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An arithmetic circuit (respectively, formula) is a rooted graph (respectively, tree) whose nodes are
addition or multiplication gates and input variables/nodes. It computes a polynomial in a natural way.
The formal degree of an addition (respectively, multiplication) gate with respect to a variable x is
defined as the maximum (respectively, sum) of the formal degrees of its children, with respect to x.
The formal degree of an input node with respect to x is 1 if the node is labelled with x, and 0 otherwise.
In a multi-r-ic formula, the formal degree of every gate with respect to every variable is at most r.
Multi-r-ic formulas make an intermediate model between multilinear formulas (the r = 1 case), for
which lower bounds are relatively well-understood, and general formulas (the unbounded-r case),
which are conjectured to have superpolynomial size lower bound.
On depth four multi-r-ic formulas/circuits computing IMMn,d – the product of d symbolic matrices of
size n×n each, Kayal, Saha and Tavenas (Kayal et al., 2016b) showed a lower bound of ( N

dr2 )
Ω(
√

d/r)

(where N ≈ n2d, the total number of underlying variables). As a function of N and r, the lower
bound is at most 2Ω(

√
N/r3) when d = Θ(N/r2), and so for the bound to remain superpolynomial

(as a function of N), r can be at most N1/3. Our work proves a superpolynomial lower bound (as a
function of N) on the same model (but computing a VNP-polynomial), for r as high as (N logN)0.9. It
also yields a better lower bound than that of (Kayal et al., 2016b), when viewed as a function of N and r.

Theorem. Let N,d,r be positive integers such that 0.51N ≤ d ≤ 0.9N and r ≤ (N logN)0.9.
There is an explicit N-variate degree-d multilinear polynomial in VNP such that any multi-r-ic

depth four circuit computing it has size 2
Ω
(√

N logN
r

)
.
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I. INTRODUCTION

In the recent years, algebraic computation has
been attracting wide attention. Algebraic com-
putation is a recurring feature in algorithms for
problems such as matrix multiplication, determi-
nant computation, fast Fourier transform, factor-
ing polynomials (and integers), computing gcd
etc., which have practical applications in various
technological and scientific fields. Unsurprisingly,

∗Author for correspondence: chandan@iisc.ac.in

theoretical computer scientists have closely inves-
tigated both the algorithmic and the complexity
theoretic aspects of algebraic operations. The
latter has resulted in the emergence of algebraic
complexity theory – a branch of computational
complexity theory.

Arithmetic circuits and formulas

In algebraic complexity theory, many interesting
questions have connection with the efficiency of
computation of polynomials. Of the many mod-
els that are defined to capture the computation of
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polynomials in a step-by-step and succinct fash-
ion, arithmetic circuits seem to be natural and
appealing. Section III gives a formal description
of arithmetic circuits (and formulas). An example
of an arithmetic circuit (which is also a formula)
computing the polynomial x2 + xy + xz + yz is
shown in Figure 1. Two parameters associated
with an arithmetic circuit are size and depth: they
are defined respectively as the number of edges
and the length of the longest directed path in the
circuit.

Figure 1: An arithmetic circuit computing x2 + xy+
xz+ yz

Under this model, broadly three kinds of prob-
lems are studied, namely lower bounds, polyno-
mial identity testing (PIT), and circuit reconstruc-
tion. Roughly, a lower bound problem seeks to
show that every arithmetic circuit computing an
explicit polynomial f must be of at least certain
size. In PIT, the problem is to efficiently check
whether a given arithmetic circuit computes the
identically zero polynomial. It is a highly im-
portant derandomization problem. The circuit
reconstruction/learning problem is as follows: A
polynomial f is given as a ‘blackbox’ which has
the ability to take as input a field element t (a
query) and output f (t). The goal is to efficiently
design a circuit computing f using few queries to
the blackbox. These three problems have some
fascinating connections among them.

Lower bounds

Lower bounds are more interesting when the poly-
nomial f in question is a ‘naturally occurring’
one, such as the Detn. Detn is the determinant of
an n× n matrix whose entries are distinct sym-
bolic variables, making Detn an n2-variate degree-
n polynomial. It is believed that every arithmetic
formula computing Detn requires a superpoly(n)
size. In comparison, there is an efficient – i.e.
poly(n)-sized – arithmetic circuit that computes
Detn. On the other hand, consider Permn, the
permanent polynomial. (Permn is obtained by re-
placing every every −1 coefficient with +1 in the
polynomial Detn.) It is known due to (Bürgisser,
2000) that if the famous conjecture P 6= NP is
true (in the nonuniform setting) then every arith-
metic circuit over C computing Permn must have
superpoly(n) size, assuming the generalized Rie-
mann Hypothesis. This is restated in terms of
classes VP and VNP (Valiant, 1979) – the arith-
metic analogues of (nonuniform) P and NP respec-
tively: P 6= NP (nonuniformly) =⇒ VP 6= VNP

over C (under the generalized Riemann Hypothe-
sis). This connection suggests that working first
towards proving VP 6= VNP is plausible, and mo-
tivates the goal of proving superpolynomial lower
bounds against VNP-polynomials (i.e. against
polynomial families in VNP).

The lower bound problem has an interesting con-
nection with derandomizing PIT. Kabanets and
Impagliazzo (Kabanets and Impagliazzo, 2004)
showed that a superpolynomial (similarly, ex-
ponential) lower bound for arithmetic circuits
implies subexponential (similarly, quasipolyno-
mial) time PIT. In the other direction, Agrawal
(Agrawal, 2005) showed that a polynomial time
blackbox PIT algorithm implies a superpolyno-
mial lower bound for circuits computing an ex-
plicit (PSPACE-computable) polynomial.

Some known formula lower bounds. While the
conjectured lower bound for formulas computing
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Detn is superpoly(n), the best known lower bound
for the same is Ω(n3) (Kalorkoti, 1985). (A
slightly better Ω(N2) bound is known for formu-
las computing an N-variate VNP-polynomial).1

This long-standing wide gap has prompted the
community to consider restricted variants of for-
mulas and prove better lower bounds for them.
Multilinear formulas are one such variant: in a
multilinear formula, the formal degree of every
gate with respect to every variable is at most 1.2

In other words, the formula is syntactically forced
to compute a multilinear polynomial. A polyno-
mial is said to be multilinear if its degree with re-
spect to every variable is at most 1. The choice of
multilinearity constraint is justified from the fact
that important polynomials such as Detn, Permn,
IMMn,d (which is the (1,1)-th entry of the iterated
product of d symbolic matrices of size n×n each)
are all multilinear.

