
A Survey of Techniques Used in Algebraic and Number Theoretic

Algorithms

Manindra Agrawal and Chandan Saha
Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

Abstract

We survey some of the important tools and techniques used in designing algorithms for
problems in algebra and number theory. We focus on the computational efficiency of these
tools and show how they are applied to design algorithms for several basic algebraic and
number theoretic operations.

1 Introduction

The past few decades have witnessed a growing interest among computer scientists and math-
ematicians, in the field of computational number theory and algebra. This field is primarily
focussed on the task of designing fast algorithms for several algebraic and number theoretic
problems. Owing to the fundamental nature of these problems, they have always been a sub-
ject of intense theoretical study. But interest in them has escalated recently because of their
important applications in key areas like cryptography and coding theory.

The security of cryptographic protocols such as the RSA cryptosystem and the Diffie-
Hellman key exchange protocol, relies on the hardness of problems like integer factoring and
discrete logarithm. On the other hand, the efficiency of decoding algorithms for error correcting
codes like Reed-Solomon and BCH codes hinges on fast algorithms for solving a system of linear
equations and factoring polynomials over finite fields.

Another important application of algorithmic algebra is the development of computer alge-
bra systems. These systems are indispensable tools for research in many computation intensive
fields of physics, chemistry, biology and mathematics.

In this survey we briefly review some of the fundamental and widely used techniques for design-
ing algebraic and number theoretic algorithms. Algebraic algorithms are used for performing
operations like:

• Polynomial operations: Polynomial addition, multiplication, gcd computation, factor-
ing, interpolation, multipoint evaluation, etc.

• Matrix operations: Matrix addition, multiplication, inverse and determinant computa-
tion, solving a system of linear equations, etc.

• Abstract algebra operations: Finding the order of a group element, computing discrete
logarithm, etc.

Whereas number theoretic algorithms are used for performing operations like:

1



• Operations on integers and rationals: Addition, multiplication, gcd computation,
square root finding, primality testing, integer factoring, etc.

We discuss two major applications namely, the RSA cryptosystem and the Reed-Solomon error
correcting codes, where some of these algorithms are used. Following these applications, we
give a brief account of the computational complexity of the basic operations mentioned above.
Several important techniques are used to design algorithms for these operations. We describe
some of these techniques here. These include:

1. Chinese Remaindering: Used in determinant computation and polynomial factoring.

2. Discrete Fourier Transform: Used in polynomial and integer multiplication.

3. Automorphisms: Used in polynomial and integer factoring, and primality testing.

4. Hensel Lifting: Used in polynomial factorization and division.

5. Short Vectors in a Lattice: Used in polynomial factoring and breaking cryptosystems.

6. Smooth Numbers: Used in integer factoring and computing discrete logarithm.

Our motive - Before we proceed to the main discussion let us at first clarify our motive behind
writing this survey. An attempt to describe a field as vast as computational number theory
through a relatively short article as this is perhaps a bit ambitious. But giving a thorough
account of this subject is not our intention. Instead, we want to present a quick, yet fairly
comprehensive, exposition to some of the salient features of this area, so that the reader finds
it helpful to pursue further details on topics that interest him or her. To assist the reader in
this regard, references to relevant details are provided along with every topic that we discuss.

We do assume that the reader is familiar with basic algebraic structures like groups, rings,
fields and vector spaces, and their properties.

Notations and conventions - The set of integers, rationals, reals and complex numbers are
denoted by Z,Q,R and C, respectively. Z+ is the set of positive integers and ZN is the ring of
integers modulo N ∈ Z+. The multiplicative subgroup of ZN , consisting of all m ∈ Z+ with
gcd(m,N) = 1, is denoted by Z×N . For a positive real a, bac is the largest integer less than a,
and dae is the smallest integer greater than a. F represents any arbitrary field, and Fq is the
finite field with q elements. F×q = Fq\{0} is the multiplicative subgroup of Fq. The determinant
of a square matrix M is denoted by det(M).

Given two functions t1(n) and t2(n) from Z+ → Z+, we say t1(n) = O(t2(n)) if there exist
positive constants c and n0 such that t1(n) ≤ c·t2(n) for every n ≥ n0. We write t1(n) = o(t2(n))
if for every constant c, there is an n0 > 0 such that t1(n) < c · t2(n) for all n ≥ n0. We use
the notation poly(n1, . . . , nk) to mean some arbitrary but fixed polynomial in the parameters
n1, . . . , nk. Throughout this article, log refers to logarithm base 2 and ln is the natural logarithm.
Sometimes, for brevity we use the notation Õ(t(n)) to mean O(t(n) · poly(log t(n))).

In this article, a ring R always means a commutative ring with unity 1 and by convention,
any vector is a row vector. Given two polynomials f, g ∈ R[x], where R is a unique factorization
domain, gcd(f, g) refers to the largest common divisor of f and g over R which is unique up to
multiplication by units in R. When R is a field, we assume that gcd(f, g) is monic.

Given two polynomials f, g ∈ R[x], where R is an integral domain, S(f, g) denotes the
Sylvester matrix of f and g over R. The resultant of f and g over R is Resx(f, g) = det(S(f, g)).
Refer to Appendix A, for a discussion on resultant theory and Gram-Schmidt orthogonalization.

2



2 Two major applications in cryptography and coding theory

In this section, we take up the examples of the RSA cryptosystem and the Reed-Solomon codes,
and show how there are intimately connected to problems like integer and polynomial factoring.
As another motivating application, we give a brief account of the Diffie-Hellman key exchange
protocol where the hardness of the discrete log problem comes into play.

2.1 The RSA cryptosystem

The RSA, named after its inventors Rivest, Shamir, and Adleman [RSA78], is the first and
the most popular public-key cryptosystem. A cryptosystem is an encryption-cum-decryption
scheme for communication between a sender and a receiver. Such a system is secure if it is
infeasible for a (potentially malicious) third party to eavesdrop on the encrypted message and
decrypt it efficiently. In a public-key cryptosystem, the receiver publishes a common key (also
known as the public key) using which anyone can encrypt a message and send it to the receiver.
On the other hand, only the receiver knows a secret private key using which the message can
be decrypted efficiently. The RSA key generation procedure is as follows.

1 RSA: Key generation
1. Fix a key length, say, 2r bits.
2. Randomly select two distinct primes p and q each of 2r−1 bits.
3. Let n = pq and ϕ(n) = (p− 1)(q − 1). /* ϕ is the totient function.*/
4. Randomly select an e such that 3 ≤ e < ϕ(n) and gcd(e, ϕ(n)) = 1.
5. Find the smallest d such that d · e = 1 mod ϕ(n).
6. The encryption key is the pair (n, e).
7. The decryption key is d.

In practice, the primes p and q chosen in step 2 are fairly large in size, say about 512 bits.
Evidently, a fast primality testing algorithm is required to pick such large primes. Other basic
operations like multiplication (in step 3), gcd computation (in step 4) and modular inverse
computation (in step 5) also play a significant role in determining the efficiency of the process,
as the numbers involved are extremely large. The encryption key (n, e) is known to all, whereas
the decryption key d is known only to the receiver. The RSA encryption scheme is as follows.

2 RSA: Encryption
1. Let m be the message to be encrypted.
2. Treat m as a number less than n.
3. Compute c = me mod n.
4. c is the encrypted message.

Note the usage of the modular exponentiation operation in step 3. At the receiver’s end the
message is decrypted using d as follows.

3 RSA: Decryption
1. Compute cd mod n = med mod n = m.

Since n is given as part of the public key, if we can factor n efficiently we can compute the
private key d = e−1 mod ϕ(n) using extended Euclidean algorithm (see Algorithm 8 in section

3



3.1). However, as yet no randomized polynomial time algorithm is known for integer factoring.
The current best factoring algorithms ([JP92], [LJMP90]) have subexponential time complexity.
Although it is not known if breaking RSA is equivalent to integer factoring, a recent result by
Aggarwal and Maurer [AM09] shows that under a reasonable restriction this is indeed the case.

Readers interested in further details on potential attacks on RSA cryptosystem may consult
the survey articles by Koblitz and Menezes [KM04], Boneh [Bon99], or the book by Katzen-
beisser [Kat01]. In section 4.5 we will discuss a lattice based attack on the RSA, which was first
proposed by Coppersmith [Cop97].

Another problem which is historically closely related to integer factoring is the discrete
logarithm problem. In the next section, we show how the hardness of this problem is used to
design a secure key exchange protocol.

2.2 Diffie-Hellman key exchange protocol

Unlike a public-key cryptosystem where the encryption key is known to all, in a symmetric
cryptosystem the two communicating parties use the same secret key for encryption as well as
decryption. However, they are only allowed to exchange this key by communicating through
a public channel that is accessible to all. Diffie and Hellman [DH76] presented a scheme that
makes this possible without compromising the security of the communication.

Let Fq be a finite field, where q is a large prime power. Let g be the generator of the multiplicative
group F×q . Assume that the numbers q and g are known to all. The key-exchange protocol is
as follows.

4 Diffie-Hellman key exchange
1. X chooses a ∈ Zq−1 uniformly at random, computes x = ga ∈ F×q .
2. X sends x to Y .
3. Y chooses b ∈ Zq−1 uniformly at random, computes y = gb ∈ F×q .
4. Y sends y to X.
5. X computes ya, Y computes xb.
6. X and Y use ya = xb = gab as the secret key.

Since the communication uses a public channel, the numbers ga and gb are visible to all. If one
can efficiently compute a from g and ga, similarly b from g and gb, one can also get the private
key gab. The problem of computing z from g and gz in Fq is the discrete logarithm problem. But
just like integer factoring the current best algorithm [Gor93] for computing discrete logarithm
has subexponential time complexity. It is not known though if breaking the Diffie-Hellman
protocol is equivalent to computing discrete logarithm. For further details, the reader may refer
to the article by Maurer and Wolf [MW99].

So far we have seen how the absence of efficient algorithms for certain number theoretic
problems is exploited to design secure cryptographic protocols. Now we will see how fast
algorithms for certain algebraic problems are used for designing efficient error-correcting codes.

2.3 The Reed-Solomon codes

The family of Reed-Solomon codes [RS60] is one of the most important and popular class of
error-correcting codes which is used in many commercial applications, like encoding data on

4



CD and DVD, and in data transmission and broadcast systems. Error-correcting codes enable
us to encode a message into a codeword that is tolerant to errors during transmission. At the
receiver’s end the possibly corrupted codeword is decoded back to the original message.

Fix a finite field Fq with q ≥ n, the length of a codeword. The Reed-Solomon encoding
procedure is as follows.

5 Reed-Solomon codes: Encoding
1. Let m be the message string that is to be encoded.
2. Split m as a sequence of k < n elements of Fq: (m0, . . . ,mk−1).
3. Let polynomial Pm(x) =

∑k−1
i=0 mix

i.
4. Let cj = Pm(ej) for 0 ≤ j < n where e0, . . . , en−1 are distinct elements of Fq.
5. The sequence (c0, . . . , cn−1) is the codeword corresponding to m.

Note the use of multipoint evaluation of the polynomial Pm(x) in step 4 of the procedure.
Decoding of Reed-Solomon codes can be of two types - unique and list decoding. In list

decoding, the codeword is decoded to a small set of strings so that the original message is one
among these strings. Whereas in unique decoding the decoder outputs only the message string.
We first discuss a version of the unique decoding algorithm due to Welch and Berlekamp [WB86].

Let (d0, . . . , dn−1) be the received word which is possibly different from the codeword (c0, . . . , cn−1).
The following decoding algorithm finds the message polynomial Pm(x) if the number of errors
in (d0, . . . , dn−1) is not too high.

6 Reed-Solomon codes: Unique decoding

1. Let t = dn−k+1
2 − 1e.

2. Find polynomials M(x) and F (x) such that,
degF (x) ≤ t, F (x) 6= 0;
degM(x) ≤ k + t− 1 and
M(ei) = di · F (ei) for every 0 ≤ i < n.

3. Output M(x)
F (x) .

The correctness of the algorithm can be argued as follows. Let E ⊂ {0, . . . , n − 1} be the
set of all positions in the received word (d0, . . . , dn−1) which are in error i.e. di 6= ci for i ∈ E .
Assume that |E| ≤ t. Define the polynomials E(x) ,

∏
i∈E (x− ei) and N(x) , Pm(x)E(x). It

is easy to verify that N(ei) = diE(ei) for all 0 ≤ i < n. Therefore, solutions for the polynomials
M(x) and F (x) exist in step 2. Now notice that the polynomial R(x) , N(x)F (x)−M(x)E(x)
has degree at most k + 2t − 1 and R(ei) = 0 for all 0 ≤ i < n. This implies that R(x) = 0 as
t < n−k+1

2 , and hence M(x)
F (x) = N(x)

E(x) = Pm(x).

Step 2 can be implemented by solving a system of linear equations with the coefficients of F (x)
and M(x) as unknowns. A preferable way of implementing this step is through rational function
interpolation (for details see the online notes of Sudan [Sud] and Rosenblum [Ros]). In step
3 we can use polynomial division. Although very simple in nature, this algorithm does not
achieve the best possible running time. The current fastest unique decoding algorithm is due
to Justesen [Jus76].

The above decoding procedure can correct up to n−k+1
2 errors in the received word, and this

error bound is the optimum as far as unique decoding is concerned. However, it turns out that

5



a lot more errors can be corrected if we allow the decoding procedure to output a small list
of candidate message strings with the guarantee that the original message is one among them.
The following is a simpler version of the list decoding algorithm given by Sudan [Sud97].

7 Reed-Solomon codes: List decoding

1. Let u0 = d
√
nke and u1 = b

√
n
k c.

2. Find a nonzero bivariate polynomial Q(x, y) with x-degree u0 and
y-degree u1 such that Q(ej , dj) = 0 for every 0 ≤ j < n.

3. Factor Q(x, y).
4. Output all polynomials P (x) such that (y − P (x)) is a factor of Q(x, y).

We now show that the message polynomial Pm(x) is in the output list of polynomials if
|E| < n−2d

√
nke (E is the set of ‘error’ indices). In step 2 we can find Q(x, y) by solving a system

of linear equations with the coefficients ofQ(x, y) as variables. Since there are (1+u0)(1+u1) > n
unknowns with n equations to satisfy, there always exist a solution for Q(x, y). Consider the
polynomial S(x) , Q(x, Pm(x)). Degree of S(x) is strictly less than u0 + u1k ≤ 2d

√
nke. If

|E| < n− 2d
√
nke then from step 2 it follows that S(ej) = 0 for at least 2d

√
nke many distinct

ej ’s. This implies that S(x) = 0 and hence (y − Pm(x)) is a factor of Q(x, y).
Another fundamental algebraic operation, namely polynomial factoring, is used in step 3 of

the list decoding algorithm. In this case, it is bivariate polynomial factoring.

In practice, the value of k is much smaller than n and hence n − 2d
√
nke is much larger than

n−k+1
2 . The current best parameter is due to Guruswami and Sudan [GS99] that can correct

up to n −
√
nk errors, which is perhaps the best possible (see [BSKR06]). For an excellent

exposition to the theory of error-correcting codes the reader may refer to the PhD thesis of
Guruswami [Gur04] or the book by MacWilliams and Sloane [MS81].

At this stage we hope to have given the reader a glimpse of how algebraic and number
theoretic operations are used in practice. In the following section we give a brief account of the
time complexity of algorithms for some of these operations.

3 Complexity of basic operations

For the ease of presentation, we classify the basic algebraic and number theoretic operations
into four broad categories:

1. Polynomial arithmetic: This includes polynomial addition, multiplication, division,
computing gcd of polynomials, multipoint evaluation of a polynomial, polynomial inter-
polation, modular composition and polynomial factoring.

2. Integer arithmetic: This includes integer addition, multiplication, division, computing
gcd, computing integer roots, primality testing and integer factoring.

3. Linear algebra operations: This includes matrix multiplication, computing determi-
nant, inverse and characteristic polynomial of a matrix, and solving a system of linear
equations.

4. Abstract algebra operations: This includes finding order of an element and computing
discrete logarithm in a finite group.

We start with the operations under polynomial arithmetic.

6



3.1 Polynomial arithmetic

Let f and g be two degree n univariate polynomials over a field F. In what follows, the time
complexity of an algorithm measures the number of F-operations performed by the algorithm.

Polynomial addition

This is simple addition of the coefficients of f and g, and hence it takes O(n) operations in F.

Polynomial multiplication

The naive approach of multiplying every coefficient of f with all coefficients of g takes O(n2)
field operations. However, there is a trickier way of multiplying polynomials using a tool,
known as Discrete Fourier Transform (DFT), that reduces the time complexity to O(n log n)
F-operations, if F contains a primitive nth root of unity. We will discuss this algorithm in details
in section 4.2. In case no such nth root is present in F, the time taken is only slightly worse
which is O(n log n log logn) operations in F (see chapter 8 of [GG03]). We denote the time
taken to multiply two polynomials of degree n by M(n). Note that, the function M(n) satisfies
the property M(n1 + n2) ≥ M(n1) + M(n2) for any integers n1, n2 > 0.

Polynomial division

The simple long division approach takes O(n2) time. But just like multiplication, there is a
better way of dividing polynomials. Using a tool called Hensel lifting we can design a division
algorithm that takes only O(M(n)) operations. This algorithm will be discussed in section 4.4.

GCD of polynomials

The classical Euclidean algorithm computes r = f mod g and then recursively computes the
gcd of r and g. The extended Euclidean algorithm, given below, computes two polynomials s
and t such that sf + tg = gcd(f, g) = d, with deg(s) < deg(g) and deg(t) < deg(f). We can
use this algorithm to compute modular inverse. For instance, if f and g are relatively coprime
then s = f−1 mod g.

8 Extended Euclidean algorithm
1. Let (r, r′)← (f, g), (s, s′)← (1, 0) and (t, t′)← (0, 1).
2. while r′ 6= 0 do

q ← b rr′ c, r′′ ← r mod r′

(r, s, t, r′, s′, t′)← (r′, s′, t′, r′′, s− s′q, t− t′q)
3. Let d← r.
4. Output d, s, t.

It is not difficult to analyse this algorithm and show that the time complexity is bounded by
O(n2) (refer to chapter 4 of [Sho09]). But then, there is also a faster version of the extended
Euclidean algorithm that runs in only O(M(n) log n) time (refer to chapter 11 of [GG03]).

Multipoint evaluation and interpolation

Let f(x) be a given polynomial of degree less than n = 2k. The multipoint evaluation problem
is the task of evaluating f at n distinct points u0, . . . , un−1 of F. Define the polynomials,

7



pj , (x− uj) and Pi,j ,
∏2i−1
`=0 pj·2i+` for 0 ≤ i ≤ k = log n and 0 ≤ j < 2k−i. At first compute

all the Pi,j ’s using the recursive equations,

P0,j = pj and Pi+1,j = Pi,2j · Pi,2j+1

Since deg(Pi,j) = 2i, it is easy to see that the complexity of the above computation is,

T (2k) = 2 · T (2k−1) + M(2k−1)
= O(M(n) log n)

The following procedure uses a divide and conquer strategy for multipoint evaluation.

9 Multipoint evaluation
1. If n = 1 return f.
2. Let r0 = f mod Pk−1,0 and r1 = f mod Pk−1,1.
3. Recursively, evaluate r0 at u0, . . . , un/2−1.
4. Recursively, evaluate r1 at un/2, . . . , un−1.
5. Output r0(u0), . . . , r0(un/2−1), r1(un/2), . . . , r1(un−1).

