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Abstract

We give an N · logN · 2O(log∗ N) time algorithm to multiply two N -bit integers that uses
modular arithmetic for intermediate computations instead of arithmetic over complex numbers
as in Fürer’s algorithm, which also has the same and so far the best known complexity. The
previous best algorithm using modular arithmetic (by Schönhage and Strassen) has complexity
O(N · logN · log logN). The advantage of using modular arithmetic as opposed to complex
number arithmetic is that we can completely evade the task of bounding the truncation error due
to finite approximations of complex numbers, which makes the analysis relatively simple. Our
algorithm is based upon Fürer’s algorithm, but uses FFT over multivariate polynomials along
with an estimate of the least prime in an arithmetic progression to achieve this improvement in
the modular setting. It can also be viewed as a p-adic version of Fürer’s algorithm.

1 Introduction

Computing the product of two N -bit integers is nearly a ubiquitous operation in algorithm design.
Being a basic arithmetic operation, it is no surprise that multiplications of integers occur as inter-
mediate steps of computation in algorithms from every possible domain of computer science. But
seldom do the complexity of such multiplications influence the overall efficiency of the algorithm as
the integers involved are relatively small in size and the multiplications can often be implemented
as fast hardware operations. However, with the advent of modern cryptosystems, the study of the
bit complexity of integer multiplication received a significant impetus. Indeed, large integer multi-
plication forms the foundation of many modern day public-key crystosytems, like RSA, El-Gamal
and Elliptic Curve crytosystems. One of the most notable applications is the RSA cryptosystem,
∗A preliminary version appeared in the proceedings of the 40th ACM Symposium on Theory of Computing, 2008.
†Research done while the author was at the Dept of Computer Science and Engineering, IIT Kanpur
‡Research supported through Research I Foundation project NRNM/CS/20030163
§Research done while visiting IIT Kanpur under Project FLW/DST/CS/20060225
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where it is required to multiply two primes that are hundreds or thousands of bits long. The larger
these primes the harder it is to factor their product, which in turn makes the RSA extremely secure
in practice.

In this paper, our focus is more on the theoretical aspects of integer multiplication, it being a
fundamental problem in its own right. This is to say, we will be concerned with the asymptotic
bit complexity of mutiplying two N -bit integers with little emphasis on optimality in practice. We
begin with a brief account of earlier work on integer multiplication algorithms.

1.1 Previous Work

The naive approach to multiply two N -bit integers leads to an algorithm that uses O(N2) bit
operations. Karatsuba [KO63] showed that some multiplication operations of such an algorithm
can be replaced by less costly addition operations which reduces the overall running time of the
algorithm to O(N log2 3) bit operations. Shortly afterwards, this result was improved by Toom
[Too63] who showed that for any ε > 0, integer multiplication can be done in O(N1+ε) time. This
led to the question as to whether the time complexity can be improved further by replacing the
term O(N ε) by a poly-logarithmic factor. In a major breakthrough, Schönhage and Strassen [SS71]
gave two efficient algorithms for multiplying integers using fast polynomial multiplication. One of
the algorithms achieved a running time of O(N · logN · log logN . . . 2O(log∗N)) using arithmetic over
complex numbers (approximated to suitable precisions), while the other used arithmetic modulo
carefully chosen integers to improve the complexity further to O(N · logN · log logN) bit operations.
The modular algorithm remained the best for a long period of time until a recent remarkable result
by Fürer [Für07] (see also [Für09]). Fürer gave an algorithm that uses arithmetic over complex
numbers and runs in N · logN · 2O(log∗N) time. Till date this is the best time complexity known
for integer multiplication and indeed our result is inspired by Fürer’s algorithm.

Further details on other approaches and enhancements to previous integer multiplication algo-
rithms can be found in [Für09].

1.2 The Motivation

Schönhage and Strassen introduced two seemingly different approaches to integer multiplication
– using complex and modular arithmetic. Fürer’s algorithm improves the time complexity in
the complex arithmetic setting by cleverly reducing some costly multiplications to simple shift
operations. However, the algorithm needs to approximate the complex numbers to certain precisions
during computation. This introduces the added task of bounding the total truncation errors in the
analysis of the algorithm. On the contrary, in the modular setting the error analysis is virtually
absent or rather more implicit, which in turn simplifies the overall analysis. In addition, modular
arithmetic gives a discrete approach to a discrete problem like integer multiplication. Therefore,
it seems natural to ask whether we can achieve a similar improvement in time complexity of this
problem in the modular arithmetic setting. In this work, we answer this question affirmatively. We
give an N · logN ·2O(log∗N) time algorithm for integer multiplication using only modular arithmetic,
thus matching the improvement made by Fürer.
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Overview of our result

As is the case in both Schönhage-Strassen’s and Fürer’s algorithms, we start by reducing the prob-
lem to polynomial multiplication over a ringR by properly encoding the given integers. Polynomials
can be multiplied efficiently using Discrete Fourier Transforms (DFT). However, in order that we
are able to use Fast Fourier Transform (FFT), the ring R should have some special roots of unity.
For instance, to multiply two polynomials of degree less than M using FFT, we require a principal
2M -th root of unity (see Definition 2.2 for principal roots). One way to construct such a ring in the
modular setting is to consider rings of the form R = Z/(2M + 1)Z as in Schönhage and Strassen’s
work [SS71]. In this case, the element 2 is a 2M -th principal root of unity in R. This approach can
be equivalently viewed as attaching an ‘artificial’ root to the ring of integers. However, this makes
the size of R equal to 2M and thus a representation of an arbitrary element in R takes M bits. This
means an N -bit integer is encoded as a polynomial of degree M with every coefficient about M
bits long, thereby making M ≈

√
N as the optimal choice. Indeed, the choice of such an R is the

basis of Schönhage and Strassen’s modular algorithm in which they reduce multiplication of N -bit
integers to multiplication of

√
N -bit integers and achieve a complexity of O(N · logN · log logN)

bit operations.
Naturally, such rings are a little too expensive in our setting. We would rather like to find a

ring whose size is bounded by some polynomial in M and which still contains a principal 2M -th
root of unity. In fact, it is this task of choosing a suitable ring that poses the primary challenge in
adapting Fürer’s algorithm and making it work in the discrete setting.

