
Reconstruction of full rank Algebraic Branching Programs

Neeraj Kayal
Microsoft Research India
neeraka@microsoft.com

Vineet Nair
Indian Institute of Science

vineet.nair@csa.iisc.ernet.in

Chandan Saha
Indian Institute of Science

chandan@csa.iisc.ernet.in

Sébastien Tavenas
Univ. Savoie Mont Blanc, CNRS, LAMA∗

sebastien.tavenas@univ-smb.fr

March 21, 2017

Abstract

An algebraic branching program (ABP) A can be modelled as a product expression X1 · X2 ·
· · · · Xd, where X1 and Xd are 1× w and w× 1 matrices respectively, and every other Xk is a
w×w matrix; the entries of these matrices are linear forms in m variables over a field F (which
we assume to be either Q or a field of characteristic poly(m)). The polynomial computed by
A is the entry of the 1× 1 matrix obtained from the product ∏d

k=1 Xk. We say A is a full rank
ABP if the w2(d− 2) + 2w linear forms occurring in the matrices X1, X2, . . . , Xd are F-linearly
independent. Our main result is a randomized reconstruction algorithm for full rank ABPs:
Given blackbox access to an m-variate polynomial f of degree at most m, the algorithm out-
puts a full rank ABP computing f if such an ABP exists, or outputs ‘no full rank ABP exists’
(with high probability). The running time of the algorithm is polynomial in m and β, where β
is the bit length of the coefficients of f . The algorithm works even if Xk is a wk−1 × wk matrix
(with w0 = wd = 1), and w = (w1, . . . , wd−1) is unknown.

The result is obtained by designing a randomized polynomial time equivalence test for the
family of iterated matrix multiplication polynomial IMMw,d, the (1, 1)-th entry of a product of
d rectangular symbolic matrices whose dimensions are according to w ∈Nd−1. At its core, the
algorithm exploits a connection between the irreducible invariant subspaces of the Lie algebra of
the group of symmetries of a polynomial f that is equivalent to IMMw,d and the ‘layer spaces’
of a full rank ABP computing f . This connection also helps determine the group of symmetries
of IMMw,d and show that IMMw,d is characterized by its group of symmetries.

∗Univ. Savoie Mont Blanc, CNRS, LAMA, F-73000 Chambéry, France. A part of this work was done during a
postdoctoral stay in Microsoft Research India.

1



Contents

1 Introduction 3
1.1 Circuit reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation and model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Our result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Algorithm and proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 13
2.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Algorithmic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Iterated matrix multiplication polynomial . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Almost set-multilinear ABP and a canonical representation . . . . . . . . . . . . . . . 19

3 Lie algebra of IMM 21
3.1 Structure of the Lie algebra g

IMM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Random elements of g
IMM

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Invariant subspaces of g

IMM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Lie algebra of f equivalent to IMM 26
4.1 Computing invariant subspaces of the Lie algebra g f . . . . . . . . . . . . . . . . . . 27
4.2 Closure of a vector under the action of g f . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Reconstruction of full rank ABP for f 30
5.1 Computing layer spaces from invariant subspaces of g f . . . . . . . . . . . . . . . . . 31
5.2 Reduction to almost set-multilinear ABP . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Reconstructing almost set-multilinear ABP . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Symmetries of IMM 36
6.1 The group G

IMM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Characterization of IMM by G
IMM

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A Incompleteness of full rank ABP 44

B Proof of lemmas and claims in Section 2 44

C Proof of lemmas and claims in Section 3 48

D Proof of claims in Section 4 58

E Proof of lemma and claim in Section 5 61

F Proof of observation in Section 6 66

2



1 Introduction

1.1 Circuit reconstruction

Reconstruction of arithmetic circuits is the algebraic analogue of exact learning [Ang88] of Boolean
circuits using membership and equivalence queries. A reconstruction algorithm takes input an
oracle access to an m-variate degree d polynomial f computed by a size s arithmetic circuit from
some circuit class C, and outputs an arithmetic circuit (preferably from the same class) of not too
large size1 computing f . The algorithm is allowed to make two kinds of adaptive queries to the
oracle: It may ask for evaluation of f at a point a ∈ Fm chosen by the algorithm (membership
query). It may also form a circuit C (a hypothesis) and ask if the polynomial g, computed by C,
equals f ; if not, the oracle returns a point b ∈ Fm such that f (b) 6= g(b) (equivalence query)2. The
desired running time of the algorithm is polynomial in m, d, s and the bit length of the coefficients
of f .

Circuit reconstruction is a natural learning problem in algebraic complexity theory and is closely
related to two other fundamental problems, lower bound and polynomial identity testing. Build-
ing on the ideas in [HS80, Agr05] and [KKO13], Volkovich [Vol16] showed that a polynomial time
reconstruction algorithm for a circuit class C can be used to compute an m-variate multilinear
polynomial h in 2O(m) time such that any circuit from C computing h has size 2Ω(m) 3. Also, an
efficient reconstruction algorithm (that uses only membership queries) for a class of circuits auto-
matically gives an efficient blackbox4 identity testing algorithm for the same class. In this sense,
reconstruction is a ‘harder’ problem than lower bound and identity testing5. However, if we allow
reconstruction algorithms to be randomized (thereby giving them the power of identity testing)
then we can hope to have efficient reconstructions even for some classes of circuits for which ef-
ficient blackbox identity testing algorithms are not known yet. Indeed, a randomized polynomial
time reconstruction algorithm for read-once oblivious algebraic branching programs (ROABP)
was given in [KS03] much before the quasi-polynomial time hitting-set generators for the same
model were designed [FS13, AGKS15]. The case of read-once formulas is similar (see [SY10]). A
randomized reconstruction algorithm need not use equivalence queries as a random point b is a
witness for f (b) 6= g(b), if f 6= g 6. In this article, we will assume that reconstruction algorithms
use only membership queries, unless we mention equivalence queries explicitly.

Another way to moderate the reconstruction setup is given by average-case reconstruction. Here
the input polynomial f is picked according to some ‘natural’ distribution on circuits from a class C.
This relaxation led to the development of randomized polynomial time reconstruction algorithm
for some powerful circuit classes [GKL11,GKQ13] (albeit on average), including arithmetic formu-

1We allow the algorithm to output sub-optimal size circuit as it is NP-hard to compute an optimal circuit for f even
for restricted classes like set-multilinear depth three circuits [Hås89].

2Throughout this article we will assume that the base field F is sufficiently large, so if f (b) = g(b) for every b ∈ Fm

then f = g.
3Such an implication is not known for an h belonging to a VNP family.
4The algorithm has blackbox access to f , i.e. it can make only membership queries to an oracle holding f .
5Not much is known about the reverse direction: Do strong lower bounds or efficient blackbox identity testing for a

circuit class imply efficient reconstruction for the same class? For certain interesting circuit classes, the techniques used
for identity testing and lower bounds do help in efficient reconstruction (see [SY10, GKL11]).

6The algorithm in [KS03] is deterministic if we allow equivalence queries.

3



las for which we do not know of any super-polynomial lower bound. The notion of average-case
reconstruction is related to pseudo-random polynomial families7 and the prospects/limitations of
lower bound proofs: An efficient reconstruction algorithm for polynomials generated according
to a distribution D on circuits from class C implies that D does not generate a pseudo-random
polynomial family. Such an algorithm gives evidence (contingent on the extent of naturalness of
D) that most circuits in C have sufficient “structural/mathematical” properties in them that the re-
construction algorithm is able to exploit efficiently to distinguish polynomials computed by them
from random polynomials. This may hint at an intriguing possibility that C is adequately ‘weak’
and amenable to explicit lower bound proofs against it. On the contrary, if D does generate a
pseudo-random polynomial family then certain widely used strategies to prove lower bounds will
not work for C, much like natural proofs for Boolean circuits [RR94] (see the discussion in [Aar08]).

Previous work on reconstruction

We will assume that a circuit from class C computing the input polynomial f has a sum gate at
the output. Otherwise, we can apply the factorization algorithm in [KT88] to gain blackbox access
to all the irreducible factors of f , thereby reducing the problem to a potentially simpler class of
circuits at the cost of making the reconstruction algorithm randomized. Thus, depth two, depth
three and depth four circuits would mean ΣΠ, ΣΠΣ and ΣΠΣΠ circuits respectively.

Low depth circuits: A polynomial time reconstruction algorithm for depth two circuits follows
from the sparse polynomial interpolation algorithm in [KS01]. By analysing the rank of the partial
derivatives matrix, Klivans and Shpilka [KS03] gave a randomized reconstruction algorithm8 for
depth three circuits with fan-in of every product gate bounded by d in time polynomial in the size
of the circuit and 2d. Prior to this, a polynomial time randomized reconstruction algorithm for set-
multilinear depth three circuits followed from [BBB+00]. In both [KS03] and [BBB+00] the output
hypothesis is an ROABP. For depth three circuits with two product gates, Shpilka [Shp07] gave a
randomized reconstruction algorithm over a finite field F that has running time quasi-polynomial9

in m, d and |F|. This algorithm was derandomized and extended to depth three circuits with con-
stant number of product gates in [KS09]. The output hypothesis in [Shp07] is a depth three circuit
with two product gates (unless the circuit has a low simple rank10), but it works only over finite
fields. Recently, Sinha [Sin16] gave a polynomial time randomized reconstruction algorithm for
depth three circuits with two product gates over rationals11; the output of Sinha’s algorithm is
also a depth three circuit with two product gates (unless the simple rank of the circuit is less than
a fixed constant). For multilinear depth four circuits with two top level product gates, [GKL12]
gave a randomized polynomial time reconstruction algorithm that works over both finite fields
and rationals.

Restricted formulas and ABP: Recently, Minahan and Volkovich [MV16] gave a polynomial time

7Intuitively, a distribution D on m-variate degree-d polynomials using a random seed of length s = (md)O(1)

generates a pseudo-random polynomial family if any algorithm that distinguishes polynomials coming from D from
uniformly-random m-variate degree-d polynomials with a non-negligible bias, takes time exponential in s.

8The algorithm is deterministic if equivalence queries are used.
9The running time is polynomial in m, |F| if the depth three circuit is additionally multilinear.

10The dimension of the span of the linear forms in the two gates after removing their gcd.
11The result holds over characteristic zero fields. We state it for rationals as bit complexity concerns us.

4



reconstruction algorithm for read-once formulas by strengthening the analysis in [SV09], the lat-
ter has a quasi-polynomial time reconstruction algorithm for the same model. Forbes and Sh-
pilka [FS13] gave quasi-polynomial time reconstruction algorithms for ROABP, set-multilinear
ABP and non-commutative ABP by derandomizing12 the algorithm in [KS03]. Prior to this, the
case of non-commutative ABP reconstruction was solved in [AMS08] assuming blackbox access to
the internal gates of the input ABP.

Average-case reconstruction: Few reconstruction algorithms are known under distributional as-
sumptions on the inputs. Gupta, Kayal and Lokam [GKL11] gave a randomized polynomial time
reconstruction algorithm for random multilinear formulas picked from a natural distribution: ev-
ery sum gate computes a random linear combinations of its two children (subformulas), and at
every product gate the set of variables is partitioned randomly into two equal size sets between its
two children (subformulas); the subformulas are then constructed recursively. In [GKQ13], a ran-
domized polynomial time reconstruction algorithm was given for random formulas picked from
the distribution of size s complete binary trees with alternating layers of sum and product gates,
and the linear forms at the leaves are chosen independently and uniformly at random.

1.2 Motivation and model

Motivation: Aaronson [Aar08] gave a candidate for pseudo-random family of low degree poly-
nomials over a finite field F. There it is conjectured that the family {Detd(A · x) : A ∈ Fd2×m},
where Detd is the determinant of a d× d symbolic matrix and |x| = m, is pseudo-random if A is
chosen uniformly at random from Fd2×m and m � d. If this is shown to be true (under plausible
hardness assumptions) then that would demonstrate a natural-proofs-like barrier in the algebraic
world. Although the conjecture is made for finite fields, it remains interesting to study even if the
entries of A are chosen from a large enough subset of Q (or char(F) > dc for a sufficiently large
constant c). Moreover, since determinant is complete (under p-projections) for algebraic branching
programs [MV97] and so is IMMw,d – the (1, 1)-th entry of a product of d w× w symbolic matrices
– it is natural to ask if {IMMw,d(A · x) : A ∈ Fn×m} is also a pseudo-random polynomial family
when A is random and m � w2d; here n = w2(d− 2) + 2w is the number of variables in IMMw,d.
If yes then we cannot hope to design an efficient reconstruction algorithm for algebraic branching
programs even in the average-case. On the other hand, if such an average-case reconstruction is
possible then the above family generated by linear projections of IMMw,d is not pseudo-random.
This motivates us to pose Problem 1 below (rather optimistically), and study a couple of special
cases when it can be solved – one is in this article and the other in an upcoming work [KST17] 13.

Algebraic branching program: Algebraic branching program (ABP), an arithmetic analogue of
Boolean branching program, is a well-studied model in algebraic complexity theory specially be-
cause it captures the complexity of polynomials like the iterated matrix multiplication and the
symbolic determinant. Separating the computational powers of formulas and ABPs, and that of
ABPs and circuits are outstanding open problems in arithmetic circuit complexity. An ABP is
defined below. For the rest of this article, the base field F would be the field of rationals Q 14.

12replacing the equivalence queries by quasi-polynomial size hitting-sets for ROABP
13See Section 1.4 for some details on this work.
14Our results also hold over finite fields of sufficiently large (meaning, polynomial in the relevant parameters) char-

5



Definition 1.1 (Algebraic branching program). An algebraic branching program (ABP) of width w and
length d is a product expression X1 · X2 . . . Xd, where X1, Xd are row and column vectors of length
w respectively, and for k ∈ [2, d− 1], Xk is a w× w matrix. The entries in X1 to Xd are affine forms
in the variables x = {x1, x2, . . . , xm}. The polynomial computed by the ABP is the entry of the
1× 1 matrix obtained from the product ∏d

k=1 Xk. An ABP of width w, length d, and in m variables,
and with the coefficients of the affine forms from S ⊆ F, will be called a (w, d, m, S)-ABP.

An alternate definition: Alternatively, an ABP is defined as a layered directed acyclic graph with a
source s and a sink t. A width w and length d ABP has d + 1 layers, where the first and the last
layers contain one vertex each, labelled s and t respectively, and every other layer has w vertices.
There is an edge from every vertex in layer k to every vertex in layer k + 1, for all k ∈ [d], and
these edges between adjacent layers are labelled by affine forms in x variables. The weight of a
path from s to t is the product of the edge labels in the path, and the polynomial computed by the
ABP is the sum of the weights of all paths from s to t. It is easy to verify that the two definitions of
ABP are equivalent. We use either of these definitions in our arguments later based on suitability.

Average-case ABP reconstruction: In order to study average-case complexity of the reconstruc-
tion problem for ABPs, we need to define a distribution on polynomials computed by ABPs. A
seemingly natural distribution is as follows: Consider the universe of all polynomials computed
by (w, d, m, S)-ABPs for some finite set S ⊆ F of large enough size. Pick a polynomial f uniformly
at random from this universe, and give blackbox access to f as input to a reconstruction algorithm.
However, a distribution is ‘realistic’ only if there is an efficient sampling algorithm that outputs
(some suitable circuit representation of) f according to the distribution. For the above distribu-
tion, it is not clear if such an efficient sampling algorithm exists. A reason being, multiple different
ABPs may be computing the same polynomial, so picking a random ABP is not sufficient to sam-
ple from this distribution. However, picking a random ABP (as described below) gives another
natural distribution for which there is a trivial efficient sampling algorithm. Let Sγ be the set of all
positive and negative rational numbers with γ bits before and after the decimal.

Definition 1.2 (Random algebraic branching program). Given the parameters w, d, m and γ, a random
(w, d, m, Sγ)-ABP is a (w, d, m, Sγ)-ABP with coefficients of the affine forms chosen independently
and uniformly at random from Sγ

15.

Indeed there is a randomized sampling algorithm which when given the parameters w, d, m and γ
outputs a random (w, d, m, Sγ)-ABP in time (w, d, m, γ)O(1). An average-case ABP reconstruction
problem can then be posed as follows.

Problem 1 (Average-case ABP reconstruction). Design an algorithm which when given blackbox
access to a polynomial f computed by a random (w, d, m, Sγ)-ABP, outputs an ABP computing f
with high probability16 . The desired running time of the algorithm is (w, d, m, γ)O(1).

Note that we allow the reconstruction algorithm to output any ABP computing f which may not
be a (w, d, m, Sγ)-ABP. The main requirement is that the running time should be polynomial in
w, d, m and γ.

acteristic.
15More generally, Sγ can be any arbitrarily fixed set containing rational numbers of the form p

q , where p and q are γ

bit integers. For concreteness of the discussion we have fixed Sγ in a specific way.
16The probability is taken over the random choice of f (the polynomial computed by a random (w, d, m, Sγ)-ABP) as

well as over the random bits used by the reconstruction algorithm, if it is randomized.

6



1.3 Our result

We give a solution to the above problem, if the number of variables m and the size of the set Sγ are
greater than w2d and (mwd)2 respectively. Observe that if the random affine forms in the matrices
X1 to Xd (as in Definition 1.2) have more than w2d variables then these affine forms are F-linearly
independent with high probability as Sγ is also sufficiently large. This motivates us to define a full
rank ABP. In the following discussion, by homogeneous degree 1 part of an affine form a0 + ∑m

i=1 aixi
we mean ∑m

i=1 aixi where ai ∈ F.

Definition 1.3 (Full rank algebraic branching program). A full rank ABP A of width bounded by w
and length d is a product expression X1 · X2 . . . Xd, where X1, X2 are row and column vectors
of lengths w1 and wd−1 respectively, and for k ∈ [2, d − 1] Xk is a wk−1 × wk matrix such that
wk ≤ w for all k ∈ [d− 1]; the entries in X1 to Xd are affine forms in x variables and moreover, the
homogeneous degree 1 parts of these affine forms are F-linearly independent. We say ABP A has
width w = (w1, w2, . . . , wd−1) ∈Nd−1.

The following is an example of a full rank ABP,

[
1 + x1 + x2 2 + x2 + x3 x3 + x4

] 1 + x4 + x5 x5 + x6
x6 + x7 x7 + x8
x8 + x9 4 + x9 + x10

 [3 + x10 + x11
2 + x11

]
.

A canonical example: Another example of a polynomial computed by a full rank ABP is the iterated
matrix multiplication polynomial IMMw,d, which is the entry of the 1× 1 matrix obtained from
a product of d symbolic matrices X1 to Xd with dimensions as in Definition 1.3. The number of
variables in IMMw,d is n = w1 + ∑d−1

k=2 wk−1wk + wd−1. See Section 2.3 for a slightly detailed defi-
nition of IMMw,d. Generally in the literature, the matrices X1 to Xd have a uniform dimension w
(i.e. wk = w for every k ∈ [d− 1]) and the polynomial is denoted by IMMw,d. We consider varying
dimensions primarily because the algorithm in Theorem 1 below is able to handle this general
setting, even if w is unknown.

Our main result is an efficient randomized algorithm to reconstruct full rank ABP.

Theorem 1 (Full rank ABP reconstruction). There is a randomized algorithm that takes as input a
blackbox for an m variate polynomial f over F of degree d ∈ [5, m], and with high probability it does the
following: if f is computed by a full rank ABP then the algorithm outputs a full rank ABP computing f ,
else it outputs ‘ f does not admit a full rank ABP’. The running time is poly(m, β) 17, where β is the bit
length of the coefficients of f .

Remarks: Theorem 1 implies an efficient average-case reconstruction algorithm for ABPs (Prob-
lem 1) when m ≥ w2d and |Sγ| ≥ (mwd)2, as a random (w, d, m, Sγ)-ABP is full rank with high
probability if m and |Sγ| are sufficiently large. The algorithm of Theorem 1 is given in Section 1.5.
Following are a couple of remarks on this algorithm:

1. Uniqueness of full rank ABP: Suppose f is computed by a full rank ABP of width w =
(w1, w2, . . . , wd−1), and assume18 that wk > 1 for every k ∈ [d − 1]. Then the output of

17Throughout this article poly(m) denotes a sufficiently large polynomial function in m; poly(m, β) is defined simi-
larly.

18The first remark after Theorem 1b justifies this assumption.

7



the algorithm is a full rank ABP of width w or (wd−1, wd−2, . . . , w1), with probability at least
1− 1

poly(w,d) , where w = maxk∈[d−1]{wk}. In fact, any full rank ABP computing f is ‘unique’

up to the symmetries19 of iterated matrix multiplication which we study in Section 6.

2. No knowledge of w: The algorithm does not need a priori knowledge of the width vector w, it
only knows the number of variables m and the degree d of f . The algorithm is able to derive
w from blackbox access to f (Section 1.5 gives a sketch of how this is done).

Observe that if f is computed by a full rank ABP of width w then f is an affine projection of the
polynomial IMMw,d via a full rank transformation (see Definition 2.8). So the above theorem is
identical to the theorem below.

Theorem 1a. Given blackbox access to an m variate polynomial f ∈ F[x] of degree d ∈ [5, m], the problem
of checking if there exist a w ∈ Nd−1, a B ∈ Fn×m of rank n equal to the number of variables in IMMw,d,
and a b ∈ Fn such that f = IMMw,d(Bx + b) 20, can be solved in randomized poly(m, β) time where β is
the bit length of the coefficients of f . Further, with probability at least 1− 1

poly(n) , the following is true: the
algorithm returns a w, a B ∈ Fn×m of rank n, and a b ∈ Fn such that f = IMMw,d(Bx + b) if such w, B
and b exist, else it outputs ‘ f does not admit a full rank ABP’.

A full rank ABP for f can be derived readily, once we compute w, B and b as above. Using
known results on variable reduction and translation equivalence test (see Section 2.2) proving
Theorem 1a reduces in polynomial time to giving an equivalence test (see Definition 2.9) for the
IMMw,d polynomial – this reduction is described in Section 1.5.

Theorem 1b (Equivalence test for IMM). Given blackbox access to a homogeneous n variate polynomial
f ∈ F[x] of degree d ∈ [5, n], where |x| = n, the problem of checking if there exist a w ∈ Nd−1 and an
invertible A ∈ Fn×n such that f = IMMw,d(Ax), can be solved in randomized poly(n, β) time where β is
the bit length of the coefficients of f . Further, with probability at least 1− 1

poly(n) the following holds: the
algorithm returns a w, and an invertible A ∈ Fn×n such that f = IMMw,d(Ax) if such w and A exist, else
it outputs ‘no such w and A exist’.

Remarks: Suppose f = IMMw,d(Ax) for an invertible A ∈ Fn×n and w = (w1, w2, . . . , wd−1).

1. Irreducibility of IMMw,d: We can assume without loss of generality that wk > 1 for every
k ∈ [d− 1], implying IMMw,d is an irreducible polynomial. If wk = 1 for some k ∈ [d− 1]
then IMMw,d is reducible, in which case we use the factorization algorithm in [KT88] to get
blackbox access to the irreducible factors of f and then apply Theorem 1b to each of these
irreducible factors (Section 1.5 has more details on this).

2. Uniqueness of w and A: Assuming wk > 1 for every k ∈ [d− 1], it would follow from the proof
of the theorem that w is unique in the following sense: if f = IMMw′,d(A′x), where A′ ∈ Fn×n

is invertible, then either w′ = w or w′ = (wd−1, wd−2, . . . , w1). Since f = X1 · X2 . . . Xd =
XT

d · XT
d−1 . . . XT

1 , w′ can indeed be (wd−1, wd−2, . . . , w1). The invertible transformation A is
also unique up to the group of symmetries (see Definition 2.10) of IMMw,d: if IMMw,d(Ax) =

19The stabilizer under the action of the general linear group.
20A variable set x = {x1, . . . , xm} is treated as a column vector (x1 . . . xm)T in the expression Bx + b. The affine form

entries of the column Bx + b are then plugged in place of the variables of IMMw,d (following a variable ordering, like
the one mentioned in Section 2.3).

8



IMMw,d(A′x) then AA′−1 is in the group of symmetries of IMMw,d. In Section 6, we determine
this group and show that IMMw,d is characterized by it.

