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Abstract.
Polynomial identity testing (PIT) problem is known to be challenging
even for constant depth arithmetic circuits. In this work, we study the
complexity of two special but natural cases of identity testing - first is
a case of depth-3 PIT, the other of depth-4 PIT.
Our first problem is a vast generalization of: Verify whether a bounded
top fanin depth-3 circuit equals a sparse polynomial (given as a sum of
monomial terms). Formally, given a depth-3 circuit C, having constant
many general product gates and arbitrarily many semidiagonal product
gates, test if the output of C is identically zero. A semidiagonal product
gate in C computes a product of the form m ·

∏b
i=1 `ei

i , where m is a
monomial, `i is an affine linear polynomial and b is a constant. We
give a deterministic polynomial time test, along with the computation
of leading monomials of semidiagonal circuits over local rings.
The second problem is on verifying a given sparse polynomial factor-
ization, which is a classical question (von zur Gathen, FOCS 1983):
Given multivariate sparse polynomials f, g1, . . . , gt explicitly, check if
f =

∏t
i=1 gi. For the special case when every gi is a sum of univariate

polynomials, we give a deterministic polynomial time test. We charac-
terize the factors of such gi’s and even show how to test the divisibility
of f by the powers of such polynomials.
The common tools used are Chinese remaindering and dual represen-
tation. The dual representation of polynomials (Saxena, ICALP 2008)
is a technique to express a product-of-sums of univariates as a sum-of-
products of univariates. We generalize this technique by combining it
with a generalized Chinese remaindering to solve these two problems
(over any field).

Keywords. Chinese remaindering, circuits, depth-3, depth-4, factor-
ization, Galois rings, ideal theory, identity testing.

Subject classification. 68W30, 68Q17, 03D15



2 Saha, Saptharishi & Saxena

1. Introduction

Polynomial identity testing (PIT) is one of the most fundamental problems
of algebraic complexity theory. A central object of study in this subject is
the arithmetic circuit model of computation. Arithmetic circuits, an algebraic
analogue of boolean circuits with addition and multiplication gates replacing
‘or’ and ‘and’ gates, form a natural and concise way to represent polynomials
in many variables. It is an interesting and challenging task for the research
community to understand the powers and limits of this model.

Identity testing is an algorithmic problem on arithmetic circuits. It is the
task of checking if the output of a given arithmetic circuit is zero as a formal
polynomial. Interestingly, this natural algebraic problem is deeply connected
to fundamental lower bound questions in complexity theory (Agrawal 2005;
Heintz & Schnorr 1980; Kabanets & Impagliazzo 2004), and is also critically
used in designing efficient algorithms for several important problems (Agrawal
et al. 2004; Clausen et al. 1991; Lovász 1979). Some of the milestone results in
complexity theory, like IP = PSPACE (Lund et al. 1992; Shamir 1992) and the
PCP theorem (Arora et al. 1998; Arora & Safra 1998) also involve PIT.

Identity testing does admit a randomized polynomial time algorithm -
choose a random point from a sufficiently large field and evaluate the circuit
(DeMillo & Lipton 1978; Schwartz 1980; Zippel 1979). With high probability,
the output is non-zero if the circuit computes a non-zero polynomial. There are
several other more efficient randomized algorithms (Agrawal & Biswas 2003;
Chen & Kao 2000; Klivans & Spielman 2001; Lewin & Vadhan 1998). Refer to
the survey Agrawal & Saptharishi (2009) for a detailed account of them.

Derandomizing identity testing is important from both the algorithmic and
the lower bound perspectives. For instance, the deterministic primality test in
(Agrawal, Kayal & Saxena 2004) involves derandomization of a certain poly-
nomial identity test. On the other hand, it is also known (Agrawal 2005, 2006;
Kabanets & Impagliazzo 2004; Koiran 2011) that a certain strong derandomiza-
tion of PIT implies that the permanent polynomial requires super-polynomial
sized arithmetic circuits (in other words, VP 6= VNP). Also, Mulmuley (2011)
discusses this arithmetic P vs. NP question and identity testing in the frame-
work of geometric complexity theory.

Derandomizing the general problem of PIT has proven to be a difficult en-
deavor. Restricting the problem to constant depth circuits, the first non-trivial
case arise for depth-3 circuits. Quite strikingly, it is now known (Agrawal &
Vinay 2008) that depth-4 circuits capture the difficulty of the general problem
of PIT: A blackbox identity test for depth-4 circuits gives a quasi-polynomial
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time PIT algorithm for circuits computing low degree polynomials. (Another
notable result by Raz (2010), but more in the flavor of lower bounds, shows
that strong enough depth-3 circuit lower bounds imply super-polynomial lower
bounds for general arithmetic formulas.) Although, the general case of depth-3
PIT is still open, some special cases, like depth-3 circuits with bounded top
fanin (Dvir & Shpilka 2007; Karnin & Shpilka 2008; Kayal & Saraf 2009; Kayal
& Saxena 2007; Saxena & Seshadhri 2010, 2011a,b) and diagonal depth-3 cir-
cuits (Saxena 2008) are known to have deterministic polynomial time solutions.
In the depth-4 setting, it is known how to do (blackbox) PIT for multilin-
ear circuits with bounded top fanin (Karnin et al. 2010; Saraf & Volkovich
2011) also in polynomial time. Further, it is also known that blackbox PIT for
constant-depth constant-read multilinear formula can be done in deterministic
polynomial time (Anderson et al. 2011). Refer to the surveys by Saxena (2009)
and Shpilka & Yehudayoff (2010) for details on results concerning depth-3 and
depth-4 PIT (and much more).

In a recent work, Agrawal et al. (2011) have given a single, common tool
to devise blackbox PIT for the two above-mentioned models - depth-3 circuits
with constant top fanin and constant-depth constant-read formulas (without
the multilinearity restriction). Although their approach, which is based on
a study of algebraic independence and the Jacobian, is powerful enough to
subsume all known cases of polynomial time blackbox PIT, it is not clear if the
Jacobian based approach can be used to give polynomial time PIT for the two
particular models of depth-3 and depth-4 circuits that we study in this work.
We stress that our polynomial time identity tests are non-blackbox in nature,
which means that the algorithm is allowed to see the input circuit explicitly.

1.1. The motivation. The motivation behind our work is a question on
‘composition of identity tests’. Suppose we know how to perform identity tests
efficiently on two classes of circuits A and B. How easy is it to solve PIT on the
class of circuits A + B? The class A + B, which we call the composition of A
and B, is made up of circuits C of the form C1 +C2, where C1 ∈ A and C2 ∈ B.
In other words, the root node of C is an addition gate with the roots of C1 and
C2 as its children. (Notice that, PIT on the class C1×C2 is trivial.) Depending
on the classes A and B, this question can be quite non-trivial to answer. For
instance, suppose we are given t+ 1 sparse polynomials f, g1, . . . , gt, explicitly
as sums of monomials, and asked to check if f =

∏t
i=1 gi. Surely, it is easy

to check if f or
∏t

i=1 gi is zero. But, it is not clear how to perform the test

f −
∏t

i=1 gi
?
= 0. (This problem has also been declared open in a work by

von zur Gathen (1983) on sparse multivariate polynomial factoring.) The test



4 Saha, Saptharishi & Saxena

f −
∏t

i=1 gi
?
= 0 is one of the most basic cases of depth-4 PIT that is still open.

Annoyingly enough, it shows that while PIT on depth-3 circuits with top fanin
2 is trivial, PIT on depth-4 circuits with top fanin 2 is far from trivial.

We wonder what can be said about composition of subclasses of depth-3
circuits. Two of the non-trivial classes of depth-3 circuits for which efficient
PIT algorithms are known are the classes of bounded top fanin (Kayal & Saxena
2007) and diagonal (or semidiagonal) circuits (Saxena 2008). The question is
- Is it possible to glue together the seemingly disparate methods of Kayal &
Saxena (2007) and Saxena (2008) and give a PIT algorithm for the composition
of bounded top fanin and semidiagonal circuits? In this work, we answer this
question in the affirmative. Our technique also applies to a special case of the

depth-4 problem: f −
∏t

i=1 gi
?
= 0.

