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1 Introduction

The problem of proving super-polynomial lower bounds for arithmetic circuits occupies a cen-
tral position in complexity theory, much like the problem of proving super-polynomial lower
bounds for boolean circuits. The model of arithmetic circuits is an algebraic analogue of the
model of boolean circuits: An arithmetic circuit contains addition (`) and multiplication (ˆ)
gates and it naturally computes a polynomial in the input variables over some underlying field.
Proving super-polynomial arithmetic circuit lower bounds for an explicit family of polynomial,
say the Permanent family, amounts to showing that VP ‰ VNP [25]. The complexity classes
VP and VNP consist of families of polynomials and can be viewed as algebraic analogues of the
classes P and NP respectively. Interestingly, it is known that P ‰ NP implies VP ‰ VNP [23].
The hope is that it might be possible to use algebraic and geometric insights along with the
structure of arithmetic circuits to make progress towards settling the VP vs VNP question. Till
date, research on arithmetic circuits has produced several interesting results that have enriched
our understanding of the lower bound problem and the related problems on polynomial identity
testing & reconstruction (or learning) of arithmetic circuits. The survey [22] gives an account
of some of the results and outstanding open questions in this area.

Previous work on super-polynomial lower bounds. Raz [20] showed that any multilinear
formula computing the determinant Detn (or the permanent Permn) polynomial has nΩplognq

size. This result was refined to show a super-polynomial gap between multilinear circuits and
formulas [19]. A significantly better bound was later shown for bounded (i.e. constant) depth

multilinear circuits [21]: A depth-d multilinear circuit computing Detn or Permn has size 2n
Ωp1{dq

.
The study of constant depth circuits has gained momentum in the recent years after a

striking connection was shown between lower bounds for general circuits and that for depth-4
& depth-3 formulas. Building on the depth reduction results of [26, 3], a string of works [2,

13, 24] arrived at the following result: A 2ωp
?
d logNq size lower bound for depth-4 homogeneous

formulas 1, computing a degree-d, N -variate polynomial (in a polynomial family), implies a
super-polynomial lower bound for general circuits. Further, if the polynomial family belongs to
VNP then such a lower bound would imply VP ‰ VNP. A similar implication is true even for
depth-3 formulas, although at the loss of the homogeneity condition - this is a surprising result
due to [8].

The formal degree of a homogeneous formula is bounded by the degree of the computed
polynomial - a feature that is quite effective in proving lower bounds using partial derivatives
based methods. The approach of proving lower bounds by studying the space of partial deriva-
tives of the computed polynomial was introduced by [18], who showed an exponential lower
bound for homogeneous depth-3 formulas 2. (For depth-3 formulas over fixed finite fields, an
exponential lower bound was shown by [5, 6].) Indeed, the super-polynomial lower bounds ob-
tained by [20, 19, 21], and also some others like [1], are based upon studying partial derivatives
or associated matrices involving partial derivatives like the Jacobian or the Hessian.

The situation for depth-4 homogeneous formulas has been substantially improved by the re-
cent work of [10, 7], followed by the work of [12] and [4]. These work have lead to a 2Ωp

?
d logNq

lower bound for depth-4 homogeneous formulas with bottom fan-in Op
?
dq (where d is the de-

gree of the N -variate ‘target’ polynomial on which the lower bound is shown). Further, [12]
and [4] together imply a super-polynomial separation between algebraic branching programs
and regular formulas - two natural sub-models of arithmetic circuits 3. A seemingly tempting

1with bottom fan-in bounded by Op
?
dq

2Prior to this work, Nisan [17] showed an exponential lower bound for noncommutative arithmetic formulas
3In fact, a very recent work of [14] shows a super-polynomial separation between general formulas and regular
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problem left open in these work is, if the lower bound of 2Ωp
?
d logNq in the above statement

could be improved to 2ωp
?
d logNq, a super-polynomial lower bound for general circuits would

ensue immediately. Another recent work [15] has shown an exponential lower bound for depth-4
homogeneous formulas with constant top fan-in. At the heart of these results lies the study
of the space of shifted partial derivatives of polynomials and an associated measure called the
dimension of the shifted partials - a technique introduced in [10, 7]. Loosely speaking, the di-
mension of the shifted partials of a polynomial g refers to the dimension of the F-linear vector
space generated by the set of polynomials obtained by multiplying (shifting) the partial deriva-
tives of g with monomials of suitable degrees.

Our results. In an attempt to understand the strength of the shifted partials method better,
a recurring open problem stated in [12, 4, 14, 24] is to show a super-polynomial lower bound
for homogeneous depth-4 formulas. Whether the shifted partial measure can be used to prove
such a result or not is not exactly clear to us. This very recent work by [14] seems to suggest
that the answer is likely in the negative. However, this does not rule out the possibility of
using a different measure, perhaps closely related to the shifted partials, to achieve the same
goal. It turns out that indeed it is possible to use a slightly modified (or augmented) version of
the shifted partial measure to show a super-polynomial lower bound for depth-4 homogeneous
formulas. For the ease of reference in this paper, we will call this modified measure the shifted
projected partials. Loosely speaking, the idea is to view the partials after ‘projecting’ them to
an appropriate set of monomials.

Our results are formally stated below.

