
Go With the Winners: When more Randomness lowers Chance of Success

Chandan Saha∗

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur, Kanpur - 208016, India.

Abstract

A study of Aldous and Vazirani’s “Go With the Winners” (GWW) algorithm for trees reveals
an interesting property - there are trees for which raising the number of random particles from
polynomial to exponential in depth d, lowers the success probability of the algorithm from a
constant to inverse exponential in d. We analyse the GWW algorithm for the expected case to
understand this counterintuitive behavior better. Our analysis sheds some light on the intricate
nature of GWW.

Keywords: Analysis of algorithms, Randomized algorithms, Go With the Winners algorithm

1. Introduction

The “Go With the Winners” (GWW) algorithm, introduced by Aldous and Vazirani [1], is
a simple and effective randomized strategy that successfully finds the deepest node with high
probability for a large class of trees where mere ‘independent trials’ fails to yield good result.
The algorithm works by introducing interactions among various trials in a very natural way.

Suppose that we are given an input tree whose every edge is associated with a transition
probability. The task is to find the depth d of such a tree, which potentially has Ω(2d) nodes,
using preferably poly(d) random bits. A simple randomized algorithm starts from the root of
the tree and traverses level-wise from node to node based on the transition probabilities. This
is called Algorithm 0 in [1]. An execution of this algorithm can be well abstracted by the flow
of a particle. A particle visiting a node of the tree chooses to move to one of its children based
on the transition probabilities associated with the edges between the node and its children.
Instead of using independent executions of the algorithm (or particles in our terminology), the
GWW algorithm greatly improves on the success probability by running the different executions
simultaneously and making them interact in the following way.

Start with B = poly(d) particles at root and proceed stage-wise. At every stage all
the B particles make independent transitions from a level of the tree to the next
level. All those particles that are stuck at leaves are evenly distributed among the
particles at non-leaves followed by the start of the next stage. The process repeats
till all B particles are at leaves of some level, which is declared the depth of the tree.

Although very simple to state, analyzing GWW exactly turns out to be quite challenging because
of the dependence between positions of different particles. Aldous and Vazirani [1] analyzed
an algorithm that supposedly ‘approximates’ the behavior of GWW and showed that GWW

∗Tel: +91-512-259-7123. Fax: +91-512-259-0725
Email address: csaha@cse.iitk.ac.in (Chandan Saha)

Preprint submitted to Information Processing Letters August 29, 2010

Chandan Saha
Sticky Note
Cancelled set by Chandan Saha

Chandan Saha
Sticky Note
Cancelled set by Chandan Saha

Chandan Saha
Cross-Out

Chandan Saha
Cross-Out

performs well if a certain imbalance factor of the tree, that they called κ, is small. To make our
discussion more precise, it would help to fix a few notations and conventions.

Notations and conventions - Let T be a tree of depth d. Each edge of the tree is associated
with a transition probability. For every vertex v in T , p(v) denotes the probability that a
particle reaches v when allowed to move freely and independently from the root. If w is a child
of v then p(w|v) denotes the transition probability associated with the edge (v, w). Assume
that all transition probabilities of T are greater than or equal to 1/r(d), where r(.) is some
fixed polynomial. The probability of reaching the ith level of T by a freely moving particle is
a(i) =

∑
v∈Vi

p(v), where Vi is the set of all vertices at the ith level. A non-leaf vertex v is called
a good non-leaf if there is a path in the tree from v to one of the nodes at the deepest level. Let
Si

nl and Si
g be the set of non-leaves and good non-leaves, respectively, at level i. For any subset

S ⊂ Vi of vertices we define p(S) =
∑

v∈S p(v).

1.1. Objective of our work
Aldous and Vazirani [1] showed that GWW finds a deepest node in a tree with probability

1/4 using B = κ · poly(d) particles, where κ is a parameter of the tree defined as follows. Define
for 0 ≤ i < j ≤ d, κi,j = a(i)/a2(j) ·

∑
v∈Vi

p(v)a2(j|v). Then κ is defined as, κ = maxi,j κi,j .
The parameter κ is arrived at by analyzing an algorithm that supposedly emulates the behavior
of GWW but is comparatively easier to analyze than GWW (see Algorithm 2 in [1]). We show,
with an example, that there are natural families of trees with parameter κ = Ω(2d/2) where
GWW succeeds with high probability using only d particles. In other words, Algorithm 2 of [1]
does not fully capture the working of the GWW algorithm.