We choose the ring to be R = Z/pcZ, for a prime p and a constant c such that pc = poly(M).
The ring Z/pcZ, has a principal 2M -th root of unity if and only if 2M divides p− 1, which means
that we need to find a prime p from the arithmetic progression {1 + i · 2M}i>0. To make this search
computationally efficient, we also need the degree of the polynomials, M to be sufficiently small.
This we can achieve by encoding the integers as multivariate polynomials instead of univariate ones.
It turns out that the choice of the ring as R = Z/pcZ is still not quite sufficient and needs a little
more refinement. This is explained in Section 2.1.

The use of multivariate polynomial multiplications along with a small base ring are the main
steps where our algorithm differs from earlier algorithms by Schönhage-Strassen and Fürer. Towards
understanding the notion of inner and outer DFT in the context of multivariate polynomials, we
also present a group theoretic interpretation of DFT. The use of inner and outer DFT plays a
central role in both Fürer’s as well as our algorithm. Arguing along the line of Fürer [Für07], we
show that repeated use of efficient computation of inner DFT’s using some special roots of unity in
R reduces the number of ‘bad multiplications’ (in comparison to Schönhage-Strassen’s algorithm)
and makes the overall process efficient, thereby leading to an N · logN · 2O(log∗N) time algorithm.

2 The Basic Setup

2.1 The Underlying Ring

Rings of the form R = Z/(2M +1)Z have the nice property that multiplications by powers of 2, the
2M -th principal root of unity, are mere shift operations and are therefore very efficient. Although
by choosing the ring R = Z/pcZ we ensure that the ring size is small, it comes with a price:
multiplications by principal roots of unity are no longer just shift operations. Fortunately, this can
be redeemed by working with rings of the form R = Z[α]/(pc, αm + 1) for some m whose value will
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be made precise later. Elements of R are thus m − 1 degree polynomials over α with coefficients
from Z/pcZ. By construction, α is a 2m-th root of unity and multiplication of any element in R
by any power of α can be achieved by shift operations — this property is crucial in making some
multiplications in the FFT less costly (see Section 3.2).

Given an N -bit number a, we encode it as a k-variate polynomial over R with degree in each
variable less than M . The parameters M and m are powers of two such that Mk is roughly N

log2N

and m is roughly logN . The parameter k will ultimately be chosen a constant (see Section 4.2).
We now explain the details of this encoding process.

2.2 Encoding Integers into k-variate Polynomials

Given an N -bit integer a, we first break these N bits into Mk blocks of roughly N
Mk bits each. This

corresponds to representing a in base q = 2
N

Mk . Let a = a0 + . . .+aMk−1q
Mk−1, where every ai < q.

The number a is converted into a polynomial as follows:

1. Express i in base M as i = i1 + i2M + · · ·+ ikM
k−1.

2. Encode each term aiq
i as the monomial ai · Xi1

1 X
i1
2 · · ·X

ik
k . As a result, the number a gets

converted to the polynomial
∑Mk−1

i=0 ai ·Xi1
1 · · ·X

ik
k .

Further, we break each ai into m
2 equal sized blocks where the number of bits in each block is

u = 2N
Mk·m . Each coefficient ai is then encoded as a polynomial in α of degree less than m

2 . The
polynomials are then padded with zeroes to stretch their degrees to m. Thus, the N -bit number a
is converted to a k-variate polynomial a(X) over Z[α]/(αm + 1).

Given integers a and b, each of N bits, we encode them as polynomials a(X) and b(X) and
compute the product polynomial. The product a · b can be recovered by substituting Xs = qM

s−1
,

for 1 ≤ s ≤ k, and α = 2u in the polynomial a(X) · b(X). The coefficients in the product
polynomial could be as large as Mk · m · 22u and hence it is sufficient to do arithmetic modulo
pc where pc > 2Mk ·m · 22u. Our choice of the prime p ensures that c is in fact a constant (see
Section 4.2). We summarize this discussion as a lemma.

Lemma 2.1. Multiplication of two N -bit integers reduces to multiplication of two k-variate poly-
nomials, with degree in each variable bounded by M , over the ring Z[α]/(pc, αm + 1) for a prime
p satisfying pc > 2Mk ·m · 22u, where u = 2N

Mkm
. Furthermore, the reduction can be performed in

O(N) time.

2.3 Choosing the Prime

The prime p should be chosen such that the ring Z/pcZ has a principal 2M -th root of unity, which
is required for polynomial multiplication using FFT. A principal root of unity is defined as follows.

Definition 2.2. (Principal root of unity) An n-th root of unity ζ ∈ R is said to be primitive if it
generates a cyclic group of order n under multiplication. Furthermore, it is said to be principal if
n is coprime to the characteristic of R and ζ satisfies

∑n−1
i=0 ζ

ij = 0 for all 0 < j < n.

In Z/pcZ, a 2M -th root of unity is principal if and only if 2M | p − 1 (see also Section 5). As
a result, we need to choose the prime p from the arithmetic progression {1 + i · 2M}i>0, which is
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potentially the main bottleneck of our approach. We now explain how to circumvent this problem.

An upper bound for the least prime in an arithmetic progression is given by the following
theorem by Linnik [Lin44]:

Theorem 2.3. (Linnik) There exist absolute constants ` and L such that for any pair of coprime
integers d and n, the least prime p such that p ≡ d mod n is less than `nL.

