
Low-depth Arithmetic Circuit Lower Bounds: Bypassing
Set-multilinearization

Prashanth Amireddy*

Harvard University
pamireddy@g.harvard.edu

Ankit Garg
Microsoft Research India
garga@microsoft.com

Neeraj Kayal
Microsoft Research India
neeraka@microsoft.com

Chandan Saha†

Indian Institute of Science
chandan@iisc.ac.in

Bhargav Thankey‡

Indian Institute of Science
thankeyd@iisc.ac.in

Abstract

A recent breakthrough work of Limaye, Srinivasan and Tavenas [LST21] proved superpoly-
nomial lower bounds for low-depth arithmetic circuits via a “hardness escalation” approach:
they proved lower bounds for low-depth set-multilinear circuits and then lifted the bounds to
low-depth general circuits. In this work, we prove superpolynomial lower bounds for low-
depth circuits by bypassing the hardness escalation, i.e., the set-multilinearization, step. As
set-multilinearization comes with an exponential blow-up in circuit size, our direct proof opens
up the possibility of proving an exponential lower bound for low-depth homogeneous circuits
by evading a crucial bottleneck. Our bounds hold for the iterated matrix multiplication and the
Nisan-Wigderson design polynomials. We also define a subclass of unrestricted depth homo-
geneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial
lower bounds for these. This significantly generalizes the superpolynomial lower bounds for
regular formulas [KSS14, FLMS15].

*Supported in part by a Simons Investigator Award and NSF Award CCF 2152413 to Madhu Sudan. A part of this
work was done while the author was a research fellow at Microsoft Research, India.

†Partially supported by a MATRICS grant of the Science and Engineering Research Board, DST, India.
‡Supported by the Prime Minister’s Research Fellowship, India.

Contents

1 Introduction 1
1.1 Our results . 2
1.2 Techniques and proof overview . 5

2 Preliminaries 8

3 Structure of the space of partials of a product 10

4 Lower bound for low-depth homogeneous formulas 11
4.1 Decomposition of low-depth formulas . 11
4.2 Low-depth formulas have high residue . 11
4.3 High residue implies lower bounds . 12
4.4 The hard polynomials . 12
4.5 Putting everything together: the low-depth lower bound 13

5 Lower bound for unique-parse-tree formulas 14
5.1 Decomposition of UPT formulas . 14
5.2 UPT formulas have high residue . 15
5.3 Putting everything together: the UPT formula lower bound 15

6 Conclusion 15

A Other known lower bounds 21

B Full Preliminaries 23

C Proofs from Section 3 35

D Proofs from Section 4 41

E Proofs from Section 5 57

F Large-degree set-multilinear lower bound (using [LST21]) 64

G Geometric intuition behind SP and APP measures 65

1 Introduction

Arithmetic circuits are a natural model for computing polynomials using the basic operations
of addition and multiplication. One of the most fundamental questions about arithmetic cir-
cuits is about finding a family of explicit polynomials (if they exist) that cannot be computed
by polynomial-sized arithmetic circuits. The existence of such explicit polynomials was con-
jectured by Valiant in 1979 [Val79] and is the famed VP vs VNP conjecture. Arithmetic circuit
lower bounds are expected to be easier than Boolean circuit lower bounds. Among many rea-
sons, one is due to the phenomenon of depth reduction. Arithmetic circuits can be converted
into low-depth circuits preserving the output polynomial and not blowing up the size too much
[VSBR83, AV08, Koi12, Tav15, GKKS16]. Due to this, strong enough lower bounds even for re-
strictive models of computation like depth-3 circuits or homogeneous depth-4 circuits can lead to
superpolynomial arithmetic circuit lower bounds.

Arithmetic formulas are an important subclass of arithmetic circuits where the out-degree of
every gate is at most 1. For constant-depth, formulas and circuits are polynomially related. Also,
all our results deal with formulas. So we will only refer to formulas from here on. We consider
(families of) polynomials having degree at most polynomial in n, the number of variables. One of
the first results studying low-depth arithmetic formulas was that of [NW97], who proved lower
bounds for homogeneous depth-3 formulas. Progress on homogeneous formula lower bound
was stalled for a while, and then various lower bounds for homogeneous depth-4 formulas were
proven in a series of works [Kay12, GKKS14, KSS14, FLMS15, KS14b, KLSS17, KS17b]. There was
limited progress for higher-depth formulas, and lower bounds remained open even for depth-
5 formulas. In a recent breakthrough work, [LST21] proved superpolynomial lower bounds for
constant-depth arithmetic formulas. Their lower bounds are of the form nΩ(log(n)c∆) for a constant
0 < c∆ < 1 depending on the depth ∆ of the formula. The following two open problems naturally
emerge out of their work.

Open Problem 1.1. Prove superpolynomial lower bounds for general formulas or even homoge-
neous formulas. (A formula is homogeneous if every gate computes a homogeneous polynomial.)

Open Problem 1.2. Prove exponential lower bounds for constant-depth arithmetic formulas. This
is interesting even for homogeneous depth-5 formulas.

Towards answering Open Problems 1.1 and 1.2, let us examine the lower bound proof in
[LST21] at a high level. Their proof has two main steps: First, they reduce the problem of prov-
ing lower bounds for low-depth formulas to the problem of proving lower bounds for low-depth
set-multilinear formulas; set-multilinear formulas are special homogeneous formulas with an un-
derlying partition of the variables into subsets (see Section B.3.2). [LST21] calls such reductions
‘hardness escalation’. Second, they use an interesting adaptation of the rank of the partial deriva-
tives matrix measure [Nis91] to prove a lower bound for low-depth set-multilinear formulas. They
call this measure relative rank (relrk). The effectiveness of the relrk measure crucially depends on a
certain ‘imbalance’ between the sizes of the sets used to define set-multilinear polynomials. The
proof in [LST21] raises two natural questions:

Question 1: Can we bypass the hardness escalation, i.e., the set-multilinearization, step?

1

Question 2: Can we design a measure that exploits some weakness of homogeneous (but not nec-
essarily set-multilinear) formulas directly?

Motivations for studying Question 1: Set-multilinear circuits form a natural circuit class as most
interesting polynomial families, such as the determinant, permanent, iterated matrix multiplica-
tion, etc., are set-multilinear. However, set-multilinearization comes with an exponential blow up
in size – a homogeneous, depth-∆ formula computing a set-multilinear polynomial of degree d can
be converted to a set-multilinear formula of depth ∆ and size dO(d) · s (see [LST21]). So, an expo-
nential lower bound for low-depth set-multilinear formulas does not imply an exponential lower
bound for low-depth homogeneous formulas since we are restricted to work with d ≤ log n

log log n .
Indeed, it is possible to strengthen and refine the argument in [LST21] to get an exponential lower
bound for low-depth set-multilinear formulas (Appendix F). An approach that evades the hard-
ness escalation step, which is a critical bottleneck, and directly works with homogeneous formulas
has the potential to avoid the dO(d) loss and give an exponential lower bound for low-depth homo-
geneous formulas. For instance, the direct arguments in [KLSS17, KS17b] yield exponential lower
bounds for homogeneous depth-4 formulas. If we go via the hardness escalation approach, we
get a quasi-polynomial lower bound for the same model. Besides, a direct argument can also be
used to prove lower bounds for polynomials that do not have a non-trivial set-multilinear compo-
nent; see Remark 4.8 for more details. The hardness escalation approach of [LST21] can not yield a
lower bound for such polynomials. Furthermore, it is conceivable that a direct argument can also
be used to obtain functional lower bounds for low-depth formulas which might be useful in proof
complexity.

Motivations for studying Question 2: Typical measures used for proving lower bounds for arith-
metic circuits include the partial derivatives measure (PD) [NW97, SW01], the rank of the partial
derivatives matrix measure (a.k.a. evaluation dimension) [Nis91,Raz06,RY09], the shifted partials
measure (SP) and its variants [GKKS14, KSS14, KLSS17], the affine projections of partials measure
(APP) [GKS20, KNS20], etc. All these measures are defined for any polynomial, which is not nec-
essarily set-multilinear. Whereas the relrk measure used in [LST21], although very effective, is de-
fined for set-multilinear polynomials. Measures such as PD, SP, and APP have the geometrically
appealing property that they are invariant under the application of invertible linear transforma-
tions on the variables. Since low-depth formulas, as well as low-depth homogeneous formulas,
are closed under linear transformations, it is natural to look for measures that do not blow up
much on applying linear transformations. Another important motivation for studying Question
2 is to learn low-depth homogeneous formulas. While the ‘hardness escalation’ paradigm of re-
ducing to the set-multilinear case works for proving lower bounds, it is not clear how to exploit
it to design learning algorithms for low-depth formulas. Lower bounds for arithmetic circuits are
intimately connected to learning [FK09, Vol16, KS19a, GKS20]. Hence if we have a lower bound
measure that directly exploits the weakness of low-depth homogeneous formulas, it opens up the
possibility of new learning algorithms for such models.

1.1 Our results

We answer Questions 1 and 2 by giving a direct lower bound for low-depth homogeneous formu-
las via the SP measure which was used in the series of works on homogeneous depth-4 exponen-

2

tial lower bounds. While our proof also yields lower bounds only in the low-degree setting, the
hope is that it could potentially lead to a stronger lower bound in the future.

Consider the shifted partials measure: SPk,`(f) := dim〈x` · ∂k(f)〉, where f is a polynomial.
That is, SPk,`(f) is the dimension of the space spanned by the polynomials obtained by multiply-
ing degree ` monomials to partial derivatives of f of order k. Also, for convenience, let us denote
by M(n, k) := (n+k−1

k) the number of monomials of degree k in n variables. Then note that for a
homogeneous polynomial f of degree d, SPk,`(f) ≤ min{M(n, k)M(n, `), M(n, d− k + `)}.

We show that for polynomials computed by low-depth homogeneous formulas, the shifted
partials measure with an appropriate setting of k and ` is substantially smaller than the above
upper bound. At the same time, we exhibit explicit ‘hard’ polynomials for which the shifted
partials measure is close to the above bound, hence yielding a lower bound.

Theorem 1.3 (Lower bound for low-depth homogeneous formulas via shifted partials). Let C be
a homogeneous formula of size s and product-depth ∆ that computes a polynomial of degree d in n variables.
Then for appropriate values of k and `,

SPk,`(C) ≤
s 2O(d)

nΩ(d21−∆)
min{M(n, k)M(n, `), M(n, d− k + `)}.

At the same time, there are homogeneous polynomials f of degree d in n variables (e.g., an appropriate
projection of iterated matrix multiplication polynomial, Nisan-Wigderson design polynomial, etc.) such
that

SPk,`(f) ≥ 2−O(d) min{M(n, k)M(n, `), M(n, d− k + `)}.

This gives a lower bound of nΩ(d21−∆
)

2O(d) on the size of homogeneous product-depth ∆ formulas for f .

Remark 1.4. 1. At the end of this section, we briefly remark why it is surprising that we are
able to obtain the above lower bound using shifted partials. We also show that the lower
bound can be derived using the affine projections of partials (APP) measure (Lemma 4.4).

2. The above lower bound is slightly better than the bound of [LST21]. Instead of the dO(d) loss
incurred due to converting homogeneous to set-multilinear formulas, our analysis incurs
a 2O(d) loss; in fact, this loss can be brought down to 2O(k), but we ignore this distinction
as we set k = Θ(d) in the analysis. So, for example, for homogeneous product-depth 2
formulas, our superpolynomial lower bound continues to hold for a higher degree (log2(n)
vs (log(n)/ log log(n))2 in [LST21]). While the improvement may be insignificant, this hints
at something interesting going on with the direct approach (see Section 1.2).

Lower bounds for general-depth arithmetic formulas are expected to be easier than arith-
metic circuit lower bounds. However, despite several approaches and attempts (e.g. via ten-
sor rank lower bounds [Raz13]), we still do not have superpolynomial arithmetic formula lower
bounds. There has been some success though in proving lower bounds for some natural restricted
models (apart from the depth restrictions considered above). For example, [KSS14] considered
the model of regular arithmetic formulas. These are formulas which consist of alternating layers
of addition (+) and multiplication (×) gates such that the fanin of all gates in any fixed layer is
the same. This is a natural model and the best-known formulas for many interesting polynomial
families like determinant, permanent, iterated matrix multiplication, etc. are all regular. [KSS14]

3

proved a superpolynomial lower bound on the size of regular formulas for an explicit polynomial
and later [FLMS15] proved a tight lower bound for the iterated matrix multiplication polynomial.

We prove superpolynomial lower bounds for a more general model.1 Consider a model of
homogeneous arithmetic formulas consisting of alternating layers of addition (+) and multipli-
cation (×) gates such that the fanin of all addition gates can be arbitrary but fanin of product
gates in any fixed layer is the same. We call these product-regular. We prove super-polynomial
lower bounds for homogeneous product-regular formulas. Previously we did not know of lower
bounds for even a much simpler model where the fanins of all the product gates are fixed to 2.

In fact, we prove lower bounds for an even more general model which we call Unique Parse
Tree (UPT) formulas. A parse tree of a formula is a tree where for every + gate, one picks exactly
one child and for every product gate, we pick all the children. Then we “short circuit” all the
addition gates. Parse trees capture the way monomials are generated in a formula. We say that a
formula is UPT if all its parse trees are isomorphic. A product-regular formula is clearly UPT. In
the theorem below, IMMn,log n is the iterated multiplication polynomial of degree log n.

Theorem 1.5. Any UPT formula computing IMMn,log(n) has size at least nΩ(log log(n)). A similar lower
bound holds for the Nisan-Wigderson design polynomial.

Remark 1.6. 1. While homogeneous product-regular formulas are restricted to compute poly-
nomials with only certain degrees (e.g., higher product-depth cannot compute prime de-
grees), homogeneous UPT formulas do not suffer from this restriction. For example, see
Figure 1a for a UPT formula of product-depth 2 that computes a degree 3 polynomial.

2. While this result (which is obtained using the SP and the APP measures) could possibly also
be obtained by defining a similar model in the set-multilinear world, proving a lower bound
there and then transporting it back to the homogeneous world, our framework has fewer
number of moving parts and hence makes it easier to derive such results.

Challenges to using the SP measure. Let us remark briefly why it is surprising that we are able
to prove low-depth lower bounds via shifted partials. [GL19,Rez92] showed that the PD measure
of the polynomial (x2

1 + · · ·+ x2
n)

d
2 is the maximum possible when the order of derivatives, k, is at

most d
2 . Notice that (x2

1 + · · ·+ x2
n)

d
2 can be computed by a homogeneous depth-4 formula of size

O(nd). So, it is not possible to prove super-polynomial lower bounds for low-depth homogeneous
formulas using the PD measure as it is. One may ask if the SP measure also has a similar limitation.
Some of the finer separation results in [KS14a, KS19b] indicate that the SP measure (and some of
its variants) can be fairly large for homogeneous depth-4 and depth-5 formulas for the choices
of k used in prior work. Also, the exponential lower bounds for homogeneous depth-4 circuits in
[KLSS17,KS17b] use random restrictions along with a variant of the SP measure. It is not clear how
to leverage random restrictions for even homogeneous depth-5 circuits – this is also pointed out
in [LST21]. Fortunately, [KS14a, KS19b] do not rule out the possibility of using SP for all choices
of parameters, like, say, k ≈ d

2 , to prove lower bounds for low-depth homogeneous formulas. But,
the original intuition from algebraic geometry that led to the development of the SP measure (see
[GKKS14] Section 2.1) breaks down completely when k is so large (see Appendix G). Despite these
apparent hurdles, and to our surprise, we overcome these challenges and are able to use SP with

1The model in [KSS14,FLMS15] allowed slight non-homogeneity with the formal degree upper bounded by a small
constant times the actual degree. However, we only work with homogeneous formulas.

4

k ≈ d
2 to prove super-polynomial lower bounds for low-depth homogeneous formulas. To the best

of our knowledge, no previous work uses SP with this high a value of k.

1.2 Techniques and proof overview

In this section, we explain the proof idea and compare it with that in [LST21]. A lot of lower
bounds in arithmetic complexity follow the following outline.

Step 1: Depth reduction. One first shows that if f (x) is computed by a small circuit from some
restricted subclass of circuits, then there is a corresponding subclass of depth-4 circuits such that
f (x) is also computed by a relatively small circuit from this subclass2. The resulting subclass is of
the form: f (x) = ∑s

i=1 ∏ti
j=1 Qi,j. Usually there are simple restrictions on the degrees of Qi,j’s. For

example, they could be upper bounded by some number.

Step 2: Employing a suitable set of linear maps. Let F[x]=d be the space of homogeneous poly-
nomials of degree d, W be a suitable vector space, and Lin(F[x]=d, W) be the space of linear maps
from F[x]=d to W. We choose a suitable set of linear maps L ⊆ Lin(F[x]=d, W) that define a
complexity measure µL(f) := dim(L(f)), where L(f) := 〈{L(f) : L ∈ L}〉.

We would like to choose L so that it identifies some weakness of the terms ∏t
j=1 Qj in the

depth-4 circuit. That is, µL
(

∏t
j=1 Qj

)
should be much smaller than µL(f) for a generic f . For e.g.,

if Qj’s are all linear polynomials, we can choose L to be the partial derivatives of order k, ∂k. Then,

µL
(

∏t
j=1 Qj

)
≤ (t

k)� (n+k−1
k) which is the value for a generic f (for k ≤ t/2). This is the basis of

the homogeneous depth-3 formula lower bound in [NW97].
For proving lower bounds for bounded bottom fan-in depth-4 circuits (i.e., when degree of

Qj’s is upper bounded by some number), [GKKS14, Kay12] introduced the SP measure and used
the linear mapsL = x` · ∂k. The main insight in their proof was that if we apply a partial derivative
of order k on ∏t

j=1 Qj and use the product rule, then at least t− k of the Qj’s remain untouched.
This structure can then be exploited by the shifts to get a lower bound. This intuition however
completely breaks down for k ≥ t (see Appendix G). Due to this, progress remain stalled for
higher depth arithmetic circuit lower bounds via SP.

In a major breakthrough, [LST21] gets around the above obstacle by working with set-multilinear
circuits which entails working with polynomials over d sets of variables (x1, . . . , xd), |xi| = n. Let
us use the shorthand xS = (xi)i∈S. The products they deal with are of the form ∏t

j=1 Qj(xSj), where
S1, S2, . . . , St form a partition of [d]. The set of linear maps they use are L = Π ◦ ∂xA for a subset
A ⊆ [d]. Here, Π is a map that sets n− n0 variables in each of the variable sets in x[d]\A to 0. They

observe (for the appropriate choice of n0) that µL
(

∏t
j=1 Qj(xSj)

)
≤ n|A|

2
1
2 ∑t

j=1 imbalancej
.

Here, imbalancej = ||A ∩ Sj| log(n) − |Sj\A| log(n0)|. For the appropriate choice of n0, a
generic set-multilinear f satisfies µL(f) = n|A|, so that lower bound (on the number of summands)
obtained is exponential in the total imbalance ∑t

j=1 imbalancej. [LST21] observe that this quantity
is somewhat large for the depth-4 circuits that they consider.

2Some major results in the area such as [Raz03, LST21] did not originally proceed via a depth reduction but instead
analysed formulas directly. These results can however be restated as first doing a depth reduction and then applying
the appropriate measure.

5

The core of the above derivatives-based argument allows us to unravel some structure in
partial derivatives of order k applied on ∏t

j=1 Qj for values of k � t. We use this to derive a
structure for the partial derivative space of a product ∏t

j=1 Qj(x). Consider a partial derivative
operator of order k indexed by a multiset α of size k. Using the chain rule,

∂α

t

∏
j=1

Qj = ∑
α1,...,αt : ∑t

i=1 αi=α

cα
α1,...,αt

t

∏
j=1

∂αj Qj

for appropriate constants cα
α1,...,αt

’s. In the product ∏t
j=1 ∂αj Qj, we can try to club terms into two

groups depending on if the size of |αj| is small or large. It turns out that the right threshold for
|αj| is k deg(Qj)/d (i.e., if we divide the order of the derivatives proportional to the degrees of the
terms). Let S := {j : |αj| ≤ k deg(Qj)/d}. Define k0 := ∑j∈S |αj| and `0 := ∑j∈S(deg(Qj)− |αj|).
Notice that we can write the product ∏t

j=1 ∂αj Qj as P ∏j∈S ∂αj Qj, for a degree `0 polynomial P.
Hence, ∂α ∏t

j=1 Qj is a sum of terms of this form. While it is not immediate (due to the condition
on αj’s in S), with a bit more work, one can combine the product of partials into a single partial.

What can we say about k0 and `0? It turns out that the quantity that comes up in the calcula-
tions is k0 +

k
d−k `0 and it satisfies k0 +

k
d−k `0 ≤ k. Note that k0 is between 0 and k, and `0 between

0 and d− k. So the normalization brings `0 to the right ’scale’.
It turns out we can give a better bound in terms of a quantity we call residue defined as

residuek(d1, . . . , dt) :=
1
2
· min

k1,...,kt∈Z

t

∑
j=1

∣∣∣∣k j −
k
d
· dj

∣∣∣∣ .

and having the property that:

Proposition 1.7. Let k0 and `0 be defined as above. Then, k0 +
k

d−k `0 ≤ k − residuek(d1, . . . , dt),
where dj = deg(Qj).

We want to spread the derivatives equally among all terms but cannot due to integrality is-
sues. The residue captures this quantitatively and as described below, is what gives us our lower
bounds. While the proof in [LST21] also relies on an integrality issue, there it originates from an
imbalance between the sizes of the variable sets involved in a set-multilinear partition (as the map
Π sets some variables in certain sets to 0). In contrast, we show that the integrality issue arising
directly from the derivatives can be leveraged without involving set-multilinearity. In this sense,
our approach is conceptually direct and simpler. Combined with the above discussion, we get the
following structural lemma about the derivative space of ∏t

j=1 Qj.

Lemma 1.8. 〈
∂k (Q1 · · ·Qt)

〉
⊆ ∑

S⊆[t], k0∈[0..k], `0∈[0..(d−k)],
k0+

k
d−k ·`0 ≤ k−residuek(d1,...,dt)

〈
x`0 · ∂k0

(
∏
j∈S

Qj

)〉
.

Now we have the choice to utilize the above structure using an additional set of linear maps.
Both shifts and projections give similar lower bounds, so let us explain shifts here. Note that there

6

is an intriguing possibility of getting even better lower bounds (in terms of dependence on d)
using other sets of linear maps! From the above structural result, we have

〈
x` · ∂k (Q1 · · ·Qt)

〉
⊆ ∑

S⊆[t], k0∈[0..k], `0∈[0..(d−k)],
k0+

k
d−k ·`0 ≤ k−residuek(d1,...,dt)

〈
x`+`0 · ∂k0

(
∏
j∈S

Qj

)〉
.

Thus we can upper bound,

SPk,`((Q1 · · ·Qt)) ≤ 2t · d2 · max
k0,`0≥0

k0+
k

d−k ·`0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n, `0 + `)

≤ 2t · d2 2O(d)

nresiduek(d1,...,dt)
min{M(n, k)M(n, `), M(n, d− k + `)},

where the second inequality follows from elementary calculations.
Now to upper bound the shifted partial dimension of polynomials computed by low-depth

formulas, we give a decomposition for such formulas into sums of products of polynomials (Lemma
4.1) where the degree sequences are carefully chosen so that that the residues can be simultane-
ously lower bounded for all the terms (Lemma 4.2). While in a different context, these calculations
do bear similarity with related calculations in [LST21].

Step 3: Lower bounding dim(L(f)) for an explicit f . As a last step, one shows that for some
explicit candidate hard polynomial dim(L(f)) is large and thereby obtains a lower bound. This
is another step where bypassing set-multilinearity helps as one is not constrained to pick a set-
multilinear hard polynomial. Indeed, using a straightforward analysis we show that the APP
measure is high for an explicit non-set-multilinear polynomial (see Remark 4.8). We also show
that the measures are high for more standard polynomial families such as the iterated matrix mul-
tiplication polynomials and the Nisan-Wigderson design polynomials.

