET over finite fields and over Q

The proofs of Theorem 1 and 2 are completed by replacing the FMAI oracle in Step 3 of Algorithm
2 by known algorithms for FMAI over finite fields and Q. These known results are stated below.

Theorem 7. [Theorem 5.1 of [Rón90]] Let F be a finite field. Given a basis of a F-algebra A ⊆ Mm such
that A ∼= Mn, an isomorphism φ : A → Mn can be constructed in randomized poly(m, log |F|) time.

Theorem 8. [Theorem 1 of [IRS12]] There is a randomized algorithm with oracle access to IntFact that
takes input a basis of a Q-algebra A ⊆ Mm such that A ∼= Mn, and outputs an isomorphism φ : A → Mn
with high probability. The algorithm runs in time polynomial in the bit length of the input, if n is bounded.

Theorem 9. [Lemma 2.5 of [BR90]] There is a randomized algorithm that takes input a basis of a Q-
algebra A ⊆ Mm such that A ∼= Mn, and outputs an isomorphism φ : A⊗Q L → Mn(L) with high
probability, where L is an extension field of Q satisfying [L : Q] ≤ n. The algorithm runs in time
polynomial in the bit length of the input.

6 Factoring hardness of DET over Q

This section is devoted to proving Theorem 3. We show that DET in the 2× 2 setting over Q is at
least as hard as factoring square-free integers. We will need the following theorem from [Rón87].

Theorem 10 ( [Rón87]). Assuming GRH, there is a randomized polynomial time reduction from the prob-
lem of factoring square-free integers to the following problem: Given non-zero a, b ∈ Q, find rational
numbers x, y, z (not all zero) such that x2 − ay2 − bz2 = 0, if there exists such a solution.

We will also need the following proposition, cited in [Rón87], to prove the next theorem. We give
a proof from [Con16] in Section F.1, for completeness.
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Proposition 6.1. Let a, b ∈ Q be non-zero. Then the equation x2 − ay2 − bz2 = 0 has a non-zero rational
solution if and only if the equation x2 − ay2 − bz2 + abw2 = 0 has a non-zero rational solution.

We are now ready to prove integer factoring hardness of DET in the next theorem. The proof is
given in Section F.2.

Theorem 11. Consider the polynomial fa,b(x) = x2
1,1 − ax2

1,2 − bx2
2,1 + abx2

2,2, where a, b ∈ Q are non-
zero. Then fa,b(x) = Det2(A · x) for some A ∈ GL(4, Q) if and only if the equation x2 − ay2 − bz2 = 0
has a non-zero rational solution (moreover, such a rational solution can be efficiently computed from A).

Combining Theorems 10 and 11, we obtain Theorem 3.

Remark 1. We want to explain how we got to the above reduction. Ronyai [Rón87] proved that the FMAI
problem over Q is factoring hard even for n = 2 via quaternion algebras. If one takes a specific quaternion
algebra and tries to constructs a polynomial f whose Lie algebra is the traceless part of the quaternion
algebra, then it turns out the polynomial fa,b(x) is the unique homogeneous degree 2 polynomial that comes
out. But in any case, in hindsight, the polynomial fa,b(x) seems like a natural candidate to use.

7 Characterization of the determinant by its Lie algebra

In this section, we reduce the FMAI problem to DET under mild restrictions on F. We start with
the following claim that the Lie algebra of the determinant characterizes the determinant. This is
well known over C, but we give a proof in Section G.1 that works under mild restrictions on F.

Lemma 7.1. Let f ∈ F[x] be any homogeneous polynomial of degree n such that Lcol ⊆ g f (see Section 2
for definition of Lcol). Also suppose char(F) - n. Then f (x) = α ·Detn(x) for some α ∈ F.

Remark 2. Note that without the char(F) - n condition, Lemma 7.1 is not true. For example, the polyno-
mial f (x) = xn

1,1 +Detn(x) will have the same Lie algebra as Detn(x) if char(F) divides n.

We get the following corollary of Lemma 7.1.

Corollary 7.1. Let f ∈ F[x] be any homogeneous polynomial of degree n. Suppose that A−1 ·Lcol · A ⊆ g f

for some A ∈ GL(n2, F) and char(F) - n. Then f (x) = α ·Detn(A · x) for some α ∈ F.

Proof. Consider f ′(x) = f (A−1 · x). By Fact 2, g f ′ = A · g f · A−1 and so Lcol ⊆ g f ′ . By Lemma 7.1,
we get that f ′(x) = α ·Detn(x) for some α ∈ F and hence f (x) = α ·Detn(A · x).

Corollary 7.1 allows us to reduce the FMAI problem to DET when n is constant (see Algorithm 3).

7.1 Proof of correctness of Algorithm 3 when char(F) - n

The proof of correctness will follow from the following proposition, proved in Section G.2. The
matrices Bi,j and Li,j are as defined in Step 2 of the algorithm.

Proposition 7.1. Suppose the algebra A spanned by B1,1, . . . , Bn,n is isomorphic to Mn. Then there exist
K ∈ GL(n2, F) and matrices C1,1, . . . , Cn,n ∈ Mn such that Li,j = K−1 ·

(
In ⊗ Ci,j

)
· K for all i, j ∈ [n].
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Algorithm 3 Reduction of FMAI to DET
Input: Basis {B1, . . . , Br} of a F-algebra A ⊆ Mm, and access to an algorithm for DET.
Output: 1 if A ∼= Mn for some n ∈N, 0 otherwise. If A ∼= Mn then output an isomorphism.

1. If r = dimFA 6= n2 for any n ∈N, output 0 and halt.
2. Index the basis elements by [n] × [n], i.e., rename them as B1,1, . . . , Bn,n. Compute n2 × n2

matrices L1,1, . . . , Ln,n as follows: Li,j is the matrix corresponding to the left-multiplication
action of Bi,j on B1,1, . . . , Bn,n. That is Bi,j · Bi2,j2 = ∑i1,j1 Li,j ((i1, j1), (i2, j2)) · Bi1,j1 .

