
Randomized polynomial-time equivalence between
determinant and trace-IMM equivalence tests

Janaky Murthy
Indian Institute of Science

janakymurthy@iisc.ac.in

Vineet Nair
Technion Israel Institute of Technology ∗

vineet@cs.technion.ac.il

Chandan Saha
Indian Institute of Science

chandan@iisc.ac.in

June 14, 2020

Abstract

Equivalence testing for a polynomial family {gm}m∈N over a field F is the following prob-
lem: Given black-box access to an n-variate polynomial f (x), where n is the number of vari-
ables in gm for some m ∈ N, check if there exists an A ∈ GL(n, F) such that f (x) = gm(Ax).
If yes, then output such an A. The complexity of equivalence testing has been studied for a
number of important polynomial families, including the determinant (Det) and the family of
iterated matrix multiplication polynomials. Two popular variants of the iterated matrix mul-
tiplication polynomial are: IMMw,d (the (1, 1) entry of the product of d many w× w symbolic
matrices) and Tr-IMMw,d (the trace of the product of d many w × w symbolic matrices). The
families – Det, IMM and Tr-IMM – are VBP-complete under p-projections, and so, in this sense,
they have the same complexity. But, do they have the same equivalence testing complexity?
We show that the answer is “yes" for Det and Tr-IMM (modulo the use of randomness).

The above result may appear a bit surprising as the complexity of equivalence testing for
IMM and that for Det are quite different over Q: a randomized polynomial-time equivalence
testing for IMM over Q is known [KNST19], whereas [GGKS19] showed that equivalence test-
ing for Det over Q is integer factoring hard (under randomized reductions and assuming GRH).
To our knowledge, the complexity of equivalence testing for Tr-IMM was not known before this
work. We show that, despite the syntactic similarity between IMM and Tr-IMM, equivalence
testing for Tr-IMM and that for Det are randomized polynomial-time Turing reducible to each
other over any field of characteristic zero or sufficiently large. The result is obtained by con-
necting the two problems via another well-studied problem in computer algebra, namely the
full matrix algebra isomorphism problem (FMAI). In particular, we prove the following:

1. Testing equivalence of polynomials to Tr-IMMw,d, for d ≥ 3 and w ≥ 2, is randomized
polynomial-time Turing reducible to testing equivalence of polynomials to Detw, the de-
terminant of the w× w matrix of formal variables. (Here, d need not be a constant.)

2. FMAI is randomized polynomial-time Turing reducible to equivalence testing (in fact, to
tensor isomorphism testing) for the family of matrix multiplication tensors {Tr-IMMw,3}w∈N.

These results, in conjunction with the randomized poly-time reduction (shown in [GGKS19])
from determinant equivalence testing to FMAI, imply that the four problems – FMAI, equiva-
lence testing for Tr-IMM and for Det, and the 3-tensor isomorphism problem for the family of
matrix multiplication tensors – are randomized poly-time equivalent under Turing reductions.

∗A part of this work was done when the author was a graduate student at the Indian Institute of Science.

1 Introduction

The polynomial equivalence problem or equivalence testing is the following algorithmic task: Given
two n-variate polynomials f and g over a field F as lists of coefficients, determine if there exists
an A ∈ GL(n, F) such that f (x) = g(Ax). If yes, then f is said to be equivalent to1 g over F.
The complexity of equivalence testing depends on the underlying field F. Over finite fields, the
problem is in NP ∩ coAM [Thi98, Sax06]2, and hence unlikely to be NP-complete. Whereas over
Q, it is not even known whether equivalence testing is decidable. The best known complexity of
the problem over other fields follows from a naive reduction to solving a system of polynomial
equations. However, polynomial solvability could be harder than testing polynomial equivalence.

Connections to other problems. A few works in the literature have related equivalence testing to
other fundamental problems. For example, [AS05] showed that the special instance of cubic form
equivalence is at least as hard as (but possibly harder than) graph isomorphism, irrespective of
the underlying field. There is a close connection between cubic form equivalence and the algebra
isomorphism problem. [AS06] gave a polynomial-time reduction from commutative algebra iso-
morphism to cubic form equivalence over any field. In the reverse direction, a polynomial-time
reduction is known from cubic form equivalence to commutative algebra isomorphism over al-
most all fields [GQ19,AS05]. In fact, the results in [BW15], [FGS19] and [GQ19] together imply that
a host of problems, which includes 3-tensor isomorphism, matrix space isometry, matrix space
conjugacy, (commutative or associative) algebra isomorphism and cubic form equivalence, are
polynomial-time reducible to each other. There is a cryptographic authentication scheme [Pat96]
based on the presumed hardness of cubic form equivalence3 over finite fields (or rather a general-
ization of it known as Isomorphism of Polynomials with one Secret (IP1S)4). It is not known whether
cubic form equivalence is even decidable over Q. In contrast, the complexity of quadratic form
equivalence testing is completely resolved, primarily due to well-known classification results for
quadratic forms (see [Ser73, Ara11]). The classification yields a polynomial-time quadratic form
equivalence testing over finite fields. Over Q though, quadratic form equivalence can be solved in
polynomial time only with oracle access to integer factoring. Moreover, integer factoring reduces
in randomized polynomial time to quadratic form equivalence over Q [Wal13]5.

Special polynomial families. The work of [Kay11] initiated the study of a natural variant of the
polynomial equivalence problem, namely equivalence testing for special families of polynomials.
In this setting, we fix some important family of polynomials G = {gm}m∈N and then aim to design
an equivalence testing algorithm for G. Such an algorithm takes input black-box access6 to a single
n-variate polynomial f (x) and determines whether f is equivalent to gm for some m ∈ N, and if

1Indeed, f and g represent the same function on Fn upto a change of basis.
2This is shown by using the classic set lower bound protocol [GS86].
3more generally, constant-degree form equivalence
4IP1S is the following problem: Given two ordered sets of n-variate polynomials (f1, f2, . . . , fm) and (g1, g2, . . . , gm),

decide if there exists an A ∈ GL(n, F) such that fi(x) = gi(Ax) for all i ∈ [m]. Note that even the quadratic case is
non-trivial here as we are dealing with tuples of polynomials. Recently, [IQ19] gave a randomized poly-time algorithm
for the quadratic IP1S problem over finite fields of odd size. In the general setting, there is an algorithm for IP1S over
finite fields that is significantly better than the brute-force strategy, but it still runs in exponential time [FP06, PGC98].

5This reduction is to the search version of the quadratic form equivalence problem. In the search version of equiva-
lence testing, we are required to output an invertible transformation A if the input polynomials are equivalent.

6i.e., query access to evaluations of f at chosen points from Fn.

1

yes, then it also outputs an A ∈ GL(n, F) such that f (x) = gm(Ax).7 [Kay12, Kay11] gave ran-
domized polynomial-time equivalence testing algorithms for a few interesting polynomial fami-
lies, viz. the determinant, the permanent, the family of elementary symmetric polynomials and
the family of power symmetric polynomials. These families are quite popular in algebraic com-
plexity theory, particularly in the context of proving arithmetic circuit lower bounds (see the sur-
veys [SY10, CKW11, Sap15]). Except for the determinant, the algorithms in [Kay12, Kay11] work
over C, Q, and finite fields8, and for the determinant it works only over C. Recently, [GGKS19]
gave a randomized polynomial-time equivalence testing algorithm for the determinant over finite
fields9. They also showed that determinant equivalence test over Q is intimately connected to
integer factoring: Let Detw(x) be the determinant of the w× w symbolic matrix. Then, deciding
if a given polynomial is equivalent to Detw over Q can be done in randomized polynomial-time
with oracle access to integer factoring, provided w is a constant10. Furthermore, assuming GRH,
there is a randomized polynomial-time reduction from factoring square-free integers to finding an
A ∈ GL(2, Q) such that a given quadratic form f = Det2(A · x), if f is equivalent to Det2.

Determinant equivalence test is particularly interesting in the context of the permanent versus
determinant problem [Val79]. An approach to solve this long-standing open problem is given by
Geometric Complexity Theory (GCT) [MS01,MS08], which proposes the applications of deep tools
and techniques from algebraic geometry, group theory and representation theory to achieve this
goal. GCT reduces the problem to showing that the (padded) permanent polynomial is not in the
orbit closure11 of a polynomial-size determinant polynomial, and suggests (among other things) to
develop an algorithmic approach to do the same. Equivalence testing for the determinant is the
related problem of checking if a given polynomial is in the orbit of the determinant polynomial.

The determinant Det := {Detw}w∈N is complete (under p-projections) for the class VBP 12 [MV97].
Likewise, the family of iterated matrix multiplication polynomials is also complete for the class VBP,
and has been used quite a bit in proving arithmetic circuit lower bounds. In this sense, the two
families have the same complexity13. But, do they have similar equivalence testing complexity?
Our work here, in conjunction with [GGKS19] and [KNST19], gives an answer to this question.

7The problem is well-posed even if f is given verbosely as a list of coefficients and it is not required to output an
invertible transformation A in the ‘yes’ case. However, it turns out that for a number of popular polynomial families it
is indeed possible to design efficient equivalence testing algorithms that satisfy these stronger requirements.

8Over C, the computation model assumes that arithmetic with numbers in C and root finding of univariate polyno-
mials over C can be done efficiently. Also, the finite fields are assumed to be of sufficiently large characteristic.

9A determinant equivalence test over finite fields was also given in [KNS19], but the algorithm there outputs an
invertible transformation over a low extension of the base field.

10When w is not a constant, [GGKS19] gave a randomized polynomial-time determinant equivalence test over Q, but
the algorithm (which works without an integer factoring oracle) outputs a transformation over a low extension of Q.

11The orbit of an n-variate degree-d polynomial g ∈ C[x] is the set {g(Ax) | A ∈ GL(n, C)}, and the orbit closure of
g is the Zariski closure of the orbit when viewed as points in C(n+d

d).
12Class VBP consists of polynomial families that are computable by polynomial-size algebraic branching programs

(ABP). ABP is a powerful model for computing polynomials that subsumes arithmetic formulas.
13Consider a class C of arithmetic circuits that is closed under affine projections, e.g., the class of depth three circuits.

A super-polynomial lower bound for circuits in C computing the determinant implies a super-polynomial lower bound
for circuits in C computing the iterated matrix multiplication polynomial (IMM) and vice versa. Thus, Det and IMM
have the same complexity, and one may study the “permanent versus IMM” problem in the same vein as the permanent
versus determinant problem. On the other hand, if C is not closed under affine projections, then there are classes (like
multilinear formulas) for which a super-polynomial lower bound is known for determinant [Raz09] but not for IMM.

2

Iterated matrix multiplication. Two natural versions of the iterated matrix multiplication poly-
nomial are: a) IMMw,d that is defined as the (1, 1) entry of the product of d many w× w symbolic
matrices (i.e., matrices whose entries are distinct variables), and b) Tr-IMMw,d that is defined as the
trace of the product of d many w× w symbolic matrices. The IMM := {IMMw,d}w,d∈N family has
been studied more from the lower bound perspective [NW97,FLMS15,KS17,KNS20,KS15,KST18,
CLS19] because it naturally captures the algebraic branching program model (see Section A). On
the other hand, Tr-IMM := {Tr-IMMw,d}w,d∈N has been studied in [Gro12, Lan15, Ges16, GIP17]14

owing to its nice structural properties (pertaining to its group of symmetries and the associated
Lie algebra) that may be quite useful for studying GCT methods when applied to the “Permanent
versus Tr-IMM” problem. IMM and Tr-IMM are also complete for the class VBP. Interestingly, the
three polynomials – Detw, IMMw,d and Tr-IMMw,d – are characterized by their respective groups
of symmetries [Fro97, KNST19, Ges16].

Equivalence testing for iterated matrix multiplication. How does equivalence testing for IMM
and Tr-IMM relate to that of Det? In [KNST19], a randomized polynomial-time equivalence test-
ing algorithm was given for IMM over C, Q and finite fields. Comparing this with the above-
mentioned results on determinant equivalence test [Kay12, GGKS19], we see that the complexity
of equivalence tests for Det and IMM are quite different over Q (unless integer factoring is easy).
Is this also the case between Det and Tr-IMM? One may be tempted to say ‘yes’ owing to the close-
ness of the definitions of IMM and Tr-IMM. However, contrary to this first impression, we show
that equivalence testing for Det and that for Tr-IMM are randomized polynomial-time Turing re-
ducible to each other over C, Q and finite fields15 (see Corollary 1.1). Thus, viewed along this line,
Det and Tr-IMM are closer to each other than to IMM.16 For brevity, we would henceforth denote
the equivalence testing problems for Det and Tr-IMM by DET and TRACE respectively.

Connections to algebra isomorphism and 3-tensor isomorphism. As mentioned before, cubic
form equivalence, algebra isomorphism and 3-tensor isomorphism are polynomial-time equiva-
lent. Moreover, degree-d form equivalence reduces to cubic form equivalence [AS05,AS06] and d-
tensor isomorphism reduces to 3-tensor isomorphism [GQ19] in polynomial-time, if d is bounded.
Det and Tr-IMM being two important polynomial families, we wonder if DET and TRACE can be
linked with any natural case of algebra isomorphism. Further, do DET and TRACE reduce to any
special case of cubic form equivalence or 3-tensor isomorphism? We show that the answers to
these are ‘yes’. The relevant problems are the full-matrix algebra isomorphism (FMAI) problem and
the 3-tensor isomorphism problem for the family of matrix multiplication tensors (MMTI).

FMAI is a well-studied problem in computer algebra which is defined as follows: Given a basis
14Actually, [GIP17] studied a related polynomial Tr-Poww,d, which is the trace of the d-th power of a w×w symbolic

matrix. They showed that a particular line of attack prescribed by GCT, namely orbit occurrence obstructions, cannot
prove super-linear lower bound on the “Tr-Pow complexity” of the permanent. We are not aware of a similar result
(or, more generally, a result that rules out the occurrence obstructions approach as in [BIP16, IP16]) with Tr-Pow (or Det)
replaced by Tr-IMM.

15The reduction works over any field F of characteristic zero or sufficiently large. We also require that univariate
polynomial factoring over F can be done efficiently.

16Talking of the difference between the ‘trace model’ and the ‘(1,1) model’, a recent work [BIM+20] showed that in
the non-commutative setting, the border width complexity and the width complexity of a polynomial are not always
equal for the trace-ABP model, unlike the case for the classical (1, 1)-ABP model [Nis91].

3

of a matrix algebra A ⊆ Mm(F), check if A is isomorphic17 toMw(F), whereMm(F) is the al-
gebra of m×m matrices over F and dimF(A) = w2; if yes, then output an isomorphism from A
toMw(F). A randomized polynomial-time algorithm to solve FMAI over finite fields was given
in [Rón87, Rón90], whereas over Q a randomized Turing reduction from FMAI to integer factor-
ing was shown in [IRS12, CFO+15]. The reduction is polynomial-time if dimQ(A) is bounded.
Also, [BR90, Ebe89] gave a randomized polynomial-time algorithm that outputs an isomorphism
fromA⊗Q L toMw(L), where L is a degree w extension field of Q, ifA is isomorphic toMw(Q).
The decision version of FMAI over Q is in NP ∩ coNP [Rón92]. The results for DET in [GGKS19]
were obtained by giving a randomized poly-time Turing reduction from DET to FMAI. In this
work, we give a randomized polynomial-time Turing reduction from TRACE to DET (Theorem 1).

A d-tensor is a degree-d form (i.e., a degree-d homogeneous polynomial) f (x1, x2, . . . , xd) whose
every monomial has exactly one variable from each of the sets x1, x2, . . . , xd. The d-tensor isomor-
phism problem is the following: Given two d-tensors f (x1, x2, . . . , xd) and g(x1, x2, . . . , xd) decide
if there exist A1 ∈ GL(|x1|, F), . . . , Ad ∈ GL(|xd|, F) such that f = g(A1x1, A2x2, . . . , Adxd). The d-
tensor isomorphism problem for a family of d-tensors is defined accordingly, just like equivalence
testing for a family of polynomials. MMTI is the 3-tensor isomorphism problem for the family of
matrix multiplication tensors {Tr-IMMw,3}w∈N. The matrix multiplication tensor Tr-IMMw,3 is a
crucial object in the study of asymptotically fast algorithms for multiplying two w× w matrices.
In this paper, we give a randomized polynomial-time Turing reduction from FMAI to MMTI (The-
orem 2). Further, it follows easily from the symmetries of Tr-IMMw,d ([Ges16], see Lemma 3.4)
that MMTI reduces in polynomial-time to TRACE.