Theorem 1. A depth-4 homogeneous formula computing the Iterated Matrix Multiplication
polynomial IMMn,d — the p1, 1q-th entry of the product of d generic n ˆ n matrices — has
nΩplognq size, assuming d “ Ωplog2 nq. If d ď ε log2 n for a sufficiently small ε ą 0 then any

depth-4 homogeneous formula computing the IMMn,d polynomial has size nΩp
?
dq.

Theorem 2. A depth-4 homogeneous formula computing the determinant polynomial Detn —
the determinant of a generic nˆ n matrix — has size nΩplognq.

Subsequent work There has been quite some progress on this question since we submitted
these results to STOC 2014. Independent of our work, Kumar and Saraf [16] give an NΩplog logNq

lower bound for ΣΠΣΠ homogeneous formulas computing an explicit polynomial (more formally,
a polynomial in VNP) in N variables. Further, we [11] have been able to strengthen the

lower bounds presented here by showing an NΩp
?
dq lower bound for an explicit polynomial

in N variables with d “ NΩp1q, yielding an exponential lower bound for homogeneous ΣΠΣΠ
formulas. In both these works, the explicit polynomials are variations of the Nisan-Wigderson
polynomials introduced in [12].

The rest of the paper is devoted to proving Theorems 1 and 2.

2 Definitions and notations

The Iterated Matrix Multiplication polynomial. Fix any n, d P N such that n, d ě 2.

Define sets of variables X1, . . . , Xd as follows. If p P t1, du, Xp “

!

x
ppq
j

ˇ

ˇ

ˇ
j P rns

)

is a set of

n variables; otherwise Xp “

!

x
ppq
j,k

ˇ

ˇ

ˇ
j, k P rns

)

is a set of n2 variables. Let X “
Ť

pPrdsXp

formulas.
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and N :“ |X| “ pd ´ 2qn2 ` 2n. We think of X1 and Xd as row and column vectors of
variables respectively and of Xp (p P rdszt1, du) as nˆ n matrices of variables. Now, we define
the IMMn,dpXq polynomial as the (unique entry of) the product of the matrices X1 ¨ ¨ ¨Xd.
Formally,

IMMn,dpXq “
ÿ

j1,...,jd´1

x
p1q
j1
x
p2q
j1,j2

¨ ¨ ¨x
pd´1q
jd´2,jd´1

x
pdq
jd´1

An alternate, combinatorial and quite useful way of looking the above polynomial is through
the lens of Algebraic Branching Programs (ABPs) (see, e.g., [22]). Consider a homogeneous ABP

A defined over vertex sets V0, . . . , Vd where V0 “ tv
p0qu, Vd “ tv

pdqu, and Vp “ tv
ppq
i | i P rnsu

for p P rd´ 1s. The ABP contains all possible edges between Vp and Vp`1 for p P t0, . . . , d´ 1u.

Each edge e is labelled with a distinct variable from X: the edge e “ pvp0q, v
p1q
j q is labelled with

x
p1q
j ; e “ pv

ppq
i , v

pp`1q
j q is labelled with x

pp`1q
i,j ; finally, e “ pv

pd´1q
i , vpdqq is labelled with x

pdq
j . The

ABP computes a polynomial by summing over all paths ρ from vp0q to vpdq the monomial which
is obtained by multiplying the variables labelling the edges along the path. It is easily verified
that the polynomial computed this way is IMMn,d.

Throughout, we omit mention of the set of variables X if the values of n and d are fixed.
Recall that a monomial over the variables in X is said to be multilinear if it is not divisible
by x2 for any x P X. Given a monomial xi, we define the matrix support of xi — denoted
MSupppxiq — to be the set of all p P rds such that m is divisible by some x P Xp. We call a
monomial xi set-multilinear if it is multilinear and furthermore, it is divisible by exactly one
variable in Xp for each p P MSupppxiq.

Depth-4 arithmetic formulas. We recall some basic definitions regarding arithmetic circuits
and formulas; for a more thorough introduction, see the excellent survey [22]. Let Y be a finite
set of variables. An arithmetic formula C over FrY s is a rooted tree the leaves of which are
labelled by variables in Y and elements of the field F and internal nodes (called gates) by `
and ˆ. This computes a polynomial f P FrY s in a natural way. By the size of a formula, we
mean the number of vertices in the tree, and by the depth of a formula, we mean the longest
root-to-leaf path in the tree. Our focus here is on depth-4 formulas, which are formulas that
can be written as sums of products of sums of products, otherwise known as ΣΠΣΠ formulas.
We will prove lower bounds for homogeneous ΣΠΣΠ formulas which are ΣΠΣΠ formulas such
that each node computes a homogeneous polynomial (i.e. a polynomial whose every monomial
has the same degree). Given a ΣΠΣΠ formula, the layer 0 nodes will refer to the leaf nodes, the
layer 1 nodes to the Π-gates just above the leaf nodes, etc. The top fan-in refers to the fan-in
of the root node on layer 4. We also consider variants of ΣΠΣΠ formulas with bounds on the
fan-ins of the Π gates. By ΣΠrDsΣΠrts formulas, we mean ΣΠΣΠ formulas where the fan-ins of
the layer 1 and layer 3 Π gates are at most t and D respectively.