3. Compute a basis for the traceless parts of the matrices Li,j. That is, compute a basis L̃1, . . . , L̃s

of the space spanned by L1,1 − tr(L1,1)
n2 In2 , . . . , Ln,n − tr(Ln,n)

n2 In2 . If s 6= n2 − 1, output 0 and halt.
4. Find a non-zero homogeneous polynomial of degree n, f (x), satisfying the equations

∑
i1,j1,i2,j2

M((i1, j1), (i2, j2)) · xi2,j2 ·
∂ f

∂xi1,j1
= 0

for every M ∈ {L̃1, . . . , L̃n2−1} (these give linear equations in the coefficients of f ). If no such
non-zero polynomial exists then output 0 and halt.

5. Run DET on f . If the output is ‘Fail’ then output 0 and halt. If f (x) = Detn(A · x) then check if
there exist matrices F1,1, . . . , Fn,n ∈ Mn such A · Li,j · A−1 = In ⊗ Fi,j for all i, j. If yes, output 1
and the isomorphism φ(Bi,j) = Fi,j (extended linearly to whole of A). If no, check if there exist
matrices F1,1, . . . , Fn,n ∈ Mn such that A · Li,j · A−1 = Fi,j ⊗ In for all i, j. If yes, output 1 and the
isomorphism φ(Bi,j) = Fi,j (extended linearly to whole of A). If no, output 0.

Now let us proceed to the proof of correctness of Algorithm 3. First of all, it is easy to ensure that
whenever the algorithm outputs an isomorphism, it is actually an isomorphism. So what we need
to prove is the converse. Suppose the algebra A is isomorphic to Mn. Then by Proposition 7.1, the
space spanned by L̃1, . . . , L̃n2−1 is K−1 ·Lcol · K. Then by Corollary 7.1, there is a unique solution
to the equations in Step 4 given by f (x) = α · Detn(K · x), for some α ∈ F, and so f is equivalent
to the determinant. Hence, in Step 5, we will get an A ∈ GL(n2, F) s.t. f (x) = Detn(A · x). Since
L̃1, . . . , L̃n2−1 span a Lie algebra of dimension n2 − 1 and since they lie inside the Lie algebra of
Detn(A · x), we must have that L̃1, . . . , L̃n2−1 span either A−1 ·Lcol · A or A−1 ·Lrow · A. From this,
we get that one of the following conditions should be true:

• There exist matrices F1,1, . . . , Fn,n ∈ Mn such that A · Li,j · A−1 = In ⊗ Fi,j for all i, j ∈ [n].

• There exist matrices F1,1, . . . , Fn,n ∈ Mn such that A · Li,j · A−1 = Fi,j ⊗ In for all i, j ∈ [n].

The implies that the algorithm will output 1 and an isomorphism into Mn. The complexity of the
reduction is dominated by Step 4 which takes nO(n) field operations.
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A Proofs from Section 2

A.1 Proof of Fact 1

Fact 1 (restated): Let B ∈ Mn. Then, the dimension of the space of matrices in Mn that commute with B
is at least n, and the dimension of the space of matrices in Zn that commute with B is at least n− 1.

Proof. Let F be the algebraic closure of F and B̃ be the Jordan Normal form of B over F. Then there
exists a G ∈ GL(n, F), such that

B̃ = G · B · G−1.

It is easy to see that if S , S̃ are the spaces of n× n matrices that commute with B, B̃ over F and F

respectively, then
S̃ = G · S · G−1.

Thus, it is sufficient to show that the dimension S̃ is at least n. As B̃ is the Jordan normal form of
B, it is a block diagonal matrix, i.e. B̃ = diag(G1, . . . , Gt), where Gi is an ni × ni size Jordan block
for i ∈ [t], such that ∑i∈[t] ni = n. For a fixed i ∈ [t], the Jordan block Gi ∈ Mni(F) looks like

Gi =


λi 1 0 . . . 0 0
0 λi 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . λi 1
0 0 0 . . . 0 λi

 ,

where λi ∈ F. Clearly, we can write

Gi = λi · Ini + Ni,

where Ni (mentioned below) is a nilpotent matrix.

Ni =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 0 1
0 0 0 . . . 0 0

 .

It is easy to see that Ini , Ni, . . . , Nni−1
i are F-linearly independent and they commute with Gi. Since

B̃ is a block diagonal matrix, the dimension of the space of matrices commuting with B̃ over F is
at least ∑i∈[t] ni = n. This proves that the dimension of the space of matrices in Mn that commutes
with B is at least n.

Let B1, . . . , Bs be a basis of the space of matrices commuting with B. We are interested in the space
of traceless matrices that commute with B. Let C be that space, defined as follows

C :=

{
a1B1 + · · ·+ asBs : a1, . . . , as ∈ F and tr( ∑

i∈[s]
aiBi) = 0

}
.

Observe that the dimension of C is s− 1, which is at least n− 1 as s ≥ n.
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A.2 Proof of Theorem 4

Theorem 4 (restated): Let n ≥ 2 and F be a field such that char(F) - n. Then, the Lie algebra of Detn
equals the direct sum of the spaces Lrow and Lcol, i.e., gDet = Lrow ⊕Lcol.

Proof. Since Lrow ∩Lcol = {0}, it is sufficient to show gDet = Lrow +Lcol. Recall from Definition
2.2 that B ∈ gDet satisfies

∑
i1,j1,i2,j2∈[n]

b(i1,j1),(i2,j2) · xi2,j2 · ∂i1,j1Det = 0 , (6)

where ∂i1,j1Det =
∂Det

∂xi1,j1
and b(i1,j1),(i2,j2) is the entry of B whose row and column are indexed by xi1,j1

and xi2,j2 respectively. For convenience, if i1 = i2 and j1 = j2 then we denote b(i1,j1),(i1,j1) as bi1,j1 .
The following claims and observation imply that gDet = Lrow ⊕Lcol.

Claim A.1. A matrix B ∈ gDet if and only if the following equations are satisfied for i1, i2, j1, j2 ∈ [n].

b(i1,j1),(i2,j2) = 0 for i1 6= i2 and j1 6= j2 , (7a)

∑
i∈[n]

bi,σ(i) = 0 for all permutations σ of [n], (7b)

b(i1,j1),(i1,j2) = b(i2,j1),(i2,j2) for j1 6= j2 , (7c)

b(i1,j1),(i2,j1) = b(i1,j2),(i2,j2) for i1 6= i2 . (7d)

The proof of Claim A.1 is given in Section A.2.1.