In an attempt to make the previous sufficient condition (i.e. κ is small) weaker, Roy [2]
showed that κ ≤ poly(d) implies condition C : p(Si

g)/a(i) ≥ 1/poly(d) for all i, 1 ≤ i ≤ d. The
latter condition roughly corresponds to the fact that there are ‘many’ good non-leaves at every
level of the tree. It was conjectured in [2] that p(Si

g)/a(i) ≥ 1/poly(d) for all i, is a necessary
and sufficient condition for GWW to succeed with high probability. We show, with examples,
that the above, seemingly natural, condition C is neither necessary nor sufficient for high success
guarantee of GWW. The counterexample to the necessary condition also reveals a surprising
property that GWW exhibits. There are trees where GWW succeeds with constant probability
using only poly(d) particles but fails with probability at least 1 − d/2d/8 when the number of
particles is raised to about 2d/4.

The objective of our work is to better understand these examples by analysing the GWW
algorithm. Our analysis finds a relation between the expected number of particles reaching the
good nodes of a level (given that the algorithm has reached that level) and the termB·p(Si

g)/a(i).
The latter term is the expected number of particles reaching the good nodes of level i when all
the B particles move independently and reach level i. Let Ei be the event that GWW reaches
the ith level and Xi

g be the number of particles among the good nodes of that level. We show
that E[Xi

g|Ei] ≈ B · p(Si
g)/a(i) + cov(Z,Y), where Z and Y are two random variables such that

Y roughly measures the number of leaves encountered by GWW till the ith level and Z measures
the likelihood of a particle reaching a good node of the ith level for a given Y. In section 6,
we discuss how the above expression helps us understand the above-mentioned examples and
thereby gain a little more insight into the behavior of the GWW algorithm.

2. The GWW Algorithm

We present a slightly modified version of the GWW algorithm introduced by Aldous and
Vazirani [1]. To start with, we have 2B particles in a repository R. At stage 0, select and

2

remove B particles uniformly randomly from R and put them at the root of the input tree T .
Repeat the following procedure, starting at stage 0 with B particles at the root.

At stage i we have Bi particles (i to be treated as a superscript), each at some
vertex at depth i. If all the particles are at leaves, then stop. Otherwise, some
Bi

nl particles are at non-leaves and the remaining Bi
l = Bi − Bi

nl particles are at
leaves. Return the Bi

l particles back to R. To each of the Bi
nl particle positions add⌈

B/Bi
nl

⌉
− 1 more particles; the extra particles being uniformly randomly chosen

and removed from the particles in R. Then let each of the Bi
nl ·
⌈
B/Bi

nl

⌉
particles

move independently randomly from its current vertex to one of its children following
the transition probabilities of the edges.

Claim 2.1. For every i ∈ {0, . . . , d}, Algorithm GWW either stops before stage i, or the number
of particles Bi at depth i ranges between B and 2B.

Proof: Assume that the algorithm reaches stage i. Then Bi−1
nl must be greater than zero and

Bi = Bi−1
nl ·

⌈
B/Bi−1

nl

⌉
≥ B. Inductively, assume that B ≤ Bi−1 ≤ 2B, implying that Bi−1

nl ≤ 2B.
If Bi−1

nl > B then Bi = Bi−1
nl ≤ 2B, otherwise if Bi−1

nl ≤ B then Bi = Bi−1
nl ·

⌈
B/Bi−1

nl

⌉
≤

Bi−1
nl ·

(
B/Bi−1

nl + 1
)
≤ 2B.

3. The Examples

Example 3.1. There are trees with parameter κ = Ω(2d/2) on which Algorithm GWW succeeds
with high probability using B = d particles.

Proof: Consider the tree in Figure 1. Till height d′ = d/2 it is a complete binary tree.

Figure 1: A tree with large κ

The subtrees rooted at the 2d′ vertices of level d′

are similar except for one, which is a straight path
dropping down to level d. Every edge is associated
with a transition probability of 1/2, except for the
edges along the straight path, for which the tran-
sition probabilities are all one. It is easy to ver-
ify that GWW succeeds with probability greater
than 1− d/2d starting with only d particles. Con-
sider the value of κd′,d. Note that, a(d′) = 1 and
a(d) = (2d′ − 1) · 2/2d + 1/2d′ = (3.2d/2 − 2)/2d.
By the definition of κi,j ,

κd′,d = 22d/(3.2d/2 − 2)2 · [2−d′ + (1− 2−d′) · 2−2(d−d′−1)] ≥ 1/18 · 2d/2 and hence κ = Ω(2d/2).