A lower bound of nΩ(logn) on multilinear formu-
las computing Detn (and Permn) was shown by
Raz(Raz, 2009). Subsequently (Raz and Yehuday-
off, 2008, 2009) showed a superpolynomial lower
bound on multilinear circuits of constant depth
computing Detn.

Formulas with high formal degree
Keeping in mind the open problem of superpoly-
nomial lower bound on general formulas, particu-
larly with a multilinear polynomial (like Detn) as
the target polynomial to be computed, it is natural
at this point to wonder how general formulas com-
pare with multilinear formulas. The total formal
degree of a multilinear formula is bounded by the
number of variables N, whereas that of a general
formula is virtually unbounded (rather bounded by
size of formula which can be much larger than N).
This makes it difficult to adapt many of the preva-
lent proof techniques to general formulas, as they

1 The best known lower bound for circuits is Ω(N logN),
against a certain N-variate VNP-polynomial.

2 Similarly, multilinear circuits are defined.

seem to only work when the total formal degree is
low. General formulas, having essentially a free
hand on the maximum formal degree, can employ
‘clever’ cancellations of high degree monomials at
intermediate gates and use this possibility to effi-
ciently compute some otherwise-hard multilinear
polynomials. For example, the best known cir-
cuit of depth three3 computing Detn (which is of
degree n) has formal degree nΩ(

√
n)(Gupta et al.,

2013). This prompted Kayal and Saha (Kayal and
Saha, 2015) to turn the attention to high formal
degree models and define multi-r-ic formulas.

Multi-r-ic formulas. In a multi-r-ic formula the
formal degree of every gate with respect to every
variable is at most r. Clearly, multilinear formulas
are the r = 1 case of multi-r-ic formulas. The
circuit shown in Figure 1 is a multi-2-ic formula
(albeit computing a non-multilinear polynomial).
Multi-r-ic formulas, allowing the total formal de-
gree as high as r times the number of variables,
form an intermediate model between multilinear
and general formulas.

Homogeneous formulas. Another direction of
attack could be to first reduce general formulas
to homogeneous formulas and then prove a prove
a lower bound on homogeneous formulas. A for-
mula is homogeneous if every gate in it computes
a homogeneous polynomial. (It follows that the
total formal degree of a homogeneous formula
is ‘low’, in fact exactly the degree of the polyno-
mial computed.) However, we do not know of
any efficient4 formula homogenizing algorithm
(although such an algorithm is known for circuits
(Strassen, 1973)), unless the degree of the poly-
nomial computed is as low as O( logN

log logN ) (Raz,
2013). Nevertheless, a homogenous formula is
an interesting model in its own right and proving
superpolynomial lower bounds for it would be a
great progress.

3over fields of characteristic zero
4costing only a poly-size blowup
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Depth reduction. Yet another possible route to
proving superpolynomial formula (in fact, circuit)
lower bound goes via depth reduction. A series of
works (Valiant et al., 1983; Agrawal and Vinay,
2008; Koiran, 2012; Gupta et al., 2013; Tavenas,
2013) imply that any arithmetic circuit of size s
computing an N-variate degree-d polynomial can
be transformed into a depth three circuit of size
2O(
√

d log(ds) logN) (provided the underlying field
is of characteristics zero). Hence if one shows
a sufficiently high superpolynomial lower bound
of Nω(

√
d) on depth three circuits computing a

VNP-polynomial, then a superpolynomial lower
bound on general circuits immediately follows,
proving VP 6= VNP. An important point here,
relevant to the preceding discussion, is that the
depth three circuit resulting from the depth reduc-
tion potentially has as high a formal degree as
2Ω(
√

d log(ds) logN). We note that a similar depth
reduction result also holds for homogenous depth
four circuit, but there the formal degree is not
high. In essence, these depth reduction results
show that low depth circuits, particularly depth
three and depth four circuits, serve as an interest-
ing testbed for proving lower bounds.

Previous works on multi-r-ic formulas

Kayal and Saha (Kayal and Saha, 2015) proved a
2Ω(N/225r) lower bound on multi-r-ic formulas of
depth three, computing a certain (non-multilinear)
polynomial. The choice of depth three is natu-
ral: it is the smallest depth at which we do not
know of a superpolynomial circuit/formula lower
bound5. As mentioned before, another important
motivation for depth three (and four) comes from
the depth reduction results.

5 In the context of superpolynomial lower bound and a
constant depth like three or four, we use terms circuits and
formulas interchangeably. This is because when the depth
is a constant, the circuit-to-formula conversion only costs
poly-size blowup.

Kayal, Saha and Tavenas (Kayal et al., 2016b) im-
proved the dependence on r and showed a lower
bound of

(n
r

)Ω(d) for depth three multi-r-ic for-
mulas computing IMMn,d . Further, they showed

a lower bound of
(
n/r1.1)Ω(

√
d/r) for multi-r-ic

depth four formulas computing the same polyno-
mial. They proved an improved lower bound of
2Ω(N) on depth three multi-r-ic circuits (comput-
ing a multi-r-ic VNP-polynomial). (Kayal et al.,
2016b) also showed that a certain polynomial
computed by a small multi-r-ic formula of depth
three is ‘hard’ for multi-r-ic homogeneous formu-
las of arbitrary depth. The underlying hope is,
techniques used to prove depth three and depth
four multi-r-ic formula lower bounds will shed
some light on general multi-r-ic fomulas just like
in the multilinear (r = 1) case – for instance, the
proof of multilinear formula lower bound using
log-product formula (Raz and Yehudayoff, 2009),
which is a kind of multilinear depth four formula.

II. OUR RESULTS

While (Kayal et al., 2016b) show a nontrivial
lower bound on depth four multi-r-ic circuits for
r < N1/3, we give a lower bound on the same
model that remains superpolynomial for a wider
range of r (see discussion after the theorem).

Theorem 1. Let N,d,r be positive integers such
that 0.51N ≤ d ≤ 0.9N and r ≤ (N logN)0.9.
There is an explicit N-variate degree-d multilinear
polynomial in VNP such that any multi-r-ic depth

four circuit computing it has size 2
Ω
(√

N logN
r

)
.