Thus, the above results together with the reduction in [GGKS19] show that the four problems –
TRACE, DET, FMAI and MMTI – are randomized polynomial-time Turing reducible to each other.
Although, the equivalence between MMTI and FMAI has the same essence as the equivalence be-
tween 3-tensor isomorphism (or cubic form equivalence) and algebra isomorphism, our proofs
are quite different from the proofs in [GQ19, FGS19, AS05, AS06]18. In particular, we do not see
any easy adaptation of the arguments in [GQ19, FGS19, AS05, AS06] leading to the results men-
tioned above. Our proofs link MMTI with FMAI, via TRACE and DET, by exploiting the structure
of the Lie algebra of Tr-IMMw,d (which is in the same spirit as the reduction from DET to FMAI
in [GGKS19] using the Lie algebra of Detw). Also, the reduction from d-tensor isomorphism (sim-
ilarly, degree-d form equivalence) to 3-tensor isomorphism (respectively, cubic form equivalence)
in [GQ19,AS05,AS06] is efficient only if d is a constant. Whereas, our randomized reduction from
testing equivalence to Tr-IMMw,d to MMTI runs in time poly(w, d).

1.1 The results (stated formally)

The polynomial Tr-IMMw,d := tr(Q0 ·Q1 . . . Qd−1), where Qk is a w×w symbolic matrix in xk vari-
ables. Throughout, we will assume that w ≥ 2, d ≥ 3 and char(F) = 0 or > (w2d)5, and univariate
polynomial factoring over F can be done in probabilistic polynomial time. The restriction on the
characteristic of F has not been optimized in this paper.

17i.e., isomorphic as algebras over F.
18The reductions in these prior works are deterministic and hold for the decision versions of the problems, whereas

the reductions here are randomized and for the search versions of the problems.

4

Theorem 1 (TRACE to DET). There is a randomized algorithm that takes as input black-box access to
an n-variate degree-d polynomial f and oracle access to DET over F, and does the following with high
probability: If there is a w ∈ N such that f is equivalent to Tr-IMMw,d, then it outputs an A ∈ GL(n, F)
such that f = Tr-IMMw,d(Ax); otherwise it outputs ‘No such w exists’. The algorithm runs in poly(n, β)
time, where β is the bit length of the coefficients of f .

The reduction is given in Section 4. Theorem 1 implies a randomized poly-time algorithm for
TRACE over C and finite fields, and also over Q (provided the algorithm has access to integer fac-
toring oracle and w is bounded) via known results on DET [Kay12, GGKS19]. Two other remarks:

1. No knowledge of w: The algorithm requires no knowledge of w, if the input polynomial f is
equivalent to Tr-IMMw,d for some w ∈N then the algorithm finds such a w.

2. Reduction to TRACE-TI: The tensor isomorphism problem for Tr-IMM (denoted TRACE-TI) is as
follows: Given blackbox access to a d-tensor g(x0, . . . , xd−1), check if there are B0, . . . , Bd−1 ∈
GL(w2, F) such that g = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1), and if yes then output such B0, . . . , Bd−1.
The algorithm in Theorem 1 first reduces TRACE to TRACE-TI (finding w in this step), and
then solves TRACE-TI using DET oracle over F. The reduction from TRACE to TRACE-TI
(which resembles a similar reduction used in the equivalence test for IMM [KNST19]) does
not require oracle access to DET. A randomized polynomial-time algorithm for TRACE-TI
over C was given in [Gro12], but the algorithm there does not reduce TRACE-TI to DET.

Theorem 2 (FMAI to MMTI). There is a randomized algorithm that takes as input a basis of an algebra
A ⊆ Mm(F), and oracle access to MMTI, and does the following with high probability: If A ∼=Mw(F),
where w2 = dimF(A), then it outputs ‘Yes’; otherwise it outputs ‘No such w ∈N exists’. If the algorithm
outputs ‘Yes’, then it also outputs an algebra isomorphism from A to Mw(F). The algorithm runs in
poly(m, β) time, where β is the bit length of the entries of the input basis matrices.

The algorithm is given in Section 5.2. It uses a characterization of Tr-IMMw,d by the Lie algebra
gTr-IMM of its group of symmetries (Lemma 5.1) along with a nice choice of basis of gTr-IMM (Section 3)
to reduce FMAI to degree four TRACE-TI in deterministic polynomial time, which in turn reduces
to MMTI in randomized polynomial time (Theorem 3). Two more remarks on Theorem 2:

1. MMTI to TRACE: Using oracle access to TRACE, it is easy to solve MMTI (in fact TRACE-TI)
in polynomial time: Since a polynomial identity test at the end of a TRACE-TI algorithm
ensures that the output of the algorithm is correct, it suffices to prove that if the input to a
TRACE algorithm is a d-tensor f that is isomorphic to Tr-IMMw,d, then the algorithm outputs
d matrices B0, . . . , Bd−1 such that f (x) = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1). This is true as any
algorithm for TRACE outputs a block-diagonal matrix B such that f (x) = Tr-IMMw,d(Bx)
(from Lemma 3.4). Matrices B0, . . . , Bd−1 can be easily derived from B.

2. A reduction from FMAI to DET: A Turing reduction from FMAI to DET over F was given in
[GGKS19] that runs in exponential time. We improve this run-time significantly: Theorems
1 and 2 imply that FMAI is in fact randomized polynomial-time Turing reducible to DET.

Corollary 1.1. It follows from Theorems 1 and 2, and the randomized polynomial-time Turing reduction
from DET to FMAI in [GGKS19], that the four problems – TRACE, DET, FMAI and MMTI – are random-
ized polynomial-time equivalent under Turing reductions (see Figure 1 below).

5

As mentioned before, the next theorem (proved in Appendix E) is used in the proof of Theorem 2.

Theorem 3 (TRACE-TI to MMTI). There is a randomized algorithm that takes as input black-box access
to an n-variate d-tensor f (x0, . . . , xd−1), and oracle access to MMTI, and does the following with high
probability: If f is isomorphic to Tr-IMMw,d, then it outputs B0, B1, . . . , Bd−1 ∈ GL(w2, F) such that
f = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1); otherwise it outputs ‘No’. The algorithm runs in poly(n, β) time,
where β is the bit length of the coefficients of f .

The figure below is a depiction of Corollary 1.1. An arrow from Problem A to B indicates a ran-
domized polynomial-time Turing reduction from A to B.

TRACE DET

FMAIMMTI

This paper (Theorem 1)

[GGKS19]

This paper (Theorem 2)

Symmetries of Tr-IMMw,d

(Lemma 3.4 and [Ges16])

Figure 1: Reductions between TRACE, DET, FMAI, and MMTI

2 Notations and definitions

Recall that Tr-IMMw,d := tr(Q0 · Q1 . . . Qd−1), where Qk = (x(k)ij)i,j∈[w]. Let xk = {x(k)ij }i,j∈[w],
x =]k∈[0,d−1]xk, and n = w2d. At times, we will refer to the x variables as x1, . . . , xn. The x
variables are ordered as x0 > x1 > . . . > xd−1, and within a variable set xk, if k is even (similarly,
odd) then the variables are ordered in row-major (respectively, column-major) fashion. The rows
and columns of a matrix inMn = Mn(F), and the entries of a column vector in Fn are indexed
by x variables ordered as above. A matrix in Mn is called block-diagonal if the row and column
of every non-zero entry of the matrix is indexed by variables from the same variable set. A few
more basic definitions and terminologies about matrices, matrix products and ABP are given in
Appendix A. The indices k, ` ∈ [0, d − 1] will be treated as elements in Z/dZ, i.e., k + 1 = 0 if
k = d− 1. Let L ⊆Mn. A subspace U ⊆ Fn is L-invariant if for all M ∈ L, M · U ⊆ U .

Definition 2.1 (Irreducible invariant subspace). An L-invariant subspace U ⊆ Fn is irreducible if
there are no proper L-invariant subspaces U1 and U2 of U such that U = U1 ⊕U2.

Definition 2.2 (Closure of a vector). The closure of a vector v ∈ Fn under the action of L ⊆Mn is
the smallest L-invariant subspace of Fn containing v.

An algorithm to compute the closure of a vector in polynomial-time is given in [KNST19]. An
easy-to-work-with definition of the Lie algebra of the group of symmetries of a polynomial was
given in [Kay12]. For brevity, we will call it the Lie algebra of a polynomial.19

19Geometrically speaking, the Lie algebra of an n-variate polynomial f (x) is the subspace of Mn(F) obtained by
translating the tangent of the algebraic set {A ∈ Mn : f (Ax) = f (x)} at A = In and making it pass through origin.

6

Definition 2.3 (Lie algebra g f of a polynomial f). The Lie algebra of an n-variate polynomial f (x)
is denoted as g f and it consists of matrices E = (eij)i,j∈[n] ∈ Mn that satisfy ∑i,j∈[n] eijxj · ∂ f

∂xi
= 0.

Note that g f is a vector space. It also follows that a basis of g f can be computed in randomized
polynomial-time from blackbox access to f by solving a linear system (see [Kay12]).

Fact 1. If f (x) = g(Ax) for an A ∈ GL(n, F), then g f = A−1gg A.

3 Symmetries and Lie algebra of Tr-IMM

The symmetries and the Lie algebra gTr-IMM of Tr-IMMw,d have been studied in [Ges16] over C.
Here, we work out the exact structure of the matrices in gTr-IMM with respect to the variable ordering
mentioned above, and use it to identify the gTr-IMM-invariant subspaces of Fn and the symmetries
of Tr-IMMw,d over F. These facts about the Lie algebra and the symmetries will be used in the
proofs of Theorems 1, 2 and 3. The missing proofs of this section are given in Appendix B.

Claim 3.1. If E ∈ gTr-IMM then E is block-diagonal.

Define the spaces B0, . . . ,Bd−1 of block-diagonal matrices as follows: Every matrix in Bk is a block-
diagonal matrix whose non-zero entries are confined to the rows and columns indexed by xk and
xk+1 variables. For k ∈ [0, d − 2] and B ∈ Bk, let [B]k be the 2w2 × 2w2 sub-matrix of B whose
rows and columns are indexed by xk and xk+1 variables. For B ∈ Bd−1, let [B]d−1 be the 2w2 × 2w2

sub-matrix of B whose rows and columns are indexed by xd−1 and x0 variables, i.e., we let the xd−1
variables index the rows and columns of Bd−1 before the x0 variables. If d is even then

Bk :=
{

B ∈ Mn : [B]k =
[

Iw ⊗MT 0
0 −Iw ⊗M

]
for M ∈ Mw

}
if k is even,

:=
{

B ∈ Mn : [B]k =
[

MT ⊗ Iw 0
0 −M⊗ Iw

]
for M ∈ Mw

}
if k is odd. (1)

If d is odd, then the definition of Bk remains the same except for Bd−1 which is defined as

Bd−1 :=
{

B ∈ Mn : [B]d−1 =

[
Iw ⊗MT 0

0 −M⊗ Iw

]
for M ∈ Mw

}
.

Lemma 3.1. The space B0 + . . . + Bd−1 is contained in gTr-IMM.

Lemma 3.2. Suppose B ∈ gTr-IMM and there is a k ∈ [0, d − 1] such that the non-zero entries of B are
confined to the rows and columns that are indexed by xk and xk+1 variables. Then B ∈ Bk.

In fact gTr-IMM = B0 + . . . + Bd−1, however we do not prove this stronger statement here. Let
ei ∈ Fn be the vector with 1 in the entry indexed by xi ∈ x and zero elsewhere. A subspace of Fn

is a coordinate subspace if it is spanned by a set of ei’s. Let Uk = spanF{ei | xi ∈ xk}.

Claim 3.2. Any non-zero gTr-IMM-invariant subspace is a coordinate subspace of Fn.

Lemma 3.3. The only irreducible gTr-IMM-invariant subspaces of Fn are U0, . . . ,Ud−1.

Corollary 3.1. If f = Tr-IMMw,d(Ax), where A ∈ GL(n, F), then the only irreducible g f -invariant
subspaces of Fn are A−1U0, . . . , A−1Ud−1.

7

The above lemmas help us derive the group of symmetries of Tr-IMMw,d over F.

Lemma 3.4. Let Tr-IMMw,d = tr(Q′0 · · ·Q′d−1), where Q′0 · · ·Q′d−1 is a full-rank (w, d, n)-matrix prod-
uct in x variables over F. Then there are C0, . . . , Cd−1 ∈ GL(w, F) and ` ∈ [0, d − 1] such that either
Q′k = Ck ·Q`+k · C−1

k+1 for k ∈ [0, d− 1] or Q′k = Ck ·QT
`−k · C

−1
k+1 for k ∈ [0, d− 1].

4 Reduction from TRACE to DET: Proof of Theorem 1

The reduction is given in Algorithm 1. The algorithm proceeds by assuming that the input polyno-
mial f is equivalent to Tr-IMMw,d for some w ≥ 2. A final polynomial identity test (PIT) takes care
of the case when it is not. Algorithm 1 has two main steps – reduction from TRACE to TRACE-TI
(Algorithm 4), and reduction from TRACE-TI to DET (Algorithm 2). Algorithm 4 is inspired by a
similar reduction in [KNST19] for the IMM polynomial. Below we discuss the proof strategy of
Algorithm 4, and give the details in Appendix C. Algorithm 2 is given in Section 4.1.

Reduction from TRACE to TRACE-TI. First, we compute bases of the irreducible g f -invariant sub-
spaces of Fn. By Corollary 3.1, these are bases of the spaces A−1Uσ(0), . . . , A−1Uσ(d−1), where σ is an
unknown permutation on {0, . . . , d− 1}. As dimF(Uk) = w2, we get w. Now, let Vk be the n× w2

matrix consisting of the basis vectors of A−1Uσ(k). Form the n× n matrix V = [V0 | V1 | . . . | Vd−1].
Observe that V = A−1 · E, where E is a "block-permuted" invertible matrix (by the definition of
Uk). Thus, h(x) := f (Vx) = Tr-IMMw,d(Ex). We now make use of the evaluation dimension mea-
sure (Definition C.1) on h to essentially ensure that E is a block-diagonal matrix.

Algorithm 1 Reduction from TRACE to DET

INPUT: Blackbox access to an n-variate, degree d polynomial f and oracle access to DET.
OUTPUT: If there is an w ∈ N such that f is equivalent to Tr-IMMw,d then output an A ∈
GL(n, F) such that f (x) = Tr-IMMw,d(Ax). Otherwise output ‘No such w exists’.

Reduction to TRACE-TI
1: Use Algorithm 4 with input f to compute A′ ∈ GL(n, F) and a w ∈N such that h(x) = f (A′x)

is a d-tensor in the variable sets x0, . . . , xd−1 which is isomorphic to Tr-IMMw,d. If Algorithm 4
outputs ’No’, output ‘No such w exists’.

Reduction from TRACE-TI to DET
2: Use Algorithm 2 with input h, w and oracle access to DET to compute matrices B0, . . . , Bd−1 ∈

GL(w2, F) such that h(x) = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1). If Algorithm 2 outputs ’No’ then
output ‘No such w exists’.

3: Let B ∈ GL(n, F) be the block-diagonal matrix whose k-th block is Bk, and let A = B(A′)−1.

Final PIT
4: Pick a random point a ∈ Sn where S ⊆ F is of size n5. If f (a) = Tr-IMMw,d(Aa) then output w

and A, else output ‘No such w exists’.

8

4.1 Reduction from TRACE-TI to DET

We will use a few terminologies and notations about matrices, matrix products and ABP that are
defined in Appendix A. The following two claims (proved in Appendix D) help in the argument.

Claim 4.1. Let X be a w× w full-rank linear matrix and Y = Iw ⊗ X. Then there does not exist non-zero
matrices T, S ∈ Mw2(F) such that T ·Y = YT · S.

Claim 4.2. Let X be a w× w full-rank linear matrix and Y = Iw ⊗ X, and suppose T, S ∈ Mw2(F) such
that T ·Y = Y · S. Then T = S = M⊗ Iw for some M ∈ Mw(F).

The correctness of Algorithm 2 is argued below by tracing its steps.