The semidiagonal model may seem a bit artificial at first sight. Our mo-
tivation stems from the desire to find new restrictions on the multiplication
gates for which PIT can be done. In the past multilinearity has been a useful
restriction: Several identity tests (Anderson et al. 2011; Karnin et al. 2010;
Saraf & Volkovich 2011; Shpilka & Volkovich 2008, 2009), lower bounds (Raz
2004; Raz et al. 2008; Raz & Yehudayoff 2009) and learning results (Gupta
et al. 2011a,b) have been found. Our work shows that semidiagonal is another
nontrivial restriction (on the product gates) that makes circuits vulnerable to
algebraic attacks. The reason being Theorem 2.1, that helps ‘separate’ the vari-
ables, suggesting that semidiagonal is a philosophical dual of multilinearity. On
a different note, semidiagonal circuits are motivated from Waring’s problem in
classical algebra (Kleppe 1999; Palatini 1903; Sylvester 1851; Vaserstein 1987).

1.2. Our contribution. We give deterministic polynomial time algorithms
for two problems on identity testing - one is on a class of depth-3 circuits, while
the other is on a class of depth-4 circuits. As mentioned in Section 1.1, both
these classes can be viewed as composition of subclasses of circuits over which
we already know how to perform PIT. Our first problem is a common gener-
alization of the problems studied in Dvir & Shpilka (2007), Kayal & Saxena
(2007) and Saxena (2008) for which we need the following definition.

Definition 1.1. Let C be a depth-3 circuit, i.e. a sum of products of affine
linear polynomials. (An affine linear polynomial in n variables over a field F
is a polynomial of the form

∑n
i=1 cixi + c0, where ci ∈ F.) The top fanin of

C is the number of such product gates. If each product gate in C computes
a polynomial of the form m ·

∏b
i=1 `

ei
i , where m is a monomial, `i is an affine

linear polynomial and b is a constant, then C is a semidiagonal circuit.
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Remark. Our results hold even with the relaxed definition of semidiagonal
circuits where b is not necessarily a constant but

∏b
i=1 (1 + ei) ≤ poly(size(C)).

For this, we need a slightly tighter analysis for dual representation in Section 2
(refer to Saxena (2008)). This gets interesting when all ei’s are O(1) as our
test could then afford upto b = O(log size(C)).

Problem 1. Given a depth-3 circuit C1 with bounded top fanin and a semidi-
agonal circuit C2, test if the output of the circuit C1 + C2 is identically zero.

Remark. A problem of a similar nature as Problem 1 has been studied by
Shpilka & Volkovich (2008) in the context of read-once testing, which is the
problem of deciding if a polynomial (given as a circuit) can be computed by
a read-once formula and if yes then output such a formula. Let A be a class
of arithmetic circuits that can compute any univariate affine linear polynomial
and A∗ be the class containing circuits of the form C1 + C2 + C3 × C4, where
C2 , C3 and C4 are variable disjoint and Ci’s are circuits of the form αC + β
with α, β ∈ F and C ∈ A. Shpilka & Volkovich (2008) showed that if there is
a deterministic polynomial time PIT for the circuit class A∗ that runs in time
polynomial in the size of the input circuit from A∗ then there is a deterministic
algorithm to solve the read-once testing problem for the class A in time also
polynomial in the size of the input circuit from A. Notice that the class A∗ is a
‘particular type’ of composition of circuit classes (just like in Problem 1 which
also deals with composition of circuit classes). They further showed that when
A is the class of sums of constantly many read-once formulas then indeed a
deterministic PIT test for A can be suitably extended to give a PIT for the
composed class A∗ which in turn gives a read-once test for A. This is a concrete
demonstration of the usefulness of ‘composition of identity tests’.

Our second problem is a special case of checking a given sparse multivariate
polynomial factorization (thus, a case of depth-4 top fanin 2 PIT).

Problem 2. Given t+ 1 polynomials f, g1, . . . , gt explicitly as sums of mono-
mials, where every gi is a sum of univariate polynomials, check if f =

∏t
i=1 gi.

It is possible that though f is sparse, some of its factors are not sparse (an
example is provided in Section 5). So, multiplying the gi’s in a brute force
fashion is not a feasible option. Our results on Problem 1 & 2 are as follows.
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Theorem 1.2. In Problem 1, suppose that circuits C1 and C2 have top fanins
k and s respectively, and every product gate in C2 is of the form m ·

∏b
i=1 `

ei
i ,

where m is a monomial, `i is an affine linear polynomial and b is fixed across
all product gates of C2. Let n be the number of underlying variables and d the
bound on the degree of every product gate in C1 and C2.

Then, Problem 1 can be solved deterministically in time polynomial in s
and (nd)b+k.

Theorem 1.3. In Problem 2, let d be the bound on the total degrees of the n-
variate polynomials f, g1, . . . , gt, where gi’s are sums of univariate polynomials,
and s be the number of monomials (with non-zero coefficients) in f . Then,
Problem 2 can be solved deterministically in time polynomial in n, t, d and s.

1.3. An overview of our approach. Our first common tool in solving both
Problem 1 and Problem 2 is called the dual representation of polynomials (Sax-
ena 2008). It is a technique to express a power of a sum of univariates as a
‘small’ sum of product of univariates. In the latter representation we show how
to efficiently compute the leading monomial under the natural lexicographic
ordering (Section 3). This observation turns out to be crucial in solving Prob-
lem 1. Finding the leading monomial of a general depth-3 circuit is supposedly
a harder problem than identity testing (Koiran & Perifel 2007). But, it turns
out to be efficiently doable in the particular case we are interested in.

The second tool is Chinese remaindering (CR). In the most basic form,
CR says that if two coprime polynomials f and g divide h then fg divides h.
In Problem 1 we use a more involved version of CR over certain local rings
(Kayal & Saxena 2007). Over these local rings, we show how to compute and
utilize the dual representation to do PIT (Section 4.2). In Problem 2 the CR is
over the base field but to exploit it we develop a divisibility test using duality
(Section 5.1) and characterize the factors of a sum of univariates (Section 5.2).
The heart of the paper lies in making those combinations of duality and CR
actually work.

Remark. The results of this paper apply to any field F. However, for the sake
of better readability, we have presented our results assuming the characteristic
of F to be zero or sufficiently large. In Section 6, we point out the necessary
adjustments to our arguments which make them work for small characteristic
fields as well. In that case, the overall ideas are similar but significant algebraic
generalizations are used. A common theme is to do computations over a local
ring with prime-power characteristic.
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1.3.1. Approach to solving Problem 1. Let p and f be the polynomials
computed by the circuits C1 and C2, respectively. The general idea is to begin
by applying the Kayal-Saxena test (Kayal & Saxena 2007) to the polynomial
p. This test uses some invertible linear maps to transform the polynomial p,
thereby altering f in the process. However, since C1 has bounded top fanin,
the transformed f continues to retain its semidiagonal property (Definition 1.1)
over a local ring. Identity testing of a semidiagonal circuit is made easy via
its dual representation. So, if we can ensure that the Kayal-Saxena (partial)
test on p + f reduces to identity testing of semidiagonal circuits over local
rings then we are done. Let p =

∑k
i=1 Pi, where Pi is a product of linear

polynomials and k is a constant. The original Kayal-Saxena test (where we
test if p = 0) chooses a Pj such that LM(Pj) � LM(p) (LM stands for the
leading monomial and � refers to the monomial ordering). But now since the
test is on p + f , at an intermediate stage of the algorithm we need to find a
Pj such that LM(Pj) � LM(p + f), where f is semidiagonal. This is where
we need to find the leading monomial of f , which we achieve by considering its
dual representation (see Section 3 and Section 4).

