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Abstract

In a multi-k-ic depth three circuit every variable appears in at most k of the linear polyno-
mials in every product gate of the circuit. This model is a natural generalization of multilinear
depth three circuits that allows the formal degree of the circuit to exceed the number of under-
lying variables (as the formal degree of a multi-k-ic depth three circuit can be kn where n is
the number of variables). The problem of proving lower bounds for depth three circuits with
high formal degree has gained in importance following a work by Gupta, Kamath, Kayal and
Saptharishi [GKKS13a] on depth reduction to high formal degree depth three circuits. In this
work, we show an exponential lower bound for multi-k-ic depth three circuits for any arbitrary
constant k.

1 Introduction

The recent years have witnessed some promising progress in arithmetic circuit lower bounds. A
line of research attempts to better understand the prospect of proving super-polynomial arithmetic
circuit lower bound by proving strong lower bounds for small depth circuits - thanks to the beautiful
depth reduction results in these works [VSBR83, AV08, Koi12, Tav13]. A work by Gupta, Kamath,
Kayal and Saptharishi [GKKS13a] showed that in order to separate VP from VNP, it is sufficient to
prove a strong-enough lower bound for depth three circuits. The formal degree 1 of a depth three
circuit can be much larger than the degree of the polynomial that it computes. This fact is exhibited
in [GKKS13a]: quite interestingly, there is a depth three circuit with formal degree nO(

√
n) (and

also size nO(
√
n)) that computes Detn, the determinant of an n× n symbolic matrix. Note that in

this case the formal degree nO(
√
n) is also much higher than the number of variables n2. It follows

from [GKKS13a] that if we are able to show an nω(
√
n) size lower bound for depth three circuits of

formal degree nO(
√
n) computing the Permn (the permanent of an n× n symbolic matrix) then we

would end up separating the circuit complexity of the determinant and the permanent polynomials
(also proving VP 6= VNP).

1.1 Motivation and our result

The issue of large formal degree of a circuit, compared to the actual degree and the number of vari-
ables of the polynomial being computed, poses a challenge to the existing lower bound techniques

1formal degree of a circuit C is the formal degree of its output gate. Formal degree of a + gate is the maximum of
the formal degrees of its children, whereas formal degree of a × gate is the sum of the formal degrees of its children.
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in particular the complexity measures that have been used successfully to prove lower bounds for
certain interesting models of circuits having low formal degree. The partial derivatives measure,
the shifted partials and the closely related projected shifted partials, and the evaluation dimension
are examples of such effective measures.

The partial derivatives measure was introduced and used by Nisan and Wigderson in an influential
work [NW97] to prove an exponential lower bound for homogeneous 2 depth three circuits with
formal degree less than the number of variables. A lower bound for depth three circuits with large
formal degree will trivially imply a lower bound for homogeneous depth three circuits with large
formal degree. This prompts us to pose the following problem,

Problem 1. Over fields of characteristic zero, prove a super polynomial lower bound for homoge-
neous depth three circuits with formal degree D = k · n, where k is an arbitrary constant and n is
the number of variables.3

In other words, can we prove a lower bound even if we allow the degree of the polynomial (being
computed) to equal the formal degree of the depth three circuit that is only modestly higher than
the number of variables? We do not know if the partial derivatives measure, or in fact any of the
known measures and techniques, can be used to solve this problem. But, doing so might offer some
insight into depth three circuits with large formal degree. We note that solving Problem 1 would
automatically take us to the realm of non-multilinear polynomials.

Building on the partial derivatives measure, Kayal [Kay12] has introduced the shifted partials mea-
sure which has been used subsequently to prove an exponential lower bound for homogeneous depth
four circuits 4 [KLSS14, KS14b] (albeit, using a variant of the shifted partials measure called the
projected shifted partials) 5. A recent work by Kayal and Saha [KS14a] uses the projected shifted
partials measure to prove an exponential lower bound for depth three circuits with arbitrarily large
formal degree but with somewhat low bottom fanin. It is not clear to us if the projected shifted
partials can be used to solve Problem 1.