The measure. Let f be a polynomial in Frx1, . . . , xN s of degree d. Let S1 and S2 be certain
fixed subsets of monomials in the N variables. For a polynomial g “

ř

i cix
i, where ci P F, define

πS1pgq :“
ř

xiPS1
cix

i i.e. πS1pgq is the projection of g onto the monomials in S1. Consider the
vector space Vk,`pfq, which we call the space of the shifted projected partials of f 4 and is
defined to be

spanFtx
i ¨ πS1

ˆ

Bkf

Bxj1 . . . Bxjk

˙

: |i| ď ` and
ź

qPrks

xjq P S2u. (1)

4borrowing notations and terminologies from [12] and [4]
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The measure is the dimension of this space, denoted by µk,`pfq :“ dimpVk,`pfqq. The choices of
S1 and S2 used for IMMn,d will be made precise in Section 3. The parameters k and ` will also
be fixed in the analysis later. Since S1 and S2 are fixed, it is easy to verify that the measure
obeys the subadditivity property.

Lemma 3 (Subadditivity Lemma). For any f, g P FrXs, we have µk,`pf`gq ď µk,`pfq`µk,`pgq.

3 Preliminaries

Throughout this section, we fix some n, d P N and work with X “
Ť

pPrdsXp, the set of variables
over which IMMn,d is defined.

3.1 The derivatives

We define the derivative operators as in [4]. Let X1, X2, . . . , Xd be the matrices that define
IMMn,d. Let k be a parameter which will be fixed later and r “ t d

k`1 u ´ 1. We choose evenly
spaced k indices p1, p2, . . . , pk, i.e. p1, p2, . . . , pk are chosen so that for all 1 ď q ď k ` 1,
pq ´ ppq´1 ` 1qq ě r, where p0 “ 0 and pk`1 “ d ` 1. Now we choose one variable each

from the matrices Xp1 , Xp2 , . . . , Xpk , say x
pp1q

i1,j1
, x
pp2q

i2,j2
, . . . , x

ppkq
ik,jk

, respectively and take derivatives
with respect to them - this defines the set S2 in Equation (1). More precisely, for any I “

pi1, j1, . . . , ik, jkq P rns
2k, let mI denote the monomial x

pp1q

i1,j1
x
pp2q

i2,j2
. . . x

ppkq
ik,jk

and for a polynomial

F P FrXs, let BIF denote

˜

BkF

Bx
pp1q
i1,j1

...Bx
ppkq

ik,jk

¸

. Then S2 is the set tmI | I P rns
2ku.

3.2 Restriction applied to IMMn,dpXq

We will define a restriction as in Section 6 of [4]. Fix p11, . . . , p
1
k`1 P rds such that for each

q P rk ` 1s, we have mintp1q ´ ppq´1 ` 1q, pq ´ pp
1
q ` 1qu ě t r´1

2 u, where p0, . . . , pk`1, r are as
defined in Section 3.1. Recall that Sn is standard notation for the set of all bijections from
the set rns to itself. Let P 1 “ tpq | q P rksu Y

 

p1q
ˇ

ˇ q P rk ` 1s
(

. For j1, jd P rns and tuple of
bijections B “ pφp P Sn : p P rdszpP 1 Y t1, duqq, we define the restriction τ “ τj1,jd,B as follows:
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For x P X

τpxq “

$

’

’

’

&

’

’

’

%

0 if x “ x
p1q
j for j ‰ j1,

0 if x “ x
pdq
j for j ‰ jd,

0 if x “ x
ppq
i,j for p P rdszpP 1 Y t1, duq and φppiq ‰ j,

x otherwise.

We denote by R the set of all such restrictions. Given a restriction σ P R and a polynomial
f P FrXs, we denote by f |σ the polynomial fpσpxq : x P Xq. Let τ0 “ τ1,1,B0 where B0 is a
tuple of identity permutations and let F “ IMMn,d|τ0 .

3.3 Measure µk,` applied to a restriction of IMMn,dpXq

Just as in [4], we work with the special restriction F “ IMMn,d|τ0 for the ease of presenta-
tion. The lower bound on the measure given by Lemma 4 (below) holds for every restriction
τ applied to IMMn,d i.e. for every IMMn,d|τ . In [4] it was proved that the dimension of the
shifted partials space of F is large. It turns out that the measure µk,`pF q is exactly equal to the
the dimension of the shifted partials space of F , if the set S1 in Equation (1) is defined as follows.

The projection πS1 : The map πS1 becomes well defined once we specify the set S1. Let
p1, p2, . . . , pk be as defined in Section 3.1. The set S1 is defined as the set of all set-multilinear
monomials which are supported on variables in Xz

`

YqXpq

˘

. We can now prove this lemma
formally.

Lemma 4. Let k, ` P N be arbitrary parameters such that 20k ă d ă ` and k ě 2. Then,

µk,`pF q ěM ¨

ˆ

N ` `

`

˙

´M2 ¨

ˆ

N ` `´ d{40

`´ d{40

˙

,

where M “
X

n1.5k
\

.

The proof of this lemma follows that of [4, Lemma 11] closely. For completeness, the entire
proof is presented in the appendix.

4 Lower bounds for certain ΣΠΣΠ formulas

In this section, we prove a lower bound for certain variants of ΣΠΣΠ formulas that we define
below. Fix n and d and let X be the set of input variables to IMMn,d. Let Z denote the set
Ť

pPP 1 Xp — where P 1 is as defined in Section 3 — and Y “ XzZ. Let J denote the ideal
generated by all the non-set-multilinear monomials over X.