1.3.2. Approach to solving Problem 2. The approach we take to check
if f =

∏t
i=1 gi is quite intuitive - reduce the problem to checking divisibility

and then use Chinese remaindering. But the two issues here are: how to check
gi | f , and that gi’s need not be coprime. So in general we need to check if
gd divides f for some d ≥ 1. We show that such divisibility checks reduce to
identity testing of a (slightly general) form of semidiagonal circuits. Finally, for
Chinese remaindering to work, we need to say something about the coprimality
of gi and gj. Towards this, we show an irreducibility result on polynomials of
the form f(x) + g(y) + h(z) that helps us conclude the proof (see Section 5).

2. Preliminaries: The dual representation

In this section, we recall how to express a power of a sum of univariate poly-
nomials as a ‘small’ sum of product of univariates. The idea is already present
in Saxena (2008). We reproduce it here as we need it often.

Let f = (
∑n

i=1 gi(xi))
D

, where gi(xi) (or simply gi) is a univariate in xi of
degree at most d. Assume that the underlying field F has size greater than
(nD + 1) and that char(F) = 0, or greater than D. Let z be a new variable
and g =

∑n
i=1 gi. Then in the exponential power series expansion

egz =
∞∑
j=0

gj

j!
zj,
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the coefficient of zD is f/D!. On the other hand, egz is also the product of
the formal power series egiz for 1 ≤ i ≤ n, i.e. egz =

∏n
i=1 e

giz. Define the
polynomials

ED(gi, z) =
D∑
j=0

gi
j

j!
zj.

Then the coefficient of zD in the formal power series
∑∞

j=0
gj

j!
zj is exactly equal

to the coefficient of zD in the polynomial P (z) :=
∏n

i=1ED(gi, z). The idea is
to use interpolation to express this coefficient of zD as an F-linear combination
of few evaluations of P (z) at different field points.

Suppose P (z) =
∑nD

j=0 pjz
j, where pj’s are polynomials in the variables

x1, . . . , xn. Choose (nD + 1) distinct points α0, . . . , αnD from the field F and
let V be the (nD + 1)× (nD + 1) Vandermonde matrix (αkj )0≤j,k≤nD. Then,

V · (p0, . . . , pnD)T = (P (α0), . . . , P (αnD))T ,

which implies (p0, . . . , pnD)T = V−1 · (P (α0), . . . , P (αnD))T

In other words, pD can be expressed as an F-linear combination of the P (αj)’s
for 0 ≤ j ≤ nD. Now, to complete the sketch, notice that pD = f/D! and each
P (αj) is a product of the univariates ED(gi, αj) of degree (in xi) at most dD.
This proves the following theorem.

Theorem 2.1. (Saxena 2008) Given f = (
∑n

i=1 gi(xi))
D

, where gi is a uni-
variate in xi of degree at most d, f can be expressed as a sum of (nD + 1)
products of univariates of degree dD, in poly(n, d,D) time.

3. Finding the leading monomial of semidiagonal circuits

In this section, we present an efficient algorithm to compute the leading mono-
mial of a semidiagonal circuit f . This will be crucial in both the problems that
we later solve.

Definition 3.1. (Monomial and coefficient) Let m be a monomial and f a
polynomial in the variables x1, . . . , xn with coefficients coming from a ring.
Fix a monomial ordering � by x1 � · · · � xn. LM(f) denotes the leading
monomial in f (conventionally, LM(0) := ∅ and we define xi � ∅, for all i).
We denote the coefficient of m in f by [m]f .
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Remark. When we say ‘variables’, we actually mean ‘free variables’. For
instance, P = x3

1 + x1x2 + x2
3 is a polynomial over Q in the variables x1, x2 and

x3. So, under the lexicographic monomial ordering with x1 � x2 � x3, x
3
1 is the

leading monomial of P . However, when P is viewed as a polynomial over the
quotient ring R = Q[x1]/(x

4
1), then it is a polynomial in the free variables x2

and x3 with coefficients fromR. In this case, the leading monomial of P (viewed
as a polynomial over R), under the lexicographic ordering with x2 � x3, is x2

and not x3
1, and the leading coefficient is x1, which is an element in R.

We remark that given a semidiagonal circuit f , finding LM(f) is indeed
a non-trivial problem since the leading monomials generated by the product
terms m ·

∏b
i=1 `

ei
i in f might cancel off in such a way that LM(f) is strictly

smaller than any of the leading monomials of the terms m ·
∏b

i=1 `
ei
i . Using

Theorem 2.1 and by the definition of semidiagonal circuits, it is sufficient to
present an algorithm for finding the leading monomial of a sum of product of
univariates. Our argument is similar in spirit to that of the non-commutative
formula identity test of Raz & Shpilka (2005) but with the added feature that
it also finds the leading monomial. Finding leading monomial is supposedly a
harder problem than PIT for general circuits (Koiran & Perifel 2007).

Theorem 3.2. Given f =
∑k

i=1

∏n
j=1 gij(xj) over a field F, where gij is a

univariate polynomial in xj of degree at most d, the leading monomial of f
(and its coefficient) can be found in poly(nkd) time.

Proof. The following discussion gives an efficient iterative algorithm to find
both LM(f) and [LM(f)]f .

At the `th iteration, we would need to compute the leading monomial of a
polynomial of the form

f` =
k∑
i=1

Gi,`−1 ·
n∏
j=`

gij,

where Gi,`−1’s are polynomials in x1, . . . , x`−1 each having at most k monomials,
and LM(f) = LM(f`). We show by induction on ` that f` can be represented
as above (the induction hypothesis). To begin with, ` = 1 and Gi0 = 1, for
all 1 ≤ i ≤ k (the base case). When the iteration ends at ` = n, we have
LM(f) = LM(fn), which can be computed by multiplying out Gi,n−1 with
gin, for 1 ≤ i ≤ k. Once we know LM(f), we can derive [LM(f)]f as each
product term

∏n
j=1 gij(xj) in f can contribute only one copy of LM(f), gij’s

being univariates. It would be clear from the subsequent discussion that the
above representation of f` can be computed from that of f`−1 in poly(nkd) time.
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Let us prove the induction hypothesis for f`+1 assuming that it already
holds for f`. Consider the monomials with nonzero coefficients occurring in
the products Gi,`−1 · gi` (1 ≤ i ≤ k), which can be computed at the `th itera-
tion in poly(kd) time as the induction hypothesis holds for f`. Let the set of
these monomials be M` := {m1, . . . ,mµ(`)} such that m1 � m2 � . . . � mµ(`).
(Surely, µ(`) ≤ k2d by the induction hypothesis.) Similarly, consider the mono-
mials with nonzero coefficients in the partial products

∏n
j=`+1 gij for all 1 ≤ i ≤

k and call them N` := {n1, . . . , nν(`)} (also assume that n1 � n2 � . . . � nν(`)).
Unlike M`, we do not compute N` at the `th iteration, N` is considered just for
the sake of arguing. Then, for any i,

Gi,`−1 · gi` =

µ(`)∑
r=1

cirmr and
n∏

j=`+1

gij =

ν(`)∑
s=1

disns,

where the coefficients cir and dis belong to F.
Notice that the monomials mr ·ns are distinct for distinct tuples (r, s). The

coefficient of mr · ns in f` is exactly
∑k

i=1 cirdis. In other words, if cr is the
k-dimensional row vector (c1r, . . . , ckr) and ds is the vector (d1s, . . . , dks) then

[mr · ns]f` = cr·dTs .

Consider the µ(`) × k matrix C with vectors cr as rows, for all 1 ≤ r ≤ µ(`),
and D be the k× ν(`) matrix with vectors dTs as columns, for all 1 ≤ s ≤ ν(`).
The coefficient of mr · ns is the (r, s)th entry of the product matrix CD. Once
again, since the induction hypothesis holds for f`, matrix C can be computed
at the `th iteration in poly(kd) time. We do not compute D, it is considered
for the sake of the argument.