Application to UPT formulas. We observe here that for the subclass of homogeneous formulas
that we call UPT formulas, one can do a depth-reduction to obtain a depth-4 formula in which
all the summands have the same factorization pattern (i.e. the sequence of degrees of the factors
in all the summands is that same) - see Lemma 5.2. We further observe (Lemma 5.3) that for any
fixed sequence of degrees, there exists a suitable value of the parameter k such that the residue
is sufficiently large. This gives us the superpolynomial lower bound for UPT formulas as stated in
Theorem 1.5.

Despite the conceptual directness and simplicity of our approach, in bypassing set-multilinearity,
some of the calculations in the analysis become evidently more involved than that in [LST21].
This is primarily due to the delicate choice of parameters in ratios involving binomial coefficients;
this is also the case in several prior exponential lower bound proofs using SP and its variants
[KS17b, KLSS17, KS16]. Nevertheless, we think that by circumventing a critical bottleneck, the
analysis opens up the possibility of an exponential lower bound for low-depth arithmetic circuits.
Some of the ideas may indeed yield stronger bounds in the future.

7

Organization. After describing preliminaries in Section 2, we present a structural theorem about
the derivative space of a product of homogeneous polynomials in Section 3. This result is then
directly used to upper bound both the SP and APP measures of a product of polynomials. Using
this result and a decomposition result for low-depth formulas, we obtain lower bounds for low-
depth formulas in Section 4. Finally, we prove lower bounds for UPT formulas in Section 5.

2 Preliminaries

In this section, we give the essential notations and definitions necessary to follow the article. For
an exhaustive set of notations and definitions, see Appendix B.

Let a, b, c be real numbers. Then we define the sets [a..b] := {x ∈ Z : x ∈ [a, b]} and [a] :=
[1..a]. For a constant c ≥ 1 and b ≥ 0, we say a ≈c b if a ∈ [b/c, b]. We write a ≈ b if a ≈c b for
some (unspecified) constant c. All logarithms have base 2 unless specified otherwise. We denote
the fractional part of a by {a} := a−bac and the nearest integer of a by bae. The following quantity
will be crucially used in the proofs of our lower bounds. Here we think of d1, . . . , dt as degrees of
certain homogeneous polynomials, d as the degree of the product of those polynomials, and k is
the order of partial derivatives used for the complexity measures.

Definition 2.1 (residue). For non-negative integers d1, . . . , dt such that d :=
t

∑
i=1

di ≥ 1 and k ∈

[0..(d− 1)], we define residuek(d1, . . . , dt) := 1
2 · min

k1,...,kt∈Z

t
∑

i=1

∣∣∣ki − k
d · di

∣∣∣ .

The factor of half has been included in the definition just to make the statements of some of
the lemmas in our analysis simple. It is easy to show that residuek(d1, . . . , dt) ≤ k

2 . The minimum

is attained when for all i ∈ [t], ki =
⌊

k
d · di

⌉
. When we use residue in the analysis of complexity

measures, we would also have the following additional constraints that ki ≥ 0 and ki ≤ di, k1 +
· · · + kn = k, where k shall be the order of derivatives. As the value of residue can not decrease
when we impose these constraints, we omit them.

Let n and n0 be positive integers. Define variable sets x := {x1, . . . , xn} and z := {z1, . . . , zn0}.
For a monic monomial m and a P ∈ F[x], we define ∂mP ∈ F[x] to be the polynomial obtained
by successively taking partial derivatives with respect to all the variables of m (counted with their
multiplicities). For an integer ` ≥ 0, x` := {x1

e1 · · · xn
en : e1, . . . , en ∈ Z≥0 and ∑i∈[n] ei = `}.

For an integer k ≥ 0 and P ∈ F[x], ∂kP :=
{

∂mP : m ∈ xk} . For a P ∈ F[x], a map L : x → 〈z〉,
and S ⊆ F[x], πL(P) ∈ F[z] and πL(S) ⊆ F[z] are defined as πL(P) := P(L(x1), . . . , L(xn)) and
πL(S) := {πL(P) : P ∈ S}, respectively.

For S , T ⊆ F[x], S · T := {P ·Q : P ∈ S and Q ∈ T } and S+T := {P+Q : P ∈ S and Q ∈
T }. For a S ⊆ F[x], we define its span as 〈S〉 ⊆ F[x] to be the set of all polynomials which can
be expressed as F-linear combinations of elements in S . For a S ⊆ F[x], its dimension, denoted by
dimS , refers to the maximum number of linearly independent polynomials in S . We can now de-
fine the complexity measures for polynomials that we use to prove our lower bounds: the shifted
partials (SP) measure and the affine projections of partials (APP) measure.

Definition 2.2 (SP and APP measures). For a polynomial P ∈ F[x], non-negative integers k, `, and
n0 ∈ [n], we define SPk,`(P) := dim

〈
x` · ∂kP

〉
and APPk,n0(P) := max

L:x→〈z〉
dim

〈
πL
(
∂kP

)〉
.

8

SP and APP are sub-additive. APP is related to the skewed partials and relrk measures used in
[KNS20] and [LST21], respectively. For a comparison, see Remark B.7 and Section B.5 in Appendix
B.

Next, we define a subclass of homogeneous formulas which we call UPT formulas3.

Definition 2.3. A homogeneous formula C is said to be a unique-parse-tree formula if all of its parse
trees are isomorphic to each other as directed graphs.

For a UPT formula C, we define its canonical parse tree to be some fixed tree among all the
parse trees (this is a binary tree without loss of generality). For a detailed definition of (canonical)
parse tree, we defer to Appendix B.

Iterated Matrix Multiplication. The iterated matrix multiplication, IMMn,d is a polynomial in
N = d·n2 variables defined as the (1, 1)-th entry of the matrix product of d many n× n matrices
whose entries are distinct variables. To prove a lower bound for IMM, we analyze the SP and
APP for a projection of IMM, Pw that was introduced in [LST21].

Definition 2.4 (Word polynomial Pw [LST21]). Given a word w = (w1, . . . , wd) ∈ Zd, let x(w) be
a tuple of d pairwise disjoint sets of variables (x1(w), . . . , xd(w)) with |xi(w)| = 2|wi | for all i ∈ [d].
xi(w) will be called negative if wi < 0 and positive otherwise. As the set sizes are powers of 2,
we can map the variables in a set xi(w) to Boolean strings of length |wi|. Let σ : x → {0, 1}∗ be
such a mapping.4 We extend the definition of σ from variables to set-multilinear monomials as
follows: Let X = x1 · · · xr be a set-multilinear monomial where xi ∈ xφ(i)(w) and φ : [r] → [d]
be an increasing function. Then, we define a Boolean string σ(X) := σ(x1) ◦ · · · ◦ σ(xr), where
◦ denotes the concatenation of bits. Let M+(w) and M−(w) denote the set of all (monic) set-
multilinear monomials over all the positive sets and all the negative sets, respectively. For two
Boolean strings a, b, we say a ∼ b if a is a prefix of b or vice versa. For a word w, the corresponding
word polynomial Pw is defined as Pw := ∑

m+∈M+(w), m−∈M−(w)
σ(m+) ∼ σ(m−)

m+ ·m−.

We will make use of the following lemma from [LST21] which shows that computing IMM is
at least as hard as computing Pw. For this, we recall the notion of unbiased-ness of w = (w1, . . . , wd)
from [LST21] – we say that w is h-unbiased if maxi∈[d] |w1 + · · ·+ wi| ≤ h.

Lemma 2.5 (Lemma 7 in [LST21]). Let w ∈ [−h..h]d be h-unbiased. If for some n ≥ 2h, IMMn,d has
a formula C of product-depth5 ∆ and size s, then Pw has a formula C′ of product-depth at most ∆
and size at most s. Moreover, if C is homogeneous, then so is C′ and if C is UPT, then so is C′ with
the same canonical parse tree.6

Nisan-Wigderson design polynomial. For a prime power q and d ∈N, let x = {x1,1, . . . , x1,q,
. . . , xd,1, . . . , xd,q}. For any k ∈ [d], the Nisan-Wigderson design polynomial on qd variables, de-

3Our definition for UPT formulas is more general than the model considered in a recent paper by Limaye, Srinivasan
and Tavenas [LST22] as we do not impose set-multilinearity.

4Note that σ may map a variable from xi(w) and a variable from xj(w) to the same string if i 6= j.
5The product-depth of a formula is the maximum number of product gates on any path from the root to a leaf in the

formula.
6Although the lemma in [LST21] is stated for set-multilinear circuits, it also applies to homogeneous formulas and

UPT formulas (albeit with a mild blow-up in size) by the same argument.

9

noted by NWq,d,k or simply NW, is defined as follows:

NWq,d,k = ∑
h(z)∈Fq[z]:
deg(h)<k

∏
i∈[d]

xi,h(i).

The IMM and the NW polynomials, and their variants, have been extensively used to prove
various circuit lower bounds [NW97,KSS14,KLSS17,KS17b,KS16,KST16a,KST16b,FKS16,CLS19,
KS19b, GST20, LST21, KS22].

3 Structure of the space of partials of a product

In this section, we bound the partial derivative space of a product of homogeneous polynomials.
In the following lemma, we show that the space of k-th order partial derivatives of a product of
polynomials is contained in a sum of shifted partial spaces with shift `0 and order of derivatives k0
such that k0 +

k
d−k · `0 is ‘small’. Using this lemma, we upper bound the SP and APP measures of a

product of homogeneous polynomials. These bounds are then used in Sections 4 and 5 for proving
lower bounds for low-depth homogeneous formulas and UPT formulas respectively. Missing
proofs from this section can be found in Appendix C.

Lemma 3.1 (Upper bounding the partials of a product). Let n and t be positive integers and
Q1, . . . , Qt be non-constant, homogeneous polynomials in F[x] with degrees d1, . . . , dt respectively.

Let d := deg(Q1 · · ·Qt) =
t

∑
i=1

di and k < d be a non-negative integer. Then,

〈
∂k (Q1 · · ·Qt)

〉
⊆ ∑

S⊆[t], k0∈[0..k], `0∈[0..(d−k)],
k0+

k
d−k ·`0 ≤ k−residuek(d1,...,dt)

〈
x`0 · ∂k0

(
∏
i∈S

Qi

)〉
.

We now use the above lemma to upper bound the shifted partials and affine projections of
partials measures of a product of polynomials.

Lemma 3.2 (Upper bounding SP and APP of a product). Let Q = Q1 · · ·Qt be a homogeneous
polynomial in F[x1, . . . , xn] of degree d = d1 + · · ·+ dt ≥ 1, where Qi is homogeneous and di :=
deg(Qi) for i ∈ [t]. Then, for any non-negative integers k < d, ` ≥ 0, and n0 ≤ n,

1.
SPk,`(Q) ≤ 2t · d2 · max

k0,`0≥0
k0+

k
d−k ·`0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n, `0 + `),

2.
APPk,n0(Q) ≤ 2t · d2 · max

k0,`0≥0
k0+

k
d−k ·`0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n0, `0).

10

4 Lower bound for low-depth homogeneous formulas

In this section, we present a superpolynomial lower bound for “low-depth” homogeneous for-
mulas computing the IMM and NW polynomials. We begin by proving a structural result for
homogeneous formulas. Missing proofs from this section can be found in Appendix D.

4.1 Decomposition of low-depth formulas

We show that any homogeneous formula can be decomposed as a sum of products of homoge-
neous polynomials of lower degrees, where the number of summands is bounded by the number
of gates in the original formula. The decomposition lemma given below bears some resemblance
to a decomposition of homogeneous formulas in [HY11]. In the decomposition in [HY11], the
degrees of the factors of every summand roughly form a geometric sequence, and hence each
summand is a product of a ‘large’ number of factors. Here we show that each summand has
‘many’ low-degree factors. While the lower bound argument in [LST21] does not explicitly make
use of such a decomposition, their inductive argument can be formulated as a depth-reduction or
decomposition lemma (with slightly different thresholds for the degrees).

Lemma 4.1 (Decomposition of low-depth formulas). Suppose C is a homogeneous formula of
product-depth ∆ ≥ 1 computing a homogeneous polynomial in F[x1, . . . , xn] of degree at least
d > 0. Then, there exist homogeneous polynomials

{
Qi,j
}

i,j in F[x1, . . . , xn] such that

1. C =
s
∑

i=1
Qi,1 · · ·Qi,ti , for some s ≤ size(C), and

2. for all i ∈ [s], either ∣∣{j ∈ [ti] : deg(Qi,j) = 1
}∣∣ ≥ d21−∆

, or∣∣∣{j ∈ [ti] : deg(Qi,j) ≈2 d21−δ
}∣∣∣ ≥ d21−δ − 1 , for some δ ∈ [2..∆].

4.2 Low-depth formulas have high residue

The following lemma gives us a value for the order of derivatives k with respect to which low-
depth formulas yield high residue. Its proof uses Lemma 4.1.

Lemma 4.2 (Low-depth formulas have high residue). Suppose C is a homogeneous formula of
product-depth ∆ ≥ 1 computing a polynomial in F[x1, . . . , xn] of degree d, where d21−∆

= ω(1).

Then, there exist homogeneous polynomials
{

Qi,j
}

i,j in F[x1, . . . , xn] such that C =
s
∑

i=1
Qi,1 · · ·Qi,ti ,

for some s ≤ size(C). Fixing an arbitrary i ∈ [s], let t := ti and define dj := deg(Qi,j) for j ∈ [t].

Then, residuek(d1, . . . , dt) ≥ Ω
(

d21−∆
)

, where k :=
⌊

α·d
1+α

⌋
, α :=

∆−1
∑

ν=0

(−1)ν

τ2ν−1 , and τ :=
⌊

d21−∆
⌋

.

11

4.3 High residue implies lower bounds

For a ‘random’ homogeneous degree-d polynomial in F[x1, . . . , xn], if the shift ` is not too large,
we expect the SP measure to be close to the maximum number of operators used to construct
the shifted partials space, i.e., M(n, k)·M(n, `). In the lemma below, we derive a bound for such
polynomials. Explicit examples of such polynomials are given in Section 4.4.

Lemma 4.3 (High residue implies lower bounds). Let P =
s
∑

i=1
Qi,1 · · ·Qi,ti be a homogeneous n-

variate polynomial of degree d where
{

Qi,j
}

i,j are homogeneous and SPk,`(P) ≥ 2−O(d) ·M(n, k)·

M(n, `) for some 1 ≤ k < d
2 , n0 ≤ n and ` =

⌊
n·d
n0

⌋
such that d ≤ n0 ≈ 2(d− k)·

(n
k

) k
d−k . If there is a

γ > 0 such that for all i ∈ [s], residuek(deg(Qi,1), . . . , deg(Qi,ti)) ≥ γ, then s ≥ 2−O(d) (n
d

)Ω(γ).

We state an analogous lemma with APP instead of SP.

Lemma 4.4 (High residue implies lower bounds, using APP). Let P =
s
∑

i=1
Qi,1 · · ·Qi,ti be a ho-

mogeneous n-variate polynomial of degree d where
{

Qi,j
}

i,j are homogeneous and APPk,n0(P) ≥

2−O(d) ·M(n, k) for some 1 ≤ k < d
2 , n0 ≤ n such that d ≤ n0 ≈ 2(d− k).

(n
k

) k
d−k . If there is a γ > 0

such that for all i ∈ [s], residuek(deg(Qi,1), . . . , deg(Qi,ti)) ≥ γ, then s ≥ 2−O(d) ·
(n

d

)Ω(γ).

Remark 4.5. In the above lemmas, although our lower bound appears as 2−O(d)·nΩ(γ), similar cal-
culations actually give a lower bound of 2−O(k)·nΩ(γ) for any choice of k and an appropriate choice
of ` (or n0 in the case of APP). We do not differentiate between the two, as for our applications (i.e.,
low-depth circuits and UPT formulas), the value of k we choose is Θ(d). Moreover, we observe
that the factor of 2−O(k) in our lower bounds is likely unavoidable for any choice of k and ` (or n0
in the case of APP) using our current estimates for the complexity measures. We refer the reader to the
discussion in Section D.10 for more details.

4.4 The hard polynomials

We shall prove our lower bound for the word polynomial Pw introduced in [LST21] as well as
for the Nisan-Wigderson design polynomial. In order to do this, we show that the SP and APP
measures of Pw and the SP measure of NW are large for suitable choices of k, ` and n0.

Lemma 4.6 (Pw as a hard polynomial). For integers h, d such that h > 100 and any k ∈
[

d
30 , d

2

]
,

there exists an h-unbiased word w ∈ [−h..h]d, integers n0 ≤ n, ` =
⌊

n·d
n0

⌋
such that n0 ≈ 2(d− k)·(n

k

) k
d−k and the following bounds hold: SPk,`(Pw) ≥ 2−O(d) ·M(n, k)·M(n, `) and APPk,n0(Pw) ≥

2−O(d) ·M(n, k). Here n refers to the number of variables in Pw, i.e., n = ∑i∈[d] 2|wi |.

The following lemma shows that the SP measure of the Nisan-Wigderson design polynomial
is ‘large’ for k as high as Θ(d), if ` is chosen suitably.

Lemma 4.7 (NW as a hard polynomial). For n, d ∈ N such that 120 ≤ d ≤ 1
150

(
log n

log log n

)2
, let q be

the largest prime number between
⌊ n

2d

⌋
and

⌊ n
d

⌋
. For parameters k ∈

[
d

30 , d
2 −

√
d

8

]
and ` =

⌊
qd2

n0

⌋
,

where n0 = 2(d− k)·
(

qd
k

) k
d−k ,SPk,`(NWq,d,k) ≥ 2−O(d) ·M(qd, k) ·M(qd, `).

12

Remark 4.8. An advantage of directly analysing the complexity measures for homogeneous for-
mulas instead of for set-multilinear formulas is that our hard polynomial need not be set multi-
linear. In Appendix D.7, we describe an explicit non set-multilinear polynomial P (in VNP) with a
large APP measure; the construction is similar to a polynomial in [GKS20]. The proof that APP of
P is large is considerably simpler than the proofs of the above lemmas.

4.5 Putting everything together: the low-depth lower bound

Theorem 4.9 (Low-depth homogeneous formula lower bound for IMM). For any d, n, ∆ such that
n = ω(d), any homogeneous formula of product-depth at most ∆ computing IMMn,d over any field F has

size at least 2−O(d) ·nΩ
(

d21−∆
)
. In particular, when d = O(log n), we get a lower bound of nΩ

(
d21−∆

)
.

Theorem 4.10 (Low-depth homogeneous formula lower bound for NW). Let n, d, ∆ be positive

integers. If ∆ = 1, let d = n1−ε for any constant ε > 0 and k =
⌊

d−1
2

⌋
. Otherwise, let d ≤ 1

150

(
log n

log log n

)2
,

let τ =
⌊

d21−∆
⌋

, α =
∆−1
∑

ν=0

(−1)ν

τ2ν−1 , and k =
⌊

α·d
1+α

⌋
. In both cases, let q be the largest prime between

⌊ n
2d

⌋
and⌊ n

d

⌋
. Then, any homogeneous formula of product-depth at most ∆ computing NWq,d,k over any field F has

size at least 2−O(d) ·nΩ
(

d21−∆
)
. In particular, when d = O(log n), we get a lower bound of nΩ

(
d21−∆

)
.

Remark 4.11. Notice that in the above theorem, as k depends on the product-depth ∆, the poly-
nomial NWq,d,k may be different for different values of ∆. However, much like in [KSS14], there
is a way to ‘stitch’ all the different NW polynomials for different values of ∆ into a single poly-
nomial P such that any homogeneous formula of product-depth ∆ computing P has size at least

2−O(d)nΩ
(

d21−∆
)
. See Theorem 5.6 for more details.

In [LST21], the authors showed how to convert a circuit of product-depth ∆ computing a
homogeneous polynomial to a homogeneous formula of product-depth 2∆ without much increase
in the size. Combining Lemma 11 from [LST21] with Theorems 4.9 and 4.10, we get:

Corollary 4.12 (Low-depth circuit lower bound for IMM). For any positive integers d, n, ∆ such
that n = ω(d), any circuit of product-depth at most ∆ computing IMMn,d over any field F with

characteristic 0 or more than d has size at least 2−O(d) ·n
Ω
(

d21−2∆

∆

)
.

In particular, when d = O(log n), we get a lower bound of n
Ω
(

d21−2∆

∆

)
.

Corollary 4.13 (Low-depth circuit lower bound for NW). Let n, d, ∆ be positive integers. If ∆ =

1, let d = n1−ε for any constant ε > 0 and k =
⌊

d−1
2

⌋
. Otherwise, let d ≤ 1

150

(
log n

log log n

)2
, let

τ =
⌊

d21−∆
⌋

, α =
∆−1
∑

ν=0

(−1)ν

τ2ν−1 , and k =
⌊

α·d
1+α

⌋
. In both cases, let q be the largest prime number

between
⌊ n

2d

⌋
and

⌊ n
d

⌋
. Then, any circuit of product-depth at most ∆ computing NWq,d,k over any

field F of characteristic 0 or more than d has size at least 2−O(d) ·n
Ω
(

d21−2∆

∆

)
.

In particular, when d = O(log n), we get a lower bound of n
Ω
(

d21−2∆

∆

)
.

13

We note that our lower bounds quantitatively improve on the original homogeneous for-
mula lower bound of [LST21] in terms of the dependence on the degree. While [LST21] gives a

lower bound of dO(−d) ·nΩ
(

d1/2∆−1
)

(as the conversion from homogeneous to set-multilinear for-

mulas increases the size by a factor of dO(d)), our lower bound is 2−O(d) ·nΩ
(

d21−∆
)
. Thus, we get

slight improvement both in the multiplicative factor (from dO(d) to 2O(d)) and in the exponent of

n (from d
1

2∆−1 to d
1

2(∆−1)). We point out what these improvements mean for smaller depths: For
∆ = 2, our lower bound for homogeneous formulas computing IMM is superpolynomial as long
as d ≤ ε · log2 n for a small enough positive constant ε, whereas the lower bound in [LST21] does

not work beyond d = O
((

log n
log log n

)2
)

. In particular, we obtain a lower bound of nΩ(log n) for the

size of homogeneous depth-5 formulas computing IMMn,d when d = Θ(log2 n). Finally, for ∆ = 3

and d ≤ ε · log4/3 n, we get a lower bound of nΩ(d1/4), as compared to nΩ(d1/7) from [LST21].

5 Lower bound for unique-parse-tree formulas

In this section, we show that UPT formulas computing IMM must have a ‘large’ size. We begin
by giving a decomposition for such formulas. Missing proofs from this section can be found in
Appendix E.

5.1 Decomposition of UPT formulas

In order to upper bound the SP (or APP) measure of a UPT formula, we need certain results about
binary trees and UPT formulas. For a given canonical parse tree T with d leaves, we define its
degree sequence (d1, . . . , dt) using the function DEG-SEQ described in Algorithm 2. Informally,
we consider a sequence7 of subtrees of T (i.e., each element in this sequence is a subtree of the
previous element) and associate di’s to the number of leaves between consecutive subtrees in that
sequence: in particular we have ∑i di = d.

We prove the following lemma in Section E.1. The idea here is to ‘break’ the tree at various
nodes so that the successive sizes of the smaller trees are far from each other.

Lemma 5.1. For a given canonical parse tree T with d ≥ 1 leaves, let (d1, . . . , dt) := DEG-SEQ(T),

where the function DEG-SEQ is given in Algorithm 2. Also let ei := d −
i

∑
j=1

dj for i ∈ [t] and

e0 := d. Then, for all i ∈ [t− 1], ei ∈
(

ei−1
3 , 2·ei−1

3

]
. Additionally, dt = 1, et = 0, and log3 d + 1 ≤ t ≤

log3/2 d + 1.