Given X 1 Ď X and f P FrXs, we denote by degX 1pfq the degree of f seen as a polynomial
over the variables in X 1 with coefficients from FrXzX 1s.

Definition 5 (ΣΠrDsΣΠ
rts
Y formulas). An ΣΠΣΠ formula C is said to be an ΣΠrDsΣΠ

rts
Y formula

if the fan-ins of its layer 3 multiplication gates are bounded by D, and the layer 1 Π gates in C
compute monomials xi s.t. degY px

iq ď t.

The main result of this section is the following:

Lemma 6. For large enough n, d P N, any D P N and t, k P N such that t ě 4 and kt ď d{1000,

the following holds. Let C be a ΣΠrDsΣΠ
rrt{2ss

Y formula such that C “ IMMn,d|σ pmod J q for

some σ P R. Then, the top fan-in of C is at least 1
4¨2d

´

n1.25k
eD

¯k
.
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The proof of the above combines Lemma 4 along with an upper bound on the dimension of
the shifted projected partial derivative space of C. To be precise, we prove the following:

Lemma 7. For any n, d,D, k, ` ě 2, we have the following. Let C be a ΣΠrDsΣΠ
rts
Y formula

over the variables in X of top fan-in s and let f be any polynomial from J . Then, we have

µk,`pC ` fq ď s ¨ 2d ¨

ˆ

D

k

˙

¨

ˆ

N ` `` pt` 1qk

`` pt` 1qk

˙

Assuming the above lemma, let us finish the proof of Lemma 6. We will need the following
technical facts (see [4, Section 3] for the proof of Fact 9).

Fact 8. For any integers N, `, r such that r ă `, we have
ˆ

N ` `

`

˙r

ď

`

N``
`

˘

`

N``´r
`´r

˘ ď

ˆ

N ` `´ r

`´ r

˙r

.

Fact 9. For any integers n, d ě 2, N “ pd´ 2qn2` 2dn and t ě 1, there exists an integer ` ą d

such that n1{16 ď
`

N``
`

˘t
ď n1{4.

of Lemma 6. [4, Claim 14] observe that all the polynomials IMMn,d|σ are equivalent in the
sense that they can be transformed to one another by permuting the variables in each Xp

(p P rds) suitably, which also preserves the ideal J . Thus, it suffices to prove the lemma for
F “ IMMn,d|τ0 only.

By Fact 9, we can fix ` P N such that n1{16 ď
`

N``
`

˘t
ď n1{4. For this choice of `, we first

lower bound µk,`pF q using Lemma 4, which tells us that

µk,`pF q ěM ¨

ˆ

N ` `

`

˙

´M2

ˆ

N ` `´ d{40

`´ d{40

˙

(2)

where M “ tn1.5ku.
Note that for our setting of parameters, we have

M
`

N``
`

˘

M2
`N``´d{40

`´d{40

˘

ě
1

n1.5k
¨

ˆ

N ` `

`

˙d{40

(by Fact 8)

ě
pn1{16tqd{40

n1.5k
ě nΩpkq ě 2

for large enough n. Thus, using the above and (2), we obtain that

µk,`pF q ě
M

2
¨

ˆ

N ` `

`

˙

(3)

Now, since C “ F pmod J q, we have F “ C ` f for some polynomial f P J . Then,
Lemma 7 and Inequality (3) above together imply that

s ě
M

2 ¨ 2d ¨
`

D
k

˘ ¨

`

N``
`

˘

`N```prt{2s`1qk
``prt{2s`1qk

˘

ě
1

2 ¨ 2d
n1.5k{2

p eDk q
k
¨

`

N``
`

˘

`

N```tk
``tk

˘

ě
1

4 ¨ 2d
n1.5k

p eDk q
k
¨

1
`

N``
`

˘tk
(by Fact 8)

ě
1

4 ¨ 2d

˜

n1.5k

eD ¨
`

N``
`

˘t

¸k

ě
1

4 ¨ 2d

ˆ

n1.5k

eD ¨ n1{4

˙k

(by choice of `)

ě
1

4 ¨ 2d

ˆ

n1.25k

eD

˙k

,
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which implies the lemma.

All that remains is to prove Lemma 7, which is done below.

4.1 Proof of Lemma 7

Fix C and f as in the statement of the lemma. By Lemma 3, we know that µk,`pC ` fq ď
µk,`pCq ` µk,`pfq. The latter term is handled first.

Claim 10. For every g P J and every I P rns2k, we have πS1pBIgq “ 0. In particular, µk,`pgq “
0.

Proof. By linearity, it suffices to prove the above for every monomial xi P J . Since xi is non-set
multilinear, there exists some p P rds and x, y P Xp (possibly equal) such that xy|xi. There are
two cases to consider:

• p R tp1, . . . , pku: In this case, it is easy to see that xy|BIx
i as well and hence πS1pBIx

iq “ 0.

• p P tp1, . . . , pku: Either x and y are distinct or x “ y. In the former case, we note that
since we derive w.r.t. at most one of x or y, it must be the case that either x|BIx

i or
y|BIx

i. In the latter case, since we derive at most once w.r.t. x, we have x|BIx
i. In either

case, πS1pBIx
iq “ 0.