Algorithm 2 Reduction from TRACE-TI to DET

INPUT: A w ∈ N, blackbox access to d-tensor h(x0, . . . , xd−1) that is isomorphic to Tr-IMMw,d,
and oracle access to DET.
OUTPUT: Matrices B0, . . . , Bd−1 ∈ GL(w2, F) such that h(x) = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1).

1: Use the set-multilinear ABP reconstruction algorithm (which follows from [KS03]) to construct
a (w2, d, n) set-multilinear ABP Y′0 . . . Y′d−1 in x0, . . . , xd−1 variables that computes h.

2: For k ∈ [1, d − 2], use the factorization algorithm in [KT90] to compute blackbox access to a
degree-w polynomial gk such that det(Y′k) = αkgk(xk)

w, where αk ∈ F×.
3: For k ∈ [1, d − 2], use the DET oracle on input gk to compute X′k such that det(X′k) = gk. If

DET returns gk is not equivalent to Detw, then output ‘No’.

4: For k ∈ [1, d− 2], let Zk = Iw ⊗ X′k.
5: For k ∈ [1, d− 2], compute T′k−1, S′k ∈ GL(w2, F) such that either T′k−1 · Y′k = Zk · S′k or T′k−1 ·

Y′k = ZT
k · S′k. If both equalities are satisfied, output ‘No’ (see Observation 4.1).

6: Let Ŷ0 = Y′0 · (T′0)−1, Ŷk = (T′k−1) · Y′k · (T′k)−1 for k ∈ [1, d − 3], Ŷd−2 = (T′d−3) · Y′d−2 ·
(S′d−2)

−1, and Ŷd−1 = S′d−2 ·Y′d−1.
7: Let X̂d−2 be such that Ŷd−2 = Iw ⊗ X̂d−2, and for k ∈ [1, d− 3] construct M̂k ∈ GL(w, F) and

X̂k such that Ŷk = (M̂k ⊗ Iw) · (Iw ⊗ X̂k). (See Observation 4.3.)
8: Let Yd−1 = (∏d−3

k=1(M̂k ⊗ Iw)) · Ŷd−1. Construct X̂d−1 such that its (i, j)-th entry is the ((j −
1)w + i)-th entry of Yd−1, and X̂0 such that its (i, j)-th entry is the ((i− 1)w + j)-th entry of Ŷ0.

9: Obtain the transformations B0, . . . , Bd−1 ∈ GL(w2, F) from (the entries of) X̂0, . . . , X̂d−1 respec-
tively. Return B0, . . . , Bd−1.

Steps 1–3: Assume that h is isomorphic to Tr-IMMw,d. Hence, there is a full-rank (w, d, n) set-
multilinear matrix product X0 . . . Xd−1 in x0, . . . , xd−1 variables such that h = tr(X0 . . . Xd−1). From
Fact 2, h is computed by the (w2, d, n)-set-multilinear ABP Y0 . . . Yd−1, where

Y0 = (X0(1, 1), . . . , X0(1, w), X0(2, 1), . . . , X0(2, w), . . . , X0(w, 1), . . . , X0(w, w))

Yk = Iw ⊗ Xk for k ∈ [1, d− 2]

Yd−1 = (Xd−1(1, 1), . . . , Xd−1(w, 1), Xd−1(1, 2), . . . , Xd−1(w, 2), . . . , Xd−1(1, w), . . . , Xd−1(w, w))T .

9

Using the randomized polynomial-time set-multilinear ABP reconstruction algorithm in [KS03], a
(w2, d, n) set-multilinear ABP Y′0 . . . Y′d−1 computing h is constructed in Step 1. It follows from the
properties of this algorithm and the ABP Y0 . . . Yd−1 that there are T0, . . . , Td−2 ∈ GL(w2, F) so that

Y′0 = Y0 · T0 , Y′k = T−1
k−1 ·Yk · Tk for k ∈ [1, d− 2], and Y′d−1 = T−1

d−2 ·Yd−1 .20

Hence, for all k ∈ [1, d − 2], det(Y′k) = ck(det(Xk))
w, where ck ∈ F×. As the determinant poly-

nomial is irreducible, at Step 2, we have gk = βk det(Xk) = det(diag(βk, 1, . . . , 1) · Xk) for some
βk ∈ F× which implies gk is equivalent to Detw. At step 3, DET on input gk returns X′k such that

Xk = Ck · X′k · Dk or Xk = Ck · (X′k)
T · Dk where Ck, Dk ∈ GL(w, F).

The above follows from the group of symmetries of Detw (see Fact 1 in [KNS19]).

Steps 4–5: At Step 4, for k ∈ [1, d− 2], the matrix Zk = Iw ⊗ X′k satisfies

Yk = (Iw ⊗ Ck) · Zk · (Iw ⊗ Dk) or Yk = (Iw ⊗ Ck) · ZT
k · (Iw ⊗ Dk).

Hence, at Step 5 there are T′k−1 := (Iw⊗C−1
k) · Tk−1 and S′k := (Iw⊗Dk) · Tk in GL(w2, F) such that

T′k−1 ·Y′k = Zk · S′k or T′k−1 ·Y′k = ZT
k · S′k.

Observation 4.1 uses Claim 4.1 to show that at Step 5 we can identify between the above two cases,
as only one of them is true (proof in Appendix D).

Observation 4.1. If h(x0, . . . , xd−1) is isomorphic to Tr-IMMw,d then for matrices Y′k and Zk as computed
in Algorithm 2, where k ∈ [1, d− 2], there are no matrices T′k−1, S′k ∈ GL(w2, F) such that both T′k−1 ·Y′k =
Zk · S′k and T′k−1 ·Y′k = ZT

k · S′k are simultaneously true.

At step 5 the matrices T′k−1 and S′k are computed by solving linear equations. Choosing a solution
at random from the solution space ensures that the computed matrices T′k−1 and S′k are invertible
with high probability. Henceforth, we assume that T′k−1 ·Y′k = Zk · S′k. The proof for T′k−1 ·Y′k = ZT

k ·
S′k is similar. In Observation 4.2 we show that T′k−1 and S′k are related to Tk−1 and Tk respectively
for k ∈ [1, d− 2]. The proof of Observation 4.2, which uses Claim 4.2, is in Appendix D.

Observation 4.2 (Uniqueness of T′k−1 and S′k). The matrices T′k−1 and S′k computed at Step 5 of Al-
gorithm 2, where k ∈ [1, d − 2], satisfy the following: (T′k−1)

−1 = T−1
k−1 · (Iw ⊗ Ck) · (M−1

k ⊗ Iw) and
S′k = (Mk ⊗ Iw) · (Iw ⊗ Dk) · Tk, where Mk ∈ GL(w, F).

Steps 6–8: Observation 4.3 proved in Appendix D describes the structure of the matrices Ŷ0, . . . , Ŷd−1
computed at Step 6. Clearly, Ŷ0 . . . Ŷd−1 = Y′0 . . . Y′d−1 is a set-multilinear ABP computing h.

Observation 4.3. Let M1, . . . , Md−2 be the matrices as defined in Observation 4.2. Then

1. Ŷk = (Mk M−1
k+1 ⊗ Iw) · (Iw ⊗ (C−1

k · Xk · Ck+1)) for k ∈ [1, d− 3],

2. Ŷd−2 = Iw ⊗ (C−1
d−2 · Xd−2 · D−1

d−2),

20See Appendix A: Set-multilinear ABP reconstruction, for an explanation.

10

3. Ŷ0 = Y0 · (Iw ⊗ C1) · (M−1
1 ⊗ Iw), and Ŷd−1 = (Md−2 ⊗ Iw) · (Iw ⊗ Dd−2) ·Yd−1.

By the above observation, at Step 7, X̂d−2 = C−1
d−2 · Xd−2 · D−1

d−2. Moreover, the structure of Ŷk (as
stated in the observation) enables the algorithm to factor it in Step 7 and obtain X̂k, M̂k such that

X̂k = ak(C−1
k · Xk · Ck+1) and M̂k = a−1

k (Mk ·M−1
k+1) for some ak ∈ F×.

Let a = ∏d−3
k=1 ak. Then at step 8, Yd−1 = a−1 · (M1 ⊗ Iw) · (Iw ⊗ Dd−2) · Yd−1. Now, it is a simple

exercise to verify that at step 8

X̂0 = (MT
1)
−1 · X0 · C1 and X̂d−1 = a−1(Dd−2 · Xd−1 ·MT

1).

Step 9: Therefore, h = tr(X̂0 . . . X̂d−1). The transformation Bk ∈ GL(w2, F) is such that its rows
are the coefficient vectors of the linear forms in X̂k. Hence, h = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1).

5 Reduction from FMAI to MMTI : Proof of Theorem 2

5.1 Characterization of Tr-IMM by its Lie algebra

The following lemma gives a characterization of Tr-IMMw,d by its Lie algebra. The spacesB0, . . . ,Bd−1
are as defined in Section 3. The missing proofs are in Appendix F .

Lemma 5.1. Let f be a non-zero d-tensor in the variable sets x0, . . . , xd−1 such that for all k ∈ [0, d− 1]
Bk ⊆ g f . Then there is an α ∈ F× such that f (x) = α · Tr-IMMw,d(x).

Corollary 5.1. Let B ∈ GL(n, F) be a block-diagonal matrix with individual blocks B0, . . . , Bd−1 and f
be a non-zero d-tensor in the variable sets x0, . . . , xd−1 such that for all k ∈ [0, d− 1], B−1 · Bk · B ⊆ g f .
Then there is an α ∈ F× such that f (x) = α · Tr-IMMw,d(B0x0, . . . , Bd−1xd−1).

5.2 Proof of Theorem 2

Algorithm 3 takes as input a basis {E1, E2, . . . , Er} of an algebra A ⊆ Mm(F), and if A ∼= Mw
for some w ∈ N, then it computes a 4-tensor f in the variable sets x0, x1, x2, x3 in deterministic
polynomial time such that f is isomorphic to Tr-IMMw,4. It then uses Algorithm 7 in Theorem 3
(see Appendix E) to find an isomorphism from f to Tr-IMMw,4 using oracle access to MMTI in ran-
domized polynomial time. An easy check at the end of the algorithm ensures that if the algorithm
outputs an isomorphism then it is correct. Thus, we need to prove that if A is isomorphic toMw
for some w ∈ N then the algorithm outputs an isomorphism. This is argued by tracing the steps
of the algorithm assuming A is isomorphic toMw for some w ∈N.

Steps 1–2: At Step 2 there is a K ∈ GL(w2, F) and a basis {C1,1, . . . , Cw,w} ofMw such that Li,j =

K−1 · (Iw ⊗ Ci,j) · K for all i, j ∈ [w] (by the Skolem-Noether theorem, see next claim).

Claim 5.1. Suppose A ∼= Mw for some w ∈ N. Then there exists a K ∈ GL(w2, F) and linearly
independent matrices {C1,1, . . . , Cw,w} inMw such that Li,j = K−1 · (Iw ⊗ Ci,j) · K for all i, j ∈ [w].

Step 3: The space spanned by {LT
1,1, . . . , LT

w,w} is KT · (Iw ⊗Mw) · (KT)−1.

11

Algorithm 3 Reduction from FMAI to MMTI

INPUT: A basis {E1, E2, . . . , Er} of an algebra A ⊆Mm(F), and oracle access to MMTI.
OUTPUT: If A ∼=Mw(F) for some w ∈ N then output an algebra isomorphism φ : A → Mw,
otherwise output ‘No w ∈N such that A ∼=Mw’.

1: If r 6= w2 for any w ∈N, then output ‘No w ∈N such that A ∼=Mw’.
2: Rename and order the basis elements as E1,1, . . . , E1,w, . . . , Ew,1, . . . , Ew,w. Compute matrices

L1,1, . . . , Lw,w, whose rows and columns are indexed by the above basis elements in order, as
follows: Li,j is the matrix corresponding to the left multiplication of Ei,j on E1,1, . . . Ew,w. In
particular, Ei,j · Ei2,j2 = ∑i1,j1∈[w] Li,j((i1, j1), (i2, j2))Ei1,j1 .

3: Compute a basis of the space spanned by matrices inMw2 that commute with {LT
1,1, . . . , LT

w,w}.
If the dimension of this space is not w2, then output ’No w ∈ N such that A ∼=Mw’. Other-
wise, let the computed basis be {N1,1, . . . , Nw,w}.

4: Compute a non-zero 4-tensor f in x0, . . . , x3 variables whose coefficients satisfy the following
equations: a) for all k ∈ [0, 3], k even, and for all L ∈ {L1,1, . . . Lw,w}

∑
i1,j1,i2,j2∈[w2]

LT((i1, j1)(i2, j2))x(k)i2,j2
∂ f

x(k)i1,j1

− ∑
i1,j1,i2,j2∈[w2]

L((i1, j1)(i2, j2))x(k+1)
j2,i2

∂ f

x(k+1)
j1,i1

= 0. (2)

b) for all k ∈ [0, 3], k odd, and for all N ∈ {N1,1, . . . Nw,w}

∑
i1,j1,i2,j2∈[w2]

NT((i1, j1)(i2, j2))x(k)j2,i2
∂ f

x(k)j1,i1

− ∑
i1,j1,i2,j2∈[w2]

N((i1, j1)(i2, j2))x(k+1)
i2,j2

∂ f

x(k+1)
i1,j1

= 0. (3)

5: Use Algorithm 7 on input f and with oracle access to MMTI. If the algorithm outputs ’No’
then output ’No w ∈ N such that A ∼=Mw’. Otherwise, let B0, B1, B2, B3 be the output of the
algorithm such that f = Tr-IMMw,4(B0x0, B1x1, B2x2, B3x3).

6: Check if there exist matrices F1,1, . . . , Fw,w ∈ Mw such that B0 · LT
i,j · B

−1
0 = Iw ⊗ FT

i,j and B1 ·
Li,j · B−1

1 = Iw ⊗ Fi,j for all i, j ∈ [w]. If such matrices do not exist then output ’No w ∈ N such
that A ∼=Mw’, otherwise output φ : A →Mw, where φ(Ei,j) = Fi,j for all i, j ∈ [w] (extended
linearly to the whole of A) as the algebra isomorphism from A toMw.

Observation 5.1. The space of matrices in Mw2 that commute with every matrix in KT · (Iw ⊗Mw) ·
(KT)−1 is KT · (Mw ⊗ Iw) · (KT)−1. So, {N1,1, . . . , Nw,w} is a basis of KT · (Mw ⊗ Iw) · (KT)−1.

Step 4: Let n = 4w2. For k ∈ [0, 3], let B′k be the following spaces: Every matrix in B′k is a n× n
block-diagonal matrix (with rows and columns indexed by x0, . . . , x3) and its non-zero entries are
confined to the rows and columns indexed by xk and xk+1. For B ∈ Bk, let [B]k be the 2w2 × 2w2

12

sub-matrix of B as defined in Equation 1 (Section 3). Then

B′k :=
{

B ∈ Mn : [B]k =
[

KT · (Iw ⊗MT)(KT)−1 0
0 K−1 · (−Iw ⊗M) · K

]
for M ∈ Mw

}
if k is even,

:=
{

B ∈ Mn : [B]k =
[

K−1 · (MT ⊗ Iw) · K 0
0 KT · (−M⊗ Iw) · (KT)−1

]
for M ∈ Mw

}
if k is odd.

The following observation follows from Lemma 3.1 and Fact 1.

Observation 5.2. The Lie algebra of Tr-IMMw,4((KT)−1x0, Kx1, (KT)−1x2, Kx3) contains B′0,B′1,B′2,B′3.

At Step 4, Algorithm 3 computes a non-zero 4-tensor f such that B′k ⊆ g f for all k ∈ [0, 3]. Equation
2 ensures B′0, B′2 ∈ g f , and Equation 3 ensures B′1,B′3 ∈ g f . That the algorithm is able to compute
a non-zero f (by solving a linear system) follows from Observation 5.2. Since the number of
monomials in f is at most w8, this step runs in polynomial time.

Step 5: From Corollary 5.1 it follows that f (x) = α · Tr-IMMw,4((KT)−1x0, Kx1, (KT)−1x2, Kx3)
for some α ∈ F×. Hence, at step 5 with high probability Algorithm 7 outputs four matrices
B0, B1, B2, B3 ∈ GL(w2, F) such that f (x) = Tr-IMMw,4 (B0x0, B1x1, B2x2, B3x3).

