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Abstract

How many operations are needed to compute a given polynomial f(x1, x2, . . . , xn)? Answer-
ing questions of this form naturally leads us on a search for clever algorithmic techniques to
reduce the number of operations required. Simultaneously, it also leads us towards the comple-
mentary task of finding techniques and paradigms for proving lower bounds on the minimum
number of operations required. In this survey we describe one such paradigm for obtaining lower
bounds.

1 Introduction

Arithmetic Models of computation. Polynomials feature in many different places in the math-
ematical sciences. Here we are interested in their complexity: how many operations are required to
compute a given one. For example: how many operations are required to compute the determinant
of an n × n matrix? Such questions are clearly natural from both mathematical and practical
standpoints. These have been intensely investigated in the last few decades with much progress
achieved in the form of upper bounds, i.e. finding clever ways to compute polynomials using only
a few operations. For example, we know how to compute determinants (and therefore also to
solve systems of linear equations) with significantly fewer operations compared to the well-known
Gaussian Elimination algorithm. But very little progress has been made for the complementary
task of proving lower bounds, i.e. proving that a large number of operations are required to com-
pute certain polynomials of interest. In this direction, the limited success so far has been in the
form of lower bounds for certain restricted classes of circuits. In this article we aim to convey
the qualitative intuition behind most of the known lower bound proofs while eschewing some of
the quantiative/technical details. In doing this, we make explicit a common paradigm underlying
most of the known lower bounds with the hope that doing so might somehow help catalyze further
progress on lower bounds. Alternatively, if this paradigm could be ruled out as a viable line of
attack then that would be very helpful and insightful as well. We refer the reader to [Wig02] for
motivating examples and connections to other areas in computer science and mathematics. A much
more extensive treatment can be found in the books [BCS97, vzG88] while some recent surveys
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[SY10, CKW11, Sap14] give further details and proofs of some recent developments in the area.
The rest of this article is organized as follows. We first formally capture arithmetic computation
via the notion of arithmetic circuits in section 2. We then outline our paradigm/strategy in section
3. We then illustrate this via lower bounds for some restricted circuit classes in sections 4 and 5.
The bounds presented here are based on the papers [KSS14] and [Raz09] which in turn build on a
long series of works including [VSBR83, Nis91a, NW96, GKKS13].

2 Definitions and Notation

Arithmetic Circuits and Formulas. An arithmetic circuit computes a polynomial function
over some underlying field F via a sequence of operations involving + and × starting from its
inputs x1, x2, . . . , xn. We typically allow arbitrary constants from F on the incoming edges to a +
gate so that a + gate can in fact compute an arbitrary F-linear combination of its inputs. The
complexity of a circuit is measured in terms of its size (the number of edges in the corresponding
graph) and depth (the maximum length of a path in the corresponding graph). Abusing notation,
we will often refer to a family of polynomials {fn(x1, x2, . . . , xn) : n ≥ 1} via its n-th member fn.
For example, we will say f is a n-variate of degree d = d(n) to mean that f comes from a family
of polynomials wherein the n-variate member has degree bounded by d(n). When the underlying
graph is tree (equivalently that every node has outdegree at most one), it is called an arithmetic
formula.

Formal degree. The formal or syntactic degree of a circuit is the formal degree of its output
node; the formal degree of a node being defined inductively in the natural manner - leaf nodes
labelled with variables (resp. field constants) have formal degree 1 (resp. 0) and every internal +
gate (resp. × gate) is said to have formal degree equal to the maximum of (resp. the sum of) the
formal degrees of its children.

Notation. We will denote tuples by boldfaced letters - for example we will typically use x to
denote a tuple of variables and a to denote a tuple of field elements naturally interpreted as point
in |a|-dimensional space. Abusing notation, we will sometimes use x to also refer to the set of
variables in the tuple x. For example, we will say y is a subset of the x variables to refer to a
tuple where each component is a variable that occurs in x.

Sets of Polynomials. Let A,B ⊆ F[x] be sets of polynomials. A polynomial naturally corresponds
to a vector - its coefficient vector - and a set of polynomials A to a matrix whose rows are indexed
by the polynomials in A and each row is the coefficient vector of that polynomial. We will denote
by dim(A) the dimension of the vector space spanned by the coefficient vectors of polynomials in
A. By the natural correspondence above, dim(A) also equals the rank of the matrix corresponding
to A. We will denote by A ·B the set of pairwise products, i.e.