Example 3.2. There are trees in which p(Si
g)/a(i) ≥ 1/2 for all 1 ≤ i ≤ d, but GWW fails

with probability at least 1− c−d (c > 1) with poly(d) particles.

Proof: Consider the tree shown in Figure 2. All edge probabilities are 1/2. C1, C2 and C3

are complete binary trees. If GWW starts with B = poly(d) particles then the probability
that a particle reaches the root of C2 is exponentially small. Therefore, at most 2B particles
reach the roots of the ‘C3’ trees with high probability. However, from there the probability of
reaching the last level is at most poly(d)/2d/4−2. Hence GWW fails with probability at least
1− poly(d)/2d/4−2. It is easy to verify that p(Si

g)/a(i) ≥ 1/2 for every i.

3

Example 3.3. There are trees in which there exist a level i with p(Si
g)/a(i) ≤ c−d (c > 1) and

yet GWW succeeds with high probability with only poly(d) particles.

Proof: Consider the tree in Figure 3. Let r(·) be some fixed polynomial. C is a complete
binary tree of depth d − 2. For i = d − 1, p(Si

g)/a(i) < r(d)/2d−2. Suppose that GWW
starts with r(d) particles. Probability that none of the particles reach vertex v at level 1 is
(1 − 1/r(d))r(d) ≥ e−1 · (1 − 1/r(d)). Moreover, if none of the particles reach vertex v then
with probability at least (1− d · (3/4)r(d)) GWW succeeds. It follows that GWW succeeds with
probablilty at least 1/4e.

Figure 2: Condition C is not sufficient Figure 3: Condition C is not necessary

The example shown in Figure 3 leads to the following interesting observation.

Observation 3.1. There are trees for which raising the number of particles from a polynomial
to exponential in depth d lowers the success probability of GWW from a constant to inverse
exponential in d.

Proof: Consider the tree shown in Figure 3. It can be shown that with d · 2d/4 · r(d) particles
GWW succeeds with probability at most d/2d/8−1. See Appendix A.

4. A convenient perspective for Algorithm GWW

Algorithm GWW starts with B particles at level 0. In stage 1, all the B particles move to
level 1 with B1

nl particles at the non-leaves and B1
l particles at the leaves. At this point the

algorithm makes k1 = dB/B1
nle copies of these particles by adding

(
dB/B1

nle − 1
)
· B1

nl extra
particles from the repository R. Equivalently, we may assume that the algorithm spawns k1

copies of the original tree T at level 1 (as shown in Figure 4) and considers each group of
B1

nl particles independently for transition to level 2. Yet another perspective is that the trees

Figure 4: Spawning of trees Figure 5: Dependency tree T

T1 = T, T2, · · · , Tk1 are all present from the start of the algorithm (each with B particles at
root), and each of them follows the particles of tree T1 to move their own particles from level
0 to level 1. Since k1 can be at most B, we may assume that all the B trees T1, T2, . . . , TB are
present (each with B particles at root) and all of them follow tree T1 till level 1, wherefrom

4

they all move their particles independently. At level 1 the algorithm ‘considers’ only k1 of these
B trees, namely T1, T2, . . . , Tk1 . The dependency among these trees is depicted as a ‘metatree’
T in Figure 5. At the end of stage 1 all the B trees move their particles independently to level
2 (as shown in Figure 6).

Figure 6: End of stage 1 and start of stage 2 Figure 7: Dependency tree T till level 2