Step 6: Let B be the block-diagonal matrix whose k-th block is Bk, for k ∈ [0, 3]. Since B′0 ⊆ g f and
g f = B−1 · gTr-IMM · B (from Fact 1), B · B′0 · B−1 ⊆ gTr-IMM. Observe that every matrix in B · B′0 · B−1 is
block-diagonal with its non-zero entries confined to the first two blocks. Hence, from Lemma 3.2,
and the fact that both the spaces B · B′0 · B−1 and B0 have dimension w2, we have B · B′0 · B−1 = B0.
In particular, for every i, j ∈ [w] there is an Fi,j ∈ Mw such that B0 · LT

i,j · B
−1
0 = Iw ⊗ FT

i,j and
B1 · Li,j · B−1

1 = Iw ⊗ Fi,j. Finally, verify that φ(Ei,j) = Fi,j is an algebra isomorphism.

Comparison with [GGKS19]: In [GGKS19], FMAI is reduced to DET by using the fact that Detw is
characterized by its Lie algebra (see Lemma 7.1 in [GGKS19]). If the input algebraA is isomorphic
to Mw then the algorithm in [GGKS19] computes a degree-w polynomial f in w2 variables such
that g f contains the Lie algebra of a polynomial equivalent to Detw. Hence, the time complexity
of their algorithm is wO(w). Algorithm 3 follows the same approach, but computes a degree four
polynomial f such that g f contains the Lie algebra of a polynomial equivalent to Tr-IMMw,4. So,
the complexity of this algorithm is wO(1).

Acknowledgments

We are thankful to Avi Wigderson for his suggestion on designing an equivalence testing algo-
rithm for Tr-IMM at the end of VN’s presentation at CCC 2017. We would also like to thank
Christian Ikenmeyer for his question on equivalence testing for Tr-IMM which encouraged us to
work on this problem. Thanks also to Neeraj Kayal and Ankit Garg for helpful discussions, and
particularly to Neeraj for pointing us to [GQ19]. VN is thankful to be funded by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 682203
-ERC-[Inf-Speed-Tradeoff].

13

References

[Ara11] Manuel Araújo. Classification of Quadratic Forms. https://www.math.tecnico.
ulisboa.pt/~ggranja/manuel.pdf, 2011.

[AS05] Manindra Agrawal and Nitin Saxena. Automorphisms of finite rings and applications
to complexity of problems. In 23rd Annual Symposium on Theoretical Aspects of Computer
Science, STACS 2005, pages 1–17, 2005.

[AS06] Manindra Agrawal and Nitin Saxena. Equivalence of f-algebras and cubic forms. In
23rd Annual Symposium on Theoretical Aspects of Computer Science, STACS 2006, pages
115–126, 2006.

[BIM+20] Markus Bläser, Christian Ikenmeyer, Meena Mahajan, Anurag Pandey, and Nitin
Saurabh. Algebraic branching programs, border complexity, and tangent spaces. Elec-
tronic Colloquium on Computational Complexity (ECCC), 27:31, 2020.

[BIP16] Peter Bürgisser, Christian Ikenmeyer, and Greta Panova. No occurrence obstructions
in geometric complexity theory. In 57th Symposium on Foundations of Computer Science,
FOCS, pages 386–395, 2016.

[BR90] László Babai and Lajos Rónyai. Computing irreducible representations of finite groups.
Mathematics of Computation, 55(192):705–722, 1990.

[BW15] Peter A Brooksbank and James B Wilson. The module isomorphism problem reconsid-
ered. Journal of Algebra, 421:541–559, 2015.

[CFO+15] J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, and M. Stoll. Explicit n-descent on
elliptic curves III. algorithms. Math. Comput., 84(292):895–922, 2015.

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic complexity
and beyond. Foundations and Trends in Theoretical Computer Science, 6(1-2):1–138, 2011.

[CLS19] Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth multilinear
formula lower bounds for iterated matrix multiplication with applications. SIAM J.
Comput., 48(1):70–92, 2019. Conference version appeared in the proceedings of STACS
2018.

[Ebe89] W. M. Eberly. Computations for algebras and group representations. PhD thesis, Department
of Computer Science, University of Toronto, 1989.

[FGS19] Vyacheslav Futorny, Joshua A. Grochow, and Vladimir V. Sergeichuk. Wildness for
tensors. Linear Algebra and its Applications, 566:212–244, 2019.

[FLMS15] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower
bounds for depth-4 formulas computing iterated matrix multiplication. SIAM J. Com-
put., 44(5):1173–1201, 2015. Conference version appeared in the proceedings of STOC
2014.

14

https://www.math.tecnico.ulisboa.pt/~ggranja/manuel.pdf
https://www.math.tecnico.ulisboa.pt/~ggranja/manuel.pdf

[FP06] Jean-Charles Faugère and Ludovic Perret. Polynomial Equivalence Problems: Algo-
rithmic and Theoretical Aspects. In Serge Vaudenay, editor, International Conference on
the Theory and Applications of Cryptographic Techniques, Advances in Cryptology - EURO-
CRYPT, pages 30–47, 2006.

[Fro97] Georg Frobenius. Ueber die darstellung der endlichen gruppen durch linearc substitu-
tionen. Sitzungber. der Berliner Akademie, 7:994–1015, 1897.

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Sympo-
sium on Foundations of Computer Science, FOCS 2013, pages 243–252, 2013.

[Ges16] Fulvio Gesmundo. Geometric aspects of iterated matrix multiplication. Journal of Alge-
bra, 461:42–64, 2016.

[GGKS19] Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determinant equiva-
lence test over finite fields and over Q. In 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, pages 62:1–62:15, 2019.

[GIP17] Fulvio Gesmundo, Christian Ikenmeyer, and Greta Panova. Geometric complexity the-
ory and matrix powering. Differential Geometry and its Applications, 55:106–127, 2017.

[GQ19] Joshua A. Grochow and Youming Qiao. Isomorphism problems for tensors, groups,
and cubic forms: completeness and reductions. CoRR, abs/1907.00309, 2019.

[Gro12] Joshua A. Grochow. Symmetry and equivalence relations in classical and geometric com-
plexity theory. PhD thesis, The University of Chicago, 2012. Available from https:
//www.cs.colorado.edu/~jgrochow/grochow-thesis.pdf.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In Proceedings of the 18th Symposium on the Theory of Computing, STOC
1986, pages 59–68, 1986.

[IP16] Christian Ikenmeyer and Greta Panova. Rectangular kronecker coefficients and
plethysms in geometric complexity theory. In 57th Symposium on Foundations of Com-
puter Science, FOCS, pages 396–405, 2016.

[IQ19] Gábor Ivanyos and Youming Qiao. Algorithms Based on *-Algebras, and Their Ap-
plications to Isomorphism of Polynomials with One Secret, Group Isomorphism, and
Polynomial Identity Testing. SIAM J. Comput., 48(3):926–963, 2019. Conference version
appeared in the proceedings of SODA 2018.

[IRS12] Gábor Ivanyos, Lajos Rónyai, and Joseph Schicho. Splitting full matrix algebras over
algebraic number fields. Jounral of Algebra, 354:211–223, 2012.

[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence
problem. In Proceedings of the 22nd Symposium on Discrete Algorithms, SODA 2011, pages
1409–1421, 2011.

15

https://www.cs.colorado.edu/~jgrochow/grochow-thesis.pdf
https://www.cs.colorado.edu/~jgrochow/grochow-thesis.pdf

[Kay12] Neeraj Kayal. Affine projections of polynomials: extended abstract. In Proceedings of the
44th Symposium on Theory of Computing, STOC 2012, pages 643–662, 2012. Full text avail-
able from https://www.microsoft.com/en-us/research/wp-content/uploads/2016/
02/Projection.pdf.

[KNS19] Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factoriza-
tion and reconstruction of low width algebraic branching programs. Computational
Complexity, 28(4):749–828, 2019.

[KNS20] Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once oblivi-
ous algebraic branching programs (roabps) and multilinear depth-three circuits. ACM
Trans. Comput. Theory, 12(1), 2020. Conference version appeared in the proceedings of
STACS 2016.

[KNST19] Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of
full rank algebraic branching programs. TOCT, 11(1):2:1–2:56, 2019. Conference version
appeared in the proceedings of CCC 2017.

[KS03] Adam Klivans and Amir Shpilka. Learning arithmetic circuits via partial derivatives.
In Proceedings of the 16th Conference on Learning Theory, COLT 2003, pages 463–476, 2003.

[KS15] Neeraj Kayal and Chandan Saha. Lower bounds for sums of products of low arity
polynomials. Electronic Colloquium on Computational Complexity (ECCC), 22:73, 2015.

[KS17] Mrinal Kumar and Shubhangi Saraf. On the Power of Homogeneous Depth 4 Arith-
metic Circuits. SIAM J. Comput., 46(1):336–387, 2017. Conference version appeared in
the proceedings of FOCS 2014.

[KST18] Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. On the size of homogeneous and
of depth-four formulas with low individual degree. Theory of Computing, 14(1):1–46,
2018. Conference version appeared in the proceedings of STOC 2016.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By Black
Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of
Numerators and Denominators. J. Symb. Comput., 9(3):301–320, 1990. Conference ver-
sion appeared in the proceedings of FOCS 1998.

[Lan15] J. M Landsberg. Geometric complexity theory: an introduction for geometers. ANNALI
DELL’UNIVERSITA’ DI FERRARA, 61(1):65–117, 2015.

[Lor08] Falko Lorenz. Algebra Volumne 2: Fields with structures. Algebras and advanced topics.
Springer, 2008.

[MS01] Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory I: an approach
to the P vs. NP and related problems. SIAM J. Comput., 31(2):496–526, 2001.

[MS08] Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory II: towards ex-
plicit obstructions for embeddings among class varieties. SIAM J. Comput., 38(3):1175–
1206, 2008.

16

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Projection.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Projection.pdf

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complex-
ity. Chicago J. Theor. Comput. Sci., 1997, 1997.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended abstract).
In Proceedings of the 23rd Symposium on Theory of Computing, STOC 1991, pages 410–418,
1991.

[NW97] Noam Nisan and Avi Wigderson. Lower Bounds on Arithmetic Circuits Via Partial
Derivatives. Computational Complexity, 6(3):217–234, 1997.

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In International Conference on the Theory and
Application of Cryptographic Techniques, Advances in Cryptology - EUROCRYPT, pages 33–
48, 1996.

[PGC98] Jacques Patarin, Louis Goubin, and Nicolas Courtois. Improved algorithms for iso-
morphisms of polynomials. In International Conference on the Theory and Application of
Cryptographic Techniques, Advances in Cryptology - EUROCRYPT, pages 184–200, 1998.

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-
polynomial size. J. ACM, 56(2):8:1–8:17, 2009. Conference version appeared in the
proceedings of STOC 2004.

[Rón87] Lajos Rónyai. Simple algebras are difficult. In Proceedings of the 19th Symposium on
Theory of Computing, STOC 1987, pages 398–408, 1987.

[Rón90] Lajos Rónyai. Computing the structure of finite algebras. J. Symb. Comput., 9(3):355–
373, 1990.

[Rón92] Lajos Rónyai. Algorithmic properties of maximal orders in simple algebras over Q.
Computational Complexity, 2:225–243, 1992.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.
Github survey, 2015.

[Sax06] Nitin Saxena. Morphisms of rings and applications to complexity. PhD thesis, Indian Insti-
tute of Technology, Kanpur, 2006.

[Ser73] Jean-Pierre Serre. A Course in Arithmetic. Springer-Verlag New York, 1973.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010.

[Thi98] Thomas Thierauf. The isomorphism problem for read-once branching programs and
arithmetic circuits. Chicago J. Theor. Comput. Sci., 1998, 1998.

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Symposium
on Theory of Computing, STOC 1979, pages 249–261, 1979.

[Wal13] Lars Ambrosius Wallenborn. Computing the hilbert symbol, quadratic form equiva-
lence and integer factoring. Diploma thesis, 2013.

17

A Preliminaries on algebraic branching programs and matrix products

Set-multilinear polynomial: A set-multilinear monomial in x0, . . . , xd−1 variables has exactly one
variable from xk, for all k ∈ [0, d− 1]. The coefficient of a non set-multilinear monomial is zero in
a set-multilinear polynomial in x0, . . . , xd−1 variables.

The following definition is motivated from the the fact that monomials in Tr-IMMw,d correspond
to a path in the d-layer graph capturing the matrix product Q0 . . . Qd−1.

Definition A.1 (Path monomial). A set-multilinear monomial in x0, . . . , xd−1 variables is called as
a path monomial if it has a non-zero coefficient in the Tr-IMMw,d polynomial, and a set-multilinear
monomial that is not a path monomial is called a non-path monomial.

Linear matrices: A matrix with entries as linear forms in x variables over F is called a linear matrix
in x variables over F. If x, F are clear from the context, then it is simply called a linear matrix. If the
linear forms in a linear matrix are linearly independent, then we say it is a full-rank linear matrix.

Algebraic branching program (ABP): A (w, d, n)-ABP is a matrix product Y0 · Y1 . . . Yd−1, where
Y0 and Yd−1 are row and column linear matrices of size w, and Yk is a w × w linear matrix in x
variables for k ∈ [1, d − 2]. The polynomial computed by the ABP is the entry in the resulting
1× 1 matrix. Note that in the general definition of an ABP the intermediate widths of matrices can
vary, but throughout this article we work with uniform width ABPs unless stated otherwise. A
full-rank ABP is a (w, d, n)-ABP where the w2(d− 2) + 2w linear forms in its matrices are linearly
independent. A set-multilinear ABP in x0, . . . , xd−1 variables is a (w, d, n)-ABP where the linear
forms in Yk are in xk variables. The following fact is easily inferred.

Fact 2. The Tr-IMMw,d polynomial is computed by a (w2, d, n)-set-multilinear ABP Y0 . . . Yd−1 in x0, . . . ,
xd−1 variables, where Y0 = (Q0(1, 1), Q0(1, 2), . . . Q0(1, w), Q0(2, 1), . . . , Q0(w, w)), Yk = Iw ⊗ Qk for
k ∈ [1, d− 2], and Yd−1 = (Qd−1(1, 1), Qd−1(2, 1), . . . Qd−1(w, 1), Qd−1(1, 2), . . . , Qd−1(w, w))T.

Matrix Product: A matrix product X0 . . . Xd−1, where X0, . . . , Xd−1 are w × w linear matrices is
denoted as a (w, d, n)-matrix product. If the w2d linear forms in the matrices of a (w, d, n)-matrix
product are linearly independent then we say it is a full-rank (w, d, n)-matrix product. Addition-
ally, if Xk has linear forms in only xk variables for k ∈ [0, d − 1] then we call it a (w, d, n) set-
multilinear matrix product in x0, . . . , xd−1 variables.

Set-multilinear ABP reconstruction: Here, we note the main properties of the set-multilinear ABP
reconstruction algorithm in [KS03] for set-multilinear ABPs with varying intermediate widths. A
set-multilinear ABP Y0 . . . Yd−1 in x0, . . . , xd−1 variables has width-sequence (w0, . . . , wd−2), if Y0
is a row linear matrix of size w0 in x0 variables, Yk is a wk−1 × wk linear matrix in xk variables
for k ∈ [1, d − 2], and Yd−1 is a column linear matrix of size wd−2 in xd−1 variables. The next
observation is proved using evaluation dimension (see Definition C.1), its proof is omitted here.

Observation A.1. Suppose f is a set-multilinear polynomial in x0, . . . , xd−1 variables. Then, there is a
set-multilinear ABP in x0, . . . , xd−1 variables of width sequence (w0, . . . , wd−2) computing f , such that
any other set-multilinear ABP in x0, . . . , xd−1 variables of width-sequence (w′0, . . . , w′d−2) computing f
satisfies wk ≤ w′k for k ∈ [0, d− 2]. Such a set-multilinear ABP in x0, . . . , xd−1 variables of width-sequence
(w0, . . . , wd−2) computing f is called a min-width set-multilinear ABP for f .

18

Given blackbox access to a set-multilinear polynomial f (x0, . . . , xd−1), the set-multilinear ABP re-
construction algorithm in [KS03] reconstructs a min-width set-multilinear ABP in x0, . . . , xd−1 vari-
ables computing f in randomized polynomial-time. Finally, the following observation regarding
the relation between two min-width ABPs computing f is easy to prove and its proof is omitted.