The evaluation dimension measure (defined later) has been used by Raz and Yehudayoff [RY09]
to prove an exponential lower bound for multilinear 6 depth three circuits 7. More precisely, they
have shown a size lower bound of 2Ω(d) for any multilinear depth three circuit computing Detd.
Note that the formal degree of a multilinear depth three circuit is less or equal to the number of
variables of the polynomial it computes. In the context of studying depth three circuits with large
formal degree, a natural generalization of multilinear depth three circuits is the model of multi-k-ic

2a circuit is homogeneous if every gate of the circuit computes a homogeneous polynomial (meaning, all monomials
have the same degree)

3Over any fixed finite field, a solution to this problem already follows from the works of [GR98] and [GK98].
4 with formal degree less than the number of variables
5[KLSS14] builds upon the works of [GKKS13b] and [KSS14].
6every variable occurs in at most one of the linear polynomials in every product gate of a multilinear depth three

circuit
7in fact, their result is more general and applies to constant depth multilinear circuits. Also, their result builds on

an earlier work by Raz [Raz09] who showed a quasi-polynomial lower bound for general multilinear formulas. Both
[RY09] and [Raz09] use the rank of a partial derivatives matrix as a measure which can be shown to be the same as
the evaluation dimension - a concept used in [FS13].
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depth three circuits (defined below) that allows the formal degree of the circuit to be higher than
the number of variables.

Definition 1. A depth three circuit is multi-k-ic if every variable appears in at most k of the linear
polynomials in every product gate of the circuit.

For example, the expression (x1 + 2x2)(4x1 − x3) + x2
2 + (x3 − x2)(x1 + x2) is a multi-2-ic 8 depth

three circuit. The formal degree of a multi-k-ic depth three circuit can be as high as k · n, where
n is the number of variables. A question, related to Problem 1, is the following: even if we allow
the degree of the polynomial computed to equal the formal degree of the multi-k-ic circuit that
computes it, can we prove a lower bound for this model?

Problem 2. Prove an exponential lower bound for multi-k-ic depth three circuits for any arbitrary
constant k.

Could the evaluation dimension be useful in solving this problem9? In this work, we answer this
question in the affirmative.

Theorem 1. Let k be any arbitrary constant. There is a family of n-variate, degree k·n polynomials
{fn} in VNP such that any multi-k-ic depth three circuit computing fn must have size 2Ω(n/225k).

We will prove the above theorem in the rest of this article, but leave Problem 1 open. (We have
not tried to optimize the constant 225 in the above theorem.)

2 The measure - evaluation dimension

Let f(x1, . . . , xn) be a polynomial in F[x1, . . . , xn], and S = {xi1 , . . . , xim} be a subset of the
variables x = {x1, . . . , xn}. For a point a = (a1, . . . , am) ∈ Fm, let fS=a ∈ F[x\S] denote the
polynomial f evaluated at xij = aj for every j ∈ [m]. Let evalS(f) be the F-linear space spanned
by the polynomials {fS=a}a∈Fm , i.e.

evalS(f) = F-span ({fS=a : a ∈ Fm}) .

Definition 2. Evaluation dimension of a polynomial f with respect to a subset of variables S is
defined as the dimension of the vector space evalS(f). It is denoted by evalDimS(f).

Let us state a couple of useful properties of the evaluation dimension.

Lemma 2. Let f and g be two polynomials in F[x] and S ⊆ x. Then

1. (subadditivity) evalDimS(f + g) ≤ evalDimS(f) + evalDimS(g)

2. (submultiplicativity) evalDimS(f · g) ≤ evalDimS(f) · evalDimS(g)

8‘multiquadratic’ sounds better here
9 The works of Grenet, Koiran, Portier, and Strozecki [GKPS11] and of Agrawal, Saha, Saptharishi and Saxena

[ASSS12] proved lower bounds for certain models of depth four circuits with high formal degree, using properties of
the real-τ -conjecture and the Jacobian respectively. The top fanin of such depth four circuits is essentially low or can
be assumed to be low without loss of generality - a feature that is crucially used in their proofs. We do not know if
their techniques can be used to solve Problem 2.

3



Proof. The subadditivity property follows from the observation that every polynomial in the space
evalS(f + g) is a sum of a polynomial in evalS(f) and a polynomial in evalS(g). Now suppose the
polynomials f1, . . . , fp form a basis of the space evalS(f) and similarly g1, . . . , gq form a basis of
evalS(g). Then every polynomial in the space evalS(f ·g) can be expressed as an F-linear combination
of polynomials figj with i ∈ [p] and j ∈ [q]. This shows the submultiplicativity property.