Heath-Brown [HB92] showed that the Linnik constant L ≤ 5.5 (a recent work by Xylouris
[Xyl10] showed that L ≤ 5.2). Recall that M is chosen such that Mk is O

(
N

log2N

)
. If we choose

k = 1, that is if we use univariate polynomials to encode integers, then the parameter M =
O
(

N
log2N

)
. Hence the least prime p ≡ 1 (mod 2M) could be as large as NL. Since all known

deterministic sieving procedures take at least NL time this is clearly infeasible (for a randomized
approach see Section 2.3). However, by choosing a larger k we can ensure that the least prime
p ≡ 1 (mod 2M) is O(N ε) for some constant ε < 1. Since primality testing is in deterministic
polynomial1 time [AKS04], we can find the least prime p ≡ 1 (mod 2M) in o(N) time.

Lemma 2.4. If k is any integer greater than L + 1, then ML = O
(
N

L
L+1

)
and hence the least

prime p ≡ 1 (mod 2M) can be found in o(N) time.

Choosing the Prime Randomly

To ensure that the search for a prime p ≡ 1 (mod 2M) does not affect the overall time complexity
of the algorithm, we considered multivariate polynomials to restrict the value of M ; an alternative
is to use randomization.

Proposition 2.5. Assuming ERH, a prime p ≡ 1 (mod 2M) can be computed by a randomized
algorithm with expected running time Õ(log3M).

Proof. Titchmarsh [Tit30] (see also Tianxin [Tia90]) showed, assuming ERH, that the number of
primes less than x in the arithmetic progression {1 + i · 2M}i>0 is given by,

π(x, 2M) =
Li(x)
ϕ(2M)

+O(
√
x log x)

for 2M ≤
√
x·(log x)−2, where Li(x) = Θ( x

log x) and ϕ is the Euler totient function. In our case, since

M is a power of two, ϕ(2M) = M , and hence for x ≥ 4M2 ·log6M , we have π(x, 2M) = Ω
(

x
M log x

)
.

Therefore, for an i chosen uniformly randomly in the range 1 ≤ i ≤ 2M · log6M , the probability
that i·2M+1 is a prime is at least d

log x for a constant d. Furthermore, primality test of an O(logM)
bit number can be done in Õ(log2M) time using Rabin-Miller primality test [Mil76,Rab80]. Hence,
with x = 4M2 · log6M , a suitable prime for our algorithm can be found in expected Õ(log3M)
time.

Remark - We prefer to use Linnik’s theorem (Theorem 2.3) instead of Proposition 2.5 while
choosing the prime in the progression {1 + i · 2M}i>0 so as to make the results in this paper
independent of the ERH and the usage of random bits.

1a subexponential algorithm would suffice
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2.4 Finding the Root of Unity

We require a principal 2M -th root of unity ρ(α) in R to compute the Fourier transforms. This root
ρ(α) should also have the property that its

(
M
m

)
-th power is α, so as to make some multiplications

in the FFT efficient (see Section 3.2). The root ρ(α) can be computed by interpolation in a way
similar to that in Fürer’s algorithm [Für07, Section 3], except that we need a principal 2M -th root
of unity ω in Z/pcZ to start with.

To obtain such a root, we first obtain a 2M -th root of unity ω1 in Z/pZ. A generator ζ of
F×p can be computed by brute force, as p is sufficiently small, and ω1 = ζ(p−1)/2M is a principal
2M -th root of unity in Z/pZ. A principal 2M -root of unity ω1 must be a root of the polynomial
f(x) = xM + 1 in Z/pZ. Having obtained ω1, we use Hensel Lifting [NZM91, Theorem 2.23].

Lemma 2.6 (Hensel Lifting). Let ωs be a root of f(x) = xM + 1 in Z/psZ. Then there exists
a unique root ωs+1 in Z/ps+1Z such that ωs+1 ≡ ωs (mod ps) and f(ωs+1) = 0 mod ps+1. This
unique root is given by ωs+1 = ωs − f(ωs)

f ′(ωs)
.

It is clear from the above lemma that we can compute a 2M -th root of unity ω = ωc in Z/pcZ. We
will need the following well-known and useful fact about principal roots of unity in any ring.

Lemma 2.7. [Für09, Lemma 2.1] If M is a power of 2 and ωM = −1 in an arbitrary ring, then
ω is a principal 2M -th root of unity.

Hence it follows that the root ω of f(x) = xM + 1 in Z/pcZ is a principal 2M -th root of unity in
Z/pcZ. Furthermore, ζ(p−1)/2M = ω1 ≡ ω mod p. Since ζ is a generator of F×p , different powers of
ζ must generate the group F×p and hence must be distinct modulo p. Hence it follows that different
powers of ω must be distinct modulo p as well. Therefore, the difference between any two of them
is a unit in Z/pcZ and this makes the following interpolation feasible in our setting.

Finding ρ(α) from ω: Since ω is a principal 2M -th root of unity, γ = ω
2M
2m is a principal 2m-th

root of unity in Z/pcZ. Notice that, αm+1 uniquely factorizes as, αm+1 = (α−γ)(α−γ3) . . . (α−
γ2m−1). The ideals generated by (α− γi) and (α− γj) are mutually coprime as γi− γj is a unit for
i 6= j and is contained in the ideal generated by (α − γi) and (α − γj). Therefore, using Chinese
Remaindering, α has the direct sum representation (γ, γ3, . . . , γ2m−1) in R. Since we require
ρ(α)

2M
2m = α, it is sufficient to choose a ρ(α) whose direct sum representation is (ω, ω3, . . . , ω2m−1).