As mentioned in Section 4.1, it was shown in [HY11] that a homogeneous formula can be
expressed as a “small” sum of products of homogeneous polynomials such that in each summand,
the degrees of the factors roughly form a geometric sequence. We observe that this result can
be strengthened for UPT formulas; in particular, we show that for UPT formulas, the “degree
sequences” of all the summands are identical.

7the precise way of constructing this sequence is deferred to Algorithm 2.

14

Lemma 5.2 (Log-product decomposition of UPT formulas). Let f ∈ F[x] be a homogeneous
polynomial of degree d ≥ 1 computed by a UPT formula C with canonical parse tree T (C). Let
(d1, . . . , dt) := DEG-SEQ(T (C)). Then there exist an integer s ≤ size(C) and homogeneous poly-
nomials

{
Qi,j
}

i,j where deg(Qi,j) = dj for i ∈ [s], j ∈ [t], such that

f =
s

∑
i=1

Qi,1 · · ·Qi,t.

5.2 UPT formulas have high residue

Now we show that there exists a value of k that has high residue with respect to the degrees of the
factors given by the above log-product lemma.

Lemma 5.3 (High residue for a degree sequence). For any given canonical parse tree T with d ≥ 1
leaves, let (d1, . . . , dt) := DEG-SEQ(T) and k := UPT-K(d1, . . . , dt) where the function UPT-K is
described in Algorithm 3. Then

residuek(d1, . . . , dt) ≥
log3 d− 10

216
.

5.3 Putting everything together: the UPT formula lower bound

In this section, we state our lower bounds for UPT formulas.

Theorem 5.4 (UPT formula lower bound for IMM). For n ∈ N and d ≤ ε · log n · log log n, where
ε > 0 is a small enough constant, any UPT formula computing IMMn,d over any field F has size nΩ(log d).

Remark 5.5. The above theorem can also be derived by using the complexity measure studied in
[LST21] along with the observation that the unbounded-depth set-multilinearization due to [Raz13]
(which increases the size by a factor of 2O(d)) preserves parse trees.

We also get an analogous theorem for a polynomial related to the NW polynomial.

Theorem 5.6. Let n ∈ N, d ≤ ε · log n · log log n, where ε > 0 is a small enough constant, and q be the

largest prime number between
⌊ n

2d

⌋
and

⌊ n
d

⌋
. Then, any UPT formula computing P =

dd/2e
∑

i=bd/30c
yi · NWq,d,i

(where the y variables are distinct from the x variables), over any field F has size nΩ(log d).

6 Conclusion

Recently, [LST21] made remarkable progress on arithmetic circuit lower bounds by giving the
first super-polynomial lower bound for low-depth formulas. They achieve this by a hardness
escalation approach via set-multilinearization. But, set-multilinearization is an inherently expen-
sive process that seems to restrict us from obtaining an exponential lower bound for even ho-
mogeneous low-depth formulas. In this work, we take the vital first step of sidestepping set-
multilinearization and showing a super-polynomial lower bound for low-depth formulas via a

15

direct approach. A direct approach does not seem to incur an inherent exponential loss. So, it
might be possible to prove stronger lower bounds for low-depth homogeneous formulas or other
related models using this approach or an adaptation of it.

Problem 1. Prove exponential lower bounds for low-depth homogeneous arithmetic formulas.
Prove exponential lower bounds for low-depth, multi-r-ic formulas.

A formula is said to be multi-r-ic, if the formal degree of every gate with respect to every variable
is at most r [KS17a, KST16b]. The UPT formula lower bound proved in this work is for formulas
computing polynomials of degree at most O(log n · log log n). It would be interesting to increase
the range of degrees for which our bound works. In the non-commutative setting, exponential
lower bounds are known for formulas with exponentially many parse trees [LLS19].

Problem 2. Prove an nΩ(log d) lower bound for UPT formulas for d = nO(1). Prove a superpolyno-
mial lower bound for formulas with “many” parse trees.

Our work also raises the prospect of learning low-depth homogeneous formulas given black-box
access using the ‘learning from lower bounds’ paradigm proposed in [GKS20, KS19a].

Problem 3. Obtain learning algorithms for random low-depth homogeneous formulas.

To upper bound SP or APP of a homogeneous formula C, we first show in Section 3 that the space
of partial derivatives of C has some structure and then exploit this structure using shifts or affine
projections. There might be a better way to exploit this structure, say by going modulo an appro-
priately chosen ideal or using random restrictions along with shifts as done in [KLSS17, KS17b].
Exploring this possibility is also an interesting direction for future work.

Acknowledgements. We would like to thank the anonymous reviewers for their valuable feed-
back.

References

[AKV18] Noga Alon, Mrinal Kumar, and Ben Lee Volk. Unbalancing Sets and an Almost
Quadratic Lower Bound for Syntactically Multilinear Arithmetic Circuits. In Rocco A.
Servedio, editor, 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018,
San Diego, CA, USA, volume 102 of LIPIcs, pages 11:1–11:16. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. 22

[AV08] Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA, pages 67–75. IEEE Computer Society, 2008. 1

[BDS22] C. S. Bhargav, Sagnik Dutta, and Nitin Saxena. Improved lower bound, and proof
barrier, for constant depth algebraic circuits. In Stefan Szeider, Robert Ganian, and
Alexandra Silva, editors, 47th International Symposium on Mathematical Foundations of

16

Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs,
pages 18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. 22, 23

[BLS16] Nikhil Balaji, Nutan Limaye, and Srikanth Srinivasan. An almost cubic lower bound
for ΣΠΣ circuits computing a polynomial in VP. Electronic Colloquium on Computational
Complexity (ECCC), 23:143, 2016. 22

[BS83] Walter Baur and Volker Strassen. The Complexity of Partial Derivatives. Theor. Comput.
Sci., 22:317–330, 1983. 21

[CELS18] Suryajith Chillara, Christian Engels, Nutan Limaye, and Srikanth Srinivasan. A Near-
Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits. In Mikkel
Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 934–945. IEEE Computer Society, 2018. 22,
64

[CKSV22] Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. Quadratic lower
bounds for algebraic branching programs and formulas. Comput. Complex., 31(2):8,
2022. Conference version appeared in the proceedings of CCC 2020. 21

[CLS19] Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth multilinear
formula lower bounds for iterated matrix multiplication with applications. SIAM J.
Comput., 48(1):70–92, 2019. Conference version appeared in the proceedings of STACS
2018. 10, 22, 33, 64

[DMPY12] Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating mul-
tilinear branching programs and formulas. In Howard J. Karloff and Toniann Pitassi,
editors, Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, May 19 - 22, 2012, pages 615–624. ACM, 2012. 22

[FK09] Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit lower
bounds. J. Comput. Syst. Sci., 75(1):27–36, 2009. 2

[FKS16] Michael A. Forbes, Mrinal Kumar, and Ramprasad Saptharishi. Functional lower
bounds for arithmetic circuits and connections to boolean circuit complexity. In 31st
Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan,
pages 33:1–33:19, 2016. 10, 33

[FLMS15] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower
Bounds for Depth-4 Formulas Computing Iterated Matrix Multiplication. SIAM J.
Comput., 44(5):1173–1201, 2015. Conference version appeared in the proceedings of
STOC 2014. 1, 4, 22, 23

[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching
the Chasm at Depth Four. J. ACM, 61(6):33:1–33:16, 2014. Conference version appeared
in the proceedings of CCC 2013. 1, 2, 4, 5, 22, 26, 66

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic
Circuits: A Chasm at Depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. Conference
version appeared in the proceedings of FOCS 2013. 1

17

[GKS20] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In Sandy Irani, editor, 61st IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, pages 889–899. IEEE, 2020. 2, 13, 16, 26, 27, 66

[GL19] Fulvio Gesmundo and Joseph M. Landsberg. Explicit polynomial sequences with max-
imal spaces of partial derivatives and a question of k. mulmuley. Theory Comput., 15:1–
24, 2019. 4

[GST20] Nikhil Gupta, Chandan Saha, and Bhargav Thankey. A super-quadratic lower bound
for depth four arithmetic circuits. In Shubhangi Saraf, editor, 35th Computational Com-
plexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference),
volume 169 of LIPIcs, pages 23:1–23:31. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020. 10, 22, 33

[HY11] Pavel Hrubes and Amir Yehudayoff. Homogeneous formulas and symmetric polyno-
mials. Comput. Complex., 20(3):559–578, 2011. 11, 14

[Kal85] K. Kalorkoti. A Lower Bound for the Formula Size of Rational Functions. SIAM J.
Comput., 14(3):678–687, 1985. 21

[Kay12] Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree
polynomials. Electronic Colloquium on Computational Complexity (ECCC), 19:81, 2012. 1,
5, 22, 26, 33

[KLSS17] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Exponential
Lower Bound for Homogeneous Depth Four Arithmetic Formulas. SIAM J. Comput.,
46(1):307–335, 2017. Conference version appeared in the proceedings of FOCS 2014. 1,
2, 4, 7, 10, 16, 22, 33

[KNS20] Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation Between Read-once Obliv-
ious Algebraic Branching Programs (ROABPs) and Multilinear Depth-three Circuits.
ACM Trans. Comput. Theory, 12(1):2:1–2:27, 2020. Conference version appeared in the
proceedings of STACS 2016. 2, 9, 26, 27, 34

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput.
Sci., 448:56–65, 2012. 1

[KS14a] Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arithmetic for-
mulas: it’s all about the top fan-in. In Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, pages 136–145, 2014. 4

[KS14b] Mrinal Kumar and Shubhangi Saraf. Superpolynomial lower bounds for general ho-
mogeneous depth 4 arithmetic circuits. In Automata, Languages, and Programming - 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part I, pages 751–762, 2014. 1

[KS16] Neeraj Kayal and Chandan Saha. Lower Bounds for Depth-Three Arithmetic Circuits
with small bottom fanin. Computational Complexity, 25(2):419–454, 2016. Conference
version appeared in the proceedings of CCC 2015. 7, 10, 33

18

[KS17a] Neeraj Kayal and Chandan Saha. Multi-k-ic depth three circuit lower bound. Theory
Comput. Syst., 61(4):1237–1251, 2017. The conference version appeared in the proceed-
ings of STACS, 2015. 16

[KS17b] Mrinal Kumar and Shubhangi Saraf. On the Power of Homogeneous Depth 4 Arith-
metic Circuits. SIAM J. Comput., 46(1):336–387, 2017. Conference version appeared in
the proceedings of FOCS 2014. 1, 2, 4, 7, 10, 16, 22, 33

[KS19a] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous
depth three circuits. In Moses Charikar and Edith Cohen, editors, Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019, pages 413–424. ACM, 2019. 2, 16, 27

[KS19b] Mrinal Kumar and Ramprasad Saptharishi. The computational power of depth five
arithmetic circuits. SIAM J. Comput., 48(1):144–180, 2019. 4, 10, 33

[KS22] Deepanshu Kush and Shubhangi Saraf. Improved low-depth set-multilinear circuit
lower bounds. In Shachar Lovett, editor, 37th Computational Complexity Conference,
CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 38:1–
38:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. 10, 22, 33

[KSS14] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower
bound for regular arithmetic formulas. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 146–153, 2014. 1, 2, 3, 4, 10, 13,
22, 23, 29, 33, 66

[KST16a] Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An Almost Cubic Lower Bound
for Depth Three Arithmetic Circuits. In 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 33:1–33:15,
2016. 10, 22, 33

[KST16b] Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. On the size of homogeneous and
of depth four formulas with low individual degree. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 626–632, 2016. 10, 16, 33

[LLS19] Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower Bounds and PIT
for Non-commutative Arithmetic Circuits with Restricted Parse Trees. Computational
Complexity, 28(3):471–542, 2019. 16, 23, 29

[LMP19] Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative com-
putations: lower bounds and polynomial identity testing. Chicago Journal of Theoretical
Computer Science, (2):1–19, 2019. 23

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial Lower
Bounds Against Low-Depth Algebraic Circuits. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022,
pages 804–814. IEEE, 2021. A full version of the paper can be found at https:
//eccc.weizmann.ac.il/report/2021/081. 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 22,
27, 28, 32, 33, 53, 64, 65, 66

19

https://eccc.weizmann.ac.il/report/2021/081
https://eccc.weizmann.ac.il/report/2021/081

[LST22] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. On the partial derivative
method applied to lopsided set-multilinear polynomials. In Shachar Lovett, editor,
37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA,
USA, volume 234 of LIPIcs, pages 32:1–32:23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. 9, 29

[Nis91] Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Ab-
stract). In Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana,
USA, pages 410–418. ACM, 1991. 1, 2

[NW97] Noam Nisan and Avi Wigderson. Lower Bounds on Arithmetic Circuits Via Partial
Derivatives. Computational Complexity, 6(3):217–234, 1997. Conference version ap-
peared in the proceedings of FOCS 1995. 1, 2, 5, 10, 22, 33

[Raz03] Ran Raz. On the Complexity of Matrix Product. SIAM J. Comput., 32(5):1356–1369,
2003. Conference version appeared in the proceedings of STOC 2002. 5

[Raz06] Ran Raz. Separation of Multilinear Circuit and Formula Size. Theory of Computing,
2(6):121–135, 2006. Conference version appeared in the proceedings of FOCS 2004. 2,
22

[Raz10] Ran Raz. Elusive Functions and Lower Bounds for Arithmetic Circuits. Theory of
Computing, 6(1):135–177, 2010. Conference version appeared in the proceedings of
STOC 2008. 22

[Raz13] Ran Raz. Tensor-Rank and Lower Bounds for Arithmetic Formulas. J. ACM, 60(6):40:1–
40:15, 2013. Conference version appeared in the proceedings of STOC 2010. 3, 15, 28

[Rez92] Bruce Reznick. Sums of even powers of real linear forms. Memoirs of the AMS, 96:463,
1992. 4

[RSY08] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A Lower Bound for the Size of Syntac-
tically Multilinear Arithmetic Circuits. SIAM J. Comput., 38(4):1624–1647, 2008. Con-
ference version appeared in the proceedings of FOCS 2007. 22

[RY08] Ran Raz and Amir Yehudayoff. Balancing Syntactically Multilinear Arithmetic Cir-
cuits. Computational Complexity, 17(4):515–535, 2008. 22

[RY09] Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant Depth
Multilinear Circuits. Computational Complexity, 18(2):171–207, 2009. Conference ver-
sion appeared in the proceedings of CCC 2008. 2, 22, 64

[SS97] Victor Shoup and Roman Smolensky. Lower Bounds for Polynomial Evaluation and
Interpolation Problems. Computational Complexity, 6(4):301–311, 1997. Conference ver-
sion appeared in the proceedings of FOCS 1991. 22

[Str73a] Volker Strassen. Die berechnungskomplexiät von elementarysymmetrischen funktio-
nen und von iterpolationskoeffizienten. Numerische Mathematik, 20:238–251, 1973. 21

20

[Str73b] Volker Strassen. Vermeidung von divisionen. The Journal für die Reine und Angewandte
Mathematik, 264:182–202, 1973. 28

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of character-
istic zero. Computational Complexity, 10(1):1–27, 2001. Conference version appeared in
the proceedings of CCC 1999. 2, 22

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Com-
put., 240:2–11, 2015. Conference version appeared in the proceedings of MFCS 2013.
1

[TLS22] Sébastien Tavenas, Nutan Limaye, and Srikanth Srinivasan. Set-multilinear and non-
commutative formula lower bounds for iterated matrix multiplication. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Sym-
posium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 416–425. ACM,
2022. 22

[Val79] Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11h Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA,
pages 249–261, 1979. 1

[Vol16] Ilya Volkovich. A Guide to Learning Arithmetic Circuits. In Proceedings of the 29th
Conference on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pages 1540–
1561, 2016. 2

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Com-
putation of Polynomials Using Few Processors. SIAM J. Comput., 12(4):641–644, 1983.
1

[Yau16] Morris Yau. Almost cubic bound for depth three circuits in VP. Electronic Colloquium
on Computational Complexity (ECCC), 23:187, 2016. 22

A Other known lower bounds

In this section, we give a brief account of some of the known arithmetic circuit lower bounds that
are related to our work.

General circuits and formulas. Not much is known about lower bounds for general arithmetic
circuits and formulas computing explicit polynomials. Baur and Strassen [BS83, Str73a] proved
that any arithmetic circuit computing the power symmetric polynomial (PSymn,d := xd

1 + · · ·+ xd
n)

or the elementary symmetric polynomial (ESymn,d := ∑S⊆[n]:
|S|=d

∏i∈S xi) must have size Ω(n log d).

There has been no improvement on this bound and their result continues to be the best-known
lower bound for general arithmetic circuits.

The best-known lower bound for general arithmetic formulas is quadratic. [Kal85] proved
that any arithmetic formula computing the polynomial ∑i,j∈[n] xj

iyj must have size Ω(n2). Re-
cently, [CKSV22] proved an Ω(n2) lower bound for arithmetic formulas computing ESymn,0.1n.

21

They also showed that any ‘layered’ Algebraic Branching Program (ABP) computing PSymn,n has
size Ω(n2). ABPs are algebraic analogues of (Boolean) branching programs and, as a model of
computation, are known to be at least as powerful as formulas. Because of the apparent diffi-
culty of proving lower bounds for general models of computation, restricted classes of circuits
like multilinear, homogeneous, and low-depth circuits have received a lot of attention in the last
few decades. We now discuss a few results for these models.

Multilinear and set-multilinear circuits. A circuit or formula is said to be multilinear if every
gate in it computes a multilinear polynomial. [RSY08] showed a lower bound of Ω(n4/3/ log2 n)
for syntactically multilinear circuits. This lower bound was improved to an Ω(n2/ log2 n) bound
in [AKV18]. Unlike the case of general circuits and formulas, a super-polynomial separation is
known between multilinear circuits and formulas. [Raz06, RY08] proved that there exists a poly-
nomial computable by polynomial-size multilinear circuits but can only be computed by multi-
linear formulas of size nΩ(log n). [DMPY12] showed a similar lower bound but for a polynomial
computable by a polynomial-size multilinear ABP.

Exponential lower bounds are known for low-depth multilinear circuits. A lower bound of
2nΩ(1/∆) for multilinear circuits of product-depth ∆ = o(log n/ log log n) computing the n× n per-
manent and determinant was shown in [RY09]. [CLS19] proved a lower bound of 2Ω(∆d1/∆) for
multilinear circuits of product-depth at most ∆ ≤ log d computing IMM2,d. A quasi-polynomial
separation between product-depth ∆ multilinear circuits and product-depth ∆ + 1 multilinear cir-
cuits was proved in [RY09] and improved to an exponential separation in [CELS18].

Notice that the lower bounds mentioned in the previous paragraph are of the form nO(1) · f (d)
where f (d) is a superpolynomial but sub-exponential function of the degree. Borrowing ter-
minology from parameterised complexity, [LST21] calls such lower bounds FPT lower bounds.
As pointed out in [LST21], it is unclear if FPT bounds can be used to prove lower bounds for
low-depth circuits. [LST21] and later [BDS22] prove a non-FPT lower bound of ndexp(−∆)

for set-
multilinear formulas of product-depth ∆ computing IMMn,d when d = O(log n). These lower
bounds are then used to prove super-polynomial lower bounds for low-depth circuits. In [TLS22],
a non-FPT lower bound of (log n)Ω(∆d1/∆) is proved for set-multilinear formulas of product-depth
∆ = O(log d) computing IMMn,d. They also prove a lower bound of (log n)Ω(log d) for any set-

multilinear circuit computing IMMn,d. Recently, [KS22] proved a lower bound of nΩ(n1/∆/∆) for
set-multilinear formulas of product-depth ∆ computing the Nisan-Wigderson design polynomial.

Homogeneous and low-depth circuits. [SS97, Raz10] proved a lower bound of Ω(∆n1+1/∆) for
depth ∆ circuits with multiple output gates. In a classic work [NW97], Nisan and Wigderson
showed that any homogeneous depth 3 circuit computing ESymn,d has size nΩ(d). A series of

papers [Kay12, GKKS14, KSS14, FLMS15, KLSS17, KS17b] resulted in an nΩ(
√

d) lower bound for
homogeneous depth 4 circuits computing the Nisan-Wigderson design polynomial and IMMn,d.

[SW01] proved a quadratic lower bound for depth 3 circuits computing elementary symmet-
ric polynomials of degree Ω(n). This was improved to an almost cubic lower bound in [KST16a]
for a polynomial in VNP. Subsequently, [BLS16, Yau16] proved similar lower bounds for polyno-
mials in VP. [GST20] obtained a lower bound of Ω̃(n2.5) for depth 4 circuits computing the Nisan-
Wigderson design polynomial. As mentioned before, in a recent breakthrough work [LST21],

Limaye, Srinivasan, and Tavenas proved a lower bound of nΩ(d1/(2∆−1)/∆) for product-depth ∆ cir-

22

cuits computing IMMn,d, d = O(log n). [BDS22] improved this to a lower bound of nΩ(d1/φ2∆
/∆)

where φ = (
√

5 + 1)/2 ≈ 1.618.

Circuits with a few parse trees. Circuits with a bounded number of parse trees have been studied
before in the non-commutative setting [LMP19,LLS19]. [LLS19] proved a lower bound of nd1/4

for
non-commutative circuits having at most 2d1/4

parse trees. This was an improvement on [LMP19],
which proved a lower bound of 2Ω(n) for non-commutative UPT circuits computing the n × n
permanent and determinant.

The UPT formulas that we study in this work are also related to regular formulas considered
in [KSS14,FLMS15]. A formula is said to be regular if it has alternating levels of addition and mul-
tiplication gates and all gates at the same level have the same fan-in. Recall that we call a formula
product-regular if the fan-ins of the addition gates in a formula are arbitrary, but the multiplica-
tion gates at the same level are restricted to having the same fan-ins. It is easy to see that UPT
formulas are a generalization of homogeneous product-regular formulas. [KSS14] obtains a lower
bound of nΩ(log n) for regular formulas computing a polynomial in VNP. [FLMS15] later obtained
a lower bound of nΩ(log d) for regular formulas computing IMMn,d.

B Full Preliminaries

In this section, we describe the algebraic models we are interested in, and the complexity measures
and polynomials used for proving lower bounds for those models. We begin by establishing
standard notations and terminology.

B.1 Notations

Basics. We will attempt to stick to the following usage of symbols: C, D for circuits; P, Q for
polynomials; i, j for indices; d for the degree of a polynomial; s for the size of a formula or a sum-
of-products decomposition; k for the order of derivatives and ` for the order of shifts; t for the
number of polynomials; m or X for monic monomials; α, τ as some real parameters; µ, κ, σ for
maps; S , T for spaces (sets) of polynomials; and P , T for binary trees.

Let a, b, c be real numbers. Then we define the sets [a..b] := {x ∈ Z : x ∈ [a, b]} and [a] :=
[1..a]. For a constant c ≥ 1 and b ≥ 0, we say a ≈c b if a ∈ [b/c, b]. We write a ≈ b if a ≈c b for
some (unspecified) constant c. All logarithms have base 2 unless specified otherwise. We define
the integer part of a as bac := max {n ∈ Z : n ≤ a}, the ceiling of a as dae := min {n ∈ Z : n ≥ a},
the fractional part of a as {a} := a−bac, the nearest integer of a by bae (i.e., if {a} ≤ 1/2, bae = bac
and otherwise bae = dae), and the absolute value of a by |a|.

The following quantity will be crucially used in the proofs of our lower bounds. Here we
think of d1, . . . , dt as degrees of certain homogeneous polynomials, d as the degree of the product
of those polynomials, and k is the order of partial derivatives used for the complexity measures.