3. A related result in [Gro12]: Another useful definition of the iterated matrix multiplication
polynomial is the trace of a product of d w× w symbolic matrices – let us denote this poly-
nomial by IMM′w,d. Both the variants, IMM′w,d and IMMw,d, are well-studied in the literature
and their circuit complexities are polynomially related. However, an equivalence test for
one does not immediately give an equivalence test for the other. This is partly because the
group of symmetries of IMM′w,d and IMMw,d are not exactly the same in nature (see Section 6
for a comparison).

Let x1, . . . , xd be the sets of variables in the d matrices of IMM′w,d respectively. A polynomial
f (x1, . . . , xd) is said to be multilinearly equivalent to IMM′w,d if there are invertible w× w ma-
trices A1, . . . , Ad such that f = IMM′w,d(A1x1, . . . , Adxd). Grochow [Gro12] showed the fol-
lowing result: Given the knowledge of the variable sets x1, . . . , xd, an oracle to find roots of
univariate polynomials over C and blackbox access to a polynomial f , there is a randomized
algorithm to check whether f is multilinearly equivalent to IMM′w,d using poly(w, d) opera-
tions over C. Due to the issue of representing complex numbers, the model of computation
for this result may be assumed to be the Blum-Shub-Smale model [BSS88]. Theorem 1b is
different from the result in [Gro12] in a few ways: First, the equivalence test is for IMMw,d
instead of IMM′w,d. The algorithm in Theorem 1b operates without the knowledge of the vari-
able sets x1, . . . , xd (in fact, without the knowledge of w). It only “sees” n variables x1, . . . , xn
that are input to the blackbox for f . Second, there is no requirement of a oracle for finding
roots of univariates. The base field is Q or a field with sufficiently large characteristic and
the model of computation is the Turing machine model. Third, Theorem 1b gives a general
equivalence test whereas the algorithm in [Gro12] checks only multilinear equivalence.

1.4 Discussion

To summarize, our main contribution is a polynomial time randomized equivalence test for IMMw,d,
even if w is unknown. Although, equivalence testing is an important problem in its own right,
Theorem 1 does not address the average-case ABP reconstruction problem quite satisfactorily be-
cause of the restriction m ≥ w2d 21. Keeping the conjecture [Aar08] on pseudo-random polynomial
family in mind, the more interesting and challenging scenario is when m� w2d in Problem 1, and
this case remains an open problem. We address this problem partially in an upcoming work (and
equivalence tests feature in there too).

An upcoming work [KST17]: Even if the width w of the ABP is a constant, we need m = Ω(d),
for a random ABP to have full rank and Theorem 1 to be effective. The case of constant width ABP
is interesting in its own right as they capture the complexity of arithmetic formulas. In particular,
if a polynomial g is computed by a formula of size s then g can be computed as the (1, 1)-th entry
of a product of sO(1) many 3× 3 matrices with affine form entries [BC88], and every polynomial
computed by a size s width 3 ABP can be computed by a formula of size sO(1). With constant
width ABP in mind, we study a version of Problem 1 (Problem 2 below) in [KST17], and give a

21Besides, the model full rank ABP, although natural and powerful, is nevertheless incomplete – not every polynomial
f can be computed by a full rank ABP even if f is multilinear (see Observation A.1 in Appendix A).

9



randomized polynomial time reconstruction algorithm under the restriction m ≥ w2; that is for
constant width, m only needs to be larger than a constant. Problem 2 is also a natural matrix
factorization problem.

Problem 2 (Average-case matrix factorization). Design an algorithm which when given a d ∈ N

and blackbox access to w2 entries of a matrix F = X1 · X2 . . . Xd, where X1, X2, . . . , Xd are w× w
matrices having entries affine forms in m variables with coefficients chosen independently and
uniformly at random from Sγ, computes d w× w matrices Y1, Y2, . . . , Yd with affine form entries
such that F = Y1 ·Y2 . . . Yd. The desired running time of the algorithm is poly(m, w, d, γ).

As before, we allow the coefficients of the affine forms in Y1, Y2, . . . , Yd to not belong to Sγ.

In a certain sense, Problem 2 is a relaxed version of Problem 1: We have blackbox access to all
the w2 polynomials occurring as entries of the matrix product in Problem 2, whereas in Problem 1
we have blackbox access to just a single polynomial which can be thought of as one entry of a
matrix product. Nevertheless, if the coefficients of the affine forms in X1, X2, . . . , Xd are adversar-
ially chosen in Problem 2 (instead of independently and uniformly at random from Sγ) then the
problem becomes as hard as worst-case formula reconstruction (by [BC88]), and this makes the
average-case variant interesting to study.

1.5 Algorithm and proof strategy

An algorithm for reconstructing full rank ABP is given in Algorithm 1. At first, we trace the steps
of this algorithm to show that proving Theorem 1a reduces to proving Theorem 1b using known
methods. Then, we give an equivalence test for IMMw,d in Algorithm 2, which is the contribution
of this work. Some relevant definitions, notations and concepts can be found in Section 2.

Reduction to equivalence test for IMM

We are given blackbox access to an m variate polynomial f (x̃) in Algorithm 1 where x̃ = {x1, . . . , xm}.
Suppose f = IMMw′,d(B′x̃ + b′) for some unknown w′ ∈ Nd−1, b′ ∈ Fn and B′ ∈ Fn×m of rank n,
where n is the number of variables in IMMw′,d.

Variable reduction (Step 2): The number of essential/redundant variables of a polynomial remains
unchanged under affine projection via full rank transformation. Since IMMw′,d has no redundant
variables22, the number of essential variables of f equals n. The algorithm eliminates the m− n re-
dundant variables in f by applying Algorithm 8 and constructs a C ∈ GL(m) such that g = f (Cx̃)
has only the essential variables x = {x1, . . . , xn}. It follows that g = IMMw′,d(A′x + b′), where
A′ ∈ GL(n) is the matrix B′ · C restricted to the first n columns.

Equivalence test (Steps 5-9): Since g = IMMw′,d(A′x + b′), its d-th homogeneous component g[d] =
IMMw′,d(A′x). In other words, g[d] is equivalent to IMMw′,d for an unknown w′ ∈ Nd−1. At this
point, the algorithm calls Algorithm 2 to find a w and an A ∈ GL(n) such that g[d] = IMMw,d(Ax),
and this is achieved with high probability.

22which follows easily from Claim 2.3

10



Finding a translation (Steps 12-17): As g = IMMw′,d(A′ · (x + A′−1b′)) = g[d](x + A′−1b′), g is
translation equivalent to g[d]. With high probability, Algorithm 9 finds an a ∈ Fn such that
g = g[d](x + a), implying g = IMMw,d(Ax + Aa). Thus b = Aa is a valid translation vector.

Final reconstruction (Steps 20-26): From the previous steps, we have g = IMMw,d(Ax + b). Al-
though the variables {xn+1, . . . , xm} are absent in g, if we pretend that g is a polynomial in all the
x̃ variables then g = IMMw,d(A0x̃ + b), where A0 is an n×m matrix such that the n× n submatrix
formed by restricting to the first n columns of A0 equals A and the remaining m− n columns of
A0 have all zero entries. Hence f = g(C−1x̃) = IMMw,d(A0C−1x̃ + b) which explains the setting
B = A0C−1 in step 20. The identity testing in steps 21-23 takes care of the situation when, to begin
with, there are no w′ ∈Nd−1, b′ ∈ Fn and B′ ∈ Fn×m of rank n such that f = IMMw′,d(B′x̃ + b′).

Algorithm 1 Reconstructing a full rank ABP
INPUT: Blackbox access to an m variate polynomial f (x̃) of degree d ≤ m.
OUTPUT: A full rank ABP computing f if such an ABP exists.

1. /* Variable reduction */
2. Use Algorithm 8 to compute n and C ∈ GL(m) such that g = f (Cx̃) has only the essential

variables x = {x1, . . . , xn} of f . If d > n, output ‘ f does not admit a full rank ABP’ and stop.
3.
4. /* Equivalence test: Finding w and A */
5. Construct a blackbox for g[d], the d-th homogeneous component of g (see Section 2.2).
6. Use Algorithm 2 to find a w ∈Nd−1 and an A ∈ GL(n) such that g[d] = IMMw,d(Ax).
7. if Algorithm 2 outputs ‘no such w and A exist’ then
8. Output ‘ f does not admit a full rank ABP’ and stop.
9. end if

10.
11. /* Finding a translation b */
12. Use Algorithm 9 to find an a ∈ Fn such that g = g[d](x + a).
13. if Algorithm 9 outputs ‘g is not translation equivalent to g[d]’ then
14. Output ‘ f does not admit a full rank ABP’ and stop.
15. else
16. Set b = Aa.
17. end if
18.
19. /* Identity testing and final reconstruction */
20. Let A0 be the n× m matrix obtained by attaching m− n ‘all-zero’ columns to the right of A.

Set B = A0C−1.
21. Choose a point a ∈ Sm at random, where S ⊆ F and |S| ≥ poly(n).
22. if f (a) 6= IMMw,d(Ba + b) then
23. Output ‘ f does not admit a full rank ABP’ and stop.
24. else
25. Construct a full rank ABP A of width w from B and b. Output A.
26. end if

11



Equivalence test for IMM

Algorithm 1 calls Algorithm 2 on a blackbox holding a homogeneous n variate polynomial f (x)
of degree d ≤ n, and expects a w ∈ Nd−1 and an A ∈ GL(n) in return such that f = IMMw,d(Ax),
if such w and A exist. First, we argue that f can be assumed to be an irreducible polynomial.

Assuming irreducibility of input f in Algorithm 2: The idea is to construct blackbox access to the irre-
ducible factors of f using the efficient randomized polynomial factorization algorithm in [KT88],
and compute full rank ABP for each of these irreducible factors. The ABPs are then connected
‘in series’ to form a full rank ABP for f . This process succeeds with high probability. The details
are as follows: If f is not square-free (which can be easily checked using [KT88]) then f cannot
be equivalent to IMMw,d for any w, as IMMw,d is always square-free. Suppose f = f1 · · · fk, where
f1, . . . , fk are distinct irreducible factors of f . If there are w′ ∈ Nd−1 and A′ ∈ GL(n) such that
f = IMMw′,d(A′x), then the number of essential variables in f is n (as IMMw′,d has no redun-
dant variables). Also, f1 · · · fk = h1(A′x) · · · hk(A′x) where h1, . . . , hk are the irreducible factors
of IMMw′,d. The irreducible factors of IMMw′,d are ‘smaller IMMs’ in disjoint sets of variables 23.
Hence, by uniqueness of factorization, f` is computable by a full rank ABP for every ` ∈ [k]. Let
the degree of f` be d` and n` the number of essential variables in f`. Then n1 + . . . + nk = n.
Now observe that if we invoke Algorithm 1 on input f`, it calls Algorithm 2 from within on an
irreducible polynomial, as f` is homogeneous and irreducible. Algorithm 1 returns a w` ∈ Nd`−1

and B` ∈ Fn`×n of rank n` such that f` = IMMw`,d`(B`x) (ignoring the translation vector as f` is
homogeneous). Let w ∈ Nd−1 be the vector (w1 1 w2 1 . . . 1 wk)

24, and A ∈ Fn×n such that the
first n1 rows of A is B1, next n2 rows is B2, and so on till last nk rows is Bk. Then, f = IMMw,d(Ax).
Clearly, A must be in GL(n) as the number of essential variables of f is n. Thus, it is sufficient to
describe Algorithm 2 on an input f that is irreducible.

A comparison with [Kay12a] and our proof strategy: Kayal [Kay12a] gave equivalence tests for the
permanent and determinant polynomials by making use of their Lie algebra (see Definition 2.11).
Algorithm 2 also involves Lie algebra of IMM, but there are some crucial differences in the way Lie
algebra is used in [Kay12a] and in here. The Lie algebra of permanent consists of diagonal matrices
and hence commutative. By diagonalizing a basis of g f over C, for an f equivalent to permanent,
we can reduce the problem to the much simpler permutation and scaling (PS) equivalence prob-
lem. The Lie algebra of n× n determinant, which is isomorphic to sln ⊕ sln, is not commutative.
However, a Cartan subalgebra of sln consists of traceless diagonal matrices. This then helps reduce
the problem to PS-equivalence by diagonalizing (over C) a basis of the centralizer of a random el-
ement in g f , for an f equivalent to determinant. Both the equivalence tests involve simultaneous
diagonalization of matrices over C. It is a bit unclear how to carry through this step if the base
field is Q and we insist on low bit complexity. The Lie algebra of IMM is not commutative. Also,
we do not know if going to Cartan subalgebra helps, as we would like to avoid the simultaneous
diagonalization step. Instead of Cartan subalgebras, we study invariant subspaces (Definition 2.4)
of the Lie algebra g

IMM
. A detailed analysis of the Lie algebra (in Section 3) reveals the structure

of the irreducible invariant subspaces of g
IMM

. It is observed that these invariant subspaces are
intimately connected to the layer spaces (see Definition 2.6) of any full rank ABP computing f . At

23Recall, IMMw,d is irreducible if wk > 1 for every k ∈ [d− 1] where w = (w1, . . . , wd−1).
24the notation means the entries of w1 are followed by 1, followed by the entries of w2, then a 1 again, and so on.

12



a conceptual level, this connection helps us reconstruct a full rank ABP. Once we have access to
the layer spaces, we can retrieve the unknown width vector w whence the problem reduces to the
easier problem of reconstructing an almost set-multilinear ABP (Definition 2.13).

We now give some more details on Algorithm 2. Suppose there is a w ∈ Nd−1 such that f is
equivalent to IMMw,d. The algorithm has four main steps:

1. Computing irreducible invariant subspaces (Steps 2-6): The algorithm starts by computing a
basis of the Lie algebra g f . It then invokes Algorithm 3 to compute bases of the d irreducible
invariant subspaces of g f . Algorithm 3 works by picking a random element R′ in g f and
factoring its characteristic polynomial h = g1 · · · gs. By computing the closure of vectors
(Definition 2.5) picked from null spaces of g1(R′), . . . , gs(R′), the algorithm is able to find
bases of the required invariant spaces.

2. Computing layer spaces (Step 9): The direct relation between the irreducible invariant spaces
of g

IMM
and the layers spaces of any full rank ABP computing f (as shown in Lemma 5.2)

is exploited by Algorithm 5 to compute bases of these layer spaces. This also helps estab-
lish that all the layer spaces, except two of them, are ’unique’ (see Lemma 5.1). The second
and second-to-last layer spaces of a full rank ABP are not unique; however the bigger space
spanned by the first two layer spaces (similarly the last two layer spaces) is unique. Algo-
rithm 5 finds bases for these two bigger spaces along with the d− 2 remaining layer spaces.

3. Reduction to almost set-multilinear ABP (Steps 12-15): The layer spaces are then correctly re-
ordered in Algorithm 6 using a randomized procedure to compute the appropriate evalua-
tion dimensions (Definition 2.7). The reordering also yields a valid width vector w. At this
point, the problem easily reduces to reconstructing a full rank almost set-multilinear ABP by
mapping the bases of the layer spaces to distinct variables. This mapping gives an Â ∈ GL(n)
such that f (Âx) is computable by a full rank almost set-multilinear ABP of width w. It is
‘almost set-multilinear’ (and not ’set-multilinear’) as the second and the second-to-last layer
spaces are unavailable; instead, two bigger spaces are available as mentioned above.

4. Reconstructing a full rank almost set-mutlilinear ABP (Steps 18-22): Finally, we reconstruct a
full rank almost set-mutlilinear ABP computing f (Âx) using Algorithm 7. This algorithm
is inspired by a similar algorithm for reconstructing set-multilinear ABP in [KS03], but it is
a little different from the latter as we are dealing with an ’almost’ set-multilinear ABP. The
reconstructed ABP readily gives an A ∈ GL(n) such that f = IMMw,d(Ax).

A final identity testing (Steps 25-30) takes care of the situation when, to begin with, there is no
w ∈Nd−1 that makes f equivalent to IMMw,d.

2 Preliminaries

2.1 Notations and definitions

The group of invertible n× n matrices over F is represented by GL(n, F). Since F is fixed to be the
field of rationals, we omit F and write GL(n). Natural numbers are denoted by N = {1, 2, . . . }. As
a convention, we use x, y and z to denote sets of variables, capital letters A, B, C and so on to denote

13



Algorithm 2 Equivalence test for IMM

INPUT: Blackbox access to a homogeneous n variate degree d polynomial f (which can be as-
sumed to be irreducible without any loss of generality).
OUTPUT: A w ∈Nd−1 and an A ∈ GL(n) such that f = IMMw,d(Ax), if such w and A exist.

1. /* Finding irreducible invariant subspaces */
2. Compute a basis of the Lie algebra g f . (See Section 2.2.)
3. Use Algorithm 3 to compute the bases of the irreducible invariant subspaces of g f .
4. if Algorithm 3 outputs ‘Fail’ then
5. Output ‘no such w and A exist’ and stop.
6. end if
7.
8. /* Finding layer spaces from irreducible invariant subspaces */
9. Use Algorithm 5 to compute bases of the layer spaces of a full rank ABP computing f , if such

an ABP exists.
10.
11. /* Reduction to almost set-multilinear ABP: Finding w */
12. Use Algorithm 6 to compute a w ∈Nd−1 and an Â ∈ GL(n) such that h = f (Âx) is computable

by a full rank almost set-multilinear ABP of width w.
13. if Algorithm 6 outputs ‘Fail’ then
14. Output ‘no such w and A exist’ and stop.
15. end if
16.
17. /* Reconstructing an almost set-multilinear ABP: Finding A */
18. Use Algorithm 7 to reconstruct a full rank almost set-multilinear ABP A’ computing h.
19. if Algorithm 7 outputs ‘Fail’ then
20. Output ‘no such w and A exist’ and stop.
21. end if
22. Replace the x variables in A’ by Â−1x to obtain a full rank ABP A. Compute A ∈ GL(n) from A.
23.
24. /* Final identity testing */
25. Choose a point a ∈ Sn, where S ⊆ F and |S| ≥ poly(n).
26. if f (a) 6= IMMw,d(Aa) then
27. Output ‘no such w and A exist’ and stop.
28. else
29. Output w and A.
30. end if

matrices, calligraphic letters like U ,V ,W to denote vector spaces over F, and bold small letters like
u, v, w to denote vectors in these spaces. All vectors considered in this article are column vectors,
unless mentioned otherwise. An affine form in x = {x1, x2, . . . , xn} variables is a0 + ∑n

i=1 aixi
where for i ∈ [0, d] ai ∈ F, and if a0 = 0 then we call it a linear form. The first order partial
derivative of the polynomial f (x) with respect to xi is denoted as ∂xi( f (x)). Below we set up some
notations and terminologies.

14



1. Linear Algebra:

Definition 2.1 (Direct sum). Let U ,W be subspaces of a vector space V . Then V is said to be the
direct sum of U andW denoted V = U ⊕W , if V = U +W and U ∩W = {0}.

For U ,W subspaces of a vector space V , V = U ⊕W if and only if for every v ∈ V there exist
unique u ∈ U and w ∈ W such that v = u + w. Hence, dim(V) = dim(U ) + dim(W).

Definition 2.2 (Null space). Null space N of a matrix M ∈ Fn×n is the space of all vectors v ∈ Fn,
such that Mv = 0.

Definition 2.3 (Coordinate subspace). Let ei = (0, . . . , 1, . . . , 0) be the unit vector in Fn with 1 at the
i-th position and all other coordinates zero. A coordinate subspace of Fn is a space spanned by a
subset of the n unit vectors {e1, e2, . . . , en}.

Definition 2.4 (Invariant subspace). Let M1, M2, . . . , Mk ∈ Fn×n. A subspace U ⊆ Fn is called an
invariant subspace of {M1, M2, . . . , Mk} if Mi U ⊆ U for every i ∈ [k]. A nonzero invariant subspace
U is irreducible if there are no invariant subspaces U1 and U2 such that U = U1⊕U2, where U1 and
U2 are properly contained in U .

The following observation is immediate.

Observation 2.1. If U is an invariant subspace of {M1, M2, . . . , Mk} then for every M ∈ L def
= spanF{M1,

M2, . . . , Mk}, M U ⊆ U . Hence we say U is an invariant subspace of L, a space generated by matrices.

Definition 2.5 (Closure of a vector). The closure of a vector v ∈ Fn under the action of a space L
spanned by a set of n× n matrices is the smallest invariant subspace of L containing v.

Here, ‘smallest’ is with regard to dimension of invariant subspaces. Since intersection of two
invariant subspaces is also an invariant subspace of L, the smallest invariant subspace of L con-
taining v is unique and is contained in every invariant subspace of L containing v. Algorithm 4 in
Section 4.2 computes the closure of a given vector v under the action of L whose basis is given.

By identifying a linear form ∑n
i=1 aixi with the vector (a1, . . . , an) ∈ Fn (and vice versa), we can

associate the following vector spaces with an ABP.

Definition 2.6 (Layer spaces of an ABP). Let X1 ·X2 . . . Xd be a full rank ABP A of length d and width
w = (w1, w2, . . . , wd−1), where X1 to Xd are as in Definition 1.3. Let Xi be the vector space in Fn

spanned by the homogeneous degree 1 parts of the affine forms25 in Xi for i ∈ [d]; the spaces
X1,X2, . . . ,Xd are called the layer spaces of A.

2. Evaluation dimension: The rank of the partial derivative matrix of a polynomial f was intro-
duced in [Nis91] and used subsequently in several works on lower bound, polynomial identity
testing and circuit reconstruction (see [SY10]). The following definition (which makes the notion
well defined for fields of finite characteristic) appears in [FS13]26.

25Identify linear forms with vectors in Fn as mentioned above.
26They attributed the definition to Ramprasad Saptharishi.

15



Definition 2.7 (Evaluation dimension). The evaluation dimension of a polynomial g ∈ F[x] with re-
spect to a set x′ ⊆ x, denoted as Evaldimx′(g), is defined as

dim(spanF{g(x)|∀xj∈x′ xj=αj : αj ∈ F for every xj ∈ x′}).

3. Affine projection and equivalence testing: Studying polynomials by applying linear transfor-
mations (from suitable matrix groups) on the variables is at the heart of invariant theory.

Definition 2.8 (Affine projection). An m variate polynomial f is an affine projection of a n variate
polynomial g, if there exists a matrix A ∈ Fn×m and a b ∈ Fn such that f (x) = g(Ax + b).

In [Kay12a], it was shown that given an m variate polynomial f and an n variate polynomial g,
checking whether f is an affine projection of g is NP-hard, even if f and g are given in the dense
representation (that is as list of coefficients of the monomials). In the above definition, we say
f is an affine projection of g via a full rank transformation, if m ≥ n and A has rank n. In the
affine projection via full rank transformation problem, we are given an m variate polynomial f
and an n variate polynomial g in some suitable representation, and we need to determine if f is
an affine projection of g via a full rank transformation. [Kay11, Kay12a] studied the affine projec-
tion via full rank transformation problem for g coming from fixed families and gave polynomial
time randomized algorithms to check whether a degree d polynomial f given as blackbox is an
affine projection of g via a full rank transformation, where g is the elementary symmetric polyno-
mial/permanent/determinant/power symmetric polynomial or sum-of-products polynomial. As
observed in [Kay12a], variable reduction and translation equivalence test (described in Section 2.2)
help reduce the affine projection via full rank transformation problem to equivalence testing (see
also Section 1.5).

Definition 2.9 (Equivalent polynomials). An n variate polynomial f is equivalent to an n variate
polynomial g, if there exists a matrix A ∈ GL(n) such that f (x) = g(Ax).

The equivalence testing problem asks us to check if two n variate polynomials f and g (given
in some suitable representation) are equivalent. This problem is at least as hard as the graph
isomorphism problem even when f and g are cubic forms given in dense representation [AS06].
There is a cryptographic application [Pat96] that assumes the problem is hard also in the average-
case for bounded degree f and g given in dense representation. If we restrict to checking if f and g
are equivalent via a permutation matrix A, then the problem is shown to be in NP∩ coAM [Thi98].

4. Group of symmetries and Lie algebra:

Definition 2.10 (Group of symmetries). The group of symmetries of a polynomial g ∈ F[x] in n vari-
ables, denoted as Gg, is the set of all A ∈ GL(n) such that g(Ax) = g(x).