We are interested in finding LM(f`). Now notice that the lexicographically
smallest possible index (r, s) for which there is a nonzero entry in CD, gives
the leading monomial mr · ns of f`. This is because of the monomial orderings
m1 � m2 � . . . � mµ(`) and n1 � n2 � . . . � nν(`). Therefore, if there is
a row vector cr in C that is F-linearly dependent on the vectors c1, . . . , cr−1

then LM(f`) can never be of the form mr · ns for any s, and so we can safely
drop the row cr from C. Since C is a µ(`)× k matrix, the number of linearly
independent rows of C is at most k. Hence, we can iteratively drop rows from
C that are linearly dependent on previous rows, until we are left with a new
matrix C̃ with at most k rows. Thus, computation of C̃ takes poly(kd) time.

The dropping of a row cr from C corresponds to pruning the monomial mr

from the product Gi,`−1 · gi`. By this we mean the following. Let M̃` be the
subset of those monomials of M` such that mr ∈ M̃` if and only if cr is a row
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of C̃. Let Gi` be the product Gi,`−1 · gi` projected to only the monomials in M̃`

i.e. Gi` :=
∑

mr∈M̃`
cirmr. Then the leading monomial of f`+1 defined as,

f`+1 :=
k∑
i=1

Gi` ·
n∏

j=`+1

gij

is the same as LM(f`) for the reason explained in the last paragraph. The
good part is that M̃` has at most k monomials and so do the polynomials Gi`

for all 1 ≤ i ≤ k. This proves the induction hypothesis for f`+1. Since M̃` can
be easily derived from C̃, we can compute Gi` from the product Gi,`−1 · gi`. As
the number of monomials in Gi` does not grow with `, it is easy to see that
both LM(f) and [LM(f)]f can be found in poly(nkd) time by adapting the
above discussion into an iterative algorithm. �

Corollary 3.3. Let C be a semidiagonal circuit (Definition 1.1) with top
fanin s and degree of every product gate bounded by d. Then LM(C) and
[LM(C)]C can be computed in poly(s, (nd)b) time.

Proof. We do this by replacing each power of a linear polynomial in the
product gates of C by its dual expression given by Theorem 2.1. Next, we
partially expand out each product gate to still get a sum of products of uni-
variates. Per product gate, this could blow up the final expression size to at
most (nd)O(b). �

4. Solving Problem 1

In Problem 1, suppose p and f are the polynomials computed by C1 and C2,
respectively. We need to test if p + f , which is a polynomial computed by
the depth-3 circuit C1 + C2, is identically zero. As far as identity testing is
concerned, we can assume without any loss of generality that every product gate
of an input depth-3 circuit C computes a homogeneous polynomial of the same
degree d. This is because of the following reason: Suppose C consists of product
gates Q1, . . . , Qm, where Qi =

∏di

j=1 `ij, each `ij = cij0 + cij1x1 + . . .+ cijnxn is
an affine linear polynomial and cijk ∈ F (the base field). Let d = maxi di and

define Q′i = zd−di ·
∏di

j=1 (cij0z + cij1x1 + . . .+ cijnxn), where z is a new variable
different from x1, . . . , xn. Now observe that C =

∑m
i=1Qi is identically zero if

and only if C ′ =
∑m

i=1Q
′
i is identically zero. Indeed, C ′ is a depth-3 circuit

whose product gates compute homogeneous polynomials of degree d. Further,
it is straightforward to construct C ′ from C since the algorithm is allowed
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to see the circuit C explicitly (recall that our algorithms are ‘non-blackbox’
in nature). Thus, we can assume that p and f are homogeneous polynomials
having the same degree d. Note also, that this above process of homogenization
does not affect the semidiagonal nature of f .

Let p =
∑k

i=1 Pi, where k is a constant and Pi is a product of d linear
forms over F, for all 1 ≤ i ≤ k. Let X = {x1, . . . , xn} be the underlying
set of variables. Also, suppose s is the number of product gates in C2. Our
algorithm builds upon Kayal & Saxena (2007), which tests if p = 0. To put
things in context, we briefly review their algorithm first. Let us quickly recall
the definition of a local ring.

Definition 4.1. (Local ring) A commutative ring R is local if it has a unique
maximal ideal.

Example - Let R = Q[x] be the ring of univariate polynomials in x with
rational coefficients, and xnR be the ideal of all polynomials that are divisible
by xn, where n is a positive integer. Then the quotient ring R/xnR is a
local ring with exactly one maximal ideal consisting of all polynomials that are
divisible by x.

4.1. Reviewing the Kayal-Saxena test. The algorithm in Kayal & Sax-
ena (2007) uses recursion on the top fanin of C1 to check if p = 0. At an
intermediate level of the recursion, the algorithm finds out if a polynomial of
the form

α1T1 + · · ·+ αk′Tk′

is zero over a local ring R ⊇ F, where k′ ≤ k and αi’s are elements of R. Each
Ti is a product of linear polynomials over R, where a linear polynomial over R
is of the kind

a1xv1 + · · ·+ an′xvn′ + τ,

where ai ∈ F and τ ∈M, the unique maximal ideal of R. In addition, there is
at least one nonzero ai, and xvi

∈ X is a free variable over R. At the start of
the recursion, R = F and M = (0), the null ideal.

The following Algorithm ID takes as input an F-basis of a local ring R, and
checks if the polynomial

∑k′

i=1 αiTi is identically zero over R and returns YES
or NO accordingly. The description of Algorithm ID given below is the same
as in Kayal & Saxena (2007), except a slight modification in Step 3.1 which is
somewhat necessary for our purpose (see remark after Algorithm ID).
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Algorithm ID(R, 〈α1, . . . , αk′〉, 〈T1, . . . , Tk′〉):

Step 1: (Rearranging terms) Order the terms αiTi so that LM(T1) � LM(Ti),

for all 2 ≤ i ≤ k′. Let p =
∑k′

i=1 αiTi.

Step 2: (Base Case) If k′ = 1 check if α1 = 0. If so, return YES otherwise NO.

Step 3: (Verifying that p = 0 mod T1) The product T1 can be split as T1 =
S1 . . . Sr, with possible change in the constant α1, such that each Sj is of the
form

Sj = (`j + τ1) · (`j + τ2) . . . (`j + τtj ),

where τi ∈ M and `j is a linear form over F. Further, for i 6= j, `i and `j are
coprime linear forms over F. Check if p = 0 mod Sj, for every 1 ≤ j ≤ r. This
is done in the following way.

Step 3.1: (Applying a linear transformation) Find a free variable xu
with nonzero coefficient cu in `j. Define an invertible linear trans-
formation σ on the free variables (occurring in T1, . . . Tk′), sending
`j to xu, as follows: σ(xu) = c−1

u (xu − `j + cuxu) and for any other
free variable xv 6= xu, σ(xv) = xv.

Step 3.2: (Recursively verify if σ(p) = 0 mod σ(Sj)) Define the ring

R′ = R[xu]/(σ(Sj)),

where xu is the same variable xu in Step 3.1. Notice that, σ(Sj) is
of the form

σ(Sj) = (xu + τ1) · · · (xu + τtj ),

and σ(T1) = 0 mod σ(Sj). For 2 ≤ i ≤ k′, compute elements
βi ∈ R′ and T ′i such that,

σ(Ti) = βiT
′
i mod σ(Sj),

where T ′i is a product of linear polynomials over R′.
Recursively call ID(R′, 〈β2, . . . , βk′〉, 〈T ′2, . . . , T ′k′〉). If the recursive
call returns NO then output NO and exit, otherwise declare p =
0 mod Sj.

Declare p = 0 mod T1, if p = 0 mod Sj for all 1 ≤ j ≤ r.

Step 4: Compute [LM(T1)]p by considering i’s such that LM(Ti) = LM(T1)
and computing the sum (over such i’s) of αi ·

∏
j [LM(`ij)]`ij, where Ti =

∏
j `ij.