Now use Lagrange’s formula to interpolate ρ(α) as,

ρ(α) =
2m−1∑

i=1, i odd

ωi ·
2m−1∏

j=1, j 6=i, j odd

α− γj

γi − γj

The inverses of the elements γi − γj in Z/pcZ can be easily computed in poly(log p) time. It is
also clear that ρ(α)M , in the direct-sum representation, is (ωM , ω3M , · · · , ω(2m−1)M ) which is the
element −1 in R. Hence ρ(α) is a principal 2M -th root of unity (by Lemma 2.7).

Besides finding a generator ζ of Z/pZ by brute-force (which can be performed in O(p) time),
all other computations can be done in poly(log p) time. We summarize this as a lemma.

Lemma 2.8. A principal 2M -th root of unity ρ(α) ∈ R such that ρ(α)2M/2m = α can be computed
in deterministic time O(p) (which is o(N) if p = o(N)).
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3 Fourier Transform

3.1 Inner and Outer DFT

Suppose that a(x) ∈ S[x] is a polynomial of degree less than 2M , where S is a ring containing a 2M -
th principal root of unity ρ. Let us say that we want to compute the 2M -point DFT of a(x) using
ρ as the root of unity. In other words, we want to compute the elements a(1), a(ρ), . . . , a(ρ2M−1)
is S. This can be done in two steps.

Step 1: Compute the following polynomials using α = ρ2M/2m.

a0(x) = a(x) mod (x2M/2m − 1)
a1(x) = a(x) mod (x2M/2m − α)

...
a2m−1(x) = a(x) mod (x2M/2m − α2m−1),

where deg(aj(x)) < 2M
2m for all 0 ≤ j < 2m.

Step 2: Note that, aj(ρk·2m+j) = a(ρk·2m+j) for every 0 ≤ j < 2m and 0 ≤ k < 2M
2m . Therefore,

all we need to do to compute the DFT of a(x) is to evaluate the polynomials aj(x) at appropriate
powers of ρ.

The idea is to show that both Step 1 and Step 2 can be performed by computation of some ‘smaller’
DFTs. Let us see how.

Performing Step 1: The crucial observation here is the following. Fix an integer ` in the range
[0, 2M

2m−1]. Then the `th coefficients of a0(x), a1(x), . . . , a2m−1(x) are exactly e`(1), e`(α), . . . , e`(α2m−1),
respectively, where e`(y) is the polynomial,

e`(y) =
2m−1∑
j=0

aj· 2M
2m

+` · y
j .

But then, finding e`(1), e`(α), . . . , e`(α2m−1) is essentially computing the 2m-point DFT of e`(y)
using α as the 2mth root of unity. Therefore, all we need to do to find a0(x), . . . , a2m−1(x) is to
compute the DFTs of e`(y) for all 0 ≤ ` < 2M

2m . These 2M
2m many 2m-point DFTs are called the

inner DFTs.

Performing Step 2: In order to find aj(ρk·2m+j), for 0 ≤ k < 2M
2m and a fixed j, we first compute

the polynomial ãj(x) = aj(x · ρj) followed by a 2M
2m -point DFT of ãj(x) using ρ2m as the root of

unity. These 2m many 2M
2m -point DFTs (j running from 0 to 2m − 1) are called the outer DFTs.

The polynomials ãj(x) can be computed by multiplying the coefficients of aj(x) by suitable powers
of ρ. Such multiplications are termed as bad multiplications (as they would result in recursive calls
to integer multiplication).

The above discussion is summarized in the following lemma.
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Lemma 3.1. (DFT time = Inner DFTs + Bad multiplications + Outer DFTs)
Time taken to compute a 2M -point DFT over S is sum of:

1. Time taken to compute 2M
2m many 2m-point inner DFTs over S using α as the 2m-th root of

unity.

2. Time to do 2M multiplications in S by powers of ρ (bad multiplications).

3. Time taken to compute 2m many 2M
2m -point outer DFTs over S using ρ2m as the 2M

2m -th root
of unity.

3.2 Analysis of the FFT

We are now ready to analyse the complexity of multiplying the two k-variate polynomials a(X)
and b(X) (see Section 2.2) using Fast Fourier Transform. Treat a(X) and b(X) as univariate
polynomials in variable Xk over the ring S = R[X1, . . . , Xk−1]. We write a(X) and b(X) as a(Xk)
and b(Xk), respectively, where deg(a(Xk)) and deg(b(Xk)) are less than M . Multiplication of a(X)
and b(X) can be thought of as multiplication of the univariates a(Xk) and b(Xk) over S. Also
note that, the root ρ(α) (constructed in Section 2.4) is a primitive 2M -th root of unity in S ⊃ R.
Denote the multiplication complexity of a(Xk) and b(Xk) by F(2M,k).

Multiplication of a(Xk) and b(Xk) using FFT involves computation of three 2M -point DFTs
over S and 2M pointwise (or componentwise) multiplications in S. Let D(2M,k) be the time taken
to compute a 2M -point DFT over S. By Lemma 3.1, the time to compute a DFT is the sum of
the time for the inner DFTs, the bad multiplications and the outer DFTs. Let us analyse these
three terms separately. We will go by the notation in Section 3.1, using S = R[X1, . . . , Xk−1] and
ρ = ρ(α).

Inner DFT time: Computing a 2m-point DFT requires 2m log(2m) additions in S andm log(2m)
multiplications by powers of α. The important observation here is: since R = Z[α]/(pc, αm + 1),
multiplication by a power of α with an element in R can be readily computed by simple cyclic shifts
(with possible negations), which takes only O(m · log p) bit operations. An element in S is just a
polynomial over R in variables X1, . . . , Xk−1, with degree in each variable bounded by M . Hence,
multiplication by a power of α with an element of S can be done using NS = O(Mk−1 ·m · log p) bit
operations. A total of m log(2m) multiplications takes O(m logm · NS) bit operations. It is easy
to see that 2m log(2m) additions in S also require the same order of time.