3 An explicit polynomial with high evaluation dimension

Let g be a polynomial in 6n variables u = {u1, . . . , u4n} and x = {x1, . . . , x2n}, and k ∈ Z+ be an
arbitrary positive integer. To every set A ⊆ [2n], associate a set BA in the following manner:

• If |A| ≥ n then BA is a fixed subset of A of size exactly equal to Ā = [2n]\A.

• If |A| < n then BA is a fixed subset of Ā of size exactly equal to A.

One way of fixing BA is to take lexicographically the smallest subset. For a set A ⊆ [2n] and

e = {e1, . . . , e|A|} ∈ Z|A|, let xeA
def
=
∏
i∈A x

ei
i and uA

def
=
∏
i∈A ui. Let Ā + 2n denote the set

{i+ 2n : i ∈ Ā}, and ūĀ+2n
def
=
∏
i∈Ā (1− ui+2n). Define the polynomial fA(x) as follows.

fA(x) =

{∑
e∈{0,...,k}|Ā| x

e
BA
· xe

Ā
if |A| ≥ n∑

e∈{0,...,k}|A| x
e
A · xeBA if |A| < n

Define g as,

g =
∑

A⊆[2n]

uA · ūĀ+2n · fA(x). (1)

Polynomial g satisfies the following property.

Lemma 3. For every A ⊆ [2n], there is an assignment of the u variables to field constants such
that evalDimxA(g), where xA = {xi : i ∈ A}, (after setting the u variables) is (k + 1)min(|A|,|Ā|).

Proof. Let A ⊆ [2n]. Consider this assignment of the u variables for every i ∈ [2n]: ui = ui+2n = 1
if i ∈ A and ui = ui+2n = 0 if i ∈ Ā. Denote the polynomial g under this assignment by guA=1,
which equals fA(x). Hence,

evalDimxA(guA=1) = evalDimxA(fA).

Now, it is not difficult to see that the evaluation dimension of fA with respect to xA equals (k+1)|A|

(respectively, (k + 1)|Ā|) if |A| < n (respectively, |A| ≥ n).

We also note that g defines a polynomial family in VNP, as the coefficient of a given monomial can
be computed efficiently. The construction of g is inspired by a similar construction in an earlier
work of Raz [Raz10].

Picking a random xA. Suppose we form a set A by picking every i ∈ [2n] independently at
random with probability 1

2 . By Chernoff bound, |A| ∈ [(1− δ)n, (1 + δ)n] with probability at least

1 − e−nδ2/3 for any δ > 0. We will study the evaluation dimension of g and the multi-k-ic depth
three circuit that computes it with respect to such a random xA = {xi : i ∈ A} after assigning field
values to the u-variables. The parameter δ will be a fixed function of k (to be specified later in
Section 6).
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Corollary 4. By Lemma 3, if A is chosen randomly (as described above) then evalDimxA(guA=1)

is at least (k + 1)(1−δ)n with probability higher than 1− e−nδ2/3, for any δ > 0.

The above corollary provides a lower bound on the evaluation dimension of g. We will now show
an upper bound on the evaluation dimension of a multi-k-ic depth three circuit with respect to
a random xA. This, together with Corollary 4, will give us the relevant lower bound as outlined
below. In the rest of this article whenever we write A is ‘random’ we mean A is formed by picking
every i ∈ [2n] independently at random with probability 1

2 .

4 Proof outline

Let C =
∑s

i=1 T
(i) be a multi-k-ic depth three circuit computing g (as defined in Equation 1),

where every T (i) is a product of linear polynomials. We will refer to T (i) as a product term (or
simply a term) of C. Since C is multi-k-ic, every variable appears in at most k linear polynomials
in every T (i). Let A ⊆ [2n] be a random set and xA = {xi : i ∈ A} be the corresponding subset of
x. For any polynomial h(x,u), denote by huA=1 the polynomial h with ui = 1 if i ∈ A and ui = 0
if i /∈ A. Note that huA=1 is a polynomial in only the x-variables.

g = C =

s∑
i=1

T (i)

⇒ guA=1 = CuA=1 =
s∑
i=1

T
(i)
uA=1

⇒ evalDimxA(guA=1) ≤
s∑
i=1

evalDimxA(T
(i)
uA=1),

where the last inequality follows from the subadditive property of the evaluation dimension (Lemma

2). Now, suppose we are able to show that evalDimxA(T
(i)
uA=1) is upper bounded by a quantity

U(k, n, δ) for every i ∈ [s] with high probability over the random choice of A. Then by applying
union bound,

evalDimxA(guA=1) ≤ s · U(k, n, δ),

also with high probability. In other words, by the above observation and Corollary 4, there exists
a choice of A such that

(k + 1)(1−δ)n ≤ evalDimxA(guA=1) ≤ s · U(k, n, δ)

⇒ s ≥ (k + 1)(1−δ)n

U(k, n, δ)
.

