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Abstract

In a Nisan-Wigderson design polynomial (in short, a design polynomial), every pair of
monomials share a few common variables. A useful example of such a polynomial, introduced
in [KSS14], is the following:

NWd,k(x) = ∑
h∈Fd [z], deg(h)≤k

d−1

∏
i=0

xi,h(i),

where d is a prime, Fd is the finite field with d elements, and k � d. The degree of the gcd of
every pair of monomials in NWd,k is at most k. For concreteness, we fix k = d

√
de. The family

of polynomials NW := {NWd,k : d is a prime} and close variants of it have been used as hard
explicit polynomial families in several recent arithmetic circuit lower bound proofs. But, unlike
the permanent, very little is known about the various structural and algorithmic/complexity
aspects of NW beyond the fact that NW ∈ VNP. Is NWd,k characterized by its symmetries? Is
it circuit-testable, i.e., given a circuit C can we check efficiently if C computes NWd,k? What is
the complexity of equivalence test for NW , i.e., given black-box access to a f ∈ F[x], can we
check efficiently if there exists an invertible linear transformation A such that f = NWd,k(A · x)?
Characterization of polynomials by their symmetries plays a central role in the geometric com-
plexity theory program. Here, we answer the first two questions and partially answer the third.

We show that NWd,k is characterized by its group of symmetries over C, but not over R. We
also show that NWd,k is characterized by circuit identities which implies that NWd,k is circuit-
testable in randomized polynomial time. As another application of this characterization, we
obtain the “flip theorem” for NW .

We give an efficient equivalence test for NW in the case where the transformation A is a
block-diagonal permutation-scaling matrix. The design of this algorithm is facilitated by an
almost complete understanding of the group of symmetries of NWd,k: We show that if A is in
the group of symmetries of NWd,k then A = D · P, where D and P are diagonal and permutation
matrices respectively. This is proved by completely characterizing the Lie algebra of NWd,k, and
using an interplay between the Hessian of NWd,k and the evaluation dimension.
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1 Introduction

Proving super-polynomial lower bounds for Boolean and arithmetic circuits computing explicit
functions is the holy grail of circuit complexity. Over the past few decades, research on lower
bounds has gradually pushed the frontier by bringing in novel methods in the arena and carefully
building upon the older ones. Some of the notable achievements are – lower bounds for AC0 cir-
cuits [FSS81, Ajt83, Hås86], monotone circuits [Raz85, AB87], ACC(p) circuits [Raz87, Smo87] and
ACC circuits [Wil14, MW18] in the Boolean case, and lower bounds for homogeneous depth three
circuits [NW97], multilinear formulas [Raz09, RY09], homogeneous depth four circuits [GKKS14,
KLSS17, KS17b] and the lower bound on the depth of circuits for MaxFlow [Mul99] in the arith-
metic case. The slow progress in circuit lower bounds is explained by a few “barrier” type results,
particularly by the notion of natural proofs [RR97] for Boolean circuits, and the notion of alge-
braically natural proofs [FSV17, GKSS17] for arithmetic circuits 1. Most lower bound proofs, but
not all 2, do fit in the natural proof framework.

It is apparent from the concept of natural proofs and its algebraic version that in order to avoid
this barrier, we need to develop an approach that violates the so called constructivity criterion
or the largeness criterion. Focusing on the latter criterion, it means, if an explicit function has a
special property that random functions do not have, and if a lower bound proof for circuits com-
puting this explicit function uses this special property critically, then such a proof circumvents
the natural proof barrier automatically. For polynomial functions (simply polynomials), character-
ization by symmetries is such a special property3, and the geometric complexity theory (GCT) pro-
gram [MS01] is an approach to proving super-polynomial arithmetic circuit lower bound by cru-
cially exploiting this property of the permanent and the determinant polynomials. From hereon,
our discussion will be restricted to polynomial functions and arithmetic circuits.

The permanent family is complete for the class VNP and the determinant family is complete for
the class VBP under p-projections. Class VBP ⊆ VP consists of polynomial families that are com-
putable by poly-size algebraic branching programs; this class has another interesting complete
family, namely the iterated matrix multiplication (IMM) family. These three polynomial families
have appeared in quite a few lower bound proofs [NW97, GK98, MR04, Raz09, RY09, GKKS14,
FLMS15, KS17b, KST16b, CLS18] in the arithmetic circuit literature. That permanent and determi-
nant are characterized by their respective groups of symmetries are classical results [MM62,Fro97].
It has also been shown that IMM is characterized by its symmetries [Ges16, KNST17]. There are
two other polynomial families in VP, the power symmetric polynomials and the sum-product
polynomials, that are known to possess this rare property (see Section 2 in [CKW11]). However,
the elementary symmetric polynomial is not characterized by its symmetries [Hüt16].

In the recent years, another polynomial, namely the Nisan-Wigderson design polynomial (in

1Presently, the evidences in favor of existence of one-way functions (which implies the natural proof barrier) are
much stronger than that of existence of succinct hitting-set generators (which implies the algebraically natural proof
barrier). However, there are a few results in algebraic complexity that exhibit, unconditionally [EGdOW18] or based on
more plausible complexity theoretic assumptions [BIJL18], the limitations of some of the current techniques in proving
lower bounds for certain restricted arithmetic models.

2like the lower bounds for monotone and ACC circuits
3A random polynomial is not characterized by its symmetries with high probability (see Proposition 3.4.9 in [Gro12])
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short, design polynomial), and close variants of it have been used intensely as hard explicit
polynomials in several lower bound proofs for depth three, depth four and depth five circuits
[KSS14,CM14,KS14a,KS14b,KLSS17,KS17b,KS16a,KS16c,KS16b,KST16a,FKS16,KS17a]. In some
cases, the design polynomial (Definition 2.2) yielded lower bounds that are not known yet for the
permanent, determinant and IMM (as in [KS16a,KS16b,FKS16,KS17a]). It can be easily shown that
the design polynomial defines a family in VNP (see Observation B.1). But, very little is otherwise
known about the various structural and algorithmic/complexity aspects of this family. Like the
permanent, is it characterized by its symmetries? Is it circuit testable? What is the complexity of
equivalence test for the Nisan-Wigderson design polynomial? It is reasonable to seek answers to
these fundamental questions for a natural family like the design polynomials. Moreover, in the
light of some recent developments in GCT [IP16, BIP16, IMW17], it may be worth studying other
polynomial families (like the design polynomials and the IMM) that have some of the “nice fea-
tures” of the permanent and the determinant and that may also fit in the GCT framework. We
refer the reader to [Gro12, Aar17, Mul12, Reg02] for an overview of GCT. If the design polynomial
family turns out to be in VP then that would be an interesting result by itself with potentially im-
portant complexity theoretic and algorithmic consequences.

In this article, we answer some of the above questions on the design polynomial pertaining to its
group of symmetries. Our results accord a fundamental status to this polynomial family.

1.1 Our results

Some of the basic definitions and notations are given in Section 2. The design polynomial NWd,k is
defined (in Definition 2.2) using two parameters, d (the degree) and k (the “intersection” parame-
ter). Our results hold for any k ∈ [1, d

4 − 5], but (from the lower bound point of view) it is best to
think of k as dε for some arbitrarily chosen constant ε ∈ (0, 1). The number of variables in NWd,k
is n = d2. Any polynomial can be expressed as an affine projection of NWd,k, for a possibly large d
(see Observation B.2). For notational convenience, we will drop the subscripts d and k whenever
they are clear from the context. Let G f be the group of symmetries of a polynomial f over an
underlying field F (see Definition 2.6).

Theorem 1 (Characterization by symmetries). Let F = C be the underlying field and f be a homoge-
neous degree-d polynomial in n = d2 variables. If GNW ⊆ G f then f = α ·NW for some α ∈ C.

The theorem, proven in Section 3, holds over any field F having a d-th root of unity ζ 6= 1 and
|F| 6= d + 1. We also show in Section 4.3 that NW is not characterized by its symmetries over
R, Q and finite fields not containing a d-th primitive root of unity – in contrast, the permanent is
characterized by its symmetries over these fields. The symmetries of NW have a nice algorithmic
application: Although, it is not known if NW is computable by a poly(d) size circuit (Definition
2.1), the following theorem shows that checking if a given circuit computes NW can be done ef-
ficiently. In this article, whenever we mention size-s circuit, we mean size-s circuit with degree
bounded by δ(s), which is an arbitrarily fixed polynomial function4 of s. Let x be the set of n
variables of NW. We will identify a circuit with the polynomial computed by it.

4This is the interesting scenario in algebraic complexity theory as polynomial families in VP admit circuits with
degree bounded by a polynomial function of size.
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Theorem 2 (Circuit testability). There is a randomized algorithm that takes input black-box access to a
circuit C(x) of size s over a finite field F, where |F| ≥ 4 · δ(s), and determines correctly whether or not
C(x) = NW with high probability, using poly(s) field operations.

A suitable version of the theorem also holds over Q, R and C. Such a theorem is known for the
permanent with two different proofs, one using self-reducibility of the permanent [Lip89] and
the other using its symmetries [Mul10]. We do not know if NW has a self-reducible property like
the permanent, but its symmetries are powerful enough to imply the above result. The theorem
is proven in Section 5 by showing that NW is characterized by circuit identities over any field
(see Definition 2.10). This characterization, which uses the symmetries of NW, also implies the
following result. For this result, we can assume δ(s) ≥ d, without any loss of generality.

Theorem 3 (Flip theorem). Suppose NW is not computable by circuits of size s over a finite field F, where
|F| ≥ 4 · δ(s). Then, there exist points a1, . . . , am ∈ Fn, where m = poly(s), such that for every circuit
C over F of size at most s, there is an ` ∈ [m] satisfying C(a`) 6= NW(a`). A set of randomly generated
points a1, . . . , am ∈r Fn has this property with high probability. Moreover, black-box derandomization of
polynomial identity testing for size-(10s) circuits over F using poly(s) field operations implies that the
above-mentioned points can be computed deterministically using poly(s) field operations.

An appropriate version of the theorem also holds over Q, R and C. The flip theorem is known
for the permanent [Mul10, Mul11] 5. Similar theorems have also been shown for the 3SAT prob-
lem [FPS08,Ats06]. Results of this kind show that if a certain function (3SAT or permanent or NW)
is not computable by small circuits then there exists a short list of efficiently computable “hard in-
stances” that fail all small circuits.

We show another algorithmic application of the knowledge of the symmetries of NW in solving a
natural case of the equivalence test problem for NW, namely block-diagonal permutation-scaling
equivalence test (BD-PS equivalence test, in short). An equivalence test for NW checks if a given
polynomial f ∈ F[x] satisfies f = NW(A · x), where A is an invertible linear transformation. A
BD-PS equivalence test is the special case where A is a product of a block-diagonal permutation
matrix and an invertible scaling matrix. The following theorem is proved in Section 6.

Theorem 4 (BD-PS equivalence test for NW). Let k ∈ [1, d
3 ], F be a finite field such that d - (|F| − 1)

and |F| ≥ 4d. There is a randomized algorithm that takes input black-box access to a degree d polynomial
f ∈ F[x] and correctly decides if f is BD-PS equivalent to NW with high probability. If the answer is yes
then it outputs a A such that f = NW(A · x), where A is a product of a block-diagonal permutation matrix
and an invertible scaling matrix. The running time is poly(d, log |F|).

An appropriate version of the theorem holds over R (details given in Section F.4 of the Appendix).
Efficient equivalence tests are known for the Permanent and IMM over C, Q and finite fields
[Kay12, KNST17] and for the Determinant over C and finite fields [Kay12, GGKS19]. In [Kay12],
it was shown that equivalence test for the Permanent reduces to permutation-scaling (PS) equiva-
lence test. We show in Section 6 that equivalence test for NW reduces to block-permuted equiva-
lence test6,i.e., we can assume without loss of generality that A is a block-permuted matrix. The-
orem 4 solves the equivalence test for NW in the case where A is a block-diagonal matrix and

5We have borrowed the name ‘flip theorem’ from these work.
6 It decides if there exists a block-permuted matrix (Definition 2.3) A ∈ GLd2 (F) such that f = NW(A · x)
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additionally has the permutation-scaling (PS) structure. Even this case is quite nontrivial and may
serve as an important ingredient for an efficient general equivalence test for NW. The design of
the test in Theorem 4 is facilitated by a near complete understanding of the symmetries of NW as
stated in the following theorem. The proof is given in Section 4.2.