Since there are 2M
2m many 2m-point DFTs, the total time spent in the inner DFTs is O(2M ·

logm · NS) bit operations.

Bad multiplication time: Suppose that two arbitrary elements in R can be multiplied using
MR bit operations. Mulitplication in S by a power of ρ amounts to cS = Mk−1 multiplications in
R. Since there are 2M such bad multiplications, the total time is bounded by O(2M · cS · MR).

Outer DFT time: By Lemma 3.1, the total outer DFT time is 2m · D
(

2M
2m , k

)
.
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Total DFT time: Therefore, the net DFT time is bounded as,

D(2M,k) = O (2M · logm · NS + 2M · cS · MR) + 2m · D
(

2M
2m

, k

)
= O (2M · logm · NS + 2M · cS · MR) · log 2M

log 2m

= O

(
Mk logM ·m log p+

Mk logM
logm

· MR
)
,

putting the values of NS and cS .

Pointwise multiplications: Finally, FFT does 2M pointwise multiplications in S. Since ele-
ments of S are (k − 1)-variate polynomials over R, with degree in every variable bounded by M ,
the total time taken for pointwise multiplications is 2M · F(2M,k − 1) bit operations.

Total polynomial multiplication time: This can be expressed as,

F(2M,k) = O

(
Mk logM ·m log p+

Mk logM
logm

· MR
)

+ 2M · F(2M,k − 1)

= O

(
Mk logM ·m log p+

Mk logM
logm

· MR
)
, (1)

as k is a constant.

We now present an equivalent group theoretic interpretation of the above process of polynomial
multiplication, which is a subject of interest in itself.

3.3 A Group Theoretic Interpretation

A convenient way to study polynomial multiplication is to interpret it as multiplication in a group
algebra.

Definition 3.2. (Group Algebra) Let G be any group. The group algebra of G over a ring R is
the set of formal sums

∑
g∈G αgg where αg ∈ R with addition defined point-wise and multiplication

defined via convolution as follows(∑
g

αgg

)(∑
h

βhh

)
=
∑
u

∑
gh=u

αgβh

u

In this section, we study the Fourier transform over the group algebra R[E] where E is an
additive abelian group. Most of this, albeit in a different form, is well known but is provided here
for completeness [Sha99, Chapter 17].

In order to simplify our presentation, we will fix the base ring to be C, the field of complex
numbers. Let n be the exponent of E, that is the maximum order of any element in E. A similar
approach can be followed for any other base ring as long as it has a principal n-th root of unity.
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We consider C[E] as a vector space with basis {x}x∈E and use the Dirac notation to represent
elements of C[E] — the vector |x〉, x in E, denotes the element 1.x of C[E].

Multiplying univariate polynomials over R of degree less than n can be seen as multiplication
in the group algebra R[G] where G is the cyclic group of order 2n. Say a(x) = a0 +a1x+ · · ·+adx

d

and b(x) = b0 + b1x · · · + bdx
d (with d < n) are the polynomials we wish to multiply, they can

be embedded in C[Z/2nZ] as |a〉 =
∑d

i=0 ai |i〉 and |b〉 =
∑d

i=0 bi |i〉. It is trivial to see that
their product in the group algebra is the embedding of the product of the polynomials. Similarly,
multiplying k-variate polynomials of degree less than n in each variable can be seen as multiplying
in the group algebra R[Gk], where Gk denotes the k-fold product group G× . . .×G.

Definition 3.3. (Characters) Let E be an additive abelian group. A character of E is a homomor-
phism from E to C∗.

An example of a character of E is the trivial character, which we will denote by 1, that assigns
to every element of E the complex number 1. If χ1 and χ2 are two characters of E then their
product χ1.χ2 is defined as χ1.χ2(x) = χ1(x)χ2(x).

Proposition 3.4. [Sha99, Chapter 17, Theorem 1] Let E be an additive abelian group of exponent
n. Then the values taken by any character of E are n-th roots of unity. Furthermore, the characters
form a multiplicative abelian group Ê which is isomorphic to E.

An important property that the characters satisfy is the following [Isa94, Corollary 2.14].

Proposition 3.5. (Schur’s Orthogonality) Let E be an additive abelian group. Then

∑
x∈E

χ(x) =

{
0 if χ 6= 1,
#E otherwise

and
∑
χ∈Ê

χ(x) =

{
0 if x 6= 0,
#E otherwise.

It follows from Schur’s orthogonality that the collection of vectors |χ〉 =
∑

x χ(x) |x〉 forms a
basis of C[E]. We will call this basis the Fourier basis of C[E].

Definition 3.6. (Fourier Transform) Let E be an additive abelian group and let x 7→ χx be an
isomorphism between E and Ê. The Fourier transform over E is the linear map from C[E] to C[E]
that sends |x〉 to |χx〉.

Thus, the Fourier transform is a change of basis from the point basis {|x〉}x∈E to the Fourier
basis {|χx〉}x∈E . The Fourier transform is unique only up to the choice of the isomorphism x 7→ χx.
This isomorphism is determined by the choice of the principal root of unity.

Using Prop 3.5, it is easy to see that this transform can be inverted by the map |x〉 7→ 1
n |χx〉.

Hence the Inverse Fourier Transform is essentially just a Fourier transform using x 7→ χx as the
isomorphism between E and Ê.