Definition B.1 (residue). For non-negative integers d1, . . . , dt such that d :=
t

∑
i=1

di ≥ 1 and k ∈

23

[0..(d− 1)], we define

residuek(d1, . . . , dt) :=
1
2
· min

k1,...,kt∈Z

t

∑
i=1

∣∣∣∣ki −
k
d
· di

∣∣∣∣ .

The factor of half has been included in the definition just to make the statements of some of the
lemmas in our analysis simple. It is easy to show that residuek(d1, . . . , dt) is a real number (but not
necessarily an integer) that is at most k

2 . The minimum is attained when for all i ∈ [t], ki =
⌊

k
d · di

⌉
.

When we use residue in the analysis of complexity measures, we would also have the following
additional constraints that ki ≥ 0 and ki ≤ di, k1 + · · · + kn = k, where k shall be the order of
derivatives. However, imposing these constraints does not alter the value of residue by much, so
we omit them.

Sets and functions. When some sets S1, . . . , St are pair-wise disjoint, we write their union as
S1 t · · · t St. For a function µ : S → T and a subset A ⊆ S, we define the multiset µ(A) :=
{µ(x) : x ∈ A}. Clearly |µ(A)| = |A|8. We denote the power set of a set S by 2S. We say that a
function µ : S → T extends κ : A → T if A ⊆ S and for all x ∈ A, µ(x) = κ(x). Let µ : S → T
and κ : A → T be functions such that S ∩ A = ∅. Then µ t κ : S t A → T is defined by setting
(µ t κ)(x) = µ(x) for all x ∈ S and (µ t κ)(x) = κ(x) for all x ∈ A.

Binomial coefficients. For non-negative integers a, b, we shall denote the quantity (a+b−1
b) by

M(a, b). Note that M(a, b) is the number of (monic) monomials of degree b over a many variables.
The following lemma is useful when dealing with binomial coefficients.

Lemma B.2 (Approximations for M(a, b)). For positive integers a ≥ b ≥ c and d, we have

1. (a/b)b ≤ M(a, b) ≤ (6a/b)b,

2. (a/2b)c ≤ M(a,b+c)
M(a,b) ≤ (2a/b)c,

3. M(c,d)
M(b,d) ≥ (c/b)d.

Proof. 1.

M(a, b) =
(a + b− 1) · · · (a)

b!
≥ ab

bb , and

M(a, b) ≤ (a + b− 1)b(
b
e

)b (using b! ≥ (b/e)b)

≤ (2a)b ·eb

bb ≤
(

6a
b

)b

.

8For a multiset B, |B| denotes its size, i.e. the number of elements in B counted with their respective multiplicities.

24

2.

M(a, b + c)
M(a, b)

=

(
a + b + c− 1

b + c

)
· · ·
(

a + b
b + 1

)
.

The bounds follow from the fact that each of the above c many fractions lies between a
2b and

2a
b .

3.

M(c, d)
M(b, d)

=

(
c + d− 1
b + d− 1

)
· · ·
(c

b

)
.

The lower bound follows from the fact that each of the above d many fractions is at least c
b .

Polynomials, derivatives, and affine projections. Let n and n0 be positive integers. Define vari-
able sets x := {x1, . . . , xn} and z := {z1, . . . , zn0}, where x1, . . . , xn and z1, . . . , zn0 are distinct
variables. Then F[x] denotes the set of all multivariate polynomials in x-variables over the field F.
The degree of a polynomial P ∈ F[x] is denoted by deg(P).

There is a natural one-to-one correspondence between monic monomials over x and multisets
over x obtained by associating the monomial m = ∏i∈[n] xei

i with the multiset X containing ei
many copies of xi for all i ∈ [n]. For a monic monomial m, its corresponding multiset X, and
a P ∈ F[x], we define ∂mP = ∂XP ∈ F[x] to be the polynomial obtained by successively taking
partial derivatives with respect to all the elements of X (the order of elements does not matter).
For a function µ : A → x, we may simply denote ∂µ(A)P by ∂µP if the domain of µ is clear from
the context. We will use the following facts about partial derivatives.

Proposition B.3 (Sum and product rules of derivatives). Let k be a positive integer and P, Q, Q1, . . . ,
Qt ∈ F[x]. Suppose µ is a function from [k] to x. Then

1. ∂µ(P + Q) = ∂µP + ∂µQ,

2. ∂µ(Q1 · · ·Qt) = ∑κ:[t]→2[k] s.t.
ti∈[t]κ(i)=[k]

∂µ(κ(1))Q1 · · · ∂µ(κ(t))Qt.

The product rule above can be obtained by repeatedly using the fact that ∂xj(P · Q) = P ·
∂xj Q + Q · ∂xj P for appropriate polynomials P, Q and index j.

For a non-negative integer `, we define

x` := {x1
e1 · · · xn

en : e1, . . . , en ∈ Z≥0 and e1 + · · ·+ en = `} .

For a non-negative integer k and P ∈ F[x], we define

∂kP :=
{

∂mP : m ∈ xk
}

.

For P ∈ F[x], a map L : x→ 〈z〉 and S ⊆ F[x], we define πL(P) ∈ F[z] and πL(S) ⊆ F[z] as

πL(P) := P(L(x1), . . . , L(xn)) and

25

πL(S) := {πL(P) : P ∈ S} .

We now present some elementary notions regarding polynomials that are needed to formu-
late our complexity measures.

Spaces of polynomials. For S , T ⊆ F[x], we define

S · T := {P ·Q : P ∈ S and Q ∈ T } and S + T := {P + Q : P ∈ S and Q ∈ T } .

For a set of polynomials S ⊆ F[x], we define its span as 〈S〉 ⊆ F[x] to be the set of all polynomials
which can be expressed as a linear combination of some elements in S . That is,

〈S〉 := {P ∈ F[x] : ∃t ≥ 0, a1, . . . , at ∈ F, and P1, . . . , Pt ∈ S such that P = a1 · P1 + · · ·+ at · Pt} .

For a set of polynomials S ⊆ F[x], its dimension, denoted by dimS , refers to the maximum number
of linearly independent polynomials in S . It is easy to observe the following relations.

Proposition B.4. For any two sets of polynomials S , T ⊆ F[x],

1. 0 ∈ 〈S〉,

2. dim 〈S〉 ≤ |S|,

3. If S ⊆ T , then dim 〈S〉 ≤ dim 〈T 〉,

4. 〈S + T 〉 ⊆ 〈S〉+ 〈T 〉 and dim 〈S + T 〉 ≤ dim 〈S〉+ dim 〈T 〉,

5. dim 〈S · T 〉 ≤ dim 〈S〉 · dim 〈T 〉.

B.2 Complexity measures

We can now define the complexity measures for polynomials that we use to prove our lower
bounds: the shifted partials (SP) measure and the affine projections of partials (APP) measure. We
remark here that both these measures (with different parameters) have been used in the literature
prior to our work – for example, the shifted partials measure in [GKKS14, Kay12] and the affine
projections of partials in [GKS20, KNS20].

Definition B.5 (Complexity measures). For a polynomial P ∈ F[x], non-negative integers k, ` and
n0 ∈ [n], we define

• SPk,`(P) := dim
〈
x` · ∂kP

〉
,

• APPk,n0(P) := max
L:x→〈z〉

dim
〈
πL
(
∂kP

)〉
.

Both the above measures are sub-additive; this can be argued using Proposition B.4.

Proposition B.6 (Sub-additivity of the measures). For two polynomials P, Q ∈ F[x], field con-
stants c1, c2 ∈ F, and any parameters k, `, n0,

1. SPk,`(c1 · P + c2 ·Q) ≤ SPk,`(P) + SPk,`(Q),

2. APPk,n0(c1 · P + c2 ·Q) ≤ APPk,n0(P) + APPk,n0(Q).

26

Remark B.7. The lower bounds that we prove in this work can also be obtained using the skewed
partials measure (SkewP) [KNS20], which is a special case of APP. [KNS20] used the SkewP mea-
sure to prove an optimal “non-FPT”9 lower bound of nΩ(d) for multilinear depth-3 circuits com-
puting IMMn,d. However, we use the more general APP measure for several reasons: Firstly,
APP has the geometrically appealing feature that it is invariant under the application of invertible
linear transformations on the variables. Secondly, there are models for which APP gives lower
bounds but SkewP does not (see Section B.5). The third reason is that for reconstruction of circuits
using the recently proposed learning from lower bounds framework [KS19a, GKS20], APP might
give weaker non-degeneracy conditions than SkewP. Thus using APP, we might be able to learn
more circuits from a circuit class than we can learn using the SkewP measure.

Also, there is a close connection between APP and the relative rank (relrk) measure used in
[LST21]: Both of them are variants of evalDim with the added feature of ‘imbalance’. It is natural
to wonder to what extent the imbalance is required. The relrk measure works with an imbalance
between the sizes of the sets involved in a set-multilinear partition. An imbalance or skew between
the sizes of variable sets also appears in APP, albeit at a gross level: APP uses two sets – one for
taking derivatives, the other for affine projections – and there is an imbalance between the sizes of
these two sets. Drawing analogy with evalDim, one may also view these two sets as the variables
used for evaluations (y) and the remaining variables (z). It turns out that (for set-multilinear
polynomials) the “finer” imbalance used in the relrk measure implies an imbalance – at a gross
level – between y and z.10 One may naturally ask if an imbalance at a gross level, like in APP and
its precursor SkewP, is sufficient to prove lower bounds for low-depth circuits.

B.3 Algebraic circuits

In this section, we describe the relevant algebraic models of computation – homogeneous circuits
and unique-parse-tree formulas.

B.3.1 Algebraic circuits and formulas

An algebraic/arithmetic circuit C is a directed acyclic graph (DAG) whose source nodes (called input
gates) are labelled by variables (say, from a set x) or constants from an underlying field F, all other
nodes are addition (+) or multiplication (×) gates, and edges (called wires) are labeled by field
constants. Each gate g in C naturally computes a polynomial in F[x] and the polynomial computed
by the (unique) sink node (called the output gate) is said to be the polynomial computed by C. If
the underlying DAG is a directed rooted tree, the circuit is said to be a formula.

Whether C refers to a circuit or the polynomial computed by it is understood from the con-
text. For example, size(C) refers to the number of gates in the circuit C, whereas deg(C) refers to
the degree of the polynomial computed by C. The depth of a circuit is the maximum number of
addition and multiplication gates in any path in the underlying DAG, and the product-depth is the
maximum number of multiplication gates in any path.

Sub-circuits and substitutions. For a gate g in a circuit C, the circuit between11 the input gates and

9Borrowing terminology from [LST21].
10[LST21] talks about the (relative) rank of the partial derivatives matrix. The rank of this matrix is evalDim with

respect to an appropriate set y.
11i.e., the sub-graph of C induced by the nodes that lie on any directed path from a source node to g.

27

g is called the sub-circuit at g and is denoted by Cg. We will denote by Cg←y the circuit obtained
by replacing g with y. A sub-circuit of a formula is called a sub-formula.

A circuit of ‘low-depth’ can be converted to a formula of the same depth without much blow-
up in size. Thus, lower bounds against low-depth formulas also give lower bounds against low-
depth circuits. In fact, it is shown in [LST21] that to prove lower bounds against low-depth formu-
las computing ‘low’ degree polynomials, it suffices to prove lower bounds against low-depth ho-
mogeneous formulas (provided the characteristic of the underlying field is large enough). In [LST21],
the authors prove lower bounds for low-depth set-multilinear formulas which are even restrictive
models. We now define these models. Unlike [LST21], we show lower bounds on homogeneous
formulas directly without converting them to set-multilinear formulas.

B.3.2 Homogeneous circuits

A polynomial P is said to be homogeneous if all its monomials (if any) have the same degree i.e., all
its monomials have the same number of variables, counted with repetition. We consider the zero
polynomial to be homogeneous. A circuit C is said to be homogeneous if each gate g in C computes
a homogeneous polynomial. A homogeneous formula is defined analogously. Furthermore, we
may assume without loss of generality that all the input gates in a homogeneous circuit or formula
are labeled by variables.

If there exists a partition of variables as x = x1 t · · · t xd such that all the monomials in
a polynomial P ∈ F[x] have exactly one variable from each of the variable sets, then P is said
to be set-multilinear with respect to the partition {x1, . . . , xd}. We shall denote the set of all set-
multilinear polynomials over {x1, . . . , xd} by Fsm[x1, . . . , xd]. A circuit is said to be set-multilinear
(with respect to {x1, . . . , xd}) if each gate in it computes a set-multilinear polynomial with respect
to a subset of {x1, . . . , xd}. Observe that a set-multilinear circuit is also a homogeneous circuit.

An arithmetic circuit of size s computing a homogeneous polynomial of degree d can be
converted into a homogeneous circuit of size poly(s, d) computing the same polynomial [Str73b].
An arithmetic formula computing a homogeneous polynomial can also be homogenized; however,
the size of the resulting homogeneous formula is dO(d)poly(s) [Raz13]. Notice that when d =
O(log s/ log log s) the homogeneous formula has size poly(s). Unfortunately, the homogenization
process in [Raz13] does not preserve the depth of the formula. It can convert a formula of even
constant depth to a homogeneous formula of depth as large as O(log s). Recently [LST21] showed
that a product-depth ∆ formula of size s computing a homogeneous, degree d polynomial over a
field of characteristic 0 or more than d can be converted into an equivalent homogeneous formula
of product-depth 2∆ and size 2O(

√
d)poly(s).

Irrespective of the above-mentioned homogenisation results, homogeneous circuits and for-
mulas are a natural model of computation, and also many polynomials for which lower bounds
are known are homogeneous. Thus, in this article, we focus on homogeneous circuits and formu-
las. Further, we work in the regime of ‘low’ depth circuits and formulas computing ‘low’ degree
polynomials. Since a depth ∆ circuit of size s can be converted into an equivalent formula of size
sO(∆), we shall work with homogeneous formulas (as opposed to homogeneous circuits) for the
remainder of the article.

28

B.3.3 Unique-parse-tree (UPT) formulas

Next, we formalize certain notions about rooted trees and define a subclass of homogeneous for-
mulas which we call UPT formulas12. For this, we define parse trees of a homogeneous formula;
they capture the structure of multiplication gates in the formula.

Definition B.8 (Parse trees of a homogeneous formula). Given a homogeneous formula C com-
puting a degree-d polynomial, we obtain a parse tree P of C as follows: Let C̃ be the formula
obtained by arbitrarily removing all but one sub-formula feeding into each addition gate. View-
ing C̃ as a rooted directed tree (with edges directed away from the root) with internal nodes being
multiplication gates, leaves being variables, and ignoring the addition gates (by bypassing them)
as well as the field constants labelling the edges, we get a parse tree P . We also discard the la-
belling of all the (multiplication) gates and the input gates in P .

Clearly, there are only a finite number of parse trees corresponding to a given formula C and
they all have exactly d many leaves13 as C is homogeneous. For an empty formula (i.e., 0), the
empty tree is a parse tree. Substituting some variables to 0 does not affect UPT-ness of a formula
(the same way as it does not affect homogeneity).

Definition B.9 (UPT formula). A homogeneous formula C is said to be a unique-parse-tree (UPT)
formula if all of its parse trees are isomorphic to each other as directed graphs.

It is easy to observe that any sub-formula of a UPT formula is also a UPT formula. Moreover,
without increasing the size by much, any UPT formula can be converted into a UPT formula in
which all the multiplication gates have fain-in exactly 2 – in other words, all the parse trees are
binary trees. Henceforth, we will work with this additional structure for UPT formulas.

Formulas with a bounded number of parse trees have been studied before [LLS19] in the non-
commutative setting. [LLS19] proved an exponential lower bound for non-commutative circuits
having at most exponentially many parse trees. While the lower bound that we prove in this work
is only against formulas containing one parse tree, it is in the much more powerful commutative
setting. UPT formulas are also related to regular formulas considered in [KSS14]. A formula is
said to be regular if it has alternating levels of addition and multiplication gates, and all gates
at the same level have the same fan-in. It is easy to see that UPT formulas capture homogeneous
formulas wherein the addition gates at the same level can have different fan-ins, and only the mul-
tiplication gates at the same level are restricted to having the same fan-ins. Hence UPT formulas
are a generalisation of homogeneous regular formulas.

Figure 1 gives an example of a UPT formula and two of its parse trees, which can be seen to
be isomorphic to each other.

Binary trees, isomorphism, and canonical trees. Unless stated otherwise, every binary tree T
which we consider in this article will be a rooted, directed (away from the root) binary tree in
which all the internal nodes have a left child and a right child. For a node v of T , Tv denotes the
subtree rooted at v and leaves(v) denotes the number of leaves in Tv.

A binary tree T is said to be right-heavy if for all internal nodes v with left child vL and right
child vR, we have leaves(vL) ≤ leaves(vR). Two binary trees T and T̃ are said to be equal or

12Our definition for UPT formulas is more general than the model considered in a recent paper by Limaye, Srinivasan
and Tavenas [LST22] as we do not impose set-multilinearity.

13unless C computes the 0 polynomial

29

+

×

×

x3 x4

x2

×

+

x1 x2

×

x5 x3

×

x3 +

×

x5 x3

×

+

x6 x4

+

x1

(a) A UPT formula C – the dark edges produce a parse tree P1

(b) Two (isomorphic) parse trees of C: P1 and P2 (c) The canonical parse tree T (C)

Figure 1: A UPT formula, its parse trees and canonical parse tree

30

identical if there is a bijection between their nodes preserving the (parent, left-child) and (parent,
right-child) relations. They are said to be isomorphic if there exists a bijection preserving the (parent,
child) relations.

For any given binary tree T , we define its canonical tree can(T) using the function in Al-
gorithm 1. For every node v in T , that function swaps the subtrees rooted at its left and right
children if the former has more leaves than the latter. The only properties of that function we need
are mentioned in the following proposition. These properties can be verified to be true for the
parse trees of the formula in Figure 1.

Algorithm 1 Canonical tree of a binary tree

1. function can(T)
2. if T is an empty tree then return T .
3. end if
4. v← root node of T .

/* If v has no left (or right) child, vL (resp. vR) defined below is treated as an empty node and
the corresponding subtree is considered empty. */

5. vL ← left child of v.
6. vR ← right child of v.

/* Recursively “canonizing” the left and right subtrees. */
7. TvL ← can(TvL).
8. TvR ← can(TvR).

/* encoding is any fixed 1-1 map from binary trees to positive integers. */
9. if leaves(vL) > leaves(vR) or (leaves(vL) = leaves(vR) and encoding(TvL) >

encoding(TvR)) then
/* The left and right subtrees at the root are swapped. */

10. swap(TvL , TvR).
11. end if
12. return T
13. end function

Proposition B.10 (Isomorphism means same canonical tree). For any binary trees T and T̃ ,

1. can(T) is right-heavy and is isomorphic to T .

2. T and T̃ are isomorphic if and only if can(T) = can(T̃). Hence, can(can(T)) = can(T).

3. Let φ denote an isomorphism between T and can(T). Then for a node v in T , can(Tv) =
can(T)φ(v).

Proof. The lemma is trivially true for empty trees, so we will assume that T has at least one leaf.

1. In Algorithm 1, we swap the left and right subtrees of a node when the left-subtree has more
leaves than the right-subtree and do not swap if the right-subtree has more nodes than the
left-subtree. Because of this, it follows from a simple inductive argument that can(T) is
right-heavy and is isomorphic to T .

31

2. Suppose can(T) = can(T̃). Using Item 1, we get that T and T̃ are isomorphic as both
of them are isomorphic to can(T). Conversely, suppose that T is isomorphic to T̃ via a
bijection φ. We shall use induction on the number of leaves of T and T̃ ; if both of them
have just one leaf, then we trivially have that can(T) = can(T̃). Denoting the left and
right children of the root v of T by vL and vR, we get that TvL and T̃φ(vL) are isomorphic
under φ and so are TvR and T̃φ(vR). As these trees have fewer leaves than T and T̃ , we have
can(TvL) = can(T̃φ(vL)) and can(TvR) = can(T̃φ(vR)) by induction. Hence, after line 10 in the
execution of Algorithm 1 on inputs T and T̃ , either can(TvL) and can(T̃φ(vL)) are both the
left child of v and φ(v) respectively, or both are the right child. The same is true for can(TvR)

and can(T̃φ(vR)). Thus can(T) = can(T̃).

3. Note that φ also induces an isomorphism from Tv to can(T)φ(v). Hence from Item 2, can(Tv) =
can(can(T)φ(v)). By our design of the function can(), note that all subtrees of a canonical
tree are themselves canonical trees i.e., there exists a binary tree T ′ such that can(T ′) =
can(T)φ(v). Thus, can(Tv) = can(can(T)φ(v)) = can(can(T ′)) = can(T ′) = can(T)φ(v).

Definition B.11 (Canonical parse tree). For a UPT formula C, we define its canonical parse tree
as T (C) := can(P), where P is an arbitrary parse tree of C. The canonical parse tree is a binary
tree and is well-defined as all parse trees of a UPT formula are isomorphic.

B.4 Polynomial families

The polynomials for which we prove the formula lower bounds are the Iterated Matrix Multipli-
cation (IMM) polynomial and the Nisan-Wigderson design polynomial (NW).

Iterated Matrix Multiplication. The iterated matrix multiplication, IMMn,d is a polynomial in
N = d·n2 variables defined as the (1, 1)-th entry of the matrix product of d many n× n matrices
such that the variables in each matrix and across different matrices are all distinct.

To prove a lower bound for IMM, we analyze the shifted partials (and APP) for a different,
but related polynomial Pw that was introduced in [LST21]. This polynomial is parameterized by a
word w = (w1, . . . , wd), a sequence of integers. It was shown in Lemma 22 of [LST21] that Pw is a
projection of IMM. Thus a lower bound for formulas computing Pw also gives a lower bound for
formulas computing IMM. Both these polynomials can be seen to be homogeneous (in fact, they
are set-multilinear), so they can indeed be computed by homogeneous as well as UPT formulas.

Definition B.12 (Word polynomial Pw [LST21]). Given a word w = (w1, . . . , wd) ∈ Zd, let x(w) be
a tuple of d pairwise disjoint sets of variables (x1(w), . . . , xd(w)) with |xi(w)| = 2|wi | for all i ∈ [d].
We call a variable set xi(w) negative if wi < 0 and positive otherwise. As the set sizes are powers
of 2, we can map the variables in a set xi(w) to boolean strings of length |wi|. Let σ : x → {0, 1}∗
be such a mapping.14 We extend the definition of σ from variables to set-multilinear monomials
as follows.

Let X = x1 · · · xr be a set-multilinear monomial where xi ∈ xφ(i)(w) and φ : [r] → [d] be
an increasing function – in other words, the variables in X are ordered based on the index of

14Note that σ may map a variable from xi(w) and a variable from xj(w) to the same string if i 6= j.

32

the corresponding variable sets. Then, we define a boolean string σ(X) := σ(x1) ◦ · · · ◦ σ(xr),
where ◦ denotes the concatenation of bits. LetM+(w) andM−(w) denote the set of all (monic)
set-multilinear monomials over all the positive sets and all the negative sets, respectively. For
two Boolean strings a, b, we say a ∼ b if a is a prefix of b or vice versa. The word polynomial
Pw ∈ Fsm[x(w)] for a word w is defined as

Pw := ∑
m+∈M+(w), m−∈M−(w)

σ(m+) ∼ σ(m−)

m+ ·m−.

Notice that if ∑wi≥0 |wi| ≤ ∑wi<0 |wi|, then for any m+ ∈ M+ and m− ∈ M−, σ(m+) will be
a prefix of σ(m−) and if ∑i∈[d]:wi≥0 |wi| > ∑i∈[d]:wi<0 |wi|, then for any m+ ∈ M+ and m− ∈ M−,
σ(m−) will be a prefix of σ(m+). We will make use of the following lemma from [LST21] which
shows that IMM is at least as hard as Pw. For this, we recall the notion of unbiased-ness of w =
(w1, . . . , wd) from [LST21] – we say that w is h-unbiased if maxi∈[d] |w1 + · · ·+ wi| ≤ h.