Observation A.1. Every matrix in Lrow ⊕Lcol satisfies all the equations mentioned in Claim A.1.

The proof of this observation can be verified easily. This implies that Lrow ⊕Lcol ⊆ gDet.

Claim A.2. Suppose B ∈ Mm satisfies all the equations given in Claim A.1. Then, there exist M, N ∈ Zn,
such that

B = M⊗ In + In ⊗ N.

Claim A.2 implies that gDet ⊆ Lrow ⊕Lcol. Its proof is given in Section A.2.2. This completes the
proof of Theorem 4.

Now we give the proofs of Claims A.1 and A.2.

A.2.1 Proof of Claim A.1

It is easy to verify that if B satisfies the given equations then B ∈ gDet. Suppose B ∈ gDet. We prove
the claim by understanding the types of monomials on the L.H.S of Equation (6). The following
observation implies that Equation (7a) holds for every i1 6= i2 and j1 6= j2.

Observation A.2. In Equation (6), if i1 6= i2 and j1 6= j2 then b(i1,j1),(i2,j2) = 0.

The proof of Observation A.2 follows from the fact that there is a monomial containing x2
i2,j2 in

the term xi2,j2 · ∂i1,j1Det, that appears exactly once in Equation (6). This observation allows us to
categorize the monomials occurring more than once in Equation (6) as follows:

1. We derive and multiply Det by same variable, i.e. xi,j · ∂i,jDet for i, j ∈ [n].
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2. We derive and multiply Det with the variables having same 1st indices but different 2nd
indices, i.e. xi1,j2 · ∂i1,j1Det for i1, j1, j2 ∈ [n], j1 6= j2.

3. We derive and multiply Det with the variables having same 2nd indices but different 1st
indices, i.e. xi2,j1 · ∂i1,j1Det for i1, i2, j1 ∈ [n], i1 6= i2.

Observe that these three categories are pairwise monomial disjoint. This implies that Equation (6)
can be decomposed into the following equations:

∑
i,j∈[n]

bi,j · xi,j · ∂i,jDet = 0, (8a)

∑
i1,j1,j2∈[n]

j1 6=j2

b(i1,j1),(i1,j2) · xi1,j2 · ∂i1,j1Det = 0, (8b)

∑
i1,i2,j1∈[n]

i1 6=i2

b(i1,j1),(i2,j1) · xi2,j1 · ∂i1,j1Det = 0. (8c)

Now we show that the analysis of Equations (8a), (8b) and (8c) imply Equations (7b), (7c) and (7d)
respectively.

Analysis of Equation (8a): Observe that the L.H.S of Equation (8a) only contains the monomials
of Det. As every monomial of Det is associated with a permutation on [n], Equation (8a) implies
that Equation (7b) holds, i.e. for every permutation σ on [n],

∑
i∈[n]

bi,σ(i) = 0.

Analysis of Equation (8b): We show here that every monomial in the term xi1,j2 · ∂i1,j1Det occurs
exactly twice in Equation (8b). The following subclaim would be helpful in this regard.

Subclaim A.1. Let µ be a monomial of the term xi1,j2 · ∂i1,j1Det in Equation (8b) such that µ contains the
variables xi1,j2 and xi2,j2 for some i2 ∈ [n], i2 6= i1. Then µ is a monomial of the term xp1,q2 · ∂p1,q1Det,
where q1 6= q2 in Equation (8b) if and only if p1 = i1 or p1 = i2, and q2 = j2 and q1 = j1. Further, the
coefficient of µ in xi1,j2 · ∂i1,j1Det and xi2,j2 · ∂i2,j1Det are either 1 and -1, or -1 and 1 respectively.

Proof. Observe that the monomial µ in xi1,j2 · ∂i1,j1Det has no variable with the second index j1 and
has two variables with second index j2. Since q1 6= q2 in Equation (8b), it must be that q1 = j1 and
q2 = j2. Further, as xp1,j2 is part of every monomial in xp1,j2 · ∂p1,j1Det, we have p1 = i1 or p1 = i2.

We now prove that the signs of the coefficients of µ in the two terms xi1,j2 · ∂i1,j1Det and xi2,j2 ·
∂i2,j1Det are opposite. Let

µ1 =
µ · xi1,j1

xi1,j2
and µ2 =

µ · xi2,j1

xi2,j2
.

Then, observe that the monomials µ1, and µ2 are actually the monomials of Det, and the coefficient
of µ in xi1,j2 · ∂i1,j1Det and xi2,j2 · ∂i2,j1Det are the coefficients of µ1 and µ2 respectively in Det. Since
µ1, and µ2 are monomials of Det, there are two permutations σ, τ on [n], such that

µ1 =
n

∏
k=1

xk,σ(k) and µ2 =
n

∏
k=1

xk,τ(k)
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and the coefficient of µ1, µ2 in Det are the signs of the permutation σ, τ respectively. From the
definition of µ1 and µ2, for all k ∈ [n], k 6= i1 and k 6= i2, σ(k) = τ(k). Observe that σ(i1) = j1,
σ(i2) = j2, τ(i1) = j2, and τ(i2) = j1. Hence

τ = (j1, j2) · σ,

where (j1, j2) denotes the transposition that swaps j1 and j2. This implies the signs of σ and τ are
opposite of each other.

The above subclaim immediately implies that Equation (7c) holds, i.e. for i1, i2, j1, j2 ∈ [n], j1 6= j2,

b(i1,j1),(i1,j2) = b(i2,j1),(i2,j2).

The analysis of Equation (8c) is similar to that of Equation (8b) and this implies that Equation (7d)
holds, i.e. for i1, i2, i1, i2 ∈ [n], i1 6= i2,

b(i1,j1),(i2,j1) = b(i1,j2),(i2,j2).

This completes the proof of the claim.

A.2.2 Proof of Claim A.2

Let B = (b(i1,j1),(i2,j2))i1,j1,i2,j2∈[n] . We define the matrices M = (mi,j)i,j∈[n], N = (ni,j)i,j∈[n] as follows:

1. For i, j ∈ [n] and i 6= j
mi,j := b(i,1),(j,1) and ni,j := b(1,i),(1,j).

2. For i ∈ [n],
mi,i := ai and ni,i := b′1,i ,

where ai := ∑j∈[n] bi,j
n (assuming char(F) - n), and for i, j ∈ [n], b′i,j := bi,j − ai.