This will give us a lower bound on the top fanin of C. We are now left with the task of finding a
suitable expression for U(k, n, δ), which we do in the following section.

5 Evaluation dimension of a term of a multi-k-ic depth-3 circuit

Notations. Let us focus on a product term T (i) = T (say). Let T =
∏d
j=1 `j , where `j is a linear

polynomial and c be a positive integer constant (to be fixed later in Section 6). Split the linear
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polynomials in T into three parts:

P (1) :=
∏
j∈[d]

`j such that `j has exactly one or no x-variables

P (2) :=
∏
j∈[d]

`j such that the number of x-variables in `j is between two and ck

P (3) :=
∏
j∈[d]

`j such that `j has greater than ck x-variables.

Also let,

mi := the number of linear polynomials in T with exactly i x-variables.

Naturally, T = P (1) · P (2) · P (3). Also, the number of linear polynomials in P (1) is m0 + m1, the
number of linear polynomials in P (2) equals

∑ck
i=2mi, and the number of linear polynomials in P (3)

equals
∑

i>ckmi.

Claim 5. For any A ⊆ [2n], evalDimxA(TuA=1) ≤ evalDimxA(P
(2)
uA=1) · evalDimxA(P

(3)
uA=1)

Proof. By the submultiplicativity property of evaluation dimension (Lemma 2),

evalDimxA(TuA=1) ≤ evalDimxA(P
(1)
uA=1) · evalDimxA(P

(2)
uA=1) · evalDimxA(P

(3)
uA=1).

Moreover, it is easy to see that evalDimxA(P
(1)
uA=1) = 1.

We will upper bound the evaluation dimension of P
(3)
uA=1 with respect to xA for any A, and the

evaluation dimension of P
(2)
uA=1 with respect to xA for a random A. Let r2 be the number of

occurrences of the x-variables among the linear polynomials in P (2) and r3 be the number of
occurrences of the x-variables in P (3). Since every variable occurs in at most k linear polynomials
in T and there are 2n x-variables,

r2 + r3 ≤ 2kn. (2)

5.1 Evaluation dimension of P (3)

Lemma 6. For any A ⊆ [2n], evalDimxA(P
(3)
uA=1) ≤ 2

r3
ck .

Proof. The evaluation dimension of P
(3)
uA=1 with respect to the xA-variables cannot exceed 2b, where

b is the number of linear polynomials in P (3). Observe that the degree of P (3) with respect to the
x-variables is less than r3

ck , as every linear polynomial in the product P (3) has more than ck x-
variables.

5.2 Evaluation dimension of P (2)

Coloring of linear polynomials. Every linear polynomial in the product P (2) = P (say) has
more than one and less than or equal to ck x-variables. We color the linear polynomials in P in
such a way that no two linear polynomials with the same color have a common x-variable. This
coloring can be done greedily using at most (k − 1)ck + 1 ≤ ck2 colors. Let the number of colors
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used be q; we will identify these colors with {1, . . . , q}. Now we can split the product P into at
most q ≤ ck2 parts (one per color), say Q(1), . . . , Q(q), such that every Q(j) is a product of linear
polynomials in P that are colored j. This also implies that Q(j) is multilinear in the x-variables.
Naturally,

P =

q∏
j=1

Q(j).

To understand the evaluation dimension of P , we will focus on the polynomials Q(j).