Therefore, number of particles among the non-leaves of level 2 at the start of stage 2 equals
B2

nl =
∑k1

1 Bi,2
nl . If B2

nl > 0 the algorithm makes k2 = dB/B2
nle copies (Ti,1, Ti,2, . . . , Ti,k2) of

each tree Ti (1 ≤ i ≤ k1) and considers them independently for particle transition to level
3. Since k2 can be at most B, we may assume that for each i, 1 ≤ i ≤ B, all the B trees
(Ti,1, Ti,2, . . . , Ti,B) are present from the start of the algorithm each starting with B particles
and following the movements of the particles of Ti till level 2. At stage 2 the algorithm considers
only k2 of these B trees, (Ti,1, Ti,2, . . . , Ti,k2) for each i, 1 ≤ i ≤ k1. As before, the dependency
among the trees is depicted in Figure 7. Extending till stage d, we observe that there are
precisely Bd nodes (each node representing a tree) at depth d of the dependency tree T . A
tree (or node) at level j of T follows its parent tree (or node) for particle movements till level
j, thereafter it moves its particles independently to the subsequent levels. We can therefore
assume that to start with all the Bd trees are present, each tree follows some other tree based
on its dependency given by T till some level, wherefrom it goes independent. Algorithm GWW
considers some subset of these trees at each stage, like k1 at stage 1, k1k2 at stage 2 and so
on. Throughout the course of the algorithm, tree T1 moves its particles independently as if
Algorithm 0 of [1] is running on T1. Although a tree T ′ follows some other tree for particle
movements, an observer who only sees T ′ merely finds Algorithm 0 of [1] executing on T ′.

5. Analysis of Algorithm GWW

Let T1, . . . , TBd be the Bd trees as discussed in the previous section. Given the (j− 1)-tuple
k̄ = (k1, k2, . . . , kj−1) one knows exactly which of the trees are considered by algorithm GWW at
the end of stage j− 1. Let k =

∏j−1
l=1 kl and T1, . . . , Tk be the trees considered by the algorithm

at the end of stage j − 1. Denote by Xj−1
i , the number of particles at the non-leaves of tree Ti

at level j − 1 and let Xj
g i be the number of particles at the good non-leaves of tree Ti at level

j. The number of particles at the good non-leaves of the input tree at the start of stage j of
GWW is given by Xj

g = Xj
g 1 +Xj

g 2 + . . .+Xj
g k. For economy of notation, the symbol k̄ inside

a probability or the conditional part of an expectation expression will represent the event that
k̄ is fixed to some specific vector.

Claim 5.1. E[Xj
g | Ej , k̄] = k · E[Xj

g 1 | Ej , k̄].

Proof: By linearity of expectations, E[Xj
g | Ej , k̄] =

∑k
t=1E[Xj

g t | Ej , k̄]. Consider two trees
Tt1 and Tt2 in the dependency tree T , 1 ≤ t1, t2 ≤ k, where Tt2 follows Tt1 till some level
l ≤ j − 1, thereafter they separate out. It is sufficient to observe that for all x ≥ 0, Pr{Xj

g t1
=

x | Ej , k̄} = Pr{Xj
g t2

= x | Ej , k̄}

5

Similarly, E[Xj−1
1 + Xj−1

2 + . . . + Xj−1
k | Ej , k̄] = k · E[Xj−1

1 | Ej , k̄]. Let {1, . . . , B} be the B
particles with which GWW starts. We may further assume that these are the particles with
which tree T1 starts executing Algorithm 0. S be the set of particles arriving at the non-leaves
of the (j − 1)-th level of T1, where |S| = Xj−1

1 . Assuming that Ej has occurred, define the
random variable Z(Xj−1

1 , k̄) as,

Z(Xj−1
1 , k̄) = Pr{particle 1 reaches Sj

g | (1 ∈ S) ∧ (|S| = Xj−1
1) ∧ k̄}, if Xj−1

1 > 0

= p(Sj
g)/a(j), else if Xj−1

1 = 0.

Lemma 5.1. E[Z(Xj−1
1 , k̄) | Ej] = p(Sj

g)/a(j) and B ≤ E[kXj−1
1 | Ej] ≤ 2B.

Proof: As before, assume that Ej has occurred. Then, E[Z(Xj−1
1 , k̄)] equals∑

k̄,x>0

Pr{Xj−1
1 = x} · Pr{k̄ | (Xj−1

1 = x)} · Z(x, k̄) + Pr{Xj−1
1 = 0} · p(Sj

g)/a(j).

Claim 5.2. For any x > 0, Pr{k̄ | (Xj−1
1 = x)} = Pr{k̄ | (Xj−1

1 = x) ∧ (1 ∈ S)}.

Proof: See Appendix A.