If [LM(T1)]p = 0 then return YES else NO.
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Remark on Step 3.1. In Kayal & Saxena (2007), the linear transformation
σ is described as a map that takes `j to some fixed variable x1 and transforms
the remaining variables x2, . . . , xn accordingly so that σ is invertible. In our
setting, we need the property that σ maps only one variable to a general linear
form, whereas any other variable is mapped to a variable only. To stress upon
this property, we have defined σ in a slightly different way. We will need this
attribute of σ, in Section 4.2, to ensure that ‘semidiagonal’ structure of the
polynomial f is preserved at every intermediate stage of the algorithm.

4.1.1. Correctness of Algorithm ID. Suppose Step 3 ensures that p =
0 mod T1, where LM(T1) � LM(Ti) for all 2 ≤ i ≤ k′ which also means that
LM(T1) � LM(p). The way a linear form is defined over R, it follows that
[LM(T1)]T1 is a nonzero field element. Therefore, p = α · T1 for some α ∈ R,
implying that p = 0 if and only if [LM(T1)]p = 0. This is verified in Step 4.

It remains to show the correctness of Step 3. In order to check if p =
0 mod T1, the algorithm finds out if p = 0 mod Sj for every 1 ≤ j ≤ r. That
this is a sufficient condition is implied by the following lemma (also known as
‘Chinese Remaindering over local rings’). The way a local ring R is formed in
Algorithm ID it has the property that every element r ∈ R can be uniquely
expressed as r = a + τ , where a ∈ F and τ ∈ M. Let φ be a projection map,
taking r to a i.e. φ(r) = a. This map naturally extends to polynomials over R
by acting on the coefficients.

Lemma 4.2. (Kayal & Saxena 2007) Let R be a local ring over F and p, g, h ∈
R[x1, . . . , xn] be multivariate polynomials such that φ(g) and φ(h) are coprime
over F. If p = 0 mod g and p = 0 mod h then p = 0 mod gh.

Since φ(Sj) = `
tj
j and `i, `j are coprime for i 6= j, the correctness of Step 3

follows. Finally notice that, p = 0 mod Sj if and only if σ(p) = 0 mod σ(Sj) as
σ is an invertible linear transformation. The check σ(p) = 0 mod σ(Sj) is done

recursively in Step 3.2. The recursion is on the top fanin, as σ(p) =
∑k′

i=2 βiT
′
i

over the local ring R′, so that the top fanin of σ(p) is lowered to (k′ − 1).

4.1.2. Complexity of Algorithm ID. Note that, deg(T ′i ) ≤ deg(Ti) in
Step 3.2. At the start, Algorithm ID is called on polynomial p. So, at every
intermediate level deg(Sj) ≤ deg(T1) ≤ d. Therefore, dimF(R′) ≤ d · dimF(R).
Time spent by Algorithm ID is at most poly(n, k′, d, dimF(R)) in Steps 1, 2,
3.1 and 4 (because we can perform arithmetic over R in time poly(dimF(R)).
Moreover, time spent in Step 3.2 is at most d times a smaller problem (with
top fanin reduced by 1) while dimension of the underlying local ring gets raised
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by a factor at most d. Unfolding the recursion, we get the time complexity of
Algorithm ID on input p to be poly(n, dk).

4.2. Adapting Algorithm ID to solve Problem 1. Let us apply Algo-
rithm ID to the polynomial p + f . We cannot apply it directly as p + f is of
unbounded top fanin. We intend to apply it partially and then ‘jump’ to the
dual representation of the intermediate f . Since f is semidiagonal, the number
of distinct linear forms (which are not variables) in each product term of C2 is
at most b (see Definition 1.1).

At an intermediate level of the recursion, Algorithm ID tests if a polynomial
of the form

q =
k′∑
i=1

αiTi +
s′∑
r=1

βrωr

is zero over a local ring R, where k′ ≤ k, s′ ≤ s and αi, βr ∈ R. As before,
every Ti is a product of linear polynomials over R. Each ωr is a product of
a monomial (in the free variables over R) and b + k − k′ powers of distinct
linear forms over R. Further, deg(Ti) and deg(ωr) are bounded by d. The part∑s′

r=1 βrωr = f̃ (say), in q, shows how the polynomial f in p + f evolves with

different levels of the recursion. At the beginning, f̃ = f .

In Step 1 of Algorithm ID, we are required to find a term T1 such that
LM(T1) � LM(Ti) for all 2 ≤ i ≤ k′. The purpose of this step was to ensure
that LM(T1) � LM(q), so that q = 0 mod T1 implies that q = α · T1. Further
in Step 3, we were able to check if q = 0 mod T1 using chinese remaindering
over local rings. But now, our polynomial q has an added term f̃ . Hence
we also need to find the leading monomial of f̃ , which is a polynomial over
R. We will show in a short while how to find LM(f̃), so let’s assume we
know LM(f̃). If LM(f̃) � LM(Ti) for all 1 ≤ i ≤ k′ then surely q 6= 0
over R and the algorithm returns NO. Otherwise, there is a T1 (say) such that
LM(T1) � LM(q) and Algorithm ID proceeds to Step 2 with that T1. This
ensures that, in Step 3, we just have to check if q = 0 mod T1 rather than
q = 0 mod f̃ , which (presumably) is a much harder task.

In Step 2, the base case is no longer k′ = 1 but instead k′ = 0. In this case,
we have to check if f̃ = 0 in R and this can be done efficiently since we will
show shortly how to find LM(f̃).

Step 3 remains the same as before, except that in Step 3.2 we also need to
compute σ(f̃), where σ is the linear transformation. Notice that, σ maps only
xu to a linear polynomial and keeps other free variables intact. So, the product
term σ(ωr) has at most one power of a linear polynomial more than that of
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ωr as xu gets replaced by σ(xu) (the additional power of a linear polynomial
can only come if xu appears in the monomial part of ωr). Since the depth of
the recursion of Algorithm ID is at most k, every ωr in f̃ is the product of a
monomial and at most b + k powers of linear polynomials over R: To begin
with, every product term m ·

∏b
i=1 `

ei
i in f has at most b distinct (non-variable)

linear forms, and at every level of the recursion, a linear transformation σ
might replace a variable of m by a linear form. As b + k is a constant, f̃ is a
‘semidiagonal circuit over R’.

Finally, in Step 4, we need to confirm that [LM(T1)]q = 0. For this, we may
have to find [LM(f̃)]f̃ , if LM(f̃) happens to be the same as LM(T1). This is
taken care of by the way we find LM(f̃) which also gives us its coefficient. We
now show how to find LM(f̃). (Note: at any recursive stage, with base ring
R, the ‘monomials’ are in the free variables and thus it is implicit that they
take precedence over the other variables that moved inside R.)

Dual representation of f̃ - Let `d
′

be a term occurring in the product ωr,
where

` = a1xv1 + . . .+ an′xvn′ + τ

is a linear polynomial over R. (Assume that xv1 , . . . xvn′ are the free variables
over R). Replace τ by a formal variable z and use Theorem 2.1 to express
(a1xv1 + . . .+ an′xvn′ + z)d

′
as

(a1xv1 + . . .+ an′xvn′ + z)d
′
=

(n′+1)d′+1∑
i=1

gi(z) · gi1(xv1) . . . gin′(xvn′ ),

where gi and gij are univariates over F of degree at most d′. Therefore, `d
′

can
be expressed as

`d
′
=

(n′+1)d′+1∑
i=1

γi · gi1(xv1) . . . gin′(xvn′ ),

where γi = gi(τ) ∈ R, in time poly(n, d, dimFR). Since ωr is a product of a
monomial (in xv1 , . . . , xvn′ ) and at most b+k products of powers of linear forms
over R, using the above equation, each ωr can be expressed as

ωr =

O((nd)b+k)∑
i=1

γi,r · gi1,r(xv1) . . . gin′,r(xvn′ ),

where γi,r ∈ R and gij,r is a polynomial over F of degree O((b + k)d), in time
poly((nd)b+k, dimFR). Therefore, given the polynomial f̃ its representation
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(reusing symbols γi and gij)

f̃ =

O(s·(nd)b+k)∑
i=1

γi · gi1(xv1) . . . gin′(xvn′ ),

can be computed in time poly(s, (nd)b+k, dimFR).

