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Abstract

We consider the problem of representing a univariate polynomial f(x) as a sum of

powers of low degree polynomials. We prove a lower bound of Ω

(√
d
t

)
for writing

an explicit univariate degree-d polynomial f(x) as a sum of powers of degree-t
polynomials.

1 Introduction

Valiant [Val79], de�ned the classes VP and VNP as the algebraic analogs of the classes
P and NP. Informally, VP consists of (families of) e�ciently computable (low-degree,
multivariate) polynomials while VNP consists of (families of) explicit (low-degree, mul-
tivariate) polynomials. The problem of separating VNP from VP has since been one of
the most important open problems in arithmetic complexity. Another basic question in
complexity in general is whether computation can be e�ciently parallelized. A seminal
work by [VSBR83] showed that computation of low degree polynomials can indeed be ef-
�ciently parallelized - any small arithmetic circuit C computing a low degree multivariate
polynomial f(x) can be transformed to obtain another circuit C ′ of low depth and whose
size is not too large computing the same polynomial f(x). Subsequent re�nements and im-
provements were obtained in a series of works [AJMV98, AV08, Koi12, Tav13, GKKS13b].
This line of work in particular yields the following depth reduction result which shows
that if a polynomial can be e�ciently computed then it has a not too large representation
as a sum of powers of low degree polynomials. Speci�cally:

Proposition 1. (Implicit in [Tav13] and [GKKS13b]). Let {fn(x) : n ≥ 1} be a
family of n-variate polynomials of degree d = d(n) over an underlying �eld F which is
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algebraically closed and has characteristic zero. If this family is in VP then fn(x) admits
a representation of the form

fn(x) =
s∑
i=1

Qi(x)ei where deg(Qi) ≤
√
d (1)

and where the number of summands s is at most nO(
√
d).

Strong enough lower bounds for sums of powers imply general circuit lower
bounds. These depth reduction results also provide a potential approach towards the
VP versus VNP problem � via proving strong enough lower bounds for low depth cir-
cuits. In particular, the contrapositive version of Proposition 1 means that a strong
enough (at least nω(

√
d)) lower bound for representing an explicit family of polynomi-

als {fn(x) : n ≥ 1} in the form (1) above will imply that this family is not in VP,
thereby separating VP and VNP. Promising progress along this direction has recently
been obtained. [Kay12] considered representations of the form (1) above and introduced

a complexity measure called dimension of shifted partials and obtained a 2Ω(
√
d) lower

bound for representations of the form (1) above. Follow-up work [GKKS13a, KSS14]

obtained an nΩ(
√
d) lower bound for such representations, thereby coming tantalizingly

close to the threshold required for obtaining superpolynomial lower bounds for general
circuits. Since then, these techniques have been intensely investigated and followup work
by [FLMS14, KS14b, KS14a] have used these techniques to obtain optimality of the
known depth reduction results in many interesting cases. Some of these follow-up works
also suggest that the dimension of shifted partials in itself might not be strong enough
to separate VP from VNP. Further work [KLSS14, KS14c, KS14a] has suitably adapted
and generalized the complexity measure to obtain lower bounds for more subclasses of
arithmetic circuits.

Univariate sums of powers. Motivated by proposition 1, we introduce and study
the problem of representing a univariate polynomial as a sum of powers of low-degree
polynomials.

De�nition 1. Let t ≥ 1 be an integer. For a polynomial f(x) ∈ F[x], de�ne the sum of
degree-t-powers complexity of f , denoted st(f), as the smallest integer s such that f can
be written as

f(x) =
s∑
i=1

αi ·Qi(x)ei , where ∀i : αi ∈ F, deg(Qi) ≤ t.

We remark here that if the underlying �eld F is algebraically closed, we can assume with-
out loss of generality that each scalar αi = 1. We seek to exhibit explicit polynomials f(x)
for which st(f) is as large as possible. The motivation for this study is that univariate
polynomials being much more well-known and easier to study than multivariate polyno-
mials one can �rst try to develop proof techniques that yield improved lower bounds for
the univariate case. In particular, the invariant theory of binary forms (aka univariate
polynomials) is much better understood as compared to multivariate polynomials. One
could also hope to apply some of the proof ideas from real/complex analysis or from the
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vast literature on Waring's problem1 to obtain improved lower bounds on st(f). Our
underlying hope is that some such improved proof technique or proof idea might admit
a suitable generalization to the multivariate case as well. This could be one potential
way to attack the VP versus VNP problem. We also note that there are formal results
essentially following from the work of Koiran [Koi11] which imply that seemingly mild
lower bounds for a slight variant of the model being considered here directly implies a
separation of VP from VNP.