At deeper levels of the recursion, the procedure requires the values of the polynomials Pi,j ’s,
for 0 ≤ i ≤ k = log n and 0 ≤ j < 2k−i. Since all these polynomials are computed a priori, the
time complexity of the procedure is,

T ′(2k) = 2 · T ′(2k−1) +O(M(2k))
= O(M(n) log n)

considering the fact that division of degree n polynomials takes O(M(n)) time.

Polynomial interpolation is the opposite of the multipoint evaluation problem. Given a set
of n tuples (u0, v0), . . . , (un−1, vn−1) the task is to find a polynomial f of degree less than n such
that f(ui) = vi for all 0 ≤ i < n. Just like multipoint evaluation, there is a divide and conquer
strategy for interpolating f using the Lagrange polynomial,

f =
n−1∑
i=0

n−1∏
j=0,j 6=i

x− uj
ui − uj

The reader might find it an interesting exercise to show that the time complexity of this problem
is also O(M(n) log n) (for details refer to chapter 10 of [GG03]).

Modular composition

Given three polynomials f , g and h with deg(g), deg(h) < deg(f) = n, the task of computing
g(h) mod f is known as modular composition. The following algorithm is due to Brent and
Kung [BK78] and this particular exposition is present in chapter 12 of [GG03]. For simplicity,
we assume that n is a perfect square with m =

√
n.

The correctness of the algorithm follows from the fact that ri = gi(h) mod f . Computing
hi mod f for all 0 ≤ i ≤ m takes O(mM(n)) time. Step 4 can be implemented as n

m , m ×m
matrix multiplications. This takes O(m1+ω) time, assuming ω to be the exponent for matrix
multiplication (see section 3.3). Step 6 can also be implemented in O(mM(n)) time by first

8



10 Modular composition

1. Let g =
∑m−1

i=0 gix
mi where gi is a polynomial with deg(gi) < m.

2. Let A be a m×n matrix with the coefficients of hi mod f as the ith row.
3. Let B be a m×m matrix with the coefficients of gi as the ith row.
4. Compute C = B ·A.
5. Let ri be the polynomial with the ith row of C as its coefficients.
6. Compute r =

∑m−1
i=0 ri(hm)i mod f and output r.

computing r′m−2 = (rm−1h
m + rm−2) mod f followed by r′m−3 = (r′m−2h

m + rm−3) mod f
and so on, until r′0 = r is computed. Therefore, the time complexity of the algorithm is
O(n

1+ω
2 +

√
n ·M(n)).

Very recently, Kedlaya and Umans [KU08] have improved this time complexity substantially.
Their modular composition algorithm over a finite field uses merely O(n1+o(1)) field operations,
and this is optimum up to lower order terms.

Polynomial factoring

The problem of computing the irreducible factors of a given polynomial is one of the most
fundamental and well-studied problem in algebraic computation. In case of polynomials over
finite fields, the first randomized algorithm dates back to the work of Berlekamp [Ber70]. Several
improvements in the running time came up subsequently due to Kaltofen and Shoup [KS98],
von zur Gathen and Shoup [vzGS92], and others (refer to the survey by von zur Gathen and
Panario [vzGP01]). The current best randomized algorithm was given very recently by Kedlaya
and Umans [KU08]. Using a fast modular composition algorithm along with ideas from Kaltofen
and Shoup [KS98], they achieved a running time of Õ(n1.5 + n log q) field operations, where Fq
is the underlying finite field. Note that, this time complexity is indeed polynomial in the input
size (which is about n log q bits), since a field operation takes (log q)O(1) bit operations. In
section 4.1 we will discuss a randomized polynomial time algorithm for factoring polynomials
over finite fields.

The best deterministic algorithm so far, which is due to Evdokimov [Evd94], has quasi-
polynomial time complexity under the assumption of the Extended Riemann Hypothesis (ERH).
More precisely, it takes (nlogn log q)O(1) field operations. In section 4.3 we give an overview of
this algorithm. Finding a deterministic polynomial time algorithm for factoring polynomials
over finite fields is one of the major open problems in algebraic computation.

Unlike the case over finite fields, a deterministic polynomial time algorithm is known for factor-
ing polynomials over rationals. Let f ∈ Z[x] be a polynomial with coefficients fi for 0 ≤ i ≤ n.
The classical LLL factoring algorithm, given by Lenstra, Lenstra and Lovász [LJL82], has a
time complexity of Õ(n10 + n8 log2A) word operations, where A = max0≤i≤n ‖ fi ‖. We will
discuss this algorithm in section 4.5.

Algorithms for factoring multivariate polynomials have also been studied. In this regard,
the reader may consult the celebrated result by Kaltofen [Kal85], who showed that multivariate
polynomial factoring reduces to univariate polynomial factoring over any field. In another fa-
mous work, Kaltofen [Kal89] gave a randomized algorithm for black-box polynomial factoring.
In section 4.4, we will show how bivariate polynomial factoring reduces to univariate factoring.
The reduction technique generalizes to the case of multivariate polynomials.

The following table summarizes the results stated in this section.

9



Operations Time complexity
Addition O(n)
Multiplication M(n) = O(n log n log log n)
Division O(M(n))
Gcd O(M(n) log n)
Multipoint evaluation O(M(n) log n)
Interpolation O(M(n) log n)
Modular composition Õ(n) (over finite fields)
Factoring over finite fields Õ(n1.5 + n log q) (randomized)

(nlogn log q)O(1) (deterministic, under ERH)
Factoring over rationals Õ(n10 + n8 log2A)

3.2 Integer arithmetic

Arithmetic operations with integers, like addition, multiplication, division and gcd are closely
related to similar operations with polynomials. Often, the algorithms for the corresponding
polynomial operations can be adapted to work for the case of integers as well. The cost of
integer arithmetic is measured in terms of the number of bit operations.

Integer multiplication

The naive way of multiplying two n-bit integers, a and b, takes O(n2) bit operations. An
alternative way is the following. Split the bit representation of each of a and b into m equal
sized blocks. Consider a polynomial A(x) of degree m − 1 whose coefficients are the numbers
formed by the blocks of a. Similarly consider polynomial B(x) for b. Multiply A(x) and B(x)
and evaluate the product at 2n/m to get a · b. Since polynomial multiplication can be done
efficiently using Discrete Fourier Transform (DFT) (see section 4.2), one can hope to get a
better algorithm for integer multiplication through this approach. Indeed, this idea was put
to work first by Schönhage and Strassen [SS71], who gave an O(n log n log logn) algorithm for
multiplying two n-bit integers. The main technical hurdle comes from the fact that, in order
to use DFT we need a primitive root of unity in the base ring over which the polynomials are
multiplied. Recently, Fürer [Für07] improved this algorithm further, using the novel idea of
nested DFT’s, to obtain a time complexity of O(n log n ·2O(log∗ n)) bit operations. For a simpler
exposition to Fürer’s algorithm, the reader may refer to the work by De, Kurur, Saha and
Saptharishi [DKSS08]. In the rest of this section, we will refer to the multiplication time of two
n-bit integers by MI(n).

Other arithmetic operations

Algorithms for division and gcd computation over integers are very similar to that over polyno-
mials, and it is not surprising that they have similar time complexity measures. For instance,
division of two n-bit integers takes O(MI(n)) bit operations, whereas gcd computation takes
O(MI(n) log n) bit operations. Another interesting problem is the computation of integer roots.
Given an n-bit integer a and a number m < n, find an integer b (if it exists) such that bm = a.
It turns out, just as in polynomial division, Hensel lifting applies to this problem as well and
yields a time complexity of O(MI(n)) bit operations. For details refer to chapter 9 of [GG03].

10



Primality testing

Distinguishing primes from composite numbers is perhaps the most fundamental problem in
algorithmic number theory. Till date, multiple randomized algorithms have been discovered to
solve primality testing. In this section, we will discuss one such algorithm that is widely used in
practice and is popularly known as the Miller-Rabin test [Mil76, Rab80]. It is a classic example
of how randomization is used to design efficient algorithms in number theory.

Let N > 0 be an n-bit odd integer and N − 1 = 2tw, where w is odd.

11 Miller-Rabin primality test
1. Choose a randomly from the range [1, N − 1].
2. If gcd(a,N) 6= 1 return ‘composite’.
3. If aN−1 6= 1 mod N return ‘composite’.
4. If aw = 1 mod N return ‘probably prime’.
5. Else, let 1 ≤ r ≤ t be the smallest possible such that a2rw = 1 mod N.
6. If a2r−1w 6= −1 mod N return ‘composite’. Else return ‘probably prime’.

Correctness and success probability - First, it is easy to see that the algorithm always
returns ‘probably prime’ if N is a prime. The reason being, in step 3 gcd(a,N) = 1 and
hence from Fermat’s little theorem aN−1 = 1 mod N . Also in step 6, since a2rw = 1 mod N for
the smallest possible r ≥ 1, hence a2r−1w = −1 mod N , ZN being a field.

Let N be a composite. If the algorithm reaches step 3, we can assume that a has been chosen
uniformly from Z×N , the set of positive integers coprime to and less than N . Now, if N is not a
Carmichael number then the set of integers a such that aN−1 = 1 mod N is a strict subgroup
of Z×N under multiplication modulo N . Therefore, using Lagrange’s theorem, the chance that
aN−1 6= 1 mod N is at least 1

2 .
Suppose N is a Carmichael number, which also means that N is square-free. Without loss

of generality assume that N = pq, where p and q are distinct primes. By Chinese remaindering
theorem (see section 4.1), Z×N ∼= F×p ⊕ F×q . Let p − 1 = 2kw1 and q − 1 = 2`w2, where w1 and
w2 are odd. And suppose a = βs1 mod p = γs2 mod q, where β and γ are generators of F×p and
F×q respectively. In step 4, if aw = 1 mod N then βs1w = 1 mod p implying that 2k|s1 as w is
odd. Similarly, 2`|s2 if aw = 1 mod N . Since a is randomly chosen from Z×N , equivalently s1

and s2 are chosen uniformly independently from the ranges [1, p− 1] and [1, q− 1] respectively.
Therefore,

Pr
a
{aw = 1 mod N} ≤ Pr

s1,s2
{2k|s1 and 2`|s2}

= Pr
s1
{2k|s1} · Pr

s2
{2`|s2} =

1
2k+`

.

Suppose in step 6, a2r−1w = −1 mod N . Then βs12r−1w = −1 mod p implying that 2k−r‖s1

i.e. k−r is the highest power of 2 that divides s1. Similarly, 2`−r‖s2. For a fixed r ≤ min{k, `},

Pr
s1,s2
{2k−r‖s1 and 2`−r‖s2} =

1
2k+`−2(r−1)

.

By union bound, over all 1 ≤ r ≤ min{k, `} = k (say),

Pr
a
{∃r, 1 ≤ r ≤ t such that a2r−1w = −1 mod N} ≤

k∑
r=1

1
2k+`−2(r−1)

11



Summing the error probabilities from step 4 and 6 we conclude that Miller-Rabin test succeeds
with probability at least 1− 1

2k+`
(4k+2

3 ) ≥ 1
2 .

Time complexity - Gcd computation in step 2 takes O(MI(n) log n) time. In step 3 we can use
repeated squaring and compute a1 = a2 mod N , a2 = a2

1 = a4 mod N , a3 = a2
2 = a8 mod N

and so on till ablog(N−1)c. Then, we can multiply all those ai’s modulo N for which the ith bit
of N − 1 in binary is 1. This process takes O(MI(n) logN) = O(nMI(n)) time. The complexity
of steps 4, 5 and 6 are similarly bounded by O(nMI(n)) as r ≤ t ≤ logN ≤ n. Therefore, the
overall time complexity of the Miller-Rabin test is O(nMI(n)) = Õ(n2) bit operations.

Deterministic primality test - In a major breakthrough, the first deterministic primality
testing algorithm was given by Agrawal, Kayal and Saxena [AKS04] in 2002. It is famously
known as the AKS primality test. In section 4.3 we will present this algorithm. The current
best deterministic complexity is due to a version of the AKS-primality test given by Lenstra
and Pomerance [JP05]. Their algorithm has a running time of Õ(n6) bit operations.

Integer factoring

Factoring an integer N is closely related to primality testing. However, as mentioned in section
2.1, this is a long standing open problem and as yet no randomized polynomial time algorithm
is known. The current best randomized algorithm, due to Lenstra and Pomerance [JP92], has
an expected running time of e(1+o(1))

√
lnN ln lnN bit operations. This bound is an improvement

on the complexity of Dixon’s algorithm [Dix81], which also has an expected subexponential
running time of the form eO(

√
lnN ln lnN). We will take up Dixon’s algorithm in section 4.6. The

best deterministic factoring algorithm, known as Pollard-Strassen method, runs in Õ(N
1
4 ) time.

Two important techniques are used to factor integers much more efficiently in practice than
the algorithms mentioned above. They are the Quadratic Sieve [Pom84] and the Number Field
Sieve [LJMP90]. A heuristic analysis of the Quadratic Sieve (QS) yields a time bound of
e(1+o(1))

√
lnN ln lnN operations. We include a discussion on this analysis in section 4.6. The

Number Field Sieve (NFS) has a heuristic time complexity of e(c+o(1))((lnN)
1
3 (ln lnN)

2
3 ) bit oper-

ations, for a constant c > 0. The best known value for c is 1.902, due to Coppersmith [Cop93].
For an exposition to NFS and some other related factoring algorithms refer to the survey by
Lenstra [Len00] and the article by Stevenhagen [Ste08] in [BS08]. Although, the NFS is asymp-
totically faster than the QS, it has been noticed that the latter performs better in practice for
numbers up to 100 digits (see [Pom96]).

The following table summarizes the complexity of different integer arithmetic operations.

Operations Time complexity
Addition O(n)
Multiplication MI(n) = O(n log n · 2O(log∗ n))
Division O(MI(n))
Gcd O(MI(n) log n)
Finding integer roots O(MI(n))
Primality testing Õ(n2) (randomized)

Õ(n6) (deterministic)
Integer factoring e(1+o(1))

√
lnN ln lnN (randomized)

eO((lnN)
1
3 (ln lnN)

2
3 ) (heuristic)

12



3.3 Linear algebra operations

Like polynomial and integer arithmetic, matrix operations are also of fundamental nature and
are frequently used in designing algorithms. In section 3.1, we saw an application of matrix
multiplication in the modular composition algorithm (Algorithm 10). In this section, we will
note the time complexity of some of the basic linear algebra operations.

Matrix multiplication

The naive approach of multiplying the rows of an n × n matrix with the columns of another
n × n matrix takes O(n3) time. Improving upon the exponent ω = 3, Strassen [Str69] gave
an algorithm that runs in O(nlog 7) ≈ O(n2.807) time. The current best exponent is due to
Coppersmith and Winograd [CW87]. Their algorithm has O(n2.376) time complexity. It remains
open as to whether this can be improved further to O(n2).

For a detailed account of the complexity of matrix multiplication, refer to chapter 15 of the
book by Bürgisser, Clausen and Shokrollahi [BCS97].

Other linear algebra operations

One reason as to why matrix multiplication is so fundamental is that, a whole bunch of other
problems like LUP decomposition, computing determinant, finding inverse and characteristic
polynomial of an n×n matrix, and solving a system of n linear equations in n variables reduce
to matrix multiplication. For details of these reductions the reader may refer to chapter 6 of the
book by Aho, Hopcroft and Ullman [AHU74] or chapter 16 of the book by Bürgisser, Clausen
and Shokrollahi [BCS97].

On some occasions the matrix under consideration is fairly sparse, meaning there are very
few non-zero entries in the matrix. Solving a system of linear equations with a sparse coefficient
matrix is one such example. Faster algorithms exist for solving sparse linear systems. For de-
tails the reader may refer to the work of Wiedemann [Wie86] and Kaltofen and Saunders [KS91].

The following table gives a summary of the basic linear algebra operations. We denote the
time taken to multiply two n× n matrices by Mm(n).

Operations Time complexity
Matrix multiplication Mm(n) = O(n2.376)
Inverse O(Mm(n))
Determinant O(Mm(n))
Finding the characteristic polynomial O(Mm(n))
Solving a linear system O(Mm(n))

3.4 Abstract algebra operations

Finding order of an element

Given an element a in a finite group, how hard is it to find its order? For groups like (Zn,+)
the answer is pretty easy. Find b = gcd(a, n), the order of a is exactly n

b . However, the answer
need not be so simple for any arbitrary group. For instance, take the group G = (Z×n , ·), where
n = pq, p and q are primes. Choose a randomly from G and let m be the order of a. Using
an argument similar to that in the analysis of the Miller-Rabin primality test (see Algorithm
11) it can be shown that m is even and a

m
2 + 1 6= 0 mod n with probability at least 1

2 . Since
am − 1 = 0, hence (a

m
2 − 1)(a

m
2 + 1) = 0 mod n implying that gcd(a

m
2 + 1, n) is non-trivial.

13



Thus order finding over groups of the form (Z×n , ·), where n is composite, is at least as hard as
factoring n. In fact, the two problems are randomly polynomial time equivalent. The reader is
encouraged to argue the other direction.

An interesting open problem, mentioned by Adleman and McCurley [AM94], is the following
- Is the problem of completely factoring numbers of the form p − 1, p is a prime, polynomial
time reducible to finding order of an element in F×p ?

Computing discrete logarithm

The discrete logarithm problem is the following - Given a finite group (G, ·) and two elements
a and b in G find an x ∈ N such that ax = b, if such an x exists. We have already seen an
application of the conjectured hardness of this problem in section 2.2. Like the order finding
problem, the hardness of computing discrete log depends on the choice of the underlying group.
For instance, if the underlying group is (Zn,+) then the value of x is precisely ba−1 mod n,
assuming gcd(a, n) = 1. On the other hand, a polynomial time algorithm for solving discrete
log over (Z×n , ·) for a composite n, yields a randomized polynomial time algorithm for factoring
n. Once again, as an exercise the reader is encouraged to show this implication.

In the cryptanalysis of the Diffie-Hellman protocol, we are interested in the hardness of the
discrete log problem for the group F×p . For certain choices of p, this problem turns out to be
easy. Pohlig and Hellman [PH78] showed that if all the factors of p − 1 have values bounded
by logc p for a constant c, then the problem can be solved in polynomial time. Therefore, such
choices of p should be avoided for the security of the protocol.

The current best randomized algorithm for the discrete log problem over F×p is due to
Pomerance [Pom87]. It has an expected running time of e(

√
2+o(1))

√
ln p ln ln p bit operations. The

technique used in [Pom87] is more generally known as the index calculus method and was used
earlier by Adleman [Adl79] to obtain a subexponential discrete log algorithm having similar
complexity. In section 4.6 we include a discussion on index calculus method. Using an adap-
tation of the Number Field Sieve, Gordon [Gor93] proposed a heuristic algorithm showing a

running time of e(c+o(1))(ln p)
1
3 (ln ln p)

2
3 operations, where c > 0 is a constant. The best known

value of c is 1.92. So far the best deterministic algorithms have Õ(
√
p) complexity (see [Pol78]).

Despite the resemblance between the time complexity of integer factorization and discrete log-
arithm over F×p , so far no reduction is known from one problem to the other. In fact, it was
asked by Bach [Bac84] whether factoring p− 1 reduces to finding discrete logarithm in F×p .