Finding LM(f̃) - Let {e1, . . . , edimFR} be an F-basis of R. In the represen-
tation of the polynomial f̃ =

∑
i γi · gi1(xv1) . . . gin′(xvn′ ), let

γi =

dimFR∑
j=1

bijej,

where bij ∈ F. Consider the polynomials

qj :=

O(s·(nd)b+k)∑
i=1

bij · gi1(xv1) . . . gin′(xvn′ ) for all 1 ≤ j ≤ dimFR.

Then, f̃ =
∑
qjej and the leading monomial of f̃ is the highest among the lead-

ing monomials of the polynomials qj. From Theorem 3.2, the leading monomial
(and its coefficient) of every qj can be computed in time poly(s, (nd)b+k). Thus,
[LM(f̃)]f̃ can also be found in time poly(s, (nd)b+k, dimFR).

Using an analysis similar to the complexity analysis of Algorithm ID (see
Section 4.1.2) and observing that dimFR ≤ dk, we can show that Algorithm
ID, adapted to work for p+ f , takes time poly(s, (nd)b+k) (recall that s is the
top fanin of circuit C2). This solves Problem 1 in deterministic polynomial
time as promised.

5. Solving Problem 2

The näıve approach of multiplying all gi’s is infeasible because of intermediate
swelling in the number of monomials. Consider the following example. Let f =∏n

i=1 (xdi − 1) be the input polynomial that has s = 2n monomials. Suppose
that the factors (i.e. the gi’s) given to us are, (x1 − 1), (x1 − ζ), . . . , (x1 −
ζd−1), . . . , (xn − 1), (xn − ζ), . . . , (xn − ζd−1), where ζ is a primitive dth root of
unity, and we want to check if f equals the product of these factors. If we do
not follow any particular rule in multiplying these factors then we may as well
end up with the intermediate product,

∏n
i=1 (xd−1

i + xd−2
i + . . .+ 1), which has
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dn = slog d monomials. Thus, given f with s monomials we might have to spend
time and space O(slog d) if we follow this näıve approach.

Notice that, when gi’s are linear polynomials, Problem 2 becomes a special
case of Problem 1 and can therefore be solved in deterministic polynomial time.
However, the approach given in Section 4 does not seem to generalize directly
to the case when, instead of linear functions, gi’s are sums of univariates. This
case is handled in this section.

5.1. Checking divisibility by (a power of) a sum of univariates. Given
g1, . . . , gt, group together the polynomials gi’s that are just F-multiples of each
other. After this is done, we need to check if f is equal to a product of the
form a · gd11 . . . gdt

t (reusing symbol t), where a ∈ F and gi 6= b · gj for any b ∈ F
if i 6= j. Suppose gi and gj are coprime for i 6= j. (This assumption is justified
later in Section 5.2 by essentially proving them irreducible). Then, Problem 2
gets reduced to the problem of checking divisibility followed by a comparison
of the leading monomials of f and a · gd11 . . . gdt

t . The latter is easy as we have
f and gi’s explicitly. Checking divisibility, however, is more technical and we
do that in this section. We once again use the tool of dual representation, but
on a slightly more general form of semidiagonal polynomials.

Theorem 5.1. Suppose f and g are n-variate polynomials, over a base field
F, given explicitly as sums of monomials such that g is a sum of univariate
polynomials and the total degrees of f and g are bounded by D. Let s be
the number of monomials (with non-zero coefficients) in f . Then, checking
divisibility of f by gd, can be done deterministically in time poly(n, s,D, d).

Proof. Let g =
∑n

i=1 ui(xi), where ui is a univariate in xi. Assume without
loss of generality that u1 6= 0. Consider replacing the partial sum

∑n
i=2 ui(xi)

in g by a new variable y so that we get a bivariate h = (u1(x1) +y)d, which is a
sparse polynomial as well. Let degx1

u1 = e. Given any power of x1, say xk1, we
can employ long division with respect to the variable x1 to find the remainder
when xk1 is divided by h. This division is possible since h is monic in x1 (that
is, the monomial in h of highest x1-degree is free of other variables). It is not
hard to see that the remainder, say rk, thus obtained is a bivariate in x1 and y
with degree in x1 less than ed and degree in y at most k.

To check if gd divides f , do the following. For every monomial of f , re-
place the power of x1 occurring in the monomial, say xk1, by the corresponding
remainder rk. After the replacement process is over, completely multiply out
terms in the resulting polynomial, say f̃(x1, x2, . . . , xn, y), and express it as
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sum of monomials in the variables x1, . . . , xn and y. Now notice that

f mod gd = f̃(x1, x2, . . . , xn,
n∑
i=2

ui(xi)).

Since degree of x1 in f̃ is less than ed,

gd | f if and only if f̃(x1, x2, . . . , xn,

n∑
i=2

ui(xi)) = 0.

Polynomial f̃ with y evaluated at
∑n

i=2 ui(xi) is of the form of a sum of prod-
ucts, where each product term looks like m · (

∑n
i=2 ui(xi))

j for some monomial
m and integer j. This form is similar to that of a semidiagonal circuit (Defi-
nition 1.1), except that

∑n
i=2 ui(xi) is a sum of univariates instead of a linear

form.

To test if f̃(x1, x2, . . . , xn,
∑n

i=2 ui(xi)) = 0, use Theorem 2.1 to express it
as a sum of product of univariates. Finally, invoke Theorem 3.2 to test if the
corresponding sum of product of univariates is identically zero.

The time complexity of this reduction to identity testing includes comput-
ing each remainder rk, which takes poly(k, ed) time. Assuming there are s
monomials in f , to express f̃ as a sum of monomials in x1, x2, . . . , y it takes
poly(s,D, ed) time, where D is the total degree of f . Accounting for the substi-
tution of y by

∑n
i=2 ui(xi), the total reduction time is poly(n, s,D, ed). Finally,

testing if f̃(x1, x2, . . . , xn,
∑n

i=2 ui(xi)) is identically zero takes polynomial time
(by Theorem 2.1 and Theorem 3.2). �

5.2. Irreducibility of a sum of univariates. In this section, the polyno-
mials gi’s are assumed to be sums of univariates. We show that if gi and gj
depend on at least three variables then they are essentially irreducible. Hence,
they are either coprime or same (upto a constant multiple). Of course, it is
trivial to check the latter case and this makes our Chinese remaindering idea
workable.

Theorem 5.2. (Irreducibility) Let g be a polynomial over a field F that is a
sum of univariates. Suppose g depends non-trivially on at least three variables.
Then either g is irreducible, or g is a p-th power of some polynomial where
p = char(F).
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Remark. Such a statement is false when g is a sum of just two univariates.
For eg., the real polynomial g := x4

1 +x4
2 has factors (x2

1 +x2
2±x1x2

√
2) (which

is not even a sum of univariates!).

Denote ∂h
∂xi

by ∂ih for any polynomial h. We shall say a polynomial h is
monic in variable x if the monomial in h of highest x-degree is free of other
variables. We need the following observations (with g of Theorem 5.2).

Observation 5.3. Let g = u · v be a non-trivial factorization. Then both u
and v are monic in every variable that g depends on. In particular, they depend
on every variable that g depends on.

Proof. If u is not monic in, say, x1 then fix an ordering amongst the vari-
ables such that x1 is the highest. Then the leading monomial of g = u · v is a
mixed term which is not possible. �

Observation 5.4. If g is not a p-th power of any polynomial then it is square-
free.