The proof of Theorem 1b involves an analysis of the Lie algebra of the group of symmetries of
IMMw,d. We will abuse terminology slightly and say the Lie algebra of a polynomial to mean
the Lie algebra of the group of symmetries of the polynomial. We will work with the following
definition of Lie algebra of a polynomial (see [Kay12a]).

Definition 2.11 (Lie algebra of a polynomial). The Lie algebra of a polynomial f ∈ F[x1, x2, . . . , xn]

denoted as g f is the set of all n× n matrices E = (eij)i,j∈[n] in Fn×n such that ∑i,j∈[n] eijxj · ∂ f
∂xi

= 0.

16



Remark: Observe that g f is a subspace of Fn×n. It can also be shown that the space g f satisfies

the Lie bracket property: For any E1, E2 ∈ g f , [E1, E2]
def
= E1E2 − E2E1 is also in g f . We would not be

needing this property, but would just use the vector space feature of g f . The proof of the following
well known fact is given in [Kay12a], see also Appendix B for a proof.

Claim 2.1. If f (x) = g(Ax), where f and g are both n variate polynomials and A ∈ GL(n), then the Lie
algebra of f is a conjugate of the Lie algebra of g via A, i.e. g f = {A−1EA : E ∈ gg} =: A−1gg A.

The following observation relates the invariant subspaces of the Lie algebras of two equivalent
polynomials.

Observation 2.2. Suppose f (x) = g(Ax), where x = {x1, x2, . . . , xn} and A ∈ GL(n). Then U ∈ Fn is
an invariant subspace of gg if and only if A−1U is an invariant subspace of g f .

Proof. U is an invariant subspace of gg implies, for all E ∈ gg, E U ⊆ U . Consider E′ ∈ g f , using
Claim 2.1 we know there exists E ∈ gg such that AE′A−1 = E. Since U is an invariant subspace of
AE′A−1, A−1U is an invariant subspace of E′. The proof of the other direction is similar.

2.2 Algorithmic preliminaries

We record some of the basic algorithmic tasks on polynomials that can be performed efficiently
and which we require at different places in our algorithms and proofs.

1. Computing homogeneous components of f : The i-th homogeneous component (or the ho-
mogeneous degree i part) of a degree d polynomial f , denoted as f [i] is the sum of the degree i
monomials with coefficients as in f . Clearly, f = f [d] + f [d−1] + · · · + f [0]. Given an n variate
degree d polynomial f as a blackbox, there is an efficient algorithm to compute blackboxes for the
d homogeneous components of f . The idea is to multiply each variable by a new formal variable
t, and then interpolate the coefficients of t0, t1, . . . , td; the coefficient of ti is f [i].

2. Computing derivatives of f : Given a polynomial f (x1, x2, . . . , xn) of degree d as a blackbox, we
can efficiently construct blackboxes for the derivatives ∂xi f , for all i ∈ [n]. The following observa-
tion suggests that it is sufficient to construct blackboxes for certain homogeneous components.

Observation 2.3. If g(x1, x2, . . . , xn) is a homogeneous polynomial of degree d then for all i ∈ [n] ∂xi g =

∑d
j=1 j · xj−1

i [g(x1, x2, . . . , xi−1, 1, xi+1, . . . , xn)][d−j].

For every i ∈ [n], constructing a blackbox for ∂xi f is immediate from the above observation as
∂xi f = ∂xi f [d] + ∂xi f [d−1] + · · ·+ ∂xi f [1].

3. Space of linear dependencies of polynomials: Let f1, f2, . . . , fm be n variate polynomials in
F[x] with degree bounded by d. The set U = {(a1 a2 . . . am)T ∈ Fm | ∑j∈[m] aj f j = 0}, called the
space of F-linear dependencies of f1, f2, . . . , fm is a subspace of Fm. We would like to find a basis
of the space U given blackbox access to f1, f2, . . . , fm. Suppose the dimension of the F-linear space
spanned by the polynomials f1, f2, . . . , fm is m− r then dim(U ) = r. An algorithm to find a basis
of U can be derived from the following claim.

17



Claim 2.2. With probability at least 1− 1
poly(n) , the rank of the matrix M = ( f j(bi))i,j∈[m] is m− r where

b1, b2, . . . , bm are chosen independently and uniformly at random from Sn ⊂ Fn with |S| = dm ·poly(n).

The proof of the claim which involves an application of the Schwartz-Zippel lemma is given in
Appendix B. The space U equals the null space of M with high probability.

4. Eliminating redundant variables:

Definition 2.12 (Essential and redundant variables). We say an n variate polynomial f has s essential
variables if there exists an A ∈ GL(n) such that f (Ax) is an s variate polynomial and there exists
no A′ ∈ GL(n) such that f (A′x) is a t variate polynomial where t < s. An n variate polynomial
has r redundant variables if it has s = n− r essential variables.

If the number of essential variables in a polynomial f (x1, x2, . . . , xn) is s then without loss of gener-
ality we can assume that the first s variables x1, x2, . . . , xs are essential variables and the remaining
variables are redundant. An algorithm to eliminate the redundant variables of a polynomial was
considered in [Car06], and it was shown that if the coefficients of a polynomial are given as in-
put then we can eliminate the redundant variables in polynomial time. Further, [Kay11] gave
an efficient randomized algorithm to eliminate the redundant variables in a polynomial given as
blackbox. For completeness, we give the algorithm in [Kay11] as part of the following claim.

Claim 2.3. Let r be the number of redundant variables in an n variate polynomial f of degree d. Then
the dimension of the space U of F-linear dependencies of {∂xi f | i ∈ [n]} is r. Moreover, we can con-
struct an A ∈ GL(n) in randomized poly(n, d, β) time such that f (Ax) is free of the set of variables
{xn−r+1, xn−r+2, . . . , xn}, where β is the bit length of the coefficients of f .

The proof is given in Appendix B.

5. Efficient translation equivalence test: Two n variate degree d polynomials f , g ∈ F[x] are
translation equivalent (also called shift equivalent in [DdOS14]) if there exists a point a ∈ Fn such
that f (x + a) = g(x). Translation equivalence test takes input blackbox access to two n variate
polynomials f and g, and outputs an a ∈ Fn such that f (x + a) = g(x) if f and g are translation
equivalent else outputs ‘ f and g are not translation equivalent’. As before, let β be the bit lengths
of the coefficients of f and g. A randomized poly(n, d, β) time algorithm is presented in [DdOS14]
to test translation equivalence and find an a ∈ Fn such that f (x + a) = g(x), if such an a exists.
Another randomized test was mentioned in [Kay12a], which we present as proof of the following
lemma in Appendix B.

Lemma 2.1. There is a randomized algorithm that takes input blackbox access to two n variate, degree
d polynomials f and g, and with probability at least 1 − 1

poly(n) does the following: if f is translation
equivalent to g, outputs an a ∈ Fn such that f (x + a) = g(x), else outputs ‘ f and g are not translation
equivalent’. The running time of the algorithm is poly(n, d, β), where β is the bit length of the coefficients
of f and g.

6. Computing basis of Lie algebra: The proof of the following lemma is given in [Kay12a], for
completeness we include a proof in Appendix B.

18



s t

1 1

w1 wd−1

2 2x(1)1

x(1)2

x(1)w1

x(l)iji

j

1 1

wl−1 wl

Figure 1: Naming of variables in IMMw,d

Lemma 2.2. There is a randomized algorithm which when given blackbox access to an n variate degree d
polynomial f , computes a basis of g f with probability at least 1− 1

poly(n) in time poly(n, d, β) where β is
the bit length of the coefficients in f .

2.3 Iterated matrix multiplication polynomial

Let w = (w1, w2, . . . , wd−1) ⊆ Nd−1. Suppose Q1 = (x(1)1 x(1)2 . . . x(1)w1 ), QT
d = (x(d)1 x(d)2 . . . x(d)wd−1)

be row vectors, and for k ∈ [2, d − 1], Qk = (x(k)ij )i∈[wk−1],j∈[wk ] be a wk−1 × wk matrix, where for

i ∈ [w1] x(1)i , for i ∈ [wd−1] x(d)i and for i ∈ [wk−1], j ∈ [wk] x(k)ij are distinct variables. The iterated
matrix multiplication polynomial IMMw,d is the entry of the 1× 1 matrix obtained from the product
∏d

i=1 Qi. When d and w are clear from the context, we drop the subscripts and simply represent
it by IMM. For all k ∈ [d], we denote the set of variables in Qk as xk; Figure 1 depicts an ABP
computing IMMw,d when the width is uniform, that is w1 = w2 = · · · = wd−1.

Ordering of variables in IMMw,d: From here on we will assume that the variables x1 ] x2 ] · · · ] xd
are ordered as follows: For i < j, the xi variables have precedence over the xj variables. Among the

xl variables, we follow column-major ordering, i.e x(l)11 � · · · � x(l)wl−11 � · · · � x(l)1wl
� · · · � x(l)wl−1wl .

We would also refer to the variables of IMM as x = {x1, x2, . . . , xn} where xi is the i-th variable
according to this ordering27, and n = w1 + ∑d−1

k=2 wk−1wk + wd−1 is the total number of variables
in IMM. For A ∈ Fn×n we can naturally index the rows and columns of A by the x variables such
that the i-th row or column is indexed by the i-th variable.

2.4 Almost set-multilinear ABP and a canonical representation

In the proof of Theorem 1b, we eventually reduce the equivalence test problem to checking whether
there exists an A ∈ GL(n), such that an input polynomial h(x) (given as blackbox) equals IMMw,d(Ax),
where w is known, x is the variables of IMMw,d, and A satisfies the following properties:

27The justification for identifying the variables x of f with the variables of IMMw,d in this order is as follows: If f is
equivalent to IMMw,d then f is also equivalent to IMMw,d(x) whose variables {x1, . . . , xn} are ordered as above. That w
is a priori unknown to Algorithm 2 does not matter here.

19



1. For all k ∈ [d] \ {2, d− 1}, the rows indexed by xk variables contain zero entries in columns
indexed by variables other than xi.

2. The rows indexed by x2 and xd−1 variables contain zero entries in columns indexed by vari-
ables other than x1 ] x2 and xd−1 ] xd respectively.

If there exists such a block-diagonal matrix A then we say h is computed by a full rank almost
set-multilinear ABP as defined below.

Definition 2.13 (Full rank almost set-multilinear ABP). A full rank almost set-multilinear ABP of width
w = (w1, w2, . . . , wd−1) and length d is a product of d matrices, X1 · X2 . . . Xd, where Xk’s are as
in Definition 1.3 but with linear forms as entries. The linear forms in Xk are in xk variables, for
all k ∈ [d] \ {2, d− 1}, and for X2 and Xd−1 the linear forms are in x1 ] x2 and xd−1 ] xd variables
respectively, where x1 ] x2 · · · ] xd is the set of variables in IMMw,d.

Conventionally, in the definition of set-multilinear ABP, the entries of Xi are linear forms in just
xi variables – the ABP in the above definition is almost set-multilinear as matrices X2 and Xd−1
violate this condition. An efficient randomized reconstruction algorithm for set-multilinear ABP
follows from [KS03]. In order to apply a similar reconstruction algorithm to full rank almost set-
multilinear ABPs, we fix a canonical representation for the first two and the last two matrices as
explained below.

Canonical form or representation: We say a full rank almost set-multilinear ABP of width w is in
canonical form if the following hold:

(1a). X1 = (x(1)1 x(1)2 . . . x(1)w1 ),

(1b). the linear forms in X2 are such that for l, i ∈ [w1] and l < i, the variable x(1)l has a zero
coefficient in the (i, j)-th entry (linear form) of X2, where j ∈ [w2].

(2a). Xd = (x(d)1 x(d)2 . . . x(d)wd−1)
T,

(2b). the linear forms in Xd−1 are such that for l, j ∈ [wd−1] and l < j, the variable x(d)l has a zero
coefficient in the (i, j)-th entry (linear form) of Xd−1, where i ∈ [wd−2].

The following claim states that for every full rank almost set-multilinear ABP there is another ABP
in canonical form computing the same polynomial, and the latter can be computed efficiently.

Claim 2.4. Let h be an n variate, degree d polynomial computable by a full rank almost set-multilinear
ABP of width w = (w1, w2, . . . , wd−1) and length d. There is a randomized algorithm that takes input
blackbox access to h and the width vector w, and outputs a full rank almost set-multilinear ABP of width
w in canonical form computing h, with probability at least 1− 1

poly(n) . The running time of the algorithm
is poly(n, β), where β is the bit length of the coefficients of h.

We prove the claim in Section 5.3. The algorithm is similar to reconstruction of set-multilinear
ABP in [KS03], except that the latter needs to be adapted suitably as we are dealing with almost
set-multilinear ABP.

20



3 Lie algebra of IMM

Dropping the subscripts w and d, we refer to IMMw,d as IMM. We show that the Lie algebra, g
IMM

consists of well-structured subspaces and by analysing these subspaces we are able to identify all
the irreducible invariant subspaces of g

IMM
.

3.1 Structure of the Lie algebra g
IMM

Recall that x = x1] x2] · · · ] xd are the variables of IMM which are also referred to as {x1, x2, . . . , xn}28

for notational convenience.

Lemma 3.1. LetW1,W2,W3 be the following sets (spaces) of matrices:

1. W1 consists of all matrices D = (dij)i,j∈[n] such that D is diagonal and

n

∑
i=1

diixi ·
∂IMM

∂xi
= 0.

2. W2 consists of all matrices B = (bij)i,j∈[n] such that

∑
i,j∈[n]

bijxj ·
∂IMM

∂xi
= 0,

where in every summand bij 6= 0 only if xi 6= xj and xi, xj ∈ xl for some l ∈ [d].

3. W3 consists of all matrices C = (cij)i,j∈[n] such that

∑
i,j∈[n]

cijxj ·
∂IMM

∂xi
= 0,

where in every summand cij 6= 0 only if either xi ∈ x2, xj ∈ x1 or xi ∈ xd−1, xj ∈ xd.

Then g
IMM

=W1 ⊕W2 ⊕W3.

The proof of Lemma 3.1 is given in Appendix C.

Elaboration on Lemma 3.1: An element E = (eij)i,j∈[n] of g
IMM

is an n× n matrix with rows and
columns indexed by variables of IMM following the ordering mentioned in Section 2.3. Since
∑i,j∈[n] eijxj · ∂IMM

∂xi
= 0, E appears as shown in Figure 2, where the row indices correspond to

derivatives and column indices correspond to shifts29. The proof will show that E is a sum of three
matrices D ∈ W1, B ∈ W2 and C ∈ W3 such that

1. D contributes to the diagonal entries.

2. B contributes to the block-diagonal entries of E corresponding to the locations:

28following the ordering mentioned in Section 2.3.
29Borrowing terminology from the shifted partial derivatives measure [Kay12b].

21



x(1)1 x(1)w1 x(2)11 x(2)21 x(2)w1w2

xdxd−1

x(1)1

x(1)w1

x(2)11

x(2)21

x(2)w1w2

xd

xd−1

derivatives

shifts

: contributed by a matrix inW1

: contributed by a matrix inW2

: contributed by a matrix inW3

Figure 2: A matrix E in g
IMM

• (x(1)i , x(1)j ) where i, j ∈ [w1] and i 6= j

• (x(d)i , x(d)j ) where i, j ∈ [wd−1] and i 6= j

• (x(l)ij , x(l)pq ) where i, p ∈ [wl−1] and j, q ∈ [wl ] for l ∈ [2, d− 1], and (i, j) 6= (p, q).

3. C contributes to the two corner rectangular blocks corresponding to:

• rows labelled by x2 variables and columns labelled by x1 variables

• rows labelled by xd−1 variables and columns labelled by xd variables.

In order to get a finer understanding of g
IMM

and its dimension we look at the spacesW1,W2 and
W3 closely, and henceforth call them the diagonal space, the block-diagonal space and the corner space
respectively.

22



Corner spaceW3:

Lemma 3.2 (Corner space). The spaceW3 = W (a)
3 ⊕W

(b)
3 whereW (a)

3 = A1 ⊕A2 ⊕ · · · ⊕ Aw2 and
W (b)

3 = A′1 ⊕A′2 ⊕ · · · ⊕ A′wd−2 such that for every i ∈ [w2] Ai is isomorphic to the space of w1 × w1
anti-symmetric matrices over F, and for every j ∈ [wd−2] A′ j is isomorphic to the space of wd−1 × wd−1

anti-symmetric matrices over F. Hence dim(W3) = 1
2 [w1w2(w1 − 1) + wd−1wd−2(wd−1 − 1)].

The proof is in Appendix C. We briefly elaborate on the statement here.

Elaboration on Lemma 3.1: Every element C ∈ W3 can be expressed as a sum of two n × n
matrices C(a) ∈ W (a)

3 and C(b) ∈ W (b)
3 . C(a) looks as shown in Figure 3, where for every i ∈ [w2]

C(a)
i is an anti-symmetric matrix. The structure of C(b) is similar30 to that of C(a) with non zero

entries restricted to the rows indexed by xd−1 variables and columns indexed by xd variables.

x1

x(2)11

x(2)w11

x(2)1w2

x(2)w1w2

x1

C(a)
1

C(a)
w2

all entries outside
the bordered region

are zero

Figure 3: A matrix C(a) inW (a)
3

Block-diagonal spaceW2:

In the following lemma, Zwk denotes the space of wk × wk matrices with diagonal entries zero for
k ∈ [d− 1]. Also, for notational convenience we assume that w0 = wd = 1. We will also use the
tensor product of matrices: if A = (ai,j) ∈ Fr×s and B ∈ Ft×u, then A⊗ B is the (rt)× (su) matrix
given by

A⊗ B =

a1,1B · · · a1,sB
...

...
...

ar,1B · · · ar,sB

 .

Lemma 3.3 (Block-diagonal space). The space W2 = B1 ⊕ B2 ⊕ · · · ⊕ Bd−1 such that for every k ∈
[d− 1], Bk is isomorphic to the F-linear space spanned by tk × tk matrices of the form[

−ZT ⊗ Iwk−1 0
0 Iwk+1 ⊗ Z

]
tk×tk

where Z ∈ Zwk and tk = wk(wk−1 + wk+1). (1)

30once we rearrange the rows in C(b) indexed by variables in xd−1 according to row major ordering (instead of column
major ordering) of variables in xd−1.

23



Hence, dim(W2) = ∑d−1
k=1(w

2
k − wk).

The proof is in Appendix C.

Elaboration on Lemma 3.3: An element B ∈ W2 is a sum of d− 1, n× n matrices B1, B2, . . . , Bd−1
such that for every k ∈ [d− 1], Bk ∈ Bk and the non zero entries of Bk are restricted to the rows
and columns indexed by xk ] xk+1 variables. The submatrix in Bk corresponding to these rows and
columns looks as shown in Equation (1).

Diagonal spaceW1:

In the next lemma, Ywk denotes the space of wk × wk diagonal matrices for k ∈ [d− 1]. As before
we assume w0 = wd = 1.

Lemma 3.4 (Diagonal Space). The space W1 contains the space D1 ⊕ D2 ⊕ · · · ⊕ Dd−1 such that for
every k ∈ [d− 1], Dk is isomorphic to the F-linear space spanned by tk × tk matrices of the form[

−Y⊗ Iwk−1 0
0 Iwk+1 ⊗Y

]
tk×tk

where Y ∈ Ywk and tk = wk(wk−1 + wk+1). (2)

Hence, dim(W1) ≥ ∑d−1
k=1 wk.

The proof (still given in Appendix C) is similar to that of Lemma 3.3.

Elaboration on Lemma 3.4: An element D ∈ D1 ⊕ D2 ⊕ · · · ⊕ Dd−1 is a sum of d − 1, n × n
matrices D1, D2, . . . , Dd−1 such that for every k ∈ [d − 1], Dk ∈ Dk and the non zero entries of
Dk are restricted to the rows and columns indexed by xk ] xk+1 variables. The submatrix in Dk
corresponding to these rows and columns looks as shown in Equation (2).

3.2 Random elements of g
IMM

The algorithm in Theorem 1b involves picking a random matrix R′ in g f and computing its char-
acteristic polynomial h(x). To ensure the correctness of the algorithm, h(x) will have to be square
free over F. In Lemma 3.5 we show that the characteristic polynomial of a random matrix R in
g
IMM

is square free with high probability. From Claim 2.1 this implies that if f is equivalent to IMM
then the characteristic polynomial of R′ is also square free with high probability.

Claim 3.1. There is a diagonal matrix D ∈ g
IMM

with all entries distinct.

Proof. From Lemma 3.4, we know that for k ∈ [d − 1] the submatrix of Dk ∈ Dk defined by the
rows and columns indexed by the variables in xk ] xk+1 is[

−Yk ⊗ Iwk−1 0
0 Iwk+1 ⊗Yk

]
,

where Yk ∈ Yk. Let the (i, i)-th entry of Yk be y(k)i and pretend that these entries are distinct formal
variables, say y variables. Consider the matrix D = ∑d−1

i=1 Di and observe the following:

a. For k ∈ [2, d− 1], the (x(k)ij , x(k)ij )-th entry of D is y(k−1)
i − y(k)j where i ∈ [wk−1] and j ∈ [wk].

24



b. The (x(1)i , x(1)i )-th and (x(d)j , x(d)j )-th entry of D are −y(1)i and y(d−1)
j respectively, where i ∈

[w1] and j ∈ [wd−1].

In particular, all the diagonal entries of D are distinct linear forms in the y variables. Hence, if we
assign values to the y variables uniformly at random from a set S ⊆ F such that |S| ≥ n2 then
with non zero probability D has all diagonal entries distinct after the random assignment.

Lemma 3.5. If {L1, L2, . . . , Lm} is a basis of the Lie algebra g
IMM

then the characteristic polynomial of an
element L = ∑m

i=1 riLi, where ri ∈R F is picked independently and uniformly at random from [2n3], is
square free with probability at least 1− 1

poly(n) .

Proof. Pretend that the ri’s are formal variables. The characteristic polynomial hr(x) of L is a
polynomial in x with coefficients that are polynomial of degree at most n in r = {r1, r2, . . . , rm}
variables.

Observation 3.1. The discriminant of hr(x), disc(hr(x)) := resx(hr, ∂hr
∂x ), is a non zero polynomial

in r variables of degree at most31 2n2, where resx(hr, ∂hr
∂x ) is the resultant of hr and ∂hr

∂x when treated as
univariates in x.

Proof. hr is a monic polynomial in x of degree n and ∂hr
∂x is a polynomial in x of degree (n − 1).

Also the coefficient of xn−1 in ∂hr
∂x is r variable free. The Sylvester matrix of hr and ∂hr

∂x with respect
to variable x is a (2n− 1)× (2n− 1) matrix. Thus, resx(hr, ∂hr

∂x ) is a polynomial in the r-variables of
degree less than 2n2. If resx(hr, ∂hr

∂x ) is identically zero as a polynomial in r then for every setting of
r to field elements gcd(hr, ∂hr

∂x ) 6= 1 implying hr is not square free. This would contradict Claim 3.1
as we can set the r variables appropriately such that L is a diagonal matrix with distinct diagonal
entries, and hr for such a setting of the r variables is square free.

Since disc(hr(x)) is not an identically zero polynomial in the r variables and has degree less than
2n2, if we set every r variable uniformly and independently at random to a value in [2n3] then
using Schwartz-Zippel lemma with probability at least 1− 1

poly(n) , gcd(hr, ∂hr
∂x ) = 1. This implies

with probability at least 1− 1
poly(n) , hr(x) is square free.

3.3 Invariant subspaces of g
IMM

The ordering of the variables in IMM allows us to identify them naturally with the unit vectors
e1, e2, . . . , en in Fn – the vector ei corresponds to the i-th variable in the ordering. We will write ex to
refer to the unit vector corresponding to the variable x. Let U1,2 represent the coordinate subspace
spanned by the unit vectors corresponding to the variables in x1 ] x2. Similarly Uk represents the
coordinate subspace spanned by the unit vectors corresponding to the variables in xk for k ∈ [2, d−
1], and Ud−1,d represents the coordinate subspace spanned by the unit vectors corresponding to
the variables in xd−1 ] xd. In Lemma 3.6, we establish that U1,2,U2, . . . ,Ud−1,Ud−1,d are the only
irreducible invariant subspaces of g

IMM
.