Lemma B.13 (Lemma 7 in [LST21]). Let w ∈ [−h..h]d be h-unbiased. If for some n ≥ 2h, IMMn,d
has a formula C of product-depth ∆ and size s, then Pw has a formula C′ of product-depth at most
∆ and size at most s.

Moreover, if C is homogeneous, then so is C′ and if C is UPT, then so is C′ with the same
canonical parse tree, i.e., T (C′) = T (C).15

Nisan-Wigderson design polynomial. For a prime power q and d ∈N, let x = {x1,1, . . . , x1,q,
. . . , xd,1, . . . , xd,q}. For any k ∈ [d], the Nisan-Wigderson design polynomial on qd variables, de-
noted by NWq,d,k or simply NW, is defined as follows:

NWq,d,k = ∑
h(z)∈Fq[z]:
deg(h)<k

∏
i∈[d]

xi,h(i).

The IMM and the NW polynomials, and their variants, have been extensively used to prove
various circuit lower bounds [NW97,KSS14,KLSS17,KS17b,KS16,KST16a,KST16b,FKS16,CLS19,
KS19b, GST20, LST21, KS22].

B.5 APP vs skewed partials

In this section, we show that there are some lower bounds that can be proved using APP but not
with the skewed partials measure (SkewP). Consider circuits of the form C = Qe1

1 + · · · + Qes
s ,

where Q1, . . . , Qs are arbitrary polynomials of degree at most d ≤ n
2e . How large an s do we need

for C to compute the monomial P := x1 · · · xn? [Kay12] introduced the SP measure to show that
s = 2Ω(n

d). Here, we prove the same using the APP measure. However, this lower bound cannot
be proved using SkewP. Let F be a field of size greater than n. 16

15Although the lemma in [LST21] is stated for set-multilinear circuits, it also applies to homogeneous formulas and
UPT formulas (albeit with a mild blow-up in size) by the same argument.

16This restriction on F is not required. If |F| < n, we take any extension K of size more than n, consider C and P over
K, and prove the lower bound on s. Observe that the bound will continue to hold over F.

33

Analysing SkewP(P). The SkewP measure is defined in [KNS20]. If x = y] z, then

SkewPy,k(P) := dim

〈[
∂P
∂m

]
y=0

: m is a monomial of degree k in y

〉
.

Observe that SkewPy,k(P) ≤ 1 for all y ⊆ x and k. Hence, we cannot hope to get a lower bound on
s using skewed partials.

Analysing APP of C and P. Let k =
⌊ n

2ed

⌋
and n0 = k + 1. We begin by proving an upper bound

on APPn0,k(C).

Claim B.14. APPn0,k(C) ≤ s · (n0+dk−k
n0

).

Proof. Observe that for all i ∈ [s],

∂k (Qei
i

)
⊆
{

x≤d(k−1)Qmax{ei−k,0}
i

}
.17

Thus, APPk,n0

(
Qei

i

)
≤ (n0+dk−k

n0
). The claim follows from the sub-additivity of APP.

We now compute APPk,n0(P).

Claim B.15. APPk,n0(P) = (n
k).

Proof. Fix distinct α1, . . . , αn ∈ F and let z = {z1, . . . , zn0} be a fresh set of variables. Let L map xi

to `i(z) := z1 + αi · z2 + α2
i · z3 + · · ·+ αn0−1

i zn0 for all i ∈ [n]. Observe that any n0 = k + 1 many
linear forms in {`1, . . . , `n} are linearly independent. Now,

∂k(P) =

{
∏
i∈S

xi : S ⊆ [n], |S| = n− k

}
.

We now argue that the polynomials of the set πL
(
∂k(P)

)
= {πL(∏i∈S xi) : S ⊆ [n], |S| = n− k} =

{∏i∈S `i : S ⊆ [n], |S| = n− k} are linearly independent; this would prove the claim.
Consider any F-linear combination

∑
|S|=n−k

βS ·∏
i∈S

`i = 0

and fix an arbitrary S′ of size n− k. Observe that for every S 6= S′, at least one of the linear forms{
`j : j /∈ S′

}
divides ∏i∈S `i. Thus, if I is the ideal generated by

{
`j : j /∈ S′

}
, then

βS′ ∏
i∈S′

`i = 0 mod I.

Since I is an ideal generated by linear forms, F[z]/I is a polynomial ring. This implies that βS′ = 0
or ∏i∈S′ `i = 0 mod I. The latter is not true: It implies that there exists an i ∈ S′ such that
`i = 0 mod I, i.e., `i is an F-linear combination of

{
`j : j /∈ S′

}
. However, as |[n] \ S′| = k, this

contradicts the fact that every k + 1 linear forms in {`1, . . . , `n} are linearly independent. Thus,
βS′ = 0. Repeating this argument for all S′ ⊂ [n] such that |S′| = n− k, we get that the elements
of {∏i∈S `i : S ⊆ [n], |S| = n− k} are linearly independent.

17Here x≤d(k−1) denotes the set of all monomials of degree at most d(k− 1).

34

From the above two claims, and using k =
⌊ n

2ed

⌋
, n0 = k + 1, we get,

s ≥
(n

k)

(n0+dk−k
n0

)
≥

(n
k

)k(
e(n0+kd−k))

n0

)n0
≥

(n
k

)k(
e(kd+1)

k+1

)k+1

≥
(n

k

)k

nO(1)
(

n/2
n/2ed

)k ≥
1

nO(1)

(n
ked

)k
≥ 2k

nO(1)
≥ 2Ω(n

d).

C Proofs from Section 3

C.1 Proof of Lemma 3.1

We first give some intuition about the proof. Let m be any multilinear monomial (i.e., no variable
appears more than once) of degree k, and X be the corresponding set of variables. Then, by the
product rule ∂X(Q1 · · ·Qt) can be expressed as the sum

∑
(X1,...,Xt):

X1t···tXt=X

∂X1 Q1 · · · ∂Xt Qt. (1)

Note that since the sizes of Xi’s should sum to k and the degrees of Qi’s should sum to d in
each term of the above summation, some factors are differentiated ‘a lot’ while the others are
differentiated only ‘a little’. More specifically, if |Xi| > k

d ·di, we use the fact that ∂Xi Qi ∈
〈

xdi−|Xi |
〉

and otherwise we use ∂Xi Qi ∈
〈

∂|Xi |Qi

〉
to conclude that

∂X1 Q1 · · · ∂Xt Qt ∈
〈

x∑i∈S `0,i ·∏
i∈S

∂k0,i Qi

〉
,

where S :=
{

i ∈ [t] : |Xi| ≤ k
d ·di

}
, S = [t] \ S, `0,i = di − |Xi| for all i ∈ S, and k0,i = |Xi| for all

i ∈ S. By the nature of our construction, we can show that k0 +
k

d−k ·`0 ≤ k− residuek(d1, . . . , dt),
where k0 := ∑i∈S k0,i and `0 := ∑i∈S `0,i (see the calculations at the end of the proof). Now suppose
it holds that ∏i∈S ∂k0,i Qi = ∂k0 ∏i∈S Qi. In such a case, we would get the space required in the
R.H.S. of the lemma statement, and we would be done. However, this assumption need not be
true if |S| ≥ 1. To get around this issue, we employ an inductive argument on the size of S (see
Claim C.2). For this argument, it will be helpful to combine certain terms in the sum (1) depending
on the set of factors that are differentiated a ‘lot’ (see Claim C.1). We now present the proof in full
detail. Since, in general, the variables in m need not be distinct, it will be convenient to think of
degree k monomials over x as maps from [k] to x.

For a function µ : P → x and any P′ ⊆ P, recall that µ(P′) refers to the multiset of images of
the elements of P′ under µ. Thus |µ(P′)| = |P′|. Let V be the set of polynomials on the R.H.S., i.e.,

V := ∑
S⊆[t], k0+

k
d−k ·`0

≤ k−residuek(d1,...,dt)

〈
x`0 · ∂k0

(
∏
i∈S

Qi

)〉
.

35

We now argue that for an arbitrary total function µ : [k]→ x, ∂µ([k])

(
∏

i∈[t]
Qi

)
∈ V ; the lemma then

follows immediately. We use the following identity which is a direct consequence of the product
rule for derivatives (Proposition B.3):

∂µ([k])

(
∏
i∈[t]

Qi

)
= ∑

κ:[t]→2[k] s.t.
ti∈[t]κi=[k]

∏
i∈[t]

∂µ(κi)Qi.

In fact, the product rule yields something general: for any P ⊆ [k], function µ : P→ x, and S ⊆ [t],

∂µ(P)

(
∏
i∈S

Qi

)
= ∑

κ:S→2P s.t.
ti∈Sκi=P

∏
i∈S

∂µ(κi)Qi. (2)

In the above identities we have used κi as a shorthand for κ(i); we shall also do so for the rest of
this section.

For an arbitrary S ⊆ [t], recall that we denote S = [t] \ S. Let κ̃ : S → 2[k] be such that
|κ̃i| > k

d ·di for all i ∈ S. Then we define a polynomial RS,κ̃ as

RS,κ̃ := ∑
κ:[t]→2[k] s.t.

κ extends κ̃
ti∈[t]κi=[k]
∀i∈S, |κi |≤ k

d ·di

∏
i∈[t]

∂µ(κi)Qi. (3)

The idea is to express any k-th order partial derivative of the product Q1 · · ·Qt in terms of RS,κ̃.
Indeed we have the following claim; its proof (which uses the product rule for derivatives) can be
found in Section C.1.1.

Claim C.1.

∂µ([k])

(
∏
i∈[t]

Qi

)
= ∑

S⊆[t]
∑

κ̃:S→2[k] s.t.
∀i∈S,|κ̃i |> k

d ·di

RS,κ̃.

Hence, to show that ∂µ([k]) (Q1 · · ·Qt) ∈ V , it suffices to argue that the polynomials RS,κ̃ are in V .
We show this by induction on the size of S. In the base case of |S| = 0, there does not exist any
function κ : [t] → 2[k] that extends κ̃ such that

{
i ∈ [t] : |κi| ≤ k

d · di

}
= S and ti∈[t]κi = [k]. This

is so because |κi| = |κ̃i| > k
d · di for all i ∈ [t] implies that ∑

i∈[t]
|κi| > ∑

i∈[t]

k
d · di = k, and hence

ti∈[t]κi 6= [k]. So by definition, RS,κ̃ = 0 ∈ V .
Suppose that RT,κ′ ∈ V for all T ⊆ [n] such that |T| < |S|. Let κ̃ : S → 2[k] be any function

such that |κ̃i| > k
d ·di for all i ∈ S, and let κ : [t]→ 2[k] be a function that extends κ̃ such that

ti∈[t]κi = [k] and
{

i ∈ [t] : |κi| ≤
k
d
· di

}
= S. (4)

36

Denoting ti∈Sκi by PS and ti∈Sκi by PS,

∂µ(ti∈Sκi) ∏
i∈S

Qi = ∂µ(PS) ∏
i∈S

Qi

= ∑
κ′ :S→2PS s.t.
ti∈Sκ′i=PS

∏
i∈S

∂µ(κ′i)
Qi. (from Equation (2))

For US,κ ∈ F[x] defined as US,κ :=
(

∂µ(PS) ∏
i∈S

Qi

)
· ∏

i∈S
∂µ(κi)Qi, we have the following claim. It is

proved in Section C.1.2.

Claim C.2.

RS,κ̃ = US,κ − ∑
T(S and κ′′ :S\T→2PS s.t.
∀i∈S\T,|κ′′i |>

k
d ·di

RT,κ′′tκ̃.

When T (S, by the induction hypothesis, all the terms RT,κ′′tκ̃ in the above expression are in V .
Therefore, to conclude that RS,κ̃ ∈ V , it suffices to show that US,κ ∈ V . From its definition, note

that US,κ ∈
〈

∂k0

(
∏
i∈S

Qi

)
· x`0

〉
where k0 := |µ(PS)| = |PS| = ∑

i∈S
|κi| and `0 := ∑

i∈S
deg(∂µ(κi)Qi) =

∑
i∈S

(di − |κi|). Also,

k− k0 −
k

d− k
· `0 = k−∑

i∈S
|κi| −

k
d− k

·∑
i∈S

(di − |κi|)

= ∑
i∈S

|κi| −
k

d− k
·∑

i∈S

(di − |κi|) (as from (4), κ1, . . . , κt form a partition of [k])

= ∑
i∈S

|κi| −
k

d− k
· (di − |κi|)

= ∑
i∈S

d
d− k

·
(
|κi| −

k
d
· di

)
≥ ∑

i∈S

|κi| −
k
d

.di (using d ≥ d− k and |κi| > k
d · di iff i ∈ S)

=
1
2

(
∑
i∈S

|κi| −
k
d
· di

)
+

1
2

(
∑
i∈S
|κi| −

k
d
· di

)

+
1
2

(
∑
i∈S

|κi| −
k
d
· di

)
− 1

2

(
∑
i∈S
|κi| −

k
d
· di

)

=
1
2

(
∑

i∈[t]
|κi| −

k
d
· di

)
+

1
2

(
∑
i∈S

|κi| −
k
d
· di

)
− 1

2

(
∑
i∈S
|κi| −

k
d
· di

)

37

=
1
2

(
k− k

d
· d
)
+

1
2

(
∑
i∈S

|κi| −
k
d
· di

)
− 1

2

(
∑
i∈S
|κi| −

k
d
· di

)
(since |κi|’s sum to k and di’s sum to d)

=
1
2
· ∑

i∈[t]

∣∣∣∣|κi| −
k
d
· di

∣∣∣∣ (from (4))

≥ residuek(d1, . . . , dt). (from definition of residue)

Hence, US,κ ∈
〈

x`0 · ∂k0

(
∏
i∈S

Qi

)〉
⊆ V as k0 +

k
d−k · `0 ≤ k− residuek(d1, . . . , dt).

C.1.1 Proof of Claim C.1

∂µ([k])

(
∏
i∈[t]

Qi

)
= ∑

κ:[t]→2[k] s.t.
ti∈[t]κi=[k]

∏
i∈[t]

∂µ(κi)Qi

= ∑
S⊆[t]

∑
κ:[t]→2[k] s.t.
ti∈[t]κi=[k]

{i∈[t]:|κi |≤ k
d .di}=S

∏
i∈[t]

∂µ(κi)Qi

= ∑
S⊆[t]

∑
κ̃:S→2[k] s.t.
∀i∈S,|κ̃i |> k

d .di

∑
κ′ :S→2[k] s.t.

κ=κ′tκ̃
ti∈[t]κi=[k]
∀i∈S,|κ′i |≤

k
d .di

∏
i∈[t]

∂µ(κi)Qi

= ∑
S⊆[t]

∑
κ̃:S→2[k] s.t.
∀i∈S,|κ̃i |> k

d .di

∑
κ:[t]→2[k] s.t.

κ extends κ̃
ti∈[t]κi=[k]
∀i∈S,|κi |≤ k

d .di

∏
i∈[t]

∂µ(κi)Qi

= ∑
S⊆[t]

∑
κ̃:S→2[k] s.t.
∀i∈S,|κ̃i |> k

d .di

RS,κ̃. (by the definition of RS,κ̃ in (3))

C.1.2 Proof of Claim C.2

US,κ =

(
∂µ(PS) ∏

i∈S
Qi

)
·∏

i∈S

∂µ(κi)Qi

= ∑
κ′ :S→2PS s.t.
ti∈Sκ′i=PS

∏
i∈S

∂µ(κ′i)
Qi ·∏

i∈S

∂µ(κi)Qi

= ∑
T⊆S

∑
κ′ :S→2PS s.t.
ti∈Sκ′ i=PS

{i∈S:|κ′i |≤
k
d .di}=T

∏
i∈S

∂µ(κ′ i)Qi ·∏
i∈S

∂µ(κi)Qi (reordering the summation based on T)

38

= ∑
T⊆S

∑
κ′′ :S\T→2PS and κ′′′ :T→2PS s.t.

κ′=κ′′tκ′′′
ti∈Sκ′ i=PS

∀i∈S\T,|κ′′i |>
k
d ·di

∀i∈T,|κ′′′i |≤
k
d ·di

∏
i∈S

∂µ(κ′i)
Qi ·∏

i∈S

∂µ(κi)Qi

= ∑
T⊆S

∑
κ′′ :S\T→2PS s.t.
∀i∈S\T,|κ′′i |>

k
d ·di

∑
κ′′′ :T→2PS s.t.
κ∗=κ′′tκ′′′tκ̃
∀i∈T,|κ∗i |≤

k
d ·di

ti∈Tκ′′′i tti∈S\Tκ′′i =PS

∏
i∈[t]

∂µ(κ∗i)
Qi

(as κ∗ extends κ′ = κ′′ t κ′′′ and κ extends κ̃)

= ∑
T⊆S

∑
κ′′ :S\T→2PS s.t.
∀i∈S\T,|κ′′i |>

k
d ·di

∑
κ∗ :[t]→2[k] s.t.
κ∗=κ′′tκ′′′tκ̃
∀i∈T,|κ∗i |≤

k
d ·di

ti∈[t]κ
∗
i =[k]

∏
i∈[t]

∂µ(κ∗i)
Qi

(because ti∈[t]κ
∗
i =

(
ti∈S\Tκ′′i t ti∈Tκ′′′i

)
t ti∈Sκ̃i = PS t ti∈Sκi = ti∈[t]κi = [k] from (4))

= ∑
T⊆S

∑
κ′′ :S\T→2PS s.t.
∀i∈S\T,|κ′′i |>

k
d ·di

RT,κ′′tκ̃

(RT,κ′′tκ̃ is well-defined because κ∗ extends κ′′ t κ̃ and (4))

= RS,κ̃ + ∑
T(S and κ′′ :S\T→2PS s.t.
∀i∈S\T,|κ′′i |>

k
d .di

RT,κ′′tκ̃. (separating out the case T = S)

C.2 Proof of Lemma 3.2

We will first upper bound the shifted partials measure. From Lemma 3.1, we know that

〈
∂k (Q1 · · ·Qt)

〉
⊆ ∑

S⊆[t]; k0,`0≥0
k0+

k
d−k ·`0≤k−residuek(d1,...,dt)

〈
x`0 · ∂k0

(
∏
i∈S

Qi

)〉
.

Hence,

〈
x` · ∂k (Q1 · · ·Qt)

〉
⊆ ∑

S⊆[t]; k0,`0≥0
k0+

k
d−k ·`0≤k−residuek(d1,...,dt)

〈
x`0+` · ∂k0

(
∏
i∈S

Qi

)〉
. (5)

39

For a fixed S ⊆ [t] and k0, `0, since
〈

x`0+` · ∂k0

(
∏
i∈S

Qi

)〉
⊆
〈
x`0+`

〉
·
〈

∂k0 ·
(

∏
i∈S

Qi

)〉
, and

dim
〈
x`0+`

〉
≤
∣∣x`0+`

∣∣ = M(n, `0 + `) and dim
〈

∂k0

(
∏
i∈S

Qi

)〉
≤
∣∣∣∣∂k0

(
∏
i∈S

Qi

)∣∣∣∣ ≤ ∣∣xk0
∣∣ = M(n, k0),

we have,

dim

〈
x`0+` · ∂k0

(
∏
i∈S

Qi

)〉
≤ dim

〈
x`0+`

〉
· dim

〈
∂k0

(
∏
i∈S

Qi

)〉
≤ M(n, `0 + `) ·M(n, k0).

Adding up the above upper bound over all the 2t ·d2 possible combinations of S ⊆ [t], k0 ∈
[0..k], and `0 ∈ [0..(d− k)] in (5), we get,

SPk,`(Q) = dim
〈

x` · ∂k (Q1 · · ·Qt)
〉
≤ 2t · d2 · max

k0,`0≥0
k0+

k
d−k ·`0≤k−residuek(d1,...,dt)

M(n, k0) ·M(n, `0 + `).

The details for an upper bound on APP are similar.

APPk,n0(Q) = max
L:x→〈z〉

dim
〈

πL

(
∂k(Q1 · · ·Qt)

)〉

≤ max
L:x→〈z〉

dim

〈
πL

 ∑
S⊆[t]; k0,`0≥0

k0+
k

d−k ·`0≤k−residuek(d1,...,dt)

〈
x`0 · ∂k0

(
∏
i∈S

Qi

)〉
〉

(from Lemma 3.1)

≤ max
L:x→〈z〉

dim

〈
∑

S⊆[t]; k0,`0≥0
k0+

k
d−k ·`0≤k−residuek(d1,...,dt)

〈
πL

(
x`0 · ∂k0

(
∏
i∈S

Qi

))〉〉

(as πL distributes over addition)

≤ max
L:x→〈z〉

∑
S⊆[t]; k0,`0≥0

k0+
k

d−k ·`0≤k−residuek(d1,...,dt)

dim

〈
πL

(
x`0
)
· πL

(
∂k0

(
∏
i∈S

Qi

))〉

(using Proposition B.4 (Item 4) and πL distributes over multiplication)

≤ max
L:x→〈z〉

∑
S⊆[t]; k0,`0≥0

k0+
k

d−k ·`0≤k−residuek(d1,...,dt)

dim
〈

πL

(
x`0
)〉
· dim

〈
πL

(
∂k0

(
∏
i∈S

Qi

))〉

(from Proposition B.4 (Item 5))

≤ max
L:x→〈z〉

∑
S⊆[t]; k0,`0≥0

k0+
k

d−k ·`0≤k−residuek(d1,...,dt)

∣∣∣πL

(
x`0
)∣∣∣ · ∣∣∣∣∣πL

(
∂k0

(
∏
i∈S

Qi

))∣∣∣∣∣
≤ max

L:x→〈z〉
∑

S⊆[t]; k0,`0≥0
k0+

k
d−k ·`0≤k−residuek(d1,...,dt)

∣∣∣z`0

∣∣∣ · ∣∣∣∣∣πL

(
∂k0

(
∏
i∈S

Qi

))∣∣∣∣∣
(as L is a map from x to 〈z〉, πL(m) ∈ z`0 for any monomial m over x of degree `0)

40

≤ 2t ·d2· max
k0,`0≥0

k0+
k

d−k ·`0≤k−residuek(d1,...,dt)

M(n0, `0)·M(n, k0).

D Proofs from Section 4

D.1 Proof of Lemma 4.1

The decomposition is constructed inductively – at addition gates, we simply add the decompo-
sitions of the smaller sub-formulas, whereas the multiplication gates need to be handled more
carefully. Consider a multiplication gate Q1 × · · · ×Qt. If all the factors (Qi’s) have ‘low’ degrees,
we use this expression directly to construct the decomposition. Otherwise, we go deeper into a
factor which has a ‘large’ degree, but do not expand the other factors. The thresholds to decide
whether a factor is of ‘low’ degree may appear arbitrary (and are indeed so) for this lemma, but
we fix them to be d21−δ

for δ ∈ [2..∆] as these give us the desired lower bounds.
Without loss of generality, we may assume that C has alternate layers of addition and multi-

plication gates. Further, we can assume that the degrees of the polynomials computed by all the
multiplication gates that feed into an addition gate are the same as the degree of the polynomial
computed by that addition gate. This is so because disconnecting all the multiplication gates that
compute polynomials of other degrees does not affect the polynomial computed by the addition
gate. Also, for brevity, we will ignore the edge weights in C, i.e., we assume that all the field con-
stants on the edges are equal to 1. As scaling with constant factors does not affect the homogeneity
of polynomials, this is a valid assumption. Let

C =
u

∑
i=1

Ci , and for i ∈ [u], Ci =
ui

∏
j=1

Ci,j,

where u and {ui}i are integers and
{

Ci,j
}

i,j are (homogeneous) sub-formulas of C of product-depth
∆− 1. The proof of this lemma is by induction on the product-depth. For ∆ = 1, for all i ∈ [u], we
have ui ≥ d and for all j ∈ [d], deg(Ci,j) = 1 , so both the conditions in the lemma statement are
met for Qi,j := Ci,j.