Theorem 5 (Structure of GNW). Let F be the underlying field of size greater than (d
2) and char(F) 6= d.

If A ∈ GNW then A = D · P, where D, P ∈ GNW are diagonal and permutation matrices respectively.

The group of symmetries of the permanent has a similar structure [MM62]. The above structure
also plays a crucial role in showing that NW is not characterized by its symmetries over R. The
proof of the theorem involves a complete characterization of the Lie algebra of NW, and an in-
terplay between the Hessian of NW and the evaluation dimension measure. We first prove the
structural results (Theorems 1 and 5) and then show their algorithmic applications (Theorems 2, 3
and 4). Because of space constraint, the proof details of the theorems are shifted to the appendix.
A comparison between the Permanent and NW is summarized in a table in Section A.

2 Preliminaries

Notations. The set of natural numbers is N = {0, 1, 2 . . .} and N× = N\{0}. For r ∈ N×,
[r] = {0, . . . , r − 1}. The general linear group GLr(F) is the group of all r × r invertible matrices
over F. Throughout this article, poly(r) means rO(1) and exp(r) means 2r. For a prime d, Fd is the
finite field of order d whose elements are naturally identified with [d] = {0, 1, . . . , d− 1}. Let x be
the following disjoint union of variables,

x :=
⊎

i∈[d]
xi, (1)

where xi := {xi,0, . . . , xi,d−1}. The total number of variables in x is n = d2. F[x] and Fd[z] denote the
rings of multivariate and univariate polynomials over F and Fd in x and z variables respectively,
and the set Fd[z]k := {h ∈ Fd[z] : deg(h) ≤ k}. We will represent elements of F by lower case
Greek alphabets (α, β, ...), elements of Fd by lower case Roman alphabets (a, b, ...), multivariate
polynomials over F by f , g and q, univariate polynomials over Fd by p and h, matrices over F by
capital letters (A, B, C, ...), and the set of variables by x, y, z and vectors over F by a, b. Variable
sets are interpreted as column vectors when left multiplied to a matrix. For instance, in A · x, x is
the vector (x0,0 x0,1 . . . x0,d−1 . . . xd−1,0 xd−1,1 . . . xd−1,d−1)

T, and we say A is applied on x.

2.1 Algebraic preliminaries

A polynomial f is homogeneous if the degree of all the monomials of f are the same. Polynomial
f ∈ F[x] is set-multilinear in the sets x0, . . . , xd−1 (as defined in Equation (1)) if every monomial
contains exactly one variable from each set xi for i ∈ [d].

Definition 2.1 (Arithmetic circuit). An arithmetic circuit C over F is a directed acyclic graph in
which a node with in-degree zero is labelled with either a variable or a F-element, an edge is
labelled with a F-element, and other nodes are labelled with + and ×. Computation proceeds in
a natural way: a node with in-degree zero computes its label, an edge scales a polynomial by its
label, and a node labelled with +/× computes the sum/product of the polynomials computed
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at the end of the edges entering the node. The polynomials computed by nodes with out-degree
zero are the output of C. The size of C is the sum of the number of nodes and edges in the graph.
The degree of C is the maximum over the degree of the polynomials computed at all nodes of C.

Definition 2.2 (Nisan-Wigderson polynomial). Let d > 2 be a prime and k ∈ N. The Nisan-
Wigderson design polynomial is defined as in [KSS14] (which is inspired by the Nisan-Wigderson
set-systems [NW94]),

NWd,k(x) := ∑
h∈Fd[z]k

∏
i∈Fd

xi,h(i).

It is a degree-d homogeneous and set-multilinear polynomial in n = d2 variables, having dk+1

monomials. We drop the subscripts d, k for notational convenience. NW satisfies the ‘low inter-
section’ property, meaning any two monomials of NW have at most k variables in common. This
follows from the fact that the monomials are obtained from polynomials in Fd[z]k.

Definition 2.3 (Block-permuted matrix). A matrix A ∈ Fd2×d2
is a block-permuted matrix with

block size d if A = B · (P ⊗ Id), where B ∈ Fd2×d2
is a block-diagonal matrix with block size d,

P ∈ Fd×d is a permutation matrix, and Id is the d× d identity matrix.

Definition 2.4 (Evaluation dimension). Let f ∈ F[y] and z ⊆ y. The evaluation dimension of f
with respect to z is,

evalDimz( f ) := dim( F-span { f (y)|z=a : a ∈ F|z|} ).

Definition 2.5 (Hessian). Let f ∈ F[y] be a polynomial in y = {y1, y2, . . . , yn} variables. The
Hessian of f is the following matrix in (F[y])n×n,

H f (y) :=
( ∂2 f

∂yi · ∂yj

)
i,j∈[n]

.

We would need the following property of H f (y) that can be proved using chain-rule of derivatives.

Lemma 2.1 (Lemma 2.6 of [CKW11]). Let g ∈ F[y] and f = g(A · y) for some A ∈ Fn×n. Then,

H f (y) = AT · Hg(A · y) · A.

Definition 2.6 (Group of symmetries). Let f ∈ F[y] be an n-variate polynomial. The set G f =
{A ∈ GLn(F) : f (A · y) = f (y)} forms a group under matrix multiplication and it is called the
group of symmetries of f over F.

Definition 2.7 (Lie algebra). Let f ∈ F[y] be a polynomial in y = {y1, y2, . . . , yn} variables. The
Lie algebra of f , denoted by g f , is the set of matrices B = (bi,j)i,j∈[n] ∈ Fn×n satisfying the relation,

∑
i,j∈[n]

bi,j · yj ·
∂ f
∂yi

= 0.

It is easy to check that g f is a vector space over F. The following property relates the Lie algebras
of f (y) and f (A · y) for A ∈ GLn(F). See Proposition 58 of [Kay12] for a proof of this fact.
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Lemma 2.2 (Conjugacy of Lie algebras). Let g ∈ F[y] be an n-variate polynomial. If f (y) = g(A · y)
for A ∈ GLn(F), then g f = A−1 · gg · A.

Lemma 2.3. [Kay12] Given black-box access to an n-variate degree d polynomial f ∈ F[x], a basis of g f
can be computed in randomized poly(n, d, ρ) time, where ρ is the bit complexity of the coefficients of f .

Over C, the Lie algebra g f is related to the group of symmetries G f as stated in the following
definition. For B ∈ Cn×n, let eB := ∑i∈N

Bi

i! ∈ Cn×n (the series always converges).

Definition 2.8 (Continuous and discrete symmetries). Let f ∈ C[y]. If A ∈ g f then etA ∈ G f for
every t ∈ R (see [Hal15] for a proof of this fact). Elements of the set {etA : A ∈ g f and t ∈ R} are
the continuous symmetries of f . All the other symmetries in G f are the discrete symmetries of f .

Definition 2.9 (Characterization by symmetries). A homogeneous degree-d polynomial g ∈ F[y]
is said to be characterized by its symmetries if for every degree-d homogeneous polynomial f ∈ F[y],
Gg ⊆ G f implies that f (y) = α · g(y) for some α ∈ F.

Definition 2.10 (Characterization by circuit identities). Let g ∈ F[y] be an n-variate polynomial,
and z, u be two sets of constantly many variables and |z| = c. Suppose that there exist m = poly(n)
polynomials q1(z, u), . . . , qm(z, u) over F such that for every i ∈ [m], qi is computable by a constant
size circuit and there are matrices Ai1, . . . , Aic ∈ F[u]n×n computable by poly(n) size circuits, and
the following condition is satisfied: For f ∈ F[y], qi( f (Ai1 · y), . . . , f (Aic · y), u) = 0 for every
i ∈ [m] if and only if f = α · g for some α ∈ F. Then, g is characterized by circuit identities over F.

The above definition is taken (after slight modifications to suit our purpose) from Definition 3.4.7
in [Gro12] and is attributed to an article by Mulmuley [Mul07].

3 Characterization of NW by symmetries and circuit identities

3.1 Symmetry characterization: Theorem 1

Let F be a field having a d-th root of unity ζ 6= 1 and |F| 6= d + 1.7 As d is a prime, ζ is primitive,
i.e., ζd = 1 and ζt 6= 1 for 0 < t < d. The rows and columns of a matrix in GNW are indexed by the
set {(i, j) : i, j ∈ Fd}.

Claim 3.1. The following matrices in Fn×n are in GNW:

1. Aβ, a diagonal matrix with ((i, j), (i, j))-th entry as βi ∈ F× for i, j ∈ [d], such that ∏i∈[d] βi = 1.

2. A`, a diagonal matrix with ((i, j), (i, j))-th entry as ζ i`·j for i, j ∈ [d], where ` ∈ [d− k− 1]. 8

3. Ah, h ∈ Fd[z]k, the ((i, j), (i, j + h(i)))-th entry of Ah is 1 for i, j ∈ [d] and other entries are 0.

The proof of Claim 3.1 is given in Section C.1. The matrices Aβ are the continuous symmetries
while A`, Ah are discrete symmetries of NW for all choices of β, `, h. The following Claim immedi-
ately implies Theorem 1. Its proof is given in Section C.2.

Claim 3.2. Let f be a homogeneous degree-d polynomial in F[x]. If G f contains the matrices Aβ, A` and
Ah (for all choices of β, ` and h, as mentioned in Claim 3.1) then f = α ·NW for some α ∈ F.

7For a prime d, |F| = d + 1 if and only if d is a Mersenne prime.
8Recall, [d− k− 1] = {0, 1, . . . , d− k− 2}
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3.2 Characterization by circuit identities

In the following lemma, we show that NW is characterized by circuit identities (as defined in
Definition 2.10). The lemma is crucially used in the proofs of Theorems 2 and 3 in Section 5. Its
proof is given in Section C.3.

Lemma 3.1. Polynomial NW is characterized by circuit identities over any field F.

4 Lie algebra and symmetries of NW

We first give a complete description of the Lie algebra of NW by giving an explicit F-basis. Then,
using this knowledge, we analyse the structure of the symmetries of NW and prove Theorem 5.
Thereafter, using Theorem 5, we show that NW is not characterized by its symmetries over fields
that do not contain a d-th primitive root of unity. The rows and columns of a n× n matrix in gNW

and GNW are indexed by the set {(i, j) : i, j ∈ Fd}, which is naturally identified with the x-variables,
where x = (x0,0 . . . x0,d−1 . . . xd−1,0 . . . xd−1,d−1)

T.

4.1 Lie algebra of NW

It turns out that the Lie algebra of NW is a subspace of the Lie algebra of every set-multilinear
polynomial. (The default partition of a set-multilinear polynomial is x = ]i∈[d]xi.)

Lemma 4.1. Let F be a field and char(F) 6= d. The dimension of gNW over F is d− 1, and the diagonal
matrices B1, . . . , B` (defined below) form a F-basis of gNW. For ` ∈ {1, . . . , d− 1},

(B`)(i,j),(i,j) =


1, if i = 0, j ∈ [d]
−1, if i = `, j ∈ [d]

0, otherwise.

The lemma is proven in Section D.1 by carefully analysing a system of linear equations obtained
from the monomials of NW. It follows that every B ∈ gNW is of the form diag(α0, . . . , αd−1)⊗ Id,
where each αi ∈ F and ∑i∈[d] αi = 0. It follows that the continuous symmetries of NW consist of
matrices of the form A = diag(β0, . . . , βd−1)⊗ Id, where each βi ∈ C and ∏i∈[d] βi = 1.

4.2 Structure of GNW: Theorem 5

Lemma 4.1 implies the following.

Claim 4.1. Every A ∈ GNW is a block-permuted matrix with block size d.