Comparison with previous results

1. Better range on r. In (Kayal et al., 2016b),

a lower bound of
(

N
dr2

)Ω
(√

d
r

)
was shown for

multi-r-ic depth four circuits computing IMMn,d
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where N ≈ n2d. For the bound to remain super-

polynomial, r can be at the most min(
√

N
d ,d).

The expression min(
√

N
d ,d) is maximized at d =

N1/3, and r has to be less than N1/3. We show a

lower bound of 2
Ω
(√

N logN
r

)
for d ∈ [0.51N,0.9N]

and r ≤ (N logN)0.9 which remains superpolyno-
mial in this range for r. Observe that a higher
range for r essentially means we prove lower
bound for newer classes of depth four circuits.

2. Improved lower bound. For any fixed func-
tion r = r(N), (Kayal et al., 2016b)’s lower bound

of ( N
dr2 )

Ω
(√

d
r

)
is maximized (as a function of N

and r) to 2
Ω
(√

N
r3

)
at d = Θ

(
N
r2

)
. In comparison,

Theorem 1 shows a bound of 2Ω(
√

N logN
r ), which

is an asymptotically better function of N and r.

3. Extending the result of Raz and Yehudayoff
(Raz and Yehudayoff, 2009). The best known
lower bound for multilinear (r = 1) depth four cir-
cuits is 2Ω(

√
N logN) (Raz and Yehudayoff, 2009).

Our result can be seen as an extension of this
lower bound to multi-r-ic depth four circuits, al-
though the proof techniques in (Raz and Yehuday-
off, 2009) and in here are quite different. In partic-
ular, (Raz and Yehudayoff, 2009) used rank of a
partial derivatives matrix as the measure whereas
we use the dimension of shifted partial derivatives,
denoted as SP (see below for more details).

Proof outline and comparison with previ-
ous proof techniques

The proof of Theorem 1 follows a template for
depth four circuit lower bound that is already ex-
isting in the literature, particularly in (Kayal et al.,
2016b) and in related prior works. We briefly
describe the proof outline before listing the differ-
ences with (Kayal et al., 2016b). The proof has
the following structure:

1. Reduction to low-bottom-support depth four
circuits (step 1): Consider a depth four multi-
r-ic circuit of ‘small’ size computing a ‘hard’
polynomial H. At first, we show that there
exists a restriction of the circuit (i.e. setting
of some variables to field constants in the cir-
cuit) which converts it into a more structured
circuit called a low-bottom-support depth
four circuit computing a restriction of H (say,
F). Section III has the precise definition of
low-bottom-support depth four circuits, and
the reduction to this kind of circuits is for-
mally stated in Lemma 3 (Section IV).

2. Lower bound for low-bottom-support circuits
(step 2): In this step, we show that any low-
bottom-support depth four circuit must have
high size (in particular, high top fanin) in
order to compute F from step 1. Lemma 4
(which is stated in Section IV and proved
in Section V) has the formal statement of
this lower bound. The bound is achieved by
proving (in Lemma 5) that circuits of this
kind having low top fanin have a low shifted
partials measure (defined in Section III), and
subsequently proving in step 3 below that F
has a high measure. Here, a measure is a
function that maps polynomials to integers.

3. Constructing the hard polynomial H (step 3):
Finally, a VNP-polynomial H having high
measure is constructed in this step. For this,
we pick a variant of the Nisan-Wigderson
polynomial, which was defined in (Kayal
et al., 2014, 2016a). The construction is in-
spired by the well known Nisa-Wigderson de-
sign (Nisan and Wigderson, 1994) and Reed-
Solomon codes (Reed and Solomon, 1960).
Basically, H is defined in such a way that
its restriction F is a multilinear polynomial
whose monomials are sufficiently ‘far’ from
each other. In this sense, the monomials cor-
respond to codewords of a good code. The
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precise construction of F is given in Section
VI, and that of H (using the construction of
F) is given in Section IV. Lemma 6 (which
is stated is Section V and proved in Section
VI) shows that F has a high measure.

The above three steps together imply a high lower
bound on the size of any depth four multi-r-ic cir-
cuits computing H. As mentioned before, much
of the proof machinery is borrowed from earlier
works. However, we opt to present the proof in de-
tail not only because of self containment but also
because our parameter settings are often different
from that in prior works.

The difference between (Kayal et al., 2016b) and
our proof is in the exact choice of the measure
and the hard polynomial:

1. The choice of the measure: (Kayal et al.,
2016b) introduced a measure called shifted
skewed partials, a variant of an already exist-
ing measure (defined in (Kayal, 2012)) called
shifted partials (SP). For our proof, SP suf-
fices. (Kayal et al., 2016b)’s focus was to
get the lower bound as a function of both N
and d i.e. the number of underlying variables
and the degree of the polynomial computed
respectively. For low degree (and IMMn,d as
the target polynomial), (Kayal et al., 2016b)
found that a certain ‘skew’ between two sets
of variables, with suitable parameters, was
crucial in obtaining a better lower bound.
However, for high degree, it seems that the
skew does not offer an added advantage. In-
stead, we use SP itself as the measure and
prove an improved bound for a high degree
range. The improvement also stems from the
different hard polynomial we choose.

2. The choice of the hard polynomial: (Kayal
et al., 2016b) used IMMn,d , a VP-
polynomial, whereas our proof works with a
VNP-polynomial, ensuring that the latter has
a sufficiently high SP measure.