Let z1 be a boolean variable that is 1 if and only if particle 1 is in set Sj
g . Then the first part

of the expression for E[Z(Xj−1
1 , k̄)] simplifies as,∑

k̄,x>0

Pr{Xj−1
1 = x} · Pr{k̄ | (Xj−1

1 = x) ∧ (1 ∈ S)} · E[z1| (1 ∈ S) ∧ (Xj−1
1 = x) ∧ k̄]

=
∑
x>0

Pr{Xj−1
1 = x} ·

∑
k̄

Pr{k̄ | (Xj−1
1 = x) ∧ (1 ∈ S)} · E[z1 | (1 ∈ S) ∧ (Xj−1

1 = x) ∧ k̄]


=

∑
x>0

Pr{Xj−1
1 = x} · E[z1 | (1 ∈ S) ∧ (Xj−1

1 = x)]

Revealing the fact that the universe is the event Ej the above expression becomes,∑
x>0

Pr{Xj−1
1 = x | Ej} · E[z1 | (1 ∈ S) ∧ (Xj−1

1 = x) ∧ Ej]

=
∑
x>0

Pr{Xj−1
1 = x | Ej} · E[z1 | (1 ∈ S) ∧ (Xj−1

1 = x)] as (1 ∈ S) ∧ Ej = (1 ∈ S)

Now note that, for x > 0, E[z1 | (1 ∈ S) ∧ (Xj−1
1 = x)] = Pr{particles 1 reaches Sj

g | (1 ∈ S) ∧
(Xj−1

1 = x)} = p(Sj
g)/a(j) because when taken over the whole universe, it is just Algorithm 0 ex-

ecuting on the B particles of T1 which makes the transition probability of particle 1 independent
of the value ofXj−1

1 . Therefore, E[Z(Xj−1
1 , k̄) | Ej] equals

∑
x>0 Pr{Xj−1

1 = x | Ej} · p(Sj
g)/a(j)+

Pr{Xj−1
1 = 0 | Ej} · p(Sj

g)/a(j) = p(Sj
g)/a(j).

The proof of the second part is simple since E[kXj−1
1] = E[E[kXj−1

1 |k̄]] = E[k ·E[Xj−1
1 |k̄]]

= E[E[Xj−1
1 + . . . + Xj−1

k | k̄]]. The term Xj−1
1 + . . . + Xj−1

k is the total number of particles
at level j − 1, just before transition to level j. By Claim 2.1, this number is always between B
and 2B .

6

Theorem 5.1. Assuming that Ej has occurred,

B · p(Sj
g)/a(j) ≤ E[Xj

g]− cov(Z(Xj−1
1 , k̄), kXj−1

1) ≤ 2B · p(Sj
g)/a(j).

Proof: Assume that our universe of events is the set of all events where Ej has occurred and
k̄ is fixed at some particular vector (k1, . . . , kj−1). Let S = {e1, e2, . . . , e|S|} be the subset of
particles from {1, . . . , B} arriving at the non-leaves of level j − 1 of T1, where |S| = Xj−1

1 .
Then, Xj

g 1 = ze1 + ze2 + . . . + ze|S| , where zei = 1 if ei makes a transition to a good node
of level j and 0 otherwise. Therefore, E[Xj

g 1|S] =
∑

ek∈S E[zek
|S] = E[ze1 |S] · |S|, since all

the particles are identical. This expression makes sense only if we define E[ze1 |S] for |S| = 0.
But we have full flexibility in doing so, as E[Xj

g 1|S] = E[ze1 |S] · |S| = 0 if |S| = 0 irre-
spective of how E[ze1 |S] is defined. So, we make a slight abuse of notation and for any e,
1 ≤ e ≤ B we define E[ze|S] = p(Sj

g)/a(j) if |S| = 0. Therefore, E[Xj
g 1] = E[E[Xj

g 1|S]] =∑
Si

Pr{S = Si} · E[ze1(i)|Si] · |Si|, where e1(i) ∈ Si if |Si| 6= 0, otherwise define e1(i) = 1. Note
that, even in this restricted universe of Ej and k̄, E[ze1(i)|Si]’s are the same for all sets Si’s of
same size. By defining E[z1 | (1 ∈ S) ∧ (Xj−1

1 = x)] as p(Sj
g)/a(j) for x = 0 we have, E[Xj

g 1] =∑
x≥0 Pr{Xj−1

1 = x} · E[z1 | (1 ∈ S) ∧ (Xj−1
1 = x)] · x =

∑
x≥0 Pr{Xj−1

1 = x} · Z(x, k̄) · x =
E[Z(Xj−1

1 , k̄) ·Xj−1
1] (since the universe fixes k̄, it is treated as a constant). From Claim 5.1,