The proof of the claim is given in Section D.2. Using Claim 4.1, Hessian and the evaluation dimen-
sion of NW, we give a proof of Theorem 5 in Section D.3.

4.3 NW is not characterized by its symmetries over R

Let F be either R, Q or a finite field such that d - |F| − 1. Then, F does not contain a d-th primitive
root of unity, and so the matrices A`, for ` ∈ [d− k− 1] mentioned in Claim 3.1, are no longer the
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symmetries of NW over F. The next lemma shows that over such F all the diagonal symmetries
of NW are of the type Aβ mentioned in Claim 3.1. This then implies the following theorem, which
may seem somewhat surprising as we do not know all the permutation symmetries of NW. The
point is that permutation symmetries alone cannot characterize a polynomial. The proofs are
given in Section D.4.

Lemma 4.2. If D ∈ GNW is a diagonal matrix over F then D = diag(β0, . . . , βd−1) ⊗ Id, where each
βi ∈ F and ∏i∈[d] βi = 1.

Theorem 6. NW is not characterized by its symmetries over F.

5 Circuit testability and the flip theorem for NW

In this and the next section, we show that the knowledge of the symmetries of NW plays a crucial
role in answering some of the algorithmic questions related to NW. This section is devoted to
Theorems 2 and 3. The main ingredient of their proofs is Lemma 3.1. We present the circuit testing
algorithm here and push the proof of the Flip theorem to Section E.

Proof of Theorem 2:
Let C be a given circuit of size s over F that computes a n-variate polynomial f = C(x). Naturally,
deg( f ) ≤ δ(s). Algorithm 1 intends to check, in steps 2 and 3, if f satisfies the identities given
in the proof of Lemma 3.1. If f 6= α · NW for all α ∈ F, then at least one of the identities is
not satisfied. For the polynomials q1, q2 and q3 defined in the proof of Lemma 3.1, observe that the
degree of q1( f (Ai(u) · x), f (x), u) is bounded by 2 · δ(s), whereas the degrees of q2( f (Aa,r · x), f (x))
and q3( f (At · x)) are at most δ(s). As |F| ≥ 4 · δ(s), by Schwartz-Zippel lemma [Zip79,Sch80], step
4 returns ‘False’ with probability at least 1

2 . If f = α ·NW for some α ∈ F then all the identities are
satisfied, and step 7 ensures that α = 1. Clearly, the algorithm uses poly(s) field operations. The
success probability is boosted from 1

2 to 1− exp(−s) by repeating the algorithm poly(s) times.

Algorithm 1 Circuit testing for NW
Input: Black-box access to a circuit C of size s over F.
Output: ‘True’ if C(x) = NW, else ‘False’.

1. Pick a ∈r Fn and µ ∈r F.
2. for i ∈ [d], a ∈ F×d , r ∈ [k + 1], t ∈ [d]\[k + 1] do
3. if (C(Ai(µ) · a)− µ · C(a) 6= 0) or (C(Aa,r · a)− C(a) 6= 0) or (C(At · a) 6= 0) then
4. return ‘False’.
5. end if
6. end for
7. Let b ∈ Fn be an assignment obtained by setting xi0 = 1, for i ∈ [d], and all other variables to

zero. If f (b) 6= 1, return ‘False’. Else, return ‘True’.

6 Equivalence test for NW

First, we show a randomized reduction of equivalence test for NW to block-permuted equivalence
test (in short, BP equivalence test) in Lemma 6.1. Then, we give an efficient equivalence test for
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NW in the special case where the linear transformation is block-diagonal and is a product of a
permutation matrix and a scaling matrix (Theorem 4).

Lemma 6.1 (Reduction to BP equivalence test). Let F be a field such that char(F) 6= d and |F| ≥ 2d2.
There is a randomized algorithm that takes input black-box access to a degree d polynomial f ∈ F[x] and
does the following with high probability: It outputs black-box access to a degree d polynomial g ∈ F[x] such
that f is equivalent to NW if and only if g is BP equivalent to NW. Moreover, the transformation for f
can be recovered efficiently from the transformation for g. The running time of this reduction is poly(d, ρ),
where ρ is the bit complexity of the coefficients of f 9.

Algorithm 2 Reduction of equivalence test for NW to BP equivalence test
Input: Black-box access to f ∈ F[x].
Output: Black-box access to g ∈ F[x].

1. Compute a basis L1, . . . , Lr of g f . If r 6= d− 1, output ‘ f is not equivalent to NW’.
2. Let S be an arbitrary subset of F of size d2. Let L = a1L1 + . . . + arLr, where ai ∈r S. Compute

D ∈ GLd2(F) such that D−1 · L · D = diag(β1, . . . , βd)⊗ Id, where β j ∈ F. If no such D exists
then output ‘ f is not equivalent to NW.’

3. Output black-box access to f (D · x).

Proof of correctness: The efficiency of Step 1 follows from Lemma 2.3. The correctness of Step 2
and 3 follow from the next claim whose proof is given in Section F.1.

Claim 6.1. With high probability, matrix D can be computed in poly(d, ρ) time. Moreover, f is equivalent
to NW if and only if f (D · x) is BP equivalent to NW.

6.1 BD-PS equivalence test for NW: Theorem 4

Lemma 6.1 implies that to solve equivalence test for NW it is sufficient to focus on BP equivalence
test. Here, we solve a special case of BP equivalence test, namely BD-PS equivalence test. We
prove Theorem 4 in two steps: first we reduce BD-PS equivalence test to scaling equivalence test
and then solve the scaling equivalence test. The algorithm pretends that f is BD-PS equivalent to
NW and computes a block-diagonal permutation matrix A and an invertible scaling matrix B. In
the end, the circuit testing algorithm of NW (Algorithm 1) is used to check if f (A−1 · B−1 · x) = NW.

6.1.1 Reduction of BD-PS equivalence test to scaling equivalence test

Assume f = NW(B · A · x), where A is a block-diagonal permutation matrix and B is an invertible
scaling matrix. Algorithm 3 does not explicitly use the knowledge of the entries of B. Thus, we
may assume without loss of generality that B = Id2 . Then, the task reduces to solving the BD
permutation equivalence test for NW. We identify matrix A with d permutations σ0, . . . , σd−1 on
[d] as A = diag(Mσ0 , . . . , Mσd−1), where Mσi is the d× d permutation matrix corresponding to σi

10.

Observation 6.1. Suppose f is BD permutation equivalent to NW, i.e. f = NW(A · x). Then, a monomial
∏i∈Fd

xi,h(i) of NW gets mapped to a unique monomial ∏i∈Fd
xi,σi(h(i)) of f .

9We assume that univariate polynomial factorization over F can be done in polynomial time.
10For i, r, s ∈ [d], Mσi (r, s) = 1 if and only if σi(r) = s.
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Algorithm 3 starts by assuming that σ0(0) = · · · = σk(0) = 0 and σ0(1) = 1. The symmetries
of NW allow us to make this assumption without loss of generality (Claim 6.2). The aim is to
figure out all the entries of σi

11. This is done by carefully picking a bunch of polynomials from
Fd[z]k (which we call nice polynomials) and then exploiting the association between f and NW
mentioned in Observation 6.1 using these polynomials. The algorithm works over every field.

Algorithm 3 Block-diagonal permutation equivalence test for NW
Input: Black-box access to f ∈ F[x].
Output: Black-box access to g ∈ F[x] such that if f is BD-PS equivalent to NW then g is scaling
equivalent to NW.

1. Assume that σ0(0) = · · · = σk(0) = 0 and σ0(1) = 1 (Claim 6.2).
2. Construct a list of nice polynomials in Fd[z]k (Definition 6.1) as mentioned in Claim 6.3.
3. Recover (d− k) distinct entries of each permutation σ0, . . . , σd−1 as mentioned in Claim 6.4.
4. Let N be a d × d matrix, where the columns and rows are indexed by (σ0, . . . , σd−1) and

(0, . . . , d − 1) respectively and for l, i ∈ [d], N(l, i) := σi(l). Pick l0, . . . , lk ∈ [d] such that in
each of the rows indexed by l0, . . . , lk at least k + 1 entries are known (Claim 6.5).

5. Use l0, . . . , lk ∈ [d] to recover all the entries of the rows of N as mentioned in Claim 6.6. Com-
pute A = diag(Mσ0 , . . . , Mσd−1) and return black box access to f (A−1 · x)

Proof of correctness: The following chain of claims argue the correctness of the algorithm. Their
proofs are given in Section F.2. In these claims, ρ is the bit complexity of the coefficients of f .

Claim 6.2. (Canonical form of σ0, . . . , σd−1): Suppose f ∈ F[x] is BD permutation equivalent to NW.
Then, there exist permutations σ0, . . . , σd−1 on [d] such that σ0(0) = · · · = σk(0) = 0, σ0(1) = 1 and
A = diag(Mσ0 , . . . , Mσd−1) satisfies f = NW(A · x).
Definition 6.1. (List of nice polynomials in Fd[z]k): {h0, . . . , hd−k−1} ⊆ Fd[z]k is called a list of nice
polynomials if the following properties are satisfied:

1. For distinct r1, r2 ∈ [d − k], hr1(`) = hr2(`) for every ` ∈ [k] and hr1(`) 6= hr2(`) for every
` ∈ {k, . . . , d− 1}.

2. For every r ∈ [d− k], σ0(hr(0)), . . . , σk(hr(k)) can be computed in poly(d, ρ) time.

Claim 6.3. A list of d− k nice polynomials {h0, . . . , hd−k−1} can be computed in poly(d, ρ) time.

Using the list of nice polynomials, we recover d− k distinct entries of σ0, . . . , σd−1.

Claim 6.4. Given a list of nice polynomials {h0, . . . , hd−k−1}, we can recover d− k distinct entries in each
of σ0, . . . , σd−1 in poly(d, ρ) time.

The matrix N defined in the algorithm is filled with some known entries and some unknowns.
The goal is to recover all the entries of N which is accomplished by the following claims.

Claim 6.5. Suppose k ∈ [1, d
3 ]. Then, there exist k + 1 rows in N such that in each of these rows at least

k + 1 entries are known.

Claim 6.6. Using k + 1 rows of N indexed by l0, . . . , lk (as mentioned in Step 4), we can recover all the
entries of N in poly(d, ρ) time.

11σi is treated as an ordered tuple (σi(0), . . . , σi(d− 1))
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6.1.2 Scaling equivalence test for NW

We present an algorithm for solving the scaling equivalence test for NW over a finite field F, where
d - |F| − 1. The same algorithm with appropriate modifications works over R. More details on
this are given in Section F.4. Assume that f is scaling equivalent to NW.

Algorithm 4 Scaling equivalence test for NW over finite fields
Input: Black box access to f ∈ F[x].
Output: An invertible diagonal matrix B such that f = NW(B · x).

1. Let B = diag(α0,0, . . . , αd−1,d−1), where {αi,j : i, j ∈ [d]} are unknown. Set α1,0 = . . . =
αd−1,0 = 1 (Claim 6.7).

2. Let S = (0, z, . . . , (d − 1)z, 1, z + 1 . . . , (d − 1)z + 1, . . . , d − 2, z + d − 2 . . . , (d − 1)z + d −
2, d − 1) be the ordered set of d2 − d + 1 polynomials in F[z]. For every h ∈ S, query the
coefficient ch of the monomial ∏i∈Fd

xi,h(i) from the black-box of f (Observation 6.2).
3. Let C be a 0/1 matrix of size (d2 − d + 1)× (d2 − d + 1) whose rows and columns are indexed

by S and y = (y0,0, . . . , y0,d−1, y1,1, . . . , y1,d−1, . . . , yd−1,1, . . . , yd−1,d−1), respectively, such that
for h ∈ S and yi,j ∈ y, the (h, yi,j)-th entry of C is 1 if h(i) = j. (It is argued in Claim D.3 that
|det(C)| is a power of d). Compute the inverse of det(C) in Z|F|−1 and denote it by γ. (Note
that y does not contain the variables {y1,0, . . . , yd−1,0}.)