Proof. Suppose not, then g = u2v for some polynomials u and v. If g is not
a p-th power, there must exist a variable xi such that 0 6= ∂ig = 2uv∂iu+u2∂iv.
Since u divides the RHS, u must be a univariate as ∂ig is a univariate in xi.
But this forces g to be a univariate as u is also a factor of g. �

Proof of Theorem 5.2. Assume that g is not a p-th power of any polyno-
mial. Then there exists a variable, say x1, such that ∂1g 6= 0. Suppose g = u ·v;
this means ∂ig = (∂iu)v+(∂iv)u. Denote by hxi=α, the polynomial h evaluated
at xi = α, where α ∈ F̄ (the algebraic closure of F).

Claim 5.5. There exists an α ∈ F̄ such that u(x1=α), v(x1=α) 6= 0 and they
share a non-trivial common factor.

Assume that the claim is true. There are two variables other than x1, say x2

and x3, that appear in g. Then, ∂2g = (∂2u)v + (∂2v)u implies that

(∂2g)(x1=α) = ∂2g = (∂2u)(x1=α) v(x1=α) + (∂2v)(x1=α) u(x1=α).

Similarly, ∂3g = (∂3u)(x1=α) v(x1=α) + (∂3v)(x1=α) u(x1=α).

If both ∂2g and ∂3g are non-zero, then the last two equations imply that
gcd

(
u(x1=α), v(x1=α)

)
(which is not 1, by Claim 5.5) must divide ∂2g and ∂3g.
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But this leads to a contradiction since the partial derivatives are univariates in
x2 and x3, respectively.

Suppose ∂2g is zero. Since g is square-free, u and v do not share any factor
and hence all of ∂2g, ∂2u and ∂2v are zero, which implies that every occurrence
of x2 in g, u and v has exponent that is a multiple of p = char(F). Hence,

g′ = u′ · v′

where g(x1, x2, · · · , xn) =: g′(x1, x
p
2, · · · , xn)

u(x1, x2, · · · , xn) =: u′(x1, x
p
2, · · · , xn)

v(x1, x2, · · · , xn) =: v′(x1, x
p
2, · · · , xn).

By inducting on this equation, we get the desired contradiction. �

Proof of Claim 5.5. Suppose g1 = ∂1g, u1 = ∂1u and v1 = ∂1v, and let
w = gcd(g1, u1, v1) which is a univariate in x1 as g1 is a univariate. Consider
the following equation

(5.6) 0 6= g1

w
=
(u1

w

)
v +

(v1

w

)
u.

Firstly, neither u1 nor v1 is zero. This is because, if u1 = 0 then g1 = v1 · u.
This then forces u to be a univariate in x1, which is not possible as u is also
a factor of g. Since x1-degree of u1 is less than that of g1, the univariate g1/w
has degree in x1 at least one. Let α ∈ F̄ be a root of g1/w. Substituting x1 = α
in the above expression, we get an equation of the form

(5.7) ũ · vx1=α + ṽ · ux1=α = 0,

where ũ = (u1/w)x1=α and ṽ = (v1/w)x1=α. The above equation is nontrivial as
none of ũ · vx1=α and ṽ · ux1=α is zero. This is because none of the polynomials
ux1=α and vx1=α can be zero as they are factors of gx1=α. Also, none of ũ and
ṽ is zero, as u1/w and v1/w do not share any common factor (in particular
x1 − α), because if they do then by (5.6), g1/w also shares the same factor
which is not possible as w = gcd(g1, u1, v1).

Now notice that, since u is monic in x2 (by Observation 5.3), degree of
x2 in u1 is strictly less than that in u. Which means, degree of x2 in ũ is
also strictly less than degree of x2 in ux1=α. Therefore, by treating the terms
ũ, ṽ, ux1=α, vx1=α as polynomials in x2 over the function field F̄ (x3, · · · , xn), we
can conclude from (5.7) that ux1=α and vx1=α must share a nontrivial factor. �
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5.3. Finishing the argument. In Section 5.1, we had promised to later
show that the polynomials g1, . . . , gt are irreducible. Although, Theorem 5.2
justifies our assumption when gi depends on three or more variables, we need
to slightly change our strategy for bivariates and univariates. In this case, we
first take pairwise gcd of the bivariates (similarly, pairwise gcd of the univari-
ates) and factorize accordingly till all the bivariates (similarly, the univariates)
are mutually coprime. Taking gcd of two bivariate (monic) polynomials takes
only polynomial time using Euclidean gcd algorithm (by long division). Once
coprimeness is ensured, we can directly check if a bivariate gdi

i divides f by ex-
pressing f as f =

∑
j fjmj, where fj’s are bivariate polynomials depending on

the same two variables as gi, and mj’s are distinct monomials in the remaining
variables. Then,

gdi
i | f if and only if gdi

i | fj for all j.

Once again, just like gcd, bivariate divisibility is a polynomial time computa-
tion (simply by long division). Finally, we can use Chinese remaindering to
complete the argument in a similar fashion as in Section 5.1.

To summarize, we can check if f =
∏t

i=1 gi, where gi’s are sums of uni-
variates, in time poly(n, t, d, s), where d is the bound on the total degrees of f
and the gi’s, and s is the number of monomials (with non-zero coefficients) in
f . It is the property of the coprimality of different gi’s that helped us reduce
the problem to checking divisibility, which was then handled using the dual
representation.

6. Extensions to small characteristic fields

Over fields of small characteristics, the dual representation for semidiagonal
circuit has to be modified slightly. The following section gives an appropriate
modification.

6.1. Preliminaries: The dual representation. This is a version of Theo-
rem 2.1 that applies for fields of small characteristics by moving to appropriate
Galois rings (like Galois fields but with prime-power characteristic!).

Definition 6.1. (Ring of fractions) Let R be a ring and S be a multiplica-
tively closed subset of R. The localization of R with respect to S, denoted by
S−1R, is a ring that consists of elements of the form a

b
where a ∈ R and b ∈ S

under the equivalence a
b

= c
d

if there exists a t ∈ S such that t(ad− bc) = 0.
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If the set S is the set of all elements that are not zero-divisors, then S−1R,
also denoted by Frac(R), is said to be the ring of fractions of R.

Remark 6.2. It follows from the definition that a
b

= 0 in Frac(R) implies that
a = 0. Further if b is not a zero divisor, then 1

b
∈ Frac(R).

The key idea in obtaining a dual representation over prime characteristic
fields is to use the dual representation when considered over the rationals.
Indeed, elements of any finitely generated1 field Fp(ζ1, · · · , ζt) can be thought
as elements of Q(ζ1, · · · , ζt) by interpreting every element of Fp by the integers
0, · · · , p − 1 and the extensions may be lifted naturally. (A useful note: If
a multivariate polynomial is irreducible over Fp then its integral lift remains
irreducible over Q.)

Theorem 6.3. Given f = (
∑n

i=1 gi(xi))
D

, where gi is a univariate in xi of
degree at most d over a finitely generated field F = Fp(ζ1, · · · , ζt), we can
find an integer N ≤ poly(n,D) such that pNf can be expressed as a sum
of (nD + 1) products of univariates of degree dD over the ring of fractions of(
Z/pN+1Z

)
[ζ1, · · · , ζt], in poly(n, d,D) time.

Typically, when F = Fp the dual representation of pNf would be over the
ring Z/pN+1Z. And for the case where F = Fp[x]/(µ(x)) for an irreducible
polynomial µ, the dual representation of pNf would be over Z[x]/(pN+1, µ(x))
and µ(x) is irreducible over Z as well.

Proof. Consider
∑n

i=1 gi(xi) as a polynomial over the Q(ζ1, · · · , ζt) by in-
terpreting every element of Fp by the integers {0, · · · , p− 1}, and lifting the
map to the ζi’s. Then Theorem 2.1 gives an expression for f :

f =
nD+1∑
i=1

n∏
j=1

gij(xj)

Observe that the proof of Theorem 2.1 introduces divisions in two places –
the factorials in the Taylor series for exponentials (bounded by D!), and the
inverse of the Vandermonde. By choosing the first (nD + 1) distinct integers
for the Vandermonde, the inverse consists of entries in Q (with numerator and
denominators bounded by 2poly(n,D)). However, some of the coefficients on the
RHS might be rationals with powers of p appearing in the denominator. By

1Since a circuit description has only finitely many field-constants, we can assume wlog
that the base field is finitely generated over Fp.