There are certain groups for which computing discrete logarithm is even harder, in the sense
that no randomized subexponential time algorithm is known. Such an example is the group of
points on an elliptic curve. In this case the precise question is the following - Given an elliptic
curve Ep,a,b = {(x, y) | x, y ∈ Fp and y2 = x3+ax+b (mod p)}∪{0}, with gcd(p, 4a3+27b2) = 1
and two points P and Q on Ep,a,b, find an n such that P = nQ. Here, nQ , Q+Q+. . . n times,
where + is the operation that endows Ep,a,b with a group structure. The hardness of this
problem has also been exploited in designing public key cryptosystems and digital signature
schemes (refer to [Kob87]).

For further details on discrete logarithm refer to the surveys by Odlyzko [Odl00] and Mc-
Curley [McC90], or the articles by Pomerance [Pom08a] and Schirokauer [Sch08] in [BS08].

This brings us to the end of this section. We hope to have given the reader an overview of
the algorithmic complexity of some of the basic algebraic and number theoretic operations. In
the following section, we will focus on some specific mathematical tools that are used to design
algorithms for these operations.

14



4 Tools for designing algorithms for basic operations

Often, the design and analysis of algorithms for the basic operations involve other fundamental
mathematical results or tools. This section is devoted to a brief study of some such tools,
namely - Chinese remaindering theorem, discrete Fourier transform, automorphisms, Hensel
lifting, short vectors in lattices and smooth numbers. After describing each tool, we will show
its application by taking some examples.

4.1 Chinese remaindering theorem

This theorem is a structural result about rings which is used for speeding up computation over
integers and polynomials, and also for arguing over rings like in the analysis of the Miller-Rabin
primality test (Algorithm 11). For convenience, we present the theorem in a general form and
then apply it to the rings of integers and polynomials.

Two ideals I and J of a ring R are coprime if there are elements a ∈ I and b ∈ J such that
a + b = 1. The product of two ideals I and J , denoted by IJ , is the ideal generated by all
elements of the form a · b where a ∈ I and b ∈ J . The theorem states the following.

Theorem 4.1 (Chinese Remaindering Theorem) Let I1, . . . , Ir be pairwise coprime ideals of R
and I = I1 . . . Ir be their product. Then,

R
I
∼=
R
I1
⊕ . . .⊕ R

Ir

Moreover, this isomorphism map is given by,

a mod I −→ (a mod I1, . . . , a mod Ir)

for all a ∈ R.

Proof: The proof uses induction on the number of coprime ideals. Let J = I2 . . . Ir. Since
I1 is coprime to Ij for every j, 2 ≤ j ≤ r, there are elements yj ∈ Ij and xj ∈ I1 such that
xj + yj = 1. Therefore,

∏r
j=2 (xj + yj) = x+ y′ = 1 where x ∈ I1 and y′ ∈ J , implying that I

and J are coprime.
We claim that I = I1 ∩J . By definition, I = I1J and it is easy to see that I1J ⊆ I1 ∩J .

If z ∈ I1∩J then, from x+y′ = 1 we have zx+ zy′ = z. The left hand side of the last equation
is an element of I1J as both zx, zy′ ∈ I1J . Therefore, I1 ∩ J = I1J = I.

Consider the map φ : RI →
R
I1 ⊕

R
J defined as φ(a mod I) = (a mod I1, a mod J ). It is

easy to check that φ is well-defined and is in fact a homomorphism. Let a1 = a mod I1 and
a′ = a mod J . We will abuse notation slightly and write φ(a) = (a1, a

′).
If φ(a) = φ(b) = (a1, a

′) then a1 = a mod I1 = b mod I1, implying that a−b ∈ I1. Similarly,
a− b ∈ J . This means a− b ∈ I ∩J = I and hence φ is a one-one map. Also, since x+ y′ = 1
for x ∈ I1 and y′ ∈ J , we have φ(a1y

′ + a′x) = (a1, a
′) implying that φ is onto. Therefore, φ is

an isomorphism i.e. RI
∼= R
I1 ⊕

R
J . Inductively, we can show that RJ

∼= R
I2 ⊕ . . .⊕

R
Ir and hence,

R
I
∼= R
I1 ⊕ . . .⊕

R
Ir .

In Z (or F[x]), two elements m1 and m2 are coprime integers (or polynomials) if and only if
the ideals (m1) and (m2) are coprime. Applying the above theorem to the ring of integers (or
polynomials) we get the following result.

15



Corollary 4.1 Let m ∈ R = Z (or F[x]) be such that m =
∏r
j=1mj where m1, . . . ,mr are

pairwise coprime integers (or polynomials). Then R
(m)
∼= R

(m1) ⊕ . . .⊕
R

(mr)
.

Thus every element of the ring R
(m) can be uniquely written as an r-tuple with the ith compo-

nent belonging to the ring R
(mi)

. Addition and multiplication in R
(m) amounts to component-wise

addition and multiplication in the rings R
(mi)

. This suggests a strategy to speed up computa-
tion based on the fact that it is faster to compute modulo a small integer (or a small degree
polynomial) than over integers (or polynomial ring).

• Given a bound, say A, on the output of a computation, choose small m1, . . . ,mr such that∏r
i=1mi > A and do the computations modulo each mi.

• At the end, combine the results of computations to get the desired result.

The following application shows this idea at work.

Application 1: Determinant computation

Suppose we want to compute the determinant of an n × n matrix M over integers. We can
use Gaussian elimination, but it takes some effort to show that the sizes of the numerators and
denominators of the rational numbers appearing at intermediate stages of the elimination are
polynomially bounded in the input size. Alternatively, we can use a faster way for computing
the determinant using Chinese remaindering. We say it is faster because Chinese remaindering
is inherently parallelizable and each computation happens over a small modulus.

Let A be the bound on the largest absolute value of the elements of M . Hadamard’s
inequality gives a bound on the absolute value of det(M) in terms of n and A.

Lemma 4.1 (Hadamard’s Inequality) | det(M)| ≤ n
n
2An.

Proof: Let v1, . . . , vn be the row vectors of M . Assuming that v1, . . . , vn are linearly inde-
pendent we can find an orthogonal basis v∗1, . . . , v

∗
n, using Gram-Schimdt orthogonalization (see

Appendix A.2), such that ‖v∗i ‖ ≤ ‖vi‖ for all i, 1 ≤ i ≤ n. Here, ‖v‖ denotes the 2-norm of
vector v. It follows from the properties of this orthogonal basis that,

det(M)2 = det (M ·MT ) =
n∏
i=1

‖v∗i ‖2 ≤
n∏
i=1

‖vi‖2 ≤ nnA2n.

We use this bound in the following algorithm.

12 Computing determinant using Chinese remaindering

1. Let B = n
n
2An and r = dlog(2B + 1)e.

2. Let m1, . . . ,mr be the first r primes and m =
∏r
i=1mi.

3. Compute ai = det(M) mod mi for each i.
4. Compute αi such that αi · mmi = 1 mod mi for each i.
5. Compute d =

∏r
i=1 αi ·

m
mi
· ai mod m.

6. If d ≤ B return d, else return d−m.

Correctness and time complexity - First note that m > 2r > 2B. Step 4 succeeds in
finding an αi as gcd( mmi ,mi) = 1. From the choice of αi it is clear that d = ai mod mi, for all
i. By Chinese remaindering theorem, d = det(M) mod m. We know that | det(M)| ≤ B < m.
Therefore, if d ≤ B then det(M) = d, otherwise det(M) = d−m. Since the rth prime has value
about r log r, the entire computation is polynomial time bounded.

16



Application 2: Polynomial factoring

We use the Chinese remaindering theorem to show that polynomial factoring reduces to the
problem of root finding over a finite field.

Let f ∈ Fq[x] be a polynomial of degree n that factors as f = f1 . . . fk, where fi’s are
irreducible polynomials over Fq. We can assume that f is square-free or else we can take gcd
of f and df

dx , the formal derivative of f with respect to x, and find nontrivial factors of f . The
process can be continued until we are left with only square-free polynomials to factor. It is
easy to see that this step, also known as square-free factorization, takes polynomial in n field
operations.

Suppose that the irreducible factors of f are not of the same degree. Then, there are two
factors, say, f1 and f2 such that deg(f1) = d1 is minimum and deg(f2) = d2 > d1. Since
f1 and f2 are irreducible, f1 divides the polynomial xq

d1 − x whereas f2 does not. Therefore,
gcd(xq

d1−x, f) yields a non-trivial factor of f . As d1 is unknown, we iteratively compute xq
t−x

starting from t = 1 till we hit t = d1. This can be done by using the repeated squaring method
(like the one discussed in the time complexity analysis of the Miller-Rabin test) to compute
xq

t
mod f . This step, known as distinct-degree factorization, takes (n log q)O(1) field operations.

We are now left with the task of factoring a square-free polynomial f = f1 . . . fk such that
all the irreducible factors fi’s have the same degree, say, d. This step is called equal-degree
factorization. By Chinese remaindering theorem,

R =
Fq[x]
(f)

∼= ⊕ki=1

Fq[x]
(fi)

∼= ⊕ki=1Fqd .

Let g ∈ R\Fq be such that gq = g in R. First, let us show that such a g exists in R. By
the above isomorphism, any g whose direct-sum representation belongs to ⊕ki=1Fq satisfies the
condition gq = g mod f . Also, if f is not irreducible then such a g 6∈ Fq exists. This means,
there exists ci, cj ∈ Fq (i 6= j) such that ci = g mod fi, cj = g mod fj and ci 6= cj . This also
implies that there is a c ∈ Fq such that gcd(g−c, f) yields a non-trivial factor of f . For instance,
for c = ci, fi divides gcd(g − c, f) but fj does not.

To compute g, start with a generic element
∑n−1

i=0 aix
i ∈ R, where n = deg(f) and ai’s

are variables, and solve for ai ∈ Fq such that
∑n−1

i=0 aix
qi =

∑n−1
i=0 aix

i mod f . Solving this
equation reduces to solving a system of linear equations in the ai’s. This reduction follows once
we compute xqi rem f for all i and equate the coefficients of xj , for 0 ≤ j ≤ n − 1, from both
sides of the equation. Now all we need to do, while solving the linear equations, is to choose
a solution for the ai’s such that

∑n−1
i=0 aix

i 6∈ Fq. Take g =
∑n−1

i=0 aix
i for that choice of ai’s.

Taking into account that xqi rem f can be computed using repeated squaring, we conclude that
g can be found in polynomial time.

The only task that remains is to find a c ∈ Fq such that gcd(g−c, f) gives a nontrivial factor
of f . This is where the problem gets reduced to root finding. The fact that gcd(g − c, f) 6= 1
means resultant of the polynomials g− c =

∑n−1
i=1 aix

i + (a0 − c) and f is zero. This means, we
need to solve for a y ∈ Fq such that h(y) = Resx(

∑n−1
i=1 aix

i + (a0 − y), f) = 0, treating a0 − y
as the constant term of the polynomial g − y. We can find h by computing the determinant of
the Sylvester matrix, S(

∑n−1
i=1 aix

i + (a0 − y), f), of g − y and f . Although there are entries in
S containing variable y, we can find det(S) in polynomial time using interpolation. In this way,
factoring polynomial f(x) reduces to finding a root of the polynomial h(y).

It follows from our discussion that, apart from the root finding part in step 3 of Algorithm 13
all the other steps run in polynomial time.

17



13 Equal-degree factoring to root finding
1. Using linear algebra, find a g ∈ Fq[x] such that gq = g mod f and g 6∈ Fq.
2. If no such g exists then declare ‘f is irreducible’.
3. Compute polynomial h(y) = Resx(g − y, f) and find a root c of h(y).
4. Find a nontrivial factor f ′ = gcd(g − c, f) of f.
5. Repeat the above process to factor f ′ and f

f ′.

We have already mentioned in section 3.1 that no deterministic polynomial time algorithm
is known for factoring polynomials over finite fields. This means, by the above reduction, no
polynomial time algorithm is known for root finding as well. However, there is a relatively simple
randomized root finding algorithm that runs in polynomial time. For the sake of completion,
we present the algorithm here although this does not involve Chinese remaindering as such.

Suppose, we want to find a root of the polynomial h(y). At first, compute the polynomial
h̃ = gcd(yq − y, h) which splits completely over Fq into linear factors. Any root of h̃ is also a
root of h and vice versa, and so the problem reduces to finding a root of h̃. Once again, we
would like to note that gcd(yq − y, h) is computed by first computing yq mod h using repeated
squaring.

Let h̃ =
∏m
i=1 (y − ci) with ci ∈ Fq for all i. If h̃ is linear then return the root. Otherwise,

there are two distinct roots, say, c1 and c2 of h̃. Choose r randomly from F×q and compute

h̃(y2−r) =
∏m
i=1 (y2 − (ci + r)). Since the polynomial (c1 +x)

q−1
2 −(c2 +x)

q−1
2 can have at most

q−1
2 roots, the probability that c1 + r and c2 + r are both quadratic residues or both quadratic

non-residues in Fq is at most 1
2 . Suppose c1+r is a quadratic residue whereas c2+r is a quadratic

non-residue and let ĥ = gcd(yq−y, h̃(y2−r)). Then, (y2−(c1 +r)) = (y−
√
c1 + r)(y+

√
c1 + r)

divides ĥ but (y2 − (c2 + r)) does not. In fact, ĥ =
∏
c′ (y

2 − (c′ + r)) for all roots c′ of h̃ such
that c′ + r is a quadratic residue. Hence, by letting h′(y) = ĥ(

√
y) =

∏
c′ (y − (c′ + r)) we get

h′(y + r) as a proper factor of h̃.

14 Root finding

1. Given a polynomial h(y) compute h̃(y) = gcd(yq − y, h).
2. If deg(h̃) = 1 return the root of h̃. /* Assuming deg(h̃) 6= 0. */
3. Else, choose r randomly from Fq.
4. Compute polynomials h̃(y2 − r) and ĥ(y) = gcd(yq − y, h̃(y2 − r)).
5. Find h′(y) = ĥ(

√
y) and obtain h′(y + r).

6. Repeat the above process from step 2 to factor h′(y + r) and h̃
h′(y+r).

Verify that the algorithm runs in (n log q)O(1) time and h′(y + r) is a proper factor of h̃ with
probability at least 1

2 .

In fact, root finding over Fq reduces to root finding over Fp, where p is the characteristic of the
field Fq. This was shown by Berlekamp [Ber67, Ber70]. For details, refer to chapter 4 of the
book by Lidl and Neiderreiter [LN94].

4.2 Discrete Fourier Transform

This tool has been extensively used to design fast algorithms for polynomial and integer multi-
plication. In this section, we will see a polynomial multiplication algorithm based on Discrete

18



Fourier Transform (DFT). Multiplication of two polynomials is essentially a convolution of
their coefficient vectors. Roughly speaking, a DFT transforms each of the coefficient vectors
into another vector so that the convolution of the two original coefficient vectors is equivalent
to pointwise multiplication of the two transformed vectors followed by an inverse-DFT of the
resulting product vector. The following discussion makes this point clear.

Suppose f : [0, n − 1] → F be a function ‘selecting’ n elements of the field F. And let ω be a
primitive nth root of unity in F i.e. ωn = 1 and ωt 6= 1 for 0 < t < n. Then the Discrete Fourier
Transform (DFT) of f is defined to be the map,

Ff : [0, n− 1] → F given by

Ff (j) =
n−1∑
i=0

f(i)ωij .

Computing the DFT of f is the task of finding the vector (Ff (0), . . . ,Ff (n − 1)). This task
can be performed efficiently using an algorithm called the Fast Fourier Transform (FFT), which
was first found by Gauss in 1805 and later (re)discovered by Cooley and Tukey [CT65]. The
algorithm uses a divide and conquer technique to compute DFT of a function f , with domain
size n, using O(n log n) field operations. For simplicity, we will assume that n is a power of 2.

15 Fast Fourier Transform
1. If n = 1 return f(0).
2. Define f0 : [0, n2 − 1]→ F as f0(i) = f(i) + f(n2 + i).
3. Define f1 : [0, n2 − 1]→ F as f1(i) = (f(i)− f(n2 + i))ωi.
4. Recursively, compute DFT of f0 i.e. Ff0 using ω2 as the root of unity.
5. Recursively, compute DFT of f1 i.e. Ff1 using ω2 as the root of unity.
6. Return Ff (2j) = Ff0(j) and Ff (2j + 1) = Ff1(j) for all 0 ≤ j < n

2.

Correctness of the algorithm - This is immediate from the following two observations,

Ff (2j) =
n−1∑
i=0

f(i)ω2ij =

n
2
−1∑
i=0

(f(i) + f(n/2 + i)) · (ω2)ij and

Ff (2j + 1) =
n−1∑
i=0

f(i)ωi(2j+1) =

n
2
−1∑
i=0

(f(i)− f(n/2 + i))ωi · (ω2)ij

Thus, the problem of computing DFT of f reduces to computing the DFT of two functions f0

and f1 (as defined in the algorithm) with n/2 as the domain size.

Time complexity - Computing f0 and f1 from f takes O(n) operations over F. Each of step 4
and 5 computes the DFT of a function with n/2 as the domain size. By solving the recurrence,
T (n) = 2T (n/2) +O(n), we get the time complexity of FFT to be O(n log n).

Let us use this tool to design a fast algorithm for polynomial multiplication.

Application: Polynomial multiplication

Suppose f, g ∈ F[x] be two polynomials of degree less than n/2. We will assume that F contains
a primitive nth root of unity ω and the element n · 1 = 1 + 1 + . . . n times, is not zero. Since ω
is a primitive root, it satisfies the property

∑n−1
j=0 ω

ij = 0 for every 1 ≤ i ≤ n− 1.

19



Let f =
∑n−1

i=0 cix
i where cn/2, . . . , cn−1 are all zeroes, as deg(f) < n/2. Associate a function

f̂ : [0, n − 1] → F with f given by f̂(i) = ci. Define DFT of f to be the DFT of f̂ i.e.
Ff (j) , Ff̂ (j) =

∑n−1
i=0 ciω

ij = f(ωj), for all 0 ≤ j ≤ n − 1. Similarly define DFT of g as
Fg(j) = g(ωj), for all j. The product polynomial h = fg has degree less than n and hence
we can also define DFT of h as Fh(j) = h(ωj) for all j. Let h =

∑n−1
i=0 rix

i and D(ω) be the
following matrix.

D(ω) =


1 1 1 ... 1
1 ω ω2 ... ωn−1

...
...

...
...

1 ωn−1 ω2(n−1) ... ω(n−1)2


Define two vectors r = (r0, r1, . . . , rn−1) and h = (h(1), h(ω), . . . , h(ωn−1)). Then, r ·D(ω) = h,
implying that n · r = h · D(ω−1). This is because D(ω) · D(ω−1) = n · I, which follows from
the property

∑n−1
j=0 ω

ij = 0 for every 1 ≤ i ≤ n − 1. Here I is the n × n identity matrix. Now
observe that, computing the expression h · D(ω−1) is equivalent to computing the DFT of the
polynomial h̃ =

∑n−1
i=0 h(ωi)xi using ω−1 as the primitive nth root of unity. We call this DFT

of h̃ the inverse-DFT of h. This observation suggests the following polynomial multiplication
algorithm.

16 Polynomial multiplication using FFT
1. Compute DFT of f to find the vector (f(1), f(ω), . . . , f(ωn−1)).
2. Compute DFT of g to find the vector (g(1), g(ω), . . . , g(ωn−1)).
3. Multiply the two vectors component-wise and obtain (h(1), h(ω), . . . , h(ωn−1)).
4. Compute inverse-DFT of h to get the vector n · r.
5. Divide n · r by n to get r = (r0, . . . , rn−1).
6. Return h =

∑n−1
i=0 rix

i.