Thus, we only need to bound µk,`pCq. Assume that C “
řs
i“1Ci, where each Ci is a

ΠrDsΣΠ
rts
Y formula. By Lemma 3, it suffices to show that for each i P rss, we have

µk,`pCiq ď 2d ¨

ˆ

D

k

˙

¨

ˆ

N ` `` pt` 1qk

`` pt` 1qk

˙

(4)

Let i P rss be fixed for the rest of the proof. We may assume that the top fan-in of Ci
is exactly D and hence Ci “

ś

pPrDsQp where degY pQpq ď t for each p P rds. Consider any

I P rns2k. By the product rule for differentiation, we can see that BICi can be written as

BIpCiq “
ÿ

AĎrDs:|A|“D´k

˜

ź

pPA

Qp

¸

¨Q1I,A

where for each A, Q1I,A satisfies degY pQ
1
I,Aq ď tk. Let QA denote

ś

pPAQp. Hence we have

!

BIpCiq
ˇ

ˇ

ˇ
I P rns2k

)

Ď

spanF

!

QA ¨ x
j
ˇ

ˇ

ˇ
A Ď rDs, |A| “ D ´ k, degY px

jq ď tk
)

Thus, we have by linearity,

!

πS1pBIpCiqq
ˇ

ˇ

ˇ
I P rns2k

)

Ď

spanF

!

πS1pQA ¨ x
jq

ˇ

ˇ

ˇ
|A| “ D ´ k,degY px

jq ď tk
)

Now, by the definition of πS1 , πS1pQA ¨ x
jq “ 0 if either xj is non-set-multilinear or it is

divisible by a variable in
Ť

qPrksXpq . Thus, in the expression above, we may range only over xj

that are set-multilinear and not divisible by any x P
Ť

qPrksXpq . In particular, this implies that

7



degZpx
jq ď k (recall that Z “

Ť

pPP 1 Xp) and hence |j| “ degY px
jq`degZpx

jq ď tk`k “ pt`1qk.
Thus, we get

!

πS1pBIpCiqq
ˇ

ˇ

ˇ
I P rns2k

)

Ď

spanF

!

πS1pQA ¨ x
jq

ˇ

ˇ

ˇ
|A| “ D ´ k,xj PMsm

X , |j| ď pt` 1qk
)

(5)

where we use Msm
X to denote the set of all set-multilinear monomials over X.

To analyze the above, decompose QA further as

QA “ QnsmA `
ÿ

BĎrds

QBA

where QnsmA is the sum of all the non-set-multilinear monomials in QA (with the same coef-
ficients) and QBA (for each B Ď rds) is a linear-combination of set-multilinear monomials xi1

appearing in QA such that MSupppxi1q “ B.
Since non-set-multilinear monomials lie in the kernel of πS1 we have for any xj PMsm

X ,

πS1pQA ¨ x
jq “ πS1pQ

nsm
A ¨ xjq `

ÿ

BĎrds

πS1pQ
B
A ¨ x

jq

“ 0`
ÿ

BĎrds

πS1pQ
B
A ¨ x

jq (6)

What follows is a crucial observation: for any B Ď rds and any xj PMsm
X ,

πS1pQ
B
A ¨ x

jq “

$

’

’

&

’

’

%

0, if B X tp1, . . . , pku ‰ H,
0, if MSupppxjq X tp1, . . . , pku ‰ H,
0, if MSupppxjq XB ‰ H,
QBA ¨ x

j, otherwise.

In particular, along with (6), this implies that for any xj PMsm
X , the polynomial πS1pQA ¨ x

jq

lies in spanF
 

QBA ¨ x
j
ˇ

ˇB Ď rds
(

. Plugging this into (5)
!

πS1pBIpCiqq
ˇ

ˇ

ˇ
I P rns2k

)

Ď

spanF

!

QBA ¨ x
j
ˇ

ˇ

ˇ
|A| “ D ´ k, |j| ď pt` 1qk,B Ď rds

)

We are now ready to bound µk,`pCiq. By linearity once more, we have

Vk,`pCiq “
!

xi ¨ πS1pBIpCiqq
ˇ

ˇ

ˇ
I P rns2k, |i| ď `

)

Ď spanF

!

QBA ¨ x
i`j

ˇ

ˇ

ˇ
|A| “ D ´ k, |j| ď pt` 1qk,B Ď rds, |i| ď `

)

“ spanF

!

QBA ¨ x
i
ˇ

ˇ

ˇ
|A| “ D ´ k, |i| ď `` pt` 1qk,B Ď rds

)

Therefore, by the definition of µk,`, we get

µk,`pCiq “ dimpVk,`pCiqq

ď

ˇ

ˇ

ˇ

!

QBA ¨ x
i
ˇ

ˇ

ˇ
|A| “ D ´ k, |i| ď `` pt` 1qk,B Ď rds

)ˇ

ˇ

ˇ

ď p# of choices for Bq ¨ p# of choices for Aq

¨ p# of monomials of degee ď `` pt` 1qk)

“ 2d ¨

ˆ

D

k

˙

¨

ˆ

N ` `` pt` 1qk

`` pt` 1qk

˙

This finishes the proof of Lemma 7.
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5 Lower bounds for ΣΠΣΠ homogeneous formulas

In this section, we prove Theorems 1 and 2. The idea of the proof is to show that if IMMn,d

or Detn has a small ΣΠΣΠ homogeneous formula, then there is a restriction σ P R such that

IMMn,d|σ has a small ΣΠrDsΣΠ
rts
Y formula pmod J q (for suitably chosen t and k). We then

appeal to Lemma 6 to get the result. We first prove a restriction lemma for IMMn,d.