A ·B def
= {f(x) · g(x) : f(x) ∈ A, g(x) ∈ B} ⊆ F[x].



3 Overview

In this section we state the paradigm in a abstract way. In the next two sections we then make it
concrete by instantiating this paradigm for two classes of arithmetic circuits where superpolynomial
lower bounds are known. Let C be a (sub)class4 of arithmetic circuits. Suppose we have a n-variate
polynomial f(x) of degree d = d(n)5 which we wish to prove is hard for the circuit class C.

1. Depth Reduction/Simpler representation. We wish to find representations for polyno-
mials computed by C that are easy to analyze. This step typically involves proving a statement
of the following form. If f is in C then there exists a representation of f of the form

f = T1 + T2 + . . .+ Ts, (1)

where each Ti is a product of simple polynomials and the number of summands s is not too
many.

2. Identifying a Geometric Property π. One then tries to identify a weakness of such
representations by pinpointing interesting geometric properties of the geometric variety of a
term Ti. Recall that the variety corresponding to a polynomial T , denoted V(T ), is the the
set of all zeroes of the polynomial T , i.e.

V(T ) = {a ∈ Fn : T (a) = 0}.

The intuition is that Ti being a product of simple polynomials should show up in the geometric
properties6 of V(Ti). We then try to exploit such geometric properties to obtain lower bounds
on s via ranks of suitable matrices in the following way.

3. Translating the property π into smallness of rank of a matrix. Using π as an
inspiration, we then try to associate a matrixM(g) to any polynomial g such that the following
two properties hold:

(a) Linearity. For any two polynomials g and h and any two constants α, β ∈ F, it holds
that M(α · g + β · h) = α ·M(g) + β ·M(h), and

(b) Smallness of rank. If the variety of any polynomial g has the property π identified
above then the rank of M(g) is significantly smaller than its size.

In general its not clear that this can be done at all but suppose that it can be. Note that this
would immediately imply a lower bound on the number of summands s in equation (1):

s ≥ rank(M(f))

r
, where r

def
= max

i∈[s]
rank(M(Ti)).

It is even less clear that r will be small enough that this would provide a meaningful lower
bound on s but fortunately, as we will see, this does happen for some restricted classes of
circuits C.

4For the purpose of this overview the reader could think of C as the class of polynomial-sized arithmetic circuits
as this is the class for which we ultimately aspire to prove lower bounds against. In later sections we will take C to
be certain restricted classes of arithmetic circuits.

5We are typically interested in the situation when d(n) is (upper bounded by) a polynomial function of n.
6By this we refer to the consideration of the zeroes of T over the algebraic closure F of F and properties therein.



4. Finding an explicit polynomial f such that rank of M(f) is large. We finally find
an explicit polynomial f such that M(f) has large rank. The matrix M(f) is typically very
huge but remarkably one is often able to prove lower bounds on rank of M(f) via two simple
tools:

(a) Via existence of a large triangular submatrix. If M(f) contains an upper-
triangular square submatrix U (with nonzero entries on the diagonal) then the size
of U is a lower bound on the rank of M(f).

(b) Via near-orthogonality of the columns of the matrix. A beautiful lemma com-
monly attributed to Noga Alon intuitively says that if the columns (or the rows) of a
matrix are almost orthogonal then the matrix has nearly full rank. Specifically for any
matrix M over the real numbers:

rank(M) ≥ Tr(MT ·M)2

Tr((MT ·M)2)
.

4 Regular Formulas

In this section we illustrate the paradigm of section 3 via superpolynomial lower bounds for a class
of circuits that we refer to as regular arithmetic formulas (based on [KSS14]).

Definition (Regular Arithmetic Formulas). We say that an arithmetic circuit is a regular
formula if:

1. The underlying graph is a tree consisting of alternating layers of + and × gates, and

2. all the nodes at a layer have the same fanin, and

3. the formal degree of the output node is at most a constant factor (say twice) more than d,
the degree of the polynomial computed by the formula.

A lower bound of nΩ(logn) against regular arithmetic formulas was obtained in [KSS14]. We
restate the proof in the framework of section 3.

1. Depth Reduction. In the case of regular formulas one reduces to depth four - if Φ is a regular
formula of size 2o(log2d) computing a polynomial f of degree d then for some t = Ω(log d) there
exists a representation of f of the form

f = T1 + T2 + . . .+ Ts,

where each Ti is a product of O(dt )-many polynomials of degree t and s = 2o(
d
t
·log d).