Now we argue that B = M ⊗ In + In ⊗ N, and M, N ∈ Zn. Since B ∈ gDet, the non-diagonal
entries of B satisfy Equations (7a), (7c) and (7d). Hence, the non-diagonal entries of B are equal
to the non-diagonal entries of In ⊗M + N ⊗ In. Note that ∑i∈[n] b′1,i = 0, which implies N ∈ Zn.
Let t = ∑i∈[n] ai. Consider the following equations we get from Equation (7b) corresponding to
different permutations on [n].

1. Equation with respect to the identity permutation on [n]:

bj,j + ∑
q∈[n]
q 6=j

bq,q = b′j,j + ( ∑
q∈[n]
q 6=j

b′q,q) + t = 0. (9)

2. Equation corresponding to the transposition (i, j) for i, j ∈ [n]:

bj,i + bi,j + ∑
q∈[n]

q 6=i,q 6=j

bq,q = b′j,i + b′i,j + ( ∑
q∈[n]

q 6=i,q 6=j

b′q,q) + t = 0. (10)
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3. Equations corresponding to the transposition (p, i) for distinct i, j, p ∈ [n]:

bj,j + bp,i + bi,p + ∑
q∈[n]\{i,j,p}

bq,q = b′j,j + b′p,i + b′i,p + ( ∑
q∈[n]\{i,j,p}

b′q,q) + t = 0. (11)

4. Equations corresponding to the cycle (p, i, j) for distinct i, j, p ∈ [n]:

bp,i + bi,j + bj,p + ∑
q∈[n]\{i,j,p}

bq,q = b′p,i + b′i,j + b′j,p + ( ∑
q∈[n]\{i,j,p}

b′q,q) + t = 0. (12)

On subtracting Equation (10) from Equation (9), we have

b′j,j − b′j,i = b′i,j − b′i,i . (13)

Similarly on subtracting Equation (12) from Equation (11), for all p ∈ [n], and p 6= i, p 6= j we have

b′j,j − b′j,p = b′i,j − b′i,p . (14)

Adding Equation (13), and Equation (14) for all p ∈ [n]\{i, j}, we have

(n− 1)b′j,j − ∑
p∈[n],p 6=j

b′j,p = (n− 1)b′i,j − ∑
p∈[n],p 6=j

b′i,p .

This implies,
n · b′j,j − ∑

p∈[n]
b′j,p = n · b′i,j − ∑

p∈[n]
b′i,p .

Since ∑p∈[n] b′j,p = 0 and ∑p∈[n] b′i,p = 0 (by definition of b′i,j), and char(F) - n, it follows that
b′j,j = b′i,j. Since b′j,j = b′i,j for all i, j ∈ [n], from Equation (9) we have t = ∑i∈[n] ai = 0 (once again
by using the fact that ∑q∈[n] b′i,q = 0), and hence M ∈ Zn. This completes the proof.

B Proofs from Section 3.1

B.1 Proof of Claim 3.1

Claim 3.1 (restated) g f and P are isomorphic as F-vector spaces via the map F 7→ PF for every F ∈ g f .

Proof. It is easy to see that P is a F-vector space. Consider the map τ(F) = PF. Observe that τ
is F-linear and onto. Let F ∈ Ker(τ). Then PF = 0, i.e., [E, F] = 0 for every E ∈ g f , and hence
L := A · F · A−1 ∈ gDet commutes with every element of gDet. This implies L ∈ Lcol ∩Lrow, and so
L = α · In2 for some α ∈ F. As tr(L) = 0 and char(F) - n, we have L = 0. Hence, τ is injective.

B.2 Proof of Claim 3.2

Claim 3.2 (restated): For every i ∈ [2r], QJi = PBi and so the space P = {QL : L ∈ gDet}.

Proof. Let E ∈ gf , K ∈ gDet and E = A · K · A−1. Observe that uE = vK, where uE, vK are the coor-
dinate vectors of E, K with respect to the bases (B1, . . . , B2r) and (J1, . . . , J2r) respectively. Hence,
QJi · vK = v[K,Ji ] = u[E,Bi ] = PBi · uE = PBi · vK, implying QJi = PBi .
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C Proofs from Section 3.3

C.1 Proof of Observation 3.2

Observation 3.2 (restated): Every R ∈ R ⊆ M2r is a block diagonal matrix having two blocks of size r× r
each, i.e, the non-zero entries of R are confined to {(Si, Sj) : i, j ∈ [r]} and {(Si, Sj) : i, j ∈ [r + 1, 2r]}.

Proof. Let L = L1 + L2 ∈ gDet, where L1 ∈ Lcol, L2 ∈ Lrow. From Equation (5), RL ·wSi = w[Si ,L] =
w[Si,L1]+[Si ,L2]. Thus, RL ·wSi is either w[Si ,L1] if i ∈ [r], or w[Si ,L2] if i ∈ [r + 1, 2r]. By Observation
2.3, [Si, L1] ∈ Lcol for i ∈ [r] and [Si, L2] ∈ Lrow for i ∈ [r + 1, 2r]. Hence RL is block diagonal.

S1

...

Sr
Sr+1

...

S2r

S1 · · · Sr Sr+1 · · · S2r

0 matrix

0 matrix

R(2)

R(1)

Figure 1: Structure of a matrix R ∈ R

C.2 Proof of Lemma 3.1

Lemma 3.1 (restated) Let wK ∈ F2r for a nonzero K ∈ Lcol or K ∈ Lrow. Then,

closureR(wK) = {wL : L ∈ Lcol} =:W1, if K ∈ Lcol,
closureR(wK) = {wL : L ∈ Lrow} =:W2, if K ∈ Lrow.

Moreover,W1 andW2 are the only two irreducible invariant subspaces ofR, and F2r =W1 ⊕W2.

Proof. We use the following three claims to prove the lemma. Their proofs are given in Sections
C.2.1, C.2.2 and C.2.3 respectively. We prove these claims for Lcol, similar proofs hold for Lrow.

Claim C.1. Let wK be such that the entry indexed by In ⊗ Eij (similarly, Eij ⊗ In) is nonzero for some
i, j ∈ [n], i 6= j. Then closureR(wK) contains the unit vector wIn⊗Eij (respectively, wEij⊗In ).