Claim 3.2. Let U be a nonzero invariant subspace of g
IMM

. If u = (u1, u2, . . . , un)T ∈ U and uj 6= 0 then
ej ∈ U , implying U is a coordinate subspace.

31A careful analysis could show that the degree is in fact n(n− 1), but we do not need such a precision here.

25



Proof. Claim 3.1 states that there is a diagonal matrix D ∈ g
IMM

with distinct diagonal entries
λ1, λ2, . . . , λn. Since U is invariant for D, if u = (u1, u2, . . . , un)T ∈ U then (λi

1u1, λi
2u2, . . . , λi

nun) ∈
U for every i ∈ N. Let Su := {j ∈ [n] | uj 6= 0} be the support of u 6= 0. As λ1, λ2, . . . , λn are
distinct, the vectors (λi

1u1, λi
2u2, . . . , λi

nun) are F-linearly independent for 0 ≤ i < |Su|. Hence, the
unit vector ej ∈ U for every j ∈ Su. It follows that U is the coordinate subspace spanned by those
ej for which j ∈ Su for some u ∈ U .

Lemma 3.6. The only irreducible invariant subspaces of g
IMM

are U1,2, U2, . . . , Ud−1, Ud−1,d.

Proof. It follows from Lemma 3.1 and Figure 2 that U1,2, U2, . . . , Ud−1, Ud−1,d are invariant sub-
spaces. We show in the next two claims that the spaces U1,2, U2, . . . , Ud−1, Ud−1,d are irreducible.
The proofs are given in Appendix C.

Claim 3.3. No invariant subspace of g
IMM

is properly contained in Uk for k ∈ [2, d− 1].

Claim 3.4. The invariant subspaces U1,2 and Ud−1,d are irreducible, and the only invariant subspace prop-
erly contained in U1,2 (respectively Ud−1,d) is U2 (respectively Ud−1).

We in fact show in the proof of Claim 3.3 that the closure of ex under the action of g
IMM

is Uk for
any x ∈ xk, where k ∈ [2, d− 1]. Similarly, in the proof of Claim 3.4 we show that the closure of
ex under the action of g

IMM
is U1,2 (respectively Ud−1,d) for any x ∈ x1 (respectively x ∈ xd). This

observation helps infer that the spaces U1,2, U2, . . . , Ud−1, Ud−1,d are the only irreducible invariant
subspaces of g

IMM
: Suppose V is an irreducible invariant subspace. If ex ∈ V for some x ∈ xk where

k ∈ [2, d− 1], then Uk ⊆ V as Uk is the closure of ex. If ex ∈ V for some x ∈ x1 (respectively x ∈ xd)
then U1,2 ⊆ V (respectively Ud−1,d ⊆ V) as U1,2 (respectively Ud−1,d) is the closure of ex. Therefore
V is a direct sum of some of the irreducible invariant subspaces U1,2, U2, . . . , Ud−1, Ud−1,d. Since V
is irreducible, it is equal to one of these irreducible invariant subspaces.

Corollary 3.1 (Uniqueness of decomposition). The decomposition,

Fn = U1,2 ⊕U3 ⊕ · · · ⊕ Ud−2 ⊕Ud−1,d

is unique in the following sense; if Fn = V1⊕V2⊕ · · · ⊕ Vs, where V ′i s are irreducible invariant subspaces
of g

IMM
, then s = d− 2 and for every i ∈ [s], Vi is equal to U1,2 or Ud−1,d, or some Uk for k ∈ [3, d− 2].

Proof. Since Vi’s are irreducible invariant subspaces, from Lemma 3.6 it follows that for every
i ∈ [s] Vi equals one among U1,2, U2, . . . , Ud−1, Ud−1,d. Since V1,V2, . . . ,Vs span the entire Fn, the
only possible decomposition is Fn = U1,2 ⊕U3 ⊕ · · · ⊕ Ud−2 ⊕Ud−1,d.

4 Lie algebra of f equivalent to IMM

Let f be an n variate polynomial such that f = IMMw,d(Ax), where w = (w1, w2, . . . , wd−1) ∈Nd−1

and A ∈ GL(n). It follows, n = w1 + ∑d−1
i=2 wi−1wi + wd−1. From Observation 2.2 and Lemma 3.6

we know A−1U1,2, A−1U2, . . . , A−1Ud−1, A−1Ud−1,d are the only irreducible invariant subspaces of
g f , and A−1U2 (respectively A−1Ud−1) is the only invariant subspace properly contained in A−1U1,2

(respectively A−1Ud−1,d). Also from Corollary 3.1 it follows that Fn = A−1U1,2 ⊕ A−1U3 ⊕ · · · ⊕
A−1Ud−2 ⊕ A−1Ud−1,d. In this section, we give an efficient randomized algorithm to compute a
basis of each of the spaces A−1U1,2, A−1U2, . . . , A−1Ud−1, A−1Ud−1,d given only blackbox access to
f (but no knowledge of w or A).

26



R1

R2

R3

Rd

Rd−1

Rd−2

x1

x2

x3

xd

xd−1

xd−2

x1 x2 x3 xdxd−1xd−2

all entries outside
the bordered region

are zero

Figure 4: Random element R in g
IMM

4.1 Computing invariant subspaces of the Lie algebra g f

First, we efficiently compute a basis {L
′
1, L

′
2, . . . , L

′
m} of g f using the algorithm stated in Lemma 2.2.

By Claim 2.1, L1 = AL
′
1A−1, L2 = AL

′
2A−1, . . . , Lm = AL

′
m A−1 form a basis of g

IMM
. Suppose

R
′
= ∑m

i=1 riL
′
i is a random element of g f , chosen by picking the ri’s independently and uniformly

at random from [2n3]. Then R = AR
′
A−1 = ∑m

i=1 riLi is a random element of g
IMM

and it follows
from Lemma 3.5 that the characteristic polynomial of R is square free with probability at least
1− 1

poly(n) . So assume henceforth that the characteristic polynomial of R (and hence also of R
′
) is

square free.

Moreover, from Figure 2 it follows that R has the structure as shown in Figure 4. Let h(x) =

∏d
i=1 hi(x) be the characteristic polynomial of R and R

′
, where hi(x) is the characteristic polyno-

mial of Ri, and g1(x), g2(x), . . . , gs(x) be the distinct irreducible factors of h(x) over F. Suppose
N ′

i is the null space of gi(R
′
). Thus Ni, the null space of gi(R) (equal to A · gi(R

′
) · A−1), is AN ′

i
for i ∈ [s]. We study the null spacesN1,N2, . . . ,Ns in the next two claims and show how to extract
out the irreducible invariant subspaces of g f from N ′

1,N ′
2, . . . ,N ′

s (as specified in Algorithm 3).
The proofs of these claims (using simple linear algebra) can be found in Appendix D.

Claim 4.1. For all i ∈ [s], let Ni and N ′
i be the null spaces of gi(R) and gi(R

′
). Then

1. Fn = N1 ⊕N2 ⊕ · · · ⊕ Ns = N
′
1 ⊕N

′
2 ⊕ · · · ⊕ N

′
s .

2. For all i ∈ [s], dim(Ni) = dim(N ′
i ) = degx(gi).

Claim 4.2. Suppose gi(x) is an irreducible factor of the characteristic polynomial hk(x) of Rk (depicted in
Figure 4) for some k ∈ [d]. Then the following holds:

1. If k ∈ [2, d− 1] then Ni ⊆ Uk (equivalently N ′
i ⊆ A−1Uk).

2. If k = 1 then Ni ⊆ U1,2 (equivalently N ′
i ⊆ A−1U1,2), and if k = d then Ni ⊆ Ud−1,d (equivalently

N ′
i ⊆ A−1Ud−1,d).

27



Claim 4.3. 1. If gl1(x), gl2(x), . . . , glr(x) are all the irreducible factors of hk(x) for k ∈ [2, d− 1] then
A−1Uk = N

′
l1
⊕N ′

l2 ⊕ · · · ⊕ N
′
lr .

2. If gl1(x), gl2(x), . . . , glr(x) are all the irreducible factors of h1(x)h2(x) (respectively hd−1(x)hd(x))
then A−1U1,2 = N ′

l1
⊕N ′

l2 ⊕ · · · ⊕ N
′
lr (respectively A−1Ud−1,d = N ′

l1
⊕N ′

l2 ⊕ · · · ⊕ N
′
lr ).

Proof. If k ∈ [2, d− 1] then N ′
l1
+N ′

l2 + · · ·+N
′
lr is a direct sum and

dim(A−1Uk) = degx(hk) =
r

∑
j=1

degx(glj) =
r

∑
j=1

dim(N ′
lj
), which follow from Claim 4.1.

Hence from Claim 4.2, A−1Uk = N
′
l1
⊕N ′

l2 ⊕ · · · ⊕ N
′
lr . The proof for the second part is similar.

Lemma 4.1. Given as input bases of the null spaces N ′
1, N ′

2, . . . , N ′
s we can compute bases of the spaces

A−1U1,2, A−1U2, . . . , A−1Ud−1, A−1Ud−1,d in deterministic polynomial time.

Proof. Recall N ′
i is the null space of gi(R

′
), where gi(x) is an irreducible factor of hk(x) for some

k ∈ [d].

Case A: k ∈ [2, d − 1]; from Claim 4.2 it follows that N ′
i ⊆ A−1Uk. Pick a basis vector v in N ′

i
and compute the closure of v under the action of g f using Algorithm 4 given in Section 4.2. Since
the closure of v is the smallest invariant subspace of g f containing v, by Claim 3.3 the closure of v
equals A−1Uk.

Case B: k = 1 or k = d; the arguments for k = 1 and k = d are similar. We prove it for k = 1.
From Claim 4.2 we have N ′

i ⊆ A−1U1,2. Pick a basis vector v of N ′
i and compute its closure

under the action of g f using Algorithm 4. Similar to case A, this gives us an invariant subspace
of g f contained in A−1U1,2 and by Claim 3.4 this invariant subspace is either A−1U2 or A−1U1,2.
However,N ′

i ∩ A−1U2 (by Claim 4.3) is empty, as gi(x) is an irreducible factor of h1(x) (not h2(x)).
Hence v /∈ A−1U2 and the closure of v must be A−1U1,2.

To summarize, first we pick a random element R′ in g f , find its characteristic polynomial h(x)
and factorize h(x) to get the irreducible factors g1(x), g2(x), . . . , gs(x). Then we compute the null
spaces N ′1,N ′2, . . . ,N ′s of g1(R′), g2(R′), . . . , gs(R′) respectively. By applying Lemma 4.1, we find
the invariant subspaces of g f , A−1U1,2, A−1U2, . . . , A−1Ud−1, A−1Ud−1,d from these null spaces. We
present this formally in Algorithm 3.

Comments on Algorithm 3:

a. Observe that in step 6 of the algorithm we need F to be Q (as assumed) or a finite field be-
cause univariate factorization can be done effectively over such fields [LLL82, Ber67, CZ81].

b. When Algorithm 3 is invoked in Algorithm 2 for an n variate degree d polynomial f , there
may not exists a w ∈ Nd−1 and an A ∈ GL(n) such that f = IMMw,d(Ax). We point out a

32reusing symbols

28



Algorithm 3 Computing irreducible invariant subspaces of g f

INPUT: A basis {L′1, L′2, . . . , L′m} of g f .
OUTPUT: Bases of the irreducible invariant subspaces of g f .

1. Pick a random element R′ = ∑m
j=1 rjL′j in g f , where rj ∈R [2n3].

2. Compute the characteristic polynomial h(x) of R′.
3. if h(x) is not square free then
4. Output ‘Fail’ and stop.
5. end if
6. Factor h(x) = g1(x) · g2(x) . . . gs(x) into irreducible factors over F.
7. Find bases of the null spaces N ′1,N ′2, . . . ,N ′s of g1(R′), g2(R′), . . . , gs(R′) respectively.
8. For every N ′i , pick a vector v in the basis of N ′i and compute the closure of v with respect to

g f using Algorithm 4 given in Section 4.2.
9. Let {V1,V2, . . . ,Vs} be the list of the closure spaces; check for all i 6= j and i, j ∈ [s], whether
Vi = Vj to remove repetitions from the above list and get the pruned list {V1,V2, . . . ,Vd}32.

10. Output the set {V1,V2, . . . ,Vd}.

few additional checks that need to be added to the above algorithm to handle this case. In
step 9, if the pruned list (after removing repetitions) has size other than d then output ‘Fail’.
Also from Claim 3.4, exactly two subspaces in the pruned list {V1,V2, . . . ,Vd}, say V2 and
Vd−1, should be subspaces of other vector spaces, say V1 and Vd respectively. We can find
these two spaces by doing a pairwise check among the d vector spaces. If such subspaces do
not exist among V1,V2, . . . ,Vd then output ‘Fail’. Further, if Fn 6= V1 ⊕ V3 ⊕ · · · ⊕ Vd−2 ⊕ Vd
(assuming V2 ⊆ V1 and Vd−1 ⊆ Vd) then output ‘Fail’.

c. It follows from the above discussion , if f = IMMw,d(Ax) then we can assume V3,V4, . . . ,Vd−2
are the spaces A−1U3, A−1U4, . . . , A−1Ud−2 in some unknown order. The spaces V1,V2 and
Vd,Vd−1 are either the spaces A−1U1,2, A−1U2 and A−1Ud−1,d, A−1Ud−1 respectively, or the
spaces A−1Ud−1,d, A−1Ud−1 and A−1U1,2, A−1U2 respectively.

4.2 Closure of a vector under the action of g f

Algorithm 4 computes the closure of v ∈ Fn under the action of a space L spanned by n × n
matrices. Let {M1, M2, . . . , Mm} be a basis of L where Mi ∈ Fn×n. For a set of vectors T =
{v1, v2, . . . , vq} ⊆ Fn, let L · T denote the set {Mavb | a ∈ [m] and b ∈ [q]}.

Claim 4.4. Algorithm 4 computes the closure of v ∈ Fn under the action of L in time polynomial in n and
the bit length of the entries of v and M1, M2, . . . , Mm.

Proof. The closure of v under the action of L is the F-linear span of all vectors of the form µ.v,
where µ is a non-commutative monomial in M1, M2, . . . , Mm (including unity). Algorithm 4 com-
putes exactly this set and hence the closure of v. Moreover, dim(V (i)) ≤ n and in every iteration
of the while loop dim(V (i)) > dim(V (i−1)), until V (i) = V (i−1). Hence, Algorithm 4 runs in time
polynomial in n and the bit length of the entries of v and M1, M2, . . . , Mm.

29



Algorithm 4 Computing the closure of v under the action of L
INPUT: v ∈ Fn and a basis {M1, M2, . . . , Mm} of L.
OUTPUT: Basis of the closure of v under the action of L.

1. Let V (0) = {v} and V (1) = spanF{v, M1v, . . . , Mmv}.
2. Set i = 1.
3. Compute a basis of V (1) and let T1 = {v1, v2, . . . , vq1} be this basis.
4. while V (i−1) 6= V (i) do
5. Set i = i + 1.
6. Compute a basis for V (i) = spanF{Ti−1 ∪L · Ti−1} and let Ti = {v1, v2, . . . , vqi} be this basis.
7. end while
8. Output Ti.

5 Reconstruction of full rank ABP for f

Let f be a polynomial equivalent to IMMw,d for some (unknown) w ∈ Nd−1. In this section, we
show that the invariant subspaces of g f let us compute a w ∈ Nd−1 and an A ∈ GL(n) such
that f = IMMw,d(Ax). Since f is equivalent to IMMw,d, it is computable by a full rank ABP X1 ·
X2 . . . Xd−1 · Xd of width w and length d with linear form entries in the matrices. We call this full
rank ABP A which, as explained below, is not the only full rank ABP computing f .

Many full rank ABPs for f : The full rank ABP X′1 · X′2 · · ·X′d resulting from each of the following
three transformations on A still computes f ,

1. Transposition: Set X
′
k = XT

d+1−k for k ∈ [d].

2. Left-right multiplications: Let A1, . . . , Ad−1 be matrices such that Ak ∈ GL(wk) for every k ∈
[d− 1]. Set X

′
1 = X1 · A1, X

′
d = A−1

d−1 · Xd, and X
′
k = A−1

k−1 · Xk · Ak for k ∈ [2, d− 1].

3. Corner translations: Suppose {C11, C12, . . . , C1w2} and {Cd1, Cd2, . . . , Cdwd−2} are two sets con-
taining anti-symmetric matrices in Fw1×w1 and Fwd−1×wd−1 respectively. Let Y2 ∈ F[x]w1×w2

(respectively Yd−1 ∈ F[x]wd−2×wd−1) be a matrix with its i-th column (respectively i-th row)
equal to C1i · XT

1 (respectively XT
d · Cdi). Set X

′
2 = X2 +Y2, X

′
d−1 = Xd−1 +Yd−1, and X

′
k = Xk

for k ∈ [d] \ {2, d− 1}.

In each of the above three cases f = X′1 · X′2 · · ·X′d; this is easy to verify for cases 1 and 2, in case 3
observe that X1 · C1i · XT

1 = XT
d · Cdi · Xd = 0.

It turns out that the full rank ABPs obtained by (repeatedly) applying the above three transfor-
mations on A are the only full rank ABPs computing f . This would follow from the discussion in
Section 6. Although there are multiple full rank ABPs for f , the layer spaces of these ABPs are
unique (Lemma 5.1). This uniqueness of the layer spaces essentially facilitates the recovery of a
full rank ABP for f . Let us denote the span of the linear forms33 in X1 and X2 (respectively Xd−1
and Xd) by X1,2 (respectively Xd−1,d).

33Identify linear forms with vectors in Fn as mentioned in Definition 2.6.

30



Lemma 5.1 (Uniqueness of the layer spaces of full rank ABP for f ). Suppose X1 · X2 · · ·Xd and
X′1 · X′2 · · ·X′d are two full rank ABPs of widths w = (w1, w2, . . . , wd−1) and w′ = (w′1, w′2, . . . , w′d−1)
respectively, computing the same polynomial f . Then one of the following two cases is true:

a. w′k = wk for k ∈ [d − 1], and the spaces X ′1,X ′1,2,X ′3, . . . , X ′d−1,d,X ′d are the spaces X1,X1,2,X3,
. . . ,Xd−1,d,Xd respectively.

b. w′k = wd−k for k ∈ [d− 1], and the spacesX ′1,X ′1,2,X ′3, . . . ,X ′d−1,d,X ′d are the spacesXd,Xd−1,d,Xd−2,
. . . ,X1,2,X1 respectively.

The lemma would help characterize the group of symmetries of IMM in Section 6; the proof would
follow readily from Claim 5.1 in Section 5.2. With an eye on Section 6 and for better clarity in the
reduction to almost set-multilinear ABP in Section 5.2, we take a slight detour and show next how
to compute these ‘unique’ layer spaces of A.

5.1 Computing layer spaces from invariant subspaces of g f

Algorithm 3 outputs bases of the irreducible invariant subspaces {Vi | i ∈ [d]} of g f . Recall, we
assumed without loss of generality that V2 and Vd−1 are subspaces of V1 and Vd respectively. The
spaces V1,V2 and Vd,Vd−1 are either the spaces A−1U1,2, A−1U2 and A−1Ud−1,d, A−1Ud−1 respec-
tively, or the spaces A−1Ud−1,d, A−1Ud−1 and A−1U1,2, A−1U2 respectively. Every other Vk is equal
to A−1Uσ(k) for some permutation σ on [3, d− 2] (σ is not known at the end of Algorithm 3). Hence,

Fn = V1 ⊕ V3 ⊕ · · · ⊕ Vd−2 ⊕ Vd. (3)

Since V2 ⊆ V1, we can start with a basis of V2 and fill in more elements from the basis of V1 to get
a new basis of V1. Thus we can assume the basis of V2 is contained in the basis of V1. Likewise,
the basis of Vd−1 is contained in the basis of Vd.

Order the basis vectors of V1 such that the basis vectors of V2 are at the end and order the basis
vectors of Vd such that the basis vectors of Vd−1 are at the beginning. For k ∈ [3, d− 2], the basis
vectors of Vk are ordered in an arbitrary way. Let uk denote the dimension of Vk for k ∈ [d]. We
identify the space Vk with an n× uk matrix Vk, where the i-th column in Vk is the i-th basis vector
of Vk in the above specified order. Algorithm 5 computes the layer spaces of A using V1 to Vd. Let
t2 = u1 and tk = uk + tk−1 for k ∈ [3, d− 2].

Comments on Algorithm 5: Algorithm 2 invokes Algorithm 5 only after Algorithm 3, which
returns ‘Fail’ if Fn 6= V1 ⊕ V3 ⊕ · · · ⊕ Vd−2 ⊕ Vd (see comments after Algorithm 3). This ensures
Equation (3) is satisfied and so V−1 exists in step 2 of the above algorithm, even if there are no
w ∈Nd−1 and A ∈ GL(n) such that f = IMMw,d(Ax).

Lemma 5.2. If f = X1 · X2 · · ·Xd and Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd is the output of Algorithm 5
then there is a permutation σ on [3, d− 2] such that the following hold:

1. For every k ∈ [3, d− 2], Yk = Xσ(k).

2. Either Y1,Y1,2 and Yd,Yd−1,d are X1,X1,2 and Xd,Xd−1,d respectively, or Y1,Y1,2 and Yd,Yd−1,d
are Xd,Xd−1,d and X1,X1,2 respectively.

The proof is given in Appendix E.

31



Algorithm 5 Computing the layer spaces of A
INPUT: Bases of the irreducible invariant subspaces of g f .
OUTPUT: Bases of the layer spaces of A.

1. Form an n × n matrix V by concatenating the columns of the matrices V1, V3, . . . , Vd−2, Vd in
order, that is V = [V1 | V3 | . . . | Vd−2 | Vd].

2. Compute V−1. Number the rows of V−1 by 1 to n.
3. Let Y1 be the space spanned by the first u1 − u2 rows of V−1, and Y1,2 be the space spanned

by the first u1 rows of V−1. Let Yd−1,d be the space spanned by the last ud rows of V−1 and Yd
be the space spanned by the last ud − ud−1 rows of V−1. Finally, for every k ∈ [3, d− 2], let Yk
be the space spanned by the rows of V−1 that are numbered by tk−1 + 1 to tk−1 + uk. Output
the bases of the spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd in order.

5.2 Reduction to almost set-multilinear ABP

The outline: Once the invariant spaces of g f are computed, the reduction proceeds like this: As
observed in the proof of Lemma 5.2, the matrix V in Algorithm 5 equals A−1E where E looks as
shown in Figure 14. If f = IMMw,d(Ax) then f (Vx) = IMMw,d(Ex). Owing to the structure of
E, f (Vx) is computed by a full rank almost set-multilinear ABP, except that the ordering of the
groups of variables occurring in the different layers of the ABP is unknown as σ is unknown. The
‘correct’ ordering along with a width vector can be retrieved by applying evaluation dimension,
thereby completing the reduction. For a slightly neater presentation of the details (and with the
intent of proving Lemma 5.1), we deviate from this strategy a little bit and make use of the layer
spaces that have already been computed by Algorithm 5.

The details: Algorithm 5 computes the spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd which (according to
Lemma 5.2) are either the spaces X1,X1,2,Xσ(3), . . . ,Xσ(d−2),Xd−1,d,Xd respectively, or the spaces
Xd,Xd−1,d,Xσ(3), . . . , Xσ(d−2),X1,2,X1 respectively, for some unknown permutation σ on [3, d− 2].
The claim below (proved in Appendix E) shows how to correctly reorder these layer spaces.

Claim 5.1. There is a randomized polynomial time algorithm that takes input the bases of the layer spaces
Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd and with probability at least 1− 1

poly(n) reorders these layer spaces and
outputs a width vector w′ such that the reordered sequence of spaces and w′ are:

1. either X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and (w1, w2, . . . , wd−1) respectively,

2. or Xd,Xd−1,d,Xd−2, . . . , X3,X1,2,X1 and (wd, wd−1, . . . , w1) respectively.