Remark 3.7. Given an element |f〉 ∈ C[E], to compute its Fourier transform (or Inverse Fourier
transform) it is sufficient to compute the Fourier coefficients {〈χ|f〉}χ∈Ê .
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Fast Fourier Transform

We now describe the Fast Fourier Transform for general abelian groups in the character theoretic
setting. For the rest of the section fix an additive abelian group E over which we would like to
compute the Fourier transform. Let A be any subgroup of E and let B = E/A. For any such pair
of abelian groups A and B, we have an appropriate Fast Fourier transformation, which we describe
in the rest of the section.

Proposition 3.8. 1. Every character λ of B can be “lifted” to a character of E (which will be
denoted by λ̃ defined as follows λ̃(x) = λ(x+A).

2. Let χ1 and χ2 be two characters of E that when restricted to A are identical. Then χ1 = χ2λ̃
for some character λ of B.

3. The group B̂ is (isomorphic to) a subgroup of Ê with the quotient group Ê/B̂ being (isomor-
phic to) Â.

Proof. It is very easy to check that λ̃(x) = λ(x+A) is indeed a homomorphism from E to C. This
therefore establishes that B̂ is a subgroup of Ê.

As for the second, define the map λ̃(x) = χ1(x)
χ2(x) . It is easy to check that this is a homomorphism

from E to C. Then, for x ∈ E and a ∈ A

λ̃(x+ a) =
χ1(x)χ1(a)
χ2(x)χ2(a)

=
χ1(x)
χ2(x)

= λ̃(x)

And hence λ̃ is equal over cosets over A in E and hence χ is indeed a homomorphism from B to C.

For the third, every character χ ∈ Ê can be restricted to A to get a character φ ∈ Â. There-
fore, the restriction map is a natural homomorphism from Ê to Â. It suffices to show that this
homomorphism is surjective and the kernel is B̂. Suppose ϕ is an arbitrary character of A. Let
R = {xb}b∈B be a set of coset representatives of A in E. Then every element x ∈ E can be uniquely
written as xb + a where xb ∈ R and a ∈ A. Consider the following map:

χ(xb + a) = ϕ(a)

It is easy to verify that this is indeed a character of E, whose restriction to A is ϕ. Therefore, the
restriction map is surjective. And if χ is in the kernel of this restriction, then χ and the trivial
character are identical on A and therefore χ = 1 · λ = λ ∈ B̂. Thus, the kernel is precisely B̂ and
hence Â is the quotient of Ê and B̂.

We now consider the task of computing the Fourier transform of an element |f〉 =
∑
fx |x〉

presented as a list of coefficients {fx} in the point basis. For this, it is sufficient to compute the
Fourier coefficients {〈χ|f〉} for each character χ of E (Remark 3.7). To describe the Fast Fourier
transform we fix two sets of cosets representatives, one of A in E and one of B̂ in Ê as follows.

1. For each b ∈ B, b being a coset of A, fix a coset representative xb ∈ E such b = xb +A.

2. For each character ϕ of A, fix a character χϕ of E such that χϕ restricted to A is the character
ϕ. The characters {χϕ} form (can be thought of as) a set of coset representatives of B̂ in Ê.

11



Since {xb}b∈B forms a set of coset representatives, any |f〉 ∈ C[E] can be written uniquely as
|f〉 =

∑
fb,a |xb + a〉.

Proposition 3.9. Let |f〉 =
∑
fb,a |xb + a〉 be an element of C[E]. For each b ∈ B and ϕ ∈ Â let

|fb〉 ∈ C[A] and |fϕ〉 ∈ C[B] be defined as follows.

|fb〉 =
∑
a∈A

fb,a |a〉

|fϕ〉 =
∑
b∈B

χϕ(xb)〈ϕ|fb〉 |b〉

Then for any character χ = χϕλ̃ of E the Fourier coefficient 〈χ|f〉 = 〈λ|fϕ〉.

Proof.
〈χ|f〉 =

∑
b∈B,a∈A

χϕλ̃(xb + a) · fb,a

Recall that for any λ̃, that is a lift of a character λ of B, acts identically inside cosets of A and
hence λ̃(xb + a) = λ(b). Therefore, the above sum can be rewritten as follows:∑

b∈B,a∈A
χϕλ̃(xb + a) · fb,a =

∑
b∈B

∑
a∈A

χϕ(xb + a)λ(b) · fb,a

=
∑
b∈B

λ(b) · χϕ(xb)
∑
a∈A

ϕ(a)fb,a

The inner sum over a is precisely 〈ϕ|fb〉 and therefore we have:

〈χ|f〉 =
∑
b∈B

λ(xb) · χϕ(xb)〈ϕ|fb〉

which can be rewritten as 〈λ|fϕ〉 as claimed.

We are now ready to describe the Fast Fourier transform given an element |f〉 =
∑
fx |x〉.

1. For each b ∈ B compute the Fourier transforms of |fb〉. This requires #B many Fourier
transforms over A.

2. As a result of the previous step we have for each b ∈ B and ϕ ∈ Â the Fourier coeffi-
cients 〈ϕ|fb〉. Compute for each ϕ the vectors |fϕ〉 =

∑
b∈B χϕ(xb)〈ϕ|fb〉 |b〉. This requires

#Â.#B = #E many multiplications by roots of unity.

3. For each ϕ ∈ Â compute the Fourier transform of |fϕ〉. This requires #Â = #A many Fourier
transforms over B.

4. Any character χ of E is of the form χϕλ for some ϕ ∈ Â and λ ∈ B̂. Using Proposition 3.9
we have at the end of Step 3 all the Fourier coefficients 〈χ|f〉 = 〈λ|fϕ〉.