Some more notations and bounds. Let mi,j be the number of linear polynomials in Q(j) with
exactly i many x-variables. Hence, mi =

∑
j∈[q]mi,j for every integer i ∈ [2, ck]. Let A be a random

subset of [2n] (in the sense described in Section 3). Let ri,j be the number of linear polynomials in
Q(j) with strictly more than i x-variables and exactly i xA-variables. Note that only such linear
polynomials with at least one xA-variable, but not all x-variables are xA-variables, contribute to
the evaluation dimension of P with respect to xA. We will refer to such linear polynomials as
partially touched (by A) linear polynomials. The expected value of ri,j over the random choice of
A is

E [ri,j ] =
ck∑

`=i+1

(
`

i

)
· 1

2`
·m`,j

≥ i+ 1

2ck
·

ck∑
`=i+1

m`,j

≥ 1

2ck−1
·

ck∑
`=i+1

m`,j (as i ≥ 1). (3)

The above expression for the expectation can be derived from the observation that a linear poly-
nomial with ` x-variables (` > i) has exactly i xA-variables with probability

(
`
i

)
· 1

2`
. We will see

how ri,j contributes to the evaluation dimension of P later. But, first, in order to get a handle on
the value of ri,j we would like to argue that it is close to its expected value with high probability.
Since Q(j) is multilinear, if E [ri,j ] is sufficiently large, we can apply Chernoff bound on ri,j and
show that (1− δ)E [ri,j ] ≤ ri,j ≤ (1 + δ)E [ri,j ] with high probability. By Equation 3, expectation of

ri,j is large if
∑ck

`=i+1m`,j is large. This motivates us to split Q(j) further depending on the value

of
∑ck

`=i+1m`,j .

Splitting Q(j) further. Let τj be the maximum number less than ck such that

ck∑
`=τj+1

m`,j ≥
n

ck2 ·∆
, (4)

where ∆ = ∆(k) is a sufficiently large constant, dependent on k, to be fixed later in Section 6. Let
Q′(j) be the product of those linear polynomials in Q(j) that contribute to ri,j for i > τj , and Q̃(j)
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the product of those linear polynomials in Q(j) that contribute to ri,j for i ∈ [1, τj ]. By Equation
4,

ck−1∑
i=τj+1

ri,j ≤
ck∑

i=τj+2

mi,j <
n

ck2 ·∆
. (5)

Let P ′ =
∏q
j=1Q

′(j) and P̃ =
∏q
j=1 Q̃

(j). Then,

evalDimxA(PuA=1) ≤ evalDimxA(P̃uA=1) · evalDimxA(P ′uA=1),

as a linear polynomial contributes to the evaluation dimension of P only if it is partially touched
(by A). By Equation 5, the number of linear polynomials in P ′ is upper bounded by

q∑
j=1

ck−1∑
i=τj+1

ri,j ≤
n

ck2 ·∆
· q ≤ n

∆
(as q ≤ ck2).

Hence,
evalDimxA(P ′uA=1) ≤ 2

n
∆ , (6)

as the evaluation dimension cannot exceed 2b, where b is the number of linear polynomials in P ′. By
choosing a large enough ∆ in the analysis later, we will ensure that evalDimxA(P ′uA=1) is negligible
compared to other relevant terms.

Computing evaluation dimension of P̃ . Since Q̃(j) is a product of those linear polynomials
that contribute to ri,j for i ∈ [1, τj ], by Equations 3 and 4,

E [ri,j ] ≥
1

2ck−1
· n

ck2 ·∆
,

for every i ∈ [1, τj ]. For any fixed j ∈ [q], Q(j) is multilinear. Hence, by applying Chernoff bound,

Pr{|ri,j − E [ri,j ]| > δ · E [ri,j ]} ≤ e−
δ2·E[ri,j ]

3 ≤ e−
δ2·n

3·2ck−1ck2∆ .

By union bound, Pr{|ri,j − E [ri,j ]| > δ · E [ri,j ]} for any j ∈ [q] and i ∈ [1, τj ], is bounded by,

ε1 := ck2 · ck · e−
δ2·n

3·2ck−1ck2∆ . (7)

As n is much larger compared to the constants k, c, δ,∆, the above ‘error probability’ ε1 is negligible.
Hence, with probability at least 1− ε1,

(1− δ) · E [ri,j ] ≤ ri,j ≤ (1 + δ) · E [ri,j ] (8)

for every j ∈ [q], i ∈ [1, τj ].
Let ri be the number of linear polynomials in P̃ with more that i x-variables and exactly i

xA-variables. Then,

ri =
∑

j∈[q]:i∈[1,τj ]

ri,j

E [ri] =
∑

j∈[q]:i∈[1,τj ]

E [ri,j ].
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The notation j ∈ [q] : i ∈ [1, τj ] means the sum is over those j ∈ [q] for which i ∈ [1, τj ]. By
Equation 8,