24 Saha, Saptharishi & Saxena

multiplying the above expression by a suitably large power of p (eg., the largest
power in any denominator), the above can be rewritten as:

pN · f =
∑
i

∏
j

g′ij(xj)

where the coefficients on the RHS are free of any p’s in the denominator. Since
all occurrences of p in the denominators have been removed, the above is a non-
trivial expression for pN · f in the ring of fractions of

(
Z/pN+1Z

)
[ζ1, · · · , ζt], as

claimed. Also, any integer less than 2poly(n,D) bits can have at most poly(n,D)
prime factors and hence N ≤ poly(n,D). �

With this modified dual representation, Problem 1 and Problem 2 can be
tackled the same way as outlined earlier. The only additional requirement is
to find the leading monomial and the associated coefficient of a semidiagonal
circuit over these rings of prime-power characteristic. It is worth noting that
the units of these rings are precisely those elements that are non-zero modulo
p (Remark 6.2).

6.2. Finding the leading monomial of semidiagonal circuits. Given
a semidiagonal circuit f , Theorem 6.3 can be used (repeatedly) to write pNf
as a sum of product of univariates over a ring R of characteristic pN+1 with
the property that any element of R that is non-zero modulo p is invertible.
If f =

∑
αmm, where m is a monomial and αm is the associated coefficient,

then pNf =
∑

(pNαm)m. Therefore, if we can find the leading monomial and
coefficient of pNf over R (which must be divisible by pN), we can derive the
leading monomial and coefficient of f . Thus, we need a version of Theorem 3.2
over such rings.

One of the key elements in the proof of Theorem 3.2 is that we can prune
down the list of vectors {c1, · · · , cr} from Fk to always ensure that we have the
vector contributing to the leading monomial in our set. For this we required a
“dimension argument” that states that if r > k then there exists an i such that
ci can be written as a linear combination of the lower indexed vectors. This is
trivial in the case of vector spaces.

While working over more general rings, we need to work with ‘vectors’
(abusing terminology) over rings of characteristic pN . Unlike the case when
we are working over a field, a linear combination of the form

∑
αici = 0

does not necessarily translate to writing one of the ci’s as a combination of
the preceding vectors since some of the coefficients in the linear combination
might not be invertible. For example over Z/pNZ, if v is the column vector
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(pN−1, pN−2, . . . , 1)T and 0 = (0, · · · , 0)T is the column vector of N zeroes,
then none of the Nk rows of the following matrix can be written as a linear
combination of the preceding rows:

v 0 · · · 0
0 v · · · 0
...

...
. . .

...
0 0 · · · v


Nk×k

However, the following lemma shows that such a linear combination would
indeed exist if we had more than Nk vectors.

Lemma 6.4. Let R be a ring of characteristic pN with the property that every
element of R that is non-zero modulo p is invertible and let {c1, · · · , cr} be
elements of Rk. If r > Nk, then there exists an i such that ci can be written
as a linear combination of {c1, · · · , ci−1}. That is,

ci =
i−1∑
j=1

αjcj where αj’s are from R.

Proof. Given an ordered set of vectors {c1, · · · , cr}, we shall call a linear
combination

∑
αjcj a “monic” linear combination if the highest indexed ci

appearing in the linear combination has coefficient 1.
Construct the r × k matrix whose rows are from {c1, · · · , cr}. The goal is

to repeatedly apply “monic row transformations”, that is replacing a row ci by
ci −

∑
j<i αjcj. This would eventually induce a zero row, which will give us

our desired linear combination. The proof proceeds by induction, handling one
coordinate at a time.

Let i be the smallest index (if it exists) such that the first coordinate of ci is
non-zero modulo p. Replace every other (higher indexed) row cj by (cj −αjci)
to ensure that its first coordinate is now zero modulo p. Observe that these
transformations are monic. The first coordinate of every row, besides ci, will
now be divisible by p. Dropping row i, we repeat the procedure to make all of
them zero modulo p2, and similarly for p3 etc. Thus, by dropping at most N
rows, we can ensure that the first coordinate of every row is 0.

We are now left with {d1, · · · ,dr′}, with r′ ≥ r−N > N(k− 1), over Rk−1

and by induction we would find a monic linear combination of the di’s that is
zero. It is not hard to see that this translates to a monic linear dependence
amongst the ci’s since we only applied monic transformations. �
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With this, we have a version of Theorem 3.2 over rings of prime-power
characteristic.

Theorem 6.5. Let R be a ring of characteristic pN such that every element
that is non-zero modulo p is invertible. Given f =

∑k
i=1

∏n
j=1 gij(xj) over R,

where gij is a univariate in xj of degree at most d, the leading monomial of f
(and its coefficient) can be found in poly(nkdN) time. �

It is now straightforward to show that Corollary 3.3 holds even over small
characteristic fields: just apply Theorem 6.3 repeatedly and finally invoke The-
orem 6.5.

6.3. Solving Problem 1. The proof proceeds along exactly the same lines
as described in Section 4.2. The only difference is when we have to compute
the leading monomial and its coefficient of a semidiagonal circuit f̃ =

∑
βrωr

over the local ring.

◦ In each linear polynomial appearing in ωr, replace the constant term τ by
a fresh variable z. After repeated applications of Theorem 6.3 to such ex-
pressions and finally taking a sum, we get pN f̃ =

∑
γi · gi1(x1) · · · gin(xn)

where x1, · · · , xn are the free variables, and γi ∈ R (note: R is now of
characteristic pN+1).

◦ Let {e1, · · · , edimR} be a basis of R, and let γi =
∑
bijej. Then the

leading monomial and coefficient of pN f̃ can be computed from those of
the polynomials qj =

∑
i bij · gi1(x1) · · · , gin(xn).

◦ Compute the leading monomial and coefficient of each qj using Theo-
rem 6.5 and recover the leading monomial and coefficient of f̃ .

The other parts of the proof are independent of the characteristic of the
field and hence go through in exactly the same way.

6.4. Solving Problem 2. Again all our arguments were independent of the
field except when we invoke semidiagonal PIT in Theorem 5.1. At that point
we would now invoke Theorem 6.3 and Theorem 6.5.

7. Discussion and open problems

We conclude by posing two open questions related to the problems studied
here. The first relates to depth-4 fanin 2 PIT.
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Open Problem 1. Find a deterministic polynomial time algorithm to check if
f =

∏t
i=1 g

di
i , where f is a sparse polynomial and the gi’s are mutually coprime,

bounded degree polynomials.

One particular case of interest is when the gi’s are quadratic forms. Observe
that a polynomial gd divides f if and only if g divides f and gd−1 divides ∂f

∂x1

(assuming both f and g depend on x1 and deg(f) > char(F)). Since ∂f
∂x1

is also
sparse, using this observation, the problem eventually boils down to checking
if g divides h, where both g and h are sparse polynomials. Now suppose g is a
quadratic form. It is known that there exists an efficiently computable linear
transformation σ on the variables such that σ(g) =

∑r
i=1 x

2
i , which is a sum of

univariates. The polynomial g divides h if and only if σ(g) divides σ(h). We
have shown how to divide a sparse polynomial by a sum of univariates. But,
the issue here is that σ(h) need not be sparse - it is an image of a sparse h
under an invertible σ. Is it possible to resolve this issue?

The second relates to depth-4 higher fanin PIT.

Open Problem 2. Find a deterministic polynomial time algorithm to solve
PIT on depth-4 circuits with bounded top fanin k, where each of the k multi-
plication gates is a product of sums of univariate polynomials.

Note that, a solution for k = 2 easily follows from Theorem 5.2 and unique
factorization. But, it is unclear how to solve this problem even for k = 3.
The problem can also be seen as a certain generalization of bounded top fanin
depth-3 PIT (Kayal & Saxena 2007) to the case of depth-4 circuits.
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