Observation A.2. Suppose f is a set-multilinear polynomial in x0, . . . , xd−1 variables, and Y0 . . . Yd−1 and
Y′0 . . . Y′d−1 are two min-width set-multilinear ABPs in x0, . . . , xd−1 variables of width-sequence (w0, . . .
, wd−2) computing f . Then there are matrices Tk ∈ GL(wk, F) k ∈ [0, d − 2], such that Y′0 = Y0 · T0,
Y′k = T−1

k−1 ·Yk · Tk for k ∈ [1, d− 2], and Y′d−1 = T−1
d−2 ·Yd−1.

B Proofs from Section 3

Claim 3.1 (restated): If E ∈ gTr-IMM then E is block-diagonal.

Proof. Since E ∈ gTr-IMM, the entries of E = (ei,j)i,j∈[n] satisfy the following equation,

∑
i,j∈[n]

eij · xj ·
∂Tr-IMM

∂xi
= 0 . (4)

Equation 4 can be rewritten as follows

∑
xi ,xj∈xk

k∈[0,d−1]

eij · xj ·
∂Tr-IMM

∂xi︸ ︷︷ ︸
(a)

+ ∑
xi∈x` xj∈xk

`,k∈[0,d−1],` 6=k

eij · xj ·
∂Tr-IMM

∂xi︸ ︷︷ ︸
(b)

= 0. (5)

In Equation 5, term (a) corresponds to the block-diagonal entries of E and term (b) corresponds to
the non block-diagonal entries of E. Observe that the terms are monomial disjoint: monomials in
term (a) have variables from each variable set x0, . . . , xd−1, whereas monomials in term (b) have
two variables from xk and no variable from x` for `, k ∈ [0, d− 1] and ` 6= k. This implies terms (a)
and (b) are individually equal to zero,

∑
xi ,xj∈xk

k∈[0,d−1]

eij · xj ·
∂Tr-IMM

∂xi
= 0 (6)

∑
xi∈x` xj∈xk

`,k∈[0,d−1],` 6=k

eij · xj ·
∂Tr-IMM

∂xi
= 0. (7)

Additionally in Equation 7, for xi ∈ x`, xj ∈ xk, xi′ ∈ x`′ , xj′ ∈ xk′ and (`, k) 6= (`′, k′) the terms
xj

∂Tr-IMM
∂xi

and xj′
∂Tr-IMM

∂xi′
are monomial disjoint. Thus for every pair (`, k) such that ` 6= k

∑
xi∈x` xj∈xk

eij · xj ·
∂Tr-IMM

∂xi
= 0. (8)

19

In Equation 8, group the coefficients of the term ∂Tr-IMM
∂xi

together and rewrite it as

∑
xi∈x`

L(`,k)
xi

∂Tr-IMM
∂xi

= 0, (9)

where L(`,k)
xi is a linear form in the xk variables. Now we show that L(`,k)

xi = 0.

Let xi = x(`)p,q be the (p, q)-th entry of Q`, where p, q ∈ [w]. Also let Q′` be a w× w matrix whose

(p, q)-th entry is the linear form L(`,k)
xi . Then from Equation 9,

∑
xi∈x`

L(`,k)
xi

∂Tr-IMM
∂xi

= tr(Q0 . . . Q′` . . . Qd−1) = 0 . (10)

Now suppose for contradiction L(`,k)
xi 6= 0. Then there is a x(k)u,v ∈ xk such that the coefficient of x(k)u,v

in L(`,k)
xi is non-zero. We argue for the cases k /∈ {`− 1, `+ 1} and k ∈ {`− 1, `+ 1} separately. If

k /∈ {`− 1, `+ 1} then a path monomial µ can be chosen such that µ contains the variable xi = x(`)p,q

and x(k)u,v. In Equation 10 set all the variables to zero except the variables appearing in µ. Under
this assignment the polynomial computed by tr(Q0 . . . Q′` . . . Qd−1) is non-zero as the linear form
L(`,k)

xi 6= 0, which is a contradiction. Now suppose k = ` − 1. Then choose a path monomial µ

containing the variables xi = x(`)p,q and x(k)u′,p where u 6= u′, and in Equation 10 set all the variables

to zero except the variables appearing in µ and the variable x(k)u,v. Again under this assignment the
polynomial computed by tr(Q0 . . . Q′` . . . Qd−1) is non-zero as the linear form L(`,k)

xi 6= 0, which is
a contradiction. For k = `+ 1, choosing a path monomial µ containing the variables xi = x(`)p,q and

x(k)q,v′ where v 6= v′ suffices.

Lemma 3.1 (restated): The space B0 + . . . + Bd−1 is contained in gTr-IMM.

Proof. It is sufficient to prove that for every k ∈ [0, d− 1], Bk ⊆ gTr-IMM. Let k ∈ [0, d− 2], k even,
and B ∈ Bk. Then there is an M ∈ Mw such that

[B]k =
[

Iw ⊗MT 0
0 −Iw ⊗M

]
.

Let M = (mi,j)i,j∈[w], and `
(k)
i,j = ∑v∈[w] mv,jx

(k)
i,v and `

(k+1)
i,j = ∑v∈[w]−mi,vx(k+1)

v,j for all i, j ∈ [w].

Further, let Q′k = (`
(k)
i,j)i,j∈[k], and Q′k+1 = (`

(k+1)
i,j)i,j∈[w].

Observation B.1. The matrix B ∈ gTr-IMM if and only if the following holds:

∑
i,j∈[w]

`
(k)
i,j

∂Tr-IMM

x(k)i,j

+ ∑
i,j∈[w]

`
(k+1)
i,j

∂Tr-IMM

x(k+1)
i,j

= tr(Q0 · · ·Qk−1(Q′k ·Qk+1 + Qk ·Q′k+1)Qk+2 · · ·Qd−1)

= 0 .

Observation B.2. The matrices Q′k and Q′k+1 are such that Q′k = Qk ·M and Q′k+1 = −M ·Qk+1.

20

Thus, Q′k ·Qk+1 = −Qk ·Q′k+1, and hence B ∈ gTr-IMM. The proofs for the remaining two cases: a)
k ∈ [0, d− 1], d even and k odd, and b) k = d− 1 and d odd are similar.

Lemma 3.2 (restated): Suppose B ∈ gTr-IMM and there is a k ∈ [0, d− 1] such that the non-zero entries of B
are confined to the rows and columns that are indexed by xk and xk+1 variables. Then B ∈ Bk.

Proof. Let `(k)i,j and `
(k+1)
i,j be the linear forms whose coefficients are given by the row vectors in-

dexed by x(k)i,j and x(k+1)
i,j variables in B respectively. From the structure of B it follows that xk

and xk+1 are the only variables with non-zero coefficients in `
(k)
i,j and `

(k+1)
i,j respectively. Let

Q′k = (`
(k)
i,j)i,j∈[w], and Q′k+1 = (`

(k+1)
i,j)i,j∈[w]. Since B ∈ gTr-IMM,

tr(Q0 . . . Q′k ·Qk+1 . . . Qd−1 + Q0 . . . Qk ·Q′k+1 . . . Qd−1) = 0 . (11)

Observation B.3. Equation 11 implies Q′k ·Qk+1 + Qk ·Q′k+1 = 0

Proof. The third line in the following sequence of equations follows from the fact that trace remains
invariant under rotations.

tr(Q0 . . . Q′k ·Qk+1 . . . Qd−1 + Q0 . . . Qk ·Q′k+1 . . . Qd−1)

= tr(Q0 . . . Qk−1(Q′k ·Qk+1 + Qk ·Q′k+1)Qk+2 . . . Qd−1)

= tr((Q′k ·Qk+1 + Qk ·Q′k+1)Qk+2 . . . Qd−1 ·Q0 . . . Qk−1) = 0 .

Assign 0/1 values to the variables in xk+3, . . . , xd−1, x0, . . . , xk−1 such that Qk+3, . . . , Qd−1, Q0, . . . , Qk−1
become identity matrices under this assignment. As the entries of Qk+2 are distinct xk+2 variables,
we have Q′k ·Qk+1 + Qk ·Q′k+1 = 0.

By setting the xk+1 variables to 0/1 so that Qk+1 becomes identity in the equation Q′k ·Qk+1 + Qk ·
Q′k+1 = 0, we get Q′k = Q1M for some M ∈ Mw. Similarly, Q′k+1 = NQk+1. Thus, Qk MQk+1 +
QkNQk+1 = 0 which implies N = −M. At this point, the structure of B can be determined using
M and then it is easily observed that B ∈ Bk.

Claim B.1. There is a diagonal matrix in gTr-IMM with distinct diagonal entries.

Proof. For k ∈ [0, d− 1], let Dk be a w×w diagonal matrix whose i-th diagonal entry is denoted as
d(k)i . For k ∈ [0, d− 1] let Bk ∈ Bk be the diagonal matrix whose 2w2 × 2w2 sub-matrix indexed by
xk] xk+1 variables, denoted [Bk]k, looks as follows: if d is even then

[Bk]k =

[
Iw ⊗ Dk 0

0 −Iw ⊗ Dk

]
if k is even,

=

[
Dk ⊗ Iw 0

0 −Dk ⊗ Iw

]
if k is odd. (12)

If d is odd, then B0, . . . , Bd−2 remain the same, and only Bd−1 is defined differently and in this case

[Bd−1]d−1 =

[
Iw ⊗ Dd−1 0

0 −Dd−1 ⊗ Iw

]
.

21

Suppose B = ∑d−1
k=0 Bk. Then B is a diagonal matrix in gTr-IMM (from Lemma 3.1) whose diagonal

entry indexed by the variable x(k)i,j is equal to d(k)j − d(k−1)
i . If we pretend the entries of D0, . . . , Dd−1

to be formal variables, say d variables, then the n diagonal entries of B are n distinct linear forms
in d variables. Hence, if we assign values to the d variables uniformly at random from a set S ⊆ F

such that |S| ≥ n3 then with non-zero probability B has all diagonal entries distinct after the
random assignment.

Lemma B.1. Let E1, . . . , Ea be a basis of gTr-IMM and E = ∑a
i=1 riEi where ri ∈r S ⊂ F, |S| ≥ n4. Then the

characteristic polynomial of E is square-free with probability 1− o(1).

Proof. If we treat r = {r1, . . . , ra} as formal variables then the characteristic polynomial hr(x) of E is
a polynomial in x with coefficients that are polynomial of degree at most n in r variables. Observe
that the discriminant of hr(x), denoted disc(hr(x)) is a non-zero polynomial in the r variables of
degree at most 2n2. This is because if disc(hr(x)) is identically zero as polynomial in r variables
then for every evaluation of r variables to field elements, hr(x) is not a square-free polynomial.
This contradicts Claim B.1, as we can set the r variables appropriately such that E is a diagonal
matrix with distinct entries and hr(x) for such a setting is square-free. Since disc(hr(x)) is not an
identically zero polynomial in r variables and has degree less than 2n2, if we set the r variables
independently and uniformly at random from S ⊆ F, |S| ≥ 2n3 then with probability 1− o(1)
disc(hr(x)) 6= 0, i.e., hr(x) is square-free.

Claim 3.2 (restated): Any non-zero gTr-IMM-invariant subspace is a coordinate subspace of Fn.

Proof. Let u = (u1, . . . , un) ∈ U , Su be the set of non-zero coordinates of u, that is Su := {j : uj 6=
0 and j ∈ [n]}, and D be a diagonal matrix as in Claim B.1 with distinct diagonal entries λ1, . . . , λn.
Then the vectors {(λi

1u1, . . . , λi
nun) ∈ U | i ∈ [0, |Su| − 1]} are F-linearly independent. Hence for

all j ∈ Su, ej ∈ U .This implies U is a coordinate subspace.

Lemma 3.3 (restated): The only irreducible gTr-IMM-invariant subspaces of Fn are U0, . . . ,Ud−1.

Proof. It follows from Claim 3.1 that U0, . . . ,Ud−1 are gTr-IMM-invariant subspaces. We show that Uk
is irreducible for k ∈ [0, d − 1]. Suppose U is a non-zero gTr-IMM-invariant subspace and U ⊂ Uk
for some k ∈ [0, d− 1]. Then U is a coordinate subspace of Fn (from Claim 3.2). Let ex ∈ Fn be
the coordinate vector with one in the entry indexed by the variable x ∈ x. Then to prove that
U = Uk, it is sufficient to show that ex ∈ U for all x ∈ xk. We show this when d is even. (For d odd
the matrices Bk and Bk−1 defined below need to be appropriately redefined for k = d− 1 so that
Bd−1 ∈ Bd−1 and Bd−2 ∈ Bd−2.) Let 1w be the all ones w× w matrix. Define the matrices Bk ∈ Bk
and Bk−1 ∈ Bk−1 as follows: If k is odd then

[Bk]k =

[
1w ⊗ Iw 0

0 −1w ⊗ Iw

]
and [Bk−1]k−1 =

[
−Iw ⊗ 1w 0

0 Iw ⊗ 1w

]
.

If k is even then

[Bk]k =

[
−Iw ⊗ 1w 0

0 Iw ⊗ 1w

]
and [Bk−1]k−1 =

[
1w ⊗ Iw 0

0 −1w ⊗ Iw

]
.

Consider the matrix E = Bk−1 + Bk in gTr-IMM. Since U is a coordinate subspace, there is a y = x(k)i,j ∈
xk such that ey ∈ U . Observation B.4 follows from the structure of E and Claim 3.2.

22

Observation B.4. The entries of the vector Eey indexed by the variables in {x(k)i,1 , x(k)i,2 , . . . , x(k)i,w} and

{x(k)1,j , x(k)2,j , . . . , x(k)w,j} are one and hence the coordinate vectors corresponding to these variables are in U .

Applying Observation B.4 repeatedly we have that ex ∈ U for all x ∈ xk. Hence, U = Uk implying
Uk is irreducible. Finally, we argue that U0, . . . ,Ud−1 are the only irreducible gTr-IMM-invariant sub-
spaces. Let U be an irreducible gTr-IMM-invariant subspace and hence a coordinate subspace of Fn.
Suppose ey ∈ U , where y ∈ xk for some k ∈ [0, d− 1]. Applying Observation B.4 repeatedly we
have that ex ∈ U for all x ∈ xk. Hence, Uk ⊆ U . Since U is irreducible, U = Uk.

Corollary 3.1 (restated): If f = Tr-IMMw,d(Ax), where A ∈ GL(n, F), then the only irreducible g f -
invariant subspaces of Fn are A−1U0, . . . , A−1Ud−1.

Proof. This follows by observing that U is an irreducible gTr-IMM-invariant subspace if and only if
A−1U is an irreducible g f -invariant subspace Since U0, . . . ,Ud−1 are the only irreducible gTr-IMM-
invariant subspaces, A−1U0, . . . , A−1Ud−1 are the only irreducible g f -invariant subspaces.

Lemma 3.4 (restated): Let Tr-IMMw,d = tr(Q′0 · · ·Q′d−1), where Q′0 · · ·Q′d−1 is a full-rank (w, d, n)-
matrix product in x variables over F. Then there are C0, . . . , Cd−1 ∈ GL(w, F) and ` ∈ [0, d− 1] such that
either Q′k = Ck ·Q`+k · C−1

k+1 for k ∈ [0, d− 1] or Q′k = Ck ·QT
`−k · C

−1
k+1 for k ∈ [0, d− 1].

Proof. The proof of Lemma 3.4 uses the following observation, which is on the evaluation dimen-
sion (Definition C.1) of a polynomial expressed as the trace of a full-rank set-multilinear matrix
product. The proof of Observation B.5 is similar to the proof of Observation C.1.

Observation B.5. Let f = tr(X0 . . . Xd−1), where X0 . . . Xd−1 is a full-rank (w, d, n) set-multilinear ma-
trix product in x0, . . . , xd−1 variables. Then a) for k ∈ [0, d− 1] and k′ ∈ {k− 1, k+ 1} Evaldimxk]xk′ (f) =
w2, and b) for k ∈ [0, d− 1] and k′ ∈ [0, d− 1] \ {k− 1, k, k + 1} Evaldimxk]xk′ (f) = w4.

Let A ∈ GL(n, F) be such that the row of A indexed by the x(k)i,j variable determine the coefficients
of the linear form in the (i, j)-th entry of Q′k for i, j ∈ [w] and k ∈ [0, d − 1]. Then Tr-IMMw,d =
Tr-IMMw,d(Ax). Observation B.6 proves that A is a block-diagonal matrix up to a rotation.