Note: Until the algorithm in the claim is applied to reorder the spaces, Algorithm 2 is totally
oblivious of the width vector w (it has been used only in the analysis thus far). So, due to the
legitimacy of the transposition transformation mentioned at the beginning of this section, we may
as well assume that the w′ in the above claim is in fact our w, and the output ordered sequence of
spaces is X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd.

Claim 5.2. Given bases of the spaces X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and w, we can find an Â ∈ GL(n)
in polynomial time such that f (Âx) is computable by a full rank almost set-multilinear ABP of width w.

Proof. Identify the variables x1, . . . , xn with the variables x1 ] . . . ] xd of IMMw,d following the
ordering prescribed in Section 2.3. The map x 7→ Âx should satisfy the following conditions:

32



(a) For every k ∈ [3, d − 2], the linear forms corresponding34 to the basis vectors of Xk map to
distinct variables in xk.

(b) The linear forms corresponding to the basis vectors in X1 (similarly, Xd) map to distinct vari-
ables in x1 (similarly, xd).

(c) The linear forms corresponding to the basis vectors in X1,2 (similarly, Xd−1,d) map to distinct
variables in x1 ] x2 (similarly, xd−1 ] xd).

Conditions (b) and (c) can be simultaneously satisfied as the basis of X1 (similarly, Xd) is contained
in the basis of X1,2 (similarly, Xd−1,d) by construction. Such an Â can be easily obtained.

We summarize the discussion in Algorithm 6.

Algorithm 6 Reduction to full rank almost set-multilinear ABP
INPUT: Bases of the layer spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd from Algorithm 5.
OUTPUT: A w ∈ Nd−1 and an Â ∈ GL(n) such that f (Âx) is computable by a full rank almost
set-multilinear ABP of width w.

1. Reorder the layer spaces to X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and obtain w (using Claim 5.1).
/* This step succeeds with high probability if f is equivalent to IMMw,d for some w. */

2. Find Â ∈ GL(n) from the reordered spaces and w (using Claim 5.2).

Comments on Algorithm 6: The proof of Claim 5.1 includes Observation E.1 which helps Al-
gorithm 6 in step 1 to reorder the layer spaces. If f is not equivalent to IMMw,d for some w then
Algorithm 6 may fail in step 1, as at some stage it may not be able to find a variable set zk such that
Evaldimyj]zk(h) < |zk| (see proof of Observation E.1). When Algorithm 2 invokes Algorithm 6, if
step 1 fails then the latter outputs ‘Fail’ and stops.

5.3 Reconstructing almost set-multilinear ABP

We prove Claim 2.4 in this section. Let h = f (Âx); identify x with the variables x1 ] . . . ] xd of
IMMw,d as before. From Claim 5.2, h is computable by a full rank almost set-multilinear ABP of
width w. Algorithm 2 uses Algorithm 7 to reconstruct a full rank almost set-multilinear ABP for
h and then it replaces x by Â−1x to output a full rank ABP for f . The correctness of Algorithm 7
is presented as part of the proof of Claim 2.4. We begin with the following two observations the
proofs of which appear in Appendix E.

Observation 5.1. If h is computable by a full rank almost set-multilinear ABP of width w then there is a
full rank almost set-multilinear ABP of width w in canonical form computing h.

Observation 5.2. Let X1 · X2 · · ·Xd be a full rank almost set-multilinear ABP, and Ck = Xk · · ·Xd for
k ∈ [2, d]. Let the l-th entry of Ck be hkl for l ∈ [wk−1] . Then the polynomials {hk1, hk2, · · · , hkwk−1} are
F-linearly independent.

Notations for Algorithm 7: For k ∈ [d− 1], let tk = |x1] x2] · · · ] xk| and mk = |xk+1] xk+2] · · · ]
xd|. The (i, j)-th entry of a matrix X is denoted by X(i, j), and ewk ,i denotes a vector in Fwk with the

34Recall, linear forms in x variables and vectors in Fn are naturally identified with each other.

33



i-th entry 1 and other entries 0. Let yi denote the following partial assignment to the x1 variables:
x(1)i , . . . , x(1)w1 are kept intact, while the remaining variables are set to zero. Similarly, zj denotes the

following partial assignment to the xd variables: x(d)j , . . . , x(d)wd−1 are kept intact, while the remaining
variables are set to zero. The notation h(ai, xk, bj) means the variables x1 ] . . . ] xk−1 are given the
assignment ai ∈ Ftk−1 and the variables xk+1 ] . . . ] xd are given the assignment bj ∈ Fmk . The
connotations for h(yi, x2, bj) and h(ai, xd−1, zj) are similar. The function poly(n) is a suitably large
polynomial function in n, say n7.

Proof of Claim 2.4. By Observation 5.1, there is a full rank ABP X′1 · X′2 · · ·X′d in canonical form

computing h. Hence X1 = X′1 = (x(1)1 x(1)2 . . . x(1)w1 ) and Xd = X′d = (x(d)1 x(d)2 . . . x(d)wd−1). We show
next that with probability at least 1 − 1

poly(n) , Algorithm 7 constructs X2, X3, . . . , Xd−1 such that

X2 = X′2 · T2, Xd−1 = T−1
d−2 · X′d−1 and Xk = T−1

k−1 · X′k · Tk for every k ∈ [3, d− 2], where Ti ∈ GL(wi)
for i ∈ [2, d− 2].

Steps 3–13: The matrix X2 is formed in these steps. By Observation 5.2, the polynomials h31, . . . , h3w2

are F-linearly independent. Since b1, b2, . . . , bw2 are randomly chosen in step 3, the matrix T2 with
(r, c)-th entry h3r(bc) is in GL(w2) with high probability. Let X′2T2(i, j) be the (i, j)-th entry of X′2T2.
Observe that

h(yi, x2, bj) = X′2T2(i, j) · x(1)i + . . . + X′2T2(w1, j) · x(1)w1 .

As h(yi, x2, bj) is a quadratic polynomial, we can compute it from blackbox access using the sparse
polynomial interpolation algorithm in [KS01]. By induction on the rows, X2(p, j) = X′2T2(p, j) for
every p ∈ [i + 1, w1] and j ∈ [w2]. So in step 8, gj = X′2T2(i, j) · x(1)i leading to X2(i, j) = X′2T2(i, j)
in step 9.

Steps 15–23: The matrices X3, . . . , Xd−2 are formed in these steps. By the time the algorithm
reaches step 17, it has already computed X2, . . . , Xk−1 such that X2 = X′2T2 and Xq = T−1

q−1X′qTq

for q ∈ [3, k − 1], where Tq ∈ GL(wq). So, X′1 . . . X′k−1 = X1 . . . Xk−1T−1
k−1. As the linear forms

in X1, . . . , Xk−1 are F-linearly independent (otherwise the algorithm would have terminated in
step 13 or 21), we can easily compute points {a1, a2, . . . , awk−1} satisfying the required condition
in step 17. By Observation 5.2, the polynomials h(k+1)1, . . . , h(k+1)wk

are F-linearly independent.
Since b1, b2, . . . , bwk are randomly chosen in step 18, the matrix Tk with (r, c)-th entry h(k+1)r(bc)

is in GL(wk) with high probability. Now observe that h(ai, xk, bj) is the (i, j)-th entry of T−1
k−1X′kTk,

which implies Xk = T−1
k−1X′kTk from step 20.

Steps 25–35: In these steps, matrix Xd−1 is formed. The argument showing Xd−1 = T−1
d−2X′d−1 is

similar to the argument used for steps 3–13, except that now we induct on columns instead of
rows.

The output ABP X1 . . . Xd is in canonical form as X′1 . . . X′d is also in canonical form. It is clear that
the total running time of the algorithm is poly(n, β), where β is the bit length of the coefficients of
h which influences the bit length of the values returned by the blackbox.

34



Algorithm 7 Reconstruction of full rank almost set-multlinear ABP
INPUT: Blackbox access to an n variate polynomial h and the width vector w.
OUTPUT: A full rank almost set-multilinear ABP of width w in canonical form computing h.

1. Set X1 = (x(1)1 x(1)2 . . . x(1)w1 ) and Xd = (x(d)1 x(d)2 . . . x(d)wd−1)
T.

2.
3. Choose w2 random points {b1, b2, . . . , bw2} from Sm2 such that S ⊂ F and |S| = poly(n).
4. Set i = w1.
5. while i ≥ 1 do
6. for every j ∈ [w2] do
7. Interpolate the quadratic h(yi, x2, bj).

8. Set gj = h(yi, x2, bj)−∑w1
p=i+1 X2(p, j) · x(1)p .

9. If gj is not divisible by x(1)i , output ‘Fail’. Else, set X2(i, j) = gj/x(1)i .
10. end for
11. Set i = i− 1.
12. end while
13. If the linear forms in X2 are not F-linearly independent, output ‘Fail’.
14.
15. Set k = 3.
16. while k ≤ d− 2 do
17. Find wk−1 evaluations, {a1, a2, . . . , awk−1} ⊂ Ftk−1 , of x1 ] x2 ] · · · ] xk−1 variables such that

X1 · X2 · · ·Xk−1 evaluated at ai equals ewk−1,i.
18. Choose wk random points {b1, b2, . . . , bwk} from Smk such that S ⊂ F and |S| = poly(n).
19. Interpolate the linear forms h(ai, xk, bj) for i ∈ [wk−1], j ∈ [wk].
20. Set Xk(i, j) = h(ai, xk, bj) for i ∈ [wk−1], j ∈ [wk].
21. If the linear forms in Xk are not F-linearly independent, output ‘Fail’.
22. Set k = k + 1.
23. end while
24.
25. Find wd−2 evaluations, {a1, a2, . . . , awd−2} ⊂ Ftd−2 , of x1 ] x2 ] · · · ] xd−2 variables such that

X1 · X2 · · ·Xd−2 evaluated at ai equals ewd−2,i .
26. Set j = wd−1.
27. while j ≥ 1 do
28. for every i ∈ [wd−2] do
29. Interpolate the quadratic h(ai, xd−1, zj).

30. Set gi = h(ai, xd−1, zj)−∑
wd−1
q=j+1 Xd−1(i, q) · x(d)q .

31. If gi is not divisible by x(d)j , output ‘Fail’. Else, set Xd−1(i, j) = gi/x(d)j .
32. end for
33. Set j = j− 1.
34. end while
35. If the linear forms in Xd−1 are not F-linearly independent, output ‘Fail’.
36.
37. Output X1 · X2 · · ·Xd−1 · Xd as the full rank almost set-multilinear ABP for h.

35



6 Symmetries of IMM

Recall from Section 2.3, IMMw,d (for brevity IMM) is the n variate polynomial computed by the full
rank ABP Q1 ·Q2 · · ·Qd where the set of variables in Qk is xk for every k ∈ [d]. In this section, we
determine the group of symmetries of IMM (denoted by G

IMM
) and show that IMM is characterized

by its symmetries. We make a note of a few notations and terminologies below.

Notations:

• Calligraphic letters H, C,M and T denote subgroups of G
IMM

. Let C and H be subgroups of
G

IMM
such that C ∩ H = In and for every H ∈ H and C ∈ C, H · C · H−1 ∈ C. Then C oH

denotes the semidirect product of C andH 35.

• For every A ∈ G
IMM

the full rank ABP obtained by replacing x by Ax in Q1 · Q2 · · ·Qd is
termed as the full rank ABP determined by A. This full rank ABP also computes IMM.

• Let X be a matrix with entries as linear forms in y ] z variables. We break X into two parts
X(y) and X(z) such that X = X(y) + X(z). The (i, j)-th linear form in X(y) (respectively
X(z)) is the part of the (i, j)-th linear form of X in y (respectively z) variables.

6.1 The group G
IMM

Three subgroups of G
IMM

: As before, let w = (w1, w2, . . . , wd−1) and wk > 1 for every k ∈ [d− 1].
In Theorem 2 below, we show that G

IMM
is generated by three special subgroups.

1. Transposition subgroup T : If wk 6= wd−k for any k ∈ [d− 1] then T is the trivial group con-
taining only In. Otherwise, if wk = wd−k for every k ∈ [d− 1] then T is the group consisting
of two elements In and T. The matrix T is such that the full rank ABP determined by T is
QT

d ·QT
d−1 · · ·QT

1 . Clearly, T is a permutation matrix and T2 = In.

2. Left-right multiplications subgroupM: An M ∈ GL(n) is inM if and only if the full rank ABP
X1 · X2 · · ·Xd determined by M has the following structure: There are matrices A1, . . . , Ad−1
with Ak ∈ GL(wk) for every k ∈ [d − 1], such that X1 = Q1 · A1, Xd = A−1

d−1 · Qd, and
Xk = A−1

k−1 ·Qk · Ak for k ∈ [2, d− 1]. It is easy to verify thatM is a subgroup of G
IMM

and is
isomorphic to the direct product GL(w1)× . . .× GL(wd−1).

3. Corner translations subgroup C: A C ∈ GL(n) is in C if and only if the full rank ABP X1 ·
X2 · · ·Xd determined by C has the following structure: There are two sets {C11, C12, . . . , C1w2}
and {Cd1, Cd2, . . . , Cdwd−2} containing anti-symmetric matrices in Fw1×w1 and Fwd−1×wd−1 re-
spectively such that X2 = Q2 + Y2 and Xd−1 = Qd−1 + Yd−1, where Y2 ∈ F[x1]

w1×w2 (respec-
tively Yd−1 ∈ F[xd]

wd−2×wd−1) is a matrix with its i-th column (respectively i-th row) equal to
C1i · QT

1 (respectively QT
d · Cdi). For every other k ∈ [d] \ {2, d− 1}, Xk = Qk. Observe that

Q1 · C1i · QT
1 = QT

d · Cdi · Qd = 0. It can also be verified that C is an abelian subgroup of
G

IMM
and is isomorphic to the direct product Aw2

w1 ×A
wd−2
wd−1 , where Aw is the group of w× w

anti-symmetric matrices under matrix addition and Ak
w is the k times direct product of this

group.
35C oH is the set CH which can be easily shown to be a subgroup of GIMM , and it also follows that C is a normal

subgroup of C oH.

36



Theorem 2 (Symmetries of IMM). G
IMM

= C oH, whereH =Mo T .

We prove Theorem 2 below. Following are a couple of remarks on it.

Remarks:

(a) Characterization: Let f be an n variate degree d polynomial satisfying the following: For any n
variate degree d polynomial g, G f = Gg if and only if f = α · g for some nonzero α ∈ F. Then
f is said to be characterized by G f . We prove IMM is characterized by G

IMM
in Lemma 6.1. The

groupsM and C generate the ‘continuous symmetries’ of IMM.

(b) Comparison with a related work: In [Ges16] a different choice of the IMM polynomial is consid-
ered, namely the trace of a product of d square symbolic matrices – let us call this polynomial
IMM′ 36. The group of symmetries of IMM′ is determined in [Ges16] and it is shown that
IMM′ is characterized by GIMM′ . The group of symmetries of IMM′, like IMM, is generated
by the transposition subgroup, the left-right multiplication subgroup, and (instead of the cor-
ner translations subgroup) the circular transformations subgroup – an element in this subgroup
cyclically rotates the order of the matrices and hence does not change the trace of the product.

Proof of Theorem 2

We begin with the following observation which is immediate from Lemma 5.1.

Observation 6.1. If X1 ·X2 · · ·Xd is a width w′ = (w′1, w′2, . . . , w′d−1) full rank ABP computing IMMw,d
then either

1. w′k = wk for k ∈ [d− 1], and the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are the spaces Q1,Q1,2,Q3,
. . . ,Qd−1,d,Qd respectively, or

2. w′k = wd−k for k ∈ [d− 1], and the spacesX1,X1,2,X3, . . . ,Xd−1,d,Xd are the spacesQd,Qd−1,d,Qd−2,
. . . ,Q1,2,Q1 respectively.

From the definitions of T , M and C it follows that C ∩M = C ∩ T = M∩ T = In. The claim
below shows G

IMM
is generated by C,M and T .

Claim 6.1. For every A ∈ G
IMM

, there exist C ∈ C, M ∈ M and T̃ ∈ T such that A = C ·M · T̃.

Proof. Let X1 · X2 · · ·Xd be the full rank ABP A of width w determined by A. If wk = wd−k for k ∈
[d − 1] then the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are either equal to Q1,Q1,2,Q3, . . . ,Qd−1,d,Qd
respectively or Qd,Qd−1,d,Qd−2, . . . ,Q1,2,Q1 respectively (from Observation 6.1). Otherwise if
wk 6= wd−k for any k ∈ [d − 1] then the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd have only one choice
and are equal to Q1,Q1,2,Q3, . . . ,Qd−1,d,Qd respectively. We deal with these two choices of layer
spaces separately.

Case A: Suppose X1,X1,2,X3, . . . , Xd−1,d,Xd are equal to Q1,Q1,2,Q3, . . . ,Qd−1,d,Qd respectively.
Hence A looks as shown in Figure 5. The linear forms in X2, Xd−1 are in variables x1 ] x2, xd−1 ] xd

36The complexities of IMM and IMM′ are polynomially related to each other, in particular both are complete for
algebraic branching programs under p-projections. But their groups of symmetries are slightly different.

37



x1

x2

x3

xd

xd−1

x1 x2 x3 xdxd−1

all entries outside
the shaded region

are zero

Figure 5: Matrix A in G
IMM

respectively. Further,

d

∏
k=1

Xk = X1 · (X2(x1) + X2(x2)) ·
(

d−2

∏
k=3

Xk

)
· (Xd−1(xd−1) + Xd−1(xd)) · Xd = IMM.37

Since A is a full rank ABP and each monomial in IMM contains one variable from each set xk,

X1 · X2(x2) ·
(

d−2

∏
k=3

Xk

)
· Xd−1(xd−1) · Xd = IMM, and also

X1 ·X2(x1) ·∏d−2
k=3 Xk ·Xd−1(xd−1) ·Xd = 0 and X1 ·X2(x2) ·∏d−2

k=3 Xk ·Xd−1(xd) ·Xd = 0 implying

X1 · X2(x1) = 0T
w2

and Xd−1(xd) · Xd = 0wd−2 , (4)

where 0w is a zero (column) vector in Fw. Observation 6.2, the proof of which is in Appendix F,
proves the existence of a matrix M ∈ M such that the full rank ABP determined by M is X1 ·
X2(x2) · X3 · · ·Xd−2 · Xd−1(xd−1) · Xd.

Observation 6.2. There are matrices A1, . . . , Ad−1 with Ak ∈ GL(wk) for every k ∈ [d− 1], such that
X1 = Q1 · A1, X2(x2) = A−1

1 · Q2 · A2, Xd−1(xd−1) = A−1
d−2 · Qd−1 · Ad−1, Xd = A−1

d−1 · Qd, and
Xk = A−1

k−1 ·Qk · Ak for k ∈ [3, d− 2].

We now show the existence of a C ∈ C such that the full rank ABP determined by C · M is
X1 · X2 · · ·Xd, from which the claim follows by letting T̃ = In. Since the linear forms in X1
are F-linearly independent, there are w1 × w1 matrices {C11, C12, . . . , C1w2} such that the i-th col-
umn of X2(x1) is C1iXT

1 . So from Equation (4), X1 · C1i · XT
1 = 0 (equivalently Q1 · C1i · QT

1 = 0)
implying C1i is an anti-symmetric matrix for every i ∈ [w2]. Similarly, there are wd−1 × wd−1
anti-symmetric matrices {Cd1, Cd2, . . . , Cdwd−2} such that the i-th row of Xd−1(xd) is XT

d Cdi. Let
C ∈ GL(n) be such that the ABP determined by it is Q1Q′2Q3 · · ·Qd−2Q′d−1Qd where Q′2 = Q2 +Y2

and Q′d−1 = Qd−1 + Yd−1, the i-th column (respectively i-th row) of Y2 (respectively Yd−1) is C1iQT
1

37We abuse notation slightly and write the 1× 1 matrix [IMM]1×1 as IMM.

38



(respectively QT
d−1Cdi). By construction, C ∈ C and the ABP determined by C ·M is X1 · X2 · · ·Xd.

Case B: Suppose X1,X1,2,X3, . . . , Xd−1,d,Xd are the spaces Qd,Qd−1,d,Qd−2, . . . ,Q1,2,Q1 respec-
tively. This implies wk = wd−k for k ∈ [d − 1] and hence the full rank ABP determined by T is
QT

d · QT
d−1 · · ·QT

1 . From here the existence of M ∈ M and C ∈ C such that the full rank ABP
determined by M · C · T is X1 · X2 · · ·Xd follows just as in Case A. This completes the proof of the
claim.

Observe that if T ∈ T then for every M ∈ M, T · M · T−1 ∈ M. Let H = M o T . Clearly,
C ∩H = In. The following claim along with Claim 6.1 then conclude the proof of Theorem 2.

Claim 6.2. For every C ∈ C and H ∈ H, H · C · H−1 ∈ C.

Proof. Let H = M · T where M ∈ M and T ∈ T , and A = MT · C · T−1M−1. Suppose X1 ·
X2 · · ·Xd−1 · Xd is the ABP determined by A. The matrices T and T−1 in A together ensure that
the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are equal to Q1,Q1,2,Q3, . . . ,Qd−1,d,Qd respectively. Also
the matrices M and M−1 together ensure that Xi = Qi for i ∈ [d] \ {2, d− 1}, X2(x2) = Q2 and
Xd−1(xd−1) = Qd−1. Arguing as in Claim 6.1, we can infer that A ∈ C.

6.2 Characterization of IMM by G
IMM

For every f = α · IMM, where α ∈ F and α 6= 0, it is easily observed that G f = GIMM
. We prove the

converse in the following lemma for any homogeneous degree d polynomial in the x variables.

Lemma 6.1. Let f be a homogeneous degree d polynomial in n variables x = x1 ] . . . ] xd. If |F| > d + 1
and the left-right multiplications subgroup M of G

IMM
is contained in G f then f = α · IMM for some

nonzero α ∈ F.

Proof. First, we show that such an f is set-multilinear in the sets x1, . . . , xd: Every monomial in
f has exactly one variable from each of the sets x1, . . . , xd. As |F| > d + 1, there is a nonzero
ρ ∈ F that is not an e-th root of unity for any e ≤ d. Every element in M is defined by d − 1
matrices A1, . . . , Ad−1 such that Ak ∈ GL(wk) for every k ∈ [d − 1]. For a k ∈ [d − 1], consider
the element M ∈ M that is defined by Ak = ρ · Iwk and Al = Iwl for l ∈ [d− 1] and l 6= k. Then,
f (M · x) = f (x1, . . . , ρxk, ρ−1xk+1, . . . , xd), which by assumption is f . Comparing the coefficients of
the monomials of f (M · x) and f , we observe that in every monomial of f the number of variables
from xk and xk+1 must be the same as ρ is not an e-th root of unity for any e ≤ d. Since k is chosen
arbitrarily and f is homogeneous of degree d, f must be set-multilinear in the sets x1, . . . , xd.

The proof is by induction on the degree of f . For i ∈ [w1], let x2i be the set of variables in the i-th
row of Q2, and Q2i be the 1× w2 matrix containing the i-th row of Q2. Let IMMi be the degree
d − 1 iterated matrix multiplication polynomial computed by the ABP Q2i · Q3 · · ·Qd. As f is
set-multilinear, it can be expressed as

f = g1 · x(1)1 + . . . + gw1 · x
(1)
w1 , (5)

where g1, . . . , gw1 are set-multilinear polynomials in the sets x2, . . . , xd. Moreover, we can argue
that gi is set-multilinear in x2i, x3, . . . , xd as follows: Consider an N ∈ M that is defined by a diag-
onal matrix A1 ∈ GL(w1) whose (i, i)-th entry is ρ and all other diagonal entries are 1; every other

39



Al = Iwl for l ∈ [2, d− 1]. The transformation N scales the variable x(1)i by ρ and the variables in
x2i by ρ−1. By comparing the coefficients of the monomials of f (N · x) and f , we can conclude that
gi is set-multilinear in x2i, x3, . . . , xd for every i ∈ [w1].