III. PRELIMINARIES

We use a bold letter, like x,y etc., to denote a set of
variables. Elements of x are denoted by x1,x2, . . .
etc. and are called x-variables. We denote with
x≤` the set of monomials in x-variables of degree
at most `. Let f be a polynomial. Then degx f
denotes the degree of f with respect to variable x,
and deg f denotes the total degree of f . Also, for
sets S and S̃ of polynomials, expressions f ·S, S/ f ,
and S · S̃ naturally denote the sets { f g : g ∈ S},
{g/ f : g ∈ S} and {gg̃ : g ∈ S, g̃ ∈ S̃} respec-
tively. [n] denotes the set {1,2, . . . ,n} and N the
set of natural numbers. For a set x and integers
a≤ b, the set of all subsets of x of size between a
and b (inclusive) is denoted by ( x

[a,b]), and simply
by (x

a) when a = b. ‘log’ and ‘ln’ denote loga-
rithms to base 2 and base e respectively. Some-
times we use the term poly(n) to mean nO(1). We
assume N, the number of variables, to be suffi-
ciently large (so as to legitimize inequalities that
hold asymptotically). Also, sometimes we omit
floor (b c) and ceil (d e) notations for real-valued
functions of N,d etc. for simplicity of presenta-
tion, without affecting any of the implications.

i. Some well-known bounds

For a real number x,

1+ x≤ ex. (1)

For integers 1≤ k ≤ n,(n
k

)k
≤
(

n
k

)
≤
(en

k

)k
. (2)

Chernoff bound. Let X be the sum of several
independent 0-1 random variables. Then for any
constant ε > 0,

Pr[X ≥ (1+ ε)E[X ]] ≤ e−ε2E[X ]/3,

Pr[X ≤ (1− ε)E[X ]] ≤ e−ε2E[X ]/3.
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ii. Arithmetic circuits

We specify some of the concepts, stated in Section
I, in a bit more details. The reader familiar with
these may skip this part. An arithmetic circuit
is a directed acyclic graph in which every node
with in-degree 0 (called input node) is labelled
with a variable or a field element, and every node
with positive in-degree is labelled with either ‘+’
(in which case the node is a addition gate) or
‘×’ (in which case the node is a multiplication
gate). If there is an edge from a node u to a node
v then u is called a child of v. With every node
we associate a polynomial and say that the node
computes the polynomial, as follows: An input
node is said to compute what it is labelled with. A
sum (respectively product) gate is said to compute
the sum (respectively product) of the polynomials
associated with its children. We consider circuits
which have exactly one root, i.e. the node with
out-degree 0, and a circuit is said to compute the
polynomial its root computes. Also, we allow
edges to be labelled with field constants. If an
edge from node u to node v is labelled with a
constant α and u is computing a polynomial f
then v considers α f , rather than mere f , as the
input coming from u.

The size of a circuit is the number of edges in it.
The depth of a circuit is the length of the longest
path from an input node to the root. An arithmetic
circuit in which all nodes have out-degree at most
one is called a formula.

Depth three and depth four circuits. By a depth
three circuit (also called a ΣΠΣ circuit) we mean
a circuit that has a top addition gate followed by a
layer of multiplication gates and finally a bottom
layer of addition gates. Similarly a circuit with
a addition gate on top, followed by a layer of
multiplication gates, then a layer of addition gates
again, and finally a bottom layer of multiplication
gates corresponds to a depth four circuit (also
called a ΣΠΣΠ circuit). Further if the monomials

computed at the bottom layer of multiplication
gates of a depth four circuit are such that each of
them has at most τ variables appearing in it, then
we say that the depth four circuit has τ-bottom-
support.

Formal degree. The formal degree of an input
gate g with respect to a variable x is defined to
be 1 if g is labelled with x, and 0 if g is labelled
with a different variable or a field element. The
formal degree of a sum (respectively product) gate
g with respect to a variable x is defined to be
the maximum (respectively sum) of the formal
degrees of its children with respect to x.

Multi-r-ic formulas. Let r be a positive integer.
A multi-r-ic formula is an arithmetic formula such
that every gate in it has formal degree at most r
with respect to every variable. If r = 1, a multi-
r-ic formula is called a multilinear formula. A
polynomial is said to be multilinear if the degree
of every variable is at most one in every monomial
of the polynomial. Clearly, multilinear formulas
compute multilinear polynomials.

Arithmetic complexity classes. A family of
polynomials { fn} over a field F, indexed by
n≥ 1, is in the class VP if there is a polynomial
p : N→N such that for every n, fn has at most
p(n) variables, has degree at most p(n) and can
be computed by a circuit of size at most p(n).
A family of polynomials { fn} over F is in VNP

if there is a polynomial family {gn} in VP and
polynomials p, p̃ : N→N such that

f (x1, . . . ,xp(n)) =

∑
(w1,...,wp̃(n))

∈{0,1}p̃(n)

g(x1, . . . ,xp(n),w1, . . . ,wp̃(n)).

It is clear that VP ⊆ VNP. In a later section, to
check whether a polynomial fn is in VNP we use
Valiant’s criterion: If there is a poly(n)-time algo-
rithm to output the coefficient of a given mono-
mial in fn then fn ∈ VNP (Valiant, 1979).
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iii. The shifted partials measure

Let F be a field. For integer parameters k,` ≥
0, the shifted partials dimension is a function
SPk,` : F[x] →N defined as follows. Let f ∈
F[x]. For any multilinear degree-k monomial µ =

xi1xi2 . . .xik , we write ∂µ f to denote ∂ k f
∂xi1∂xi2 ...∂xik

.

Also, for a set S of polynomials we write ∂µS
to denote the set {∂µ f : f ∈ S}, which will be
convenient in Section V. Let ∂=k f denote the set
{∂µ f : µ is a multilinear monomial of degree k}.
We define

SPk,`( f ) def
= dim (spanF (x≤` ·∂=k f )). (3)

The following property is easy to establish.

Proposition 2 (Subadditivity). Let f ,g ∈ F[x].
Then SPk,`( f + g) ≤ SPk,`( f )+SPk,`(g).

IV. PROVING THEOREM 1

In Section VI we describe a multilinear polyno-
mial Fd̃(y) where y is the set of underlying vari-
ables and d̃ is the degree. Polynomial Fd̃ has
mainly two properties:

1. It has (|y|/4001
k ) monomials where k =

11
840000

√
d̃

r log d̃
, and all of them are of degree

d̃, i.e., Fd̃ is homogeneous.

2. For any two multilinear monomials µ1 and
µ2, |µ1 \µ2| is at least 0.006d̃. Here µ1 \µ2
refers to the set of variables appearing in µ1
but not in µ2. Note that |µ1 \µ2|= |µ2 \µ1|.
We call it the distance between µ1 and µ2.

We use Fd̃ to define the polynomial H (mentioned
in step 1 of the proof outline in Section II).

Polynomial H. Let x,u,v be sets of variables of
size N0, N0, and 0.02N0 respectively, making a
total of 2.02N0 = N (say) variables. Also let ρ

denote the range [0.95N0,0.97N0]. Let d be any

integer in [0.51N,0.9N]. Set d̃ = d−0.97N0, and
so d̃ ∈ [0.06N0,0.85N0]. Polynomial H, which is
N-variate and of degree d̃, is defined as below:

H(x,u,v) def
=

∑
y∈(x

ρ
)

Fd̃(y) · ∏
i: xi∈y

ui ·
0.97N0−|y|

∏
j=1

v j. (4)

Polynomial H is homogeneous and multilinear.