Time complexity - In steps 1, 2 and 4 the algorithm computes three DFTs, each with domain
size n. The component-wise multiplication in step 3 and the division in step 5 take O(n) time.
Therefore, the overall time complexity of the algorithm is O(n log n) field operations.

The assumptions we made for the algorithm to work are - the field has a primitive nth root
of unity and n · 1 is non-zero. The second assumption is not binding at all, as we can work
with n + 1 instead of n if the characteristic of the field divides n. However, we need a more
careful argument to get rid of the first assumption. The idea is to work with an extension ring
that contains a principal nth root of unity. In this case, the complexity of the multiplication
algorithm goes slightly up to O(n log n log log n) operations. The details of this algorithm, which
is due to Schönhage and Strassen [SS71], can be found in chapter 8 of [GG03].

4.3 Automorphisms

An automorphism is a one to one correspondence from an algebraic structure, such as a ring
or a field, to itself that preserves all the operations. In the language of abstract algebra, it is
an isomorphism from an algebraic structure onto itself. We will focus on automorphisms over
rings. A bijection φ from a ring (R,+, ·) to itself is called an automorphism if for all a, b ∈ R,
φ(a + b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b). The properties of automorphisms over rings
play a crucial role in developing efficient deterministic algorithms for polynomial factoring and
primality testing. It also provides an interesting insight into the integer factoring problem.
These three applications and others (see [AS05]) demonstrate the versatility of this tool.

20



Application 1: Deterministic polynomial factoring

In section 4.1, we have shown that factoring a polynomial over Fq reduces to root finding of a
polynomial that splits completely over Fq. Suppose, we want to find a root of the polynomial
f =

∏n
i=1 (x− ai), where ai ∈ Fq for 1 ≤ i ≤ n. By Chinese remaindering theorem,

R =
Fq[x]
(f)

∼= ⊕ni=1

Fq[x]
(x− ai)

∼= ⊕ni=1Fq

Let φ be an automorphism of R that fixes Fq. Since any element in R can be expressed as
a polynomial in x, the map φ is completely specified by its action on x. For any element
g ∈ R, we use the Chinese remaindering isomorphism and write g = (c1, . . . , cn) to mean
g = ci mod (x− ai) for every 1 ≤ i ≤ n. For example, in this direct sum notation the element
x ∈ R is (a1, . . . , an). Let φ(x) = (b1, . . . , bn) for some bi’s in Fq.

Since φ(f(x)) = f(φ(x)) = 0 in R, each bi = aj for some j. Now suppose that there exist
k and `, 1 ≤ k < ` ≤ n, such that bk = b`. Define g =

∏n
i=1,i 6=` (x− bi). Clearly, g 6= 0 in R

as its degree is less than n. However, φ(g(x)) = g(φ(x)) = 0 in R which means kernel of φ is
nontrivial and so φ can not be an isomorphism, which is a contradiction. Therefore, bk 6= b`
for every pair k and ` with k 6= `. In other words, φ induces a permutation σ among the n
coordinates of the direct sum representation, i.e. bi = aσ(i) for all 1 ≤ i ≤ n, where σ ∈ Sn,
the symmetric group of degree n. It is also easy to verify that any such permutation defines an
automorphism, implying that there are a total of n! automorphisms of R fixing Fq.

Among these automorphisms suppose we could compute n + 1 distinct automorphisms
φ1, . . . , φn+1. Here computing these automorphisms means finding the elements φs(x) ∈ R,
for 1 ≤ s ≤ n + 1. By Pigeonhole principle, there is a pair of automorphisms φs and φt with
s 6= t, such that the first coordinates of the direct sum representations of φs(x) and φt(s) are
the same. Since φs and φt are distinct, φs(x)−φt(x) 6= 0 in R, and hence gcd(φs(x)−φt(x), f)
gives a nontrivial factor of f .

The current best deterministic algorithm, due to Evdokimov [Evd94], uses this key idea
of computing automorphisms of R to factor f . Evdokimov showed that, under the Extended
Riemann Hypothesis, finding even one nontrivial automorphism of R (instead of n of them) is
sufficient to factor f . Since any automorphism φ(x) is a root of the polynomial f(y) ∈ R[y]
(as f(φ(x)) = 0 in R), the problem of factoring f reduces to the problem of finding a root of
h(y) = f(y)

(y−x) ∈ R[y]. This reduction can be argued as follows. First, note that the element
x ∈ R is a root of f(y) ∈ R[y] and hence (y − x) divides f(y) over R. It can be shown, using
Chinese remaindering, that any root ψ(x) ∈ R of h(y) defines a homomorphism of R that
takes x to ψ(x). It is also relatively easy to show that any homomorphism ψ that is not an
automorphism, readily gives a proper factor of f . And as mentioned above, the case when ψ is
an automorphism is handled in Evdokimov’s work.

By the above argument, the problem of finding a root of f(x) in Fq gets reduced to the
problem of finding a root of h(y) in R. The gain in this reduction is that the degree of h(y)
is less than the degree of f(x). Extending this argument it can be shown that the problem of
finding a root of h(y) in R reduces to the problem of finding a root of another polynomial of
lower degree in the ring T = R[y]

(h) and so on. Eventually, when the degree reduces to one we

have a root in a much larger ring, whose dimension over Fq can be bounded by nO(logn). Using
this root we descend down the hierarchy of rings and obtain a root of h(y) in R which in turn
factors f(x).

Although, the above discussion is an overtly simplified exposition to Evdokimov’s algorithm,
it still carries the essence. The interested reader is encouraged to see the details of Evdokimov’s
work [Evd94].

21



Application 2: Deterministic primality testing

Until recently, no efficient deterministic primality testing algorithm was known. In 2002, a
breakthrough was finally given by Agrawal, Kayal and Saxena [AKS04] in the form of the first
deterministic polynomial time algorithm for checking primality. The following discussion is
based upon their remarkable work.

Let n be the input integer. If n is a prime then, by Fermat’s Little Theorem, an = a mod n
for every a. In other words, the map φ(x) = xn is the trivial automorphism of the ring Zn.
However, the converse of this statement is not true. There are infinitely many composite
numbers m, known as Carmichael numbers [Car10, AGP94], for which am = a mod m for all
0 ≤ a < m. This means Fermat’s condition is a necessary but not a sufficient condition for
primality. Even if it were sufficient it is not clear how to design an efficient deterministic test
based on this condition. The AKS primality test overcomes both these shortcomings of the
Fermat’s test by considering automorphisms of an extension ring of Zn namely, R = Zn[x]

(xr−1) for
a suitable choice of r.

Fix an r ≥ 0 such that the order of n modulo r, denoted by or(n), is greater than log2 n.
Using the fact that the lcm of the first m numbers (m ≥ 7) is at least 2m, it is easy to show
that such an r ≤ dlog5 ne exists. Assume that n has no prime factor less than or equal to r.
Otherwise, by trial division we can determine if n is prime or composite in polynomial time.
Also, assume that n is not a perfect power or else we can fix each b in the range [2, blog nc] and
use binary search to determine if there is an a such that ab = n.

Consider the map φ : R → R defined as φ(f(x)) = [f(x)]n in R. If n is a prime then it
is easy to see that φ defines an automorphism of R. Agrawal, Kayal and Saxena showed the
converse of this statement. That is, if φ is an automorphism of R then n is a prime. Therefore,
testing primality of n reduces to the task of checking if φ is an automorphism of R. They
further showed that, φ is an automorphism if and only if φ(x + a) = φ(x) + a in R for every
1 ≤ a ≤

√
r log n. Since r ≤ dlog5 ne, this check takes only polynomial time.

17 AKS primality test
1. For a = 1 to b

√
r log nc do

if (x+ a)n 6= xn + a mod (n, xr − 1), output COMPOSITE.
2. Else output PRIME.

Correctness of the algorithm: Since we have assumed that n is not a perfect power and no
prime factor of n is less than or equal to r, to show the correctness we only need to prove the
following lemma for such an n.

Lemma 4.2 [AKS04] If φ(x+ a) = φ(x) + a in R for all 1 ≤ a ≤
√
r log n then n is a prime.

Proof: Let ` = b
√
r log nc and p > r be a prime factor of n. For every, 0 ≤ a ≤ `,

(x+ a)n = xn + a mod (n, xr − 1)
⇒ (x+ a)n = xn + a mod (p, xr − 1)

Also, (x + a)
n
p = x

n
p + a mod (p, xr − 1), as xr − 1 is square-free over Zp. We say that

m is introspective for a polynomial f(x) ∈ Z[x], if [f(x)]m = f(xm) mod (p, xr − 1). It is
easy to verify that, if m1 and m2 are introspective for f(x) then so is m1m2. Also, if m is
introspective for f(x) and g(x) then it is introspective for f(x)g(x). Surely, p is introspective
for any polynomial. Therefore, every element of the set I = {(np )i · pj | i, j ≥ 0} is introspective

for every polynomial of the set P = {
∏`
a=0 (x+ a)ea | ea ≥ 0}.

22



Define G to be the set of all residues of numbers in I modulo r. Since or(n) > log2 n, the
size of G say, t > log2 n. Now, let h(x) be an irreducible factor of the rth cyclotomic polynomial
over Zp and G be the set of all residues of elements in P modulo p and h(x). Surely, h(x) divides
xr − 1.

First, let us lower bound the size of G. Denote the field Zp[x]
(h(x)) by F. The claim is, if f(x) and

g(x) are distinct polynomials of P with degree less than t then they map to distinct elements in
F. That is, f(x) and g(x) are distinct modulo p and h(x). Suppose, on the contrary, f(x) = g(x)
mod (p, h(x)). Without any loss of clarity, we will say that f(x) is an element of F to mean the
element f(x) mod (p, h(x)). For any m ∈ I, [f(x)]m = f(xm) in F and so f(xm) = g(xm) in F,
further implying that f(xm

′
) = g(xm

′
) in F, where m′ = m mod r. Also note that the elements

{xm′ |m′ ∈ G} are distinct elements of F as h(x) can not divide any xr
′−1 for r′ < r. Therefore,

the polynomial Q(y) = f(y) − g(y) has at least t distinct roots namely, {xm′ |m′ ∈ G}, in F.
Since degy Q < t this can only mean that Q is identically zero in F[y]. However, since f(x)
and g(x) are distinct elements of P and p > ` (as r > log2 n), Q(y) can not be zero in F[y].
Therefore, distinct elements of P with degree less than t must map to distinct elements of F.
The number of such elements in P is exactly

(
t+`
t−1

)
and hence |G| ≥

(
t+`
t−1

)
.

Next, we upper bound the size of G. Consider the set S = {(np )i · pj | 0 ≤ i, j ≤ b
√
tc}.

If n has a prime factor other that p then all the elements of S are distinct integers. Since
(b
√
tc + 1)2 > t = |G|, there are distinct m1,m2 ∈ S such that xm1 = xm2 mod (xr − 1).

Therefore, for any f(x) ∈ P ,

[f(x)]m1 = f(xm1) = f(xm2) = [f(x)]m2 mod (p, h(x))

In other words, every element of G is a root of the nonzero polynomial ym1 − ym2 ∈ F[y]. Hence
|G| ≤ max{m1,m2} ≤ n

√
t.

Using the relations t > log2 n and ` = b
√
r log nc it can be shown that

(
t+`
t−1

)
> n

√
t, which

leads us to a contradiction. Therefore, our assumption that n has a prime factor other than p
is incorrect. But then, n has to be a prime since it is not a perfect power. This also implies
that φ is an automorphism of R.

Time complexity: Time taken to perform a ring operation in R is Õ(r log n) bit operations.
In step 1 we can check if φ(x + a) = φ(x) + a using repeated squaring. Hence the total time
complexity of the algorithm is Õ(r log2 n ·

√
r log n) = Õ(log

21
2 n) bit operations. Using an

analytic number theory result by Fouvry [Fou85] it can be shown that r = O(log3 n) and this
brings down the complexity to Õ(log

15
2 n).

Application 3: Integer factoring

Kayal and Saxena [KS05] showed some interesting connections between the integer factoring
problem and some ring automorphism problems. The following lemma states their results.

Lemma 4.3 (Kayal-Saxena, 2005) Given an integer n,

1. n can be factored in deterministic polynomial time if a nontrivial automorphism of the
ring Zn[x]

(x2−1)
can be computed in deterministic polynomial time.

2. n can be factored in expected polynomial time if the number of automorphisms of the ring
Zn[x]
(x2)

can be counted in polynomial time.

23



Proof: Assume that n is odd. Let φ be an automorphism of R = Zn[x]
(x2−1)

that maps x to ax+ b

for a, b ∈ Zn. If d = gcd(a, n) then φ(ndx) = n
dax + n

d b = n
d b in R, which means d has to be 1.

Also, φ(x2) = (ax + b)2 = a2 + b2 + 2abx = 1, as x2 = 1 in R. Hence, a2 + b2 = 1 mod n and
ab = 0 mod n, which further implies that b = 0 mod n (as gcd(a, n) = 1) and a2 = 1 mod n.
Therefore, φ is an automorphism of R only if φ(x) = ax with a2 = 1 mod n. The converse of
this also holds and hence φ is a nontrivial automorphism of R if and only if φ(x) = ax where
a2 = 1 mod n and a 6= ±1 mod n. If such an a exists then gcd(a + 1, n) yields a nontrivial
factor of n. It follows from Chinese remaindering that such an a exists when n is composite.
If n = n1n2 with gcd(n1, n2) = 1 then an a satisfying a = 1 mod n1 and a = −1 mod n2 also
satisfies the conditions a2 = 1 mod n and a 6= ±1 mod n.

We now prove the second statement. Let ψ be an automorphism of S = Zn[x]
(x2)

that maps x
to ax + b. Once again, it follows by a similar argument that gcd(a, n) = 1 and b = 0 mod n.
Therefore, ψ is an automorphism of S only if ψ(x) = ax where gcd(a, n) = 1. The converse is
also true i.e. any map ψ that sends x to ax for an a coprime to n, defines an automorphism of
S. Hence, the number of automorphisms of S is exactly ϕ(n), where ϕ is the Euler’s totient
function. Using an argument very similar to the analysis of the Miller-Rabin test it can be
shown that n can be factored in expected polynomial time if we know ϕ(n).

4.4 Hensel lifting

Given a ring R and an element m ∈ R, Hensel [Hen18] designed a method to compute factor-
ization of any element of R modulo m` (for an integer ` > 0), given its factorization modulo
m. This method, known as Hensel lifting, is used in many algorithms including multivariate
polynomial factoring and polynomial division. We discuss these two applications in this section.

Lemma 4.4 (Hensel lifting) Let I be an ideal of ring R. Given elements f, g, h, s, t ∈ R with
f = gh mod I and sg + th = 1 mod I there exist g′, h′ ∈ R such that,

f = g′h′ mod I2

g′ = g mod I
h′ = h mod I.

Further, any g′ and h′ satisfying the above conditions also satisfy:

1. s′g′ + t′h′ = 1 mod I2 for some s′ = s mod I and t′ = t mod I.

2. g′ and h′ are unique in the sense that any other solution g∗ and h∗ satisfying the above
conditions also satisfy, g∗ = (1+u)g′ mod I2 and h∗ = (1−u)h′ mod I2, for some u ∈ I.

Proof: Let f − gh = e mod I2. Verify that g′ = g + te mod I2 and h′ = h + se mod I2

satisfy the conditions f = g′h′ mod I2, g′ = g mod I and h′ = h mod I. We refer to these
three conditions together by C.

For any g′, h′ satisfying C, let d = sg′ + th′ − 1 mod I2. Verify that s′ = (1 − d)s mod I2

and t′ = (1 − d)t mod I2 satisfy the conditions s′g′ + t′h′ = 1 mod I2, s′ = s mod I and
t′ = t mod I.

Suppose g∗, h∗ be another solution satisfying C. Let v = g∗−g′ and w = h∗−h′. The relation
g∗h∗ = g′h′ mod I2 implies that g′w+h′v = 0 mod I2, as v, w ∈ I. Since s′g′+t′h′ = 1 mod I2,
multiplying both sides by v we get (s′v − t′w)g′ = v mod I2. By taking u = s′v − t′w ∈ I,
g∗ = (1 + u)g′ mod I2. Similarly, h∗ = (1− u)h′ mod I2.

24



When applied to the ring of polynomials, Hensel lifting always generates a ‘unique factorization’
modulo an ideal. The following lemma clarifies this point.

Lemma 4.5 Let f, g, h ∈ R[x] be monic polynomials and I be an ideal of R[x] generated by
some set S ⊆ R. If f = gh mod I and sg + th = 1 mod I for some s, t ∈ R[x] then,

1. there exist monic g′, h′ ∈ R[x] such that f = g′h′ mod I2, g′ = g mod I and h′ =
h mod I.

2. if g∗ is any other monic polynomial with f = g∗h∗ mod I2, for some h∗ ∈ R[x], and
g∗ = g mod I then g∗ = g′ mod I2 and h∗ = h′ mod I2.

Proof: Applying Hensel’s lemma, we can get g̃, h̃ ∈ R[x] such that f = g̃h̃ mod I2, g̃ = g mod I
and h̃ = h mod I. But g̃ and h̃ need not be monic. Let v = g̃ − g ∈ I. Since g is monic, we
can divide v by g to obtain q, r ∈ R[x] such that v = qg + r and degx(r) < degx(g). Note
that q, r ∈ I. Define g′ = g + r and h′ = h̃ + qh and verify that f = g′h′ mod I2. Since
degx(r) < degx(g), g′ is monic which also implies that h′ is monic as f is monic.

Let g∗ be any other monic polynomial with f = g∗h∗ mod I2, for some h∗ and g∗ =
g mod I. This means, gh = g∗h∗ mod I implying that g(h− h∗) = 0 mod I. Since g is monic,
h∗ = h mod I. Therefore, by Hensel’s lemma, g∗ = (1 + u)g′ mod I2 for some u ∈ I. Since g∗

is monic this can only mean g∗ = g′ mod I2 and also h∗ = h′ mod I2.

Application 1: Multivariate polynomial factoring

For simplicity, we present a factoring algorithm for the case of bivariate polynomials. This
algorithm shows that bivariate factoring reduces to univariate factoring over any field. All the
ideas required for a general reduction from multivariate factoring to univariate factoring are
present in this special case.

Let f ∈ F[x, y] be a polynomial of total degree n which factors into irreducible polynomials
f1, . . . , fk. Assume that f is squarefree and monic in x. (Later we comment on how to drop
these two assumptions.) Then r(y) = Resx(f, ∂f∂x ) 6= 0 and degy(r) ≤ 2n2. If |F| > 2n2 we can
find an a ∈ F such that r(a) 6= 0, in which case f is squarefree modulo (y − a). If the field size
is small, we can work with a sufficiently large field extension of F.

Polynomial f(x, y) mod (y − a) = f(x, y + a) mod y. Since the factors of f(x, y) can be
retrieved from the factors of f(x, y + a), we can as well factor f(x, y + a) instead of f(x, y). In
other words, we can assume (after a suitable transformation) that f, f1, . . . , f2 are squarefree
modulo y.