(1− δ)E [ri] ≤ ri ≤ (1 + δ)E [ri]

with probability at least 1− ε1. This implies

ri ≤ (1 + δ) ·
∑

j∈[q]:i∈[1,τj ]

E [ri,j ]

= (1 + δ) ·
∑

j∈[q]:i∈[1,τj ]

ck∑
`=i+1

(
`

i

)
· 1

2`
·m`,j (by Equation 3)

= (1 + δ) ·
ck∑

`=i+1

(
`

i

)
· 1

2`
·

∑
j∈[q]:i∈[1,τj ]

m`,j

≤ (1 + δ) ·
ck∑

`=i+1

(
`

i

)
· 1

2`
·
∑
j∈[q]

m`,j

= (1 + δ) ·
ck∑

`=i+1

(
`

i

)
· 1

2`
·m`.

Let ex be the number of occurrences of a variable x ∈ xA in the linear polynomials in P̃ . Then, by
the above equation, with probability at least 1− ε1,

∑
x∈xA

ex =
ck−1∑
i=1

i · ri

≤ (1 + δ) ·
ck−1∑
i=1

i ·
ck∑

`=i+1

(
`

i

)
· 1

2`
·m`

= (1 + δ) ·
ck−1∑
i=1

ck∑
`=i+1

(
`− 1

i− 1

)
· 1

2`
· ` ·m`

≤ (1 + δ) ·
ck∑
`=2

`−1∑
i=1

(
`− 1

i− 1

)
· 1

2`
· ` ·m`

= (1 + δ) ·
ck∑
`=2

(2`−1 − 1) · 1

2`
· ` ·m`

= (1 + δ) ·
ck∑
`=2

(
1− 1

2`−1

)
· 1

2
· ` ·m`

≤ (1 + δ) ·
(

1− 1

2ck−1

)
· 1

2
·
ck∑
`=2

` ·m`.

Observe that
∑ck

`=2 ` ·m` is the number of occurrences of the x-variables in P . Hence,
∑ck

`=2 ` ·m` =

9



r2 and so with probability at least 1− ε1,∑
x∈xA

ex ≤ (1 + δ) ·
(

1− 1

2ck−1

)
· r2

2
. (9)

Let ε0 = e−
δ2n

3 .

Lemma 7. With probability at least 1− (ε0 + ε1) over the random choice of A,

evalDimxA(P̃uA=1) ≤
[(

1− 1

2ck−1

)
· r2

2n
+ 1

](1+δ)·n
.

Proof. Since A is chosen randomly by picking every i ∈ [2n] independently at random with proba-
bility 1

2 , |xA| ≤ (1+δ)·n with probability at least 1−ε0. The evaluation dimension of P̃ with respect

to xA cannot exceed the number of distinct xA-monomials in P̃ with coefficients from F[x\xA]. The
number of such monomials is upper bounded by

∏
x∈xA(ex + 1). By AM-GM inequality,

∏
x∈xA

(ex + 1) ≤
[∑

x∈xA (ex + 1)

|xA|

]|xA|

≤

[
(1 + δ)(1− 1

2ck−1 ) · r22
|xA|

+ 1

]|xA|
, (by Equation 9)

with probability at least 1− ε1. Hence, with probability at least 1− (ε0 + ε1),

∏
x∈xA

(ex + 1) ≤
[(

1− 1

2ck−1

)
· r2

2n
+ 1

](1+δ)n

,

as the above expression increases with |xA| and |xA| ∈ [(1− δ)n, (1 + δ)n] with probability at least
1− ε0.

Corollary 8. With probability at least 1− (ε0 + ε1) over the random choice of A,

evalDimxA(P
(2)
uA=1) ≤

[(
1− 1

2ck−1

)
· r2

2n
+ 1

](1+δ)n

· 2
n
∆ .

Proof. Follows from the above lemma and Equation 6.

5.3 Evaluation dimension of a term

Let T be a product term in a multi-k-ic depth three circuit.

Lemma 9. With probability at least 1− (ε0 + ε1) over the random choice of A,

evalDimxA(TuA=1) ≤
[(

1− 1

22ck

)
(k + 1)

]n
· (k + 1)δn,

if c ≥ 3, k ≥ 4 and ∆ = 22ck.