4. Fix αi,j ∈ {α0,0, . . . , αd−1,d−1} \ {α1,0, . . . , αd−1,0} arbitrarily. For every h ∈ S, compute the minor
of C with respect to the row and column indexed by h and yi,j respectively and call it δh. Set

αi,j = ∏h∈S c(δh·γ) mod (|F|−1)
h .

5. Set B = diag(α0,0, . . . , αd−1,d−1). Return B. (see Claim 6.8)

Proof of correctness: The following claims and observations argue the correctness of the algo-
rithm. The proofs of the claims are given in Section F.3.

Claim 6.7. We can assume that α1,0 = . . . = αd−1,0 = 1 without loss of generality.

The following observation can be proved easily.

Observation 6.2. Given a monomial m, we can recover the coefficient of m in f in poly(d, ρ) time.

Claim 6.8. In Step 4, αi,j can be computed in poly(d, ρ) time. Further, f = NW(B · x).

7 Few problems

In conclusion, we state a few problems on the NW polynomial which, if resolved, would shed
more light on this fundamental polynomial family.

1. Is the NW = {NWd,k : d is a prime} family VNP-complete for a suitable choice of k (say,
k = dε for a constant ε > 0)?

2. Is there an efficient algorithm to check if NW(a) = 0 at a given point a ∈ {0, 1}n ? This
problem was also posed in [BS07] 12.

12We thank Andrej Bogdanov for pointing this out to us.
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3. Is there an efficient general equivalence test for NW? Theorem 4 may turn out to be a vital
ingredient in such a test.

4. Give a complete description of the permutation symmetries of NW. Are all the permutation
symmetries captured in Lemma G.1 mentioned in Section G?

For the permanent polynomial, the solutions to these problems are well known.
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A Comparison between NW and the Permanent

The answers in Table 1 also hold over finite fields with mild restrictions on the characteristic and
size of the field.

Questions Perm (known results) NW (Our Results)

1. Characterized by symmetries?
Yes over almost all fields a. Yes over C

b. No over Q, R.
2. Is an explicit basis of the Lie algebra known? Yes Yes
3. Is G f generated by PS matrices? Yes Yes

4. Are all the diagonal symmetries continuous?
Yes over almost all fields a. No over C

b. Yes over Q, R.
5. Are all the permutation symmetries known? Yes Partially
6. Is a circuit testing algorithm known? Yes Yes
7. Is a Flip theorem known to hold? Yes Yes
8. Efficient equivalence test known? Yes Partially

Table 1: Comparison between NW and the Permanent

B Two observations on the design polynomial family

Observation B.1. Let k = k(d) ∈ [d] be an arbitrarily fixed, poly(d)-time computable, function of d. The
design polynomial family NW := {NWd,k : d is a prime} is in VNP.

Proof. Owing to the density of primes, NW is a p-bounded family [Val79] as the number of vari-
ables and the degree of NWd,k are both polynomial functions of d. By Proposition 2.20 of [B0̈0],
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a p-bounded family { fi}i∈N is in VNP (i.e. p-definable) if the coefficient computing function for fi
is in #P. The coefficient computing function for fi takes input a monomial in the variables of fi
and outputs the coefficient of the monomial in fi. The coefficient computing function for NWd,k
can be shown to be in P as follows: Given a monomial m, check if it is set-multilinear in the sets
x0, . . . , xd−1. If not, the coefficient of m is 0 in NWd,k. Otherwise, let m = x0,j0 · · · xd−1,jd−1 . Obtain a
polynomial h ∈ Fd[z]d−1 by interpolating the points (0, j0), . . . , (d− 1, jd−1). Compute k from d. If
deg(h) ≤ k then coefficient of m in NWd,k is 1 else it is 0.

Observation B.2. Suppose f ∈ F[y] is a degree-r polynomial having s monomials. Then, for d ≥ s and
d− k ≥ r, f is an affine projection of NWd,k.

Proof. Fix a univariate h ∈ Fd[z]k and set the variables x0,h(0), . . . , xk−1,h(k−1) to 1 and other vari-
ables of x0, . . . , xk−1 to 0. The low-intersection property of NWd,k ensures that under this setting,
exactly d monomials remain in NWd,k. Moreover, these d monomials are pairwise variable disjoint
and each monomial contains d− k variables. As d ≥ s and d− k ≥ r, we can map these d monomi-
als to monomials of f via a simple substitution map from x to y ∪ F. Hence, there is a A ∈ Fn×|y|

and b ∈ Fn such that NWd,k(A · y + b) = f ; in other words, f is an affine projection of NWd,k.

C Proofs from Section 3

For a polynomial p ∈ Fd[z], mp would refer to the monomial ∏i∈[d] xi,p(i).

C.1 Proof of Claim 3.1

Claim 3.1 (restated): The following matrices in Fn×n are in GNW:

1. Aβ, a diagonal matrix with ((i, j), (i, j))-th entry as βi ∈ F× for i, j ∈ [d], such that ∏i∈[d] βi = 1.

2. A`, a diagonal matrix with ((i, j), (i, j))-th entry as ζ i`·j for i, j ∈ [d], where ` ∈ [d− k− 1].

3. Ah, where h ∈ Fd[z]k, the ((i, j), (i, j + h(i)))-th entry of Ah is 1 for i, j ∈ [d] and other entries are
0.

Proof. By definition, Aβ, A` ∈ GLn(F). Also, Ah ∈ GLn(F) as it is a permutation matrix. Ob-
serve that the polynomials NW(Aβ · x),NW(A` · x) and NW(Ah · x) are obtained from NW(x) by
replacing the variable xi,j with βi · xi,j, ζ i`·j · xi,j and xi,j+h(i) respectively, for i, j ∈ [d]. When Aβ

is applied on x, a monomial mp gets mapped to ∏i∈[d] βi · mp = mp as ∏i∈[d] βi = 1, implying
NW(Aβ · x) = NW. When Ah is applied on x, a monomial mp gets mapped to mp+h; in other
words, the monomials of NW are ’shifted around’ and so NW(Ah · x) = NW. When A` is applied
on x, a monomial mp is mapped to ∏i∈[d] ζ i`·p(i) · mp. We show below that ∏i∈[d] ζ i`·p(i) = 1 for
every ` ∈ [d− k− 1], thereby implying NW(A` · x) = NW.

Observation C.1. For every p ∈ Fd[x]k and ` ∈ [d− k− 1], ∏i∈[d] ζ i`·p(i) = 1.

Proof. As ζ 6= 1 is a d-th root of unity, ∏i∈[d] ζ i`·p(i) = ζ∑i∈Fd
i`·p(i) and so it is sufficient to show that

∑i∈Fd
i` · p(i) = 0. Suppose p(z) = arzr + · · ·+ a0, where r ≤ k and ar, . . . , a0 ∈ Fd. Then

∑
i∈Fd

i` · p(i) = ar

(
∑

i∈Fd

ir+`

)
+ · · ·+ a0

(
∑

i∈Fd

i`
)

.
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Each summand in the RHS of the above equation is of the form a ·
(
∑i∈Fd

is), where 0 ≤ s ≤ d− 2.
As ∑i∈Fd

i0 = 0, assume that 1 ≤ s ≤ d− 2. Let b be a generator of F×d . Then

∑
i∈Fd

is = ∑
i∈F×d

is = ∑
t∈[d−1]

bt·s =
1− b(d−1)·s

1− bs = 0, as bd−1 = 1 in Fd. (2)

Hence, ∑i∈Fd
i` · p(i) = 0 implying ∏i∈[d] ζ i`·p(i) = 1.

Thus, Aβ, A` and Ah belong to GNW over F.

C.2 Proof of Claim 3.2

Claim 3.2 (restated): Let f be a homogeneous degree-d polynomial in F[x]. If G f contains the matrices
Aβ, A` and Ah (for all choices of β, ` and h, as mentioned in Claim 3.1) then f = α ·NW for some α ∈ F.

Proof. Let f 6= 0, otherwise we have nothing to prove. The presence of Aβ in G f implies that f
is a set-multilinear polynomial with respect to the partition

⊎
i∈[d] xi. If not then there is a term

α · m in f , where α ∈ F× and m is a degree-d monomial with no xt-variables for some t ∈ [d].
Pick a γ ∈ F× such that γd 6= 1 13. Now, set βi = γ for i ∈ [d]\{t} and βt = γ−(d−1) so that
∏i∈[d] βi = 1 is satisfied. When Aβ is applied on x, the term α ·m maps to αγd ·m 6= α ·m, imply-
ing that f (Aβ · x) 6= f (x).

As f is set-multilinear, every term of f is of the kind αp · mp, where αp ∈ F× and p ∈ Fd[z] with
deg(p) ≤ d − 1. This is because any function from Fd to Fd can be represented by a univariate
polynomial of degree at most d − 1. We now show that deg(p) ≤ k for every term αp · mp in
f . Suppose not. Then, there is a term αp · mp such that p = arzr + · · · + a0, r > k and ar 6= 0.
When A` is applied on x, the term αp · mp gets mapped to ∏i∈[d] ζ i`·p(i) · αp · mp. Now choose

` = d− r− 1 ≤ d− k− 2. That ∏i∈[d] ζ i`·p(i) 6= 1 for this choice of ` can be argued as follows: Since

∏i∈[d] ζ i`·p(i) = ζ∑i∈Fd
i`·p(i), it is sufficient to show that ∑i∈Fd

i` · p(i) 6= 0. Expanding the sum,

∑
i∈Fd

i` · p(i) = ar

(
∑

i∈Fd

id−1

)
+ ar−1

(
∑

i∈Fd

id−2

)
+ · · ·+ a0

(
∑

i∈Fd

id−r−1

)
.

As argued in Equation (2), the above sum is ar · (d− 1) 6= 0, implying f (A` · x) 6= f (x). Hence,
every term αp ·mp of f must have deg(p) ≤ k.

When Ah is applied on x, a term αp ·mp maps to αp ·mp+h which implies αp = αp+h. Running over
all h ∈ Fd[z]k, we get αp = α for every p ∈ Fd[z]k, for some α ∈ F×. Hence, f = α ·NW.

C.3 Proof of Lemma 3.1

Lemma 3.1 (restated): Polynomial NW is characterized by circuit identities over any field F.

13As |F| 6= d + 1, such a γ always exists.
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Proof. Recall, n = |x| = d2. We show that if an n-variate polynomial f ∈ F[x] satisfies the follow-
ing polynomial identities then f = α · NW for some α ∈ F. The rows and columns of the n× n
matrices in the identities below are indexed by the set {(i, j) : i, j ∈ Fd}.

1. q1( f (Ai(u) · x), f (x), u) = 0, for i ∈ [d], where q1(z1, z2, u) := z1 − u · z2. Here, Ai(u) ∈
F[u]n×n is a diagonal matrix with the ((i, j), (i, j))-th entry as u, for every j ∈ [d], and the
other diagonal entries as 1.

2. q2( f (Aa,r · x), f (x)) = 0, for a ∈ F×d and r ∈ [k + 1], where q2(z1, z2) := z1 − z2. Here,
Aa,r ∈ Fn×n with the ((i, j), (i, j + a · ir))-th entry as 1, for every i, j ∈ Fd, and the other
entries as 0.

3. q3( f (At · x)) = 0, for t ∈ [d]\[k + 1], where q3(z) := z. Here, At ∈ Fn×n is a diagonal matrix
with the ((t, 0), (t, 0))-th and the ((i, j), (i, j))-th entries as 0, for every i ∈ [k + 1], j ∈ [d]\{0},
and the remaining diagonal entries as 1.

Observe that there are poly(n) many identities above: d many under item 1, (d− 1)(k + 1) many
under item 2, and (d − k − 1) many under item 3. Also, it is clear that every qi is computable
by a constant size circuit, and the matrices Ai(u), Aa,r and At are computable by poly(n) size
circuits. The identities under item 1 imply that f is a set-multilinear, homogeneous, degree-d
polynomial. If not then f contains a term β ·m, where the degree of the xi-variables in m is e 6= 1
for some i ∈ [d]. On applying Ai(u) to x, the term β ·m gets mapped to ueβ ·m 6= uβ ·m, implying
f (Ai(u) · x) 6= u · f (x), i.e., q1( f (Ai(u) · x), f (x), u) 6= 0.