Suppose f = gh mod y where g, h ∈ F[x] are monic, gcd(g, h) = 1 and g is irreducible.
Because of unique factorization in F[x,y]

(y) = F[x], g must divide one fi modulo y. Without loss of
generality, let f1 = gh1 mod y for some h1 ∈ F[x] with gcd(g, h1) = 1. Using Lemma 4.5 we can
lift the factorization of f to f = g′h′ mod y2` , where g′, h′ are monic in x and ` > 0. We claim
that g′ divides f1 modulo y2` . To argue this, suppose after applying Lemma 4.5 the factorization
of f1 = gh1 mod y gets lifted to f1 = g̃h̃1 mod y2` , where g̃ is monic in x. Since f = f1 . . . fk,
substituting the factorization of f1 we get, f = g̃ĥ mod y2` for some ĥ ∈ F[x, y]. Inductively,
assume that g̃ = g′ mod y2`−1

. (The base case is g̃ = g′ = g mod y.) Then, by Lemma 4.5,
since f = g′h′ = g̃ĥ mod y2` and g̃ = g′ mod y2`−1

, it has to be that g̃ = g′ mod y2` . This
proves our claim that g′ divides f1 modulo y2` .

25



Consider the task of finding two polynomials f ′1, h
′′
1 ∈ F[x, y] using the equation f ′1 =

g′h′′1 mod y2` such that degx(f ′1) < n, degx(h′′1) < n−degx(g′) and total degree of f ′1 is bounded
by n. The coefficients of f ′1 and h′′1 are treated as variables. Since f1 = g′h̃1 mod y2` , f1 and h̃1

are nonzero solutions for f ′1 and h′′1, respectively. By equating the coefficients of the monomials
from both sides of the equation f ′1 = g′h′′1 mod y2` we get a system of linear equations with the
coefficients of f ′1 and h′′1 as unknowns. Solving this system, we fix a nonzero solution for f ′1 and
h′′1 that minimizes degx(f ′1). The claim is, for an appropriate choice of `, f ′1 = q(y)f1 for some
q(y) ∈ F[y]\{0}.

To prove this claim we use the fact that there are polynomials s, t ∈ F[x, y] such that
sf1 + tf ′1 = Resx(f1, f

′
1) = r(y) (say). Since g′ divides both f1 and f ′1 modulo y2` , g′ also divides

r(y) modulo y2` . But g′ is monic in x, which means r(y) = 0 mod y2` . As degy(r) < 2n2,
if we choose ` = dlog(2n2 + 1)e then r(y) = 0, implying that gcd(f1, f

′
1) is nontrivial. Since

f1 is irreducible and degx(f ′1) is minimum among all possible solutions for f ′1, it must be that
f ′1 = q(y)f1 for some q(y) ∈ F[y]. In hindsight, we could have solved for f ′1 and h′′1 that along
with minimizing degx(f ′1) also ensures that f ′1 is monic in x. In that case, f ′1 is simply f1.

The following algorithm is based on the above discussion. It assumes that f is monic in x and
f mod y is squarefree.

18 Bivariate polynomial factoring
1. Factor f = gh mod y, where g, h ∈ F[x] are monic and g is irreducible.
2. Let ` = dlog(2n2 + 1)e.
3. Use Hensel lifting to obtain f = g′h′ mod y2`, where g′, h′ are monic in x.
4. Solve for f ′1, h

′′
1 ∈ F[x, y] such that f ′1 = g′h′′1 mod y2`, degx(f ′1) < n, degx(h′′1) <

n− degx(g′) and total degree of f ′1 bounded by n.
5. If no nonzero solution for f ′1 and h′′1 exists, declare ‘f is irreducible’.
6. Find a nonzero solution that minimizes degx(f ′1) and makes f ′1 monic in x.
7. Return f ′1 as an irreducible factor of f.

Time complexity - Using Lemma 4.4 and 4.5 it is not hard to show that Hensel lifting in step
3 takes time polynomial in n field operations. Solving the system of linear equations in step 4
and 6 also takes polynomial time as the number of equations and variables are both bounded by
some poly(n). Therefore, bivariate factoring reduces in polynomial time to univariate factoring
in step 1.

If f is not squarefree to begin with, take gcd(f, ∂f∂x ) to filter out all multiple factors. Gcd of
bivariate polynomials can be computed using Hensel lifting in a similar way. If f is not monic
then there is a b among any (n+ 1) distinct elements of F such that f(x, y + bx) is monic (up
to scaling by a field element).

The argument presented for the bivariate case generalize to any multivariate polynomial. If
f ∈ F[x, y1, . . . , ym], we can use the ideal I = (y1, . . . , ym) and lift the factorization of f modulo
powers of I. Some other minor changes are required but the factoring algorithm remains the
same in essence. Therefore, multivariate factoring (up to constant number of variables) reduces
to univariate factoring over a field.

Application 2: Polynomial division

As another application of Hensel lifting, we show that polynomial division has the same com-
plexity as polynomial multiplication.

26



Let f, g ∈ R[x] be two polynomials with deg(f) = n and deg(g) = m ≤ n, and g be monic.
We wish to compute q, r ∈ R[x] such that f = qg+ r and deg(r) < m. For any polynomial p of
degree d, define p̃ = xdp( 1

x). In other words, the coefficients of p are reversed in p̃. If f = qg+ r

then f̃ = q̃g̃ + xn−m+1 · r̃. Technically, deg(r) can be less than m − 1, in which case r̃ simply
means xm−1r( 1

x). Therefore, f̃ = q̃g̃ mod xn−m+1.
Since g is monic, the constant term of g̃ is 1 and hence g̃ is invertible modulo xn−m+1. Let

g̃h = 1 mod xn−m+1. Then, q̃ = f̃h mod xn−m+1. So if we can compute h mod xn−m+1 then
one multiplication would give q̃ (since deg(q̃) = n − m) from which q = xn−mq̃( 1

x) and then
r = f − qg can be easily retrieved. We use Hensel lifting to compute h mod xn−m+1.

Notice that g̃ = 1 mod x and so also h = 1 mod x. Let s = 1 and t = 0, implying
sg̃ + th = 1 mod x. Use Hensel lifting iteratively for ` = dlog(n −m + 1)e times to compute
h mod x2` such that g̃h = 1 mod x2` . We need to clarify one point here. Recall, from Lemma
4.4, that the parameters in Hensel lifting evolve as : g′ = g+te and t′ = t(1−d). In our case t = 0
to begin with, hence g′ = g and t′ = 0. This explains why the polynomial g̃ remains unchanged
(as required) throughout the lifting process, till we reach the factorization g̃h = 1 mod xn−m+1.

19 Polynomial division

1. Compute f̃ = xnf( 1
x) and g̃ = xmg( 1

x).
2. Let ` = dlog(n−m+ 1)e.
3. Use Hensel lifting to compute h, such that g̃h = 1 mod x2`.
4. Compute q̃ = f̃h mod xn−m+1 and q = xn−mq̃( 1

x).
5. Return q as the quotient and r = f − qg as the remainder.

Time complexity - Computation of f̃ and g̃ takes O(n) time. From Lemma 4.4, each Hensel
lifting step involves only constantly many polynomial multiplications modulo x2i , for some i ≤ `.
So, total time taken in step 3 is

∑`
i=1O(M(2i)) = O(M(n)). Also step 4 takes O(M(n)) time.

Therefore, the division algorithm has O(M(n)) time complexity.

4.5 Short vectors in lattices

Hermann Minkowski introduced the theory of geometry of numbers [Min10], which studies cer-
tain mathematical objects known as lattices. In this section, we show how these objects are
used to factor polynomials over rationals. We also discuss an application of lattice in the low
exponent attack on the RSA cryptosystems.

A lattice L ⊆ Rm is generated by integer linear combinations of vectors in Rm. Formally,

Definition 4.1 (Lattice) Let v1, . . . , vn be linearly independent vectors of Rm. A lattice L,
generated by v1, . . . , vn, is defined as L = {

∑n
i=1 aivi | a1, . . . , an ∈ Z}.

The set {v1, . . . , vn} is called a basis of the lattice and n is the dimension of the lattice. Let
V be the n × m matrix with vi as the ith row. When m = n, volume of L is given by
vol(L) = |det(V )|, which is independent of the choice of the basis vectors. This can be argued
as follows. Let {u1, . . . , un} be some other basis of L. Denote by U the n × m matrix with
ui as the ith row. Then there are two n × n integer matrices A and B such that V = A · U
and U = B · V , implying that A is an invertible integer matrix. Therefore, det(A) = ±1 and if
m = n then |det(V )| = | det(U)|.

We denote the 2-norm of a vector v by ‖v‖. The following theorem gives an upper bound
on the length of a shortest vector of a lattice (when m = n) with respect to the 2-norm.

27



Theorem 4.2 (Minkowski, 1896) The length of a shortest vector of a lattice L ⊆ Rn of
dimension n, is at most

√
n · vol(L)

1
n .

Proof: Let λ be the length of any shortest vector of L. Consider the parallelepiped defined by
the vectors v1, . . . , vn. The volume of this parallelepiped is det(V ) = vol(L). Place spheres of
radii λ2 centered at the corners of this parallelepiped. Each sphere intersects with a part of this
parallelepiped. The sum of the volumes of these intersecting spaces for all the spheres must
equal the volume of a single sphere in Rn of radius λ

2 . Since the spheres do not intersect among
themselves, this volume must be less than the volume of the parallelepiped. Volume of a sphere
in Rn of radius r is πn/2rn

Γ(n/2+1) , where Γ is the Gamma function. Therefore, πn/2(λ/2)n

Γ(n/2+1) ≤ vol(L).

Simplifying using Stirling’s theorem, λ ≤
√
n · vol(L)

1
n .

The task of computing a short vector in a given lattice is a key step in many algorithms.
However, it is known that finding a vector of length very close to the shortest vector length is
computationally hard. In a series of important developments, Ajtai [Ajt98] showed that it is
NP-hard to compute a shortest vector in a lattice. Following this, Micciancio [Mic00] showed
that finding a vector within

√
2 factor of the shortest vector length is also NP-hard. Recently,

Haviv and Regev [HR07], building on an earlier work by Khot [Kho05], showed that under
a reasonable complexity theory assumption (NP 6⊆ RTIME(2poly(logn))) there is no polynomial
time algorithm that can find a vector to within 2(logn)1−ε factor of the shortest vector length,
for any arbitrarily small ε > 0.

Nevertheless, it is also known that approximating the shortest vector to within a polynomial
factor is probably not a hard problem. Goldreich and Goldwasser [GG98] showed that obtain-
ing a

√
n

logn factor approximation is in the complexity class AM[2] and hence unlikely to be

NP-hard. Furthermore, it was shown by Aharonov and Regev [AR04] that finding a
√
n factor

approximate vector is in the class NP ∩ coNP.

Fortunately, for many algorithms finding a short vector even within an exponential factor
of the shortest vector length is useful enough. In a major breakthrough, Lenstra, Lenstra and
Lovász [LJL82] gave a polynomial time algorithm (LLL algorithm, for short) to find a vector
of length no more than 2

n−1
2 times the length of a shortest vector. All the hardness results,

mentioned above, followed after this work in an attempt to bridge the gap between the approx-
imation factors for which either an efficient algorithm or a hardness result is known.

The main idea behind the LLL algorithm is to compute a reduced basis, from a given basis of
the lattice, by closely following the Gram-Schmidt orthogonal basis computation. This reduced
basis is guaranteed to contain a short vector. The following lemma explains why Gram-Schmidt
orthogonalization (GSO) plays a role in short vector computation. Given a basis {v1, . . . , vn} of
L, let {v∗1, . . . , v∗n} be the orthogonal basis computed by the GSO. Then,

Lemma 4.6 For any nonzero v ∈ L, ‖v‖ ≥ min{‖v∗1‖, . . . , ‖v∗n‖}.

Proof: Let v =
∑n

i=1 aivi, where each ai ∈ Z, and k be the largest index for which ak 6= 0. The
GSO computes each v∗i as v∗i = vi−

∑
j<i µijv

∗
j , where µij ∈ R. Therefore, v = akv

∗
k+
∑

j<k µ
′
jv
∗
j ,

for some µ′j ∈ R. Now, ‖v‖2 = a2
k‖v∗k‖2 +

∑
j<k µ

′
j
2‖v∗j ‖2 ≥ ‖v∗k‖2, since ak is an integer. Hence,

‖v‖ ≥ ‖v∗k‖ ≥ min{‖v∗1‖, . . . , ‖v∗n‖}.

Thus, if the vectors v∗1, . . . , v
∗
n belong to the lattice L then a v∗i with the minimum norm is a

shortest vector of L. But, the basis vectors computed by the GSO need not always belong to
the lattice. This problem gives rise to the notion of a reduced basis.

28



Definition 4.2 (Reduced basis) A basis {u1, . . . , un} of L is called a reduced basis, if the or-
thogonal basis vectors {u∗1, . . . , u∗n}, computed by the GSO, satisfy the property ‖u∗i ‖2 ≤ 2‖u∗i+1‖2
for all 1 ≤ i < n.

Suppose we succeed in efficiently computing a reduced basis {u1, . . . , un} from a given basis of
the lattice L. From Lemma 4.6, any vector u ∈ L satisfies ‖u‖ ≥ min{‖u∗1‖, . . . , ‖u∗n‖}, and
by the above definition any ‖u∗i ‖ ≥ 2−

n−1
2 ‖u∗1‖. Therefore, ‖u‖ ≥ 2−

n−1
2 ‖u1‖, as ‖u∗1‖ = ‖u1‖.

This means, the length of the vector u1 is at most 2
n−1

2 times the length of a shortest vector in L.

The LLL algorithm computes a reduced basis {u1, . . . , un} from a given basis {v1, . . . , vn},
where vi ∈ Zm and ‖vi‖ ≤ A ∈ Z+ for every i, in time polynomial in m and logA. Before we
describe this algorithm, let us fix certain notations and conventions.

Matrices V and U are as defined before (see the paragraph following Definition 4.1). V ∗ and
U∗ are n×m matrices with v∗i and u∗i as the ith rows, respectively. As defined in section A.2,
the projection matrix M , in a GSO computation from U to U∗, is given by M = (µij)1≤i,j≤n

where µii = 1 for all i, µij = 0 if j > i, and ui = u∗i +
∑

j<i µiju
∗
j with µij =

ui.u∗j
‖u∗j‖2

for j < i.
Surely, U = M · U∗. For brevity, we say ‘GSO of U ’ to refer to the matrices M and U∗. The
notation dµijc is used to mean the integer closest to µij . The space generated by the vectors
u1, . . . , uj over rationals is denoted by Uj .

More details on the following exposition of the LLL algorithm and its analysis can be found
in chapter 16 of [GG03].

20 LLL basis reduction
1. Initialize U = V and compute GSO of U. Set i = 2.
2. while i ≤ n do
3. for j = i− 1 to 1 do
4. Set ui = ui − dµijcuj and update GSO of U.
5. if i > 1 and ‖u∗i−1‖2 > 2‖u∗i ‖2 then
6. Swap ui and ui−1 and update GSO of U. Set i = i− 1.
7. else, set i = i+ 1.
8. Return U.

Correctness and time complexity - Because of the check, ‖u∗i−1‖2 > 2‖u∗i ‖2, in step 5 of the
algorithm, it is not hard to see that the algorithm outputs a reduced basis whenever it halts.
One only has to use induction on the index i to show this. However, it is not clear as such,
whether the algorithm halts in polynomial time. The following lemma proves this.

Lemma 4.7 The LLL algorithm halts and finds a reduced basis in polynomial time.

Proof: We need to show that the outer while-loop of the algorithm executes only polynomially
many times. Moreover, we also need to show that the size of the numerator and denominator
of any rational number involved in the computation is polynomially bounded.

The matrix U and its GSO are updated in step 4 and step 6. Right before an update, let U
be the matrix with GSO data M and U∗. After an update, suppose U , M and U∗ get altered
to Ũ , M̃ and Ũ∗ respectively, with the corresponding entries as ũk, µ̃k` and ũ∗k for 1 ≤ k, ` ≤ n.
Ũk be the space generated by ũ1, . . . , ũk.

First, let us focus on step 4. Indices i and j are as in step 4. Let N be the n × n matrix
with ones on the diagonal and −dµijc as the (i, j)th entry. The remaining entries of N are

29



zeroes. Then, Ũ = N · U . Notice that, Ũk = Uk for all k. Since ũ∗k+1 is the projection of ũk+1

on the orthogonal complement of Ũk, we can infer that Ũ∗ = U∗. It is also easy to verify that
M̃ = N ·M . Since µ̃ij = µij − dµijc, |µ̃ij | ≤ 1

2 . Also, µ̃i` = µi` for any ` > j. Therefore, by
induction on j, |µ̃i`| ≤ 1

2 for all j ≤ ` < i and |µ̃k`| ≤ 1
2 for all 1 ≤ ` < k < i. To summarize,

after an update in step 4, the (k.`)th entry of the projection matrix has absolute value at most
1
2 for all 1 ≤ ` < k ≤ i, and the orthogonal basis remains unaltered.

Let us see what happens after an update in step 6. Index i is as in step 6. This time Ũ is
simply a permutation matrix times U . The permutation matrix has the effect of swapping the
(i−1)th and the ith rows of U . Since Ũk = Uk for all k 6= i−1, hence ũ∗k = u∗k for all k 6∈ {i−1, i}.
Now notice that ũ∗i−1 = u∗i + µii−1u

∗
i−1, implying ‖ũ∗i−1‖2 ≤ ‖u∗i ‖2 + |µii−1|2 · ‖u∗i−1‖2. In

step 6, ‖u∗i ‖2 < 1
2‖u

∗
i−1‖2 and µii−1 ≤ 1

2 , as argued in the previous paragraph. Therefore,
‖ũ∗i−1‖2 < 3

4‖u
∗
i−1‖2. Also, since ũ∗i is the projection of ui−1 on the orthogonal complement of

Ũi−1 ⊇ Ui−2, it is also the projection of u∗i−1 on the orthogonal complement of Ũi−1, implying
that ‖ũ∗i ‖ ≤ ‖u∗i−1‖. To summarize, after an update in step 6, ũ∗k = u∗k for all k 6∈ {i − 1, i},
‖ũ∗i−1‖2 < 3

4‖u
∗
i−1‖2 and ‖ũ∗i ‖ ≤ ‖u∗i−1‖, i.e. maxk{‖ũ∗k‖} ≤ maxk{‖u∗k‖}.

Let Uk be a k ×m matrix with rows u1, . . . , uk. Define dk = det(Uk · UTk ) ∈ Z+. Surely,
Uk = Mk · U∗k , where Mk is the Gram-Schmidt projection matrix and U∗k is the orthogonal
basis matrix with u∗1, . . . , u

∗
k as the rows. Since det(Mk) = 1 and u∗1, . . . , u

∗
k are mutually or-

thogonal, dk =
∏k
`=1 ‖u∗`‖2. Thus, in step 4, dk remains unchanged for every k. In step 6, dk

remains unchanged for every k 6= i − 1 and di−1 reduces by a factor of at least 3
4 . The reason

dk remains the same for k 6= i − 1 is because in step 6, Ui only changes to P · Ui for some
permutation matrix P . Define D =

∏n
k=1 dk. Therefore, D remains unchanged in step 4 but

decreases by a factor of at least 3
4 each time step 6 is executed. At the start of the algorithm

the value of D is at most
∏n
k=1A

2k ≤ An
2

(as ‖v∗i ‖ ≤ ‖vi‖ ≤ A, for all i). Hence, step 6 can
be executed at most O(n2 logA) times. This proves that the algorithm halts after polynomi-
ally many executions of the while-loop as the index i can decrease for at most O(n2 logA) times.