The next claim complements the previous one.

Claim C.2. Let p, q ∈ [n] and p 6= q. Then

closureR(wIn⊗Epq) = {wL : L ∈ Lcol} =W1.

Similarly, closureR(wEpq⊗In) = {wL : L ∈ Lrow} =W2.
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Claim C.3. Suppose wK ∈ F2r is such that the entry indexed by In ⊗ E` (similarly, E` ⊗ In) for ` ∈ [2, n]
is nonzero, and the entries indexed by In ⊗ Eij (similarly, Eij ⊗ In) are zero for every i, j ∈ [n], i 6= j. Then,
for some i 6= `,

wIn⊗Ei` ∈ closureR(wK) (respectively, wEi`⊗In ∈ closureR(wK)).

Claims C.1, C.2 and C.3 imply that for a nonzero K ∈ Lcol, closureR(wK) = W1 (similarly, for a
nonzero K ∈ Lrow, closureR(wK) =W2). This completes the proof of the lemma.

C.2.1 Proof of Claim C.1

Consider the following subclaim whose proof is given in Section C.2.4.

Subclaim C.1. There is a diagonal matrix R ∈ R such that R(In⊗ E`, In⊗ E`) = R(E`⊗ In, E`⊗ In) =
0 for every ` ∈ [2, n], and the remaining 2n2 − 2n diagonal entries are distinct nonzero field elements.

Let R ∈ R be the diagonal matrix mentioned above. Consider the following equation in the
variables a1, . . . , a2n2−2n,

wIn⊗Eij =
2n2−2n

∑
i=1

ai · Ri ·wK.

As the resulting system is a Vandermonde system, there is a solution over F. Thus, wIn⊗Eij ∈
closureR(wK).

C.2.2 Proof of Claim C.2

We would show that the vectors wS1 , . . . , wSr are in closureR(wIn⊗Epq). The three observations
below follow from the structure of matrices inRmentioned in Fact 7.

1. If S = In ⊗ Eqj, where j 6= p then RS ·wIn⊗Epq = wIn⊗Epj . (From Fact 7 item 2(a))

2. If S = In ⊗ Eip, where i 6= q then RS ·wIn⊗Epq = −wIn⊗Eiq . (From Fact 7 item 2(b))

3. If q 6= 1, p = 1 then for S = In ⊗ Eq1, RS ·wIn⊗Epq = wIn⊗Eq . Similarly, if p 6= 1, q = 1 then for
S = In ⊗ E1p, RS ·wIn⊗Epq = −wIn⊗Ep . (From Fact 7 item 2(d))

These properties immediately imply that

wIn⊗Epj ∈ closureR(wIn⊗Epq) for j ∈ [n], j 6= p,

wIn⊗Eiq ∈ closureR(wIn⊗Epq) for i ∈ [n], i 6= q,

wIn⊗Eq ∈ closureR(wIn⊗Epq) for q 6= 1, p = 1,

wIn⊗Ep ∈ closureR(wIn⊗Epq) for p 6= 1, q = 1.

(15)

Now we show that for S = In ⊗ Est, wS ∈ closureR(wIn⊗Epq) for any s, t ∈ [n], s 6= t. If
(s, t) = (p, q), there is nothing to prove. Suppose (s, t) 6= (p, q).

Case 1: Suppose t 6= p, then from Equation (15), wIn⊗Ept ∈ closureR(wIn⊗Epq). Further, applying
Equation (15) on wIn⊗Ept , we get wIn⊗Est ∈ closureR(wIn⊗Ept) as s 6= t.
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Case 2: Suppose s 6= q then from Equation (15), wIn⊗Esq ∈ closureR(wIn⊗Epq). Further, applying
Equation (15) on wIn⊗Esq , we get wIn⊗Est ∈ closureR(wIn⊗Esq) as s 6= t.

Case 3: Let (s, t) = (q, p). If n ≥ 3 then pick a j ∈ [n]\{p, q}. By applying Equation (15)
repeatedly, we have wIn⊗Epj ∈ closureR(wIn⊗Epq), wIn⊗Eqj ∈ closureR(wIn⊗Epj) and wIn⊗Eqp ∈
closureR(wIn⊗Eqj). If n = 2 then either p or q is 1. Suppose p = 1 and s = q 6= 1, then wIn⊗Eq ∈
closureR(wIn⊗Epq) (from Equation (15)). On applying Fact 7 item 3(d), wIn⊗Eqp ∈ closureR(wIn⊗Eq)
(note that char(F) 6= 2 as char(F) - n(n− 1)).

To complete the proof of the claim, we would like to show that wIn⊗E`
∈ closureR(wIn⊗Epq) for

every ` ∈ [2, n]. It follows from what we have shown so far that wIn⊗E1` ∈ closureR(wIn⊗Epq). We
conclude from Equation (15) that wIn⊗E`

∈ closureR(wIn⊗E1`).

C.2.3 Proof of Claim C.3

Let K ∈ Lcol and wK = ∑p∈[2,n] ap ·wIn⊗Ep , where ap ∈ F and a` 6= 0. Then, for i 6∈ {1, `},

RIn⊗Ei` ·wK = ∑
p∈[2,n]

ap · RIn⊗Ei` ·wIn⊗Ep = (a` − ai) ·wIn⊗Ei` , from Fact 7 items 3(a) and 3(b), and

RIn⊗E1` ·wK = ∑
p∈[2,n]

ap · RIn⊗E1` ·wIn⊗Ep = (a2 + · · ·+ 2a` + · · ·+ an) ·wIn⊗E1` , from Fact 7 item 3(c).

If RIn⊗Ei` ·wK = 0 for all i ∈ [n] \ {1, `} then ai = a` for all i ∈ [n] \ {1, `}, implying RIn⊗E1` ·wK =
n · a` ·wIn⊗E1` , which is non-zero as char(F) - n.

C.2.4 Proof of Subclaim C.1

The proof of the subclaim depends on the following facts, their proofs are given at the end of this
section. We state these facts for Lcol, similar statements hold for Lrow.