If the quotient group B itself has a subgroup that is isomorphic to A then we can apply this
process recursively on B to obtain a divide and conquer procedure to compute Fourier transform.
In the standard FFT we use E = Z/2nZ. The subgroup A is 2n−1E which is isomorphic to Z/2Z
and the quotient group B is Z/2n−1Z.
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Analysis of the Fourier Transform

Our goal is to multiply k-variate polynomials over R, with the degree in each variable less than
M . This can be achieved by embedding the polynomials into the algebra of the product group
E =

( Z
2M ·Z

)k and multiplying them as elements of the algebra. Since the exponent of E is 2M , we
require a principal 2M -th root of unity in the ring R. We shall use the root ρ(α) (as defined in
Section 2.4) for the Fourier transform over E.

For every subgroup A of E, we have a corresponding FFT. We choose the subgroup A as
( Z

2m·Z
)k

and let B be the quotient group E/A. The group A has exponent 2m and α is a principal 2m-th
root of unity. Since α is a power of ρ(α), we can use it for the Fourier transform over A. As
multiplications by powers of α are just shifts, this makes Fourier transform over A efficient.

Let F(M,k) denote the complexity of computing the Fourier transform over
( Z

2M ·Z
)k. We have

F(M,k) =
(
M

m

)k
F(m, k) + (2M)kMR + (2m)kF

(
M

2m
, k

)
(2)

whereMR denotes the complexity of multiplications inR. The first term comes from the #B many
Fourier transforms over A (Step 1 of FFT), the second term corresponds to the multiplications by
roots of unity (Step 2) and the last term comes from the #A many Fourier transforms over B
(Step 3).

Since A is a subgroup of B as well, Fourier transforms over B can be recursively computed in a
similar way, with B playing the role of E. Therefore, by simplifying the recurrence in Equation 2
we get:

F(M,k) = O

(
Mk logM
mk logm

F(m, k) +
Mk logM

logm
MR

)
(3)

Lemma 3.10. F(m, k) = O(mk+1 logm · log p)

Proof. The FFT over a group of size n is usually done by taking 2-point FFT’s followed by n
2 -point

FFT’s. This involves O(n log n) multiplications by roots of unity and additions in base ring. Using
this method, Fourier transforms over A can be computed with O(mk logm) multiplications and
additions in R. Since each multiplication is between an element of R and a power of α, this can
be efficiently achieved through shifting operations. This is dominated by the addition operation,
which takes O(m log p) time, since this involves adding m coefficients from Z/pcZ.

Therefore, from Equation 3,

F(M,k) = O

(
Mk logM ·m · log p+

Mk logM
logm

MR
)
.

4 Algorithm and Analysis

4.1 Integer Multiplication Algorithm

We are given two integers a, b < 2N to multiply. We fix constants k and c whose values are given
in Section 4.2. The algorithm is as follows:

1. Choose M and m as powers of two such that Mk ≈ N
log2N

and m ≈ logN . Find the least
prime p ≡ 1 (mod 2M) (Lemma 2.4).
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2. Encode the integers a and b as k-variate polynomials a(X) and b(X), respectively, over the
ring R = Z[α]/(pc, αm + 1) (Section 2.2).

3. Compute the root ρ(α) (Section 2.4).

4. Use ρ(α) as the principal 2M -th root of unity to compute the Fourier transforms of the k-
variate polynomials a(X) and b(X). Multiply component-wise and take the inverse Fourier
transform to obtain the product polynomial. (Sections 3.1 and 3.2)

5. Evaluate the product polynomial at appropriate powers of two to recover the integer product
and return it (Section 2.2).

4.2 Complexity Analysis

The choice of parameters should ensure that the following constraints are satisfied:

1. Mk = O
(

N
log2N

)
and m = O(logN).

2. ML = O(N ε), where L is the Linnik constant (Theorem 2.3) and ε is any constant less than
1. Recall that this makes picking the prime by brute force feasible (see Lemma 2.4).

3. pc > 2Mk ·m · 22u where u = 2N
Mkm

. This is to prevent overflows during modular arithmetic
(see Section 2.2).

It is straightforward to check that k > L+ 1 and c > 5(k + 1) satisfy the above constraints. Since
L ≤ 5.2, it is sufficient to choose k = 7 and c = 42.

Let T (N) denote the time complexity of multiplying two N bit integers. This consists of:

• Time required to pick a suitable prime p,

• Computing the root ρ(α),

• Encoding the input integers as polynomials,

• Multiplying the encoded polynomials,

• Evaluating the product polynomial.

As argued before, the prime p can be chosen in o(N) time. To compute ρ(α), we need to lift
a generator of F×p to Z/pcZ followed by an interpolation. Since c is a constant and p is a prime of
O(logN) bits, the time required for Hensel Lifting and interpolation is o(N).

The encoding involves dividing bits into smaller blocks, and expressing the exponents of q in
base M (Section 2.2) and all these take O(N) time since M is a power of 2. Similarly, evaluation
of the product polynomial takes linear time as well. Therefore, the time complexity is dominated
by the time taken for polynomial multiplication.
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Time complexity of Polynomial Multiplication

From Equation 1, the complexity of polynomial multiplication is given by,

F(2M,k) = O

(
Mk logM ·m · log p+

Mk logM
logm

· MR
)
.

Proposition 4.1. [Sch82] Multiplication in R reduces in linear time to multiplying O(log2N) bit
integers and hence MR = T

(
O(log2N)

)
+O(log2N) bit operations.

Proof. Elements of R can be viewed as polynomials in α over Z/pcZ with degree at most m. Given
two such polynomials f(α) and g(α), encode them as follows: Replace α by 2d, transforming the
polynomials f(α) and g(α) to the integers f(2d) and g(2d) respectively. The parameter d is chosen
such that the coefficients of the product h(α) = f(α)g(α) can be recovered from the product
f(2d) · g(2d). For this, it is sufficient to ensure that the maximum coefficient of h(α) is less than 2d.
Since f and g are polynomials of degree m, we would want 2d to be greater than m · p2c, which can
be ensured by choosing d = O (logN). The integers f(2d) and g(2d) are bounded by 2md and hence
the task of multiplying in R reduces in linear time to O(log2N) bit integer multiplication. Since,
the size of an element in R is O(log2N) bits,MR = T (O(log2N)) +O(log2N) bit operations.