2. Identifying a Geometric Property π. The geometric intuition is best described by
working in projective space over an algebraically closed field F. The geometric property that
we use is that when T is a product of many polynomials, say

T = g1(x) · g2(x) · . . . · gr(x) (2)



then V(T ) has lots of points vanishing with high multiplicity.7 To see why this is so we first
illustrate it with the case of r = 2. Assume that

T (x) = g1(x) · g2(x) (3)

Intuitively, for any point a ∈ V(g1) ∩ V(g2) the polynomial T (x) = g1(x) · g2(x) vanishes

Figure 1: When r = n = 2. Intersection points (circled) are points of high multiplicity.

with multiplicity 2 at a as each of the factors vanish at a. This can be seen pictorially for
the case when the ambient space is a plane (i.e. n = 2) in figure 1. Multiplicity of a zero
naturally corresponds to the vanishing of partial derivatives for which we use the following
succinct notation.

Notation: set of partial derivatives and general varieties. For a polynomial f(x) ∈
F[x], we will denote the set of its k-th order partial derivatives by ∂=kf , i.e.

∂=kf
def
=

{
∂kf

∂m
: m is a monomial over x of degree exactly k

}
⊆ F[x].

The (geometric) variety of a set of n-variate polynomials A ⊆ F[x], denoted V(A) is defined
as the set of points in Fn

where each polynomial in A vanishes, i.e.

V(A)
def
=
{
a ∈ Fn

: h(a) = 0 for all h(x) ∈ A
}
.

7Also called high-order singularities.



Our last observation can be formally verified by checking that every partial derivative of T
vanishes at such a point a. Differentiating equation (2) with respect to any xi and applying
product rule we have

∂T

∂xi
(x) =

∂g1

∂xi
(x) · g2(x) + g1(x) · ∂g2

∂xi
(x)

∂T

∂xi
(a) =

∂g1

∂xi
(a) · g2(a) + g1(a) · ∂g2

∂xi
(a) (substituting a for x)

= 0 (as g1(a) = g2(a) = 0)

Now since we are in projective n-dimensional space over an algebraically closed field, V(g1)∩
V(g2) has dimenson at least8 (n−2). The above discussion can be summarized as saying that
for T = g1 · g2, the variety of first order partial derivatives, denoted V(∂=1T ), has a large
number of points. Specifically,

dim(V(∂=1T )) ≥ (n− 2).

This easily generalizes to larger values of r in the following way. For any positive integer
k ≤ r we have

dim(V(∂=kT )) ≥ (n− k − 1).

This also formally captures our claim that when T is a product of many polynomials then
V(T ) contains many points of high multiplicity.

3. Translating the property π into smallness of rank of a matrix. We will use the
correspondence between geometry and algebra (sometimes called the algebra-geometry
dictionary) originating in the works of Hilbert to do this. First a piece of notation.

Notation: set of monomials of a given degree. We will denote by x=` the set of
monomials in the x variables of degree exactly `, i.e. if x = (x1, x2, . . . , xn) then

x=` def
= {xe11 · x

e2
2 · . . . · x

en
n : each ei ∈ Z≥0 and e1 + e2 + . . .+ en = `} ⊆ F[x].

We now observe that when V(T ) has many points of high multiplicity then dim((x=`)·(∂=kT ))
tends to be small. We give the qualitative intuition here while leaving the details and the
quantitative bounds to [KSS14]. Let V ⊆ Fn be any set of points. For any integer ` ≥ 1, let

H`(V )
def
= {h(x) : deg(h) ≤ ` and h(a) = 0 for all a ∈ V } .

Note that H`(V ) is a vector space whose dimension decreases as V increases, i.e. adding a
point to V might reduce the dimension of H`(V ) but can never increase this dimension. Thus
if V is a large set of points then H`(V ) ought to be low-dimensional. If we now set V to be
the large set of points V(∂=kT ) then H`(V ) ought to be low-dimensional for all `. Finally,
note that the set of polynomials (x=`) · (∂=kT ) is a subset of H`+deg(T )−k(V ), and intuitively
therefore it should have a relatively low dimension as well.

8See [CLO07] for the definition of the dimension of a variety and the theorem that in projective space over an
algebraically closed field, the intersection of two varieties of dimension (n− a) and (n− b) is at least (n− a− b).