Proposition 2. [Implicit in [Koi11]]. If there is an explicit family of univariate poly-
nomials {fd(x) : d ≥ 1} over an underlying algebraically closed �eld F of characteristic
zero such that any representation of the form

fd(x) =
s∑
i=1

Qi(x)ei , where Sparsity(Qi) ≤ t,

requires the number of summands s to be at least
(
d
t

)Ω(1)
then VP is di�erent from VNP.

This means that proving relatively mild lower bounds on a similar model (but with the
degree bound replaced by the corresponding sparsity bound) already implies that VP is
di�erent from VNP.

Our results. In describing our results, we avoid �oor/ceil notations for ease of presen-
tation. Throughout the rest of this paper, the underlying �eld F will be of characteristic
zero. We �rst note that a standard dimension counting argument implies that for a
random polynomial f(x) of degree d it is almost surely the case that st(f) ≥ d+1

t+1
. In

comparison to this benchmark, we prove a lower bound of st(f) ≥ Ω
(√

d
t

)
for an explicit

family of polynomials of degree d. Speci�cally, we have:

Theorem 3. Let d, t ≥ 2 be integers. Let a1, . . . , a2t be any 2t distinct elements of the
underlying �eld F. Assume F is of characteristic zero. Let

g
def
=

2t∏
k=1

(x− ak).

De�ne the univariate polynomial,

f(x)
def
= g(x)

d
2t . (2)

Then

st(f) ≥ Ω

(√
d

t

)
.

1 Waring's problem asks whether each natural number k has an associated positive integer s(k) such
that every natural number is the sum of at most s k-th powers of natural numbers. For example, every
natural number is the sum of at most 4 squares, 9 cubes. Many variants of Waring's problem for algebraic
integers and polynomials have also been studied.
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Our proof here employs the Wronskian2 and is therefore quite di�erent from the proof
technique used in the recent works on homogeneous depth four circuits [Kay12, GKKS13a,
KSS14]. These works employ a complexity measure called the dimension of shifted par-
tials to obtain lower bounds for a similar multivariate model. We also show that a suitable
variant of shifted partials does yield a similar lower bound albeit for a di�erent target
polynomial. Speci�cally, we have:

Theorem 4. Let d, t ≥ 2 be integers such that t < d
4
. Let the polynomial f(x) =∑m

i=1(x− ai)d, with distinct ai's and let m =
⌊√

d
t

⌋
. Then st(f) ≥ Ω

(√
d
t

)
.

Remark 5. 1. Optimality of the lower bound. The polynomial f(x) in theorem 4
has the nice feature that it can also be expressed as a sum of O(

√
d/t) summands,

each of which is a power of a polynomial of degree at most t. So, in this sense
theorem 4 gives an optimal lower bound. The target polynomial in theorem 3 does
not seem to have this property.

2. Methods. In the proof of theorem 4, we show that the dimension of shifted
derivatives of the polynomial f(x) is the maximum possible (for the appropriate
choice of parameters). Since the polynomial f(x) of theorem 4 also satis�es st(f) ≤
O
(√

d
t

)
, it indicates that a lower bound better than Ω

(√
d
t

)
probably cannot be

obtained via shifted derivatives. It is currently conceivable that the Wronskian-
based proof could yield better lower bounds. A more detailed discussion on this
may be found in Pecatte's internship report [Pic14].

3. On replacing the degree bound by the corresponding sparsity bound. We
also note that for multivariate polynomials, recent work by [KLSS14] successfully
replaced the bound on the degrees of the Qi's by the corresponding bound on the
sparsity of the Qi's. We note in passing that by proposition 2, if we could prove an
analogous result as the one above but with the degree bound on the Qi's replaced
by a bound on their sparsities, then we would obtain a separation of VP from VNP.

In this sparse setting, the best lower bound that is currently known is Ω
(√

log d
log t

)
.

It applies to any polynomial of degree d that has d distinct real roots [KPT15].