10



Proof. By Claim 5, Lemma 6 and Corollary 8,

evalDimxA(TuA=1) ≤
[(

1− 1

2ck−1

)
· r2

2n
+ 1

](1+δ)n

· 2
n
∆ · 2

r3
ck .

Recall from Equation 2, r2 + r3 ≤ 2kn. Let r2 ≤ α · 2kn and r3 ≤ (1− α) · 2kn where 0 ≤ α ≤ 1.
Then,

evalDimxA(TuA=1) ≤
[(

1− 1

2ck−1

)
· αk + 1

]n
· 2

n
∆ · 2

2(1−α)n
c ·

[(
1− 1

2ck−1

)
k + 1

]δn
.

Since 2
1
y ≤ 1 + 1

y for every y ≥ 1,[(
1− 1

2ck−1

)
· αk + 1

]
· 2

1
∆ · 2

2(1−α)
c ≤

[(
1− 1

2ck−1

)
αk + 1

]
·
(

1 +
1

∆

)
·
(

1 +
2(1− α)

c

)
,

as ∆ ≥ 1 and c ≥ 3. The quantity
[(

1− 1
2ck−1

)
αk + 1

]
·
(

1 + 2(1−α)
c

)
when treated as a function

of α ∈ [0, 1] is maximized at α = 1, assuming c ≥ 3, k ≥ 4. Therefore,[(
1− 1

2ck−1

)
· αk + 1

]
· 2

1
∆ · 2

2(1−α)
c ≤

[(
1− 1

2ck−1

)
k + 1

]
·
(

1 +
1

∆

)
≤

(
1− 1

22ck

)
· (k + 1) (as ∆ = 22ck) .

This proves the lemma as [(1− 1
2ck−1 )k + 1]δn ≤ (k + 1)δn.

6 Proof of Theorem 1

Following the setting of parameters in Lemma 9, let c = 3,∆ = 26k and without loss of generality
k ≥ 4. Also, let

δ =
ln(1 + 1

22ck+1 )

2 · ln(k + 1)
=

ln(1 + 1
26k+1 )

2 · ln(k + 1)
,

and denote the upper bound in Lemma 9 by U(k, n, δ).

Lemma 10. If g(x,u), as defined in Equation 1, is computed by a multi-k-ic depth three circuit C

then the top fanin s of C is at least 2
Ω
(

n

225k

)
.

Proof. By union bound, with probability at least 1− (ε0 + s · ε1) over the random choice of A, the
evaluation dimension of every term in C is upper bounded by U(k, n, δ). By Equation 7,

ε1 := ck2 · ck · e−
δ2·n

3·2ck−1ck2∆ .

So, if s ≤ e
δ2n

9·23k·k2·∆ then there exists an A such that evaluation dimension of every term of C is
upper bounded by U(k, n, δ) (assuming n is sufficiently larger than k). Otherwise,

s > e
δ2n

9·23k·k2·∆ = 2
Ω
(

n

225k

)

11



and we already have the lower bound. If evaluation dimension of every term is upper bounded by
U(k, n, δ) then following the discussion in Section 4,

s ≥ (k + 1)(1−δ)n

U(k, n, δ)

=

(
1− 1

22ck

)−n
· (k + 1)−2δn = 2

Ω
(

n

26k

)
,

after plugging in the value of δ from above.

The proof of Theorem 1 is immediate from the above lemma.

7 Discussion

In order to gain a better understanding of the strengths and limitations of the existing complexity
measures, like partial derivatives, (projected) shifted partials, evaluation dimension etc., it is per-
haps worth exploring some natural and interesting models of circuits for which we still do not know
of any super-polynomial lower bound. Such a model of circuits emerging from our work is multi-k-ic
formulas: Let x be a variable and g be a gate. The formal degree of x at g, denoted degx(g), is
defined as follows. If g is a ×-gate with children g1 and g2 then degx(g) = degx(g1) + degx(g2).
If g is a +-gate with children g1 and g2 then degx(g) = max{degx(g1),degx(g2)}. If g is an input
gate labelled with x then degx(g) = 1, otherwise degx(g) = 0. A formula is multi-k-ic if for every
variable x and every gate g, the formal degree of x at g is bounded by k.

• Can we prove super-polynomial lower bounds for constant depth multi-k-ic formulas?

• Can we prove super-polynomial lower bounds for multi-k-ic formulas?
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