As f is set-multilinear and homogeneous, every term of f looks like αp ·mp, where αp ∈ F× and
mp = ∏i∈Fd

xi,p(i) for some p ∈ Fd[z] with deg(p) ≤ d− 1. When Aa,r is applied on x, for some
a ∈ F×d and r ∈ [k + 1], a term αp ·mp maps to αp ·mp+h, where h = azr ∈ Fd[z]k. Since, f satisfies
the identities in item 2, f (Aa,r · x) = f (x) and so αp ·mp+h is also a term in f . By varying a ∈ F×d
and r ∈ [k + 1], we see that f contains the term αp ·mp+h for every h ∈ Fd[z]k. Thus, there is a set
S ⊆ Fd[z]d−1 such that f is of the form,

f = ∑
p∈S

αp · ∑
h∈Fd[z]k

mp+h. (3)

If f 6= α · NW for all α ∈ F, then there is a p ∈ Fd[z] with deg(p) > k such that f contains a
term αp · mp for some αp ∈ F×. Let h be the polynomial in Fd[z]k such that h(i) = −p(i) for all
i ∈ [k + 1]. From Equation (3), f contains the term αp · mp+h. As deg(p) > k, h(z) 6= −p(z).
So, there is a t ∈ [d]\[k + 1] such that p(t) + h(t) 6= 0. On applying At to x, only those terms
of f survive that contain the variables x0,0, . . . , xk,0 but do not contain xt,0, and αp · mp+h is such
a term. Hence, q3( f (At · x)) = f (At · x) 6= 0. This contradicts f satisfying the identities in item
3. Therefore, f = α · NW, for some α ∈ F. On the other hand, any f = α · NW satisfies all the
identities.
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D Proofs from Section 4

D.1 Proofs of Lemma 4.1

Lemma 4.1 (restated): Let F be a field and char(F) 6= d. The dimension of gNW over F is d− 1, and the
diagonal matrices B1, . . . , B` (defined below) form a F-basis of gNW. For ` ∈ {1, . . . , d− 1},

(B`)(i,j),(i,j) =


1, if i = 0, j ∈ [d]
−1, if i = `, j ∈ [d]

0, otherwise.

Proof. Recall that the rows and columns of a matrix in gNW are indexed by the set {(i, j) : i, j ∈ Fd}.
By Definition 2.7, B = (α(i,j),(l,r))i,j,l,r∈[d] ∈ gNW if and only if the following equation is satisfied:

∑
i,j,l,r∈[d]

α(i,j),(l,r) · xl,r · ∂ijNW = 0, where ∂ijNW :=
∂NW

∂xi,j
. (4)

Claim D.1. Every B = (α(i,j),(l,r))i,j,l,r∈[d] ∈ gNW is a diagonal matrix.

Proof. Let i, j, l, r ∈ [d], such that (i, j) 6= (l, r). It follows from the low-intersection property of
NW that the terms xl,r · ∂ijNW and xu,v · ∂stNW in Equation (4) are monomial disjoint for every
s, t, u, v ∈ [d] satisfying (s, t) 6= (i, j) or (u, v) 6= (l, r). Hence, α(i,j),(l,r) = 0 and B is diagonal.

Thus, gNW can be viewed as a subspace of Fn by associating a column vector wB := B · 1 ∈ Fn

with every B ∈ gNW, where 1 is the all-one column vector in Fn. The coordinates of wB are in-
dexed by {(l, r) : l, r ∈ Fd} and wB(l, r) = α(l,r),(l,r) is its (l, r)-th coordinate. Now, we construct a
matrix D ∈ Fn×n using degree-0 and degree-1 polynomials in Fd[z]k, such that gNW (viewed as a
subspace of Fn) is contained in KerF(D), the kernel of D 14. This would help us find dimF(gNW).

Construction of matrix D. The rows of D are indexed by {(a, b) : a, b ∈ Fd}, where (a, b) corre-
sponds to the univariate bz + a ∈ Fd[z]. The columns are indexed by {(l, r) : l, r ∈ Fd}, where
(l, r) corresponds to the variable xl,r (as before). D is a 0/1 matrix. The ((a, b), (l, r))-th entry of D
is 1 if xl,r is present in the monomial ∏i∈Fd

xi,bi+a, else it is 0. Denote the (a, b)-th row of D by Rab.
We record a few easy-to-verify properties of D below:

1. For a, b ∈ [d],Rab contains d many 1.

2. For every a ∈ [d], the rows {Rab : b ∈ [d]} contain 1 in the (0, a)-th column and 0 in the
columns indexed by (0, r) where r 6= a.

3. Let B ∈ gNW and wB(l, r) = α(l,r),(l,r) for l, r ∈ Fd. Then, (D ·wB)(a, b) = ∑l∈[d] α(l,bl+a),(l,bl+a),
which is the coefficient of monomial ∏l∈Fd

xl,bl+a in the LHS of Equation (4). This implies
(D ·wB)(a, b) = 0 for every a, b ∈ [d], and hence, wB ∈ KerF(D).

14Matrix D would just be a part of the coefficient matrix of the linear system obtained from the equations
∑l∈[d] α(l,h(l)),(l,h(l)) = 0, for all h ∈ Fd[z]k. Here, {α(l,r),(l,r) : l, r ∈ Fd} are the d2 variables of the system.
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We argue that the rank of D is at least d2− d+ 1, by showing the F-linear independence of the rows
indexed by {(a, b) : a ∈ [d− 1], b ∈ [d]} and (d− 1, 0). This, along with property 3, would imply
that dimF(gNW) ≤ d− 1. Property 2 implies that it is sufficient to show the F-linear independence
of the d2 − d rows indexed by {(a, b) : a ∈ [d − 1], b ∈ [d]}, as the row indexed by (d − 1, 0)
contains 1 in the column indexed by (0, d− 1) and this column contains 0 in the rows indexed by
{(a, b) : a ∈ [d− 1], b ∈ [d]}.

Claim D.2. The rows {Rab : a ∈ [d− 1], b ∈ [d]} are F-linearly independent, if char(F) 6= d.

Proof. We multiply these rows with formal variables Γ := {γab : a ∈ [d− 1], b ∈ [d]}, and show
that if the following equation holds then each γab = 0. The number of Γ-variables is |Γ| = d2 − d.

∑
a∈[d−1],b∈[d]

γab · Rab = 0.

From the above equation, we get d2 linear equations in the Γ-variables, one for every coordinate
of the rows. Fix a ∈ [d− 1] and b ∈ [d] arbitrarily. From property 1, there are exactly d equations
(one for each l ∈ [d]) containing the variable γab. We can naturally identify these d equations with
l ∈ [d]. The variables γab and γa′b′ are present in the equation corresponding to a l ∈ [d] if and
only if bl + a = b′l + a′ over Fd. Equation (5) corresponds to l = 0 and Equation (6) corresponds
to a l ∈ [d]\{0}.

γa 0 + · · ·+ γa b + · · ·+ γa d−1 = 0, (5)(
∑

a′∈[d−1]\{a}
γa′b′

)
+ γab = 0, where b′ = b +

a− a′

l
. (6)

For a ∈ [d− 1] and b, l ∈ [d], denote the linear forms at the LHS of these equations as ’Equation
(5)a,b’ and ’Equation (6)a,b,l’. A simple counting argument imply the following.

Observation D.1. Let a ∈ [d− 1] and b ∈ [d]. Consider the d linear forms, Equation (5)a,b and Equation
(6)a,b,l for l ∈ [d]\{0}. Every pair of these d linear forms has γab as the only common Γ-variable. Further,
these d linear forms together contain all the Γ-variables except the variables in {γa′b : a′ ∈ [d− 1] \ {a}}.

The next two observations will help us conclude that γab = 0.

Observation D.2. Let a ∈ [d − 1], b ∈ [d] and b′ ∈ [d] \ {b}. There is exactly one linear form in
{Equation (6)a,b′,l : l ∈ [d] \ {0}} that contains no Γ-variable from {γa′b : a′ ∈ [d − 1] \ {a}}. This

unique linear form is Equation (6)a,b′,l(b′), where l(b′) = (d−1)−a
b′−b .

Proof. The linear form Equation (6)a,b′,l contains a variable γa′b if and only if l = a′−a
b′−b . If we choose

l = l(b′) = (d−1)−a
b′−b then a′ is forced to take value d − 1. Thus, Equation (6)a,b′,l(b′) contains no

variable from {γa′b : a′ ∈ [d− 1] \ {a}}. On the other hand, for l ∈ [d]\{0} and l 6= l(b′), there is
exactly one variable in {γa′b : a′ ∈ [d− 1] \ {a}} that belongs to Equation (6)a,b′,l .

With l(b′) defined as above, we have the following observation.

Observation D.3. Let a ∈ [d− 1], b ∈ [d] and b′, b′′ be two distinct elements in [d] \ {b}. The linear
forms Equation (6)a,b′,l(b′) and Equation (6)a,b′′,l(b′′) do not have any Γ-variable in common.
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Proof. For contradiction, suppose γãb̃ appears in both Equation (6)a,b′,l(b′) and Equation (6)a,b′′,l(b′′).
Then, b̃ = b′ + a−ã

l(b′) = b′′ + a−ã
l(b′′) . Hence,

b′ − b′′ = (a− ã) ·
(

1
l(b′′)

− 1
l(b′)

)
= (a− ã) · b′′ − b′

(d− 1)− a
,

by plugging in the values of l(b′) and l(b′′). As ã 6= d− 1, the above equality cannot hold.

Finally, consider the following equation, which is implied from Equations (5) and (6),

Equation (5)a,b + ∑
l∈[d]\{0}

Equation (6)a,b,l − ∑
b′∈[d]\{b}

Equation (6)a,b′,l(b′) = 0.

By Observation D.1, Equation (5)a,b + ∑l∈[d]\{0} Equation (6)a,b,l is the sum of d · γab and all the
Γ-variables barring {γa′b : a′ ∈ [d− 1] \ {a}} ] {γab}. On the other hand, Observations D.2 and
D.3 and a simple counting argument, imply that ∑b′∈[d]\{b} Equation (6)a,b′,l(b′) is the sum of all the
Γ-variables barring {γa′b : a′ ∈ [d− 1] \ {a}} ] {γab}. Therefore, γab = 0 as char(Fd) 6= d. This
proves the F-linear independence of {Rab : a ∈ [d− 1], b ∈ [d]}.

Thus, we have shown that dimF(gNW) ≤ d− 1. This immediately implies that dimF(gNW) = d− 1,
as the matrices B1, . . . , Bd−1 (in the statement of Lemma 4.1) are F-linearly independent and they
belong to gNW (as they satisfy Equation (4)). Lemma 4.1 implies the following corollary. We would
see a version of this corollary over a commutative ringR in Claim D.4.

Corollary D.1. Let F be a field such that char(F) 6= d. Consider the linear system over F obtained from
the equations ∑i∈[d] xi,h(i) = 0 for all h ∈ Fd[z]k, where {xi,j : i, j ∈ [d]} are the variables. The solution
space of the system consists of the solutions xi,0 = xi,1 = . . . = xi,d−1 = αi for every i ∈ [d], where
α0, . . . , αd−1 ∈ F satisfy ∑i∈[d] αi = 0, and these are the only solutions.

D.1.1 More on matrix D

Let F be a field such that char(F) 6= d. Suppose u = d2 − d + 1 and x′ = x \ {x1,0, . . . , xd−1,0}. We
know from Lemma 4.1 that the first u rows of D are F-linearly independent. Let B be the u× d2

size matrix obtained by restricting D to the first u rows, which are indexed by the polynomials
{az + b : a ∈ [d], b ∈ [d− 1]} ∪ {d− 1}. Further, let C be the u× u matrix obtained by restricting
B to the columns indexed by x′.

Claim D.3. The absolute value of the determinant of C over Z is dr, where r = O(d2).