Therefore, the complexity of our integer multiplication algorithm T (N) is given by,

T (N) = O(F(2M,k)) = O

(
Mk logM ·m · log p+

Mk logM
logm

· MR
)

= O

(
N logN +

N

logN · log logN
· T (O(log2N))

)
Solving the above recurrence leads to the following theorem. (Note that the additive term O(log2N)
in MR makes no difference in the above asymptotic expression.)

Theorem 4.2. Given two N bit integers, their product can be computed using N · logN · 2O(log∗N)

bit operations.

Performing on multi-tape turing machines

The upper-bound presented in Theorem 4.2 holds for multi-tape turing machines. The only part of
the algorithm that warrants an explanation is regrouping of the terms in preparation for the inner
and outer DFTs. For the inner DFT, we are given |f〉 =

∑
a,b fb,a |xb + a〉 and we wish to write

down |fb〉 =
∑

a fb,a |a〉 for each b ∈ B. The following discussion essentially outlines how this can
be performed on a multi-tape turing machine using O(N logN) bit operations. (Recall that the
group E = (Z/2MZ)k and A = (Z/2mZ)k and both M and m are powers of 2)2.

Given as input is a sequence of coefficients fg for each g ∈ E in arbitrary predefined order on
one of the tapes of the turing machine. We wish to group these into blocks corresponding to various
cosets of A ⊆ E. Since E is a group with exponent a power of 2, there exists a tower of subgroups
E = E0 ⊃ E1 ⊃ · · · ⊃ Et = A where [Ei : Ei+1] = 2 and t = O(logN). The regrouping would
be performed in t phases, each requiring O(1) scans of the tapes. In phase i, we shall inductively

2this property is not very essential but makes the presentation simpler
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assume that one of the tapes contain the coefficients grouped into blocks corresponding to various
cosets of Ei−1 (as a base case, the input for phase 1 is one block corresponding to the only coset of
E0 = E). The i-th phase would regroup them into blocks corresponding to cosets of Ei:

Phase i: Scan the input tape and write down coefficients corresponding to indices in Ei into the
output tape in the same order. Scan the input tape again and append the output tape with
all coefficients corresponding to indices not in Ei in the same order.

It is straightforward to see that Phase i regroups the elements into blocks corresponding to cosets
of Ei. The phases can be performed on a 3-tape3 turing machine by reusing the tapes and at the
end of step t we have the coefficients regrouped into blocks corresponding to cosets of A.

With the above discussion, it can be seen that the upper-bound holds for multi-tape turing
machines.

Theorem 4.3. Given two N bit integers, their product can be computed using N · logN · 2O(log∗N)

bit operations on a multi-tape turing machine.

5 A Comparison with Fürer’s Algorithm

Our algorithm can be seen as a p-adic version of Fürer’s integer multiplication algorithm, where the
field C is replaced by Qp, the field of p-adic numbers (for a quick introduction, see Baker’s online
notes [Bak07]). Much like C, where representing a general element (say in base 2) takes infinitely
many bits, representing an element in Qp takes infinitely many p-adic digits. Since we cannot work
with infinitely many digits, all arithmetic has to be done with finite precision. Modular arithmetic
in the base ring Z[α]/(pc, αm + 1), can be viewed as arithmetic in the ring Qp[α]/(αm + 1) keeping
a precision of ε = p−c.

Arithmetic with finite precision naturally introduces some errors in computation. However, the
nature of Qp makes the error analysis simpler. The field Qp comes with a norm | · |p called the p-adic

norm, which satisfies the stronger triangle inequality |x+ y|p ≤ max
(
|x|p , |y|p

)
[Bak07, Proposi-

tion 2.6]. As a result, unlike in C, the errors in computation do not compound.

Recall that the efficiency of FFT crucially depends on a special principal 2M -th root of unity in
Qp[α]/(αm + 1). Such a root is constructed with the help of a primitive 2M -th root of unity in Qp.
The field Qp has a primitive 2M -th root of unity if and only if 2M divides p− 1 [Bak07, Theorem
5.12]. Also, if 2M divides p− 1, a 2M -th root can be obtained from a (p− 1)-th root of unity by
taking a suitable power. A primitive (p− 1)-th root of unity in Qp can be constructed, to sufficient
precision, using Hensel Lifting starting from a generator of F×p .

6 Conclusion

As mentioned earlier, there has been two approaches to multiplying integers - one using arithmetic
over complex numbers and the other using modular arithmetic. Using complex numbers, Schönhage

3an input tape, an output tape, and a tape containing a program counter. The third tape perhaps may be removed
in case the coeffecients are ordered in a natural sequential fashion.
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and Strassen [SS71] gave an O(N · logN · log logN . . . 2O(log∗N)) algorithm. Fürer [Für07] improved
this complexity to N · logN · 2O(log∗N) using some special roots of unity. The other approach,
that is modular arithmetic, can be seen as arithmetic in Qp with certain precision. A direct
adaptation of the Schönhage-Strassen’s algorithm in the modular setting leads to an O(N · logN ·
log logN . . . 2O(log∗N)) time algorithm. In this work, we show that by choosing an appropriate
prime and a special root of unity, a running time of N · logN · 2O(log∗N) can be achieved through
modular arithmetic as well. Therefore, in a way, we have unified the two paradigms. The important
question that remains open is:

• Can N -bit integers be multiplied using O(N · logN) bit operations?

Even an improvement of the complexity to O(N · logN · log∗N) operations will be a significant
step forward towards answering this question.
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