4. Finding an explicit polynomial f such that rank of M(f) is large. It turns out that
if we have a polynomial f which has a large number of monomials that are pairwise almost
coprime (i.e. the degree of the gcd of any two monomials is small compared to the degree of
f) then M(f) tends to have a large number of nearly orthogonal columns. This leads to the
desired lower bound on the rank of M(f). Such an explicit f can now be obtained via known
constructions of set systems with low pairwise intersection, such as the beautiful construction
due to Nisan and Wigderson [NW94].

5 Multilinear Formulas

Many polynomials of interest such as the determinant (denoted Detn) and the permanent (denoted
Permn) have the property that the degree with respect to any variable in it is at most 1. Such poly-
nomials are called multilinear polynomials. The best known circuit for computing the determinant
has the property that many intermediate nodes compute non-multilinear polynomials but the non-
multilinear terms generated at intermediate stages cancel out leaving only a multilinear polynomial
at the end. It is natural to wonder if efficient computation of a multilinear polynomial like Detn
requires that we necessarily must compute intermediate polynomials which are not multilinear. We
first formally capture this via notion of a (syntactic) multilinear circuit wherein the requirement of
multilinearity of intermediate polynomials is enforced in a syntactic fashion. A circuit is said to be
(syntactically) multilinear if the formal degree of any node with respect to any variable is at most
1.9 We do not know an answer to the question posed above.

Open Problem 1. Can the determinant Detn be computed by a poly(n)-sized multilinear circuit?

A further motivation for multilinear circuits is that they are a natural generalization of monotone
circuits10 but unlike the latter a superpolynomial lower bound for multilinear circuits has remained
elusive.

Open Problem 2. Prove superpolynomial lower bounds for multilinear arithmetic circuits (for an
explicit family of multilinear polynomials).

A very significant piece of progress was obtained by Ran Raz in [Raz09] who showed a super-
polynomial lower bound for multilinear formulas. We sketch11 this result here in the form of the
paradigm of section 3.

1. Depth Reduction. This reduction is best described using the notion of a log-product poly-
nomial. We will say that a n-variate polynomial T (x) is a log-product polynomial if it is a
product of r = logn

100 polynomials g1, g2, . . . , gr so that the variable set x can be partitioned
into r sets

x = x1 ] x2 ] . . . ] xr

each of size at least n1/2 where every gi is in the variables xi. Thus

T (x) = g1(x1) · g2(x2) · . . . · gr(xr).

9In other words, a circuit is syntactically multilinear if at every mutliplication node v, for every variable xi, there
is at most one child of v that has an incoming path from a leaf labelled with xi.

10In the sense that monotone circuits for multilinear polynomials are necessarily multilinear circuits as well.
11The sketch presented here is also partly based on the proof in the survey [SY10].



In the case of multilinear formulas one reduces to a sum of log-product polynomials - if Φ is
a multilinear formula of size s computing a n-variate multilinear polynomial f then one can
rewrite f as

f = T1 + T2 + . . .+ Ts,

where each Ti is a log-product polynomial.

2. Identifying a Geometric Property π. The geometric intuition is best described by
working over an algebraically closed field F. The geometric property that we use is that when
T is a log-product polynomial, say

T = g1(x1) · g2(x2) · . . . · gr(xr) (4)

then V(T ) has lots of axis-parallel affine subspaces.12 To see why this is so we first explain it
for the case of r = n = 2. Assume that

T (x, y) = g1(x) · g2(y) (5)

Suppose that g1(x) has roots a1, a2, . . . , ad1 while g2(y) has roots b1, b2, . . . , bd2 . Then V(T )

Figure 2: When r = n = 2. The variety is a union of horizontal and vertical lines.

is the union of d1 lines parallel to the y-axis (the y-parallel lines are {V(x− ai) : i ∈ [d1]})
12Recall that an affine space is just a vector space translated by a fixed point. So for example, lines are one-

dimensional affine subspaces, planes are two-dimensional affine subspaces and so on.



and d2-lines parallel to the x-axis (the x-parallel lines are {V(y − bj) : j ∈ [d2]}). This is
illustrated visually in figure 1. This easily generalizes to larger values of r in the following
way. But first a piece of notation.

Notation: Varieties corresponding to restrictions of subsets of variables. For
y = (xi1 , xi2 , . . . , xim) subset of x = (x1, x2, . . . , xn) and a point a = (a1, a2, . . . , am) ∈ Fm

,
V(y = a) shall denote the variety V({xi1 − a1, xi1 − a1, . . . , xim − am}). Note that for any
a ∈ Fm

, V(y = a) is an affine subspace in Fn
parallel to the (linear) subspace V(y = 0)

which is spanned by the coordinate axes corresponding to variables in x \ y.