We are now left with the task of showing that all the rational numbers in U , M and U∗

have small numerators and denominators at any stage of the algorithm. We begin with the row
vectors in U . Since, every uk ∈ Zm, it is sufficient to bound the value of ‖uk‖. To start with,
‖uk‖ ≤ A for every k. Since ‖u∗k‖ ≤ ‖uk‖ and maxk{‖u∗k‖} never increases after an update in
step 4 or step 6, hence ‖u∗k‖ ≤ A for every k at all times of the algorithm.

First, we claim that ‖uk‖ ≤
√
n ·A for every k at all times of the algorithm, except in step

4 when k = i. Since, step 6 does only a swap between ui−1 and ui, we only need to show that
the claim holds for ‖ui‖ at the end of the for-loop, just before step 5. As ui = u∗i +

∑
j<i µiju

∗
j ,

‖ui‖2 ≤ nm2
iA

2 where mi = max1≤j≤i{|µij |}. Notice that, at the end of the for-loop |µij | ≤ 1
2

for every j < i. Hence, by taking into account that µii = 1, we have ‖ui‖ ≤
√
nA.

Let us see how ‖ui‖ changes within the for-loop. For this, we first need the following bound
on the value of µk` for any ` < k.

|µk`| =
|uk.u∗` |
‖u∗`‖2

≤
‖uk‖ · ‖u∗`‖
‖u∗`‖2

=
‖uk‖
‖u∗`‖

≤
√
d`−1 · ‖uk‖. (1)

The last inequality holds because ‖u∗`‖2 = d`
d`−1

≥ 1
d`−1

as d` ∈ Z+. Now notice that, after an
update in step 4, µi` changes to µi` − dµijcµj` for every ` ≤ j. Since |µj`| ≤ 1

2 for ` < j,

|µi` − dµijcµj`| ≤ |µi`|+ |dµijc| · |µj`| ≤ mi + (mi +
1
2

) · 1
2
≤ 2mi.

30



The last inequality holds because mi ≥ 1. Also, for ` = j, µi` − dµijcµj` ≤ 1
2 . Therefore, the

value of mi is at most doubled after an update in step 4. We have already shown that, at
the start of the for-loop, ‖uk‖ ≤

√
nA for every k. Hence, from equation (1), mi ≤

√
nAn−1

at the start of the for-loop. Together with the facts that mi can doubled for n times and
‖ui‖ ≤

√
nmiA, we get ‖ui‖ ≤ n · (2A)n. This shows that the size of any entry in uk is at most

O(n logA) bits at any time of the algorithm.

We now need to bound the numerator and denominator of µk` and the rational entries
in u∗k. We claim that, dk−1u

∗
k ∈ Zm for every k. This can be argued as follows. It is easy

to see that, every u∗k can be expressed as u∗k = uk −
∑

`<k λk`u` for some λk` ∈ Q. Since
uj .u∗k = 0 for any j < k, we get

∑
`<k λk`(uj .u`) = (uj .uk) for every 1 ≤ j < k. This gives

a system of k − 1 linear equations in the λk`, 1 ≤ ` < k. The determinant of the coefficient
matrix (uj .u`)1≤j,`≤k is exactly dk−1. Hence, by Cramer’s rule, dk−1λk` ∈ Z. Therefore,
dk−1u

∗
k = dk−1uk −

∑
`<k dk−1λk`u` ∈ Zm. This means, the denominator of every entry in u∗k is

at most dk−1 ≤ A2n and the numerator is surely bounded by dk−1‖u∗k‖ ≤ A2(n−1) ·A ≤ A2n.
Our last claim is that, d` · µk` ∈ Z. This is because, d`µk` = d` ·

uk.u∗`
‖u∗`‖2

= uk.(d`−1u
∗
` ). We

have already shown that d`−1u
∗
` ∈ Zm and so d`µk` ∈ Z. Therefore, the denominator of µk` can

be at most d` ≤ A2n and the numerator is bounded by d`|µk`|. From equation (1),

d` · |µk`| ≤ d` ·
√
d`−1 · ‖uk‖ ≤ A2(n−1) ·An−2 · n(2A)n ≤ n · (2A4)n.

Thus, the size of the numerator and denominator of any rational number involved in the com-
putation is at most O(n logA) bits. This completes our proof.

The main result of this section is summarized in the following theorem.

Theorem 4.3 (Lenstra-Lenstra-Lovász, 1982) Given n vectors v1, . . . , vn ∈ Zm that are linearly
independent over Q and ‖vi‖ ≤ A ∈ Z+ for every i, a vector v ∈ Zm can be computed in time
poly(m, logA) such that ‖v‖ is at most 2

n−1
2 times the length of a shortest vector in the lattice

L =
∑n

i=1 Zvi.

The condition that v1, . . . , vn are linearly independent is a bit superfluous because one can
easily compute a set of linearly independent vectors v′1, . . . , v

′
n′ ∈ Zm from v1, . . . , vn such that

L =
∑

i≤n Zvi =
∑

j≤n′ Zv′j . For a survey on the theory of lattices, refer to the article by
Hendrik W. Lenstra Jr. [Jr.08] in [BS08].

Application 1: Factoring polynomials over rationals

Let us now see how to use short vectors in a lattice to factor univariate polynomials over ra-
tionals. Much of this algorithm, due to Lenstra, Lenstra and Lovász [LJL82], resembles the
bivariate factoring algorithm discussed in section 4.4, but they differ at one crucial step. This
will be clear from the following discussion.

Given a polynomial f ∈ Q[x], we can multiply f with the lcm of the denominators of its
coefficients to get a polynomial in Z[x]. So, without loss of generality assume that f ∈ Z[x].
Before we get down to the details of factoring f , we need to address one basic question. How
large can a coefficient of a factor of f be? If a factor of f has very large coefficients, it might
not be possible to even output the factor in polynomial time. Fortunately, this is not the case.

With every polynomial f =
∑n

i=1 cnx
i ∈ Z[x] associate a coefficient vector vf = (cn, . . . , c0) ∈

Zn+1. Norm of f , denoted by ‖f‖, is defined as ‖f‖ = ‖vf‖. Let ‖f‖ ≤ A ∈ Z+ and α be

31



a root of f in C. Since, f(α) = 0, |cnαn| = |
∑n−1

i=0 ciα
i| ≤

∑n−1
i=0 |ci||α|i. If |α| > 1 then

|cnαn| ≤ nA|α|n−1, implying that |α| ≤ nA. Any factor f1 ∈ Z[x] of f is a product of at most
n − 1 linear factors over C and an integer with absolute value at most |cn| ≤ A. Therefore,
absolute value of any coefficient of f1 is bounded by A ·

(
n
n/2

)
· (nA)n−1 ≤ (2nA)n and hence

‖f1‖ ≤
√
n(2nA)n. Although, this bound is sufficient for our purpose, a sharper bound on ‖f1‖

is provided by Mignotte [Mig74] (also known as the Landau-Mignotte bound).

Lemma 4.8 (Landau-Mignotte bound) If f1 ∈ Z[x] is a proper factor of a polynomial f ∈ Z[x]
of degree n, then ‖f1‖ ≤ 2n−1‖f‖.

Therefore, ‖f1‖ ≤ 2n−1A and size of any coefficient of f1 is at most O(n+ logA) bits. We refer
to this bound on ‖f1‖ as B.

For simplicity, assume that f is monic and squarefree. Since the absolute value of any
entry in the Sylvester matrix S(f, dfdx) is at most nA, by Hadamard’s inequality |Resx(f, dfdx)| ≤
(2n)n(nA)2n = (2n3A2)n. Searching the first O(n log(nA)) primes we can find a prime p such
that f mod p is monic and squarefree. Suppose f = gh mod p, where g is monic and irreducible
in Fp[x]. We can lift this factorization using Hensel lifting for ` steps to obtain f = g′h′ mod p2` ,
where g′ = g mod p and h′ = h mod p. Arguing along the same line as in the bivariate factoring
case, we can show that there is an irreducible factor f1 ∈ Z[x] of f such that g′ divides f1

modulo p2` . In bivariate factoring we could find f1 by solving a system of linear equations over
the underlying field. But this approach does not apply here straightaway.

Suppose f ′1 ∈ Z[x]\{0} with deg(f ′1) < n and ‖f ′1‖ = C ∈ Z, such that f ′1 = g′h′′1 mod p2`

for some h′′1 ∈ Z[x]. As argued in the proof of the Hadamard inequality (Lemma 4.1), the
absolute value of the determinant of an integer matrix with row vectors r1, . . . , rk is bounded
by
∏k
i=1 ‖ri‖. Therefore, |Resx(f, f ′1)| ≤ An−1Cn. Surely, there exists s and t in Z[x] such that

sf+tf ′1 = Resx(f, f ′1). Since f and f ′1 share a common factor g′ modulo p2` , if |Resx(f, f ′1)| < p2`

then gcd(f, f ′1) is nontrivial. Therefore, all we want is p2` > An−1Cn. This means, ‖f ′1‖ = C
has to be small in order to ensure that ` is small. This is the reason why just solving a f ′1
with f ′1 = g′h′′1 mod p2` does not help. We also need to ensure that ‖f ′1‖ is small. Putting the
conditions together, we want a nonzero f ′1 ∈ Z[x] of degree less than n, such that ‖f ′1‖ is ‘small’
and f ′1 = g′h′′1 mod p2` for some h′′1 ∈ Z[x]. It is this step which is solved by finding a short
vector in a lattice.

Let deg(g′) = k < n. Consider the polynomials xn−k−1g′, xn−k−2g′, . . . , xg′, g′ and the poly-
nomials p2`xk−1, p2`xk−2, . . . , p2` . Let v1, . . . , vn ∈ Zn be the n coefficient vectors corresponding
to these n polynomials. It is not hard to see that the coefficient vector vf ′1 of any solution f ′1,

satisfying f ′1 = g′h′′1 mod p2` for some h′′1 ∈ Z[x], belongs to the lattice L =
∑n

i=1 Zvi. Also, the
vectors v1, . . . , vn are linearly independent. Since f1 is a solution for f ′1, vf1 ∈ L and hence the
length of the shortest vector in L is at most ‖vf1‖ = ‖f1‖ ≤ B = 2n−1A. Applying Theorem 4.3,

we can find a short vector v such that ‖v‖ ≤ 2
3(n−1)

2 ·A. Let f ′1 be the polynomial corresponding
to the coefficient vector v. Surely, f ′1 = g′h′′1 mod p2` for some h′′1 ∈ Z[x], deg(f ′1) < n and

‖f ′1‖ = ‖v‖ = C ≤ 2
3(n−1)

2 · A. Since, |Resx(f, f ′1)| ≤ An−1Cn ≤ 2
3n(n−1)

2 · A2n−1, we only need

to choose an ` such that p2` > 2
3n(n−1)

2 · A2n−1. Therefore, all the integers involved in Hensel
lifting have size at mostO(n2+n logA) bits, implying that the lifting takes only polynomial time.

The following algorithm summarizes the above discussion. It assumes that f ∈ Z[x] is a monic,
squarefree polynomial of degree n, and ‖f‖ ≤ A.

32



21 Polynomial factoring over rationals
1. Find a prime p such that f mod p is squarefree.

2. Let D = 2
3(n−1)

2 ·A and E = 2
3n(n−1)

2 ·A2n−1.
3. Factor f = gh mod p where g is monic and irreducible in Fp[x].
4. Let deg(g) = k. If k = n, declare ‘f is irreducible’.

5. Use Hensel lifting to compute f = g′h′ mod p2` such that E2 ≥ p2` > E.
6. Let v1, . . . , vn be the coefficient vectors in Zn corresponding to the

polynomials xn−k−1g′, xn−k−2g′, . . . , xg′, g′ and p2`xk−1, p2`xk−2, . . . , p2`.
7. Use LLL algorithm to find a short vector v in the lattice L =

∑n
i=1 Zvi.

8. If ‖v‖ > D declare ‘f is irreducible’.
9. Else let f ′1 be the polynomial with coefficient vector v.
10. Return gcd(f, f ′1).

Correctness and time complexity - Correctness of the algorithm follows immediately from
the prior discussion. In step 1, the value of prime p is O(n log(nA)) and so using Algorithm 13
and 14, we can factor f over Fp (in step 3) in polynomial time. Since p2` ≤ E2, Hensel lifting
in step 5 also takes polynomial time. Norm of g′, ‖g′‖ ≤

√
nE2. So the LLL algorithm in step

7 takes time poly(n, logE) = poly(n, logA). Lastly, in step 10, gcd of two integer polynomials
can be computed in polynomial time (using Chinese Remaindering). Therefore, the algorithm
has an overall polynomial running time.

Application 2: Breaking Low Exponent RSA

In this section, we show an interesting application of the LLL algorithm in breaking the RSA
cryptosystem. The method, due to Coppersmith [Cop97], shows the vulnerability of the RSA
when the exponent of the public key is small and a significant fraction of the message is al-
ready known to all as a header. The key step is the use of lattice basis reduction in finding
a root of a modular equation, when the root is much smaller than the modulus in absolute value.

Following the notation in section 2.1, let m be the message string and (n, e) be the public
key, where e is the exponent and n is the modulus. The encrypted message is c = me mod n.
Suppose that the first ` bits of the message m is a secret string x, and the remaining bits of m
form a header h that is known to all. In other words, m = h · 2` +x, where h is known and x in
unknown. Since, (h · 2` +x)e = c mod n, we get an equation g(x) = xe +

∑e−1
i=0 aix

i = 0 mod n,
where a0, . . . , ae−1 are known and are all less than n. Decryption of c is equivalent to finding
a root of g modulo n. We intend to solve this modular root finding problem using lattice basis
reduction.

The idea is to transform the modular root finding problem into a root finding problem over
integers. The latter problem can then be solved using the LLL algorithm. To achieve this, we
are going to do something very similar to what has been done in Algorithm 21 for polynomial
factorization. Solve for a nonzero f ∈ Z[x] of degree less than k > e, such that f = gh mod n
for some h ∈ Z[x] and ‖f‖ is ‘small’. Treat k as a parameter.

Consider the polynomials xk−e−1g, . . . , xg, g and nxe−1, . . . , n, and v1, . . . , vk be the coeffi-
cient vectors in Zk associated with these k polynomials. Notice that, the vectors v1, . . . , vk are
linearly independent and the volume of the lattice L =

∑k
i=1 Zvi is vol(L) = ne. By Minkowski’s

theorem, the length of the shortest vector in L is at most
√
kn

e
k . It is easy to observe that the

coefficient vector vf of any solution f is in the lattice L. Using LLL algorithm, we can find a
short vector v ∈ Zk in L, in time poly(k, log n), such that ‖v‖ ≤ 2

k−1
2 ·
√
kn

e
k . Let f be the

33



polynomial with v as its coefficient vector. Surely, f = gh mod n and deg(f) < k.

We know that the secret string x has absolute value at most 2`. Let x = a < 2` be a root of
g modulo n. Therefore, a is also a root of f modulo n. The absolute value of f(a) is bounded
by,

|f(a)| ≤ k · ‖v‖ · 2`(k−1) ≤ k · 2
k−1
2 ·
√
kn

e
k · 2`(k−1) = A (say).

Now, if it happens that A < n then f(a) = 0 over Z. This means, we can apply Algorithm 21
to factor f and thereby find the secret string x.

Let us fix some parameters to get a feel of how this argument works in practice. Let e = 3
and k = 6, then all we need to find x is,

6
√

6 · 2
5
2 ·
√
n · 25` < n ⇒ ` <

1
10
· log n− 1

5
· log(48

√
3).

Therefore, if roughly 9
10 -th of the message is known then the remaining secret 1

10 -th part of the
message can be recovered in polynomial time. Since the approach works in time polynomial in
k and log n, it is efficient only if k is small. This means, from the relation A < n, that e has to
be small. This shows that a low exponent e along with a small fraction of the secret part of the
message make RSA vulnerable to lattice based attacks.

4.6 Smooth numbers

Our final topic of discussion is about the intriguing subject of smooth numbers. Smooth numbers
are integers with small prime factors. So, by definition, they are easy to factor. Study on the
density of these numbers dates back to the work of Dickman [Dic30]. It is easy to see that most
integers have at least one small prime factor. For example, every second integer has 2 as its
factor, every third has 3 as factor and so on. After we divide an integer by its small factors
we are left with another integer with large prime factors. Factoring an integer with large prime
factors is potentially a difficult task. Quite intriguingly, many such hard factoring instances can
be reduced to factoring few smooth numbers. We will see the details of such reductions, in a
short while, in Dixon’s random squares algorithm and the Quadratic Sieve algorithm.

Smooth numbers find important applications in other factoring algorithms, like the Number
Field Sieve [LJMP90] and Lenstra’s elliptic curve method [Jr.87]. As another application, we
will discuss the index-calculus method for computing discrete logarithms []. Smooth numbers
also play a crucial part in proving many analytic number theoretic results. To cite an exam-
ple, the result on infinitude of Carmichael numbers [AGP94] depends on the density of smooth
primes, that is prime p such that p− 1 is smooth.

We now state the result by Dickman on the density of smooth numbers. In fact, this
particular estimate is due to Canfield, Erdös and Pomerance [CEP83]. An integer is called
y-smooth if all its prime factors are less than y. Let ψ(x, y) be the total number of y-smooth
integers between 1 and x.

Lemma 4.9 If u = O( log x
log log x) then ψ(x,x

1
u )

x = u−u(1+o(1)), where o(1)→ 0 as u→∞.

We would use this estimate in the Quadratic Sieve algorithm. But before we move on
to the applications, let us get a feel of how to find ψ(x, y). Let yu = x and p1, . . . , pk be
the primes less than y. Then, by the Prime Number Theorem, k ≈ y

ln y . Since, puk ≤ x,

all numbers of the form pe11 . . . pekk , with
∑k

i=1 ei ≤ u, are y-smooth and less than x. Hence,

34



ψ(x, y) ≥
(
k+u
u

)
≥ ( ku)u ≈ x

(u ln y)u (taking u to be an integer). Therefore, ψ(x,x
1
u )

x ≥ (u ln y)−u.
The purpose of presenting this coarse estimate is not merely to show a similarity with the
expression in Lemma 4.9. A sophisticated version of this argument would be used in Dixon’s
algorithm.

For further details on the density of smooth numbers, the reader may refer to the article
by Andrew Granville [Gra08] in [BS08]. An exposition to smooth numbers and their various
applications can also be found in the article by Carl Pomerance [Pom94].

Application 1: Integer factoring

The two factoring algorithms, we are going to present here, are based on one simple idea. Let
N be the given odd integer that we want to factor and α, β be two other integers less than
N such that α2 = β2 mod N . If it happens that neither α = β mod N nor α = −β mod N
then gcd(α + β,N) (as well as, gcd(α − β,N)) yields a nontrivial factor of N . This basic
idea is the cornerstone of many modern day factoring algorithms and was first introduced as a
general scheme by Kraitchik [Kra26, Kra29]. To make the scheme work, we are faced with two
immediate questions.

• How to find a square modulo N?

• How to find two ‘distinct’ roots of the square modulo N?

By ‘distinct’ we mean the condition, α 6= ±β mod N . The first question is rather easy to
answer. A random integer is a square modulo N with high probability if N has few prime
factors. Besides, one can always take an integer and simply square it modulo N . However, it is
the second question that demands more attention. Much of the effort in both Dixon’s algorithm
and the Quadratic Sieve is centered around efficiently finding ‘distinct’ roots of a square and it
is here that smooth numbers enter the scene. The idea of involving smooth numbers is based
on an earlier work by Morrison and Brillhart [MB75].