Suppose that the lemma is true for all homogeneous formulas of product-depth at most ∆− 1,
∆ ≥ 2. For a formula C with product-depth ∆, we consider the term Ci,1 · · ·Ci,ui for an arbitrary
i ∈ [u] and analyze the following two cases.

Case 1: There exists some j∗ ∈ [ui] such that deg(Ci,j∗) ≥
√

d. As the product-depth of Ci,j∗ is
at most ∆ − 1, we have the following expression for the polynomial computed by Ci,j∗ from the
induction hypothesis:

Ci,j∗ =
s̃i

∑̃
i=1

Q̃i,ĩ,1 · · · Q̃i,ĩ,t̃ĩ
, (6)

where
s̃i ≤ size(Ci,j∗) ≤ size(Ci), (7)

41

and
{

Q̃i,ĩ, j̃

}
i,ĩ, j̃

are homogeneous polynomials such that for all ĩ ∈ s̃i, either

∣∣∣{ j̃ ∈ [t̃ĩ] : deg(Q̃i,ĩ, j̃) = 1
}∣∣∣ ≥ √d

21−(∆−1)

= d21−∆
, or (8)∣∣∣∣{ j̃ ∈ [t̃ĩ] : deg(Q̃i,ĩ, j̃) ≈2

√
d

21−δ
}∣∣∣∣ ≥ √d

21−δ

− 1 , for some δ ∈ [2..(∆− 1)]. (9)

Note that since
√

d
21−δ

= d21−(δ+1)
, (9) is equivalent to∣∣∣{ j̃ ∈ [t̃ĩ] : deg(Q̃i,ĩ, j̃) ≈2 d21−δ

}∣∣∣ ≥ d21−δ − 1 , for some δ ∈ [3..∆]. (10)

Indeed, when ∆ = 2, the above scenario never arises and the number of linear factors is ‘large’,
i.e., (8) holds. Denoting ∏

j∈[ui]\{j∗}
Ci,j by Di,j∗ and using (6), we have

Ci = Ci,1 · · ·Ci,ui = Ci,j∗ .Di,j∗ =
s̃i

∑̃
i=1

Q̃i,ĩ,1 · · · Q̃i,ĩ,t̃ĩ
· Di,j∗ . (11)

Thus, we are able to decompose the sub-formula Ci as a sum of at most size(Ci) many products.

Case 2: For all j ∈ [ui], deg(Ci,j) <
√

d. Consider the polynomials computed by Ci,1, . . . , Ci,ui .

Suppose there exists j1 6= j2 ∈ [ui] such that deg(Ci,j1) <
√

d
2 and deg(Ci,j2) <

√
d

2 . Then deg(Ci,j1 ·
Ci,j2) <

√
d. By repeatedly combining such low degree factors, we can express Ci = Ci,1 · · ·Ci,ui as

Ci = Di,1 · · ·Di,vi , (12)

where
{

Di,j
}

i,j are homogeneous polynomials such that for all j ∈ [vi], we have deg(Di,j) <
√

d

and there exists at most one index j∗ ∈ [vi] such that deg(Di,j∗) <
√

d
2 . In other words, for at least

vi − 1 indices j ∈ [vi], deg(Di,j) ≈2
√

d. Using the fact that C is a homogeneous formula,

d ≤ deg(C) = deg(Ci) =
vi

∑
j=1

deg(Di,j) ≤ vi ·
√

d.

Therefore, the number of indices j ∈ [vi] such that deg(Di,j) ≈2
√

d is at least vi − 1 ≥
√

d− 1. In
other words, ∣∣∣{j ∈ [vi] : deg(Di,j) ≈2 d21−δ

}∣∣∣ ≥ d21−δ − 1 , for δ = 2. (13)

Now, expressing Ci for each i ∈ [u] using (11) if i falls under Case 1, and using (12) if i falls
under Case 2, we get

C =
u

∑
i=1

Ci =
s

∑
i=1

Qi,1 · · ·Qi,ti ,

for polynomials
{

Qi,j
}

i,j that are defined appropriately based on
{

Q̃i,ĩ, j̃

}
i,ĩ, j̃

and
{

Di,j
}

i,j. Using

(7) and (12), we get that the number of terms is s ≤
u
∑

i=1
size(Ci) ≤ size(C). Item 2 in the lemma

statement directly follows from (8), (13), or (10).

42

D.2 Proof of Lemma 4.2

We will show that the decomposition proven in Lemma 4.1 itself satisfies the required property.
We first establish a range for the value of k (and α) given in the lemma statement. We have α ≤ 1
and

α ≥
1

∑
ν=0

(−1)ν

τ2ν−1 = 1− 1
τ
= 1− 1⌊

d21−∆⌋ ≥ 1
2

.

Hence, k ∈
[⌊

d
3

⌋
, d

2

]
⊆
[

d
4 , d

2

]
because d = ω(1). As C computes a polynomial of degree d ≥ τ2∆−1

,

we can apply Item 2 of Lemma 4.1 to C using τ2∆−1
(rather than d) as the threshold. Thus, we have

that at least one of the following two cases will hold.

Case 1:
∣∣{j ∈ [t] : dj = 1

}∣∣ ≥ (τ2∆−1
)21−∆

= τ. Then,

residuek(d1, . . . , dt) =
1
2
· min

k1,...,kt∈Z
∑
j∈[t]

∣∣∣∣k j −
k
d
· dj

∣∣∣∣
≥ 1

2
· ∑

j∈[t]
min

{{
k
d
· dj

}
, 1−

{
k
d
· dj

}}
≥ 1

2
· ∑

j∈[t]:dj=1
min

{{
k
d
· dj

}
, 1−

{
k
d
· dj

}}

≥ 1
2
·
∣∣{j ∈ [t] : dj = 1

}∣∣ ·min
{{

k
d

}
, 1−

{
k
d

}}
≥ τ/8. (as k/d ∈ [1/4, 1/2])

Case 2:
∣∣∣∣{j ∈ [t] : dj ≈2

(
τ2∆−1

)21−δ
}∣∣∣∣ ≥ (τ2∆−1

)21−δ

− 1 for some δ ∈ [2..∆] (this case cannot occur

when ∆ < 2). Equivalently, there exists a δ ∈ [0..(∆− 2)] such that∣∣∣{j ∈ [t] : dj ≈2 τ2δ
}∣∣∣ ≥ τ2δ − 1.

Let k1, . . . , kt be arbitrary non-negative integers such that k j ≤ dj for all j ∈ [t]. Then for any j ∈ [t]
such that dj ≈2 τ2δ

, we have

τ2δ−1 ·
∣∣∣∣k j −

k · dj

d

∣∣∣∣ = τ2δ−1 ·
∣∣∣∣k j −

dj

d
·
⌊

α · d
1 + α

⌋∣∣∣∣
≥ τ2δ−1 ·

(∣∣∣∣k j −
dj

d
· α · d

1 + α

∣∣∣∣− dj

d
·
{

α · d
1 + α

})
≥ τ2δ−1 ·

∣∣∣∣k j −
α · dj

1 + α

∣∣∣∣− τ2δ−1 ·
dj

d

≥ τ2δ−1 ·
∣∣∣∣k j −

α · dj

1 + α

∣∣∣∣− τ2δ−1 · τ2δ

d
(since dj ≈2 τ2δ

)

43

≥ τ2δ−1 ·
∣∣∣∣k j −

α · dj

1 + α

∣∣∣∣−
(

d21−∆
)2δ+1−1

d

≥ τ2δ−1 ·
∣∣∣∣k j −

α · dj

1 + α

∣∣∣∣− 1
d21−∆ (as δ ≤ ∆− 2)

= τ2δ−1 ·
∣∣∣∣k j −

α · dj

1 + α

∣∣∣∣− o(1)

(if d21−∆
= O(1), then the lemma is not interesting)

≥ 1
2
· τ2δ−1 ·

∣∣k j − α · (dj − k j)
∣∣− o(1) (as α ≤ 1) (14)

We use the following claim which is proved in Section D.2.1 below. For j ∈ [t], let mj :=
dj − k j, note that mj is a non-negative integer.

Claim D.1. η := τ2δ−1 ·
∣∣k j − α ·mj

∣∣ ≥ Ω(1).

Let k1, . . . , kt ∈ Z be the such that
t

∑
i=1

∣∣∣ki − k
d · di

∣∣∣ is minimised. Hence,

residuek(d1, . . . , dt) ≥
1
2 ∑

j∈[t]:dj≈2τ2δ

∣∣∣∣k j −
k
d
· dj

∣∣∣∣
≥ 1

2
·
∣∣∣{j ∈ [t] : dj ≈2 τ2δ

}∣∣∣ · min
j∈[t]:dj≈2τ2δ

∣∣∣∣k j −
k
d
· dj

∣∣∣∣
≥ Ω

(
τ2δ
)
· min
j∈[t]:dj≈2τ2δ

∣∣∣∣k j −
k
d

.dj

∣∣∣∣
= Ω (τ)· min

j∈[t]:dj≈2τ2δ
τ2δ−1 ·

∣∣∣∣k j −
k
d
· dj

∣∣∣∣
≥ Ω(τ)·

(η

2
− o(1)

)
(using (14))

≥ Ω (τ) .

Therefore, residuek(d1, . . . , dt) ≥ Ω(τ) ≥ Ω
(

τ+1
2

)
≥ Ω (τ + 1) ≥ Ω

(
d21−∆

)
.

D.2.1 Proof of Claim D.1

We prove the claim by analysing the following three sub-cases.

Case (i): mj < k j. Then, η ≥
∣∣k j − α·mj

∣∣ = k j − α·mj ≥ k j −mj ≥ 1.

Now, let α1 :=
δ

∑
ν=0

(−1)ν

τ2ν−1 , α2 := (−1)δ+1

τ2δ+1−1
and α3 :=

∆−1
∑

ν=δ+2

(−1)ν

τ2ν−1 . Then, let α4 := τ2δ−1·
(
k j −mj ·α1

)
.

Noting that α = α1 + α2 + α3 we have,

η = τ2δ−1·
∣∣k j − α·mj

∣∣ = ∣∣∣τ2δ−1·k j − τ2δ−1·mj ·(α1 + α2 + α3)
∣∣∣ (as α = α1 + α2 + α3 by definition)

44

≥
∣∣∣∣α4 − τ2δ−1·mj ·

(−1)δ+1

τ2δ+1−1
− τ2δ−1·mj ·α3

∣∣∣∣
≥
∣∣∣∣α4 − τ2δ−1·mj ·

(−1)δ+1

τ2δ+1−1

∣∣∣∣− ∣∣∣τ2δ−1·mj ·α3

∣∣∣
≥
∣∣∣∣|α4| −

mj

τ2δ

∣∣∣∣− ∣∣∣τ2δ−1·mj ·α3

∣∣∣
=

∣∣∣∣|α4| −
mj

τ2δ

∣∣∣∣−
∣∣∣∣∣ ∆−1

∑
ν=δ+2

·
(−1)ν ·τ2δ−1·mj

τ2ν−1

∣∣∣∣∣
≥
∣∣∣∣|α4| −

mj

τ2δ

∣∣∣∣−
∣∣∣∣∣τ2δ−1·mj

τ2δ+2−1

∣∣∣∣∣
(taking only the leading term of the summation)

≥
∣∣∣∣|α4| −

mj

τ2δ

∣∣∣∣−
∣∣∣∣∣τ2δ−1·τ2δ

τ2δ+2−1

∣∣∣∣∣ (since mj ≤ dj ≈2 τ2δ
)

≥
∣∣∣∣|α4| −

mj

τ2δ

∣∣∣∣− 1
τ2

=

∣∣∣∣|α4| −
mj

τ2δ

∣∣∣∣− o(1).

Notice that, as mj ≤ dj ≈2 τ2δ
, mj

τ2δ ≤ 1.
Case (ii): k j ≤ mj ≤ 6·k j. Note that

mj =
6·mj + mj

7
≤

6·mj + 6·k j

7
=

6
7
·dj ≤

6
7
·τ2δ

, and

mj ≥
mj + k j

2
=

dj

2
≥ 1

4
·τ2δ

.

Thus mj

τ2δ ∈
[1

4 , 6
7

]
. On the other hand, α4 = τ2δ−1 ·k j − τ2δ−1 ·mj ·α1 is an integer since the denomi-

nators of all the terms in α1 divide τ2δ−1. Therefore mj

τ2δ is at least min {1/4, 3/4, 6/7, 1/7} = 1/7

distance from any integer, and from |α4| in particular. That is,
∣∣∣|α4| −

mj

τ2δ

∣∣∣ ≥ 1/7 and η ≥∣∣∣|α4| −
mj

τ2δ

∣∣∣− o(1) ≥ Ω(1).

Case (iii): mj > 6·k j. Then,

−k j + mj ·α1 = −k j + mj ·
(

δ

∑
ν=0

(−1)ν

τ2ν−1

)

= −k j + mj −mj ·
(

δ

∑
ν=1

(−1)ν−1

τ2ν−1

)
≥ −k j + mj −

mj

τ

≥
mj

2
− k j (as τ = ω(1))

45

≥
mj

2
−

mj

6
=

mj

3
≥ 2

7
·
(
mj + k j

)
=

2 · dj

7
≥ τ

7
≥ 2.

Hence,
∣∣∣|α4| −

mj

τ2δ

∣∣∣ = ∣∣∣τ2δ−1·
(
−k j + mj ·α1

)
− mj

τ2δ

∣∣∣ ≥ 2− 1 = 1 and η ≥ Ω(1).

D.3 Proof of Lemma 4.3

Using Lemma 3.2 (Item 1) and the fact that SP is sub-additive (Proposition B.6), we get

SPk,`(P) ≤
s

∑
i=1

SPk,`(Qi,1 · · ·Qi,ti) ≤ s · 2t · d2 · max
k0,`0≥0

k0+
k

d−k ·`0 ≤ k−γ

M(n, k0) ·M(n, `+ `0),

where t := maxi ti is at most d. On the other hand, by our assumption we have SPk,`(P) ≥ 2−O(d) ·
M(n, k) ·M(n, `). Putting these two together, we get for some integers k0 ∈ [0..k], `0 ∈ [0..(d− k)]
satisfying

k0 +
k

d− k
· `0 ≤ k− γ, (15)

that,

s ≥ 2−O(d) ·2−t ·d−2· M(n, k)·M(n, `)
M(n, k0)·M(n, `+ `0)

(16)

≥ 2−O(d) · M(n, k)

M(n, k0)·(2n/`)`0

(Lemma B.2 (Item 2) is applicable as n0 ≥ d implies that n ≥
⌊

n·d
n0

⌋
= `; also n0 ≤ n implies

` =
⌊

nd
n0

⌋
≥ d ≥ `0)

≥ 2−O(d) · M(n, k)

M(n, k0)·(n0/`0)
`0

(17)

(because 2n/` ≤ 4n0/`0 as `0 ≤ d and absorbing 4`0 in 2−O(d))

≥ 2−O(d) · (n/k)k

(6n/k0)k0 ·(n0/`0)`0

(assuming k0, `0 6= 0 and using Lemma B.2 (Item 1) as n ≥ n0 ≥ d ≥ max {k0, `0}; the analysis is
easier if any of k0, `0 is 0)

≥ 2−O(d) · (n/k)k

(n/k0)k0 ·(n0/`0)`0
(since k0 = O(d))

≥ 2−O(d) · (n/k)k

(n/k0)k0 ·
(

2(d−k)
`0
·(n/k)

k
d−k

)`0
(substituting n0)

46

= 2−O(d) · (n/k)k

(n/k0)k0 ·(d−k
`0

)`0 ·(n/k)
k·`0
d−k

(as `0 = O(d))

= 2−O(d) · (n/k)k

(n/k)k0 .(k/k0)k0 · (d−k
`0

)`0 ·(n/k)
k·̀ 0
d−k

(as n/k0 = (n/k) · (k/k0))

= 2−O(d) · (n/k)k−k0− k
d−k .`0

(k/k0)k0 ·(d−k
`0

)`0

≥ 2−O(d).
(n/d)γ

(d/k0)k0 .(d
`0
)`0

(using k < d and (15))

= 2−O(d) ·
(n

d

)γ
·
(

k0

d

)k0

·
(
`0

d

)`0

≥ 2−O(d) ·
(n

d

)γ
· (e−1/e)d · (e−1/e)d (using xx ≥ e−1/e for x > 0)

≥ 2−O(d) ·
(n

d

)Ω(γ)
.

D.4 Proof of Lemma 4.4

Using Lemma 3.2 (Item 2) and the fact that APP is sub-additive (Proposition B.6), we get

APPk,n0(P) ≤
s

∑
i=1

APPk,n0(Qi,1 · · ·Qi,ti) ≤ s · 2t · d2 · max
k0,`0≥0

k0+
k

d−k ·`0 ≤ k−γ

M(n, k0)·M(n0, `0).

On the other hand, we have APPk,n0(P) ≥ 2−O(d) ·M(n, k). Putting these two together, we get for
some integers k0, `0 ≥ 0 satisfying

k0 +
k

d− k
· `0 ≤ k− γ,

that,

s ≥ 2−O(d) ·2−t ·d−2· M(n, k)
M(n, k0)·M(n0, `0)

≥ 2−O(d) ·
(n

d

)Ω(γ)
.

(Using Lemma B.2, absorbing 6`0 in 2−O(d), and borrowing calculations beginning from (17))

D.5 Proof of Lemma 4.6

We construct the word w as follows. Let h′ = h·k
d−k ∈

[
h

29 , h
]
. The word w shall consist of

the following elements (the ordering of these elements shall be fixed shortly): h, . . . , h (k times),
− bh′c , . . . ,− bh′c (k1 times), − dh′e , . . . ,− dh′e (k2 times), where k1 := (d − k) dh′e − kh and

47

k2 := d − k − k1. We note that k1, k2 ∈ Z≥0 and k + k1 + k2 = d. Assuming bh′c = dh′e − 1
(even if h′ ∈ Z, the calculations are similar), the total sum of the weights is

∑
i∈[d]

wi = kh− k1
⌊

h′
⌋
− k2

⌈
h′
⌉
= kh− k1(

⌈
h′
⌉
− 1)− k2

⌈
h′
⌉
= kh− k1

⌈
h′
⌉
+ k1 − k2

⌈
h′
⌉

= kh− k1
⌈

h′
⌉
+ (d− k)

⌈
h′
⌉
− kh− k2

⌈
h′
⌉
= 0. (18)

Now we fix the ordering of the above weights. For i = 1 to d in this order, if the sum
∑j∈[i−1] wj is non-negative (for example, this happens for i = 1), set wi to be an arbitrary negative
weight that is available, otherwise set it to be the positive weight h (if available).

If the above procedure never runs out of positive or negative weights at any step i ∈ [d], then
for all i ∈ [d], |w1 + · · ·+ wi| ≤ h. In other words, w is h-unbiased. Now suppose the procedure
runs out of negative weights at an index i ∈ [d]. This means that the sum ∑j∈[i−1] wj is non-
negative but there are no negative weights available among the unused weights. But then, the
total sum of the weights would be equal to ∑j∈[i−1] wj plus the sum of unused weights, which is
greater than 0, contradicting (18). We get a similar contradiction if there are insufficient positive
weights at any point. For the rest of the proof, we fix w to be the above word. Then,

k·2h ≤ n ≤ d·2h, so 2h ≈30

(n
k

)
. (19)

Denoting the variables of Pw by x = y t z, where y are the positive variables and z are the
negative variables, we take

n0 := |z| ≈2 (d− k)·2dh′e.

Note that n0 ≈2 (d− k)·2dh′e ≈ 2(d− k)·2h′ = 2(d− k)·2 hk
d−k ≤ 2k·2h = 2(n− n0) where the last

inequality follows from the fact that d−k
k · 2

hk
d−k is an increasing function of k when k ∈

[
d

30 , d
2

]
and

h > 100. That is, n0 ≤ 2n/3 and n0 ≈ 2(d− k)·
(n

k

) k
d−k by (19) and k ≤ d

2 . Also, n0 ≥ d−k
2 · 2dh

′e ≥
d−k

2 · 2h′ ≥ d−k
2 · 2

h
29 ≥ d−k

2 · 23 ≥ 2d as h > 100 and k ≤ d
2 . Define a map L : x→ 〈z〉 as follows:

L(x) =

{
0, if x ∈ y,
x, if x ∈ z.

We can lower bound the APP measure by using L and considering only the derivatives with
respect to the set-multilinear monomials over all the positive sets, i.e.,M+(w). By the definition of
the polynomial Pw and because ∑i∈[d] wi = 0, for every m+ ∈ M+, there exists a unique m− ∈ M−
such that m+ ·m− is a monomial in Pw and vice versa.18 Hence the set of all derivatives of Pw with
respect to monomials inM+ is exactlyM−, yielding

∂k (Pw) ⊇M−(w). (20)

Using the fact that ∑i∈[d] wi = 0 and (19), the size ofM−(w) is

|M−(w)| = 2∑i∈[d]:wi<0|wi | = 2hk ≥ 2−O(k) ·
(n

k

)k
≥ 2−O(d) ·M(n, k). (21)

18Recall the definition of Pw from Section B. Because |M+| = |M−|, the bit representations of m+ and m− are the
same. However, they can have different degrees.

48

The last bound follows from Lemma B.2 (Item 1), as n ≥ n0 ≥ d ≥ k. As the substitution πL does
not affect negative variables, thus,

APPk,n0(Pw) ≥ dim
〈

πL

(
∂k (Pw)

)〉
≥ dim 〈πL(M−(w))〉 = dim 〈M−(w)〉 ≥ 2−O(d) ·M(n, k).

We now analyze the shifted partials of the same polynomial with ` :=
⌊

n·d
n0

⌋
. Recall that

n0 ≤ 2n/3.

SPk,`(Pw) ≥ dim
〈

x` · ∂k (Pw)
〉

≥ dim
〈

y` ·M−(w)
〉

(as x ⊇ y and (20))

≥
∣∣∣y` ·M−(w)

∣∣∣
=
∣∣∣y`
∣∣∣ · |M−(w)| (sinceM−(w) ⊆ zd−k and y∩ z = Φ)

= M(n− n0, `)·2−O(d) ·M(n, k) (using |y| = |x| − |z| and (21))

≥ M(n, `)·
(

1− n0

n

)`
·2−O(d) ·M(n, k) (using Lemma B.2 (Item 3))

≥ M(n, `)·
(

1− n0

n

) n
n0
·d
·2−O(d) ·M(n, k)

≥ 2−O(d) ·M(n, k)·M(n, `). (since (1− x)1/x ≥ 1/3
√

3 for x := n0/n ≤ 2/3)

D.6 Proof of Lemma 4.7

We begin by obtaining bounds on the value of `.

Claim D.2. n0 = o(qd), d2 = o(`) and ` = o(qd).

Proof.

n0 = 2(d− k)
(

qd
k

) k
d−k

≤ 2(d− k)
(

qd
k

) d/2−
√

d/8
d/2+

√
d/8

(
because k = o(qd) and k ≤ d

2
−
√

d
8

)

= 2(d− k) · qd
k
·
(

k
qd

) 2
4
√

d+1

≤ 2d · qd · 1

(qd)
1

2.5
√

d

≤ 2d · qd · 1

2
log qd
2.5
√

d

.

49

As d ≤ 1
150

(
log n

log log n

)2
and qd ≥ n

4 , log qd
2.5
√

d
≥ 12 log log n

3 = 4 log log n. As log d2 ≤ 4 log log n− ω(1),

log qd
2.5
√

d
= log d2 + ω(1) and 2

log qd
2.5
√

d = ω(d2). Thus, n0 = o(q) = o(qd).19 Now, ` ≥ qd2

n0
− 1 ≥

qd2

o(q) − 1 = ω(d2). Thus, d2 = o(`). Also,

` ≤ qd2

n0

=
qd2

2(d− k)

(
k

qd

) k
d−k

≤ qd2

2(d− k)

(
k

qd

) 1
29

(
because k = o(qd) and

d
30
≤ k

)
≤ k · (qd)

28
29

(
as k ≤ d

2

)
= o(n)

(
because k ≤ log2 n and qd ≤ n

)
.