Lemma 11. For all large enough n, d P N, any D, t, k ě 1, we have the following. If IMMn,d

has a ΣΠrDsΣΠ formula of size s ă nt{10, then there is a restriction σ P R and a ΣΠrDsΣΠ
rrt{2ss

Y

formula C 1 of size at most s such that C 1 “ IMMn,d|σ pmod J q. Moreover, if C is also homo-
geneous, then we can find a homogeneous C 1 satisfying the above.

Proof. We show that a random σ P R will meet our requirements with good probability. For-
mally, choose j1, jd P rds and B “ pφp P Sn : p P rdszpP 1 Y t1, duqq each independently and
uniformly at random and set σ “ τj1,jd,B as defined in Section 3. Note that for p P rdszP 1, each
variable x P Xp is set to 0 with probability 1 ´ 1{n; moreover, the restrictions in Xp, Xp1 for
p ‰ p1 are independent.

Let C1 be the formula obtained by setting all variables x P X to σpxq and removing Π-
gates at layer 1 which have an input set to 0; clearly, C1 is a ΣΠrDsΣΠ formula that computes
IMMn,d|σ. We call a σ P R good if every gate g at layer 1 in C computing a set-multilinear
monomial such that degY pgq ą rt{2s has as input some variable that is set to 0 by σ and hence
removed from C1. We claim that σ is good with probability at least 1{2.

To see this, consider any gate g at layer 1 in C computing a set-multilinear monomial xi such
that degY pgq “ |MSupppxiqXprdszP 1q| ą rt{2s. We can factor xi as p

ś

pPMSupppxiqXprdszP 1q xpq¨x
j

for some monomial xj. Then, g survives in C1 iff no variable xp (p P MSupppxiq X prdszP 1q)
is set to 0 by σ. Since the probability that each such xp is not set to 0 is at most 1{n and
this event is independent for distinct p, the probability that g survives in C1 is at most 1

nt{2 .
Taking a union bound over all such g — of which there are at most s many — we see that the
probability that any such g survives in C1 is at most s ¨ 1

nt{2 ď 1{2 for large n since s ă nt{10.
Now, fix any good σ and C1 “ C|σ which computes IMMn,d|σ. Let C 1 denote the formula

obtained from C1 by removing all gates g at layer 1 such that degY pgq ą rt{2s. By our choice of
σ, all such gates compute non-set-multilinear monomials in J . Thus, C 1 “ IMMn,d|σ pmod J q
as claimed in the lemma statement. Moreover, it is clear that C 1 has size at most the size of C
which is s.

Finally, note that C 1 was obtained from C by removing some of the monomials computed at
layer 1 in C. If C is homogeneous, then we can assume w.l.o.g. that all the monomials feeding
into a Σ-gate at layer 2 have the same degree. It thus follows that if C was a homogeneous
formula, then so is C 1.

We now prove the lower bound for IMMn,d.

of Theorem 1. We first fix the parameters that we will be using. Choose t, k such that t “
mintt

?
du, tlog n{5000uu and d{4000 ď kt ď d{2000. Let C be a homogeneous formula of size s

computing IMMn,d. Note that since C is homogeneous, it is in particular a ΣΠrdsΣΠ formula.
If s ě nt{10, then we have the claimed lower bound and thus we are done.

Otherwise, we can use Lemma 11 and obtain a restriction σ P R and a homogeneous

ΣΠrdsΣΠ
rrt{2ss

Y formula C 1 of size at most s such that C 1 “ IMMn,d|σ pmod J q. Note that,
in particular, the top fan-in s of C 1 is at most s.

Since C 1 is ΣΠrdsΣΠ
rrt{2ss

Y , each input polynomial f to a Π-gate g at layer 3 in C 1 satisfies
degY pfq ď rt{2s. We now apply the following transformation to C 1: if any Π-gate g at layer
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3 in C 1 has two inputs f1, f2 such that degY pf1q, degY pf2q ă t{4, then we replace them by a

brute force ΣΠ
rrt{2ss

Y formula computing their homogeneous product f1f2. This process clearly

ensures that the formula remains ΣΠrdsΣΠ
rrt{2ss

Y and moreover, does not increase the top fan-in
of C 1. We repeatedly apply this transformation to C 1 until we have an equivalent homogeneous
formula C2 of top fan-in at most s that moreover has the property that any Π-gate at layer 3
has at most one input f such that degY pfq ă t{4. In particular, this last property along with
the homogeneity of C2 ensures that any layer 3 Π-gate in C2 has fan-in at most 4d{t`1 ď 5d{t.

Hence, C2 is a ΣΠrt5d{tusΣΠ
rrt{2ss

Y formula of top fan-in at most s such that C2 “ IMMn,d|σ

pmod J q.
Lemma 6 tells us that by our choice of k and t and for large enough n, we have

s ě s ě
1

4 ¨ 2d
¨

ˆ

nkt

5ed

˙k

ě
1

4 ¨ 2d
¨

´ n

60000

¯k
ě
nd{4500t

4 ¨ 2d

ě max

#

nΩp
?
dq

4 ¨ 2d
, 2Ωpdq

+

.