Now when T (x) is of the form given by equation (4) then each zero ai of a factor gi(xi)
corresponds to an affine subspace V(xi = ai) inside V(T ) and so V(T ) contains a lot of
axis-parallel affine subspaces.

3. Translating the property π into smallness of rank of a matrix. Let x = y]z be some
partition of our variable set x into disjoint sets y and z. Now write polynomial T (x) = T (y, z)
as

T (y, z) =

s∑
i=1

pi(y) · qi(z), (6)

where the pi’s and qi’s are polynomials over the indicated variable sets. Such a representation
always exists13 but is not unique. Lets fix any one such representation. Now an affine subspace
V(y = a) parallel to the z-axes is contained in V(T ) if and only if T (a, z) = 0 identically as
a polynomial. Or equivalently, that

s∑
i=1

pi(a) · qi(z) = 0,

Since each pi(a) is in the underlying field F, we obtain a F-linear dependence among the
qi’s. This means that intuitively, a lot of z-parallel subspaces correspond to a lot of linear
dependencies among the qi’s in any repesentation of the form (6). Stated differently, a lot of
z-parallel subspaces correspond to only a few F-linearly independent qi’s. This is captured
by the following vector space of polynomials derived out of T (y, z).

Definition 1. For any polynomial T (y, z) ∈ F[y, z], define

evalDimy(T ) = dim
({
T (a, z) : a ∈ F|y|

})
.

‘ evalDimy(T ) is always finite and it has the following equivalent definitons.

Proposition 3. For any polynomial T (y, z) ∈ F[y, z], the following quantities are equal:

(a) evalDimy(T )

(b) evalDimz(T )

13To see the existence of a representation as given in equation (6), note that one can simply choose pi’s and qi’s to
be scalar multiples of all monomials of the appropriate degree over the indicated variable sets.



(c) Number of linearly independent qi’s in any representation of T of the form (6).

(d) Number of linearly independent pi’s in any representation of T of the form (6).

This definition also means that evalDimy(T ) is equal to the rank of a corresponding matrix -
call it M(T ) - whose rows correspond to the polynomials in the set

{
T (a, z) : a ∈ F|y|

}
. The

above discussion suggests that if V(T ) has lots of z-parallel subspaces then rank ofM(T ) ought
to be small. This matrix was used by Nisan [Nis91b] and by Nisan and Wigderson [NW94]
to prove lower bounds for some simpler models of computation such as non-commutative
branching programs. Inspired by their work, Raz [Raz09] observed that if T is a log-product
polynomial then for a randomly chosen subset of variables y, evalDimy(T ) is relatively small.
Specifically,

Proposition 4. Let T (x) ∈ F[x] be a n-variate multilinear log-product polynomial. Then for
a random choice of subset of variables y ⊆ x of size n

2 , the probability that evalDimy(T ) ≥
2n/2−n1/16

is at most n−Ω(r) = n−Ω(logn).

Combined with the depth reduction for multilinear formulas as in step 1 above, it means that
if a n-variate multilinear polynomial f satisfies

evalDimy(f) = 2n/2 for every y ⊆ x, |y| = n/2 (7)

then any multilinear formula for f must have size at least nΩ(logn).

4. Finding an explicit polynomial f such that rank of M(f) is large. Raz also showed
that both the determinant Det and the permanent Perm satisfy the property (7) (in a certain,
more general, sense). This implies that any multilinear formula for Det or Perm must have
superpolynomial size.

6 Discussion

We made explicit here a paradigm for arithmetic circuit lower bounds that captures most such
lower bounds that are known. We outlined how this can be implemented for two subclasses of
arithmetic circuits. We hope that this can be successfully implemented for more general and
interesting classes of circuits. A very recent piece of work [EGOW17] indicates that the absolutely
best possible lower bounds might be unattainable via rank-based methods such as the one outlined
in section 3. Specifically, they consider tensors in d sets of n variables each (so a total of nd
variables) and unconditionally show that any rank-based method such as the ones espoused here
cannot prove a lower bound of more than 2d · nbd/2c on the rank of such tensors. In comparison a

random tensor of these dimensions has rank n(d−1)

d . This indicates that rank-based methods such
as the ones described here might not be powerful enough to prove optimal lower bounds for various
classes of circuits. One hopes however that the paradigm described might be powerful enough to
prove a mere superpolynomial lower bound for arithmetic circuits.
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