Let

S =

{
∏

i∈[k+1...d]
xi,h(i) : h ∈ Fq[z], deg(h) < k

}
and

T = {m : ∃monomials m1, m2, deg(m1) = `, m2 ∈ S and m = m1m2} .

Observe that T ⊆
〈
x`∂kNWq,d,k

〉
and so, SPk,`(NWq,d,k) ≥ |T|. We obtain a lower bound on |T|.

For h ∈ Fq[z] such that deg(h) < k, let

Th =

{
m1 ∏

i∈[k+1...d]
xi,h(i) : deg(m1) = `

}
.

Then, T = ∪h(z)∈Fq[z]:
deg(h)<k

Th. Thus, from the inclusion-exclusion principle,

|T| ≥ ∑
h∈Fq[z]:

deg(h)<k

|Th| − ∑
h1 6=h2∈Fq[z]:

deg(h1),deg(h2)<k

|Th1 ∩ Th2 | . (22)

Lower bound on ∑h |Th|. Fix an h ∈ Fq[z] such that deg(h) < k. Then, since for monomials
m1 6= m2, m1 · ∏

i∈[k+1...d]
xi,h(i) 6= m2 · ∏

i∈[k+1...d]
xi,h(i), |Th| = (qd+`−1

qd−1). Hence,

∑
h∈Fq[z]:

deg(h)<k

|Th| = |S|k ·
(

qd + `− 1
qd− 1

)
= qk ·

(
qd + `− 1

qd− 1

)
. (23)

19In this proof, we need n0 = o(q). However, we require n0 = o(n), in Section D.7 and so we have mentioned
n0 = o(qd) in the statement of the claim.

50

Upper bound on ∑h1 6=h2
|Th1 ∩ Th2 |. For h1, h2 ∈ F[z] such that deg(h1), deg(h2) < k, we say that

|h1 ∩ h2| = r if | {h1(k + 1), . . . , h1(d)} ∩ {h2(k + 1), . . . , h2(d)} | = r. Now

∑
h1 6=h2

|Th1 ∩ Th2 | =
k−1

∑
r=0

∑
h1 6=h2:
|h1∩h2|=r

|Th1 ∩ Th2 |. (24)

Fix h1 and h2 such that |h1 ∩ h2| = r. Let m1 = ∏i∈[k+1..d] xi,h1(i) and m2 = ∏i∈[k+1..d] xi,h2(i).
A monomial m ∈ Th1 ∩ Th2 if and only if there exist degree ` monomials m′1 and m′2 such that
m = m′1m1 = m′2m2. Thus m2

gcd(m1,m2)
must divide m′1. As |h1 ∩ h2| = r, gcd(m1, m2) has degree

r, and so m2
gcd(m1,m2)

has degree d− k− r. Hence the number of possible monomials m′1, and thus

the number of possible monomials m is at most (qd+`−d+k+r−1
qd−1). Now, the number of possible

polynomials h1 and h2 such that |h1 ∩ h2| = r is at most (d−k
r)qk−rqk = q2k−r(d−k

r).20 Hence,

∑
h1 6=h2:
|h1∩h2|=r

|Th1 ∩ Th2 | ≤ q2k−r ·
(

d− k
r

)(
qd + `− d + k + r− 1

qd− 1

)
. (25)

Claim D.3. For r ∈ [0..k − 1], let χ(r) = q2k−r · (d−k
r)(qd+`−d+k+r−1

qd−1). Then χ(0) ≥ χ(r) for all
r ∈ [k− 1].

Proof. We shall show that for all r ∈ [0..k − 2], χ(r+1)
χ(r) < 1; this will prove the claim. Fix any

r ∈ [0..k− 2].

χ(r + 1)
χ(r)

=
q2k−r−1 · (d−k

r+1)(
qd+`−d+k+r

qd−1)

q2k−r · (d−k
r)(qd+`−d+k+r−1

qd−1)

=
1
q
·

(d−k)!
(r+1)!(d−k−r−1)!

(d−k)!
r!(d−k−r)!

·
(qd+`−d+k+r)!

(qd−1)!(`−d+k+r+1)!
(qd+`−d+k+r−1)!
(qd−1)!(`−d+k+r)!

=
1
q
· d− k− r

r + 1
· qd + `− d + k + r
`− d + k + r + 1

≤ d
q
· (1 + o(1))qd
(1− o(1))`

(by Claim D.2)

= (1 + o(1))
d2

`
= o(1), (by Claim D.2)

where the second to last inequality follows from k, r ≥ 0, `, d, k, r = o(n) and d, k, r = o(`) (Claim
D.2), and the last equality from the fact that d2 = o(`) (Claim D.2).

From Equations (24), (25), and the above claim, we get

∑
h1 6=h2

|Th1 ∩ Th2 | ≤ k · q2k ·
(

qd + `− d + k− 1
qd− 1

)
. (26)

20This is so because |h1 ∩ h2| = r implies that h1 − h2 = (z − α1) · · · (z − αr) · g(z), where α1, . . . , αr are distinct
elements in [k + 1..d] and g(z) is a polynomial of degree at most d− k.

51

Thus from Equations (22), (23), and (26),

|T| ≥ qk ·
(

qd + `− 1
qd− 1

)
− k · q2k ·

(
qd + `− d + k− 1

qd− 1

)

= qk ·
(

qd + `− 1
qd− 1

)1−
k · q2k · (qd+`−d+k−1

qd−1)

qk · (qd+`−1
qd−1)

 . (27)

Claim D.4.
k·q2k ·(qd+`−d+k−1

qd−1)

qk ·(qd+`−1
qd−1)

≤ 1
2 .

Proof.

k · q2k · (qd+`−d+k−1
qd−1)

qk · (qd+`−1
qd−1)

= k · qk ·
(qd+`−d+k−1)!
(qd−1)!(`−d+k)!

(qd+`−1)!
(qd−1)!`!

= k · qk · ` · (`− 1) · (`− 2) · · · (`− d + k + 1)
(qd + `− 1) · (qd + `− 2) · (qd + `− 3) · · · (qd + `− d + k)

= k · qk · 1(
qd−1
` + 1

)
·
(

qd−1
`−1 + 1

)
·
(

qd−1
`−2 + 1

)
· · ·
(

qd−1
`−d+k+1 + 1

)
≤ k · qk · 1(

qd−1
`

)d−k

≤ k · qk ·
(

`

qd

)d−k

e
2(d−k)

qd (as 1− x ≥ e−2x for x ∈ [0, 1/2])

= (1 + o(1)) · k · qk ·
(

d
n0

)d−k

(as d− k = o(qd) and ` ≤ qd2

n0
)

= (1 + o(1)) · k · qk ·
(

d
2(d− k)

)d−k

·
(

k
qd

)k

≤ (1 + o(1)) · k ·
(

1
2

)k

(as k ≤ d
2

)

≤ 1
2

,

when d ≥ 120.

Thus, from Equation (27) and k = Θ(d), we get

|T| ≥ 1
2
· qk ·

(
qd + `− 1

qd− 1

)
≥ 2−O(d) ·

(
qd
k

)k

·
(

qd + `− 1
qd− 1

)
≥ 2−O(d) ·

(
qd + k− 1

qd− 1

)
·
(

qd + `− 1
qd− 1

)
,

where the last inequality follows from Lemma B.2. Recall that SPk,`(NWq,d,k) ≥ |T|. Hence,
SPk,`(NWq,d,k) ≥ 2−O(d) ·M(qd, k) ·M(qd, `).

52

D.7 A non-set-multilinear hard polynomial

For any n, d, ∆ ∈ N such that 120 ≤ d ≤ 1
150

(
log n

log log n

)2
, define k =

⌊
α·d

1+α

⌋
, where α :=

∆−1
∑

ν=0

(−1)ν

τ2ν−1

and τ :=
⌊

d21−∆
⌋

. Then, let n0 =

⌊
2(d− k) ·

(n
k

) k
d−k

⌋
(n0 ≤ n, see Section D.7), n1 = n − n0,

y = {x1, . . . , xn1} and z = {xn1+1, . . . , xn}. LetMy be the set of all (monic) monomials of degree
k in y variables andMz be the set of all (monic) monomials in z variables of degree d− k; it can
be verified that |My| ≤ |Mz|. Fix any one-to-one function σ : My → Mz. Then, it is easy to
see that for Pσ := ∑m∈My

m · σ(m), APPk,n0(P) = M(n1, k). While Pσ defined above might have
a non-trivial set-multilinear component, it can be modified to ensure that there are no multilinear
monomials in it. Notice that to prove a lower bound for such a polynomial, we must analyse the
measure of a homogeneous formula computing it directly; we can not hope to get a lower bound
by going via set-multilinearity as is done in [LST21].

Lemma D.5 (Non-set-multilinear hard polynomial). APP(Pσ) ≥ 2−O(k)M(n, k).

Proof. Using an analysis similar to the one in the proof of Claim D.2, it can be shown that n0 =

o(n). Also, from the proof of Lemma 4.2, k ∈
[

d
4 , d

2

]
. Let us assume that ∆ ≥ 2; the case of ∆ = 1 is

simple and can be handled separately. Then, as k
d−k ≤ α ≤ 1− 1

2τ ≤ 1− 1
2
√

d
, k ≤ d−

√
d

2 − k+ k
2
√

d
,

and hence k ≤ d
2 −

√
d

4 + k
4
√

d
≤ d

2 −
√

d
4 + d

8
√

d
= d

2 −
√

d
8 .

Claim D.6. |My| ≤ |Mz|.

Proof. |My| = (n1+k−1
n1−1) andMz = (n0+d−k−1

n0−1). Thus,

|Mz|
|My|

=
(n0 + d− k− 1)(n0 + d− k− 2) · · · n0

(n1 + k− 1)(n1 + k− 2) · · · n1
· k!
(d− k)!

≥ k!
(d− k)!

·
nd−k

0

nk
1
· 1(

1 + k−1
n1

)k

≥ (1− o(1)) · k!
(d− k)!

· ((2− o(1))(d− k))d−k
(n

k

)k
· 1

nk

(replacing n0 by its value and as n0 = o(n), n1 = Θ(n) = ω(k2))

≥ (1.9)d−k
(1− o(1))

√
2πk

(
k
e

)k

(1 + o(1))
√

2π(d− k)
(

d−k
e

)d−k ·
(d− k)d−k

kk

(using Sterling’s approximation)

≥ (1.8)d−k · ed−2k ·
√

k
d− k

≥ 1,

for d ≥ 120.

53

Claim D.7. M(n1, k) ≥ 2−O(k)M(n, k).

Proof. As n1 = Θ(n) ≥ k, from Lemma B.2, we get

M(n1, k) ≥
(n1

k

)k
=
(n

k

)k (
1− n0

n

)k
≥
(n

k

)k
· e−

2kn0
n ≥ 2−O(k) ·

(
6n
k

)k

≥ 2−O(k) ·M(n, k),

where the third to last inequality follows from n0 = o(n) and the last inequality follows from
n ≥ k and Lemma B.2.

D.8 Proof of Theorem 4.9

We can assume that d21−∆
= ω(1) and h := blog nc > 100, as otherwise the lower bound is trivial.

Suppose IMMn,d has a homogeneous formula C of product-depth at most ∆. Consider the poly-

nomial Pw, given by Lemma 4.6, by setting k :=
⌊

α·d
1+α

⌋
, where α :=

∆−1
∑

ν=0

(−1)ν

τ2ν−1 and τ :=
⌊

d21−∆
⌋

;

these parameters are the same as those in Lemma 4.2. It is easy to show that k ∈
[

d
4 , d

2

]
. As w is h-

unbiased, by Lemma B.13 there exists a homogeneous formula C′ of product-depth at most ∆ com-
puting Pw such that size(C′) ≤ size(C). Hence, by Lemma 4.2, there exist homogeneous polyno-
mials

{
Qi,j
}

i,j such that Pw = ∑i∈[s] Qi,1 · · ·Qi,ti , s ≤ size(C′) and residuek (deg(Qi,1), . . . , deg(Qi,ti)) ≥

Ω
(

d21−∆
)

for i ∈ [s]. Denoting the number of variables in Pw by ñ, Lemma 4.6 guarantees that

n0 ≤ 2(d − k) ·
(

ñ
k

) k
d−k , ` =

⌊
ñ·d
n0

⌋
and SPk,`(Pw) ≥ 2−O(d) ·M(ñ, k) ·M(ñ, `). Therefore, we can

apply Lemma 4.3 to the same polynomial Pw which gives that s ≥ 2−O(d) ·
(

ñ
d

)Ω
(

d21−∆
)
. Hence,

size(C) ≥ size(C′) ≥ s ≥ 2−O(d) ·nΩ
(

d21−∆
)
, since ñ ≥ 2h ≥ n/2 = ω(d).

D.9 Proof of Theorem 4.10

We analyse the cases ∆ = 1 and ∆ ≥ 2 separately.

∆ = 1. Let C be a homogeneous formula of product-depth 1 computing NWq,d,k. Then, C =

∑i∈[s] ∏j∈[d] Qi,j, where Qi,j are linear forms. Observe that for any i ∈ [k], ∂k
(

∏j∈[d] Qi,j

)
⊆〈

∏j∈[d]\S Ci,j : |S| = k
〉

. Thus, dim
〈

∂k
(

∏j∈[d] Qi,j

)〉
≤ (d

k). As ∂kC ⊆ ∑i∈[s]

〈
∂k
(

∏j∈[d] Qi,j

)〉
,

dim
〈
∂kC

〉
≤ s · (d

k).
On the other hand, dim

〈
∂k(NWq,d,k)

〉
= (d

k) · qk: For every S ⊆ [d], |S| = k,

TS :=

{
∏

i∈[d]\S
xi,h(i) : h ∈ F[z], deg(h) < k

}
⊆ ∂k(NWq,d,k).

Now, for h1 6= h2 ∈ F[z], deg(h1), deg(h2) < k, there exists an i ∈ [d] \ S such that h1(i) 6= h2(i)
because |[d] \ S| = d− k ≥ k + 1. Thus, ∏i∈[d]\S xi,h1(i) 6= ∏i∈[d]\S xi,h2(i), and |TS| = qk. Also, for

54

S 6= S′ ⊆ [d], |S| = |S′| = k, TS and TS′ are disjoint. Hence, dim
〈
∂k(NWq,d,k)

〉
≥ (d

k) · qk.21 Thus,

s ≥ qk =
(n

d

)O(d) as k = Θ(d) and qd = Θ(n). Because d ≤ n1−ε, this means that s ≥ nO(d).

∆ ≥ 2. We can assume that d21−∆
= ω(1), as otherwise the given bound is trivial. Let C be a homo-

geneous formula of product-depth at most ∆ computing NWq,d,k; C is a formula in qd variables. By
Lemma 4.2, there exist homogeneous polynomials

{
Qi,j
}

i,j such that NWq,d,k = ∑i∈[s] Qi,1 · · ·Qi,ti ,

s ≤ size(C), and residuek (deg(Qi,1), . . . , deg(Qi,ti)) ≥ Ω
(

d21−∆
)

for i ∈ [s]. From the proof of

Lemma 4.2, k ∈
[

d
4 , d

2

]
. In fact, as k

d−k ≤ α ≤ 1− 1
2τ ≤ 1− 1

2
√

d
, k ≤ d

2 −
√

d
8 . Thus, Lemma 4.7 guar-

antees that for n0 = 2(d− k)·
(

qd
k

) k
d−k and ` =

⌊
qd2

n0

⌋
, SPk,`

(
NWq,k,d

)
≥ 2−O(d) ·M(qd, k)·M(qd, `).

Also, it follows from the proof of Lemma 4.7 (see Claim D.2) that for n0 ≤ qd. So, applying

Lemma 4.3 to NWk,d,q we get that s ≥ 2−O(d) ·
(

qd
d

)Ω
(

d21−∆
)
= 2−O(d) ·nΩ

(
d21−∆

)
as qd ≥ n

4 and

d = o(n). Hence, size(C) ≥ 2−O(d) ·nΩ
(

d21−∆
)
.

D.10 Can we avoid the 2−O(k) factor loss in our lower bounds?

In this section, we will work with the shifted partials measure, but the conclusion also holds for
APP. For any homogeneous polynomial P ∈ F[x1, . . . , xn] of degree d and any choice of parame-
ters k < d and `, note that

SP(P) ≤ min {M(n, k)·M(n, `), M(n, `+ d− k)} .

Hence, the best possible lower bound with our current estimates for the measure (from Lemma 3.2),
for fixed values of n, d, k, γ, is at most

Λ := max
`


min {M(n, k)·M(n, `), M(n, `+ d− k)}

max
k0,`0≥0:

k0+
k

d−k ·`0≤k−γ

M(n, k0)·M(n, `+ `0)

 . (28)

We claim that the above quantity is at most 2−Ω(k) · nO(γ) as long as d ≤ n1/4. We will assume that
k ≤ d/2 as the other case simply reduces to this case. Also, we assume that γ = o(k) as otherwise
the multiplicative factor of 2−Ω(k) is irrelevant. The maximum of the R.H.S. in (28) is attained for
the choice of ` when M(n, k)·M(n, `) and M(n, `+ d− k) are the closest. Notice that M(n,k)·M(n,`)

M(n,`+d−k)
increases along with `. Also, as k ≤ d/2, there are values of ` for which the ratio is less than 1 and
greater than 1. Thus we can fix ` (for a given k) such that M(n, k)·M(n, `) = M(n, `+ d− k) (we
use an exact equality here for brevity). Then,

Λ ≤ M(n, k)·M(n, `)
max

k0,`0≥0:
k0+

k
d−k ·`0≤k−γ

M(n, k0)·M(n, `+ `0)

21In fact, it can be shown that this is an equality.

55

= min
k0,`0≥0:

k0+
k

d−k ·`0≤k−γ

M(n, k)·M(n, `)
M(n, k0)·M(n, `+ `0)

(29)

We have two cases depending on how large the value of ` is.

Case 1: ` ≥ d2.

M(n, k)·M(n, `)
M(n, k0)·M(n, `+ `0)

≤ M(n, k)

M(n, k0)·
(

1 + n−1
`+`0

)`0

≤ 4·M(n, k)

M(n, k0)·
(
1 + n−1

`+1

)`0
(`0 ≤ d and ` ≥ d2 implies that

(
`+`0
`+1

)`0
≤ 4)

≤ 4·M(n, k)
M(n, k0)·M(n, k)`0/(d−k)

(using
(
1 + n−1

`+1

)d−k ≥ M(n,`+d−k)
M(n,`) and M(n, k)·M(n, `) = M(n, `+ d− k)

≤ 4e
√

2πk0·(1 + o(1))k ·(en/k)k− k
d−k ·`0

(en/k0)
k0

.

(using Sterling’s approximation and k0 = o(n))

Case 2: ` ≤ d2 ≤
√

n. In this regime, ignoring some polynomial factors, M(n, k) =
(en

k

)k,

M(n, `) =
(en

`

)` (unless ` is 0, in which case we may take ` = 1 as this does not alter the quantities

we are considering by more than linear factors) and M(n, ` + d − k) =
(en
`+d−k

)`+d−k. Similarly,

M(n, k0) =
(

en
k0

)k0
and M(n, `+ `0) =

(
en

`+`0

)`+`0
. These approximations follow as we can upper

bound
(

1 + x
y

)x
, and upper and lower bound

(
1− x

y

)x
by a constant when x2 = O(y). Note that

the real valued function defined by f (x) := x·ln(en/x) over x ∈ [1, `+ d− k] is concave. Hence
applying Jensen’s inequality we obtain that f (`+ `0)− f (`) ≥ `0

d−k · (f (`+ d− k)− f (`)) or equiv-

alently,

(
en

`+`0

)`+`0

(en
`)

` ≥
(
(en
`+d−k)

`+d−k

(en
`)

`

) `0
d−k

= poly(n, d) ·
(en

k

) k
d−k ·`0 as M(n, k)M(n, `) = M(n, `+ d− k)

and `0 ≤ d− k. Therefore,

M(n, k)·M(n, `)
M(n, k0)·M(n, `+ `0)

≤ poly(n, d) ·
(en

k

)k ·
(en

`

)`(
en
k0

)k0
·
(

en
`+`0

)`+`0

≤ poly(n, d) · (en/k)k− k
d−k ·`0

(en/k0)
k0

.

Thus, in both cases, ignoring some polynomial factors and (1 + o(1))k ≤ 2o(k) because they are
asymptotically smaller than the 2Ω(k) factor, we get that

56

Λ ≤ min
k0,`0≥0:

k0+
k

d−k ·`0≤k−γ

(en/k)k− k
d−k ·`0

(en/k0)
k0

= min
k0,`0≥0:

k0+
k

d−k ·`0≤k−γ

(en/k)k−k0− k
d−k ·`0

(k/k0)
k0

, (30)

Thus to show that Λ ≤ 2−Ω(k) ·nO(γ), we only need to show that there exist values of k0 and `0
for which the fraction in the R.H.S. of (30) is at most 2−Ω(k) ·nO(γ). To find such k0, `0, we let
k0 be a function of `0 defined as k0 =

⌊
k− γ− k

d−k · `0

⌋
. As we keep adding 1 to `0 starting

from
⌊

d−k
3

⌋
to
⌊

d−k
2

⌋
, note that k0 decreases from nearly b2k/3− γc to nearly bk/2− γc, with

the decrease being at most 1 at a time (as k ≤ d − k). Therefore, as γ = o(k), there must be a
choice of `0 ∈ [0..(d− k)] such that k0 ≈2 2k/3. Further, for this value of `0 and k0, we also have
k− γ− 1 ≤ k0 +

k
d−k · `0 ≤ k− γ. Thus, (30) yields Λ ≤ 2−Ω(k) ·nO(γ).

E Proofs from Section 5

Algorithm 2 Degree sequence of a right-heavy binary tree

1. function DEG-SEQ(T)
2. v0 ← root node of T .
3. if v0 is a leaf then
4. return (1).

/* returning a singleton tuple */
5. end if
6. d← leaves(v0), i← 0.
7. while vi is not a leaf do
8. vi+1 ← right child of vi, i← i + 1.
9. end while

10. v← vj corresponding to the largest index j such that leaves(vj) >
d
3 .

11. d1 ← d− leaves(v).
12. return (d1, DEG-SEQ(Tv)).

/* To avoid a tuple of tuples, we may assume that (d1, DEG-SEQ(Tv)) is flattened before
returning. */

13. end function

E.1 Proof of Lemma 5.1

By induction on d. If d = 1, then DEG-SEQ(T) = (d1) = (1), so all the conditions are trivially met.
For d ≥ 2, consider the node v of T defined at line 10 of Algorithm 2. Suppose the left and right

57

children of v are vL and vR respectively. We have

leaves(v) = leaves(vL) + leaves(vR) ≤ 2 · leaves(vR) ≤
2d
3

.

Then by line 11,

e1 = d− d1 = leaves(v) ∈
(d

3
,

2d
3

]
=
(e0

3
,

2e0

3

]
.

Note that if v itself was a leaf, then leaves(v) ≤ 2d
3 still holds as d ≥ 2. From line 12, it is evident

that (d2, . . . , dt) = DEG-SEQ(Tv). As the number of leaves in Tv is leaves(v) < d, by induction, we
have that for all i ∈ [t− 2],

fi ∈
(fi−1

3
,

2 fi−1

3

]
where fi := leaves(v) −

i+1
∑

j=2
dj. But, notice that fi = d − d1 −

i+1
∑

j=2
dj = ei+1. Hence, we have, for

i ∈ [t− 1],

ei = fi−1 ∈
(fi−2

3
,

2 fi−2

3

]
=
(ei−1

3
,

2ei−1

3

]
.