Note that the above lower bound is nΩp
?
dq when d ă ε log2 n for a small enough ε ą 0; for

d “ Ωplog2 nq, the above is nΩplognq. Thus, we have the theorem.

We now turn to the lower bound for Detn. We first need a lemma due to Valiant [25]. Given
parameters n1, d1 ě 2, we let Xpn1, d1q denote the set of variables over which the polynomial
IMMn1,d1 is defined.

Lemma 12. For any n1, d1 P N` and any n ě n1d1, there is an nˆn matrix M whose entries
are either 0, 1, or variables from Xpn1, d1q such that DetnpMq “ IMMn1,d1.

of Theorem 2. For large enough n, we can fix n1 and d1 “ Θplog2 n1q such that n{2 ď n1d1 ď n.
Set t “ tlog n1{25000u and k ě 10 such that d1{4000 ď kt ď d1{2000.

Assume that C is a homogeneous ΣΠΣΠ formula of size s for the polynomial Detnpyi,j :

i, j P rnsq. In particular, note that C is a ΣΠrnsΣΠ formula. If s ě n
t{10
1 “ nΩplognq, then we

have the claimed lower bound and we are done. Otherwise, we can use Lemma 12 to transform
C into an ΣΠrnsΣΠ formula C1 of size at most s for IMMn1,d1 by substituting each yi,j by
Mi,j throughout C. Now, we can apply Lemma 11 to C1 and obtain a restriction σ P R and

a ΣΠrnsΣΠ
rrt{2ss

Y formula C 1 of size at most s such that C 1 “ IMMn1,d1 |σ pmod J q. Note in
particular that the top fan-in s of C 1 is at most s.

Lemma 6 tells us that for large enough n we have

s ě
1

4 ¨ 2d1
¨

ˆ

n1.25
1

en

˙k

ě
1

4 ¨ 2d1
¨

ˆ

n1.25
1

2en1d1

˙k

ě
nk{5

4 ¨ 2d1

ě
n
d1{20000t
1

4 ¨ 2d1
“ 2Ωpd1q “ n

Ωplogn1q

1 “ nΩplognq,

and since s ď s, we have the theorem.

6 Discussion

Our work uses an augmentation of the shifted partial measure (namely, shifted projected par-
tials) to show a super-polynomial lower bound for homogeneous depth-4 formulas. It is natural
to wonder if one might be able to use some other ‘shifted partials inspired’ measure(s) to prove

10



super-polynomial lower bounds for other interesting classes of arithmetic circuits, like homo-
geneous formulas or multilinear circuits. As mentioned in the introduction, we have been able
to improve the quasipolynomial lower bound presented here to an exponential lower bound for
an explicit polynomial in VNP. It would be interesting to prove such a lower bound for a
polynomial in VP.
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A Lower bounding µk,`pF q

In this section, we prove Lemma 4.
By the definition of µk,`, we have µk,`pF q “ dimpVk,`pfqq where Vk,`pF q is given by

spanFtx
i ¨ πS1

˜

BkF

Bx
pp1q

i1,j1
. . . Bx

ppkq
ik,jk

¸

| |i| ď ` and
ź

qPrks

x
ppqq
iq ,jq

P S2u

“ spanFtx
i ¨ πS1 pBIF q | |i| ď ` and I P rns2ku

First observe that any BIF is a monomial given by ρ1ρ2 . . . ρk`1, where

12



ρ1 “

¨

˝x
p1q
1 ¨

ź

1ăpăp11

x
ppq
1,1

˛

‚

looooooooooomooooooooooon

gI1

¨x
pp11q
1,i1

¨

¨

˝

ź

p11ăpăp1

x
ppq
i1,i1

˛

‚

looooooooomooooooooon

hI1

ρq “

¨

˝

ź

pq´1ăpăp1q

x
ppq
jq´1,jq´1

˛

‚

looooooooooooomooooooooooooon

gIq

¨x
pp1qq

jq´1,iq
¨

¨

˝

ź

p1qăpăpq

x
ppq
iq ,iq

˛

‚

looooooooomooooooooon

hIq

ρk`1 “

¨

˝

ź

pkăpăp
1
k`1

x
ppq
jk,jk

˛

‚

looooooooooomooooooooooon

gIk`1

¨x
pp1k`1q

jk,1
¨

¨

˝

¨

˝

ź

p1k`1ăpăd

x
ppq
1,1

˛

‚¨ x
pdq
1

˛

‚

looooooooooooooomooooooooooooooon

hIk`1

where the second equality holds for 1 ă q ă k ` 1
Due to the above structure of BIF we have the following claim.

Claim 13. @I P rns2k, BIF P S1.

Claim 13 implies that for all I P rns2k, πS1 pBIF q “ BIF . Therefore, we get

Vk,`pF q “ spanFtx
i ¨ BIF : |i| ď ` and I P rns2ku

The analysis of the dimension of Vk,`pF q is now very similar to the analysis of the dimension
of the shifted partial derivative space of F as done in [4].

Let M “ txi ¨ BIF : |i| ď ` and I P rns2ku. Since M is a set of monomials, the dimension of
the span of M is exactly |M|.

Another way of looking at M is M “
Ť

IPrns2kMI , where MI :“ txi | |i| ď `` d´ k and

BIF divides xiu. Therefore, we have the following claim.