E[Xj
g] = k · E[Xj

g 1] = E[Z(Xj−1
1 , k̄) · kXj−1

1]. Revealing the event that k̄ is fixed, E[Xj
g | k̄] =

E[Z(Xj−1
1 , k̄)·kXj−1

1 | k̄]. Taking expectations on either side, E[Xj
g] = E[Z(Xj−1

1 , k̄)·kXj−1
1] =

E[Z(Xj−1
1 , k̄)]·E[kXj−1

1]+cov(Z(Xj−1
1 , k̄), kXj−1

1). The theorem follows from Lemma 5.1.

6. Discussion

It is evident from the examples given in Figure 2 and 3 that the term cov(Z(Xj−1
1 , k̄), kXj−1

1)
plays a significant role in deciding E[Xj

g | Ej]. However, asB →∞, Z(Xj−1
1 , k̄)→ E[Z(Xj−1

1 , k̄)]
= p(Sj

g)/a(j) and kXj−1
1 → E[kXj−1

1], which is between B and 2B, and the covariance term
looses its effect on B ·p(Sj

g)/a(j). The covariance is significant only for relatively smaller values
of B, for instance when B = poly(d). Also, the parameter Z(Xj−1

1 , k̄) is fixed at p(Sj
g)/a(j) for

Xj−1
1 = 0. Therefore, in order to study the deviation of Z(Xj−1

1 , k̄) from its expectation we
should focus on the case when Xj−1

1 > 0. Also, since E[kXj−1
1] is always between B and 2B

and Xj−1
1 ≤ B, to understand the effect of kXj−1

1 on Z(Xj−1
1 , k̄) we should study the effect of k

on the latter parameter. This is because, for Xj−1
1 > 0, the parameter kXj−1

1 generally exceeds
2B with rise in k. When k = 1 then Xj−1

1 = B and kXj−1
1 = B = poly(d), whereas when k is

exponentially large and Xj−1
1 > 0 then kXj−1

1 is also exponentially large.
Consider the examples given in Figure 1, 2 and 3. In these examples the trees consist of

two kinds of substructures; one is a complete binary tree (like C3 in Figure 2, C in Figure 3
and the straight path in Figure 1), and the other is an elongated structure where each node
bifurcates into two children, one of which is a leaf and the other is a non-leaf. For Xj−1

1 > 0, the
parameter kXj−1

1 rises with rise in k as more and more particles traverse through the second
kind of substructures. The value of k rises because more particles are lost as more leaves are
encountered along these substructures and therefore more trees in T are considered by GWW
(according to the perspective developed in Section 4).

In Figure 2, the quantity Z(Xj−1
1 , k̄), which is the probability that a particle reaches a good

node at the jth level given it has reached the level, drops to an exponentially small quantity (for
j = d− 2) with the rise in kXj−1

1 as more particles travel through the second kind of substruc-
tures. This makes the term cov(Z(Xj−1

1 , k̄), kXj−1
1) largely negative. However, in Figure 1, this

7

drop in probability is only to half and cov(Z(Xj−1
1 , k̄), kXj−1

1), although negative, is sufficiently
small. On the contrary, in Figure 3 as particles travel through the second kind of substructures
the probability of a particle reaching a good node increases. Moreover, this change is from
an exponentially small quantity (i.e. p(Sj

g)/a(j)) to 1/4. This makes cov(Z(Xj−1
1 , k̄), kXj−1

1)
largely positive for B = r(d). Thus, although B · p(Sj

g)/a(j) is exponentially small, E[Xj−1
g |Ej]

is large in this case.

Conclusion - Although the covariance factor helps us understand the example cases better,
unlike κ it is not explicitly expressed in terms of the parameters of the input tree. However,
on the positive side, our analysis is exactly of the GWW algorithm and not of a ‘approximate
version’ of GWW as is the case in [1]. A future direction of our work would be to investigate
if an explicit expression for the covariance factor can be found, and also to bound the variance
of the number of particles arriving at the good nodes. Based on the expected case analysis, we
are tempted to believe that condition C is indeed necessary and sufficient for good performance
of GWW when the covariance factor is small.