Fact 5. Let S = In ⊗ E` for ` ∈ [2, n]. Then RS ∈ R is a diagonal matrix satisfying the following:

1. R(2)
S is an all zero matrix.

2. If St = In ⊗ E`′ , `′ ∈ [2, n], then the (St, St)-th entry of RS is 0.

3. If St = In ⊗ Eij, i, j ∈ [n] and i 6= j, then the (St, St)-th entry of RS is

(a) −1 if i = 1 and j 6∈ {1, `}, or j = ` and i 6∈ {1, `},
(b) 1 if i = ` and j 6∈ {1, `}, or j = 1 and i 6∈ {1, `},
(c) −2 if (i, j) = (1, `),

(d) 2 if (i, j) = (`, 1),

(e) 0 otherwise.

The next claim follows immediately from Fact 5.

Fact 6. Let R1 = ∑`∈[2,n] a` · RIn⊗E`
, where a2, . . . , an ∈ F. Then R1 is a diagonal matrix satisfying the

following properties:
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1. R(2)
1 is a zero block.

2. If St = In ⊗ E`′ , `′ ∈ [2, n], then the (St, St)-th entry of R1 is 0.

3. If St = In ⊗ Eij, i, j ∈ [n], i 6= j, then the (St, St)-th entry of R1 is

(a) ai − aj, if i, j ∈ [2, n],

(b) −(∑n
k=2 ak + aj) if i = 1,

(c) (∑n
k=2 ak + ai) if j = 1.

Fact 7. Let S = In ⊗ Eij for i, j ∈ [n], i 6= j. Then, RS satisfies the following properties:

1. R(2)
S is an all zero matrix.

2. A column indexed by In ⊗ Epq, p, q ∈ [n], p 6= q has the following structure:

(a) If p 6= j and q = i then the column contains exactly one nonzero entry, namely a 1 at the row
indexed by In ⊗ Epj.

(b) If q 6= i and p = j then the column contains exactly one nonzero entry, namely a −1 at the row
indexed by In ⊗ Eiq .

(c) If (p, q) = (j, i) and i, j 6= 1 then the column has exactly two nonzero entries, namely a 1 and
a −1 at the rows indexed by In ⊗ Ei and In ⊗ Ej respectively.

(d) If (p, q) = (j, i) and j = 1 (similarly, (p, q) = (j, i) and i = 1) then the column has exactly
one nonzero entry, a 1 (respectively, a −1) at the row indexed by In ⊗ Ei (respectively, In ⊗ Ej).

(e) Otherwise the entire column is zero.

3. A column indexed by In ⊗ E`, ` ∈ [2, n] has the following structure:

(a) If i, j 6= 1, and ` = i then the column has exactly one nonzero entry, namely a −1 at the row
indexed by In ⊗ Eij.

(b) If i, j 6= 1, and ` = j then the column has exactly one nonzero entry, namely a 1 at the row
indexed by In ⊗ Eij.

(c) If i = 1 and ` = j then the column has exactly one nonzero entry, namely a 2 at the row indexed
by In ⊗ Eij. If i = 1 and ` 6= j, then the column exactly one nonzero entry, a 1 at the row
indexed by In ⊗ Eij.

(d) If j = 1 and ` = i, then it has exactly one nonzero entry, a −2 at the row indexed by In ⊗ Eij. If
j = 1 and ` 6= i, then the column contains exactly one nonzero entry, a −1 at the row indexed
by In ⊗ Eij.

(e) Otherwise the column has all zero entries.

Now we are ready to prove Subclaim C.1. We wish to show that R contains a diagonal matrix
R such that R(In ⊗ E`, In ⊗ E`) = R(E` ⊗ In, E` ⊗ In) = 0 for every ` ∈ [2, n], and the remaining
2n2 − 2n entries of R are distinct nonzero field elements. Let

R = ∑
`∈[2,n]

(a` · RIn⊗E`
+ b` · RE`⊗In),
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where a`, b` ∈ F. From Fact 6 (for both Lcol and Lrow), R is a diagonal matrix with exactly
2(n− 1) zero diagonal entries and the remaining diagonal entries are distinct nonzero linear forms
in a2, . . . , an and b2, . . . , bn (as char(F) 6= 2). As |F| > (2n2−2n

2 ), the Schwartz-Zippel lemma implies
that if we substitute a2, . . . , an and b2, . . . , bn randomly from a fixed subset of F of size 10n4, then
R has the desired property.

The following is an immediate implication of the proof of Observation 3.2.

Observation C.1. For all i ∈ [r], R(2)
Si

= 0. Similarly, for all i ∈ [r + 1, 2r], R(1)
Si

= 0.

Proof of Fact 5. Recall that S = In⊗ E` for ` ∈ [2, n]. It follows from Observation C.1 that R(2)
S = 0.

To prove other parts of the fact, let us consider a generic element T = In ⊗ Z in Lcol, such that
Z = (aij)i,j∈[n]. Clearly, [T, S] = In ⊗ [Z, E`].

[Z, E`] =


a11 . . . a1n
...

. . .
...

a`1 . . . a`n
...

. . .
...

an1 . . . ann

 ·


1 . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . −1 . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . 0

−


1 . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . −1 . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . 0

 ·


a11 . . . a1n
...

...
...

a`1 . . . a`n
...

. . .
...

an1 . . . ann


From this, we get

[Z, E`] =



a11 0 . . . −ai` . . . 0
...

...
. . .

...
. . .

...
a`1 0 . . . −a`` . . . 0
...

...
. . .

...
. . .

...

an1 0 . . . −an`
... 0


−


a11 a12 . . . ai` . . . a1n
...

...
. . .

...
. . .

...
−a`1 −a`2 . . . −a`` . . . −a`n

...
...

. . .
...

. . .
...

0 0 . . . 0 . . . 0


This implies

[Z, E`] =


0 −a12 . . . −2ai` . . . −a1n
...

...
. . .

...
. . .

...
2a`1 a`2 . . . 0 . . . a`n

...
...

. . .
...

. . .
...

an1 0 . . . −an` . . . 0


Restricting Z to E`′ and Eij for different settings of i, j, `′ imply the result.

Proof of Fact 7. Part 1 follows from Observation C.1. Let us consider a generic element T = In⊗ Z
in Lcol, such that Z = (aij)i,j∈[n]. Clearly, [T, S] = In ⊗ [Z, Eij]. A derivation similar to that in the
proof of Fact 5, implies the following.

[Z, Eij] =


0 0 . . . a1i . . . 0
...

...
. . .

...
. . .