Proof of Theorem 1. Let C be a multi-r-ic depth
four circuit computing H. H defines a polynomial
in VNP, as we will show at the end of section VI
(after fully describing Fd̃(y)).

The sparsity of a depth four circuit is defined
as the sum of the fanin of nodes at the bottom
summation layer. If the sparsity of C is greater

than 2
√

N logN
100r then so is the size of C and there is

nothing to prove. Hence we assume from now on

that C has sparsity at most 2
√

N logN
100r .

A restriction of a circuit means a substitution of
field constants to some variables in the circuit. We
are now ready to precisely state the reduction in
step 1 of the proof outline in Section II.

Lemma 3 (Reduction to low-bottom-support
depth four circuits). There exists a restriction σ

of circuit C that converts it into a depth four multi-
r-ic circuit of τ-bottom-support computing Fd̃(y),

where τ = 20 ·
√

d̃ log d̃
r , and y is an element of

(x
ρ
).

Proof of the above lemma is given at the end
of the section. Let σ(C) denote the circuit re-
sulting from applying σ on C. σ(C) has τ-
bottom-support (due to the lemma above). Also,
r ≤ (N logN)0.9 = o( d̃

log d̃
) (as d̃ = Θ(N)), and

d̃ = d−0.97N0 ≤ 0.9 · |y|. Hence the lemma be-
low, which formalizes step 2 of the proof outline
in Section II, is applicable on σ(C).
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Lemma 4 (Lower bound for low-bottom-support
depth four circuits). Let y be a set of variables
and let d̃ ≤ 0.9 · |y| and r ≤ d̃

1010 log d̃
be positive

integers. Then every depth four multi-r-ic circuit
having τ-bottom-support and computing Fd̃(y),

where τ = 20 ·
√

d̃ log d̃
r , must have top fanin at

least
(

τ20d̃
|y|·r

) d̃
105τr . 6

Proof of the lemma is given in the next section.
Lemma 4 implies that σ(C) has top fanin at least(

τ20d̃
|y| · r

)( d̃
105τr

)

=

(
2020 ·

(
d̃ log d̃

r

)10

· d̃
|y| · r

)( 1
20·105 ·

√
d̃

r log d̃
)

≥
(
0.0210 · (N logN)0.1)( 1

20·105 ·
√

d̃
r log d̃

)
(5)

= 2Ω(
√

N logN
r ),

where Equation (5) follows from the fact that d̃ ≥
0.02N (since d ≥ 0.51N), r ≤ (N logN)0.9, and
|y| ≤ 0.97N

2.02 . Thus, C too must have top fanin (and

hence size) 2Ω(
√

N logN
r ).

Proof of Lemma 3. The proof uses the proba-
bilistic method. We begin by describing the sam-
ple space of restrictions.

Restriction σR. Given a subset R ⊆ x, let σR
denote the following restriction (substitution) on
some variables in x]u]v. If |R| ∈ ρ then

1. assign 0 to variables in x\R,

2. assign 0 to ui’s where xi 6∈ R and assign 1 to
the other ui’s, and

3. assign 0 to v j’s where j > 0.97N0−|R| and
1 to the other v j’s.

6 The same lower bound holds for a range of τ and r sat-
isfying 1000log |y| ≤ τr≤ d̃/5000, provided the parameter
k used in the construction of Fd̃(y) is adjusted suitably.

Otherwise, assign all variables 0. We note that
if (and only if) |R| ∈ ρ then σR(H) = Fd̃(R). To
elaborate, after Step 2 above, terms in H corre-
sponding to Fd̃(y) vanish for every proper super-
set y ) R. Similarly, after Step 3, terms in H
corresponding to Fd̃(y) vanish for every proper
subset y ( R.

Random restriction of C. Recall that C com-
putes H(x,u,v). Consider forming the set R⊆ x
randomly as follows: Independently, with proba-
bility 0.96 pick every x-variable and include it in
R. Now, to prove Lemma 3 it suffices to show that

Pr
R

[
σR(C) has τ-bottom-support and

computes Fd̃(y) for some y ∈
(

x
ρ

) ]
> 0.

Equivalently, by union bound, it suffices to show
that PrR[E1]+PrR[E2] < 1, where E1 is the event
that σR(C) has bottom support greater than τ and
E2 is the event that for every y ∈ (x

p), σR(C) does
not compute Fd̃(y).

Let 〈C〉 denote the set of monomials computed at
the bottom multiplication gates of C. (Thus |〈C〉|
is at most the sparsity of C.) For a monomial µ ,
let µµµ denote the set of variables appearing in µ .
Then

Pr
R
[E1]

≤ Pr
R
[∃σR(µ) ∈ 〈σR(C)〉 s.t. |µµµ|> τ ]

≤ Pr
R
[∃µ ∈ 〈C〉 s.t. |µµµ ∩x|> τ and

σR(µ) 6= 0]

≤ |〈C〉| ·0.96τ (from union bound)

≤ 2
√

N logN
100r ·0.9620·

√
d̃ log d̃

r

≤ 2−0.01
√

N logN
r (as d̃ ≥ 0.029N).

To upper bound PrR[E2], we note that E2 is equiv-
alent to the event |R| 6∈ ρ . Hence

Pr
R
[E2] = Pr

R
[|R| 6∈ ρ ]
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≤ 2e−
1
3 ·(

0.01
0.96)

2· 0.96N
2.02 ,

by noting that E[|R|] = 0.96N0 =
0.96N
2.02 and apply-

ing Chernoff bound. Clearly, PrR[E1]+PrR[E2]<
1, as required.

V. PROVING LEMMA 4

A depth four multi-r-ic circuit Γ with τ-bottom-
support is of the following form:

Γ = T1 +T2 + · · ·+Ts,

Ti = Qi1 ·Qi2 . . .Qimi ∀i ∈ [s], (6)

where, for every i ∈ [s] and every j ∈ [mi], Qi j ∈
F[y] is a polynomial such that

1. every monomial in it contains at most τ vari-
ables (due to τ-bottom-support), and

2. for every x∈ y,
mi
∑

j=1
degx Qi j≤ r (due to multi-

r-icity).