Acknowledgement

I am thankful to Manindra Agrawal, Somenath Biswas and Sudeepa Roy for many insightful
discussions during the course of this work.

References

[1] D. Aldous, U. Vazirani, “Go With the Winners” Algorithms, in: FOCS, 1994, pp. 492–501.

[2] S. Roy, On “Go With the Winners” algorithm, Master’s thesis, Indian Institute of Technol-
ogy Kanpur (2006).

Appendix A.

Proof: [Proof of Observation 3.1] Suppose that GWW starts with B = c·r(d). Applying Chernoff
bound, after transition from level 0 to level 1 the probability that number of particles in vertex
v is less that c/2 is at most e−d/8. At the end of stage i, just before transition to level i+ 1, let
there be ni particles at level i within tree C and b particles among other non leaves, where b is
between c · r(d) − ni and 2c · r(d) − ni. Assume that c · r(d) − ni ≥ d. Again, using Chernoff
bound it follows that the probability that less than b/2 particles go to leaves at level i+ 1 is at
most e−d/6. Therefore with probability at least 1 − e−d/6, ni+1 ≥ B·ni

ni+
1
2
·(2c·r(d)−ni)

≥ 2c·r(d)·ni

c·r(d)+ni
.

If ni = ki · c · r(d) then ki+1 ≥ 2ki/ki + 1. Since k1 ≥ 1/2r(d) with probability at least
1 − e−d/8, using this as the base case we get, ki ≥ 2i−1/(2i−1 + 2r(d) − 1) with probability at
least 1 − i · e−d/8. Therefore, at the ith level number of particles among non-leaves outside C
is at most, (2r(d)−1)·2c·r(d)

2i−1+2r(d)−1
with probability at least 1 − i · e−d/8. Choose c = d · 2d/4. Within

the first d/2 levels, the number of particles outside C falls below d with probability at least
1− (1/2) · d · e−d/8. Suppose this is the case and B′ be the number of particles among the non
leaves at level d/2. If B′−d ≥ B then in the last d/2 levels there is no addition of new particles
and the d particles outside C reach the last level with probability at most d/2d. Suppose that
B′ − d < B and let B′ − B = d′ < d. Within the next d/4 levels, d′ particles are lost at leaves
with probability at least 1−d ·2−d/2. Once the number of particles drops below B, the factor by
which each particle is scaled can be at most 2, as B − d ≥ B/2. Moreover, for the same reason
it is also the last time new particles are added. Therefore, with high probability a maximum

8

of 2d particles are present outside C at the 3d/4-th level and no new particles are subsequently
added. These particles fail to reach the last level with probability at least 1− d/2d/2−1. Hence,
with B = d · 2d/4 · r(d) particles Pr{GWW succeeds} ≤ d/2d/8−1.

Proof: [Proof of Claim 5.2] Note that, for any x > 0, Pr{k̄ | (Xj−1
1 = x)} = Pr{k̄ | (Xj−1

1 =
x) ∧ (1 ∈ S)}. This is because,

Pr{k̄ | (Xj−1
1 = x)} =

Pr{k̄ ∧ (Xj−1
1 = x)}

Pr{Xj−1
1 = x}

=

∑
Si:|Si|=x Pr{k̄ ∧ (S = Si)}∑

Si:|Si|=x Pr{S = Si}

=

(
B
x

)
· Pr{k̄ ∧ (S = S1)}(
B
x

)
· Pr{S = S1}

= Pr{k̄ | (S = S1)}

where S1 is some fixed set of x elements containing particle 1. The summation in the above
expression collapses as Pr{k̄ ∧ (S = Si)} (also Pr{S = Si}) are same for all Si with size x.
Similarly,

Pr{k̄ | (Xj−1
1 = x) ∧ (1 ∈ S)} =

Pr{k̄ ∧ (Xj−1
1 = x) ∧ (1 ∈ S)}

Pr{(Xj−1
1 = x) ∧ (1 ∈ S)}

=

∑
Si:(|Si|=x)∧(1∈Si)

Pr{k̄ ∧ (S = Si)}∑
Si:(|Si|=x)∧(1∈Si)

Pr{S = Si}

=

(
B

x−1

)
· Pr{k̄ ∧ (S = S1)}(

B
x−1

)
· Pr{S = S1}

= Pr{k̄ | (S = S1)}

9