Dixon’s random square method

Let N be an odd composite with ` distinct prime factors. Choose an integer α randomly in the
range [1, N − 1] and compute γ = α2 mod N . We will show later (in Lemma 4.10) that with
reasonable probability γ is y-smooth for a suitably chosen y. Further, if we are lucky then the
prime factorization of γ = pe11 . . . pekk could be such that each ei is even. Here, p1, . . . , pk are the
primes less than y. This means, β = p

e1/2
1 . . . p

ek/2
k is also a root of γ. Notice that, the value

of β depends solely on γ and is independent of which random root α is chosen initially. Since
there are 2` roots of γ (assuming gcd(γ,N) = 1), the probability that α = ±β mod N is only

1
2`−1 . Therefore, if all goes well, gcd(α+ β,N) is nontrivial. Unfortunately, the chance that all
the ei’s are even is not quite sufficient to ensure good success rate of the algorithm. But there
is a neat way around!

Instead of choosing a single α, suppose we choose k + 1 random numbers in the range
[1, N −1] such that γj = α2

j mod N is y-smooth for every j, 1 ≤ j ≤ k+1. Consider the vectors
vj = (ej1 mod 2, . . . , ejk mod 2) corresponding to the prime factorizations of γj = p

ej1
1 . . . p

ejk
k

for 1 ≤ j ≤ k+ 1. Since there are k+ 1 vectors in a k dimensional space over F2, there exists a
collection of vectors, v1, . . . vm (say) such that their sum (over F2) is zero. What this means is
that the prime factorization of γ = γ1 . . . γm = pe11 . . . pekk has every ei even. Once again, it can
be easily argued that β = p

e1/2
1 . . . p

ek/2
k mod N and α = α1 . . . αm mod N are ‘distinct’ roots

35



of γ mod N with high probability.

We need to fill in one missing piece to formalize the above approach. It is to show that, for
a random α, γ = α2 mod N is y-smooth with high probability. The following lemma proves
this fact.

Lemma 4.10 Let p1, . . . , pk be the primes less than y in increasing order, and S(N, y) be the
following set,

S(N, y) = {α : 1 ≤ α ≤ N − 1 and γ = α2 mod N is y-smooth}.

If gcd(pi, N) = 1 for all 1 ≤ i ≤ k and r ∈ Z+ is such that p2r
k ≤ N then |S(N, y)| ≥ k2r

(2r)! .

Proof: Let N = qf11 . . . qf`` be the prime factorization of N . Since N has ` prime factors,
every element α ∈ ZN is naturally associated with an element vα in {1,−1}` that represents
its quadratic character. That is, the ith index of vα is 1 if α is a square modulo qfii and −1
otherwise. Moreover, by Chinese Remaindering Theorem, if two elements in ZN have the same
quadratic character then their product is a square modulo N . Define a set T as,

T = {α : α = pe11 . . . pekk where
k∑
i=1

ei = r} (2)

Surely, every element of T is less than or equal to
√
N as p2r

k ≤ N . The 2` possible values
of the quadratic character define a partition of the set T . Call the partition corresponding to
the quadratic character g ∈ {1,−1}` as Tg, so that Tg = {α ∈ T : vα = g}. Every pair of
elements within the same partition can be multiplied to form a square modulo N that is also
a y-smooth number less than N . But there could be repetitions as the same square can result
from multiplying different pairs of elements. Using the fact that

∑k
i=1 ei = r (in equation 2),

a simple counting argument shows that there can be at most
(

2r
r

)
repetitions for each square

thus obtained. Therefore,

|S(N, y)| ≥ 2`(
2r
r

) ∑
g∈{1,−1}`

|Tg|2.

The factor 2` in the above expression is because every square in Z×N has exactly 2` roots.
Simplifying using Cauchy-Schwartz inequality, |S(N, y)| ≥ 1

(2r
r )(
∑

g∈{1,−1}` |Tg|)2 = 1

(2r
r ) |T |

2.

Once again, using the fact that
∑k

i=1 ei = r, size of the set T is
(
k+r−1
r

)
≥ kr

r! and hence,
|S(N, y)| ≥ k2r

(2r)! .

We are almost done. All we need to do now is fix a value for y. This we will do in the
analysis of the following algorithm and show that the optimum performance is obtained when
y = eO(

√
lnN ln lnN).

Time complexity - Using the Sieve of Eratosthenes, we can find the first k primes in step 1 in
O(k log2 k log log k) time. The divisions in step 2 take O(k ·MI(n)) time, where n = lnN . Each
iteration of the while-loop in step 4 takes O(MI(n) log n) operations for the gcd computation
and modular operations in steps 5 and 6. Whereas, trial divisions in step 7 can be done in
O((k+n)MI(n)) time. In step 8, we can use Gaussian elimination to find the linearly dependent
vectors in O(k3) time. Modular computations and gcd finding can be done in steps 9 and 10

36



22 Dixon’s random square method

1. Find all the primes, p1, . . . , pk, less than y = e(2−1/2+o(1))
√

lnN ln lnN.
2. If pi|N for any 1 ≤ i ≤ k, return pi.
3. Set i = 1.
4. while i ≤ k + 1 do
5. Choose integer αi randomly from [1, N − 1]. If gcd(αi, N) 6= 1 return it.
6. Else, compute γi = α2

i mod N.
7. If γi is y-smooth, let vγi = (ei1 mod 2, . . . , eik mod 2)

where γi = pei11 . . . peikk . Set i = i+ 1.
8. Find I ⊂ {1, . . . , k + 1} such that

∑
i∈I vγi = 0 over F2.

9. Let γ =
∏
i∈I γi = pe11 . . . pekk , β = p

e1/2
1 . . . p

ek/2
k mod N and α =

∏
i∈I αi mod N.

10. If gcd(α+ β,N) 6= 1 return the factor. Else, goto step 3.

using O(MI(n) log n) operations. Finally, we need to bound the number of iterations of the
while-loop.

By Lemma 4.10, expected number of iterations to find a y-smooth square is N ·(2r)!
k2r ≤

N · (2r ln y
y )2r, taking k ≈ y

ln y . Now, if we choose y such that y2r = N then the expected number
of executions of the loop is bounded by (k + 1) · n2r. One final thing to notice is that the algo-
rithm fails to return a proper factor at step 10 with only a constant probability, meaning the
expected number of times we need to jump to step 3 and re-run the algorithm is also a constant.
Therefore, the expected running time of the algorithm is O(k3 +k2n2r+2) = O(e

3n
2r +e

2n
2r n2r+2),

as y2r = N . This expression is minimized if 2r ≈
√

2n
lnn . This means, y = e(2−1/2+o(1))

√
lnN ln lnN

and the expected time taken by Dixon’s random square method is e(2
√

2+o(1))
√

lnN ln lnN .

The best known running time for Dixon’s algorithm is e(
√

4
3

+o(1))
√

lnN ln lnN , a result due
to Pomerance [Pom82] and Vallée [Val89]. But this is surpassed by the work of Lenstra and
Pomerance [JP92] which has an expected time complexity of e(1+o(1))

√
lnN ln lnN .

Despite the theoretical progress, the performance of these randomized algorithms are not
very encouraging in practice. With the widespread use of the RSA cryptosystems in various
commercial applications, there is just too much at stake. One cannot help but wonder if there
are variants of these ideas that are more efficient in practice, which in turn may deem some of
the RSA public keys as unsafe. The Quadratic Sieve method is one such practical improvement.

The Quadratic Sieve method

The Quadratic Sieve (QS), which was first proposed by Pomerance [Pom82, Pom84], is also
based on Kraitchik’s scheme of finding ‘distinct’ roots of a square modulo N . But unlike
Dixon’s algorithm, this method is deterministic with a heuristic analysis showing a time bound
of e(1+o(1))

√
lnN ln lnN operations. Although it has the same asymptotic complexity as the best

(rigorous) deterministic algorithm, the QS is much more efficient in practice. As for the as-
sumptions made in the analysis of the QS, in Pomerance’s [Pom08b] own words “...perhaps we
should be more concerned with what is true rather than what is provable, at least for the design
of a practical algorithm.”.

The Quadratic Sieve method generates a sequence of squares modulo N using the polyno-
mial x2 −N , by varying integer x from

√
N to

√
N + No(1). We could say x2 mod N instead

37



of x2 −N , they being the same as x ≤
√
N + No(1). This step of deterministically generating

squares modulo N is in contrast to Dixon’s algorithm where x is chosen randomly and then
x2 mod N is computed. As before, we are interested in those numbers in the sequence that
are y-smooth (for some fixed y). Understanding the distribution of smooth numbers in this
sequence is a difficult number theoretic problem. Instead, to make the analysis go through we
assume that the sequence generates y-smooth numbers in the same frequency as numbers picked
randomly from the range [0, 2N

1
2

+o(1)]. Since
√
N ≤ x ≤

√
N + No(1), x2 − N is between 0

and roughly X = 2N
1
2

+o(1). In other words, we assume that a y-smooth number is encountered
after about X

ψ(X,y) numbers of the sequence {x2 −N} as x is varied from
√
N to

√
N + No(1).

This is where the Quadratic Sieve becomes heuristic in nature. Although there is no rigorous
theory to back this assumption, years of experimental analysis have strongly supported it. So
let us proceed with it and see the step to which the QS owes both its name and its efficiency.

Recall that, in Dixon’s algorithm, we test for y-smoothness of x2 mod N by trial division
with all the k primes less than y. This takes O((k+n)MI(n)) time per number, where n = lnN .
We cannot do better than this if we test for smoothness, one number at a time. But in our case
the numbers originate from a well-defined sequence. One can hope to spend much less overall
time by testing smoothness of a collection of numbers together. To draw the analogy, let us
briefly visit the Sieve of Eratosthenes method.

Suppose we want to find all the primes less than B. If we sequentially test for primal-
ity of all the B numbers, we end up spending Õ(B log2B) time (using Miller-Rabin primality
test). Instead, the Sieve of Eratosthenes starts with an array of size B with all entries ini-
tialized as ‘unmarked’. At each step, the process finds the next ‘unmarked’ index p > 1 and
‘marks’ those entries that are higher multiples of p. In the end, only the prime indices re-
main ‘unmarked’. The total time spent is

∑
prime p < B

B
p logB, where the logB factor is due

to the increment of the counter by p for each subsequent ‘marking’. Using the analytic bound∑
prime p < B

1
p = O(log logB), the time complexity comes out to be O(B logB log logB). By

finding the primes together, the Sieve spends O(logB log logB) operations per number on aver-
age, as opposed to Õ(log2B) operations for primality testing. Pomerance made the observation
that this idea of sieving primes can be adapted to sieve smooth numbers from the sequence
{x2 −N}.

Let p be a prime less than y and p - N . Then p divides x2 −N if x is ±c modulo p where
c is a square root of N modulo p. Since x2 − N is also an element of the sequence {x2 − N},
x = b

√
Nc+ i for some index 0 ≤ i ≤ No(1). Hence, there are two fixed values a, b < p such that

x2 −N is divisible by p if and only if i = a or b mod p. This means, if the sequence {x2 −N}
is presented as an array with the ith index containing (b

√
Nc+ i)2−N , then the numbers that

are divisible by p are exactly placed at the indices {a+ kp}k≥0 and {b+ kp}k≥0.
A sieving process can start from index a (similarly, b) and increment the counter by p,

iteratively, to get to the numbers in the sequence that are divisible by p. A number that is
divisible by p is then replaced by the quotient obtained by dividing it by the highest power of p.
After this sieving is done for every prime p < y, all those numbers that have changed to 1 are
y-smooth. If B is the size of the array then the total sieving time is, O(

∑
prime p < y

B
p log y) =

O(B log y log log y). How large should B be? Since there are k primes below y, just like Dixon’s
algorithm, we need k+1 y-smooth numbers. We have assumed before that one y-smooth number
is present in (roughly) every X

ψ(X,y) numbers of the sequence, where X = 2N
1
2

+o(1). Therefore,

it is sufficient if we take B ≈ (k + 1) · X
ψ(X,y) for the analysis. The value of y is fixed in the

analysis of the following algorithm.

38



23 Quadratic Sieve method
1. Find all primes, p1, . . . , pk ≤ y. If pi|N for any 1 ≤ i ≤ k, return pi.
2. Sieve the sequence (dNe+j)2−N, 0 ≤ j ≤ No(1), for (k+1) y-smooth numbers,

γi = α2
i −N = pei11 . . . peikk , 1 ≤ i ≤ k + 1. Let vγi = (ei1 mod 2, . . . , eik mod 2).

3. Find I ⊂ {1, . . . , k + 1} such that
∑

i∈I vγi = 0 over F2.

4. Let γ =
∏
i∈I γi = pe11 . . . pekk , β = p

e1/2
1 . . . p

ek/2
k mod N and α =

∏
i∈I αi mod N.

5. If gcd(α+ β,N) 6= 1 return the factor.

Heuristic time complexity - As with Dixon’s algorithm, the time complexity of the Quadratic
Sieve is mainly contributed by step 2 and step 3. If y = X

1
u then by Lemma 4.9, X

ψ(X,y) ≈ u
u. So

the total time spent in step 2 is heuristically, O(k ·uu) = O(X
1
uuu), ignoring lower order terms.

This expression is minimized when u ≈
√

2 lnX
ln lnX , implying that y = e(2−1/2+o(1))

√
lnX ln lnX . Tak-

ingX = 2N
1
2

+o(1), the time complexity of step 2 comes out to beO(X
1
uuu) = e(1+o(1))

√
lnN ln lnN .

Notice that the vector vγi (in step 2) is fairly sparse, it has at most logN nonzero entries. So
the matrix formed by the k + 1 vectors, vγ1 , . . . , vγk+1

, contains at most (k + 1) logN nonzero
entries. Using Wiedemann’s sparse matrix method [Wie86], step 3 can be implemented in
O((k + 1) · (k + 1) logN)) = e(1+o(1))

√
lnN ln lnN time.

For an excellent survey on the Quadratic Sieve and how it evolved from earlier factoring
methods, refer to the articles [Pom08b], [Pom96] and [Pom84] by Carl Pomerance. Several
enhancements of the QS are described in chapter 6 of [CP05].

Application 2: Index calculus method for discrete logarithms

The index calculus is a probabilistic method for computing discrete logarithms in groups that
are endowed with a notion of ‘smoothness’. An example of such a group is F×p , which can be
naturally identified with the numbers less than p. An element of F×p is ‘smooth’ if as an integer
it is a smooth number. The basic idea of the index calculus method is simple, and apparently
this too can be traced back to the work of Kraitchik [Kra26, Kra29]. It was later rediscovered
and analyzed by several other mathematicians including Adleman [Adl79].

Recall that, the discrete logarithm problem over F×p is the task of finding an integer x ∈
[0, p−2] such that ax = b mod p, given a generator a and an arbitrary element b of F×p . Going by
the conventional notation, we write x = loga b mod (p− 1). As before, let y be the smoothness
parameter, to be fixed later, and p1, . . . , pk be the primes less than y. The index calculus starts
by picking a random integer α ∈ [0, p− 2] and computing aα mod p. If aα mod p is y-smooth,
we factor it completely as aα = pe11 . . . pekk mod p. This gives us the following linear equation in
the indices,

α = e1 loga p1 + . . .+ ek loga pk mod (p− 1). (3)

Here, loga p1, . . . , loga pk are the unknowns. If we collect k such linear equations then ‘quite
likely’ the equations are linearly independent and we can solve for the loga pi’s modulo p − 1.
Now pick another random integer β ∈ [0, p − 2] and compute aβb mod p. If aβb mod p is also
y-smooth then we get another linear relation of the form,

β + loga b = f1 loga p1 + . . .+ fk loga pk mod (p− 1), (4)

by factoring as, aβb = pf11 . . . pfkk mod p. But this time loga b is the only unknown and we can

39



simply solve it from the above equation. This is the basic idea of the index calculus method.
To formalize it, we need to address the following three questions:

• How likely is it that aα mod p and aβb mod p are y-smooth ?

• What is the chance that the k equations are ‘linearly independent’ modulo p− 1 ?

• How do we solve linear equations modulo p− 1 ?

We have already seen the answer to the first question. Since α and β are randomly chosen and
a is a generator of F×p , both aα and aβb modulo p are uniformly distributed among the integers
in [1, p − 1]. Therefore, the probability that each of them is y-smooth is ψ(p−1,y)

p−1 . The second
question is also not difficult to answer. Using a counting argument it can be shown that the
determinant of the coefficient matrix formed by the k linear equations is invertible modulo p−1
with high probabilty. Also, solving a set of linear equations modulo p− 1 (in fact any integer)
is just like solving modulo a prime. In Gaussian elimination if we fail to invert an element then
using that element we can easily factor p − 1 and continue solving modulo the factors. In the
end we can compose the different modular solutions using Chinese Remaindering. All these can
be done in Õ(k3) time, hiding some polylog factors in p.

We are now ready to present the algorithm. We will show in the analysis that the optimum
choice of y is e(2−1+o(1))

√
ln p ln ln p.

24 Index calculus method
1. Find all the primes, p1, . . . , pk, less than y = e(2−1+o(1))

√
ln p ln ln p.

2. Set i = 1.
3. while i ≤ k do
4. Choose integer αi randomly from [0, p− 2]. Compute γi = aαi mod p.
5. If γi is y-smooth, let vi = (ei1, . . . , eik) where γi = pei11 . . . peikk . Set i = i+1.
6. If i = k + 1, check if v1, . . . , vk span Zkp−1. If not, goto step 2.
7. Solve for loga pi, 1 ≤ i ≤ k modulo p− 1 using equation 3 by Gaussian

elimination on v1, . . . , vk, and Chinese remaindering to compose solutions.
8. Keep choosing integer β randomly from [0, p−2] till aβb mod p is y-smooth.
9. Solve for loga b using equation 4.

Time complexity - The total time spent by the algorithm is dominated by the time spent
in the while-loop and the time spent in steps 7 and 8. In step 4, the probability that γi is
a y-smooth number is about ψ(p,y)

p ≈ u−u, where u = ln p
ln y (by Lemma 4.9). Checking if γi is

y-smooth in step 5 takes roughly O(k log p) time. Since, v1, . . . , vk span Zkp−1 with high proba-
bility, the expected time spent in the loop is O(k2uu log p). Time taken for Gaussian elimination
in step 7 is about O(k3), and the expected time spent in step 8 is O(kuu log p). So, the ex-
pected total time spent by the algorithm is O(k3 + k2uu log p). This expression is minimized

when u ≈ 2
√

ln p
ln ln p , implying that y = e(2−1+o(1))

√
ln p ln ln p. Therefore, the expected time taken

by the algorithm is e(2+o(1))
√

ln p ln ln p.

Pomerance [Pom87] showed that using an elliptic curve method for fast smoothness test,
the complexity of the index calculus method can be brought down to e(

√
2+o(1))

√
ln p ln ln p. For

further details on modifications of the index calculus method, refer to the survey by Schirokauer,
Weber and Denny [SWD96].

40



5 Concluding remarks

In writing this article, our main motive has been to introduce the reader to some of the basic
computational aspects of number theory and algebra. We do hope that the reader has gained
some familiarity and insight into the subject from the material presented here. Almost inevitably
though, we could not fit in many other interesting topics in this relatively short article. Elliptic
curves and Number Field Sieve being two of them. Also, for the sake of brevity and simplicity
of presentation, we have skipped finer details on some occassions and sometimes the algorithms
we have presented are not the best possible. The reader would find the references more helpful
in this regard to fill in the missing parts. For further reading, we recommend the excellent
books by von zur Gathen and Gerhard [GG03], Shoup [Sho09] and Crandall and Pomerance
[CP05], and the survey article by Buhler and Wagon [BW08].