Proof of Lemma 4. Suppose that Γ computes
Fd̃(y). Then our task is to show that the top fanin
s is high.

Suppose that we estimate an upper bound U =
U(k,`) on SPk,`(Ti), for every i∈ [s]. Then Propo-
sition 2 implies that

SPk,`(Γ) ≤ sU .

Suppose also that we find a lower bound L =
L(k,`) on SPk,`(Fd̃), perhaps by fixing parameters
k,`. Then, since Γ computes Fd̃ , it follows that

L≤ SPk,`(Fd̃(y)) = SPk,`(Γ) ≤ sU

⇒ s≥ L/U .

To estimate U , we make use of the lemma below.

Lemma 5 (‘Low’ SP measure for circuits). For
any i ∈ [s] and positive integers k,` where k ≤
2|y|/τ + 1,

SPk,`(Ti) ≤
(

3|y|/τ

k

)
·
(
|y|+ kτr+ `

|y|

)
.

Proof of the lemma is at the end of this section.
Let ε = 0.0055. We fix

k =
ε d̃

21τr
=

11
840000

√
d̃

r log d̃
≥ 1 and (7)

`=
0.006d̃ · |y|
ln (|y|/4001

k )
−|y|. (8)

For such `, it can be shown that ` > 400 · |y|, from
which follows an inequality we require shortly:

|y|+ `

1+ `
≤ 12

11
. (9)

To estimate L we use the following lemma:

Lemma 6 (‘High’ SP measure for Fd̃). For inte-
gers k,` fixed as above,

SPk,`(Fd̃(y))≥
1
2
·
(
|y|/4001

k

)
·
(
|y|+ `

|y|

)
.

In the next section we give the description of
Fd̃(y) and then prove Lemma 6.

From Lemmas 5 and 6,

s≥
1
2 · (
|y|/4001

k ) · (|y|+`
|y| )

(3·|y|/τ

k ) · (|y|+kτr+`
|y| )

≥
1
2 · (
|y|/4001

k ) · (|y|+`)...(1+`)
|y|!

(3·|y|/τ

k ) · (|y|+kτr+`)...(1+kτr+`)
|y|!

≥
1
2 · (
|y|/4001

k )

(3·|y|/τ

k ) ·
(
1+ kτr

1+`

)|y|
≥

1
2 · (
|y|/4001

k )

(3·|y|/τ

k ) · e
kτr
1+` ·|y|

(from (1))

=
1
2 · (
|y|/4001

k )

(3·|y|/τ

k ) · e
0.006d̃·|y|
|y|+` ·

kτr
0.006d̃

· |y|+`
1+`

=
1
2 · (
|y|/4001

k )

(3·|y|/τ

k ) · (|y|/4001
k )

kτr
0.006d̃

· |y|+`
1+`

(from (8))

≥
1
2 · (
|y|/4001

k )

(3·|y|/τ

k ) · (|y|/4001
k )

kτr
0.0055d̃

(from (9))
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≥ 1
2
·

(
kτ

3e · |y|
·
(
|y|

4001k

)(1− kτr
ε d̃

)
)k

(from (2))

≥ 1
2
·

(
ε d̃

3e · |y| ·21r
·
(
|y| ·21τr
4001ε d̃

)1− 1
21
) ε d̃

21·τr

=
1
2
·

 1
3e
·
(

ε d̃
21r · |y|

) 1
21

·
(

τ

4001

) 20
21

 ε d̃
21τr

=
1
2
·

((
1
3e

)21

· ε d̃
21r · |y|

·
(

τ

4001

)20
) ε d̃

21·21τr

≥
(

τ20d̃
|y| · r

) d̃
105τr

.

In the rest of this section we prove Lemma 5.

Proof of Lemma 5. For brevity we drop the sub-
script i and rewrite Equation 6 as

T = Q1 · · ·Qm.

We begin by observing that degT ≤ |y| ·r, and that
degQ j ≤ τr for every j ∈ [m]. Now, by grouping
Q j’s that have degree less than τr/2 and mul-
tiplying out, it is possible to ensure that every
grouping has degree between τr/2 and τr (ex-
cept possibly one last grouping with degree less
than τr/2). This grouping operation does not
cost us as the lower bound in Lemma 4 is on the
top fanin. Therefore, we assume without loss of
generality that for every j ∈ [m−1],

degQ j ≥ τr/2.

⇒ degT ≥ (m−1)τr/2

⇒ |y| · r ≥ (m−1)τr/2

⇒ m≤ 2|y|/τ + 1≤ 3|y|/τ .

For the case m ≤ k, we note that the elements
of ∂=k(Q1 . . .Qm) · y≤` are of degree at most
deg(Q1 . . .Qm)+ ` ≤ mτr+ ` ≤ kτr+ `. Hence
SPk,`(Q1 . . .Qm) ≤ (|y|+kτr+`

|y| ), trivially proving

the bound. For the case k < m, we use the claim
below.

Claim 7. If k < m then

∂
=k( ∏

j∈[m]

Q j)

⊆ spanF

 ⋃
A∈( [m]

m−k)

(y≤kτr ·∏
j∈A

Q j)

 .

Proof. We induct on k. The case k = 0 is trivial.
Suppose that the claim is true for k̃ = k− 1. To
prove the case for k, we consider the element
b = ∂y1y2...yk( ∏

j∈[m]
Q j) ∈ ∂=k( ∏

j∈[m]
Q j):

b = ∂y1∂y2y3...yk( ∏
j∈[m]

Q j)

∈ spanF

 ⋃
A∈( [m]

m−k̃)

∂y1(y
≤k̃τr ·∏

j∈A
Q j)

 ,

from the inductive hypothesis. Let Q̃ ∈ y≤k̃τr be
a polynomial. Then from the product rule,

∂y1(Q̃ ∏
j∈A

Q j)

= (∂y1Q̃)∏
j∈A

Q j + Q̃ ·∑
j∈A

(∂y1Q j) ·∏
i∈A
i6= j

Qi

∈ spanF

⋃
B∈( A

|A|−1)

y≤kτr ·∏
i∈B

Qi,

as degQ j ≤ τr for every j. Hence

b ∈ spanF

 ⋃
A∈( [m]

m−k̃)

⋃
B∈( A

|A|−1)

y≤kτr ·∏
i∈B

Qi


= spanF

 ⋃
A∈( [m]

m−k)

y≤kτr
∏
j∈A

Q j

 .
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From the claim above it follows that

∂
=k( ∏

j∈[m]

Q j) ·y≤`

⊆ spanF

 ⋃
A∈( [m]

m−k)

(y≤kτr+` ·∏
j∈A

Q j)


⇒ SPk,`( ∏

j∈[m]

Q j)

≤
(

m
k

)
· |y≤kτr+`|

≤
(

3|y|/τ

k

)
·
(
|y|+ kτr+ `

|y|

)
,

as m≤ 3|y|/τ .