4. Upper bounds. While the focus of this paper is on lower bounds, it is also
natural to ask about upper bounds on st(f). As mentioned above, the lower bound
st(f) ≥ d+1

t+1
follows from a simple dimension counting argument. Recent work on

the Waring problem for polynomials [FOS12] shows that this bound is tight for a
generic polynomial of degree d when t+ 1 divides d+ 1. Moreover, a general result
on �maximum rank versus generic rank� (Theorem 1 in [BT14]) shows that moving
from a generic polynomial to a worst-case polynomial at most doubles st(f). We
conclude that the upper bound st(f) ≤ 2 · d+1

t+1
applies to any polynomial of degree

d when t+ 1 divides d+ 1. Note that this upper boud is nonconstructive. A simple
explicit construction shows that st(f) = O((d/t)2) for all f .

2 The Wronskian has previously been employed in arithmetic complexity previously in [KPT15] to
obtain nontrivial (but rather weak) lower bounds for writing a polynomial as a sum of powers of sparse
polynomials. Indeed, [KPT15] manage to prove something stronger - they obtain weak (but still nontrivial
and interesting) bounds on the number of real roots of sums of powers of sparse polynomials.
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2 Preliminaries

2.1 The Wronskian

In mathematics, theWronskian is a tool mainly used in the study of di�erential equations,
where it can be used to show that a set of solutions is linearly independent.

De�nition 2. [Wronskian]. For n real functions f1, . . . , fn, which are n − 1 times
di�erentiable, the Wronskian W (f1, . . . , fn) is de�ned by

W (f1, . . . , fn) (x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) . . . fn(x)
f ′1(x) f ′2(x) . . . f ′n(x)
...

...
. . .

...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣ .
We will use the following fact about the Wronskian whose proofs can be found in [PS76]
(and which are known since the 19th century).

Proposition 6. For any f1, . . . , fk, g which are k − 1 times di�erentiable, we have
W (gf1, . . . , gfk) = gk W (f1, . . . , fk). As a corollary, we have the following formula:

W (f1, . . . , fk) = (f1)k W

((
f2

f1

)′
, . . . ,

(
fk
f1

)′)
. (3)

Also, if f1 is a perfect power say if f1 = Qe where e ≥ k then Qe−k+1 divides W (Qe, f2, . . . , fk).

Another basic fact about the Wronskian is that it captures linear dependence of polyno-
mials in F[x].

Proposition 7. [Boc01] Let F be a �eld of characteristic zero. For univariate polynomials
f1, . . . , fn ∈ F[x], they are linearly dependent if and only if the Wronskian W (f1, . . . , fn)
vanishes everywhere.

We will also use another result from [VP75] which gives a bound on the multiplicity
of a root depending on the Wronskian. For a �eld element α ∈ F, and a polynomial
g(x) ∈ F[x], let Nα (g) denote the multiplicity of g at α, i.e. the highest power of (x−α)
which divides g(x).

Lemma 8. Let F be a �eld of characteristic zero. Let Q1, . . . , Qm be some linearly
independent polynomial and α ∈ F, and let F (x) =

∑m
i=1 Qi(x). Then:

Nα (F ) ≤ m− 1 + Nα (W (Q1, . . . , Qm))

where Nα (W (Q1, . . . , Qm)) is �nite since W (Q1, . . . , Qm) 6≡ 0.

2.2 The space of shifted derivatives

In section 4 we give an alternate lower bound proof via a slight variant of a complexity
measure �rst de�ned in [Kay12]: the space of shifted partial derivatives. Using this
complexity measure, [Kay12] obtained exponential lower bounds on a similar multivariate
model. The key intuition follows from the following simple observation : derivatives of
Qe of order ≤ k all share a large common factor, namely Qe−k. We try to capture this
property with the following complexity measure:
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De�nition 3 (Shifted derivatives space). Let f(x) ∈ F[x] be a polynomial. The span of
the l-shifted k-th order derivatives of f, denoted by

〈
x≤i+l · f (i)

〉
i≤k, is de�ned as:

〈
x≤i+l · f (i)

〉
i≤k

def
= F-span

{
xj · f (i)(x) : i ≤ k, j ≤ i+ l

}
.〈

x≤i+l · f (i)
〉
i≤k forms an F-vector space and we denote by dim

〈
x≤i+l · f (i)

〉
i≤k the dimen-

sion of this space.