A Appendix

A.1 The resultant

Let R be an integral domain and F be its field of fractions. Let f and g be two polynomials
in R[x] of degree n and m, respectively. Assume that gcd(f, g) is the unique, monic largest
common divisor of f and g over F.

Lemma A.1 The gcd(f, g) is nontrivial if and only if there exists polynomials s, t ∈ F[x], with
deg(s) < m and deg(t) < n, such that sf + tg = 0.

Proof: Suppose h = gcd(f, g). If gcd(f, g) 6= 1 then deg(h) > 1. Now, if we take s = g
h and

t = −f
h then deg(s) < m,deg(t) < n and sf + tg = 0.

To show the other direction, suppose there exist s and t with deg(s) < m,deg(t) < n and
sf + tg = 0. If gcd(f, g) = 1 then by unique factorization over F, g should divide s. But, this
is not possible as deg(s) < deg(g). Hence gcd(f, g) is nontrivial.

Let f =
∑n

i=0 fix
i and g =

∑m
j=0 gjx

j , where fi, gj ∈ F for 0 ≤ i ≤ n and 0 ≤ j ≤
m. Suppose s =

∑m−1
k=0 αkx

k and t =
∑n−1

`=0 β`x
`. Treat the coefficients α0, . . . , αm−1 and

β0, . . . , βn−1 as variables. Now, consider the relation sf + tg = 0. By multiplying s, f and t, g,
and then equating the coefficients of xi to zero for all 0 ≤ i ≤ n + m − 1, we get a system of
n+m homogeneous linear equations in the variables α0, . . . , αm−1, β0, . . . , βn−1. The coefficient
matrix of this linear system is called the Sylvester matrix of f and g, and is denoted by S(f, g).
It is easy to verify that S(f, g) is the following (n+m)× (n+m) matrix.

S(f, g) =



fn gm
fn−1 fn gm−1 gm
...

...
. . .

...
...

. . .
...

... fn g1
...

. . .
...

... fn−1 g0
...

. . .

f1
...

... g0 gm

f0
...

...
. . .

...

f0
...

. . .
...

. . .
...

. . .
...

f0 g0



.

41



The resultant of f and g is defined as, Resx(f, g) = det(S(f, g)). By Lemma A.1, the above
linear system has a nonzero solution if and only if gcd(f, g) is nontrivial. This has the following
implication.

Lemma A.2 The gcd(f, g) is nontrivial if and only if Resx(f, g) = det(S(f, g)) = 0.

Another useful fact about the resultant is the following.

Lemma A.3 There exist s, t ∈ R[x], with deg(s) < m and deg(t) < n, such that sf + tg =
Resx(f, g).

Proof: If gcd(f, g) 6= 1, then from Lemma A.1 and A.2 it follows that, there exist s′, t′ ∈ F[x],
with deg(s′) < m and deg(t′) < n, such that s′f + t′g = 0 = Resx(f, g). Since a coefficient of
s′ or t′ is of the form a

b , where a, b ∈ R and b 6= 0, by clearing out the denominators of the
coefficients of s′ and t′ we get s, t ∈ R[x] such that sf + tg = 0. Clearly, deg(s) = deg(s′) < m
and deg(t) = deg(t′) < n.

Suppose gcd(f, g) = 1. By extended Euclidean algorithm, there exist s′, t′ ∈ F[x], with
deg(s′) < m and deg(t′) < n, such that s′f + t′g = 1. Let s′ =

∑m−1
k=0 αkx

k and t′ =
∑n−1

`=0 β`x
`.

Once again, by multiplying s′, f and t′, g, and then equating the coefficients of xi for 0 ≤ i ≤
n + m − 1, we get a linear system in α0, . . . , αm−1, β0, . . . , βn−1 with S(f, g) as the coefficient
matrix. By Cramer’s rule, the polynomials s = Resx(f, g) · s′ and t = Resx(f, g) · t′ both belong
to R[x]. Therefore, sf + tg = Resx(f, g).

A.2 Gram-Schmidt orthogonalization

Let v1, . . . , vn be linearly independent vectors in Rm and V be the space spanned by them.
Gram-Schmidt orthogonalization is a technique to find orthogonal vectors v∗1, . . . , v

∗
n such that

the space spanned by them is V. We denote the dot product of two vectors u and w by u.w
and ‖u‖ =

√
u.u is the 2-norm of u. The construction of the orthogonal vectors proceeds as

follows,

v∗1 = v1 and

v∗i = vi −
∑
j<i

µijv
∗
j for 2 ≤ i ≤ n where, µij =

vi.v∗j
v∗j .v∗j

for 1 ≤ j < i.

Define the projection matrix as M = (µij)1≤i,j≤n where µii = 1 for all i, µij = 0 for j > i

and µij =
vi.v∗j
v∗j.v∗j for j < i. Let V be the n ×m matrix with v1, . . . , vn as the rows and V ∗ be

the matrix with v∗1, . . . , v
∗
n as the rows. The following facts are easy to verify and are left as

exercise.

Lemma A.4 1. The vectors v∗1, . . . , v
∗
n are mutually orthogonal and the space spanned by

them is V.

2. v∗i is the projection of vi on the orthogonal complement of Vi−1, the space spanned by
v1, . . . , vi−1 which is also the space spanned by v∗1, . . . , v

∗
i−1. Hence ‖v∗i ‖ ≤ ‖vi‖ for all i.

3. V = M · V ∗.

4. det(M) = 1 and so if m = n then det(V ) = det(V ∗).

42



References

[Adl79] Leonard Adleman. A subexponential algorithm for the discrete logarithm problem
with applications to cryptography. In Proceedings of the 20th Annual Symposium on
Foundations of Computer Science, pages 55–60, 1979.

[AGP94] W. R. Alford, A. Granville, and C. Pomerance. There are Infinitely Many Carmichael
Numbers. Annals of Mathematics, 139:703–722, 1994.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[Ajt98] Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for Randomized Re-
ductions (Extended Abstract). In STOC, pages 10–19, 1998.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals of
Mathematics, 160(2):781–793, 2004.

[AM94] Leonard M. Adleman and Kevin S. McCurley. Open problems in number theoretic
complexity, II. In ANTS, pages 291–322, 1994.

[AM09] Divesh Aggarwal and Ueli Maurer. Breaking RSA Generically is Equivalent to Fac-
toring. In Advances in Cryptology - EUROCRYPT 2009, volume 5479 of Lecture
Notes in Computer Science, pages 36–53. Springer-Verlag, 2009.

[AR04] Dorit Aharonov and Oded Regev. Lattice Problems in NP ∩ coNP. In FOCS, pages
362–371, 2004.

[AS05] Manindra Agrawal and Nitin Saxena. Automorphisms of Finite Rings and Applica-
tions to Complexity of Problems. In STACS, pages 1–17, 2005.

[Bac84] Eric Bach. Discrete Logarithms and Factoring. Technical report, Berkeley, CA, USA,
1984.

[BCS97] Peter Bürgisser, Michael Clausen, and Mohammad A. Shokrollahi. Algebraic Com-
plexity Theory, volume 315 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, 1997.

[Ber67] Elwyn Berlekamp. Factoring Polynomials Over Finite Fields. Bell System Technical
Journal, 46:1853–1859, 1967.

[Ber70] E. R. Berlekamp. Factoring Polynomials Over Large Finite Fields. Mathematics of
Computation, 24(111):713–735, 1970.

[BK78] R. P. Brent and H. T. Kung. Fast Algorithms for Manipulating Formal Power Series.
J. ACM, 25(4):581–595, 1978.

[Bon99] Dan Boneh. Twenty Years of Attacks on the RSA Cryptosystem. Notices of the
AMS, 46:203–213, 1999.

[BS08] Joseph P. Buhler and Peter Stevenhagen, editors. Algorithmic Number Theory: Lat-
tices, Number Fields, Curves and Cryptography, volume 44 of Mathematical Sciences
Research Institute Publications. Cambridge University Press, 2008.

43



[BSKR06] Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Radhakrishnan. Subspace Polyno-
mials and List Decoding of Reed-Solomon Codes. In FOCS, pages 207–216, 2006.

[BW08] Joe Buhler and Stan Wagon. Basic algorithms in number theory. Algorithmic Number
Theory: Lattices, Number Fields, Curves and Cryptography, MSRI Publications,
44:25–68, 2008.

[Car10] R. D. Carmichael. Note on a New Number Theory Function. Bull. Amer. Math.
Soc., 16:232–238, 1910.

[CEP83] Earl Rodney Canfield, Paul Erdös, and Carl Pomerance. On a problem of Oppenheim
concerning “factorisatio numerorum”. Journal of Number Theory, 17:1–28, 1983.

[Cop93] Don Coppersmith. Modifications to the number field sieve. Journal of Cryptology,
6:169–180, 1993.

[Cop97] Don Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

[CP05] Richard Crandall and Carl Pomerance. Prime Numbers: A Computational Perspec-
tive. Springer, USA, 2005.

[CT65] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation
of Complex Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.

[CW87] Don Coppersmith and Shmuel Winograd. Matrix Multiplication via Arithmetic
Progressions. In STOC, pages 1–6, 1987.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

[Dic30] Karl Dickman. On the frequency of numbers containing prime factors of a certain
relative magnitude. Arkiv för Mathematik, Fysik, 22:1–14, 1930.

[Dix81] John D. Dixon. Asymptotically Fast Factorization of Integers. Mathematics of
Computation, 36(153):255–260, 1981.

[DKSS08] Anindya De, Piyush P. Kurur, Chandan Saha, and Ramprasad Saptharishi. Fast
integer multiplication using modular arithmetic. In STOC, pages 499–506, 2008.

[Evd94] Sergei Evdokimov. Factorization of polynominals over finite fields in subexponential
time under GRH. In ANTS, pages 209–219, 1994.

[Fou85] E Fouvry. Theoreme de Brun-Titchmarsh; application au theoreme de Fermat. In-
vent. Math., 79:383–407, 1985.

[Für07] Martin Fürer. Faster integer multiplication. In STOC, pages 57–66, 2007.

[GG98] Oded Goldreich and Shafi Goldwasser. On the Limits of Non-Approximability of
Lattice Problems. In STOC, pages 1–9, 1998.

[GG03] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, New York, NY, USA, 2003.

[Gor93] Daniel M. Gordon. Discrete Logarithms in GF(p) Using the Number Field Sieve.
SIAM J. Discrete Math., 6(1):124–138, 1993.

44



[Gra08] Andrew Granville. Smooth numbers: computational number theory and beyond.
Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography,
MSRI Publications, 44:267–323, 2008.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and
algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6):1757–
1767, 1999.

[Gur04] Venkatesan Guruswami. List Decoding of Error-Correcting Codes (Winning Thesis
of the 2002 ACM Doctoral Dissertation Competition), volume 3282 of Lecture Notes
in Computer Science. Springer, 2004.

[Hen18] Kurt Hensel. Eine neue Theorie der algebraischen Zahlen. Mathematische Zeitschift,
2:433–452, 1918.

[HR07] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem
to within almost polynomial factors. In STOC, pages 469–477, 2007.

[JP92] Hendrik W. Lenstra Jr. and Carl Pomerance. A Rigorous Time Bound for Factoring
Integers. Journal of the American Mathematical Society, 5:483–516, 1992.

[JP05] Hendrik W. Lenstra Jr. and Carl Pomerance. Primality
testing with Gaussian periods, July 2005. Available from
http://www.math.dartmouth.edu/ carlp/PDF/complexity12.pdf.

[Jr.87] Hendrik W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathe-
matics, 126:649–673, 1987.

[Jr.08] Hendrik W. Lenstra Jr. Lattices. Algorithmic Number Theory: Lattices, Number
Fields, Curves and Cryptography, MSRI Publications, 44:127–181, 2008.

[Jus76] Jørn Justesen. On the complexity of decoding Reed-Solomon codes. IEEE Transac-
tions on Information Theory, 22(2):237–238, 1976.

[Kal85] Erich Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate
integral polynomial factorization. SIAM J. Comput., 14(2):469–489, 1985.

[Kal89] Erich Kaltofen. Factorization of Polynomials Given by Straight-Line Programs. In
Randomness and Computation, pages 375–412. JAI Press, 1989.

[Kat01] Stefan Katzenbeisser. Recent Advances in RSA Cryptography. Kluwer Academic
Publishers, Norwell, MA, USA, 2001.

[Kho05] Subhash Khot. Hardness of approximating the shortest vector problem in lattices.
J. ACM, 52(5):789–808, 2005.

[KM04] Neal Koblitz and Alfred J. Menezes. A Survey of Public-Key Cryptosystems. SIAM
Rev., 46(4):599–634, 2004.

[Kob87] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[Kra26] M. Kraitchik. Théorie des Nombres, Tome II. 1926.

[Kra29] M. Kraitchik. Recherches sur la Théorie des Nombres, Tome II. 1929.

45



[KS91] Erich Kaltofen and B. David Saunders. On Wiedemann’s Method of Solving Sparse
Linear Systems. In AAECC, pages 29–38, 1991.

[KS98] Erich Kaltofen and Victor Shoup. Subquadratic-time factoring of polynomials over
finite fields. Math. Comput., 67(223):1179–1197, 1998.

[KS05] Neeraj Kayal and Nitin Saxena. On the Ring Isomorphism and Automorphism
Problems. In IEEE Conference on Computational Complexity, pages 2–12, 2005.

[KU08] Kiran S. Kedlaya and Christopher Umans. Fast Modular Composition in any Char-
acteristic. In FOCS, pages 146–155, 2008.

[Len00] Arjen K. Lenstra. Integer factoring. Des. Codes Cryptography, 19(2/3):101–128,
2000.

[LJL82] Arjen K. Lenstra, Hendrik W. Lenstra Jr., and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[LJMP90] Arjen K. Lenstra, Hendrik W. Lenstra Jr., Mark S. Manasse, and John M. Pollard.
The Number Field Sieve. In STOC, pages 564–572, 1990.

[LN94] Rudolf Lidl and Harald Neiderreiter. Introduction to finite fields and their applica-
tions. Cambridge University Press, 1994.

[MB75] M. Morrison and J. Brillhart. A method of factoring and the factorization of F7.
Mathematics of Computation, 29:183–205, 1975.

[McC90] Kevin S. McCurley. The Discrete Logarithm Problem. In Proceedings of Symposia
in Applied Mathematics, volume 42, pages 49–74, 1990.

[Mic00] Daniele Micciancio. The Shortest Vector Problem is NP-hard to approximate to
within some constant. SIAM Journal on Computing, 30(6):2008–2035, 2000.

[Mig74] Maurice Mignotte. An Inequality About Factors of Polynomials. Mathematics of
Computation, 28(128):1153–1157, 1974.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci.,
13(3):300–317, 1976.

[Min10] Hermann Minkowski. Geometrie der Zahlen. B. G. Teubner, Leipzig, 1910.

[MS81] Florence Jessie MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting
Codes. North Holland, Amsterdam, 1981.

[MW99] Ueli M. Maurer and Stefan Wolf. The Relationship Between Breaking the
Diffie–Hellman Protocol and Computing Discrete Logarithms. SIAM J. Comput.,
28(5):1689–1721, 1999.

[Odl00] Andrew M. Odlyzko. Discrete Logarithms: The Past and the Future. Des. Codes
Cryptography, 19(2/3):129–145, 2000.

[PH78] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Transactions on Information Theory,
24:106–110, 1978.

46



[Pol78] J. M. Pollard. Monte Carlo Methods for Index Computation mod p. Mathematics
of Computation, 32(143):918–924, 1978.

[Pom82] Carl Pomerance. Analysis and comparison of some integer factoring algorithms.
In H.W. Lenstra Jr. and R. Tijdeman, editors, Computational Methods in Number
Theory, volume 154 of Math. Centrum Tract, pages 89–139, 1982.

[Pom84] Carl Pomerance. The Quadratic Sieve Factoring Algorithm. In EUROCRYPT, pages
169–182, 1984.

[Pom87] Carl Pomerance. Fast, rigorous factorization and discrete logarithm algorithms. In
Discrete Algorithms and Complexity, pages 119–143. Academic Press, 1987.

[Pom94] Carl Pomerance. The Role of Smooth Numbers in Number Theoretic Algorithms.
In Proceedings of the International Congress of Mathematicians, 1994.

[Pom96] Carl Pomerance. A Tale of Two Sieves. Notices of the American Mathematical
Society, 43:1473–1485, 1996.

[Pom08a] Carl Pomerance. Elementary thoughts on discrete logarithms. Algorithmic Number
Theory: Lattices, Number Fields, Curves and Cryptography, MSRI Publications,
44:385–396, 2008.

[Pom08b] Carl Pomerance. Smooth numbers and the quadratic sieve. Algorithmic Number
Theory: Lattices, Number Fields, Curves and Cryptography, MSRI Publications,
44:69–81, 2008.

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory,
12(1):128–138, 1980.

[Ros] Michael Rosenblum. A fast algorithm for rational function approximations. Available
from http://people.csail.mit.edu/madhu/FT01/notes/rosenblum.ps.

[RS60] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. Journal
of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Commun. ACM, 21(2):120–126,
1978.

[Sch08] Oliver Schirokauer. The impact of the number field sieve on the discrete loga-
rithm problem in finite fields. Algorithmic Number Theory: Lattices, Number Fields,
Curves and Cryptography, MSRI Publications, 44:397–420, 2008.

[Sho09] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, New York, 2009. Available from http://shoup.net/ntb/.

[SS71] A Schönhage and V Strassen. Schnelle Multiplikation grosser Zahlen. Computing,
7:281–292, 1971.

[Ste08] Peter Stevenhagen. The Number Field Sieve. Algorithmic Number Theory: Lattices,
Number Fields, Curves and Cryptography, MSRI Publications, 44:83–100, 2008.

[Str69] V. Strassen. Gaussian Elimination is not Optimal. Numerische Mathematik,
13(3):354–356, 1969.

47



[Sud] Madhu Sudan. Notes on an efficient solution to the ra-
tional function interpolation problem. Available from
http://people.csail.mit.edu/madhu/FT01/notes/rational.ps.

[Sud97] Madhu Sudan. Decoding of Reed Solomon Codes beyond the Error-Correction
Bound. J. Complexity, 13(1):180–193, 1997.

[SWD96] Oliver Schirokauer, Damian Weber, and Thomas F. Denny. Discrete logarithms: The
effectiveness of the index calculus method. In ANTS, pages 337–361, 1996.

[Val89] B. Vallée. Provably fast integer factoring with quasi-uniform small quadratic
residues. In STOC ’89: Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 98–106, 1989.

[vzGP01] Joachim von zur Gathen and Daniel Panario. Factoring Polynomials Over Finite
Fields: A Survey. J. Symb. Comput., 31(1/2):3–17, 2001.

[vzGS92] Joachim von zur Gathen and Victor Shoup. Computing Frobenius Maps and Fac-
toring Polynomials. Computational Complexity, 2:187–224, 1992.

[WB86] Lloyd R. Welch and Elwyn R. Berlekamp. Error correction for algebraic block codes,
December 1986. U.S. Patent Number 4,633,470.

[Wie86] Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE
Transactions on Information Theory, 32(1):54–62, 1986.

48