Observation B.6. There is a permutation σ of [0, d− 1] such that the non-zero entries of the rows of A
indexed by the xk variables are confined to the columns of A indexed by xσ(k) variables. Further, there is an
` ∈ [0, d− 1] such that either σ(k) = `+ k for k ∈ [0, d− 1] or σ(k) = `− k for k ∈ [0, d− 1].

Proof. By Lemma 3.1, the irreducible invariant subspaces of the Lie algebra of Tr-IMMw,d(Ax) are
A−1U0, . . . , A−1Ud−1. But the irreducible gTr-IMM-invariant subspaces are U0, . . . ,Ud−1 (Lemma 3.3).
Hence, there is a permutation σ of [0, d− 1] such that A−1Uk = Uσ(k) for k ∈ [0, d− 1]. Since Uk
is the subspace spanned by the vectors whose non-zero entries are indexed by xk variables, the
non-zero entries of the columns of A−1 indexed by the xk variables are confined to the rows of
A−1 indexed by xσ(k) variables. Consequently, the non-zero entries of the rows of A indexed by
the xk variables are confined to the columns of A indexed by xσ(k) variables. Hence, Q′0 . . . Q′d−1 is
a full-rank (w, d, n) set-multilinear matrix product in xσ(0), . . . , xσ(d−1) variables.
For k, k′ ∈ [0, d− 1], if k′ ∈ {k− 1, k + 1} then Evaldimxk]xk′ (Tr-IMMw,d) = w2, and if k′ ∈ [0, d−
1] \ {k− 1, k, k + 1} then Evaldimxk]xk′ (f) = w4 (from Observation B.5). Let σ(0) = `. Then again
using Observation B.5 either σ(k) = `+ k for k ∈ [0, d− 1], or σ(k) = `− k for k ∈ [0, d− 1].

23

Let σ be as in Observation B.6. We assume that there is an ` ∈ [0, d− 1] such that σ(k) = `+ k for
k ∈ [0, d− 1] and prove that there are matrices C0, . . . , Cd−1, D0, . . . , Dd−1 ∈ GL(w, F) and non-zero
α0, . . . , αd−1 ∈ F such that Q′k = Ck ·Q`+k ·Dk for k ∈ [0, d− 1], Dd−1C0 = α0 Iw, Dk ·Ck+1 = αk+1 Iw
for k ∈ [0, d− 2], and ∏k∈[0,d−1] αk = 1. Using a similar argument it can be shown that if σ(k) =
`− k for k ∈ [0, d− 1] then there are matrices C0, . . . , Cd−1, D0, . . . , Dd−1 ∈ GL(w, F) and non-zero
α0, . . . , αd−1 ∈ F such that Q′k = Ck ·QT

`−k ·Dk for k ∈ [0, d− 1], Dd−1C0 = α0 Iw, Dk ·Ck+1 = αk+1 Iw
for k ∈ [0, d− 2], and ∏k∈[0,d−1] αk = 1. For ease of exposition, we also assume that ` = 0, and it
can be easily verified that the arguments continue to hold for an arbitrary `. Notice that if ` = 0
then A is a block-diagonal matrix. Denote the block of A indexed by xk variables as Ak. The proof
of the lemma is now almost complete using Observation B.7.

Observation B.7. For k ∈ [0, d − 1], there are matrices Pk, Sk ∈ GL(w, F) such that Ak = (Iw ⊗
Pk)(Sk ⊗ Iw).

Proof. Fix a k ∈ [0, d − 1] such that k is even. We will show that there are matrices Pk, Sk ∈
GL(w, F) such that Ak = (Iw ⊗ Pk)(Sk ⊗ Iw), and a similar argument shows that there are ma-
trices Pk+1, Sk+1 ∈ GL(w, F) such that Ak+1 = (Iw ⊗ Pk+1)(Sk+1 ⊗ Iw). Since A is block-diagonal,
A−1Bk A = Bk for all k ∈ [0, d− 1], from Lemma 3.2, and Fact 1. Hence, for every M ∈ Mw there
is a unique N ∈ Mw such that

(Iw ⊗M)Ak = Ak(Iw ⊗ N) .

Call the w × w sub-matrix of Ak whose rows are indexed by x(k)i,1 , . . . , x(k)i,w , variables, and the

columns are indexed by x(k)j,1 , , . . . , x(k)j,w, variables as Ak(i, j). Note that for all i, j ∈ [w] the following
holds: M · Ak(i, j) = Ak(i, j) · N. Since this holds for any M ∈ Mw, either Ak(i, j) is invertible
or Ak(i, j) is the zero matrix for i, j ∈ [w]. Choose an i, j ∈ [w] such that Ak(i, j) is invertible, and
let Pk = Ak(i, j). Since Ak is invertible there exists such an i, j ∈ [w]. Let u, v ∈ [w] be such that
Ak(u, v) is invertible. Then for any M ∈ Mw,

P−1
k ·M · Pk = Ak(u, v)−1 ·M · Ak(u, v) .

Since the above holds for any M ∈ Mw, there is a non-zero su,v ∈ F such that Ak(u, v) = su,vPk.
Let Sk = (su,v)u,v∈[w], where si,j = 1, and for any u, v ∈ [w] if Ak(u, v) is zero then su,v = 0. It is
easily observed that Ak = (Iw ⊗ Pk)(Sk ⊗ Iw), and as Ak is invertible Sk is invertible.

From Observation B.7, for k ∈ [0, d− 1] the following is true: if k is even then Q′k = Sk · Qk · PT
k ,

and if k is odd then Q′k = Pk ·Qk · ST
k . For ease of notation, if k is even then rename PT

k as Dk and Sk
as Ck, and if k is odd then rename Pk as Ck and ST

k as Dk. Hence for k ∈ [0, d− 1], Q′k = Ck ·Qk ·Dk.
Now, observe the following

tr(Q0 . . . Qd−1) = tr(C0 ·Q0 · D0 . . . Cd−1 ·Qd−1 · Dd−1)

= tr(Dd−1 · C0 ·Q0 · D0 . . . Cd−1 ·Qd−1)

The last line line in the above equation follows from the fact that trace of a matrix product remains
invariant under rotations. Since the entries of Qd−1 are distinct variables disjoint from the variables
in Q0, . . . , Qd−2

Q0 . . . Qd−2 = Dd−1 · C0 ·Q0 · D0 . . . Qd−2 · Dd−2 · Cd−1 .

24

Substitute Qk = (Dk · Ck+1)
−1 for k ∈ [2, d − 2], and Q1 = (D0 · C1)

−1(D1 · C2)−1 in the above
equation, and let M = ∏k∈[0,d−2](Dk · Ck+1)

−1. Then

Q0 ·M = Dd−1 · C0 ·Q0 .

Since the entries of Q0 are distinct variables, there is a non-zero α0 ∈ F such that Dd−1 · C0 = M =
α0 Iw. Similarly, it can be shown that there is a non-zero αk+1 ∈ F such that Dk · Ck+1 = αk+1 Iw for
k ∈ [0, d− 2]. Moreover, as

tr(Q0 . . . Qd−1) = tr(C0 ·Q0 · D0 . . . Cd−1 ·Qd−1 · Dd−1)

it follows that ∏k∈[0,d−1] αk = 1. Finally, observe the following

Q′k =

(
(∏
`∈[k+1,d−1]

α`)Ck

)
·Qk ·

(
(∏
`∈[k+1,d−1]

α−1
`)Dk

)
for k ∈ [0, d− 2].

Reusing symbols for ease of notation, rename Ck as (∏`∈[k+1,d−1] α`)Ck, and Dk as (∏`∈[k+1,d−1] α−1
`)Dk,

and notice that Dk = C−1
k+1 for k ∈ [0, d− 2], and Dd−1 = C−1

0 .

C Reduction from TRACE to TRACE-TI

Algorithm 4 Reduction from TRACE to TRACE-TI
INPUT: Blackbox access to an n-variate degree-d polynomial f .
OUTPUT: A′ ∈ GL(n, F) and w ∈ N such that h(x) = f (A′x) is a d-tensor in the variable sets
x0, . . . , xd−1 which is isomorphic to Tr-IMMw,d.

Compute the irreducible g f -invariant subspaces
1: Call Algorithm 5 on input f . Let {V0, . . . ,Vd−1} be the spaces returned by Algorithm 5. If

Algorithm 5 returns ‘No’ then output ‘No’.

Reduction to TRACE-TI
2: Call Algorithm 6 on input {V0, . . . ,Vd−1}, and let A′ ∈ GL(n, F) and w ∈ N be the output of

Algorithm 6. If Algorithm 6 returns ‘No’ then output ‘No’. Otherwise, return A′ and w.

Algorithm 4 is analysed by assuming that there is an A ∈ GL(n, F) satisfying f = Tr-IMMw,d(Ax).
The final PIT at the end of Algorithm 1 handles the case when f is not equivalent to Tr-IMMw,d. In
Step 1, Algorithm 5 computes a set of bases of the irreducible g f -invariant subspaces. Algorithm
6 in Step 2 uses the bases to compute an A′ ∈ GL(n, F) and the w ∈ N such that h(x) = f (A′x) is
a d-tensor in the variable sets x0, . . . , xd−1 which is isomorphic to Tr-IMMw,d.

C.1 Computing the irreducible g f -invariant subspaces

Algorithm 5 is similar to Algorithm 3 in [KNST19] which computes the irreducible invariant sub-
spaces of the Lie algebra of a polynomial equivalent to IMMw,d.

Steps 1–4: A basis of g f is computed using Lemma 2.2 in [KNST19] (also see [Kay12]). At Step
2, let R ∈ gTr-IMM such that R = A · R′ · A−1. Since the matrices in gTr-IMM are block-diagonal

25

Algorithm 5 Computing the irreducible g f -invariant subspaces
INPUT: Blackbox access to an n-variate degree-d polynomial f .
OUTPUT: A set of bases of the irreducible g f -invariant subspaces.

1: Compute a basis {F1, . . . , Fa} of g f using Lemma 2.2 in [KNST19].
2: Pick a random element R′ = ∑a

i=1 riFi ∈ g f , where ri ∈r S is chosen independently and
uniformly at random from S ⊆ F for every i ∈ [n− 1], and |S| = 2n3 .

3: Compute the characteristic polynomial q(x) of R′.
4: If q(x) is not square-free then output ‘No’. Otherwise compute the irreducible factors of q(x)

over F. Call the irreducible factors p1(x), . . . , ps(x).

5: Compute bases of the null spaces N ′1, . . . ,N ′s of p1(R′), . . . , ps(R′) respectively.
6: For every i ∈ [s], pick a non-zero vector v ∈ N ′i and compute a basis of the closure of v under

the action of g f using Algorithm 4 in [KNST19].
7: Let V1, . . . ,Vs be the list of the closure spaces (here, we are identifying spaces with their bases).

Remove duplicates from the list by comparing every pair of spaces and get the pruned list
V0, . . . ,Vd−1. If the number of distinct closure spaces is not equal to d, or the dimension of all
the closure spaces are not the same then output ‘No’. Else, output the list {V0, . . . ,Vd−1}.

(Claim 3.1), R is a block-diagonal matrix with individual blocks R0, . . . , Rd−1 as shown in Figure
2. The characteristic polynomial q(x) computed at Step 3 is square-free with high probability
(Lemma B.1). Note that q(x) = ∏k∈[0,d−1] qk(x), where qk(x) is the characteristic polynomial of Rk.
At Step 4, the algorithm invokes a univariate polynomial factorization algorithm over F. Observe
that every irreducible factor pi(x) of q(x) is a factor of qk(x) for some k ∈ [0, d− 1].

R0

R1

Rd−2

Rd−1

x0

x1

xd−2

xd−1

x0 x1 xd−2 xd−1

all entries outside
the bordered region

are zero

Figure 2: A random matrix R ∈ gTr-IMM

Step 5–7: Let Ni and N ′i be the null spaces of pi(R) and pi(R′) respectively. Then Ni = AN ′i .

Lemma C.1. Let pi(x) be an irreducible factor of qk(x), and v ∈ N ′i be a non-zero vector. Then, the closure
of v under the action of g f is the irreducible g f -invariant subspace A−1Uk. Thus, at the end of Step 7 there
is a permutation σ of [0, d− 1] such that Vk = A−1Uσ(k) for all k ∈ [0, d− 1].

Proof. Consider the following claim.

26

Claim C.1. N ′i ⊆ A−1Uk.

The proofs of Lemma 3.3 and Corollary 3.1 in fact show that no g f -invariant subspace is properly
contained in A−1Uk. Observe that the closure of a vector under the action of g f is a g f -invariant
subspace by definition. Hence, by the above claim, the closure of v under the action of g f is A−1Uk.

Proof of Claim C.1. It is sufficient to show that Ni ⊆ Uk. Let u ∈ Ni. Let u` ∈ Fw2
be the vector

obtained by restricting u to the entries that are indexed by x` variables for ` ∈ [0, d − 1]. The
matrix qk(R) is block-diagonal with blocks qk(R0), . . . , qk(Rd−1). Since u ∈ Ni, pi(R) · u = 0 and
so qk(R) · u = 0. Hence,

qk(R`) · u` = 0 for all ` ∈ [0, d− 1]. (13)

Further,
q`(R`) · u` = 0 for all ` ∈ [0, d− 1], (14)

as q`(R`) = 0 (the characteristic polynomial of R` being q`(x)). Since qk(x) and q`(x) are co-prime
for k 6= `, there are polynomials s(x) and t(x) such that s(x)qk(x) + t(x)q`(x) = 1. This implies
s(R`)qk(R`) + t(R`)q`(R`) = Iw2 . Hence, s(R`)qk(R`)u` + t(R`)q`(R`)u` = u`. From Equations 13
and 14, u` = 0 for all k 6= `.

C.2 Reduction to TRACE-TI

Algorithm 6 Reduction to TRACE-TI
INPUT: The irreducible g f -invariant subspaces V0, . . . ,Vd−1.
OUTPUT: A′ ∈ GL(n, F) and w ∈ N such that h(x) = f (A′x) is a d-tensor in the variable sets
x0, . . . , xd−1 which is isomorphic to Tr-IMMw,d.

1: Determine w such that w2 is the dimension of each of the spaces V0, . . . ,Vd−1. If there does not
exist such a w then output ‘No’.

2: Construct the n× n matrix V such that the kw2 + 1, . . . , (k + 1)w2 columns of V are the basis
vectors of Vk for k ∈ [0, d− 1].

3: Compute a permutation τ of [0, d− 1] that is equal to σ−1 (up to a “rotation”), where σ is the
permutation in Lemma C.1.

4: Compute a block-permuted permutation matrix B that maps the variables in xτ(k) to the vari-
ables in xk for all k ∈ [0, d− 1], i.e., B · (xτ(0) xτ(1) . . . xτ(d−1))

T = (x0 x1 . . . xd−1)
T.

5: Return A′ = V · B and w.

Definition C.1 (Evaluation dimension [FS13, Nis91]). Let g(x) be an n-variate polynomial and
x′ ⊆ x. Let g(x)x′=α denote the partial evaluation of g at x′ = α ∈ F|x

′|. The evaluation dimension
of g with respect to x′ is defined as Evaldimx′(g) := dim(spanF({g(x)x′=α : α ∈ F|x

′|})) .

We use the above definition to analyse Algorithm 6.

Steps 1–2: The correctness of Step 1 follows from Corollary 3.1. Let Vk be the n × w2 matrix
whose columns are the basis vectors of the g f -invariant subspace Vk. Then the matrix V con-
structed at Step 2 is obtained by concatenating the matrices V0, . . . , Vd−1 in this order, denoted

27

V0|V1| . . . |Vd−2|Vd−1. From Lemma C.1, there is a permutation σ of [0, d − 1] such that Vk =

A−1Uσ(k). Hence, there is a matrix Ek ∈ Fn×w2
such that Vk = A−1Ek and the non-zero entries

of Ek are confined to the rows indexed by xσ(k) variables. Let E = E0| . . . |Ed−1. Then V = A−1 · E.
Observe that E is a block-permuted matrix, i.e., the columns indexed by xk variables have non-zero
entries confined to the rows indexed by xσ(k) variables. Thus, g(x) := f (Vx) = Tr-IMMw,d(Ex).