Remark 9. We have two trivial upper bounds on the dimension of the shifted deriva-
tives space. First, for any polynomial f of degree d, the degree of any polynomial
in
〈
x≤i+l · f (i)

〉
i≤k is less than d + l, hence dim

〈
x≤i+l · f (i)

〉
i≤k ≤ d + l + 1. Sec-

ond, the dimension is less or equal than the cardinality of a generating family, thus
dim

〈
x≤i+l · f (i)

〉
i≤k ≤

∑k
i=0(l + i+ 1). Thus, we have:

dim
〈
x≤i+l · f (i)

〉
i≤k ≤ min

(
d+ l + 1, (k + 1)l +

(
k + 2

2

))
.

We will see in the next section some polynomials that the above bounds and thus have a
full shifted derivative space.

Notice that since
〈
x≤i+l · (f + g)(i)

〉
i≤k ⊆

〈
x≤i+l · f (i)

〉
i≤k +

〈
x≤i+l · g(i)

〉
i≤k, the measure

we de�ned is sub-additive.

3 Proof of theorem 3

Suppose f =
∑s

i=1 αi ·Q
ei
i . Since degree of every Qi is bounded by t and deg(f) = d,

ei ≥ d
t
for some i ∈ [s]. Without loss of generality, let e1 ≥ d

t
. Also, we can assume that

Qe1
1 , . . . , Q

es
s are F-linearly independent - if not, we work with a basis and a smaller value

for s. By taking derivatives of both sides of the equation f =
∑s

i=1 αi ·Q
ei
i with respect

to x for j times we have,

s∑
i=1

αi · [Qei
i ](j) = f (j), for every j ∈ {0, . . . , s− 1} ,

where [Qei
i ](j) and f (j) are the j-th derivatives of Qei

i and f , respectively, with respect to
x. The above equation de�nes a system of linear equations in α1, . . . , αs. By applying
Cramer's rule,

α1 =
W (f,Qe2

2 , . . . , Q
es
s )

W (Qe1
1 , Q

e2
2 , . . . , Q

es
s )
, (4)

where W (g1, . . . , gs) is the Wronskian determinant of the polynomials g1, . . . , gs. Since
Qe1

1 , Q
e2
2 , . . . , Q

es
s are F-linearly independent, W (Qe1

1 , Q
e2
2 , . . . , Q

es
s ) 6= 0. Observe

that unless s = Ω
(
d
t

)
, Q

e1−(s−1)
1 divides W (Qe1

1 , Q
e2
2 , . . . , Q

es
s ) and g

d
2t
−(s−1) divides

W (f,Qe2
2 , . . . , Q

es
s ). Let

∆
def
= {i | ei ≥ s and 2 ≤ i ≤ s}.
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Then,
∏

i∈∆ Q
ei−(s−1)
i divides both W (Qe1

1 , Q
e2
2 , . . . , Q

es
s ) and W (f,Qe2

2 , . . . , Q
es
s ). Thus,

by analyzing the factors coming out common from the Wronskian determinants, we can
express α1 as

α1 =
g

d
2t
−(s−1) ·

∏
i∈∆Q

ei−(s−1)
i ·W1

Q
e1−(s−1)
1 ·

∏
i∈∆Q

ei−(s−1)
i ·W2

=
g

d
2t
−(s−1) ·W1

Q
e1−(s−1)
1 ·W2

. (5)

Now observe that after taking Q
e1−(s−1)
1 and

∏
i∈∆ Q

ei−(s−1)
i common from

W (Qe1
1 , Q

e2
2 , . . . , Q

es
s ), every polynomial in the r-th row of the Wronskian matrix of

Qe1
1 , Q

e2
2 , . . . , Q

es
s has degree upper bounded by (s− 1)t− (r − 1). Hence,

deg(W2) ≤ s(s− 1)t−
s∑
r=1

(r − 1) ≤ s2t.

Since α1 is a �eld element, g
d
2t
−(s−1) must divide Q

e1−(s−1)
1 ·W2 (by Equation 5). Poly-

nomial g has 2t distinct roots, whereas polynomial Q1 has at most t roots. Therefore,
there are t distinct roots of g such that each of these roots divide W2 with multiplicity
d
2t
− (s− 1). Since deg(W2) ≤ s2t,

s2t ≥ t ·
[
d

2t
− (s− 1)

]
⇒ s2 + s ≥ d

2t
+ 1

⇒ s ≥ 1√
2
·
√
d

t
− 1

2
.

The t=1 case. When t=1, the above argument can be strengthened to show the fol-
lowing: if xd + xd−1 is expressed as a sum of s-many d-th powers of linear polynomials
then s is at least d+ 1. Such an optimum bound also follows from a work on representing
homogeneous (multivariate) polynomials as sums of linear forms by Kleppe [Kle99].