Proof. We know that

B · x = ( ∑
i∈Fd

xi,0 · · · ∑
i∈Fd

xi,(d−1)i · · · ∑
i∈Fd

xi,d−2 · · · ∑
i∈Fd

xi,(d−1)i+(d−2) ∑
i∈Fd

xi,(d−1))
T,

which gives the following set of linear polynomials in x.

S1 =

{
∑

i∈Fd

xi,h(i) : h ∈ {az + b : a ∈ [d], b ∈ [d− 1]} ∪ {d− 1}
}

.
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Let S2 be the set of d2 − d + 1 distinct linear polynomials in x defined as

S2 =
{

xi,j − xi,0 : i ∈ [d], j ∈ [d] \ {0}
}
∪
{

∑
i∈Fd

xi,0

}
.

Consider the following fact.

Fact 1. Suppose S1, S2 are two sets of linear polynomials in n variables over F having same solution spaces.
Then, spanF{S1} = spanF{S2}.

Then, from Corollary D.1 and Fact 1, we get

spanF{S1} = spanF{S2}. (7)

Let A be the u× d2 coefficient matrix of the polynomials in S2. Then, Equation (7) implies that
there is a M ∈ GLu(F) such that

M · B = A. (8)

Let A1 be the u× u matrix obtained by restricting A to the columns indexed by x′. It is easy to see
that A1 is invertible. Hence, Equation (8) implies that M · C = A1 and so C is also invertible.

We claim that detZ(C) = dr for some r ∈ N. Suppose not. Then there exists a prime number
p 6= d such that p | detZ(C). Then, the determinant of C is 0 over the finite field Fp, which is a
contradiction as char(Fp) 6= d. As C is a 0/1 matrix, |detZ(C)| ≤ (d2 − d + 1)!, which implies
r = O(d2).

Claim D.3 implies the following.

Claim D.4. LetR be a ring with multiplicative identity such that d is invertible inR. Consider the linear
system over R obtained from the equations ∑i∈[d] xi,h(i) = 0 for all h ∈ Fd[z]k, where {xi,j : i, j ∈ [d]} are
the variables. The solution space of the system consists of the solutions xi,0 = xi,1 = . . . = xi,d−1 = αi for
every i ∈ [d], where α0, . . . , αd−1 ∈ R satisfy ∑i∈[d] αi = 0, and these are the only solutions.

Proof. Recall the definitions of matrices B and C given in the beginning of this section. Observe
that B · x = 0 implies the following

C · x′ = v,

where the entries of v are linear forms in x1,0, . . . , xd−1,0. Let Adj(C) be the adjoint of C. (Observe
that entries of Adj(C) are integers and are well-defined inR.) On multiplying the above equation
with Adj(C), we get

Adj(C) · C · x′ = Adj(C) · v,

which implies
det(C) · x′ = v′, (9)

where v′ = Adj(C) · v. Clearly, every entry of v′ is a linear form in x1,0, . . . , xd−1,0. This equation
holds over any commutative ring R with multiplicative identity. In particular, it also holds over
a field F such that char(F) 6= d. From Corollary D.1, we know xi,0 = xi,1 = . . . = xi,d−1 for every
i ∈ [d] and ∑i∈[d] xi,0 = 0. Thus, for i ∈ {1, . . . , d− 1}, j ∈ [d] \ {0} the entry of v′ indexed by xi,j

must be det(C) · xi,0, and for j ∈ [d] the entry indexed by x0,j must be det(C) · (−(∑d−1
i=1 xi,0)). From

Claim D.3, we know that det(C) = dr. As d is invertible in R, on multiplying Equation (9) with
(det(C))−1, we get the result.
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D.1.2 A corollary of Lemma 4.1

Corollary D.2. If |F| > (d
2) then there exists a B = diag(α0, . . . , αd)⊗ Id ∈ gNW such that α0, . . . , αd−1

are distinct elements of F and ∑i∈[d] αi = 0.

Proof. Treat α0, . . . , αd−2 as formal variables and let αd−1 = −(α0 + · · ·+ αd−2). By the Schwartz-
Zippel lemma,

Pr
α0,...,αd−2∈rF

[there exist i, l ∈ [d] such that i 6= l and αi = αl ] ≤
(d

2)

|F| < 1.

Hence, there exists such a B ∈ gNW.

D.2 Proof of Claim 4.1

Let A ∈ GNW. For i, l ∈ [d], the (i, l)-th block of A, denoted Ail , is a sub-matrix of A whose rows
are indexed by the set {(i, j) : j ∈ [d]} (called the i-th block of rows) and columns indexed by
{(l, j) : j ∈ [d]} (called the l-th block of columns).

Claim 4.1 (restated): Every A ∈ GNW is a block-permuted matrix with block size d.

Proof. Choose a B ∈ gNW arbitrarily. From Lemma 2.2, there exists a C ∈ gNW such that

A · C = B · A.

From Lemma 4.1, B = diag(α0, . . . , αd−1)⊗ Id and C = diag(γ0, . . . , γd−1)⊗ Id, where ∑i∈[d] αi =

∑i∈[d] γi = 0. The above equation implies, for every i, l ∈ [d],

γl · Ail = αi · Ail ,

where Ail is the (i, l)-th block of A. If A is not block-permuted then for some l ∈ [d], there are
non-zero blocks Ail and Ai′ l such that i 6= i′ (as A is non-singular). For this choice of l, i and i′, the
last equation implies γl = αi = αi′ . This contradicts Corollary D.2, as B is chosen arbitrarily.

D.3 Proof of Theorem 5

Let A ∈ GNW. The goal is to show that A = D · P, where D, P ∈ GNW are diagonal and permutation
matrices respectively. As A is block-permuted (by Claim 4.1), there is a permutation µ on [d] such
that the only non-zero blocks of A are the (i, µ(i))-th blocks for i ∈ [d]. Lemma 2.1 implies,

HNW(x) = AT · HNW(A · x) · A. (10)

The rows and columns of HNW(x) and HNW(A · x) are indexed by the x-variables, and the i-th block
of rows and columns by the xi-variables for i ∈ [d]. We can also view HNW(x) and HNW(A · x) as
block matrices with the (i, l)-th block defined by the i-th block of rows and l-th block of columns.
Let Cil and Bil be the (i, l)-th blocks of HNW(x) and HNW(A · x) respectively. Then

Cil =

(
∂2NW

∂xi,j∂xl,r

)
j,r∈[d]

and Bil =

(
∂2NW

∂xi,j∂xl,r
(A · x)

)
j,r∈[d]

. (11)
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Observation D.4. Let π = µ−1. Then, for every i, l ∈ [d],

(AT
π(i)i)

−1 · Cil · (Aπ(l)l)
−1 = Bπ(i)π(l). (12)

Proof. The only non-zero block among the i-th block of rows in AT is AT
π(i)i, and the only non-zero

block among the l-th block of columns in A is Aπ(l)l . Hence, from Equation (10), we have Cil =

AT
π(i)i · Bπ(i)π(l) · Aπ(l)l . As A is block-permuted and invertible, AT

π(i)i, Aπ(l)l are also invertible.

For contradiction, suppose A is not a product of a diagonal matrix and a permutation matrix. As
A is block-permuted, there is a l ∈ [d] such that Aπ(l)l has a column containing more than one
non-zero entries which implies (Aπ(l)l)

−1 also has a column containing more than one non-zero
entries; let this be the r-th column of (Aπ(l)l)

−1, where r ∈ [d]. We work with this choice of l and
r, and fix i ∈ [d]\{l} arbitrarily, in Equation (12). For j ∈ [d], let gjr and f jr be the (j, r)-th entries
of the matrices in the LHS and RHS of Equation (12) respectively. As gjr = f jr, the evaluation
dimensions of gjr and f jr must be equal with respect to every z ⊆ x. However, the following claim
shows that this is false. Thus, A is a product of a diagonal matrix and a permutation matrix.

Claim D.5. Let d ≥ 2k + 4. For every j ∈ [d], there exists z ⊆ x such that evalDimz(gjr) >
evalDimz( f jr).

The proof of Claim D.5 is given in Section D.3.1. It is a simple exercise to show that if A ∈ GNW and
A = D · P, where D and P are diagonal and permutation matrices respectively, then D, P ∈ GNW.

D.3.1 Proof of Claim D.5

Recall the choice of l, r and i from the paragraph before the statement of Claim D.5.

Observation D.5. For every j, s ∈ [d], the (j, s)-th entry of Cil equals

∑
h∈Fd[z]k

h(i)=j, h(l)=s

∏
t∈[d]\{i,l}

xt,h(t).

The number of monomials in the above polynomial is dk−1.

Proof. The proof follows directly from Equation (11).

Observation D.6. The polynomials in two distinct entries of Cil are monomial disjoint.

Proof. Let (j, s) 6= (j′, s′). The monomials of the polynomial at the (j, s)-th entry of Cil correspond
to univariate polynomials h ∈ Fd[z]k such that h(i) = j and h(l) = s, whereas the monomials of
the polynomial at the (j′, s′)-th entry of Cil correspond to univariate polynomials h′ ∈ Fd[z]k such
that h′(i) = j′ and h′(l) = s′. As two distinct degree-k univariates share at most k roots over Fd
and d− 2 ≥ k + 1, the two polynomials must be monomial disjoint.

Recall that gjr is the (j, r)-th entry of (AT
π(i)i)

−1 · Cil · (Aπ(l)l)
−1 and f jr is the (j, r)-th entry of

Bπ(i)π(l).

Observation D.7. For every j ∈ [d], gjr 6= 0 is a F-linear combination of at least two entries of Cil .
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Proof. The proof follows immediately from the choice of l and r, and by observing that none of the
rows of (AT

π(i)i)
−1 has all zero entries.

Now, pick an arbitrary set T ⊆ [d] \ {i, l} such that |T| = k + 1; this is possible as d− 2 ≥ k + 1.
Fix z =

⊎
w∈T xw.

Observation D.8. For every j ∈ [d], evalDimz( f jr) ≤ dk−1.

Proof. From Equation (11), we have

f jr =
∂2NW

∂xπ(i),j∂xπ(l),r
(A · x).

Thus, f jr is computed by a depth three circuit having top fan-in dk−1. Further, as A is block-
permuted, the circuit is set-multilinear with respect to the partition

⊎
t∈[d]\{i,l} xt. In other words,

f jr can be expressed as a sum of dk−1 many products of linear forms such that each product term is
of the form ∏t∈[d]\{i,l} `t(xt), where `t is a linear form. The proof is immediate from this point.

Observation D.9. For every j ∈ [d], evalDimz(gjr) ≥ 2 · dk−1.

Proof. From Observations D.5, D.6 and D.7, we can infer that there exists a set P ⊆ Fd[z]k of size
|P| ≥ 2 · dk−1 such that

gjr = ∑
h∈P

βh · ∏
t∈[d]\{i,l}

xt,h(t), where βh ∈ F\{0}.

Now, we argue that evalDimz(gjr) = |P|. Clearly, evalDimz(gjr) ≤ |P|. For a fixed h ∈ P and
every w ∈ T, set the variables xw,h(w) = 1 and the remaining variables of z to 0. This substitution
reduces the above sum to a single term βh ·∏t∈[d]\({i,l}]T) xt,h(t), as d− 2 ≥ k + 1. Moreover,

∏
t∈[d]\({i,l}]T)

xt,h(t) 6= ∏
t∈[d]\({i,l}]T)

xt,h′(t),

for distinct h, h′ ∈ P, as (d− 2)− (k + 1) ≥ k + 1 (by assumption). Hence, under various similar
substitutions of the z-variables, we get |P| distinct monomials implying evalDimz(gjr) ≥ |P|.

D.4 Proofs from Section 4.3

D.4.1 Proof of Lemma 4.2

Lemma 4.2 (restated): Let F be either R, Q or finite field such that d - |F| − 1. If D ∈ GNW is a diagonal
matrix over F then D is of the form D = diag(β0, . . . , βd−1)⊗ Id, where each βi ∈ F and ∏i∈[d] βi = 1.