Steps 3–5: Step 3 uses the algorithm in next claim to determine τ.

Claim C.2. There is a randomized polynomial-time algorithm that takes input blackbox access to g and with
probability 1− o(1) outputs a permutation τ of [0, d− 1] such that there is an ` ∈ [0, d− 1] satisfying
either a) τ(k) = σ−1(`+ k) for all k ∈ [0, d− 1], or b) τ(k) = σ−1(`− k) for all k ∈ [0, d− 1].

The claim is proved below after completing the analysis of Algorithm 6. Assume that τ(k) =
σ−1(` + k) for all k ∈ [0, d − 1]; the analysis for τ(k) = σ−1(` − k) for all k ∈ [0, d − 1] is
similar. Since g = Tr-IMMw,d(Ex), there is a full-rank (w, d, n)-set-multilinear matrix product
X0 · · ·Xd−1 in the variable sets xσ−1(0), . . . , xσ−1(d−1) respectively such that g(x) = tr(X0 · · ·Xd−1) =
tr(X` · X`+1 . . . Xd−1 · X0 . . . X`−1). Renaming X`+k as Xk for all k ∈ [0, d− 1] and reusing symbols,
it is inferred that there is a full-rank (w, d, n)-set-multilinear matrix product X0 · · ·Xd−1 in the
variable sets xτ(0), . . . , xτ(d−1) respectively such that g = tr(X0 · · ·Xd−1). Hence, at Steps 4 and 5,
it is readily seen that g(Bx) = f (VBx) is computed by a full-rank (w, d, n)-set-multilinear matrix
product X′0 · · ·X′d−1 in the variable sets x0, . . . , xd−1 respectively, i.e., f (VBx) = tr(X′0 · · ·X′d−1).

Proof of Claim C.2. The following observation is the key to computing τ.

Observation C.1. Let ` ∈ [0, d − 1] and r = σ−1(`). Then a) for r′ ∈ {σ−1(` − 1), σ−1(` + 1)},
Evaldimxr]xr′ (g) = w2, and b) for r′ ∈ [0, d− 1] \ {σ−1(`), σ−1(`+ 1), σ−1(`− 1)}, Evaldimxr]xr′ (g) =
w4. There is a randomized polynomial-time algorithm to compute Evaldimxr]xr′ (g) for all r, r′ ∈ [0, d− 1].

The observation is proved after completing the proof of the claim. Observation C.1 is used (d
2)

times to determine Sr = {σ−1(`− 1), σ−1(`+ 1)}where r = σ−1(`), for every r ∈ [0, d− 1]. Using
the knowledge of S0, . . . , Sd−1, τ is determined which is equal to σ−1 up to a rotation as follows.
Choose an arbitrary element r ∈ [0, d − 1] and set τ(0) = r, and let ` ∈ [0, d − 1] be such that
σ−1(`) = r. We can construct τ by choosing either of the elements in Sr = {σ−1(`− 1), σ−1(`+ 1)}:
if σ−1(`− 1) is chosen then τ constructed will be such that τ(k) = σ−1(`− k) for k ∈ [0, d− 1], and
if σ−1(`+ 1) is chosen then τ constructed will be such that τ(k) = σ−1(`+ k) for k ∈ [0, d− 1].
Without loss of generality assume σ−1(` + 1) is chosen. Set τ(1) = σ−1(` + 1). The remaining
part of τ is determined sequentially as follows. Suppose, for some k ∈ [0, d− 2], τ(i) = σ−1(`+ i)
for all i ∈ [0, k]. Then Sσ−1(`+k) = {σ−1(`+ k− 1), σ−1(`+ k + 1)} and τ(k− 1) = σ−1(`+ k− 1).
Choose the other element in Sσ−1(`+k) and set τ(k + 1) = σ−1(`+ k + 1).

Proof of Observation C.1. There is a full-rank (w, d, n)-set-multilinear matrix product X0 · · ·Xd−1 in
the variable sets xσ−1(0), . . . , xσ−1(d−1) respectively such that g(x) = tr(X0 · · ·Xd−1).
Case a: Suppose r′ = σ−1(`+ 1); the proof for r′ = σ−1(`− 1) is similar. LetA = spanF{g(x)|xr]xr′=α,
α ∈ F2w2}. Observe that g(x) = tr(X0 . . . Xd−1) = tr(X` · X`+1 . . . Xd−1 · X0 . . . X`−1). Let Y1 be the
row vector of size w2 whose ((i− 1) ·w + j)-th entry is the (i, j)-th entry of X` · X`+1, for i, j ∈ [w].
Similarly, let Y2 be the column vector of size w2 whose ((j− 1) ·w + i)-th entry is the (i, j)-th entry
of X`+2 . . . Xd−1 · X0 . . . X`−1, for i, j ∈ [w]. From the construction of Y1 and Y2, g(x) = Y1 · Y2.

28

Since X`, X`+1 are full-rank linear matrices in disjoint variable sets, there is a point αi ∈ F2w2
such

that the i-th entry of Y1 evaluated at this point is equal to one and the remaining entries are zero,
for every i ∈ [w2]. Hence, every entry of Y2 is in A, and further as X`+1 . . . Xd−1 · X0 . . . X`−1 is a
full-rank set-multilinear matrix product, the w2 entries of Y2 are F-linearly independent. Thus the
entries of Y2 form a basis of A, and Evaldimxr]xr′ (g) = dim(A) = w2.

Case b: Suppose r′ = σ−1(`′) and `′ /∈ {` − 1, `, ` + 1}. Let A = spanF{g(x)|xr]xr′=α, α ∈
F2w2}. Again g(x) = tr(X` · X`+1 . . . X`′ . . . X`−1). Let P = X`+1 . . . X`′−1 = (pi,j)i,j∈[w] and
T = X`′+1 . . . X`−1 = (ti,j)i,j∈[w]. Since X0 . . . Xd−1 is a full-rank set-multilinear matrix prod-
uct, the w4 polynomials {pi1,j1 · ti2,j2 | i1, j1, i2, j2 ∈ [w]} are linearly independent over F. More-
over, xr] xr′ can be substituted appropriately such that these w4 polynomials are in A. Since
A = spanF{pi1,j1 · ti2,j2 | i1, j1, i2, j2 ∈ [w]}, the w4 polynomials {pi1,j1 · ti2,j2 | i1, j1, i2, j2 ∈ [w]} form
a basis of A. This implies Evaldimxr]xr′ (g) = dim(A) = w4.

A polynomial-time randomized procedure to compute Evaldimxr]xr′ (g): Let S ⊂ F such that |S| = n4.
Choose points a1, . . . , aw4 ∈r S2w2

independently and uniformly at random and output the dimen-
sion of the F-linear space spanned by the polynomials g(x \ {xr, xr′}, a1), . . . , g(x \ {xr, xr′}, aw4)
using Claim 2.2 in [KNST19]. The proof of correctness of this procedure is similar to the proof of
correctness of the randomized procedure in Observation E.1 in [KNST19].

D Proofs from Section 4

Claim 4.1 (restated): Let X be a w× w full-rank linear matrix and Y = Iw ⊗ X. Then there does not exist
non-zero matrices T, S ∈ Mw2(F) such that T ·Y = YT · S.

Proof. Since X is a full-rank linear matrix, by applying an invertible transformation we may as-
sume without loss of generality that the entries of X are distinct w2 variables. Hence, it is sufficient
to prove the claim when X is symbolic matrix with entries being distinct variables. Suppose for
contradiction, there are non-zero matrices T and S such that T, S ∈ Mw2(F) and T · Y = YT · S.
Let Ti,j (respectively Si,j) denote the (i, j)-th w× w sub-matrix of T (respectively S) corresponding
to the rows numbered from (w(i − 1) + 1) to (wi), and columns numbered from (w(j − 1) + 1)
to (wj) of T (respectively S), for i, j ∈ [w]. Then Ti,j · X = XT · Si,j, for every i, j ∈ [w]. For
u ∈ [2, w], observe that the (1, u) entries of Ti,j · X and XT · Si,j are variable disjoint implying that
all the columns except the first column of of Si,j are zero columns for every i, j ∈ [w]. Similarly
comparing the (2, 1) entries of Ti,j ·X and XT · Si,j, it is observed that even the first column of Si,j is
a zero column for every i, j ∈ [w]. This implies S is a zero matrix, and hence T is a zero matrix.

Claim 4.2 (restated): Let X be a w × w full-rank linear matrix and Y = Iw ⊗ X, and suppose T, S ∈
Mw2(F) such that T ·Y = Y · S. Then T = S = M⊗ Iw for some M ∈ Mw(F).

Proof. Similar to the proof of Claim 4.1, it is sufficient to prove Claim 4.2 for the case when X is
a w × w symbolic matrix with entries being distinct variables. Let T, S ∈ Mw2(F) be such that
T · Y = Y · S. Also let a ∈ Fw2

be such that X evaluated at a is equal to Iw. Now evaluating the
expression T ·Y = Y · S at a, it is inferred that T = S. Let Ti,j denote the (i, j)-th w× w sub-matrix
of T corresponding to the rows numbered from (w(i − 1) + 1) to (wi), and columns numbered
from (w(j− 1) + 1) to (wj) of T, for i, j ∈ [w]. Then Ti,j · X = X · Ti,j, for every i, j ∈ [w]. Since

29

the entries of X are distinct variables, Ti,j = mi,j Iw, where mi,j ∈ F. Hence T = M ⊗ Iw, where
M = (mi,j)i,j∈[w].

Observation 4.1 (restated): If h(x0, . . . , xd−1) is isomorphic to Tr-IMMw,d then for matrices Y′k and Zk as
computed in Algorithm 2, where k ∈ [1, d− 2], there are no matrices T′k−1, S′k ∈ GL(w2, F) such that both
T′k−1 ·Y′k = Zk · S′k and T′k−1 ·Y′k = ZT

k · S′k are simultaneously true.

Proof. Since h(x) is multilinearly equivalent to Tr-IMMw,d, as argued in Section 4.1 for all k ∈
[1, d− 2], Zk = Iw ⊗ X′k, and Y′k = T−1

k−1 ·Yk · Tk. Moreover, either

Yk = (Iw ⊗ Ck) · Zk · (Iw ⊗ Dk)] or Yk = (Iw ⊗ Ck) · ZT
k · (Iw ⊗ Dk).

We prove the observation when Yk = (Iw ⊗ Ck) · Zk · (Iw ⊗ Dk), and the proof for Yk = (Iw ⊗
Ck) · ZT

k · (Iw ⊗ Dk) is similar. Suppose there are matrices T′k−1, S′k ∈ GL(w2, F) such that both
T′k−1 · Y′k = Zk · S′k and T′k−1 · Y′k = ZT

k · S′k are simultaneously true. Then Equations 15 and 16 are
simultaneously true.

T′k−1 · (T−1
k−1 ·Yk · Tk) = Zk · S′k

(T′k−1T−1
k−1) · (Iw ⊗ Ck) · Zk · (Iw ⊗ Dk) · Tk = Zk · S′k

(T′k−1T−1
k−1) · (Iw ⊗ Ck) · Zk = Zk · (S′kT−1

k) · (Iw ⊗ D−1
k) (15)

T′k−1 · (T−1
k−1 ·Yk · Tk) = ZT

k · S′k
(T′k−1T−1

k−1) · (Iw ⊗ Ck) · Zk · (Iw ⊗ Dk) · Tk = ZT
k · S′k

(T′k−1T−1
k−1) · (Iw ⊗ Ck) · Zk = ZT

k · (S′kT−1
k) · (Iw ⊗ D−1

k) (16)

Since X′k is a full-rank linear matrix in xk variables and Zk = Iw⊗X′k, this contradicts Claim 4.1.

Observation 4.2 (restated): The matrices T′k−1 and S′k computed at Step 5 of Algorithm 2, where k ∈ [1, d−
2], satisfy the following: (T′k−1)

−1 = T−1
k−1 · (Iw⊗Ck) · (M−1

k ⊗ Iw) and S′k = (Mk⊗ Iw) · (Iw⊗Dk) · Tk,
where Mk ∈ GL(w, F).

Proof. Substitute Y′k = T−1
k−1 · (Iw ⊗ Ck) · Zk · (Iw ⊗ Dk) · Tk in T′k−1 ·Y′k = Zk · S′k. Then

T′k−1 · T−1
k−1 · (Iw ⊗ Ck) · Zk = Zk · S′k · T−1

k · (Iw ⊗ D−1
k).

Hence, from Claim 4.2, there is a matrix Mk ∈ GL(w, F) such that

(T′k−1T−1
k−1) · (Iw ⊗ Ck) = (S′kT−1

k) · (Iw ⊗ D−1
k) = Mk ⊗ Iw .

This implies (T′k−1)
−1 = T−1

k−1 · (Iw ⊗ Ck) · (M−1
k ⊗ Iw) and S′k = (Mk ⊗ Iw) · (Iw ⊗ Dk) · Tk.

Observation 4.3 (restated): Let M1, . . . , Md−2 be the matrices as defined in Observation 4.2. Then

1. Ŷk = (Mk M−1
k+1 ⊗ Iw) · (Iw ⊗ (C−1

k · Xk · Ck+1)) for k ∈ [1, d− 3],

2. Ŷd−2 = Iw ⊗ (C−1
d−2 · Xd−2 · D−1

d−2),

30

3. Ŷ0 = Y0 · (Iw ⊗ C1) · (M−1
1 ⊗ Iw), and Ŷd−1 = (Md−2 ⊗ Iw) · (Iw ⊗ Dd−2) ·Yd−1.

Proof. Let T′k, S′k, Tk for k ∈ [0, d− 2], and Y′k, Yk, X′k, Xk for k ∈ [0, d− 1 be as in Section 4.1.

a) For k ∈ [1, d− 3], Ŷk = T′k−1 ·Y′k · (T′k)−1, Y′k = T−1
k−1 ·Yk · Tk, and Yk = Iw⊗Xk. From Observation

4.2,

T′k−1 = (Mk ⊗ Iw) · (Iw ⊗ C−1
k) · Tk−1 and (T′k)

−1 = T−1
k · (Iw ⊗ Ck+1) · (M−1

k+1 ⊗ Iw) ,

and hence for k ∈ [1, d− 3]

Ŷk = T′k−1 ·Y′k · (T′k)−1 = (Mk ⊗ Iw) · (Iw ⊗ C−1
k) ·Yk · (Iw ⊗ Ck+1) · (M−1

k+1 ⊗ Iw) .

Since (Iw⊗ (C−1
k ·Xk ·Ck+1)) · (M−1

k+1⊗ Iw) = (M−1
k+1⊗ Iw) · (Iw⊗ (C−1

k ·Xk ·Ck+1)), for k ∈ [1, d− 3]

Ŷk = (Mk M−1
k+1 ⊗ Iw) · (Iw ⊗ (C−1

k · Xk · Ck+1)) .

b) Recall that Ŷd−2 = T′d−3 ·Y′d−2 · (S′d−2)
−1, Y′d−2 = T−1

d−3 ·Yd−2 · Td−2, and Yd−2 = Iw ⊗ Xd−2. From
Observation 4.2,

T′d−3 = (Md−2 ⊗ Iw) · (Iw ⊗ C−1
d−2) · Td−3, and (S′d−2)

−1 = T−1
d−2 · (Iw ⊗ D−1

d−2) · (M−1
d−2 ⊗ Iw).

Hence,

Ŷd−2 = T′d−3 ·Y′d−2 · (S′d−2)
−1 = (Md−2 ⊗ Iw) · (Iw ⊗ C−1

d−2) ·Yd−2 · (Iw ⊗ D−1
d−2) · (M−1

d−2 ⊗ Iw) .

Since (Iw ⊗ (C−1
d−2 · Xd−2 · D−1

d−2)) · (M−1
d−2 ⊗ Iw) = (M−1

d−2 ⊗ Iw) · (Iw ⊗ (C−1
d−2 · Xd−2 · D−1

d−2)),

Ŷd−2 = Iw ⊗ (C−1
d−2 · Xd−2 · D−1

d−2) .

c) Recall Ŷ0 = Y′0 · (T′0)−1, Ŷd−1 = S′d−2 · Y′d, and Y′0 = Y0 · T0, Y′d− 1 = T−1
d−2 · Yd−1. From

Observation 4.2, (T′0)
−1 = T−1

0 · (Iw⊗C1) · (M−1
1 ⊗ Iw) and S′d−2 = (Md−2⊗ Iw) · (Iw⊗Dd−2) ·Td−2.