4 An alternative proof using shifted partials

In this section, we will give a proof of theorem 4 using shifted derivatives. The proof will
consist in �rst giving an upper bound on the dimension of shifted partials of a sum of
powers of low degree polynomials. Thereafter, we give a lower bound on the dimension
of shifted derivatives space of the polynomials of the form f(x) =

∑m
i=1(x− ai)d. To do

so, we will show that f does not satisfy a particular kind of di�erential equations, under
some conditions.

4.1 Upper bounding the dimension of shifted partial derivatives.

Recall the complexity measure called the shifted partial dimension as de�ned in section
2. We �rst show that in our model, polynomials have a small complexity according to
this measure:
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Proposition 10. For any polynomial f of degree d of the form f =
∑s

i=1 αiQ
ei
i , with

deg(Qi) ≤ t we have:

dim
〈
x≤i+l · f (i)

〉
i≤k ≤ s · (l + kt+ 1).

Proof. Since the measure is sub-additive, we only have to show that for a simple building

block f of the form Qe, with degQ ≤ t, we have dim
〈
x≤i+l ·Qe(i)

〉
i≤k
≤ l+ kt+ 1. Now

note that any g ∈
〈
x≤i+l ·Qe(i)

〉
i≤k

is of the form g = Qe−k ·R. Moreover deg(R) ≤ l+kt

(since deg g ≤ e · t+ l). This directly gives the bound on the dimension.

4.2 Lower bounding the dimension of shifted derivatives for an

explicit polynomial.

We now give an explicit lower bound on the dimension of shifted derivative space of our
explicit polynomial.

De�nition 4. Shifted Di�erential Equations (SDE) are a particular kind of di�erential
equations of the form

k∑
i=0

Pi(x)f (i)(x) = 0,

for some polynomials Pi ∈ F[x], not all zero, with deg(Pi) ≤ i + l. The quantity k is
called the order and the quantity l is called the shift.

This kind of di�erential equations is directly linked with the notion of shifted derivatives:

Proposition 11. For any h(x) ∈ F[x], if h does not satisfy any SDE of order k and of
shift l, then

〈
x≤i+l · h(i)

〉
i≤k is full, i.e. :

dim
〈
x≤i+l · h(i)

〉
i≤k =

k∑
i=0

(l + i+ 1) = (k + 1)l +

(
k + 2

2

)
.

In order to prove some conditions on the SDE satis�ed by our target explicit polynomial
f(x), we �rst need to prove that the polynomials (x− a1)d, . . . , (x− am)d cannot satisfy
simultaneously a SDE if the order is not big enough:

Lemma 12. For any d,m ≤ d, for any distinct (a1, a2, . . . , am) ∈ Fm, the following
property holds for the family S = {(x − a1)d, . . . , (x − am)d}: if a SDE is satis�ed by
every polynomial h ∈ S, then the order of the SDE must be greater than or equal to m.

Proof. Assume that each polynomial in S = {(x − a1)d, . . . , (x − am)d} satis�es the
following SDE, with k < m:

k∑
i=0

Pi(x)h(i)(x) = 0 ∀h ∈ S. (6)
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For all j ∈ [m], we can factor out (x − aj)d−k from the above equation to obtain a new
SDE satis�ed by the family S

′
= {(x− a1)k, . . . , (x− am)k}. i.e.:

k∑
i=0

Ri(x)h(i)(x) = 0 ∀h ∈ S ′
, (7)

with Ri(x)
def
= d!

k!
(k−i)!
(d−i)!Pi(x).

But now, since k < m, the family S
′
generate Fk[x] (the vector space of polynomials

of degree at most k), and thus this implies that every polynomial of degree ≤ k should
satisfy the SDE (7). We obtain the contradiction by plugging in h(x) = xi0 in SDE (7),
where i0 is the smallest integer such that Ri0(x) 6≡ 0.

We can now prove the lower bound on the parameters of a SDE that f could satisfy,
which will directly give the result.

Lemma 13. For any d,m ≤ d, for any m distinct elements a1, a2, . . . , am ∈ F, if the

polynomial f(x) =
m∑
i=1

(x− ai)d satis�es a SDE of parameters k, l then at least one of the

two following conditions holds:

i) k ≥ m, or,

ii) l > d
m
− 3

2
·m .