LetM′ be the subgroup ofM containing those M ∈ M for which A1 = Iw1 . From Equation (5),
we can infer that gi(M · x) = gi for M ∈ M′, and hence the left-right multiplications subgroup
of G

IMMi
is contained in the group of symmetries of gi. As degree of gi is d − 1, by induction38

gi = αi · IMMi for some nonzero αi ∈ F and

f = α1 · IMM1 · x(1)1 + . . . + αw1 · IMMw1 · x
(1)
w1 . (6)

Next we show that α1 = . . . = αw1 thereby completing the proof.

For an i ∈ [2, w1], let A1 ∈ GL(w1) be the upper triangular matrix whose diagonal entries are 1,
the (1, i)-th entry is 1 and remaining entries are zero. Let U be the matrix inM defined by A1 and
Al = Iwl for l ∈ [2, d− 1]. The transformation U has the following effect on the variables:

x(1)i 7→ x(1)1 + x(1)i and

x(2)1j 7→ x(2)1j − x(2)ij for every j ∈ [w2],

every other x variable maps to itself. Applying U to f in Equation (6) we get

f = f (U · x) = α1 · (IMM1 − IMMi) · x(1)1 + . . . + αi · IMMi · (x(1)1 + x(1)i ) + . . . + αw1 · IMMw1 · x
(1)
w1

= f + (αi − α1) · IMMi · x(1)1 ,
⇒ αi − α1 = 0.

Since this is true for any i ∈ [2, w1], we have α1 = . . . = αw1 .

Acknowledgement

We would like to thank Rohit Gurjar for some initial discussion on this work.

References

[Aar08] Scott Aaronson. Arithmetic natural proofs theory is sought. http://www.

scottaaronson.com/blog/?p=336, 2008.

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-Sets for
ROABP and Sum of Set-Multilinear Circuits. SIAM J. Comput., 44(3):669–697, 2015.

[Agr05] Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Generators. In
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science, 25th
International Conference, Hyderabad, India, December 15-18, 2005, Proceedings, pages 92–
105, 2005.

38The base case d = 1 is trivial to show.

40

http://www.scottaaronson.com/blog/?p=336
http://www.scottaaronson.com/blog/?p=336


[AMS08] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New Results on
Noncommutative and Commutative Polynomial Identity Testing. In Proceedings of the
23rd Annual IEEE Conference on Computational Complexity, CCC 2008, 23-26 June 2008,
College Park, Maryland, USA, pages 268–279, 2008.

[Ang88] Dana Angluin. Queries and concept learning. Machine Learning., 2(4):319–342, 1988.

[AS06] Manindra Agrawal and Nitin Saxena. Equivalence of f-algebras and cubic forms. In
STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, Marseille,
France, February 23-25, 2006, Proceedings, pages 115–126, 2006.

[BBB+00] Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano
Varricchio. Learning functions represented as multiplicity automata. J. ACM, 47(3):506–
530, 2000.

[BC88] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant
number of registers. In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 254–257, 1988.

[Ber67] Elwyn Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal,
46:1853–1859, 1967.

[BSS88] Lenore Blum, Mike Shub, and Steve Smale. On a Theory of Computation over the Real
Numbers; NP Completeness, Recursive Functions and Universal Machines (Extended
Abstract). In 29th Annual Symposium on Foundations of Computer Science, White Plains,
New York, USA, 24-26 October 1988, pages 387–397, 1988.

[Car06] Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic geometry
and geometric modelling, Mathematics and Visualization, Springer, pages 237–247, 2006.

[CZ81] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials
over finite fields. Mathematics of Computation, 36:587–592, 1981.

[DdOS14] Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. Testing equivalence of poly-
nomials under shifts. In Automata, Languages, and Programming - 41st International Col-
loquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages
417–428, 2014.

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 243–252, 2013.

[Ges16] Fulvio Gesmundo. Gemetric aspects of iterated matrix multiplication. Journal of Algebra,
461:42–64, 2016.

[GKL11] Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Efficient Reconstruction of
Random Multilinear Formulas. In IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 778–787,
2011.

41



[GKL12] Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Reconstruction of depth-4
multilinear circuits with top fan-in 2. In Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 625–642,
2012.

[GKQ13] Ankit Gupta, Neeraj Kayal, and Youming Qiao. Random Arithmetic Formulas Can Be
Reconstructed Efficiently. In Proceedings of the 28th Conference on Computational Complex-
ity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 1–9, 2013.

[Gro12] Joshua A. Grochow. Symmetry and equivalence relations in classical and geometric complexity
theory. PhD thesis, The University of Chicago, 2012.

[Hås89] Johan Håstad. Tensor Rank is NP-Complete. In Automata, Languages and Programming,
16th International Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings, pages
451–460, 1989.

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing Polynomials which Are Easy to Compute
(Extended Abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, April 28-30, 1980, Los Angeles, California, USA, pages 262–272, 1980.

[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence
problem. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1409–
1421, 2011.

[Kay12a] Neeraj Kayal. Affine projections of polynomials: extended abstract. In Proceedings of the
44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May
19 - 22, 2012, pages 643–662, 2012.

[Kay12b] Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree
polynomials. Electronic Colloquium on Computational Complexity (ECCC), 19:81, 2012.

[KKO13] Adam Klivans, Pravesh Kothari, and Igor Carboni Oliveira. Constructing Hard Func-
tions Using Learning Algorithms. In Proceedings of the 28th Conference on Computational
Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 86–97, 2013.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of mul-
tivariate polynomials. In Proceedings on 33rd Annual ACM Symposium on Theory of Com-
puting, July 6-8, 2001, Heraklion, Crete, Greece, pages 216–223, 2001.

[KS03] Adam Klivans and Amir Shpilka. Learning arithmetic circuits via partial derivatives.
In Computational Learning Theory and Kernel Machines, 16th Annual Conference on Com-
putational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC,
USA, August 24-27, 2003, Proceedings, pages 463–476, 2003.

[KS09] Zohar Shay Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In Proceedings of the 24th Annual IEEE Conference on
Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 274–285, 2009.

42



[KST17] Neerak Kayal, Chandan Saha, and Sébastien Tavenas. An Average-Case Matrix Factor-
ization Problem. Manuscript in preparation, 2017.

[KT88] Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By Black
Boxes for Their Evaluation: Greatest Common Divisors, Factorization, Separation of
Numerators and Denominators. In 29th Annual Symposium on Foundations of Computer
Science, White Plains, New York, USA, 24-26 October 1988, pages 296–305, 1988.

[LLL82] A.K. Lenstra, H.W.jun. Lenstra, and Lászlo Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:515–534, 1982.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complex-
ity. Chicago J. Theor. Comput. Sci., 1997, 1997.

[MV16] Daniel Minahan and Ilya Volkovich. Complete Derandomization of Identity Testing
and Reconstruction of Read-Once Formulas. Electronic Colloquium on Computational
Complexity (ECCC), 23:171, 2016.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 410–418, 1991.

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms. In Advances in Cryptology - EURO-
CRYPT ’96, International Conference on the Theory and Application of Cryptographic Tech-
niques, Saragossa, Spain, May 12-16, 1996, Proceeding, pages 33–48, 1996.

[RR94] Alexander A. Razborov and Steven Rudich. Natural proofs. In Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec,
Canada, pages 204–213, 1994.

[Shp07] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication
gates. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, June 11-13, 2007, pages 284–293, 2007.

[Sin16] Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st Confer-
ence on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages
31:1–31:53, 2016.

[SV09] Amir Shpilka and Ilya Volkovich. Improved Polynomial Identity Testing for Read-Once
Formulas. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, 12th International Workshop, APPROX 2009, and 13th International Work-
shop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, pages 700–713,
2009.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010.

43



[Thi98] Thomas Thierauf. The isomorphism problem for read-once branching programs and
arithmetic circuits. Chicago J. Theor. Comput. Sci., 1998, 1998.

[Vol16] Ilya Volkovich. A guide to learning arithmetic circuits. In Proceedings of the 29th Confer-
ence on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pages 1540–1561,
2016.

A Incompleteness of full rank ABP

Observation A.1. For every sufficiently large m ∈N there is an m variate multilinear polynomial that is
not computable by full rank ABP.

Proof. A full rank ABP computing an m variate polynomial f has both its width and length
bounded by m, so f can also be computed by an ABP (not full rank) of width and length ex-
actly m. Hence, it is sufficient to show that there is an m variate multilinear polynomial that is not
computable by the latter kind of ABP. The number of edges in an ABP of width m and length m is
n = m2(m− 2) + 2m. Let these n edges be e1, e2, . . . , en and suppose the edge ei is labelled by the
affine form li = ∑m

j=1 cijxj + ci0. Treat cij’s as formal variables. Then each of the (2n
n ) coefficients of

the polynomial f computed by such an ABP is a polynomial in these n(m + 1) formal variables.
Since n(m + 1) < 2m for sufficiently large m, the coefficients of f restricted to just the multilinear
monomials m1,m2, . . . ,m2m are algebraically dependent. Let h 6= 0 be an annihilating polynomial
of these coefficients. Since h is nonzero, there is a point a = (a1, . . . , a2m) ∈ F2m

such that h(a) 6= 0.

It follows that the multilinear polynomial g def
= ∑2m

i=1 aimi is not computable by an ABP of width m
and length m, which means g is not computable by a full rank ABP.

B Proof of lemmas and claims in Section 2

Claim 2.1 (restated): If f (x) = g(Ax), where f and g are both n variate polynomials and A ∈ GL(n),
then the Lie algebra of f is a conjugate of the Lie algebra of g via A, i.e. g f = {A−1EA : E ∈ gg} =:
A−1gg A.

Proof. Let Q = (qi,j)i,j∈[n] ∈ g f . Hence,

∑
i,j∈[n]

qijxj ·
∂ f
∂xi

= 0 ⇒ ∑
i,j∈[n]

qijxj ·
∂g(Ax)

∂xi
= 0 . (7)

Let A = (aki)k,i∈[n]. Using chain rule of derivatives,

∂g(Ax)
∂xi

= ∑
k∈[n]

∂g
∂xk

(Ax) · aki .

44



Let A−1 = (bjl)j,l∈[n] and (Ax)l be the l-th entry of Ax. Then xj = ∑l∈[n] bjl(Ax)l . From Equa-
tion (7),

∑
i,j∈[n]

qij ·
(

∑
l∈[n]

bjl(Ax)l

)
·
(

∑
k∈[n]

∂g
∂xk

(Ax) · aki

)
= 0 ,

⇒ ∑
k,l∈[n]

(Ax)l ·
∂g
∂xk

(Ax) ·

 ∑
i,j∈[n]

akiqijbjl

 = 0 ,

⇒ ∑
k,l∈[n]

xl ·
∂g
∂xk
·

 ∑
i,j∈[n]

akiqijbjl

 = 0 (Substituting x by A−1x).

Observe that ∑i,j∈[n] akiqijbjl is the (k, l)-th entry of AQA−1. Hence, AQA−1 ∈ gg implying g f ⊆
A−1gg A. Similarly, gg ⊆ Ag f A−1 as g = f (A−1x), implying g f = A−1gg A.

Claim 2.2 (restated): With probability at least 1− 1
poly(n) , the rank of the matrix M = ( f j(bi))i,j∈[m]

is m − r where b1, b2, . . . , bm are chosen independently and uniformly at random from Sn ⊂ Fn with
|S| = dm · poly(n).

Proof. Recall, we assumed that the dimension of the F-linear space spanned by the n variate poly-
nomials f1, f2, . . . , fm is m − r. Without loss of generality assume f1, f2, . . . , fm−r form a basis of
this linear space. Clearly, the rank of M = ( f j(bi))i,j∈[m] is less than or equal to m − r. Let
Mm−r = ( f j(bi))i,j∈[m−r]. That Det(Mm−r) 6= 0 with probability at least 1− 1

poly(n) over the random

choices of b1, b2, . . . , bm can be argued as follows: Let yi = {y(i)1 , y(i)2 , . . . , y(i)n } for i ∈ [m− r] be
disjoint sets of variables. Rename the x = {x1, x2, . . . , xn} variables in f j(x) to yi and call these
new polynomials f j(yi) for i, j ∈ [m − r]. Let Y be an (m − r) × (m − r) matrix whose (i, j)-th
entry is ( f j(yi))i∈[m−r]. Since f1, f2, . . . , fm−r are F-linearly independent, Det(Y) 6= 0 – this can be
argued easily using induction. As deg(Det(Y)) = d(m − r) ≤ dm, by Schwartz-Zippel lemma,
Det(Mm−r) 6= 0 with probability at least 1− 1

poly(n) .

Claim 2.3 (restated): Let r be the number of redundant variables in an n variate polynomial f of degree
d. Then the dimension of the space U of F-linear dependencies of {∂xi f | i ∈ [n]} is r. Moreover, we can
construct an A ∈ GL(n) in randomized poly(n, d, β) time such that f (Ax) is free of the set of variables
{xn−r+1, xn−r+2, . . . , xn} with high probability, where β is the bit length of the coefficients of f .

Proof. Let B = (bij)i,j∈[n] ∈ GL(n) such that f (Bx) is a polynomial in x1, x2, . . . , xs, where s = n− r.
For n− r + 1 ≤ j ≤ n

∂ f (Bx)
∂xj

= 0

⇒
n

∑
i=1

bij ·
∂ f
∂xi

(Bx) = 0 (by chain rule)

⇒
n

∑
i=1

bij ·
∂ f
∂xi

= 0 (substituting x by B−1x).

45



Since B ∈ GL(n), we conclude dim(U ) ≥ r. Let {(a1j a2j . . . anj)
T : (n− dim(U ) + 1) ≤ j ≤ n} be

a basis of U . Then,
n

∑
i=1

aij ·
∂ f
∂xi

= 0.

Let A ∈ GL(n) such that for (n− dim(U ) + 1) ≤ j ≤ n, the j-th column of A is (a1j a2j . . . anj)
T

and the remaining columns of A are arbitrary vectors that make A a full rank matrix. Then,

n

∑
i=1

aij ·
∂ f
∂xi

= 0 ⇒
n

∑
i=1

aij ·
∂ f
∂xi

(Ax) = 0 ⇒ ∂ f (Ax)
∂xj

= 0.

This implies f (Ax) is a polynomial free of xj variable for (n − dim(U ) + 1) ≤ j ≤ n. Hence,
dim(U ) ≤ r.

Blackbox for polynomials ∂x1 f , ∂x2 f , . . . , ∂xn f can be constructed in poly(n, d, β) time from black-
box access to f and a basis for the space U of F-linear dependencies of polynomials ∂x1 f , ∂x2 f , . . . ,
∂xn f can also be constructed in randomized poly(n, d, β) time (see Section 2.2). Thus, we can con-
struct an A ∈ GL(n) (similar to the construction shown above) from a blackbox access to f in ran-
domized poly(n, d, β) time such that f (Ax) is free of the set of variables {xn−r+1, xn−r+2, . . . , xn}.
We summarize this in Algorithm 8.

Algorithm 8 Eliminating redundant variables
INPUT: Blackbox access to an n variate polynomial f (x).
OUTPUT: An r and an A ∈ GL(n) such that r is the number of redundant variables in f and
f (Ax) is free of the variables xn−r+1, xn−r+2, . . . , xn.

1. Compute blackbox access to ∂x1 f , ∂x2 f , . . . , ∂xn f (see Section 2.2).
2. Compute a basis {v1, v2, . . . , vr} of the space of F-linear dependencies of ∂x1 f , ∂x2 f , . . . , ∂xn f

(using the random substitution idea in Claim 2.2). /* This step succeeds in computing the
required basis with high probability. */

3. Construct an A ∈ GL(n) such that the last r columns of A are v1, v2, . . . , vr and the remaining
columns of A are chosen arbitrarily to make A a full rank matrix.

4. Return r and A.

Lemma 2.1 (restated): There is a randomized algorithm that takes input blackbox access to two n variate,
degree d polynomials f and g, and with probability at least 1− 1

poly(n) does the following: if f is translation
equivalent to g, outputs an a ∈ Fn such that f (x + a) = g(x), else outputs ‘ f and g are not translation
equivalent’. The running time of the algorithm is poly(n, d, β), where β is the bit length of the coefficients
of f and g.

Proof. We present the algorithm formally in Algorithm 9. If it succeeds in computing a point
a ∈ Fn in the end (in step 20), it performs a randomized blackbox polynomial identity test (PIT) to
check whether f (x + a) = g(x) (in step 22). If f and g are not translation equivalent, this final PIT
finds it with probability at least 1− 1

poly(n) . So, for the analysis of the algorithm we can assume

there is an a = (a1 a2 . . . an)T ∈ Fn such that f (x + a) = g(x). The strategy outlined below helps

46



to argue the correctness of Algorithm 9.

Strategy: Suppose f (x + a) = g(x). By equating the degree d and degree d − 1 homogeneous
components of f and g we get the following equations,

f [d] = g[d] and

f [d−1] +
n

∑
i=1

ai ·
∂ f [d]

∂xi
= g[d−1] ⇒

n

∑
i=1

ai ·
∂ f [d]

∂xi
= g[d−1] − f [d−1]. (8)

Let fi =
∂ f [d]
∂xi

for i ∈ [n]. Blackbox access to the homogeneous components of f : f [0], f [1], . . . , f [d],
the homogeneous components of g: g[0], g[1], . . . , g[d] and f1, f2, . . . fn can be constructed from
blackbox access to f and g in poly(n, d, β) time (see Section 2.2). If f1, f2, . . . , fn are F-linearly
independent then with high probability over the random choices of b1, b2, . . . , bn ∈ Fn the matrix
( f j(bi))i,j∈[n] has full rank (from Claim 2.2). Hence, we can solve for a1, a2, . . . , an uniquely from
Equation (8). In the general case (when f1, f2, . . . , fn may be F-linearly dependent), the algorithm
repeatedly applies variable reduction and degree reduction (as described below) to compute a.

Variable reduction - We construct a transformation A ∈ GL(n) such that f [d](Ax) has only the
essential variables x1, . . . , xm (see Claim 2.3). Let f̃ = f (Ax), g̃ = g(Ax). It is sufficient to compute
a point b = (b1 b2 . . . bn)T ∈ Fn such that f̃ (x + b) = g̃(x) as

f̃ (x + b) = g̃(x) ⇒ f (Ax + Ab) = g(Ax) ⇒ f (x + Ab) = g(x).

So we can choose a = Ab. As in Equation (8),

f̃ [d] = g̃[d] and
m

∑
i=1

bi ·
∂ f̃ [d]

∂xi
= g̃[d−1] − f̃ [d−1]. (9)

The derivatives ∂xi f̃ [d] for i > m are zero as f̃ [d] = f [d](Ax) has only the essential variables
x1, x2, . . . , xm. Also the polynomials {∂xi f̃ [d] : i ∈ [m]} are F-linearly independent (by Claim 2.3).
Hence, we can solve for unique b1, b2, . . . , bm satisfying Equation (9) as before.

Degree reduction - To compute bm+1, bm+2, . . . , bn we reduce the problem to finding a point that
asserts translation equivalence of two degree d− 1 polynomials. Let b′ = (b1 b2 . . . bm 0 . . . 0)T,
f̂ = f̃ (x+b′). Further, let e ∈ Fn such that f̂ (x+ e) = g̃(x). Then the first m coordinates of e must
be zero39 and we can choose b = b′ + e. We have the following equations,

f̂ [d](x + e) + ( f̂ − f̂ [d])(x + e) = g̃[d](x) + (g̃− g̃[d])(x)

⇔ f̃ [d](x + e) + ( f̂ − f̂ [d])(x + e) = g̃[d](x) + (g̃− g̃[d])(x) (as f̂ [d] = f̃ [d]).

Since f̃ [d] has only x1, x2, . . . , xm variables and the first m coordinates of e are zero, the above
statement is equivalent to

f̃ [d](x) + ( f̂ − f̂ [d])(x + e) = g̃[d](x) + (g̃− g̃[d])(x)

39as b1, b2, . . . , bm can be solved uniquely

47



⇔ ( f̂ − f̂ [d])(x + e) = (g̃− g̃[d])(x) (from Equation (9)).

The polynomials f̂ − f̂ [d] and g̃ − g̃[d] have degree at most d − 1 and blackboxes for these poly-
nomials can be constructed in poly(n, d, β) time. Therefore the problem reduces to computing a
point e ∈ Fn that asserts translation equivalence of two degree (d− 1) polynomials.

Correctness of Algorithm 9: In steps 4-11, the algorithm carries out variable reduction and computes
a part of the translation b that we call b′ in the above argument. The remaining part of b (which
is the vector e above) is computed by carrying out degree reduction in step 12 and then inducting
on lower degree polynomials. These parts are then added appropriately in step 17, and finally an
a is recovered in step 20.

Lemma 2.2 (restated): There is a randomized algorithm which when given blackbox access to an n variate
degree d polynomial f , computes a basis of g f with probability at least 1− 1

poly(n) in time poly(n, d, β)

where β is the bit length of the coefficients in f .

Proof. Recall, the Lie algebra of f is the set of all matrices E = (eij)i,j∈[n] such that ∑i,j∈[n] eijxj · ∂ f
∂xi

=

0. Hence, g f is the space of linear dependencies of the polynomials xj · ∂ f
∂xi

for i, j ∈ [n]. Using
Observation 2.3, we can derive blackboxes for these n2 polynomials and then compute a basis of
the space of linear dependencies with high probability using Claim 2.2.

C Proof of lemmas and claims in Section 3

Lemma 3.1 (restated): LetW1,W2,W3 be the following sets (spaces) of matrices:

1. W1 consists of all matrices D = (dij)i,j∈[n] such that D is diagonal and

n

∑
i=1

diixi ·
∂IMM

∂xi
= 0.

2. W2 consists of all matrices B = (bij)i,j∈[n] such that

∑
i,j∈[n]

bijxj ·
∂IMM

∂xi
= 0,

where in every summand bij 6= 0 only if xi 6= xj and xi, xj ∈ xl for some l ∈ [d].

3. W3 consists of all matrices C = (cij)i,j∈[n] such that

∑
i,j∈[n]

cijxj ·
∂IMM

∂xi
= 0,

where in every summand cij 6= 0 only if either xi ∈ x2, xj ∈ x1 or xi ∈ xd−1, xj ∈ xd.

Then g
IMM

=W1 ⊕W2 ⊕W3.

48



Algorithm 9 Translation equivalence test
INPUT: Blackbox access to two n variate, degree d polynomials f and g.
OUTPUT: A point a ∈ Fn such that f (x + a) = g(x), if such an a exists.

1. Set ` = d, p = f and q = g.
2.
3. while ` > 0 do
4. Using Algorithm 8 find an m and an A` ∈ GL(n) such that the variables xm+1, xm+2, . . . , xn

do not appear in p[`](A`x). /* With high probability m is the number of essential variables
in p[`]. */

5. Let p̃ = p(A`x) and q̃ = q(A`x). Construct blackbox access to p̃[`], p̃[`−1], q̃[`], q̃[`−1] and
∂xi p̃

[`] for i ∈ [m].
6. Check if p̃[`] = q̃[`]. If not, output ‘ f and g are not translation equivalent’ and stop. /* The

check succeeds with high probability. */
7. Solve for unique b1, b2, . . . , bm satisfying

m

∑
i=1

bi ·
∂ p̃[`]

∂xi
= q̃[`−1] − p̃[`−1] (using the random substitution idea in Claim 2.2).

If the solving fails, output ‘ f and g are not translation equivalent’. /* This step succeeds
with high probability if m is the number of essential variables in p[`] in step 4. */

8. if m = n then
9. Set b` = (b1 b2 . . . bn) and exit while loop.