Proof. Let F = R. Let D ∈ GNW be a diagonal matrix with real entries, and the ((i, j), (i, j))-th
entry of D be βi,j ∈ R for i, j ∈ [d]. We can express βi,j as βi,j = (−1)λi,j · 2γi,j , where λi,j ∈ {0, 1}
and γi,j ∈ R. When D is applied on x, a monomial mh = ∏i∈Fd

xi,h(i) of NW gets mapped to(
∏i∈Fd

(−1)λi,h(i) · 2γi,h(i)

)
·mh, implying ∏i∈Fd

(−1)λi,h(i) = ∏i∈Fd
2γi,h(i) = 1. In other words,

∑
i∈[d]

λi,h(i) = 0 over F2, for all h ∈ Fd[z]k, and

∑
i∈[d]

γi,h(i) = 0 over R, for all h ∈ Fd[z]k.
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By invoking Corollary D.1 (over F = F2 and over F = R) for the above two linear systems, we
get λi,0 = . . . = λi,d−1 = λi and γi,0 = . . . = γi,d−1 = γi for every i ∈ [d], where λ0, . . . , λd−1 ∈ F2
(similarly, γ0, . . . , γd−1 ∈ R) satisfy ∑i∈[d] λi = 0 in F2 (similarly, ∑i∈[d] γi = 0 in R). This implies
βi,0 = . . . = βi,d−1 = βi for every i ∈ [d], where β0, . . . , βd−1 ∈ R satisfy ∏i∈[d] βi = 1. As Q is a
sub-field of R, NW can not have a diagonal symmetry other that diag(β0, . . . , βd−1)⊗ Id over Q.

Let F be a finite field and R = Z|F|−1, such that d - |F| − 1. Let D = diag(β0,0, . . . , βd−1,d−1),
where βi,j ∈ F for every i, j ∈ [d]. Then for every i, j ∈ [d], βi,j can be written as βi,j = τδi,j , where
τ is a generator of F×. When D is applied to x, a monomial mh = ∏i∈Fd

xi,h(i) of NW gets mapped
to (∏i∈Fd

τδi,j) ·mh. As D ∈ GNW, ∏i∈Fd
τδi,j = 1, which implies

∑
i∈[d]

δi,h(i) = 0 overR, for all h ∈ Fd[z]k.

By invoking Claim D.4 overR for the above system, we get the desired result.

Corollary D.3. The diagonal symmetries of NW over F are contained in the group of symmetries of every
set-multilinear polynomial over F.

D.4.2 Proof of Theorem 6

Theorem 6 (restated): Let F be either R, Q or a finite field such that d - |F| − 1. Then, NW is not
characterized by its symmetries over F.

Proof. We know that the symmetries of NW are generated by block-permuted permutation matri-
ces and diagonal matrices (Theorem 5). Let P1, . . . , Pr be all the permutation symmetries of NW.
We now show that there exists a set-multilinear polynomial f ∈ F[x] such that f 6= α · NW for
any α ∈ F but GNW ⊆ G f . Let h ∈ Fd[z] of degree k + 1 and mh := ∏i∈[d] xi,h(i). Let S be the
smallest set of monomials containing mh such that for every monomial m ∈ S, m(Pi · x) ∈ S for
every i ∈ {1, . . . , r}. Clearly, S is a set of set-multilinear monomials. Suppose f ∈ F[x] is defined
as follows

f = ∑
m∈S

m.

As f is a set-multilinear polynomial, by Corollary D.3 all the diagonal symmetries of NW are
contained in G f . By definition, all the permutation symmetries of NW are also contained in G f .
Thus, GNW ⊆ G f but f is not a scalar multiple of NW.

E Proof of Theorem 3

Theorem 3 (restated): Suppose NW is not computable by circuits of size s over a finite field F, where
|F| ≥ 4 · δ(s). Then, there exist points a1, . . . , am ∈ Fn, where m = poly(s), such that for every circuit
C over F of size at most s, there is an ` ∈ [m] satisfying C(a`) 6= NW(a`). A set of randomly generated
points a1, . . . , am ∈r Fn has this property with high probability. Moreover, black-box derandomization of
polynomial identity testing for size-(10s) circuits over F using poly(s) field operations implies that the
above-mentioned points can be computed deterministically using poly(s) field operations.
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Proof. Let C be a circuit of size s over a finite field F. As NW is not computable by size-s circuits
over F (by assumption), C(x)−NW 6= 0. The polynomial C(x)−NW has degree bounded by δ(s),
as δ(s) ≥ d. By Schwartz-Zippel lemma, for any m ∈N,

Pr
a1,...,am∈rFn

[C(a`) = NW(a`), for all ` ∈ [m]] ≤
(

δ(s)
|F|

)m

.

The number of size-s circuits over F is at most 2s2+s · |F|s (as there are 2s ways to label the nodes as
+ and × gates, at most 2s2

ways to choose the adjacency matrix of the underlying directed graph,
and |F|s ways to label the edges of a given graph). Therefore,

Pr
a1,...,am∈rFn

[∃ a size-s circuit C such that C(a`) = NW(a`), for all ` ∈ [m]] ≤ |F|s · 2s2+s ·
(

δ(s)
|F|

)m

.

By fixing m = s2 + 2s, the above probability can be upper bounded by exp(−s) as |F| ≥ 4 · δ(s).

Now, let us show that black-box derandomization of identity testing implies that such points
a1, . . . , am can be computed deterministically. Consider the class C of size-(10s) circuits over F on
n + 1 variables x ] u. Assume that H = {(b0, µ0), . . . , (bw−1, µw−1)} ⊆ Fn+1 is a hitting set15 for
the circuit class C, and H is computable using poly(s) field operations. Let P ⊆ Fn be the set of
points that includes b0, . . . bw−1 along with Ai(µ`) · b`, Aa,r · b` and At · b` for every ` ∈ [w], i ∈
[d], a ∈ F×d , r ∈ [k + 1] and t ∈ [d]\[k + 1]. Finally, P also contains the point b ∈ Fn obtained
by setting xi0 = 1, for i ∈ [d], and all other variables to zero. Observe that |P| = poly(s) as
|H| = poly(s).

Claim E.1. For every size-s circuit C on n inputs, there is a point a in P such that C(a) 6= NW(a).

Proof. As NW is not computable by size-s circuits, f = C(x) 6= α · NW for all α ∈ F× 16. Hence, at
least one of the identities, in the proof of Lemma 3.1, is not satisfied by f unless f = 0. If f = 0
then f (b) 6= NW(b) = 1, and so let f 6= 0. The degrees of the polynomials q1( f (Ai(u) · x), f (x), u),
q2( f (Aa,r · x), f (x)) and q3( f (At · x)) are upper bounded by 2 · δ(s). Also, it can be verified that the
polynomials q1( f (Ai(u) · x), f (x), u), q2( f (Aa,r · x), f (x)) and q3( f (At · x)) are computable by size-
(10s) circuits on n+ 1 variables x] u. Hence,H is a hitting-set for these polynomials. Without loss
of generality, let q1( f (Ai(u) · x), f (x), u) = 0 be an identity that is not satisfied by f . Then, there is
a (b`, µ`) ∈ H such that q1( f (Ai(µ`) · b`), f (b`), µ`) 6= 0 implying f (Ai(µ`) · b`) 6= µ` · f (b`). On
the other hand, NW(Ai(µ`) · b`) = µ` ·NW(b`) as NW satisfies all the identities. Therefore, either
f (Ai(µ`) · b`) 6= NW(Ai(µ`) · b`) or f (b`) 6= NW(b`). This implies the claim as Ai(µ`) · b` and
b` belong to P .

The proof of the theorem follows from the above claim and by observing that P can be constructed
fromH using poly(s) field operations.

15A set of points H is a hitting-set for a circuit class C if for every circuit C ∈ C computing a non-zero polynomial,
there exists a point b ∈ H such that C(b) 6= 0. Black-box derandomization of identity testing for a circuit class amounts
to constructing a hitting-set for the class.

16If α · NW is computable by a size-s circuit C, for some α ∈ F×, then NW is also computable by a size-s circuit by
appropriately scaling some of the edges feeding into the output gate of C by α−1.
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F Proofs from Section 6

F.1 Proof of Claim 6.1

Claim 6.1 (restated): With high probability, matrix D can be computed in poly(d, ρ) time. Moreover, f
is equivalent to NW if and only if f (D · x) is BP equivalent to NW.

Proof. Suppose f is equivalent to NW, i.e., f = NW(A · x) for A ∈ GLd2(F). Then, R1, . . . , Rd−1 is
a basis of gNW, where Li = A−1 · Ri · A (Lemma 2.2). We know that L = a1L1 + · · ·+ ad−1Ld−1,
where a1, . . . , ad−1 are chosen uniformly at random from S. Pretend that a = {a1, . . . , ad−1} are
formal variables. Then, L = A−1 · R · A, where R = a1R1 + · · ·+ ad−1Rd−1. It is easy to see that
R = diag(α1, . . . , αd)⊗ Id, where α1, . . . , αd are linear forms in a-variables, and αd = −(∑d−1

i=1 αi).
By Lemma 4.1 and as |F| ≥ d2, there is a setting of the a-variables that makes α1, . . . , αd distinct
field elements. In other words, α1, . . . , αd are pairwise distinct linear forms in a-variables. Hence,
from the Schwartz-Zippel lemma [Zip79,Sch80], on setting a1, . . . , ad uniformly at random from S,
α1, . . . , αd become distinct elements of F with high probability.

Compute the characteristic polynomial of L, denoted hL(z) and factorize it. As f is equivalent
to NW, L and R are similar matrices and their characteristic polynomials are the same. Then
hL(z) factorizes as hL(z) = (z− β1)

d · · · (z− βd)
d, for distinct β1, . . . , βd ∈ F such that there is an

(unknown) permutation σ on [d] such that βi = ασ(i) for i ∈ [d]. Suppose B = diag(β1, . . . , βd)⊗ Id.
Let D be a d2 × d2 size formal matrix such that

L · D = D · B. (13)

Solve the system of linear equations obtained from Equation (13) (by treating the entries of D as
variables) and pick a random matrix from the solution space; call this solution matrix D. With high
probability D is invertible (as D = A−1P is also in the solution space for a suitable permutation
matrix P). Equation (13) implies that

R · A · D = A · D · B.

Recall that R = diag(α1, . . . , αd)⊗ Id and B = diag(ασ(1), . . . , ασ(d))⊗ Id. As α1, . . . , αd are distinct,
it is an easy exercise to show that AD is a block permuted matrix. Hence f (D · x) is BP equivalent
to NW.

F.2 Proofs from Section 6.1.1

F.2.1 Proof of Claim 6.2

Claim 6.2 (restated): Suppose f ∈ F[x] is BD permutation equivalent to NW. Then, there exist permuta-
tions σ0, . . . , σd−1 on [d] such that σ0(0) = · · · = σk(0) = 0, σ0(1) = 1 and A = diag(Mσ0 , . . . , Mσd−1)
satisfies f = NW(A · x).

Proof. Since f ∈ F[x] is BD permutation equivalent to NW, there exist permutations π0, . . . , πd−1
on [d], such that A′ = diag(Mπ0 , . . . , Mπd−1) satisfies f = NW(A′ · x). Let h ∈ Fd[z]k such that
π0(0) = h(0), . . . , πk(0) = h(k). For i ∈ [d], define σi : Fd → Fd as

σi(l) := α · (πi(l)− h(i)) for all l ∈ [d],
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where α := 1
π0(1)−h(0) . Note that for every i ∈ [d], σi is well defined as π0(1) 6= h(0). The following

observation can be verified easily.

Observation F.1. σ0, . . . , σd−1 are permutations on Fd. Also, σ0(0) = · · · = σk(0) = 0 and σ0(1) = 1.