Claim 14. For F and MI (I P rns2k) as defined above, we have dimpVk,`pF qq “ |M|, where
M “

Ť

IPrns2kMI .

In what follows, we do not distinguish between multilinear monomials over the variable set
X and subsets of X.

Claim 15. For any I, I 1 P rns2k, we have

|BI 1F zBIF | ě ∆pI, I 1q ¨

Z

r ´ 1

2

^

where ∆pI, I 1q denotes the Hamming distance between I and I 1.

Proof. Consider any I, I 1 P rns2k. Say I “ pi1, j1, . . . , ik, jkq and I 1 “ pi11, j
1
1, . . . , i

1
k, j

1
kq. Then,

using the notation from the definition of BIF , we have

BI 1F zBIF Ě
9ď

qPrks

pgI
1

q`1zg
I
q`1q 9Y

9ď

qPrks

phI
1

q zh
I
qq

Ě
9ď

qPrks:jq‰j1q

pgI
1

q`1zg
I
q`1q 9Y

9ď

qPrks:iq‰i1q

phI
1

q zh
I
qq.
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where A 9YB denotes the union of disjoint sets A and B.
Now, when jq ‰ j1q, then the monomials gIq`1 and gI

1

q`1 are disjoint and hence |gI
1

q`1zg
I
q`1| “

|gI
1

q`1| ě
X

r´1
2

\

. Similarly, when iq ‰ i1q, we have |hI
1

q zh
I
q | ě

X

r´1
2

\

.

|BI 1F zBIF | ě
ÿ

qPrks:jq‰j1q

|gI
1

q`1zg
I
q`1| `

ÿ

qPrks:iq‰i1q

|hI
1

q zh
I
q |

ě ∆pI, I 1q ¨

Z

r ´ 1

2

^

,

which completes the proof of the claim.

Claim 16. For any I P rns2k, we have |MI | “
`

N``
`

˘

.

Proof. A monomial xi PMI iff there is a monomial xj such that j ď ` and xi “ xj ¨ BIF . Thus,
|MI | is equal to the number of monomials of degree at most `, which is

`

N``
`

˘

.

Claim 17. For any I, I 1 P rns2k, we have

|MI XMI 1 | “

ˆ

N ` `´ |pBI 1F zBIF q|

`´ |pBI 1F zBIF q|

˙

.

Proof. Fix any I, I 1 as above. Any monomial xi PMI XMI 1 may be factored as xi “ xj ¨ BIF ¨
pBI 1F zBIF q. where j ď `` d´ k ´ pd´ kq ´ |pBI 1F zBIF q| “ `´ |pBI 1F zBIF q|.

Thus, |MI XMI 1 | is equal to the number of monomials of degree at most `´ |pBI 1F zBIF q|,
from which the claim follows.

Claim 18. For any k P N and large enough n P N, there exists an S Ď rns2k such that

• |S| “
X

n1.5k
\

,

• For all distinct I, I 1 P S, we have ∆pI, I 1q ě k{4.

Proof. We construct the set S by first greedily choosing vectors which have pairwise Hamming
distance at least k{4 and then prove that the set thus formed has size

X

n1.5k
\

. A standard

volume argument [9] gives that the set picked greedily as above has size at least n2k

Volnp2k,k{4q
,

where Volnp2k, k{4q stands for the volume of the Hamming ball of radius k for strings of length

2k over an alphabet of size n. It is easy to see that Volnp2k, k{4q “
řk{4
i“0

`

2k
i

˘

pn´ 1qi, which is

upper bounded by 2
`

2k
k{4

˘

pn´ 1qk{4. This in turn is at most nk{3 for large enough n. Therefore,

|S| is at least n2k

nk{3 , i.e. |S| ě n5k{3. By choosing a subcollection of the vectors thus chosen, we

can ensure that |S| is exactly
X

n1.5k
\

.

Recall that a very similar claim (Claim 10) proved in [4] gave S “
Y

`

n
4

˘k
]

. This size of S
was sufficient for the proof of Lemma 11 in [4]. We will now see that a slightly larger sized S
will be useful for us to prove Lemma 4.

of Lemma 4. Fix S as guaranteed by Claim 18. By Claim 14, it suffices to lower bound |M|.
For this, we use inclusion-exclusion. Since M “

Ť

IMI , we have

|M| ě |
ď

IPS
MI |

ě
ÿ

IPS
|MI | ´

ÿ

I‰I 1PS
|MI XMI 1 |. (7)

14



By Claim 16, we know that |MI | “
`

N``
`

˘

. By Claims 17 and 15 and our choice of S, we
see that for any distinct I, I 1 P S, we have

|MI XMI 1 | ď

ˆ

N ` `´ k{4 ¨ tpr ´ 1q{2u

`´ k{4 ¨ tpr ´ 1q{2u

˙

ď

ˆ

N ` `´ d{40

`´ d{40

˙

where the last inequality follows since tpr ´ 1q{2u ě d{10k for k ď d{20 (recall that r denotes
Y

d
k`1

]

´ 1).

Plugging the above into (7), we obtain

|M| ě |S| ¨
ˆ

N ` `

`

˙

´ |S|2 ¨
ˆ

N ` `´ d{40

`´ d{40

˙

.

Since |S| “
X

n1.5k
\

, the lemma follows.
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