10. else
11. Set b` = (b1 b2 . . . bm 0 . . . 0) ∈ Fn.
12. Construct blackbox access to ( p̃− p̃[`])(x+b`) and (q̃− q̃[`])(x). Set p = ( p̃− p̃[`])(x+b`),

q = (q̃− q̃[`])(x) and ` = `− 1.
13. end if
14. end while
15.
16. while ` < d do
17. Set b`+1 = b`+1 + A`b`.
18. Set ` = `+ 1.
19. end while
20. Set a = Adbd.
21.
22. Pick a point c uniformly at random from Sn ⊂ Fn with |S| = d.poly(n) and check whether

f (c + a) = g(c). /* With high probability f (c + a) 6= g(c) if f and g are not translation
equivalent.*/

23. if f (c + a) = g(c) then
24. Output the point a.
25. else
26. Output ‘ f and g are not translation equivalent’.
27. end if

49



Proof. Since W1 ∩ W2 = (W1 +W2) ∩ W3 = {0n}, where 0n is the n × n all zero matrix, it is
sufficient to show g

IMM
= W1 +W2 +W3. By definition, W1 +W2 +W3 ⊆ g

IMM
. We now show

that g
IMM
⊆ W1 +W2 +W3. Let E = (eij)i,j∈[n] be a matrix in g

IMM
. Then ∑i,j∈[n] eijxj · ∂IMM

∂xi
= 0. We

focus on a term xj · ∂IMM
∂xi

and observe the following:

(a) If xi = xj then the monomials of xi · ∂IMM
∂xi

are also monomials of IMM. Such monomials do not
appear in any term xj · ∂IMM

∂xi
, where xi 6= xj.

(b) If xi 6= xj and xi, xj belong to the same xl then every monomial in xj · ∂IMM
∂xi

has exactly one
variable from every xk for k ∈ [d]. Such monomials do not appear in a term xj · ∂IMM

∂xi
, where

xi ∈ xl and xj ∈ xk and l 6= k.

Due to this monomial disjointness, an equation ∑i,j∈[n] eijxj · ∂IMM
∂xi

= 0 corresponding to E can be
split into three equations:

1. ∑n
i=1 diixi · ∂IMM

∂xi
= 0.

2. ∑i,j∈[n] bijxj · ∂IMM
∂xi

= 0, where bij 6= 0 in a term only if xi 6= xj and xi, xj ∈ xl for some l ∈ [d].

3. ∑i,j∈[n] cijxj · ∂IMM
∂xi

= 0, where cij 6= 0 in a term only if xi ∈ xl and xj ∈ xk for l 6= k.

Hence every E = (eij)i,j∈[n] in g
IMM

equals D + B + C where

• D ∈ W1 is a diagonal matrix,

• B ∈ W2 is a block-diagonal40 matrix with diagonal entries zero,

• C is a matrix with nonzero entries appearing outside the above block-diagonal.

To complete the proof of the lemma we show the following.

Claim C.1. Except those entries of C whose rows and columns are indexed by x2 and x1 variables respec-
tively, or xd−1 and xd variables respectively, all the other entries are zero.

Proof. In a term x(l)pq · ∂IMM

∂x(k)ij

where l 6= k, every monomial has two variables from xl and no variable

from xk. Hence from the equation corresponding to C we get separate equations for every pair
(l, k) due to monomial disjointness:

∑
p∈[wl−1],q∈[wl ]

∑
i∈[wk−1],j∈[wk ]

cpq,ijx
(l)
pq ·

∂IMM

∂x(k)ij

= 0, where l 6= k.

Collecting coefficients corresponding to ∂IMM

∂x(k)ij

in the above equation we get

∑
i∈[wk−1],j∈[wk ]

`
(k)
ij ·

∂IMM

∂x(k)ij

= 0, where `
(k)
ij is a linear form in the variables from xl . (10)

40An entry is in the block-diagonal if and only if the variables labelling the row and column of the entry are in the
same xl for some l ∈ [d].

50



Figure 6 depicts a term `
(k)
ij ·

∂IMM

∂x(k)ij

using an ABP that computes it. So the LHS of the above equation

can be computed by an ABP B that has edge labels identical to that of the ABP for IMM, except for
the edges in layer k. The (i, j)-th edge of layer k in B is labelled by `

(k)
ij . Suppose `

(k)
ij 6= 0 and the

`
(k)
ij

s t

Figure 6: An ABP computing the term `
(k)
ij ·

∂IMM

∂x(k)ij

coefficient of the variable x(l)pq in `
(k)
ij is nonzero, i.e. cpq,ij 6= 0. If (l, k) is neither (1, 2) nor (d, d− 1)

then the assumption cpq,ij 6= 0 leads to a contradiction as follows.

Consider an s to t path P in B that goes through the (i, j)-th edge of layer k (which is labelled by
`
(k)
ij ) but excludes the (p, q)-th edge of layer l (which is labelled by x(l)pq ), the (p, i)-th edge of layer

k − 1 if l = k − 1 and the (j, q)-th edge of layer k + 1 if l = k + 1 (we can notice this is always
possible since (l, k) is neither (1, 2) nor (d, d − 1)). Then, if we retain the variables labelling the
edges of P ouside the layer k and the variable x(l)pq , and set every other variable to zero then P
becomes the unique s to t path in B with nonzero weight (since cpq,ij 6= 0). But this contradicts the
fact that ABP B is computing an identically zero polynomial (by Equation (10)).

Therefore, g
IMM
⊆ W1 +W2 +W3 implying g

IMM
=W1 ⊕W2 ⊕W3.

Lemma 3.2 (restated): The space W3 = W (a)
3 ⊕W (b)

3 where W (a)
3 = A1 ⊕ A2 ⊕ · · · ⊕ Aw2 and

W (b)
3 = A′1 ⊕A′2 ⊕ · · · ⊕ A′wd−2 such that for every i ∈ [w2] Ai is isomorphic to the space of w1 × w1

anti-symmetric matrices over F, and for every j ∈ [wd−2] A′ j is isomorphic to the space of wd−1 × wd−1

anti-symmetric matrices over F. Hence dim(W3) = 1
2 [w1w2(w1 − 1) + wd−1wd−2(wd−1 − 1)].

Proof. Recall,W3 is the space of all matrices C = (cij)i,j∈[n] such that

∑
i,j∈[n]

cijxj ·
∂IMM

∂xi
= 0, (11)

where in every nonzero summand either xi ∈ x2, xj ∈ x1 or xi ∈ xd−1, xj ∈ xd. In Equation (11) ev-

ery monomial in a term x(1)p · ∂IMM

∂x(2)qr
has two variables from x1. Similarly, every monomial in a term

x(d)p · ∂IMM

∂x(d−1)
qr

has two variables from xd respectively. Owing to monomial disjointness, Equation (11)

gives two equations

∑
r∈[w2]

∑
p,q∈[w1]

c(1)pqrx(1)p ·
∂IMM

∂x(2)qr

= 0, and (12)

51



∑
q∈[wd−2]

∑
p,r∈[wd−1]

c(d)pqrx(d)p ·
∂IMM

∂x(d−1)
qr

= 0. (13)

ThusW3 = W (a)
3 ⊕W

(b)
3 whereW (a)

3 consists of matrices satisfying Equation (12) andW (b)
3 con-

sists of matrices satisfying Equation (13). We argue the following aboutW (a)
3 .

Claim C.2. W (a)
3 = A1 ⊕A2 ⊕ · · · ⊕ Aw2 where every Ai is isomorphic to the space of w1 × w1 anti-

symmetric matrices over F.

Proof. Figure 7 depicts an ABP computing the term x(1)p · ∂IMM

∂x(2)qr
. Every monomial in c(1)pqrx(1)p · ∂IMM

∂x(2)qr

is divisible by x(1)p x(1)q . The only other term in Equation (12) that contains monomials divisible

q
x(1)q

x(1)p r

s t

Figure 7: An ABP computing the term x(1)p · ∂IMM

∂x(2)qr

by x(1)p x(1)q is c(1)qprx(1)q · ∂IMM

∂x(2)pr
. Figure 8 depicts an ABP computing x(1)q · ∂IMM

∂x(2)pr
. Since the terms in

x(1)p

x(1)q

p

r

s t

Figure 8: An ABP computing the term x(1)q · ∂IMM

∂x(2)pr

Figures 7 and 8 have no monomials in common with any other term in Equation (12) it must be
that c(1)pqr = −c(1)qpr. Moreover, if p = q then c(1)pqr = 0. Thus Equation (12) gives an equation for every
r ∈ [w2]

∑
p,q∈[w1],p 6=q

c(1)pqrx(1)p ·
∂IMM

∂x(2)qr

= 0, (14)

such that the matrix Cr = (c(1)pqr)p,q∈[w1] ∈ Fw1×w1 is anti-symmetric. Further any anti-symmetric
matrix can be used to get an equation like Equation (14). Thus, as shown in Figure 9, every matrix
C(a) ∈ W (a)

3 is such that for every r ∈ [w2], the w1 × w1 submatrix (say C(a)
r ) defined by the

rows labelled by the x(2)qr variables and the columns labelled by the x(1)p variables for p, q ∈ [w1]

52



is anti-symmetric. Also, any matrix satisfying the above properties belongs to W (a)
3 . Naturally,

x1

x(2)11

x(2)w11

x(2)1w2

x(2)w1w2

x1

C(a)
1

C(a)
w2

all entries outside
the bordered region

are zero

Figure 9: A matrix C(a) inW (a)
3

if we define Ar to be the space of n× n matrices such that the w1 × w1 submatrix defined by the
rows labelled by the x(2)qr variables and the columns labelled by the x(1)p variables for p, q ∈ [w1] is

anti-symmetric and all other entries are zero thenW (a)
3 = A1 ⊕A2 ⊕ · · · ⊕ Aw2 .

Similarly, it can be shown thatW (b)
3 = A′1 ⊕A′2 ⊕ · · · ⊕ A′wd−2 where every A′i is isomorphic to

the space of wd−1 × wd−1 anti-symmetric matrices. This completes the proof of Lemma 3.2.

Lemma 3.3 (restated): The spaceW2 = B1 ⊕ B2 ⊕ · · · ⊕ Bd−1 such that for every k ∈ [d− 1], Bk is
isomorphic to the F-linear space spanned by tk × tk matrices of the form[

−ZT ⊗ Iwk−1 0
0 Iwk+1 ⊗ Z

]
tk×tk

where Z ∈ Zwk and tk = wk(wk−1 + wk+1).

Hence, dim(W2) = ∑d−1
k=1(w

2
k − wk).

Proof. Recall w0 = wd = 1 and Zwk denotes the space of wk × wk matrix with diagonal entries 0,
andW2 is the space of all matrices B = (bij)i,j∈[n] such that

∑
i,j∈[n]

bijxj ·
∂IMM

∂xi
= 0, (15)

where in every term bij 6= 0 only if xi 6= xj and xi, xj ∈ xl for some l ∈ [d]. The following
observation is easy to verify.

Observation C.1. Suppose l ∈ [2, d− 1]. A term x(l)i1 j1
· ∂IMM

∂x(l)i2 j2

where i1 6= i2 and j1 6= j2 does not share a

monomial with any other term in Equation (15).

53



Hence for l ∈ [2, d − 1], terms of the kind x(l)i1 j1
· ∂IMM

∂x(l)i2 j2

where i1 6= i2 and j1 6= j2 are absent in

Equation (15). A monomial appearing in a nonzero term of Equation (15) is of the form x(1)i1
·

x(2)i1i2
· · · x(k)ik−1ik

· x(k+1)
i′kik+1

· · · x(d−1)
id−1id

· x(d)id
where ik 6= i

′
k, for some k ∈ [d− 1]. We say such a monomial

is broken at the k-th interface. Observe the following.

Observation C.2. The terms x(k)pr · ∂IMM

∂x(k)pq
where p ∈ [wk−1], q, r ∈ [wk], q 6= r, and x(k+1)

mj · ∂IMM

∂x(k+1)
ij

where

i, m ∈ [wk], j ∈ [wk+1], i 6= m are the only two whose monomials are broken at the k-th interface.

Thus from Equation (15) we get (d − 1) equations one for each interface by considering cancel-
lations of monomials broken at that interface. For k ∈ [2, d − 2], let Bk be the space of all n × n
matrices Bk such that

1. the entry corresponding to the row labelled by x(k)pq and the column labelled by x(k)pr is b(k)pq,pr ∈
F for p ∈ [wk−1], q, r ∈ [wk] and q 6= r,

2. the entry corresponding to the row labelled by x(k+1)
ij and the column labelled by x(k+1)

mj is

b(k+1)
ij,mj ∈ F for i, m ∈ [wk], j ∈ [wk+1] and i 6= m,

3. all other entries of Bk are zero, and

4.

∑
p∈[wk−1], q,r∈[wk ], q 6=r

b(k)pq,prx(k)pr ·
∂IMM

∂x(k)pq

+ ∑
i,m∈[wk ], j∈[wk+1], i 6=m

b(k+1)
ij,mj x(k+1)

mj · ∂IMM

∂x(k+1)
ij

= 0. (16)

We can define spaces B1 and Bd−1 similarly considering monomials broken at the first and the
last interface respectively. As Equation (15) can be split into (d − 1) equations, one for every
interface, W2 = B1 + B2 + · · · + Bd−1. Since the spaces B1, . . . ,Bd−1 control different entries of
n× n matrices,W2 = B1 ⊕B2 ⊕ · · · ⊕ Bd−1.

Claim C.3. For k ∈ [2, d− 2], Bk is isomorphic to the F-linear space spanned by tk × tk matrices of the
form [

−ZT ⊗ Iwk−1 0
0 Iwk+1 ⊗ Z

]
tk×tk

where Z ∈ Zwk and tk = wk(wk−1 + wk+1).

Proof. Collecting same derivative terms in Equation (16) we get

∑
p∈[wk−1],q∈[wk ]

`
(k)
pq ·

∂IMM

∂x(k)pq

+ ∑
i∈[wk ],j∈[wk+1]

`
(k+1)
ij · ∂IMM

∂x(k+1)
ij

= 0, (17)

where `
(k)
pq is a linear form containing variables x(k)pr such that r 6= q, and `

(k+1)
ij is a linear form

containing variables x(k+1)
mj such that m 6= i. Here is a succinct way to write Equation (17):

Q1 ·Q2 · · ·Q
′
k ·Qk+1 ·Qk+2 · · ·Qd−1 ·Qd + Q1 ·Q2 · · ·Qk ·Q

′
k+1 ·Qk+2 · · ·Qd−1 ·Qd = 0, (18)

54



where Q1, . . . , Qd are matrices as in Section 2.3, Q
′
k = (`

(k)
pq )p∈[wk−1],q∈[wk ] and Q

′
k+1 = (`

(k+1)
ij )i∈[wk ],j∈[wk+1].

This implies
Q
′
k ·Qk+1 + Qk ·Q

′
k+1 = 0,

as Q1, . . . , Qd have distinct sets of variables, and the variables appearing in Q
′
k and Q

′
k+1 are the

same as in Qk and Qk+1 respectively. The variable disjointness of Qk and Qk+1 can be exploited to
infer Q′k+1 = Z ·Qk+1 and Q

′
k = −Qk · Z where Z is in Fwk×wk (even if Qk, Qk+1 may not be square

matrices). As the linear form `
(k)
pq is devoid of the variable x(k)pq , it must be that Z ∈ Zwk . Moreover,

any Z ∈ Zwk can be used along with the relations Q
′
k+1 = Z · Qk+1 and Q

′
k = −Qk · Z to satisfy

Equation (18) and hence also Equations (16) and (17).

Let Z = (zim)i,m∈[wk ]. Since Q
′
k+1 = Z · Qk+1, the coefficient of x(k+1)

mj in `
(k+1)
ij is zim for every

j ∈ [wk+1]. Hence in Equation (16), b(k+1)
ij,mj = zim for every j ∈ [wk+1]. Similarly, since Q

′
k = −Qk · Z

the coefficient of x(k)pr in `
(k)
pq is −zrq for every p ∈ [wk−1]. Hence in Equation (16) b(k)pq,pr = −zrq

for every p ∈ [wk−1]. Thus the submatrix of Bk defined by the rows and columns labelled by the
variables in xk and xk+1 looks like[

−ZT ⊗ Iwk−1 0
0 Iwk+1 ⊗ Z

]
tk×tk

where tk = wk(wk−1 + wk+1) and all other entries in Bk are zero. Hence Bk is isomorphic to the
space generated by tk × tk matrices of the above kind. This proves the claim.

We can similarly show that B1 is isomorphic to the space generated by square matrices of the form[
−ZT 0

0 Iw2 ⊗ Z

]
t1×t1

where Z ∈ Zw1 and t1 = w1 + w1w2,

and Bd−1 is isomorphic to the space generated by square matrices of the form[
−ZT ⊗ Iwd−2 0

0 Z

]
td−1×td−1

where Z ∈ Zwd−1 and td−1 = wd−1wd−2 + wd−1.

This completes the proof of Lemma 3.3.

Lemma 3.4 (restated): The space W1 contains the space D1 ⊕ D2 ⊕ · · · ⊕ Dd−1 such that for every
k ∈ [d− 1], Dk is isomorphic to the F-linear space spanned by tk × tk matrices of the form[

−Y⊗ Iwk−1 0
0 Iwk+1 ⊗Y

]
tk×tk

where Y ∈ Ywk and tk = wk(wk−1 + wk+1).

Hence, dim(W1) ≥ ∑d−1
k=1 wk.

55



Proof. The proof is similar to the proof of Lemma 3.3. Recall w0 = wd = 1 and Ywk denotes the
space of wk × wk diagonal matrices. Every D ∈ W1 satisfies an equation of the following form

∑
i∈[w1]

d(1)i x(1)i ·
∂IMM

∂x(1)i

+
d−1

∑
k=2

∑
i∈[wk−1],j∈[wk ]

d(k)ij x(k)ij ·
∂IMM

∂x(k)ij

+ ∑
i∈[wd−1]

d(d)i x(d)i ·
∂IMM

∂x(d)i

= 0.

A succinct way to write the above equation is

d

∑
k=1

Q1Q2 · · ·Qk−1Q
′
kQk+1 · · ·Qd = 0, (19)

where Q
′
1 = (d(1)i x(1)i )i∈[w1] is a row vector, Q

′
d = (d(d)i x(d)i )T

i∈[wd−1]
is a column vector, Q

′
k =

(d(k)ij x(k)ij )i∈[wk−1],j∈[wk ], and Q1, . . . , Qd are matrices as in Section 2.3. For every k ∈ [d− 1], let us fo-
cus on those Dk ∈ W1 for which the matrices Q′1, . . . , Q′k−1, Q′k+2, . . . , Q′d are zero in Equation (19).
Such a Dk satisfies the following equation,

Q1 ·Q2 · · · ·Q
′
k ·Qk+1 · · ·Qd + Q1 ·Q2 · · ·Qk ·Q

′
k+1 · · ·Qd = 0. (20)

Using a similar argument as in the proof of Lemma 3.3 we get Q
′
k+1 = Y ·Qk+1 and Q

′
k = −Qk ·Y

where Y ∈ Ywk . Further, any Y ∈ Ywk can be used along with the relations Q
′
k+1 = Y · Qk+1 and

Q
′
k = −Qk · Y to satisfy Equation (20). The set of Dk ∈ W1 satisfying Equation (20) forms an

F-linear space; call it Dk. Every Dk ∈ Dk is such that the submatrix defined by the rows and the
columns labelled by the variables in xk and xk+1 looks like[

−Y⊗ Iwk−1 0
0 Iwk+1 ⊗Y

]
tk×tk

where Y ∈ Ywk and tk = wk(wk−1 + wk+1),

and all other entries in Dk are zero. Moreover, any n× n matrix with this structure is in Dk. Thus
Dk is isomorphic to the space of all tk × tk matrices of the form shown above. It can also be easily
verified that every matrix in D1 + . . . + Dd−1 can be expressed uniquely as a sum of matrices in
these spaces. HenceW1 ⊇ D1 ⊕D2 ⊕ · · · ⊕ Dd−1 completing the proof of Lemma 3.4.

Claim 3.3 (restated): No invariant subspace of g
IMM

is properly contained in Uk for k ∈ [2, d− 1].

Proof. Let U ⊆ Uk be an invariant subspace of g
IMM

. From Claim 3.2 it follows that U is a coordinate

subspace. For t ∈ N, let 1̃t
def
= 1t − It, where 1t is the t× t all one matrix. From Lemma 3.3, there

are matrices Bk−1 and Bk in g
IMM

such that the submatrix of Bk−1 restricted to the rows and the
columns labelled by the variables in xk−1 ] xk looks like[

−1̃wk−1 ⊗ Iwk−2 0
0 Iwk ⊗ 1̃wk−1

]
, and

the submatrix in Bk restricted to the rows and the columns labelled by the variables in xk ] xk+1
looks like [

1̃wk ⊗ Iwk−1 0
0 Iwk+1 ⊗−1̃wk

]
.

56



From Lemma 3.4, there is a diagonal matrix Dk−1 in g
IMM

such that the submatrix restricted to the
rows and the columns labelled by the variables in xk−1 ] xk looks like[

−Iwk−1 ⊗ Iwk−2 0
0 Iwk ⊗ Iwk−1

]
.

Let L = Bk−1 + Bk + Dk−1. The submatrix of L restricted to the rows and the columns labelled
by the variables in xk looks as shown in Figure 10. For notational simplicity we write wk−1 as

x(k)11 x(k)w1 x(k)1j x(k)wjx(k)ij x(k)wwk
x(k)1wk

x(k)11

x(k)w1

x(k)1j

x(k)wj

x(k)ij

x(k)1wk

x(k)wwk

1w Iw Iw Iw

Iw 1w Iw Iw

Iw Iw 1w Iw

Iw Iw Iw 1w

Figure 10: Submatrix of L restricted to rows/columns indexed by xk

w in Figure 10. If ex is a unit vector in U , where x = x(k)ij is a variable in xk then the matrix
L maps ex to Lex which is the column of L labelled by the variable x. This column vector has
all entries zero except for the rows labelled by the variables in xk. Restricting to these rows and
looking at Figure 10, we infer that the rows of Lex labelled by the variables x(k)1j , x(k)2j , . . . , x(k)wk−1 j are
1 (in particular, these entries are nonzero). We use this knowledge and that Lex ∈ U to make the
following observation, the proof of which is immediate from Claim 3.2.

Observation C.3. If ex ∈ U , where x = x(k)ij then ex′ ∈ U for every x′ ∈ {x(k)1j , x(k)2j , . . . , x(k)wk−1 j}.

Moreover, it follows from the presence of Iw matrices in Figure 10 that for every j′ ∈ [wk] there is
the variable y = x(k)ij′ such that the row labelled by y in Lex is 1, implying41 ey ∈ U . Hence from

Observation C.3, ey′ ∈ U for every y′ ∈ {x(k)1j′ , . . . , x(k)wk−1 j′}. Since this is true for every j′ ∈ [wk],
ey ∈ U for every variable y ∈ xk implying U = Uk.

41follows again from Claim 3.2.

57



Claim 3.4 (restated): The invariant subspaces U1,2 and Ud−1,d are irreducible, and the only invariant
subspace properly contained in U1,2 (respectively Ud−1,d) is U2 (respectively Ud−1).

Proof. We prove the claim for U1,2, the proof for Ud−1,d is similar. Suppose U1,2 = V ⊕W where
V ,W are invariant subspaces of g

IMM
(and so also coordinate subspaces). A unit vector ex, where

x ∈ x1 is either in V orW . Suppose ex ∈ V ; we will show that V = U1,2. Without loss of generality,
let x = x(1)1 . Arguing as in the proof of the previous claim, we infer that there is a matrix M ∈ g

IMM

such that the submatrix of M restricted to the rows and the columns labelled by the variables in
x1 and x2 looks as shown in Figure 11, in which w = w1 and C is a w1 × w1 anti-symmetric matrix
with all non-diagonal entries nonzero. All the other entries of M are zero. The vector Mex is the

x(1)1 x(2)11 x(2)12 x(2)13 x(2)1w2
x(2)ww2

x(1)1

x(2)11

x(2)12

x(2)13

x(2)1w2

x(2)ww2

−1w

1w

1w

1w

Iw

Iw Iw

Iw

Iw Iw

C

C

C

0’s

Figure 11: Submatrix of M matrix restricted to rows/columns indexed by x1 ] x2

first column of M and it is zero everywhere except for the rows labelled by the variables in x1 ] x2.
Among these rows, unless y ∈ {x(2)11 , x(2)12 , . . . , x(2)1w2

} the row of Mex labelled by y is nonzero. Thus

(from Claim 3.2), ey ∈ V for y ∈ x1 and y = x(2)ij where i ∈ [2, w1] and j ∈ [w2]. Let y = x(2)ij for

some i ∈ [2, w1] and j ∈ [w2]. From Figure 11, the row of Mey labelled by x(2)1j is nonzero and so, for

y′ = x(2)1j , ey′ is also in V . Hence, V = U1,2 and U1,2 is irreducible. To argue that the only invariant
subspace properly contained in U1,2 is U2, let V ⊂ U1,2 be an invariant subspace of g

IMM
. From the

above argument it follows that ex /∈ V for every x ∈ x1 (otherwise V = U1,2). This implies V ⊆ U2
and from Claim 3.3 we have V = U2.