...
−aji −aj2 . . . aii − ajj . . . −ajn

...
...

. . .
...

. . .
...

0 0 . . . ani . . . 0

 ,
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where the rows and columns other than the i-th row and the j-th column are 0. Restricting Z to
Epq and E` for various settings of p, q, ` imply the result.

C.3 Proof of Lemma 3.2

Lemma 3.2 (restated). Let R = ∑i∈[2r] `i(r1, . . . , r2r) · RSi , where `1, . . . , `2r are F-linearly independent
linear forms in r1, . . . , r2r that are picked uniformly and independently at random from a fixed subset of
F of size 10n4. Then, with high probability, the characteristic polynomial hR(z) of R factors as z2(n−1) ·
h1(z) · · · hk(z), where z, h1(z), . . . , hk(z) are mutually coprime irreducible polynomials over F.

Proof. Let R = RL for some L ∈ gDet and e be the maximum power of z dividing hR(z). Clearly,
e is greater than equal to the dimension of the null space of RL. Let us now lower bound the
dimension of this null space. Suppose wK is in the null space of RL, where K ∈ gDet. Then,

RL ·wK = 0,

which along with Equation (5) implies w[K,L] = 0. This means [K, L] = 0, i.e., K commutes with
L. Thus, the dimension of the null space of RL is exactly equal to the dimension of the subspace
of gDet, that commute with L. We know that L = L1 + L2 and K = K1 + K2, where L1, K1 ∈ Lcol
and L2, K2 ∈ Lrow. Observation 2.2 implies that [K, L] = 0 if and only if [K1, L1] = [K2, L2] = 0. It
follows from Fact 1 that e ≥ 2(n− 1).

We know
R = ∑

i∈[2r]
`i(r1, . . . , r2r) · RSi .

Treat r1, . . . , r2r as formal variables. Then, from the above discussion, we get

hR(z) = z2(n−1) · g(z),

where the coefficients of g(z), which is a monic polynomial of degree 2n(n− 1), are polynomials
in r1, . . . , r2r of degree at most 2r. As the linear forms `i(r1, . . . , r2r), i ∈ [2r], are F-linearly indepen-
dent, Subclaim C.1 implies that there is a way to set the r variables to field constants, such that g(z)
is square-free and is not divisible by z. This means that the determinant of the Sylvester matrix
of g(z) and ∂g(z)

∂z is a nonzero polynomial in r variables of degree at most 8n4. As g is monic and
char(F) - n(n− 1), the dimension of the Sylvester matrix does not change with various settings
of the r variables to field constants. Hence, from the Schwartz-Zippel lemma, if we plug r1, . . . , r2r
with random values from a subset of F of size 10n4, then with high probability the characteristic
polynomial hR(z) factors as

hR(z) = z2(n−1) · h1(z) · · · hk(z),

where z, h1, . . . , hk are mutually coprime irreducible polynomials over F.

D Proof from Section 3.3.1

D.1 Proof of Claim 3.3

Claim 3.3 (restated): If wk ∈ O1 (similarly, wk ∈ O2) then K ∈ Lcol (respectively, K ∈ Lrow).
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Proof. We give the proof for O1, a similar proof holds for O2. Recall that wK is the coordinate
vector of K with respect to the ordered basis (S1, . . . , S2r) of gDet. Let w(1)

K , w(2)
K ∈ Fr be the sub

vectors obtained from wK by restricting it to the indices S1, . . . , Sr and Sr+1, . . . , S2r respectively. It
is sufficient to show w(2)

K = 0 to prove K ∈ Lcol. Let R ∈ R. Then, R is a block diagonal matrix
with R(1), R(2) as the blocks. By definition, h1(R) ·wK = 0, which implies

h1(R(1)) ·w(1)
K = h1(R(2)) ·w(2)

K = 0.

As g2(z) is the characteristic polynomial of R(2), from Cayley-Hamilton theorem g2(R(2)) = 0,
which implies

g2(R(2)) ·w(2)
K = 0.

Since h1(z) and g2(z) are coprime polynomials, there exist p1, p2 ∈ F[z], such that

h1(z) · p1(z) + g2(z) · p2(z) = 1.

This implies
h1(R(2)) · p1(R(2)) + g2(R(2)) · p2(R(2)) = Ir.

On multiplying the above equation with w(2)
K , we get w(2)

K = 0 showing K ∈ Lcol.

E Proofs from Section 4

E.1 Proof of Claim 4.1

Claim 4.1 (restated): There exists a S ∈ GL(n, F) such that Bi = S−1 · Ci · S for every i ∈ [m].

Proof. Recall that Li = A−1 · (In ⊗ Bi) · A, for i ∈ [m], where {L1, . . . , Lm} and {B1, . . . , Bm} are
bases of A and Mn respectively. Consider the following F-algebra isomorphism from Mn to A

τ : Mn → A
B 7→ A−1 · (In ⊗ B) · A.

Let Γ = φ ◦ τ, where φ : A → Mn is the F-algebra isomorphism constructed in Step 3 of Algorithm
2. Clearly, Γ is an F-algebra isomorphism from Mn to Mn. On applying the Skolem-Noether
theorem (Theorem 5) on Γ, we get a S ∈ GL(n, F) such that for every i ∈ [m],

Bi = S−1 · Ci · S, (16)

where Γ(Bi) = φ(Li) = Ci.

E.2 Proof of Claim 4.2

Claim 4.2 (restated): Suppose f = Det(A · x), where A ∈ GL(m, F). Then, with high probability

f = Det((In ⊗ D) ·M−1 · x).
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Proof. Recall that Li = A−1 · (In ⊗ Bi) · A, where L1, . . . , Lm and B1, . . . , Bm are bases of the F-
algebras A and Mn respectively, and M satisfies the following equation for every i ∈ [m],

Li ·M = M · (In ⊗ Ci).

This implies, for all i ∈ [m],
(In ⊗ Bi) · AM = AM · (In ⊗ Ci). (17)

We view the matrix AM as a block matrix of block size n× n. Let M`k ∈ Mn be the (`, k)-th block
of AM. Then, from Equation (17), we get the following equation for every `, k ∈ [n] and i ∈ [m]:

Bi ·M`k = M`k · Ci (18)

Observation E.1. The block M11 ∈ Mn is an invertible matrix with high probability.