VI. CONSTRUCTING Fd̃(y) AND

PROVING LEMMA 6

This section is devoted to constructing the hard
polynomial F = Fd̃ mentioned in step 3 of the
proof outline in Section II and showing that
it has a high SP measure. In Section IV we
mentioned two properties Fd̃(y) would have. The
claim below (which is essentially taken from
(Chillara and Mukhopadhyay, 2014) with suitable
adjustments) makes them precise and shows how
they ensure a high SP measure for F , something
that Lemma 6 claims. Let D = (|y|/4001

k ).

Claim 8. Suppose ∂=kFd̃(y) contains at least
(|y|/4001

k ) monomials (as individual elements)
such that they all are of the same degree and
have pairwise distance at least δ = 0.006d̃. Then
SPk,`(Fd̃) ≥

1
2(
|y|/4001

k )(|y|+`
|y| ).

Proof. Let µ1, . . . , µD be the monomials present
in ∂=kFd̃(y), of degree d0 (say) each, and pair-
wise distance at least δ . Then from the inclusion-
exclusion principle

|y≤` · {µa}a∈[D]|

≥
D

∑
a=1
|y≤` ·µa|− ∑

1≤a<b≤D
|(y≤` ·µa)∩ (y≤` ·µb)|.

(10)

Clearly |y≤` · µa| = |y≤`| = (|y|+`
|y| ). Next, let us

estimate an upper bound on the size of the set
(y≤` ·µa)∩ (y≤` ·µb) = Ia,b (say). It is given that
the elements of Ia,b are of degree at most d0 + `

and that the LCM(µa, µb) is of degree at least
d0 + δ . Hence

|Ia,b|= |Ia,b/LCM(µa, µb)|

≤ |y≤d0+`−(d0+δ )|

=

(
|y|+ `−δ

|y|

)
.

⇒ ∑
1≤a<b≤D

|(y≤` ·µa)∩ (y≤` ·µb)|

= ∑
1≤a<b≤D

|Ia,b|

≤ D2

2

(
|y|+ `−δ

|y|

)
=

D2

2
· (|y|+ `) . . . (1+ `)

|y|!

· (|y|+ `−δ ) . . . (1+ `−δ )

(|y|+ `) . . . (1+ `)

≤ D2

2
·
(
|y|+ `

|y|

)
·
(

1− δ

|y|+ `

)|y|
≤ D

2
·
(
|y|+ `

|y|

)
·D · e−

δ ·|y|
|y|+` (from (1))

=
D
2
·
(
|y|+ `

|y|

)
(from (8)).

Plugging the bounds in Equation (10) we get

|y≤` · {µa}a∈[D]|

≥ D ·
(
|y|+ `

|y|

)
− D

2
·
(
|y|+ `

|y|

)
=

1
2

(
|y|/4001

k

)(
|y|+ `

|y|

)
,

by plugging the value for D. Now y≤` · {µa}a∈[D],
being a set of monomials, is linearly independent.
Hence SPk,`(Fd̃) ≥

1
2(
|y|/4001

k )(|y|+`
|y| ).
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i. Description of Fd̃(y)

We show an explicit construction of same degree
monomials µ1, . . . , µD, with large pairwise
distance, using the y-variables. Let z be a
subset of y, of size n = d̃−k

0.9 ·
4000
4001 < 4000

4001 · |y|, as
d̃ ≤ 0.9 · |y|. Note that n = Θ(N). We partition
z into n

c logn = n0 (say) disjoint subsets of size

c logn each and call them Z(i), i ∈ [n0]. Here c is
a constant in [1000,2000], chosen in such a way
that n0 is a prime number. Now, we apply the
following claim, whose proof is essentially a well
known probabilistic argument (with an associated
greedy algorithm) for existence of codes with
good distance (akin to the Gilbert-Varshamov
bound (Gilbert, 1952; Varshamov, 1957)). The
proof is given in the next subsection.

Claim 9. For every i ∈ [n0], there is a set M(i) of
n multilinear monomials (in Z(i) variables) each
of degree 0.9 · 4001

4000 · c logn and pairwise distance
at least 0.007c logn. Furthermore, M(i) can be
generated in poly(n) time.

Thus M(i) has at least n≥ n0 monomials. Let us
identify η

(i)
1 , . . . ,η (i)

n0 with the (lexicographically
first n0 many) monomials of M(i). Let K be a
prime field of size n0. Elements of K will be de-
noted with 1,2,3, . . . ,n0. Finally, we define µb,
where b ∈ [D], as the b-th element of the follow-
ing set that is ordered according to lexicographic
ordering of the coefficient vectors of the defining
univariate polynomials.

L def
=

{
∏

i∈[n0]

η
(i)
h(i)

}
h∈K[t],

degh=0.1n0,
h is monic

. (11)

For example, the first element of L is the one cor-
responding to the monic, degree-0.1n0 univariate
polynomial h ∈K[t] whose coefficient vector is
lexicographically the smallest. At the end of this
section we show that indeed |L| ≥ D (so the defi-
nition above, which is inspired by Reed-Solomon

codes, makes sense). Observe, µi’s are multilinear
and of degree d̃− k.