D Proof of claims in Section 4

Claim 4.1 (restated): For all i ∈ [s], let Ni and N ′
i be the null spaces of gi(R) and gi(R

′
). Then

1. Fn = N1 ⊕N2 ⊕ · · · ⊕ Ns = N
′
1 ⊕N

′
2 ⊕ · · · ⊕ N

′
s .

2. For all i ∈ [s], dim(Ni) = dim(N ′
i ) = degx(gi).

58



Proof. Since N ′
i = A−1Ni and A−1 ∈ GL(n), it is sufficient to show Fn = N1 ⊕N2 ⊕ · · · ⊕ Ns and

dim(Ni) = degx(gi). Further, observe that each subspace Ni is non-trivial – if N1 = {0} then
for all v ∈ Fn, h(R) · v = g1(R)g2(R) · · · gs(R) · v = 0 implying g2(R) · · · gs(R) · v = 0. As the
characteristic polynomial and the minimal polynomial have the same irreducible factors this gives
a contradiction.

To show the sum of Ni’s is a direct sum it is sufficient to show the following: if ∑s
l=1 ul = 0 where

ul ∈ Nl then ul = 0 for l ∈ [s]. Define for i ∈ [s]

ĝi :=
s

∏
j=1,j 6=i

gj(x) =
h(x)
gi(x)

. (21)

Since ĝi(R) · uj = 0 for j 6= i,

ĝi(R) ·
(

s

∑
l=1

ul

)
= ĝi(R) · ui = 0. (22)

As gi(x) and ĝi(x) are coprime polynomials, there are pi(x), qi(x) ∈ F[x] such that

pi(x)gi(x) + qi(x)ĝi(x) = 1 ⇒ pi(R)gi(R) + qi(R)ĝi(R) = In

⇒ (pi(R)gi(R)) · ui + (qi(R)ĝi(R)) · ui = ui.

Both (pi(R)gi(R)) · ui = 0 (as ui ∈ Ni) and (qi(R)ĝi(R)) · ui = 0 (by Equation (22)). Hence ui = 0
for all i ∈ [s].

Let R̃ be the linear the linear map R restricted to the subspace Ni (this is well defined as Ni is an
invariant subspace of R). Then, gi(R̃) = 0. Since gi is irreducible, from Cayley-Hamilton theorem
it follows that gi divides the characteristic polynomial of R̃ implying degx(gi) ≤ dim(Ni). As a
consequence, we have

n =
s

∑
i=1

degxgi ≤
s

∑
i=1

dimNi ≤ dim Fn = n. (23)

Each inequality is an equality, which proves the claim.

Claim 4.2 (restated): Suppose gi(x) is an irreducible factor of the characteristic polynomial hk(x) of Rk
(depicted in Figure 4) for some k ∈ [d]. Then the following holds:

1. If k ∈ [2, d− 1] then Ni ⊆ Uk (equivalently N ′
i ⊆ A−1Uk).

2. If k = 1 then Ni ⊆ U1,2 (equivalently N ′
i ⊆ A−1U1,2), and if k = d then Ni ⊆ Ud−1,d (equivalently

N ′
i ⊆ A−1Ud−1,d).

Proof. Figure 12 depicts the matrix hk(R) and as shown in it, call the submatrix restricted to the
rows labelled by variables in x2 and columns labelled by variables in x1 ] x2, Mk,2; define Mk,d−1
similarly. Let v ∈ Ni. For every j ∈ [d], let vj be the subvector of v restricted to the rows labelled
by variables in xj, and v1,2 (respectively vd−1,d) be the subvector of v restricted to the rows labelled

59



hk(R1)

hk(R2)

hk(Rd)

hk(Rd−1)

x1

x2

xd

xd−1

x1 x2 xdxd−1

Mk,2

Mk,2

Mk,d−1

Mk,d−1

Figure 12: Matrix hk(R)

by variables in x1 ] x2 (respectively xd−1 ] xd). Since v ∈ Ni, gi(R) · v = 0 implying hk(R) · v = 0.
Thus we have the following set of equations:

hk(R1) · v1 = 0
Mk,2 · v1,2 = 0
hk(Rj) · vj = 0 for j ∈ [3, d− 2]

Mk,d−1 · vd−1,d = 0
hk(Rd) · vd = 0.

(24)

Case a: k ∈ [2, d − 1]; since hj(x) is the characteristic polynomial of Rj, hj(Rj) = 0 implying
hj(Rj) · vj = 0 for every j ∈ [d]. As k 6= 1, hk(x) and h1(x) are coprime and from Equation (24)
hk(R1) · v1 = 0. Hence, v1 = 0 and for a similar reason vd = 0 as k 6= d. Thus in Equation (24) we
have

Mk,2 · v1,2 = hk(R2) · v2 = 0
Mk,d−1 · vd−1,d = hk(Rd−1) · vd−1 = 0.

Therefore for every j ∈ [d], hk(Rj) · vj = 0. If j 6= k then hj(x) and hk(x) are coprime, thus from
hj(Rj) · vj = 0 we infer vj = 0 and hence v ∈ Uk.

Case b: k = 1 or k = d; let k = 1, the proof for k = d is similar. Since hk(Rd) ·vd = 0, hd(Rd) ·vd = 0,
and hk(x), hd(x) are coprime, we get vd = 0. Hence from Equation (24),

Mk,d−1 · vd−1,d = hk(Rd−1) · vd−1 = 0.

Again for j ∈ [3, d], hk(Rj) · vj = 0 and hj(x), hk(x) are coprime for every j 6= k. Hence vj = 0 for
j ∈ [3, d] implying v ∈ U1,2.

60



E Proof of lemma and claim in Section 5

Lemma 5.2 (restated): If f = X1 · X2 · · ·Xd and Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd is the output of
Algorithm 5 then there is a permutation σ on [3, d− 2] such that the following hold:

1. For every k ∈ [3, d− 2], Yk = Xσ(k).

2. Either Y1,Y1,2 and Yd,Yd−1,d are X1,X1,2 and Xd,Xd−1,d respectively, or Y1,Y1,2 and Yd,Yd−1,d
are Xd,Xd−1,d and X1,X1,2 respectively.

Proof. Assume V1 and Vd are the spaces A−1U1,2 and A−1Ud−1,d respectively. In this case we will
show Y1,Y1,2 and Yd,Yd−1,d are X1,X1,2 and Xd,Xd−1,d respectively42. Hence, u1 = w1 + w1w2,
u2 = w1w2, ud−1 = wd−2wd−1 and ud = wd−1 + wd−2wd−1. From the order of the columns in V1
and Vd we have V1 = A−1E1 and Vd = A−1Ed, where E1 and Ed are n× u1 and n× ud matrices
respectively and they look as shown in Figure 13. The rows of E1 and Ed are labelled by n variables

E1 Ed Ek

x1

x2

x3

xd

x1 x2

xd

xd−1

xd−2

x1

xd−1 xd xσ(k)

xσ(k)

B1,2

Bd−1,d

Bσ(k)

Figure 13: Matrices E1, Ed and Ek

in x1 to xd, whereas the columns of E1 are labelled by variables in x1 and x2 and the columns of
Ed are labelled by variables in xd−1 and xd. Moreover, the nonzero entries in these matrices are
restricted to the shaded region in Figure 13.

For k ∈ [3, d− 2], Vk = A−1Uσ(k) where σ is a permutation on [3, d− 2]. Hence, uk = wσ(k)−1wσ(k)

and Vk = A−1Ek where Ek is a n × uk matrix and looks as shown in Figure 13. Again the
rows of Ek are labelled by the variables x1 to xd, whereas the columns of Ek are labelled by
variables in xσ(k). The nonzero entries in Ek are restricted to the shaded region in Figure 13
whose rows are labelled by variables in xσ(k). Let E be the concatenation of these matrices,
E = [E1 | E3 | E4 | . . . | Ed−2 | Ed]. The rows of E are labelled by x1, x2, . . . , xd as usual , but
now the columns are labelled by x1, x2, xσ(3), . . . , xσ(d−2), xd−1, xd in order as shown in Figure 14.
Then V = A−1E implying V−1 = E−1A. Owing to the structure of E, E−1 looks as shown in
Figure 14. The rows of E−1 are labelled by x1, x2, xσ(3), . . . , xσ(d−2), xd−1, xd in order, whereas the

42If V1 and Vd are the spaces A−1Ud−1,d and A−1U1,2 respectively, then Y1,Y1,2 and Yd,Yd−1,d are Xd,Xd−1,d and
X1,X1,2 respectively – the proof of this case is similar.

61



x1

x2

x3

xσ(3)

xd−2

xd

xd−1

x1 x2 xσ(3) xσ(d−2) xdxd−1

0’s

0’s

E

B1,2

Bd−1,d

Bσ(3)

x1

x2

xσ(3)

xσ(d−2)

xd

xd−1

x1 x2 x3 xσ(3) xdxd−1

0’s

0’s

E−1

B−1
1,2

B−1
d−1,d

B−1
σ(3)

Figure 14: Matrices E and E−1

columns are labelled by the usual ordering x1, x2, . . . , xd. The submatrix of E−1 restricted to the
rows and columns labelled by the variables in x1 and x2 is B−1

1,2 and that labelled by the variables in
xd−1 and xd is B−1

d−1,d. For k ∈ [3, d− 2] the submatrix restricted to the rows and columns labelled
by xσ(k) is B−1

σ(k). We infer the following facts:

(I) The space spanned by the first u1− u2 (that is w1) rows of V−1 is equal to the space spanned
by the first w1 rows of A, the latter space is X1.

(II) The space spanned by the first u1 (that is w1 + w1w2) rows of V−1 is equal to the space
spanned by the first w1 + w1w2 rows of A, the latter space is X1,2.

(III) The space spanned by the last ud (that is wd−1 + wd−2wd−1) rows of V−1 is equal to the space
spanned by the last wd−1 + wd−2wd−1 rows of A, the latter space is Xd−1,d.

(IV) The space spanned by the last ud − ud−1 (that is wd−1) rows of V−1 is equal to the space
spanned by the last wd−1 rows of A, the latter space is Xd.

(V) For k ∈ [3, d − 2] the space spanned by the rows of V−1 that are numbered by tk−1 + 1 to
tk−1 + uk is equal to the space spanned by the rows of A labelled by xσ(k), the latter space is
Xσ(k).

Claim 5.1 (restated): There is a randomized polynomial time algorithm that takes input the bases of the
layer spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd and with probability at least 1− 1

poly(n) reorders these layer
spaces and outputs a width vector w′ such that the reordered sequence of spaces and w′ are:

1. either X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and (w1, w2, . . . , wd−1) respectively,

2. or Xd,Xd−1,d,Xd−2, . . . , X3,X1,2,X1 and (wd, wd−1, . . . , w1) respectively.

62



Proof. The algorithm employs evaluation dimension to uncover the permutation σ. Assume that
Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd are the spaces X1,X1,2,Xσ(3), . . . ,Xσ(d−2),Xd−1,d,Xd respectively43.
In this case, the algorithm reorders the spaces to a sequence X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and
outputs w′ = w. For every k ∈ [3, d− 2], let zk be a set of dim(Yk) many variables. Let z1 (simi-
larly, zd) be a set of dim(Y1) (similarly, dim(Yd)) variables, and let z2 (similarly, zd−1) be a set of
dim(Y1,2)− dim(Y1) (similarly, dim(Yd−1,d)− dim(Yd)) variables. Finally, let z = z1 ] . . . ] zd be
the set of these n fresh variables.

Compute a linear map µ that maps x variables to linear forms in z variables such that the following
conditions are satisfied:

(a) For every k ∈ [3, d − 2], the linear forms corresponding44 to the basis vectors of Yk map to
distinct variables in zk.

(b) The linear forms corresponding to the basis vectors in Y1 (similarly, Yd) map to distinct vari-
ables in z1 (similarly, zd).

(c) The linear forms corresponding to the basis vectors in Y1,2 (similarly, Yd−1,d) map to distinct
variables in z1 ] z2 (similarly, zd−1 ] zd).

Conditions (b) and (c) can be simultaneously satisfied as the basis of Y1 (similarly, Yd) is con-
tained in the basis of Y1,2 (similarly, Yd−1,d) by their very constructions in Algorithm 5. As f =
IMMw,d(Ax), the map µ takes f to a polynomial h(z) that is computed by a full rank ABP A′ of
width w and length d such that the sets of variables appearing in the d layers of A′ from left to
right are z1, z1 ] z2, zσ−1(3), . . . , zσ−1(d−2), zd−1 ] zd, zd in order.

The following observation, the proof of which is given later, helps find σ−1 incrementally from
blackbox access to h(z). Let y2 = z1 ] z2 and yj = z1 ] z2 ] zσ−1(3) ] · · · ] zσ−1(j), for j ∈ [3, d− 2].

Observation E.1. For every j ∈ [2, d− 3] and k ∈ [3, d− 2] such that zk 6⊂ yj,

1. Evaldimyj]zk(h) < |zk|, if k = σ−1(j + 1), and

2. Evaldimyj]zk(h) > |zk|, if k 6= σ−1(j + 1).

The proof of the observation also includes an efficient randomized procedure to compute Evaldimyj]zk(h).

Finally, the algorithm outputs the reordered layer spaces Y1,Y1,2,Yσ−1(3), . . . ,Yσ−1(d−2),Yd−1,d,Yd
which is the ordered sequence of spaces X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd. The width vector w′ can

43The proof of the other case is similar.
44Recall, linear forms in x variables and vectors in Fn are naturally identified with each other.

63



be readily calculated now by inspecting the dimensions:

w′1 = dim(X1) = w1,

w′2 =
dim(X1,2)− w1

w1
= w2,

w′k =
dim(Xk)

wk−1
= wk, for k ∈ [3, d− 2],

w′d = dim(Xd) = wd, and

w′d−1 =
dim(Xd−1,d)− wd

wd
= wd−1.

This gives w′ = w.

Proof of Observation E.1: Let Z1 ·Z2 · · · Zd be equal to A′, the full rank ABP of width w = (w1, w2, . . . ,
wd−1) computing h, where the linear forms in Zi are in zσ−1(i) variables for i ∈ [3, d − 2], the
linear forms in Z1, Zd are in variables z1, zd respectively, and the linear forms in Z2, Zd−1 are in
z1 ] z2, zd−1 ] zd variables respectively.

Case 1: Suppose k = σ−1(j + 1), implying |zk| = wjwj+1. Let G = Zj+2 · Zj+3 · · · Zd and the t-th
entry of G be gt for t ∈ [wj+1]. As the linear forms in Z1, Z2, . . . , Zj+1 are F-linearly independent,
for every t ∈ [wj+1] there is a partial evaluation of h at yj ] zk variables that makes h equal to gt .
Also, every partial evaluation of h at yj ] zk variables can be expressed as an F-linear combination
of g1, g2, . . . , gwj+1 . Hence, from Observation 5.2 it follows, Evaldimyj]zk(h) = wj+1 < |zk|.

Case 2: Suppose k 6= σ−1(j+ 1). The variables zk appear in the matrix Zσ(k), so |zk| = wσ(k)−1wσ(k).
Let G = Zσ(k)+1 · Zσ(k)+2 · · · Zd and the t-th entry of G be gt for t ∈ [wσ(k)]. Further, let P =
(plm)l∈[wj],m∈[wσ(k)−1]

be equal to Zj+1 ·Zj+2 · · · Zσ(k)−1. As the linear forms in Z1, Z2, . . . , Zj and Zσ(k)

are F-linearly independent, there is a partial evaluation of h at the yj ] zk variables that makes h
equal to plmgt for l ∈ [wj], m ∈ [wσ(k)−1] and t ∈ [wσ(k)]. By Observation 5.2, {gt | t ∈ [wσ(k)]}
are F-linearly independent; using a proof similar to that of Observation 5.2 we can show that the
polynomials {plm | l ∈ [wj], m ∈ [wσ(k)−1]} are also F-linearly independent. This implies the set
of polynomials {plmgt | l ∈ [wj], m ∈ [wσ(k)−1] and t ∈ [wσ(k)]} are F-linearly independent, as
plm and gt are on disjoint sets of variables. Since every partial evaluation of h at yj ] zk variables
can be expressed as an F-linear combination of the set of polynomials {plmgt | l ∈ [wj], m ∈
[wσ(k)−1] and t ∈ [wσ(k)]}, Evaldimyj]zk(h) = wjwσ(k)−1wσ(k) = wj · |zk| > |zk|.

A randomized procedure to compute Evaldimyj]zk(h): Choose evaluation points a1, . . . , an2 for the
variables yj ] zk independently and uniformly at random from a set S|yj]zk | ⊂ F|yj]zk | with |S| =
poly(n). Output the dimension of the F-linear space spanned by the polynomials h(a1), . . . , h(an2)
using Claim 2.2.

We argue that the above procedure outputs Evaldimyj]zk(h) with probability at least 1− 1
poly(n) .

Let Evaldimyj]zk(h) = e. Observe that in both Case 1 and 2, e ≤ n2. Also, in both the cases h can

64



be expressed as
h = ∑

i∈[e]
fi(yj ] zk) · qi, (25)

where fi and qi are variable disjoint. The polynomials q1, . . . , qe are the polynomials g1, . . . , gwj+1

in Case 1; they are the polynomials {plmgt | l ∈ [wj], m ∈ [wσ(k)−1] and t ∈ [wσ(k)]} in Case 2.
Just as we argue that q1, . . . , qe are F-linearly independent, we can show that f1, . . . , fe are also
F-linearly independent. So, by Claim 2.2 the rank of the matrix M = ( fc(ar))r,c∈[e] is e with high
probability. This implies the polynomials h(a1), . . . , h(ae) are F-linearly independent also with
high probability. The correctness of the procedure follows from the observation that the dimension
of the F-linear space spanned by h(a1), . . . , h(an2) is upper bounded by e (from Equation (25)).

Observation 5.1 (restated): If h is computable by a full rank almost set-multilinear ABP of width w then
there is a full rank almost set-multilinear ABP of width w in canonical form computing h.

Proof. Suppose X1 · X2 · · ·Xd is a full rank almost set-multilinear ABP of width w = (w1, w2, . . . ,
wd−1) computing h. Let X′1 = (x(1)1 x(1)2 . . . x(1)w1 ) and X′d = (x(d)1 x(d)2 . . . x(d)wd−1). We show there
are matrices X′2 and X′d−1 satisfying conditions (1b) and (2b) respectively of canonical form (de-
fined in Section 2.4) such that h = X′1 · X′2 · X3 · · ·Xd−2 · X′d−1 · X′d. We prove the existence of
X′2 = (l′ij)i∈[w1],j∈[w2]; the proof for X′d−1 is similar. It is sufficient to show that there is such an X′2
satisfying X1 · X2 = X′1 · X′2. Denote the j-th entry of the 1× w2 matrix X1 · X2 as X1 · X2(j). Simi-
larly X′1 · X′2(j) represents the j-th entry of X′1 · X′2. Let gi be the sum of all monomials in X1 · X2(j)
of the following types: x(1)i x(1)k for k ∈ [i, w1], and x(1)i x(2)pq for p ∈ [w1], q ∈ [w2]. Clearly,

X1 · X2(j) = g1 + g2 + · · ·+ gw1 .

If l′ij
def
= gi/x(1)i then

X1 · X2(j) = x(1)1 l′1j + x(1)2 l′2j + · · ·+ x(1)w1 l′w1 j.

Since l′ij is the (i, j)-th entry of X′2, we infer X1 · X2(j) = X′1 · X′2(j). By definition, x(1)k does not
appear in l′ij for k < i, and thus condition (1b) is satisfied by X′2.

Observation 5.2 (restated): Let X1 · X2 · · ·Xd be a full rank almost set-multilinear ABP, and Ck =
Xk · · ·Xd for k ∈ [2, d]. Let the l-th entry of Ck be hkl for l ∈ [wk−1] . Then the polynomials {hk1, hk2, · · · ,
hkwk−1} are F-linearly independent.

Proof. Suppose ∑
wk−1
p=1 αp · hkp = 0 such that αp ∈ F for p ∈ [wk−1], and not all αp = 0. Assume

without loss of generality α1 6= 0. Since the linear forms in Xk, . . . , Xd are F-linearly independent,
there is an evaluation of the variables in xk ] · · · ] xd to field constants such that hk1 = 1 and every
other hkp = 0 under this evaluation. This implies α1 = 0, contradicting our assumption.

65



F Proof of observation in Section 6

Observation 6.2 (restated): There are matrices A1, . . . , Ad−1 with Ak ∈ GL(wk) for every k ∈ [d− 1],
such that X1 = Q1 · A1, X2(x2) = A−1

1 · Q2 · A2, Xd−1(xd−1) = A−1
d−2 · Qd−1 · Ad−1, Xd = A−1

d−1 · Qd,
and Xk = A−1

k−1 ·Qk · Ak for k ∈ [3, d− 2].

Proof. To simplify notations, we write X2(x2), Xd−1(xd−1) as X2, Xd−1 respectively. We have

X1 · X2 · · ·Xd−1 · Xd = Q1 ·Q2 · · ·Qd−1 ·Qd = IMM,

where the dimensions of the matrices Xk and Qk are the same, and the set of variables appearing
in both Xk and Qk is xk, for every k ∈ [d]. Since the linear forms in X1 are F-linearly independent,
there is an A1 ∈ GL(w1) such that X1 = Q1 · A1, implying

Q1 · [A1 · X2 · · ·Xd−1 · Xd − Q2 · · ·Qd−1 ·Qd] = 0
⇒ X2 · · ·Xd−1 · Xd = A−1

1 ·Q2 · · ·Qd−1 ·Qd,

as the formal variable entries of Q1 do not appear in the matrices Xk, Qk for k ∈ [2, d]. The rest of
the proof proceeds inductively: Suppose for some k ∈ [2, d− 1],

Xk · · ·Xd−1 · Xd = A−1
k−1 ·Qk · · ·Qd−1 ·Qd, where Ak−1 ∈ GL(wk−1).

Let pk = ∑d
i=k+1 |xi|. Since the linear forms in Xk+1, . . . , Xd−1, Xd are F-linearly independent, for

every l ∈ [wk] there is a point al ∈ Fpk such that the wk × 1 matrix Xk+1 · · ·Xd−1 · Xd evaluated at
al has 1 at the l-th position and all its other entries are zero. Let Ak be the wk ×wk matrix such that
the l-th column of Ak is equal to Qk+1 · · ·Qd−1 ·Qd evaluated at al . Then, Xk = A−1

k−1 ·Qk · Ak. As
the linear forms in Xk and Qk are F-linearly independent, it must be that Ak ∈ GL(wk). Putting
this expression for Xk in the equation above and arguing as before, we get a similar equation with
k replaced by k + 1. The proof then follows by induction.

66


	Introduction
	Circuit reconstruction
	Motivation and model
	Our result
	Discussion
	Algorithm and proof strategy

	Preliminaries
	Notations and definitions
	Algorithmic preliminaries
	Iterated matrix multiplication polynomial
	Almost set-multilinear ABP and a canonical representation

	Lie algebra of IMM
	Structure of the Lie algebra g IMM
	Random elements of g IMM
	Invariant subspaces of g IMM

	Lie algebra of f equivalent to IMM
	Computing invariant subspaces of the Lie algebra gf
	Closure of a vector under the action of gf

	Reconstruction of full rank ABP for f
	Computing layer spaces from invariant subspaces of gf
	Reduction to almost set-multilinear ABP
	Reconstructing almost set-multilinear ABP

	Symmetries of IMM
	The group G IMM
	Characterization of IMM by G IMM

	Incompleteness of full rank ABP
	Proof of lemmas and claims in sec:prelim
	Proof of lemmas and claims in sec: lie space structure
	Proof of claims in sec: lie space of f
	Proof of lemma and claim in sec: reconstruction of an ABP for f
	Proof of observation in sec: symmetries of IMM