Proof. We will prove the result by showing that if f satis�es a SDE and i) doesn't hold,
then ii) must hold. Assume that f satis�es a di�erential equation of the following form:

k∑
i=0

Pi(x)f (i)(x) = 0, (8)

with k < m and deg(Pi) ≤ i+ l.
For every j ∈ [m], we denote by Rj the unique polynomial such that:

k∑
i=0

Pi(x)
(
(x− aj)d

)(i)
(x) = Rj(x)(x− aj)d−k.

Notice that Rj is of degree at most k+ l. By lemma 12, since k < m, not all Rj's can be
0, without loss of generality we have R1 6≡ 0. For j ∈ [m], we set fj(x) = Rj(x)(x−aj)d−k
and, using linearity of di�erentiation, we rewrite di�erential equation (8) as:

−f1(x) =
m∑
j=2

fj(x).

Using Lemma 8, for a certain subset J = {j1, . . . , jp} ⊆ [2..m], we obtain

d− k ≤ Na1 (f1) ≤ p− 1 + Na1 (W ((fj)j∈J)) . (9)

9



We can factorize the Wronskian by (x− aj)d−k−(p−1) for any j ∈ J :

Na1 (W ((fj)j∈J)) = Na1

∣∣∣∣∣∣∣
R1,1 . . . R1,p
...

. . .
...

Rp,1 · · · Rp,p

∣∣∣∣∣∣∣ ,
with deg(Ri,j) ≤ l + k + p− i.
The determinant has degree ≤ p(l + k) +

(
p
2

)
. Hence, inequality (9) becomes:

d− k ≤ p− 1 + p(l + k) +

(
p

2

)
.

Using the fact that p ≤ m− 1, we obtain:

d ≤ (m− 1) · l +m · k +
(m− 2)(m+ 1)

2
.

Divide by m and drop negative terms to obtain:

d

m
≤ l + k +

m

2
.

Using the hypothesis that k < m, we �nally have:

l >
d

m
− 3

2
m.

4.3 Putting things together

We are now ready to give a proof of theorem 4.

Proof. We take k and l small enough to ensure that f does not satisfy any SDE of
parameters k and l. Using lemma 13, it is enough to take:

• k = m− 1 =
⌊√

d
t

⌋
− 1 so that k < m ,

• l =
⌊√

dt− 3
2

√
d
t

⌋
so that l ≤ d

m
− 3

2
m .

Using proposition 11, we thus establish a lower bound on the dimension of the shifted
derivatives space:

dim
〈
x≤i+l · f (i)

〉
i≤k = (k + 1)l +

(
k + 2

2

)
≥

(√
d

t
− 1

)(
√
dt− 3

2

√
d

t
− 1

)
+

1

2

(√
d

t

)2

= d

(
1− 1

t
−
√
t

d
+

1

2
√
dt

+
1

d

)

≥ d

(
1− 1

t
−
√
t

d

)
.
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Now, assume that f =
∑s

i=1 αiQ
ei
i , for some Qi's with degQi ≤ t. Proposition 10 gives

the following upper bound on the dimension:

dim
〈
x≤i+l · f (i)

〉
i≤k ≤ s · (l + kt+ 1) ≤ s · 2

√
dt.

Hence:

s ≥
1− 1

t
−
√

t
d

2
· d√

dt
.

Now, since t < d
4
, we have

√
t
d
< 1

2
and thus:

s = Ω

(√
d

t

)
.

5 Discussion

In this work, we introduce the model of sums of powers of univariates and gave a new
proof technique (via the Wronskian) to prove a lower bound in this model. Even though
the existing technique of shifted partials also yields a similar lower bound in this model,
our proof (via the Wronskian) could nevertheless be interesting for it is di�erent and
perhaps some suitable generalization of it might yield improved lower bounds for some
classes of multivariate circuits. In any case, we feel that the sum of powers of univariates
model is easier to analyze and may serve as a testbed for other candidate techniques or
complexity measures aiming to obtain improved circuit lower bounds. We conclude by
mentioning a few open problems that are implicit in remark 5.

• Obtain a lower bound for sums of powers of t-sparse polynomials which is better

than Ω(
√

log d
log t

).

• Obtain a dO(1)-time algorithm for expressing a given degree d polynomial as a sum
of O(d

t
)-many powers of degree-t polynomials.

• Improve the Ω(
√

d
t
) lower bound shown in this work.
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