Hence,
Ŷ0 = Y′0 · (T′0)−1 = Y0 · (Iw ⊗ C1) · (M−1

1 ⊗ Iw) and

Y′d−1 = T−1
d−2 ·Yd−1 = (Md−2 ⊗ Iw) · (Iw ⊗ Dd−2) ·Yd−1 .

E Reduction from TRACE-TI to MMTI: Proof of Theorem 3

The input to Algorithm 7 is blackbox access to a d-tensor f in the variable sets x0, . . . , xd−1, and or-
acle access to MMTI. With high probability the algorithm does the following: If f is isomorphic to
Tr-IMMw,d then it outputs B0, . . . , Bd−1 ∈ GL(w2, F) such that f = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1),
otherwise it outputs ‘No’. Since a PIT at the end of the algorithm ensures that the output of the
algorithm is correct with high probability, we can assume that f is isomorphic to Tr-IMMw,d.

Steps 1–2: Let n = w2d. Since f is isomorphic to Tr-IMMw,d, there is a full-rank (w, d, n)-set-
multilinear matrix product X0 . . . Xd−1 in x0, . . . , xd−1 variables such that f = tr(X0 . . . Xd−1).

31

Algorithm 7 Reduction from TRACE-TI to MMTI

INPUT: Blackbox access to a d-tensor f (x0, . . . , xd−1), where d ≥ 3, and oracle access to MMTI.
OUTPUT: Matrices B0, . . . , Bd−1 ∈ GL(w2, F) such that f (x) = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1).

Computing the first three matrices
1: Choose d− 3 random points a3, . . . ad−1 ∈ Sw2

, where S ⊆ F and |S| ≥ n5. Let y =]k∈[0,2]xk,
and h(y) = f (y, a3, . . . , ad−1).

2: Query MMTI on input h(y). If MMTI outputs ‘No’ then output ‘No’. Otherwise, let B0, B1, B2 ∈
GL(w2, F) be the output of MMTI. Using B0, B1, B2 compute w× w linear matrices X′0, X′1, X′2
respectively such that h(y) = tr(X′0 · X′1 · X′2).

The d = 4 case
3: For i, j ∈ [w], and k ∈ [0, 2], compute b(k)

i,j ∈ Fw2
such that X′k(b

(k)
i,j) has one in the (i, j)-th entry

and zero elsewhere. Here X′k(b
(k)
i,j) is the matrix X′k with its entries evaluated at b(k)

i,j .

4: If d = 4 then construct X′3 such that its (i, j)-th entry is the linear form f (b(0)
j,1 , b(1)

1,1 , b(2)
1,i , x3). Let

B3 be the transformation matrix on x3 which is derived from X′3. Go to Step 10.

The d ≥ 5 case
5: Let g(x \ y) = f (b(0)

1,1 , b(1)
1,1 , b(2)

1,1 , x \ y). Use the set-multilinear ABP reconstruction algorithm
in [KS03] (also see Claim 2.4 in [KNST19]) to construct a full-rank (w, d, n)-set-multilinear ABP
Y′3 · · ·Y′d−1 in x3, . . . , xd−1 variables that computes the polynomial g.

6: For j ∈ [w], compute b(d−1)
j ∈ Fw2

such that the j-th entry of Y′d−1(b
(d−1)
j) ∈ Fw is one and

other entries are zero. For k ∈ [4, d − 2] let X′k = Y′k, and compute b(k)
i,j ∈ Fw2

such that

X′k(b
(k)
i,j) ∈ Fw×w has one in the (i, j)-th entry and other entries are zero, where i, j ∈ [w].

7: Construct X′3 whose (i, j)-th entry is f (b(0)
1,1 , b(1)

1,1 , b(0)
1,i , x3, b(4)

j,j , b(5)
j,j , . . . , b(d−1)

j). For i, j ∈ [w],

compute b(3)
i,j ∈ Fw2

such that the (i, j)-th entry of X′3(b
(3)
i,j) is one and other entries zero.

8: Construct X′d−1 such that its (i, j) entry is f (b(0)
j,1 , b(1)

1,1 , . . . , b(d−2)
1,i , xd−1), for i, j ∈ [w]. Finally, Bk

be the transformation matrix on xk which is derived from X′k for k ∈ [3, d− 1].

Final PIT
9: Pick random points c0, . . . , cd−1 ∈ Sw2

, where S ⊆ F and |S| ≥ n5. If f (c0, . . . , cd−1) =
Tr-IMMw,d(B0c0, . . . , Bd−1cd−1) then output B0, . . . , Bd−1, otherwise output ‘No’.

Hence, h(y) = tr(X0 ·X1 ·X2 ·X3(a3) . . . Xd−1(ad−1)), where Xk(ak) is Xk with its entries evaluated
at ak. Since Xk is a full-rank linear matrix, with high probability, Xk(ak) ∈ GL(w, F). Then M =
X3(a3) . . . Xd−1(ad−1) ∈ GL(w, F), and h(y) = tr(X0 · X1 · (X2M)) is isomorphic to Tr-IMMw,3. At
Step 2, MMTI returns B0, B1, B2 ∈ GL(w2, F) such that h(y) = Tr-IMMw,d(B0x0, B1x1, B2x2). It now
follows from Lemma 3.4 that corresponding to X′0, X′1, X′2 there are matrices C0, C1, C2 ∈ GL(w, F)
such that X′0 = C−1

0 · X0 · C1, X′1 = C−1
1 · X1 · C2, and X′2 = C−1

2 · (X2M) · C0.

Steps 3–4: The d = 4 case arises in Algorithm 3. We present this case separately as it is easier

32

to handle. Since X′0, X′1, X′2 are full-rank linear matrices, at Step 3 a point b(k)
i,j exists such that the

(i, j)-th entry of Xk(b
(k)
i,j) is one and other entries are zero. The point b(k)

i,j can be computed by

solving a system of linear equations. If d = 4 then f = tr(X′0 ·X′1 ·X′2 · (C
−1
0 M−1) ·X3 ·C0)). Verify

that f (b(0)
j,1 , b(1)

1,1 , b(2)
1,i , x3) is the (i, j)-th entry of (C−1

0 M−1) · X3 · C0.

Steps 5–8: Let Y = (C−1
0 M−1) · X3 . . . Xd−1C0. Observe that f (x) = tr(X′0 · X′1 · X′2 · Y). At Step 5,

g(x \ y) is equals the (1, 1) entry of Y. Let Y3 = (C−1
0 M−1) · X3, Yk = Xk for k ∈ [4, d − 2], and

Yd−1 = Xd−1 · C0, and Y3(i, ∗) and Yd−1(∗, j) denote the i-th row of Y3 and the j-th column of Yd−1
respectively. Then g(x \ y) is computed by the full-rank (w, d, n)-set-multilinear ABP Y3(1, ∗) ·
Y4 . . . Yd−2 ·Yd−1(∗, 1) in x3, . . . , xd−1 variables. Using the algorithm in [KS03], a full-rank (w, d, n)-
set-multilinear ABP Y′3 · Y′4 · · ·Y′d−2 · Y′d−1 in x3, . . . , xd−1 variables is constructed that computes
g. The ABP constructed is such that there are matrices C3, . . . , Cd−2 ∈ GL(w, F) such that Y′3 =
Y3(1, ∗) · C3, Y′k = C−1

k−1 ·Yk · Ck for k ∈ [4, d− 2], and Y′d−1 = C−1
d−2 ·Yd−1(∗, 1). At Step 6, the points

b(d−1)
j and b(k)

i,j are computed by solving systems of linear equations. Verify that f = Trace(X′0 ·X′1 ·
X′2 · (Y3C3) ·X′4 · · ·X′d−2 · (C

−1
d−2Yd−1)). This implies that f (b(0)

1,1 , b(1)
1,1 , b(0)

1,i , x3, b(4)
j,j , b(5)

j,j , . . . , b(d−1)
j) is

the (i, j)-th entry of Y3C3 at Step 7. Further, f (b(0)
j,1 , b(1)

1,1 , . . . , b(d−2)
1,i , xd−1) is the (i, j)-th entry of

C−1
d−2Yd−1 at Step 8. Hence, X′3 = Y3C3 and X′d−1 = C−1

d−2Yd−1. In particular, f = tr(X′0 . . . X′d−1) =
Tr-IMMw,d(B0x0, . . . , Bd−1xd−1).

F Proofs from Section 5

Lemma 5.1 (restated): Let f be a non-zero d-tensor in the variable sets x0, . . . , xd−1 such that for all k ∈
[0, d− 1] Bk ⊆ g f . Then there is an α ∈ F× such that f (x) = α · Tr-IMMw,d(x).

Proof. A path monomial (see Definition A.1) looks like µ = x(0)i0,i1
· x(1)i1,i2

. . . x(d−1)
id−1,i0

. The next claim

shows that the coefficient of a non-path monomial in f is zero. In the claim, f (k,k+1)
(u,v),(p,q) denotes the

coefficient of x(k)u,vx(k+1)
p,q in f over F[x \ {xk, xk+1}], where u, v, p, q ∈ [w].

Claim F.1. Let µ be a non-path monomial. Then the coefficient of µ in f is zero.

Proof. Let µ = x(0)i0,j0
· x(1)i1,j1

. . . x(d−1)
id−1,jd−1

be a non-path monomial. Hence there is a k ∈ [0, d− 1] such
that jk 6= ik+1. Suppose k ∈ [0, d− 2], and k is even. Let D ∈ Mw be a diagonal matrix such that its
(jk, jk) entry is one and all the other entries are zero. Let B ∈ Bk be a block-diagonal matrix whose
2w2 × 2w2 sub-matrix indexed by xk] xk+1 looks like[

Iw ⊗ D 0
0 −Iw ⊗ D

]
.

Since B ∈ g f , we have (by the variable ordering in xk and xk+1),

∑
u∈[w]

x(k)u,jk

 ∑
p,q∈[w]

x(k+1)
p,q f (k,k+1)

(u,jk),(p,q)

 = ∑
u∈[w]

x(k+1)
jk ,u

 ∑
p,q∈[w]

x(k)p,q f (k,k+1)
(p,q),(jk ,u)

 . (17)

33

From Equation 17 we conclude that for all u, q ∈ [w], f (k,k+1)
(u,jk),(p,q) = 0 if p 6= jk. Now suppose

for contradiction the coefficient of µ in f is non-zero. Then the coefficient of x(k)ik ,jk
x(k+1)

ik+1,jk+1
(i.e.,

f (k,k+1)
(ik ,jk),(ik+1,jk+1)

) is non-zero. Since jk 6= ik+1, this is a contradiction. If k ∈ [0, d− 1] and k is odd then

the proof is similar and the only thing to note in this case is that B ∈ Bk is such that its 2w2 × 2w2

sub-matrix indexed by the xk] xk+1 looks like[
D⊗ Iw 0

0 −D⊗ Iw

]
.

Finally, if k = d− 1 and d is odd then again the proof is similar but B ∈ Bd−1 in this case is such
that the w2 × w2 sub-matrix of B indexed by xd−1 variables is equal to Iw ⊗ D, and the w2 × w2

sub-matrix of B indexed by x0 variables is equal to −D⊗ Iw.

Claim F.2. Let µ1 = x(0)i0,i1
· x(1)i1,i2

. . . x(k)ik ,ik+1
· x(k+1)

ik+1,ik+2
. . . x(d−1)

id−1,i0
, and µ2 = x(0)i0,i1

· x(1)i1,i2
. . . x(k)ik ,i′k+1

· x(k+1)
i′k+1,ik+2

. . . x(d−1)
id−1,i0

be two path monomials. Then the coefficients of µ1 and µ2 in f are equal.

Proof. Suppose k ∈ [0, d− 2] and k is even. Let M ∈ Mw be such that its (i′k+1, ik+1) is one and
all its other entries are zero, and B ∈ Bk be a block-diagonal matrix such that B restricted to the
2w2 × 2w2 sub-matrix indexed by xk] xk+1 variables is as shown below[

Iw ⊗MT 0
0 −Iw ⊗M

]
.

Let the coefficients of µ1 and µ2 in f be equal to α1 and α2. Since B ∈ g f , we have

∑
u∈[w]

x(k)u,i′k+1

∂ f

∂x(k)u,ik+1

− ∑
u∈[w]

x(k+1)
ik+1,u

∂ f

∂x(k+1)
i′k+1,u

= 0. (18)

The coefficient of µ = x(0)i0,i1
· x(1)i1,i2

. . . x(k)ik ,i′k+1
· x(k+1)

ik+1,ik+2
. . . x(d−1)

id−1,i0
in Equation 18 is equal to α1− α2 = 0.

Hence α1 = α2. The proof for the two remaining cases: a) k ∈ [0, d− 1] and k odd, and b) k = d− 1
and d odd, follow similarly by constructing appropriate B matrices.

We now use above the claim to show the following.

Claim F.3. Let µ1 = x(0)i0,i1
· x(1)i1,i2

. . . x(d−1)
id−1,i0

, and µ2 = x(0)j0,j1
· x(1)j1,j2

. . . x(d−1)
jd−1,j0

be two path monomials. Then
the coefficient of µ1 and µ2 in f are equal.

Proof. For k ∈ [1, d− 2], let νk = x(0)i0,j1
· x(1)j1,j2

. . . x(k−1)
jk−1,jk

· x(k)jk ,ik+1
· x(k+1)

ik+1,ik+2
. . . x(d−1)

id−1,i0
, and νd−1 = x(0)i0,j1

·
x(1)j1,j2

. . . x(d−2)
jd−2,jd−1

· x(d−1)
jd−1,i0

. From Claim F.2, the coefficients of µ1 and ν1 in f are equal, the coefficients
of νk and νk+1 in f are equal for k ∈ [1, d− 2], and the coefficients of νd−1 and µ2 in f are equal.
Hence the coefficients of µ1 and µ2 in f are equal.

It follows immediately that there is an α ∈ F× such that f = α · Tr-IMMw,d(x).

Corollary 5.1 (restated): Let B ∈ GL(n, F) be a block-diagonal matrix with individual blocks B0, . . . , Bd−1
and f be a non-zero d-tensor in the variable sets x0, . . . , xd−1 such that for all k ∈ [0, d− 1], B−1 · Bk · B ⊆
g f . Then there is an α ∈ F× such that f (x) = α · Tr-IMMw,d(B0x0, . . . , Bd−1xd−1).

34

Proof. Let g(x) = f (B−1
0 x0, . . . , B−1

d−1xd−1). Since B−1 · Bk · B ⊆ g f , Bk ⊆ gg for k ∈ [0, d − 1]
(from Fact 1). Hence, from Lemma 5.1 there is an α ∈ F× such that g = α · Tr-IMMw,d. Thus
f (x) = α · Tr-IMMw,d(B0x0, . . . , Bd−1xd−1).

Claim 5.1 (restated): Suppose A ∼=Mw for some w ∈N. Then there exists a K ∈ GL(w2, F) and linearly
independent matrices {C1,1, . . . , Cw,w} inMw such that Li,j = K−1 · (Iw ⊗ Ci,j) · K for all i, j ∈ [w].

Proof. Let L be the algebra generated by the matrices {L1,1, . . . , Lw,w}. It is easy to see that A ∼=
L ∼= Mw and L contains Iw2 . From Skolem-Noether theorem (see Theorem 5 in [GGKS19], and
[Lor08]) we have that there is a K ∈ GL(w2, F) and linearly independent matrices {C1,1, . . . , Cw,w}
inMw such that Li,j = K−1 · (Iw ⊗ Ci,j) · K for all i, j ∈ [w].

35

	Introduction
	The results (stated formally)

	Notations and definitions
	Symmetries and Lie algebra of Tr-IMM
	Reduction from TRACE to DET: Proof of Theorem 1
	Reduction from TRACE-TI to DET

	Reduction from FMAI to MMTI : Proof of Theorem 2
	Characterization of Tr-IMM by its Lie algebra
	Proof of Theorem 2

	Preliminaries on algebraic branching programs and matrix products
	Proofs from Section 3
	Reduction from TRACE to TRACE-TI
	Computing the irreducible gf-invariant subspaces
	Reduction to TRACE-TI

	Proofs from Section 4
	Reduction from TRACE-TI to MMTI: Proof of Theorem 3
	Proofs from Section 5