Also, by induction, we trivially get dt = 1 and et = d− d1 −
t

∑
j=2

dj = leaves(v)−
t

∑
j=2

dj = 0.

Using ei ∈
(

ei−1
3 , 2ei−1

3

]
and e0 = d, we get ei ∈

(
d
3i , 2i ·d

3i

]
, so 1 = dt = et−1 − et = et−1. Hence,

d
3t−1 ≤ 1 ≤ 2t−1·d

3t−1 and log3 d + 1 ≤ t ≤ log3/2 d + 1.

E.2 Proof of Lemma 5.2

The proof is by induction on the size of the formula C. In the base case, C computes a variable,
say x1. Then, we have d = s = size(C) = t = d1 = 1 and f = x1, all consistent with the lemma
statement.

Let v be the node in the canonical parse tree T := T (C) at line 10 in Algorithm 2 – that is, it
is the last node in the rightmost path of T which has more than d

3 leaves in its subtree. Now, let P
be an arbitrary parse tree of C and let φ denote an isomorphism from P to T – we know such an
isomorphism exists from Proposition B.10. Let u be the node in P such that φ(u) = v. Let g be the
multiplication gate in C that corresponds to u.

Recall that Cg and Cg←y, respectively, denote the sub-formula at g and the formula obtained
by replacing the gate g with y, where y could be a new variable or a constant from the field. Due to
homogeneity, deg(Cg) = leaves(u) = leaves(v). Also, note that Cg is a UPT formula as it is a sub-
formula of C. However, the formula Cg←0 need not be homogeneous, as we require all the leaves
of homogeneous formulas to be labelled by variables. Nevertheless, one can easily eliminate the
zero gates by simplifying the formula using the rules g′ × 0 = 0 and g′ + 0 = g′; this ultimately
results in a homogeneous formula. In fact, we argue below that it would be a UPT formula.

Let h be the first addition gate on the path from g to the root of C. If no such gate exists,
then Cg←0 = 0 and thus can be considered to be a UPT formula with its canonical parse tree being
the empty tree. Otherwise, let h′ be the child of h such that g is in the subformula rooted at h′.
Then, Cg←0 = 0 is equivalent to the formula obtained by removing the edge from h′ to h in C
and the entire sub-formula at h′. Now, a parse tree is constructed by picking only one child of

58

every addition gate. Since Cg←0 = 0 is equivalent to the formula obtained by removing a child of
an addition gate from C, every parse tree of Cg←0 is also a parse tree of C. Thus, Cg←0 is a UPT
formula. We will make use of the fact that Cg and Cg←0 are UPT formulas later.

For a new variable y, the formula Cg←y uses exactly one copy of y, so Cg←y computes a poly-
nomial in F[x1, . . . , xn, y] of the form Ag · y+ Bg, where Ag and Bg are polynomials in F[x1, . . . , xn].
Substituting the variable y to 0 in Cg←y = Ag · y + Bg, we see that Bg is computed by the formula
Cg←0. Plugging in y to be the polynomial computed by Cg results in the original formula C. There-
fore,

C = Cg←y|y=Cg = Ag · Cg + Bg = Ag · Cg + Cg←0. (31)

It is easy that Ag is a homogeneous polynomial of degree d− leaves(v).
As Cg and Cg←0 are smaller formulas compared to C, by induction, we have the expressions:

Cg =
s1

∑
i=1

Q(1)
i,1 . . . Q(1)

i,t1
,

and

Cg←0 =
s2

∑
i=1

Q(2)
i,1 . . . Q(2)

i,t2
,

for some homogeneous polynomials
{

Q(1)
i,j

}
i,j

and
{

Q(2)
i,j

}
i,j

, t1 ≥ 1, t2 ≥ 1, s1 ∈ [0..size(Cg)], and

s2 ∈ [0..size(Cg←0)]. Plugging these expressions in (31), we get

C = Ag · Cg + Cg←0 = Ag ·
s1

∑
i=1

Q(1)
i,1 . . . Q(1)

i,t1
+

s2

∑
i=1

Q(2)
i,1 . . . Q(2)

i,t2
(32)

Since the canonical parse tree of Cg is

T (Cg) = can(Pu) (as P is a parse tree of C, Pu is a parse tree of Cg)
= can(P)φ(u) (from Proposition B.10)

= can(P)v (as φ(u) = v)
= T (C)v (as T (C) = can(P))

and that of Cg←0 is T (C), we have DEG-SEQ(T (C)v) = (d(1)1 , . . . , d(1)t1
) and DEG-SEQ(T (C)) =

(d(2)1 , . . . , d(2)t2
), where d(κ)j := deg

(
Q(κ)

i,j

)
for any κ ∈ [2], i ∈ [sκ], j ∈ [tκ]. From line 12 of the

function DEG-SEQ for input T (C), we have DEG-SEQ(T (C)) = (d− leaves(v), DEG-SEQ(T (C)v));
comparing these two sequences element-wise, we get, d(2)1 = d− leaves(v), and d(2)j+1 = d(1)j for j
in [t1], and t2 = 1 + t1. From (32), we have

C =
s

∑
i=1

Qi,1 . . . Qi,t ,

where s := s1 + s2, t := t2, and

Qi,j :=


Ag for i ∈ [s1] and j = 1

Q(1)
i,j−1 for i ∈ [s1] and j ∈ [2, t2]

Q(2)
i−s1,j for i ∈ [s1 + 1, s1 + s2] and j ∈ [t2]

59

All that remains to be checked now is that the degrees of Qi,j for different j’s matches the degree

sequence DEG-SEQ(T (C)) = (d(2)1 , . . . , d(2)t2
).

For i > s1, clearly deg(Qi,j) = deg(Q(2)
i−s1,j) = d(2)j . For i ≤ s1, we have deg(Qi,1) =

deg(Ag) = d − leaves(v) = d(2)1 , and for j ∈ [2, t2], deg(Qi,j) = deg(Q(1)
i,j−1) = d(1)j−1 = d(2)j .

As desired, s = s1 + s2 ≤ size(Cg) + size(Cg←0) ≤ size(C).

E.3 Proof of Lemma 5.3

The definition of residue implies that it is sufficient to show that
t

∑
p=1

∣∣∣kp − k
d · dp

∣∣∣ ≥ log3 d−10
108 for

arbitrary integers k1, . . . , kt. We now argue that this is indeed the case. Let us assume that d > 310

as otherwise, the lower bound on residue is trivial. We import the definitions of {ei}i∈[0..t] (line 4),
m (line 6), and the function J (line 8) from Algorithm 3. By Lemma 5.1, we have dt = 1, et = 0,
t ≥ log3 d + 1 ≥ 11, and for all i ∈ [t− 1],

ei ∈
(ei−1

3
,

2 · ei−1

3

]
. (33)

We have the following property of J .

Claim E.1. For all i ∈ [3m], we have 3i−1 < eJ (i) ≤ 3i, hence J : [3m] → [t− 2] is an injective
mapping.

A proof of the above claim can be found in Section E.3.1. We now fix an i ∈ [m] and j :=
J (3i) ∈ [t− 2] at line 12 in Algorithm 3 and continue our analysis. Note that, by the definition of
ej and Equation (33),

dj+1 = ej − ej+1 ∈
[ej

3
,

2ej

3

)
⊆
(

33i−2, 2·33i−1
)

, (34)

where the last containment follows from the fact that ej ∈ (33i−1, 33i] (by applying Claim E.1 for
the index 3i). From line 21, we have

α =
m

∑
p=1

ap

33p .

Then,

α · dj+1 =

(
m

∑
p=1

ap

33p

)
· dj+1 =

(
i−1

∑
p=1

ap

33p +
ai

33i +
m

∑
p=i+1

ap

33p

)
· dj+1 = s1 + s2 + s3,

where

s1 :=

(
i−1

∑
p=1

ap

33p

)
· dj+1,

s2 :=
(ai

33i

)
· dj+1,

60

Algorithm 3 The value of k for a given sequence of degrees

1. function UPT-K(d1, . . . , dt)
/* Returns k which shall be the order of derivatives for the SP and APP measures. */

2. d = d1 + · · ·+ dt.
3. for i ∈ [0..t] do

4. ei ← d−
i

∑
j=1

dj.

5. end for
6. m←

⌊
log3 d−1

3

⌋
.

/* Defining a function J : [3m]→ [t− 2]. */
7. for i ∈ [3m] do
8. J (i)← min

{
j ∈ [0..t] : ej ≤ 3i}.

9. end for
10. (a1, . . . , am)← undefined.
11. for i ∈ [m] do
12. j← J (3i).

13. b0 ←
(

i−1
∑

p=1

ap

33p

)
· dj+1.

/* b1 defined below is not used in the algorithm but will be useful in the analysis. */

14. b1 ←
(

i−1
∑

p=1

ap

33p +
1

33i

)
· dj+1.

15. if {b0} ∈
[1

18 , 17
18

]
then

16. ai ← 0.
17. else
18. ai ← 1.
19. end if
20. end for

21. α←
m
∑

p=1

ap

33p

22. k← bα · dc
23. return k.
24. end function

61

and

s3 :=

(
m

∑
p=i+1

ap

33p

)
· dj+1 ≤

(
∞

∑
p=i+1

1
33p

)
· dj+1 ≤

(
27

26 · 33(i+1)

)
· dj+1 ≤

27 · 2 · 33i−1

26 · 33(i+1)
=

1
39

.

(using Equation (34))

Note that |b1 − b0| = b1 − b0 =
dj+1

33i ⊆
[1

9 , 8
9

]
. We now consider two cases {b0} ∈ [1

18 , 17
18] and

{b0} /∈ [1
18 , 17

18] based on the if-else condition at line 15. The following simple claim whose proof
can be found in Section E.3.2 will be helpful in analysing these cases.

Claim E.2. For real numbers b0 and b1, if |b1 − b0| ∈
[1

9 , 8
9

]
, then either {b0} ∈

[1
18 , 17

18

]
or {b1} ∈[1

18 , 17
18

]
.

Case 1: {b0} ∈ [1
18 , 17

18]. In this case, ai = 0, so s2 = 0. Because s1 = b0, we have{
α · dj+1

}
= {s1 + s2 + s3} = {b0 + 0 + s3} = {{b0}+ s3}

= {b0}+ s3 ∈
[

1
18
− 1

39
,

17
18

+
1
39

]
=

[
7

234
,

227
234

]
. (as s3 ≤ 1/39)

Case 2: {b0} /∈ [1
18 , 17

18]. By Claim E.2, {b1} ∈ [1
18 , 17

18] . As ai = 1 in this case,{
α · dj+1

}
= {(s1 + s2) + s3} = {b1 + s3} = {{b1}+ s3}

= {b1}+ s3 ∈
[

1
18
− 1

39
,

17
18

+
1
39

]
=

[
7

234
,

227
234

]
. (as s3 ≤ 1/39)

Thus, in both the cases, we have, for all i ∈ [m] and j = J (3i) that,

{
α · dj+1

}
∈
[

7
234

,
227
234

]
.

As k j+1 is an integer, ∣∣k j+1 − α · dj+1
∣∣ ≥ ∣∣⌊α · dj+1

⌉
− α · dj+1

∣∣
= min

{{
α · dj+1

}
, 1−

{
α · dj+1

}}
≥ 7

234
.

Now let X := {J (3i) + 1 : i ∈ [m− 2]} ⊆ [t− 1]. Then the above condition translates to: For all
p ∈ X ,

|kp − α · dp| ≥
7

234
(35)

and Equation (34) implies that

dp ≤ 2 · 33(m−2)−1 ≤ d
36 . (36)

We thus have

t

∑
p=1

∣∣∣∣kp −
k · dp

d

∣∣∣∣ ≥ ∑
p∈X

∣∣∣∣kp −
bα · dc

d
· dp

∣∣∣∣ (using line 22)

62

≥ ∑
p∈X
|kp − α · dp| −

∣∣∣∣{α · d} · dp

d

∣∣∣∣ (using |x− y| ≥ |x| − |y|)

≥ ∑
p∈X
|kp − α · dp| −

dp

d

≥ ∑
p∈X

7
234
− 1

36 (using Equations (35) and (36))

≥ 1
36
· |X | = m− 2

36
(as J is injective)

=
1
36
·
(⌊

log3 d− 1
3

⌋
− 2
)

≥
log3 d− 10

108
.

E.3.1 Proof of Claim E.1

First, the function J : [3m] → [t − 2] is well-defined: Consider any i ∈ [3m]. Then the set{
j ∈ [0..t] : ej ≤ 3i} is not empty; it contains t − 2, as et−2 < 3 · et−1 = 3 ≤ 3i.22 And, 0 is not

contained in this set as

e0 = d > 33
⌊

log3 d−1
3

⌋
= 33m ≥ 3i.

Let j := J (i) ∈ [t− 2]. We show that 3i−1 < ej by contradiction. Suppose that ej ≤ 3i−1. From
the minimality condition in the definition of J , we have ej−1 > 3i. Hence, ej ≤ 3i−1 <

ej−1
3 , which

contradicts Equation (33). It follows that J is injective because an integer cannot lie between two
different pairs of consecutive powers of 3.

E.3.2 Proof of Claim E.2

As b0 and b1 are close to each other, so are their integer parts. Indeed, | bb1c − bb0c | is 0 or 1. We
will only analyse the former case as the latter case can be easily reduced to the former. Hence we
have, | {b1}− {b0} | = | (b1 − bb1c)− (b0 − bb0c) | = |b1− b0| ∈

[1
9 , 8

9

]
. As {b0} and {b1} are in the

range [0, 1], if neither of them lies in
[1

18 , 17
18

]
, the difference between them cannot be in the range[1

9 , 8
9

]
. Therefore, at least one of {b0} or {b1} lies in

[1
18 , 17

18

]
.

E.4 Proof of Theorem 5.4

Let C be a UPT formula computing IMMn,d, (d1, . . . , dt) := DEG-SEQ(T (C)), and k := UPT-K(d1, . . . ,
dt). We now delve into the program UPT-K(d1, . . . , dk) in Algorithm 3 to understand the range of
the k that it outputs. Notice that for i = 1, b0 gets the value 0 (at line 13), so the condition in
line 15 fails resulting in the value of a1 being 1. Hence, k = bα · dc ≥

(a1
33

)
· d− 1 = d

27 − 1 ≥ d
30 .

On the other hand, k ≤ α · d ≤
(

∞
∑

p=1

1
33p

)
· d ≤ d

26 ≤
d
2 . Hence Lemma 4.6 is applicable with

22et−1 = 1 is shown in the proof of Lemma 5.1.

63

k = UPT-K(T (C)) and h = blog nc – giving a polynomial Pw in ñ (say) variables such that its SP
measure is large. By Lemma B.13, this means that there exists a UPT formula C′ of similar size
computing Pw (in fact, T (C′) = T (C)).

Lemma 5.2 and Lemma 5.3 when put together give

Pw =
s

∑
i=1

Qi,1 . . . Qi,t

for some s ≤ size(C′) such that for all i ∈ s, residuek(DEG-SEQ(T (C′))) ≥ Ω (log d). Here we
are using the fact that k = UPT-K(DEG-SEQ(T (C′))) as T (C) = T (C′). Now since w is obtained
by Lemma 4.6, applying Lemma 4.3 with γ = Ω(log d) gives that s ≥ 2−O(d) · nΩ(log d). Hence,
size(C) ≥ size(C′) ≥ s ≥ 2−O(d) · nΩ(log d).

If d ≤ ε · log n · log log n for some ε > 0, then d
log d ≤

ε·log n·log log n
log log n+log log log n ≤ ε′ · log n for some

0 < ε′ ≤ ε. Hence, d = ε′ · log n · log d and 2−O(d) · nΩ(log d) = nΩ(log d) if ε (and thus ε′) is a small
enough constant.

E.5 Proof of Theorem 5.6

Let C be any UPT formula computing P, (d1, . . . , dt) := DEG-SEQ(T (C)), and k := UPT-K(d1,
. . . , dt). Observe that the formula C′ obtained by setting yi = 0 for all i ∈ [d] \ {k} in C computes
NWq,d,k(x). It follows from the proof of Lemma 5.2 that not only is C′ a UPT formula, but also
that its canonical parse tree T (C′) is the same T (C). Hence, (d1, . . . , dt) := DEG-SEQ(T (C′))
and k = UPT-K(DEG-SEQ(T (C′))). Then, arguing as in the proof of Theorem 5.4, we get that
size(C′) ≥ (qd)Ω(d) = nΩ(d). As size(C′) ≤ size(C), this proves the theorem.

F Large-degree set-multilinear lower bound (using [LST21])

One of the primary motivations for our alternate approach of the lower bounds of [LST21] is based
on a hope that we can achieve exponential constant-depth homogeneous formula lower bounds
(rather than simply superpolynomial) and resolve Open Problem 1.2 from Section 1. A necessary
condition for us to be able to achieve this is to at least get such lower bounds for set-multilinear
constant-depth formulas. Although exponential set-multilinear (or even multilinear) constant-
depth lower bounds already follow from [RY09, CLS19, CELS18], these techniques do not give
non-FPT lower bounds, unlike [LST21].

In this section, we show how to obtain an exponential non-FPT lower bound against constant-
depth set-multilinear formulas by making a small adjustment to the lower bound proof in [LST21].
However, we note that this change does not allow us to retain the iterated matrix multiplication as
the hard polynomial, instead we are only able get the lower bound for some polynomial in VNP.
For the sake of simplicity, we shall present the idea only for depth-5 set-multilinear formulas; the
parameters that work for larger depths are similar to the parameters we use in Section 4. We
will assume that the reader is familiar with the original paper [LST21], where the authors handle
degree at most O(log2 n) (Lemma 13 in [LST21]), whereas the following claim handles the full
range of degrees up to n.

64

Claim F.1. For any integers d ≤ n, there is a set-multilinear polynomial (family) P ∈ VNP of
degree d over at most N = nd variables such that any set-multilinear formula of product-depth 2
computing it has size nΩ(

√
d). In particular, this gives a NΩ(N1/4) lower bound.

Proof. The main idea to handle a larger degree is that the set sizes need not be powers of 2 if we
are content with proving the lower bound for some polynomial in VNP, and not necessarily for
the IMM polynomial (or its projection).

Let x = x1 t · · · t xd be the variable sets; of which some are “positive” and the rest are
“negative” sets; in particular, let w = (w1, . . . , wd) be a tuple of (not necessarily integers) formed
by h and −h0 such that all the prefix sums are at most h in absolute value. According to the signs
of the wi’s, we classify the variable sets as positive or negative, and fix the sizes of the positive sets
to be n = 2h, and that of negative sets to be n0 = 2h0 . We set h = log n and h0 = h− c · h/

√
d for

an appropriate constant c ∈ [0.9, 1] that we fix later so that n0 is an integer.
Let M+ be the set-multilinear monomials over the positive sets and similarly M− be the

“negative monomials”, both sets ordered in lexicographical order, where we express a monomial
in a canonical way by ordering the variables in increasing order of the corresponding variable set
indices. Then we define

P := ∑
m+∈M+, m−∈M−

rank(m+)=rank(m−)

m+ ·m−,

where rank(m) is the position of the positive or negative monomial m in the corresponding mono-
mial set. It is not hard to show that P ∈ VNP and relrk(P) ≥ 2−O(h) = n−O(1). By following the
same proof of Claim 14 in [LST21], we conclude that any product-depth 2 set-multilinear formula
C must satisfy relrk(C) ≤ size(C)

nΩ(
√

d) . Hence, size(C) ≥ nΩ(
√

d) if C computes P.

All that remains to show is that there exists a value of c ∈ [0.9, 1] such that n0 = 2h0 =

2h−c·h/
√

d is an integer. This is true because n0 is a monotonous real function of c with range

2h−0.9h/
√

d − 2h−h/
√

d = 2h(1−1/
√

d)
(

2
0.1h√

d − 1
)

≥ 2h(1−1/
√

d)

(
0.1h

log e
√

d

)
≥ n1−1/

√
d/
√

d (assuming h is large enough)

≥ n1−1/
√

d/
√

n
≥ 1.

As the range of n0 is at least 1, it must take an integral value for some setting of c.

G Geometric intuition behind SP and APP measures

In this section, we give the geometric intuition which led to the development of the shifted partials
measure SPk,` and the affine projection of partials measure APPk,n0 . We will see, however, that this
intuition breaks down when k is large and prior lower bounds did indeed only use small values of
k. By using higher values of k here, we depart from this geometric intuition.

65

Preliminaries: the algebra-geometry dictionary. Let V ⊆ Fn be the zero set of polynomials
{g1(x), g2(x), . . . , gs(x)} ⊆ F[x]=d. Let P`(V) ⊆ F[x]=` be the vector space of polynomials of
degree ` which vanish at every point in V. Now, if V has a small codimension, then V contains
a lot of points which in turn imposes a lot of (linear) constraints on P`(V) and so intuitively we
should have that:

Proposition G.1. (Informal/Qualitative). If codimension of V is small then dimension of P`(V)
is also small.

Now notice that for all ` ≥ d, the set of polynomials x(`−d) · {g1(x), g2(x), . . . , gs(x)} is contained
in P`(V) and so intuitively we should have:

Proposition G.2. (Informal/Qualitative). If codimension of V is small then dimension of x(`−d) ·
{g1(x), g2(x), . . . , gs(x)} is also small23.

We also have that

Fact G.3. If L ⊆ Fn is a random linear subspace, then the codimension of V ∩ L inside L is the
same as the codimension of V inside Fn.

We can use the above intuition to formulate the shifted partials measure SPk,` and the affine pro-
jection of partials measure APPk,n0 as follows.

Formulating the measures. Arithmetic circuits and formulas admit various depth reductions and
in particular, can be reduced to depth 4 without increasing the size too much. Consider a term
T of such a depth 4 formula. Specifically, let T(x) ∈ F[x] be a product of t polynomials, i.e.
T = Q1(x) · Q2(x) · . . . · Qt(x). First observe that for any k < t, the zero set of k-th partials of T,
denoted V(∂kT) is of codimension (k + 1). The above intuition then suggests that

SPk,` := dim
〈

x` · ∂kT
〉

should also be small. Also notice that for a subspace L ⊆ Fn, πL
(
∂kT

)
is the set of polynomials

whose zero set is L ∩V(∂kT) and so for such a T

APPk,n0(P) := max
L:x→〈z〉

dim
〈

πL

(
∂kP

)〉
should be small as well. Prior work [GKKS14, KSS14, GKS20] showed that when the degree of
the factors of T are also small, then these measures are indeed significantly small for such a T
(as compared to a random polynomial), thereby leading to lower bounds for certain classes of
depth 4 formulas (and also for some subclasses of higher depth formulas via appropriate depth
reductions). But notice that the geometric intuition behind these measures holds only when k is
less than the number of factors t. In particular when k ≥ t then V(∂kT) could be empty24 and so its
no longer clear why either SPk,`(T) or APPk,n0(T) should be small in this regime. Our conceptual
contribution is that even when k > t then SPk,`(T) and APPk,n0(T) can be small (this depends on
γ(k)) and this can be used to more directly obtain the lower bounds in [LST21].

23An asymptotic statement that captures this qualitative intuition is obtained through the notion of the Hilbert poly-
nomial of the variety V.

24For example when T = (x3
1 + x3

2 + . . . + x3
n)

t, then V(∂kT) is empty for all k ≥ t.

66

	Introduction
	Preliminaries
	Structure of the space of partials of a product
	Lower bound for low-depth homogeneous formulas
	Lower bound for unique-parse-tree formulas
	Conclusion
	Other known lower bounds
	Full Preliminaries
	Proofs from Section 3
	Proofs from Section 4
	Proofs from Section 5
	Large-degree set-multilinear lower bound (using lst1)
	Geometric intuition behind SP and APP measures