Defining Fd̃(y). The construction uses the idea of
‘code composition’ that ensures Fd̃(y) is a VNP-
polynomial (see Subsection iii). From y \ z one
can form (|y\z|k ) = D many multilinear monomi-
als of degree k, as |y\ z| ≥ |y|/4001. Let us call
these monomials ν1 ≺ ν2 ≺ . . . ≺ νD, under lex-
icographic ordering. Then we define Fd̃(y) as
follows:

Fd̃(y)
def
=

D

∑
b=1

µbνb. (12)

Clearly Fd̃(y) is multilinear and all its mono-
mials are of degree d̃. Since ∂νb(µbνb) = µb,
∂=k(Fd̃(y)) contains µb’s as required by Claim 8.
The other requirement, namely that Fd̃-monomials
have a minimum pairwise distance of 0.006d̃ = δ ,
is also satisfied: Consider two monomials µbνb
and µaνa, where b 6= a. It suffices to show that
|µb \ µa| ≥ δ . Indeed, we have µb = ∏

i∈[n0]
η
(i)
h(i)

and µa = ∏
i∈[n0]

η
(i)
g(i), for two different monic uni-

variate polynomials h,g ∈K[t] of degree 0.1n0.
If R is the set of at most 0.1n0 roots of h− g
in [n0] then clearly h(i) 6= g(i) for i ∈ [n0] \R.
Hence from Claim 9 we have |η (i)

h(i) \ η
(i)
g(i)| ≥

0.007c logn, for i ∈ [n0] \R. As M(i) and M( j)

are variable-disjoint for i 6= j, we have

|µb \µa|

= ∑
i∈[n0]

|η (i)
h(i) \η

(i)
g(i)|

≥ ∑
i∈[n0]\R

|η (i)
h(i) \η

(i)
g(i)|

≥ (n0−0.1n0) ·0.007c logn

> 0.006n

> 0.006d̃,

where the last step follows from the expression
for n and noting therein that k = o(d̃) (from (7)).
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Verifying that |L| ≥ D. The nonzero pair-
wise distance implies that |L| = |{h : h ∈ K[t],
degh = 0.1n0, h is monic}|, which is at least
|K|0.1n0 = n0.1n0

0 . Hence log |L| ≥ 0.1n0 logn0 >

0.1 · n
2c = Θ(d̃) (for large enough n). On the

other hand, logD= log (|y|/4001
k )≤ log( e·|y|

4001k )
k =

k log e·|y|
4001k , from Bound (2). But from Equation

(7), k = O(
√

d̃
r log d̃

), thus logD = O(
√

d̃) as both

|y| and d̃ are Θ(N), proving |L| ≥ D.

Proof of Lemma 6. Fd̃(y) is in VNP (see Sub-
section iii) and meets the conditions required by
Claim 8, which implies the result.

ii. A greedy algorithm

Proof of Claim 9. For brevity, let ε̃ = 0.9 · 4001
4000 <

0.91. In Algorithm 1 we outline a greedy way to
construct the required monomials. Clearly, Al-

Algorithm 1: A greedy algorithm to gen-
erate distant monomials
Input : The variables Z(i)

Output : The set of monomials M(i)

1 Let α1,α2, ...,αt , where t = ( c logn
ε̃c logn), be

multilinear monomials of degree ε̃c logn,
in lexicographical order.

2 M(i) := /0
3 j := 1
4 while |M(i)|< n and j ≤ t do
5 if |α j \η | ≥ 0.007c logn for all

η ∈M(i) then
6 M(i) := M(i)∪{α j}
7 end
8 j := j+ 1
9 end

10 return M(i)

gorithm 1 runs in poly(n) time, and the output
monomials have the required degree and distance.
It remains to show that as long as |M(i)|< n, there

is some j̃ > j such that α j̃ can be included in M(i).
We use the probabilistic method for this purpose,
as below.

Consider picking every variable independently
with probability ε̃

0.99 < 1 and multiplying the
picked variables to form a monomial µ (say).
Then E[deg µ ] = ε̃

0.99 · c logn. From Chernoff
bound,

Pr
[

deg µ < 0.99 · ε̃

0.99
· c logn

]
≤ e−

0.012
3 ·

ε̃

0.99 ·c logn

< e−0.00003c logn

= e1 (say).

Let η be some fixed monomial from M(i). Then

E[|η \µ|]

=
ε̃c logn

∑
i=1

(1− ε̃

0.99
)

= ε̃ · (1− ε̃

0.99
) · c logn.

Thus

Pr[|η \µ|< 0.1 · (ε̃ · (1− ε̃

0.99
) · c logn)]

≤ e−
0.92

3 ·ε̃·(1−
ε̃

0.99 )·c logn.

⇒ Pr[|η \µ|< 0.007c logn]

≤ e−0.022c logn,

from Chernoff bound. From union bound, the
probability that there is a monomial ν ∈M(i) with
|∆(ν , µ)|< 0.007c logn is at most

|M(i)| · e−0.022·c logn

≤ ne−0.022c logn

≤ e0.001c logn · e−0.022c logn

= e−0.021c logn

= e2 (say).

Thus, µ has degree at least ε̃c logn and dis-
tance |ν \ µ| at least 0.007c logn for all ν ∈
M(i) with probability at least 1 − e1 − e2 =
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1− e−0.00003·c logn− e−0.021c logn� 0 (for n large
enough). In other words, there exists a multilin-
ear monomial µ with distance (from monomials
of M(i)) at least 0.007logn and degree at least
ε̃ · c logn. However we want the degree to be ex-
actly ε̃c logn. We can chop off a few variables
from µ to ensure that. Such a chopping results in
|µ \ν |= |ν \µ| ≥ 0.007c logn, as desired.

iii. VNP membership of Fd̃ and H
Proof of Fd̃(y) ∈ VNP. We recall Equation (12).
According to Valiant’s criterion, it suffices to give
a poly(|y|)-time procedure that checks if a given
monomial equals µbνb for some b ∈ D. (The co-
efficient is 1 if it does and 0 otherwise.) The
procedure is as follows. We call the z-part of the
input monomial as µb, where b is unknown. We
determine b by writing µb in the form ∏

i∈[n0]
η
(i)
h(i)

(as per Equation (11)) and determining h first, us-
ing polynomial interpolation. From h, the index b
can be computed efficiently as the ordering of the
set L (in Equation (11)) is quite explicit. Finally,
from b we can efficiently compute νb following
lexicographic ordering and check if the non-z-part
of the input monomial is νb as well. All the steps
above can be done in poly(|y|) time.

Proof of Hd̃(x,u,v) ∈ VNP. We recall Equation
(4). H is constructed in such a way that for every
y∈ (x

ρ
), a unique monomial in u and v variables is

attached to the monomials of Fd̃(y). Thus, given
a monomial, we can easily find which Fd̃ its y-part
potentially ‘belongs to’ and then run the procedure
described above that checks membership in Fd̃(y).
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