Claim 4.1 implies that A−1 · (In ⊗ S−1) is a candidate for M, and for this choice of M, M11 = S−1.
The Schwartz-Zippel lemma then implies the above observation.

From Observation E.1 and Equation (18), we get the next equation for every `, k ∈ [n] and i ∈ [m],

Bi ·M`k ·M−1
11 = M`k ·M−1

11 · Bi.

As B1, . . . , Bm is a basis of the Mn, the above equation implies that M`k ·M−1
11 commutes with every

matrix in Mn. Thus, according to the following observation, M`k ·M−1
11 = b`k · In, for some b`k ∈ F.

Observation E.2. If C ∈ Mn commutes with every B ∈ Mn then C = c · In for some c ∈ F.

Observation E.2 can be easily proved by considering the basis {Eij : i, j ∈ [n]} of Mn, where Eij is
the matrix having (i, j)-th entry 1 and other entries 0. Thus, we get the following

A ·M = G⊗M11 = (G⊗ In) · (In ⊗M11),

where G = (b`k)`,k∈[n]. As f = Det(A · x), we get

f (M · x) = Det(A ·M · x)
= Det((G⊗ In) · (In ⊗M11) · x)
= det(G · X ·MT

11)

= b · det(X)

= b ·Det(x)
= Det((In ⊗ D) · x),

where D = diag(b, 1, . . . , 1) ∈ Mn. This implies

f (x) = Det((In ⊗ D) ·M−1 · x).
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F Proofs from Section 6

F.1 Proof of Proposition 6.1

One direction is trivial. For the other direction, we can assume a, b are not perfect squares. Other-
wise, the equation x2 − ay2 − bz2 = 0 has a non-zero rational solution and we are done. Suppose
(x, y, z, w) is a non-zero rational solution to the equation x2 − ay2 − bz2 + abw2 = 0. We have

x2 − ay2 = b(z2 − aw2).

Now suppose that z2 − aw2 = 0. Then since a is not a perfect square, we get that y = w = 0. But
then x2 = bz2. Since b is not a perfect square, x = z = 0 which contradicts the fact that (x, y, z, w)
is non-zero. Hence z2 − aw2 is non-zero. We get that,

b =
x2 − ay2

z2 − aw2 =
(x2 − ay2)(z2 − aw2)

(z2 − aw2)2 =
(xz + ayw)2 − a(xw + yz)2

(z2 − aw2)2

=

(
xz + ayw
z2 − aw2

)2

− a
(

xw + yz
z2 − aw2

)2

.

Hence we have a non-zero rational solution to the equation x′2 − ay′2 − bz′2 = 0.

F.2 Proof of Theorem 11

First consider the case when fa,b(x) = Det2(A · x) for some A ∈ GL(4, Q). Then the equation
x2 − ay2 − bz2 + abw2 = 0 has a non-zero rational solution given by

x
y
z
w

 = A−1


1
0
0
0

 .

Then by Proposition 11, the equation x2 − ay2 − bz2 = 0 also has a non-zero rational solution.
In the other direction, suppose that the equation x2 − ay2 − bz2 = 0 also has a non-zero rational
solution. Then at least one of the two equations, u2 − av2 = b or u2 − bv2 = a has a rational
solution. Without loss of generality, assume it is the former. Then one can verify that

fa,b(x) = Det2

[
x1,1 + ux2,1 − avx2,2 x1,2 + vx2,1 − ux2,2

ax1,2 − avx2,1 + aux2,2 x1,1 − ux2,1 + avx2,2

]
.

To prove that the resulting transformation is invertible, denote
y1,1
y1,2
y2,1
y2,2

 =


x1,1 + ux2,1 − avx2,2
x1,2 + vx2,1 − ux2,2

ax1,2 − avx2,1 + aux2,2
x1,1 − ux2,1 + avx2,2

 .

Then a tedious calculation reveals that
x1,1
x1,2
x2,1
x2,2

 =


(y1,1 + y2,2)/2

(y1,2 + a−1y2,1)/2
(uy1,1 − avy1,2 + vy2,1 − uy2,2)/2b
(vy1,1 − uy1,2 + a−1uy2,1 − vy2,2)/2b

 .
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G Proofs of Section 7

G.1 Proof of Lemma 7.1

We have that

∑
i,j,k,`

M(i,j),(k,`) · xk,` ·
∂ f

∂xi,j
= 0, (19)

for all M ∈ Lcol. Plugging in M = In ⊗ Ej` for j 6= ` (recall Ej` is the elementary matrix with an 1
at position (j, `), 0 everywhere else) into (19) gives that

∑
i

xi,` ·
∂ f

∂xi,j
= 0, ∀j 6= `. (20)

Plugging in M = In ⊗
(
Ejj − n−1 In

)
(char(F) - n and hence n−1 exists) into (19) gives that

∑
i

xi,j ·
∂ f

∂xi,j
= n−1 ·∑

i′,j′
xi′,j′ ·

∂ f
∂xi′,j′

= f (x), ∀j, (21)

where the second equality follows from Euler’s identity (and the fact that char(F) - n). Let us
denote by L, the matrix of polynomials, whose (j, i)-th entry is ∂ f

∂xi,j
. Then equations (20) and (21)

tell us that6

LX = f (x) · In.

Hence

L =
f (x)

Detn(x)
· Xadj,

where Xadj is the adjoint of the matrix X. Now entries of L and Xadj are homogeneous degree n− 1
polynomials. Since Detn(x) is an irreducible polynomial, we get that Detn(x) divides f (x). Since
both are homogeneous of degree n, we get that f (x) = α ·Detn(x) for some α ∈ F.

G.2 Proof of Proposition 7.1

Let L be the algebra generated by the matrices L1,1, . . . , Ln,n. As L is isomorphic toA andA ∼= Mn,
we have L ∼= Mn. Moreover, L contains the identity matrix In2 . Hence, by applying the Skolem-
Noether theorem (Theorem 5), we get that there exist K ∈ GL(n2, F) and matrices C1,1, . . . , Cn,n ∈
Mn such that Li,j = K−1 ·

(
In ⊗ Ci,j

)
· K for all i, j ∈ [n].

6Recall the notation: X is a matrix whose (i, j)-th entry is the variable xi,j and x is the vectorized version with entries
arranged in a row major fashion.
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