For i ∈ [d], let τi : Fd → Fd be defined as τi(l) := α · (l − h(i)) for every l ∈ Fd. Observe that
τ0, . . . , τd−1 are permutations on Fd and for every i ∈ [d]

σi = τi ◦ πi. (14)

Let A = diag(Mσ0 , . . . , Mσd−1), C = diag(Mτ0 , . . . , Mτd−1). As A, A′, C are block diagonal matrices,
the above equation implies

A = C · A′.

Observation F.2. C ∈ GNW.

Proof. On applying C on x, xi,j gets mapped to xi,α·(j−h(i)) for every i, j ∈ [d]. This shows C ∈ GNW

(similar to item 3 of Claim 3.1).

Since NW(x) = NW(C · x), we get f = NW(C · A′ · x) = NW(A · x).

F.2.2 Proof of Claim 6.3

Claim 6.3 (restated): The list of d− k nice polynomials {h0, . . . , hd−k−1} can be computed in poly(d, ρ)
time.

Proof. We create two lists of d− k distinct polynomials in Fd[z]k, namely the p-list and the h-list as
described below. Then we show that the h-list is a list of nice polynomials.

Procedure to create h-list and p-list:

1. Interpolate (0, 0), . . . , (k, 0) to get p0 ∈ Fd[z]k and then interpolate (0, 1), (1, 0), . . . , (k −
1, 0), (k, 0) to get h0 ∈ Fd[z]k. (In this case, p0 = 0 and h0 6= 0.)

2. Interpolate (0, 0), . . . , (k − 1, 0), (k + 1, h0(k + 1)) to get p1 ∈ Fd[z]k and then interpolate
(0, 1), (1, 0) . . . , (k− 1, 0), (k, p1(k)) to get h1 ∈ Fd[z]k.

3. For r ∈ {2, . . . , d− k− 1} do the following.

(a) For r1 = 1 to r, interpolate (0, 0), . . . , (k− 1, 0), (k + r1, hr−1(k + r1)) to get p̃r1 ∈ Fd[z]k.
(It is argued in Observation F.4 that p̃1, . . . , p̃r are distinct polynomials.) Pick a polyno-
mial from p̃1, . . . , p̃r that is different from each of p0, . . . , pr−2. Set that polynomial to
be pr. (It is argued in Observation F.5 that no polynomial amongst p̃1, . . . , p̃r is equal to
pr−1, and so pr 6= pi for all i ∈ [r].)

(b) Interpolate (0, 1), (1, 0), . . . , (k− 1, 0), (k, pr(k)) to get hr ∈ Fd[z]k.

We note some easy-to-verify observations about these lists.

Observation F.3. 1. The p-list and h-list can be computed in poly(d) time and they do not have a
polynomial in common.
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2. All polynomials in the p-list (similarly in the h-list) agree on k points, namely 0, . . . , k− 1.

3. For distinct r, r′ ∈ [d− k], pr and hr agree on k points 1, . . . , k, and pr and hr′ agree on k− 1 points
1, . . . , k− 1.

The following two sub claims imply that {h0, . . . , hd−k−1} is a list of d− k distinct nice polynomials.

Subclaim F.1. Each of the p-list and h-list contains d− k distinct polynomials.

Its proof is given in Section F.2.3. The following fact would be required to prove that {h0, . . . , hd−k−1}
is a list of nice polynomials.

Fact 2. Suppose h ∈ Fd[z]k and i0, . . . , ik ∈ [d] be distinct elements. Then, given σi0(h(i0)), . . . , σik(h(ik)),
we can compute σi(h(i)) for every i ∈ [d] \ {i0, . . . , ik} in poly(d, ρ) time.

The proofs of Fact 2 and Subclaim F.2 are also given in Section F.2.3.

Subclaim F.2. For every r ∈ [d− k], σ0(hr(0)), . . . , σk(hr(k)) can be computed in poly(d, ρ) time.

F.2.3 Proofs of subclaims and fact used in Claim 6.3

Proof of Subclaim F.1

Proof. For some r ∈ [d− k], item 2 of Observation F.3 implies that if p0, . . . , pr are pairwise distinct
then h0, . . . , hr are also pairwise distinct. We show that p0, . . . , pr are pairwise distinct polynomials
by induction on r. The base case, i.e. r = 0 is trivially satisfied. Suppose the hypothesis holds for
r− 1, i.e. p0, . . . , pr−1 are pairwise distinct. This implies h0, . . . , hr−1 are also pairwise distinct. We
construct r polynomials p̃1, . . . p̃r in Fd[z]k by interpolating (0, 0), . . . , (k− 1, 0), (k+ 1, hr−1(k+ 1));
. . . ; (0, 0), . . . , (k− 1, 0), (k + r, hr−1(k + r)) respectively.

Observation F.4. p̃1, . . . , p̃r are distinct polynomials in Fd[z]k.

Proof. Suppose not, then there exist distinct r1, r2 ∈ {1, . . . , r}, such that p̃r1 = p̃r2 . This implies
that the polynomials p̃r1 and hr−1 agree on k + 1 points 1, . . . , k − 1, k + r1 and k + r2, which is a
contradiction as p̃r1 and hr−1 are distinct polynomials (as p̃r1(0) = 0 whereas hr−1(0) = 1).

Observation F.5. For every r1 ∈ {1, . . . , r}, p̃r1 6= pr−1.

Proof. Suppose not. Then, there exists r1 ∈ {1, . . . , r} such that, p̃r1 = pr−1. Then, pr−1(k + r1) =
p̃r1(k + r1) = hr−1(k + r1), which along with item 3 of Observation F.3 implies that hr−1 and
pr−1 agree on k + 1 points 1, . . . , k, k + r1, which can not happen as pr−1 and hr−1 are distinct
polynomials.

Hence p0, . . . , pr are distinct polynomials.

Proof of Fact 2:
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Proof. Since f is block-diagonal permutation equivalent to NW, Observation 6.1 implies that on
setting xi0,σi0 (h(i0))

= · · · = xik ,σik
(h(ik)) = 1 and other variables of xi0 , . . . , xik equal to zero, f reduces

to
c · ∏

i∈[d]\{i0,...,ik}
xi,σi(h(i)), where c ∈ F.

It is easy to show that in this case σi(h(i)) for i ∈ [d] \ {i0, . . . , ik} can be recovered in poly(d, ρ)
time from black-box access to f .

Proof of Subclaim F.2

Proof. For every r ∈ [d − k], σ0(hr(0)) = 1, σ1(hr(1)) = · · · = σk−1(hr(k − 1)) = 0 from Step 1
of Algorithm 3. We show that σk(hr(k)) can be computed efficiently by induction on r. When
r = 0, we know that σk(h0(k)) = σk(0) = 0. Thus, the base case holds. Suppose that the hy-
pothesis holds for r− 1, i.e. we can efficiently compute σk(hr−1(k)). Recall that pr is computed by
interpolating (0, 0), . . . , (k − 1, 0), (k + r1, hr−1(k + r1)) for some r1 ∈ {1, . . . , r}. Using Fact 2 on
σ0(hr−1(0)), . . . , σk−1(hr−1(k− 1)), σk(hr−1(k)) we compute σk+r1(hr−1(k + r1)) = σk+r1(pr(k + r1))
and then using Fact 2 again on σ0(0), . . . , σk−1(0), σk+r1(pr(k + r1)), we compute σk(pr(k)), which
is equal to σk(hr(k)).

F.2.4 Proof of Claim 6.4

Claim 6.4 (restated): Given a list on nice polynomials {h0, . . . , hd−k−1}, we can recover d − k distinct
entries in each of σ0, . . . , σd−1 in poly(d, ρ) time.

Proof. We first show that using {h0, . . . , hd−k−1}, we can recover (d− k) distinct entries of each of
the permutations σk+1, . . . , σd−1. Fix an i ∈ {k + 1, . . . , d− 1}. As h0, . . . , hd−k−1 are nice polynomi-
als, for every h ∈ {h0, . . . , hd−k−1}, σ0(h(0)), . . . , σk(h(k)) can be computed efficiently. By invoking
Fact 2 on σ0(h(0)), . . . , σk(h(k)) for every such h, we get σi(h0(i)), . . . , σi(hd−k−1(i)). From item 2 of
Observation F.3 and Subclaim F.1 and the fact that σi is a permutation, σi(h0(i)), . . . , σi(hd−k−1(i))
are d− k distinct entries of σi.

Now using the d− k known entries of σk+1, we recover d− k distinct entries of each of σ0, . . . , σk.
Suppose there exist distinct l0, . . . , ld−k−1 ∈ [d], such that σk+1(l0), . . . , σk+1(ld−k−1) are known.
Fix an i ∈ [k + 1]. For s ∈ [d − k], let ps be a polynomial in Fd[z]k obtained by interpolating
(i′, 0), (k + 1, ls) for i′ ∈ [k + 1] \ {i}. Observe that these are d− k distinct polynomials. Further,
for s1 6= s2, ps1 and ps2 agree on k points i′ ∈ [k + 1] \ {i} and ps1(i) 6= ps2(i), which implies that
(σi(p0(i)), . . . , σi(pd−k−1(i))) is a tuple of distinct entries. Using Fact 2 on σi′(ps(i′)), σk+1(ps(k +
1)) for i′ ∈ [k + 1] \ {i}, we obtain d− k distinct values σi(ps(i)) for every s ∈ [d− k]. This shows
that for every i ∈ [k + 1], we can compute d− k distinct entries of σi efficiently.

F.2.5 Proof of Claim 6.5

Claim 6.5 (restated): Suppose k ∈ [1, d
3 ]. Then, there exist k + 1 rows in N such that in each of these rows

at least k + 1 entries are known.
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Proof. Suppose this is not true. Then, N has at most k rows such that in each row at least k + 1
entries are known, and in the remaining at least d − k rows at most k entries are known. This
implies that at most d · k + (d− k)k entries are known in N. We know exactly d(d− k) entries in
N. Thus, d(d− k) ≤ 2dk− k2, which implies k > d

3 . This is a contradiction.

F.2.6 Proof of Claim 6.6

Claim 6.6 (restated): Using k + 1 rows of N indexed by l0, . . . , lk (as mentioned in Step 4), we can recover
all the entries of N in poly(d, ρ) time.

Proof. First we show how to recover all the entries of the rows of N indexed by l0, . . . , lk. Given
that in the rows of N indexed by l0, . . . , lk, at least k+ 1 entries are known. For l ∈ {l0, . . . , lk}, there
exist distinct i0, . . . , ik ∈ [d], such that σi0(l), . . . , σik(l) are known. Using Fact 2 on σi0(l), . . . , σik(l),
we recover σi(l) for every i ∈ [d] \ {i0, . . . , ik}.

Now we show how to recover σi(l) for every l ∈ [d] \ {l0, . . . , lk} and i ∈ [d]. Let h = z + (l − i).
Clearly, h(i) = l. Let i0, . . . , ik ∈ [d] be such that l0 = i0 + l − i, . . . , lk = ik + l − i. Then, h(i0) =
l0, . . . , h(ik) = lk. Use Fact 2 on the points σi0(h(i0)), . . . , σik(h(ik)) to recover σi(h(i)), which is
σi(l). Thus, we recover all the entries of N.

F.3 Proofs from Section 6.1.2

F.3.1 Proof of Claim 6.7

Claim 6.7 (restated): We can assume that α1,0 = . . . = αd−1,0 = 1 without loss of generality.

Proof. As f is scaling equivalent to NW, there exists C = diag(β0,0, . . . , βd−1,d−1) such that f =

NW(C · x). Suppose D = diag(a, β−1
1,0 , . . . β−1

d−1,0)⊗ Id, where a = ∏d−1
i=1 βi,0. Then, from Claim 3.1,

D ∈ GNW, which implies f = NW(D · C · x). Set B = D · C. Hence α1,0 = . . . = αd−1,0 = 1.

F.3.2 Proof of Claim 6.8

Claim 6.8 (restated): In Step 4 of Algorithm 4, αi,j can be computed in poly(d, ρ) time. Further, f =
NW(B · x).

Proof. For i, j ∈ [d], suppose αi,j = τyi,j , where τ is a generator of F×. Claim 6.7 implies that
y1,0 = . . . = yd−1,0 = 0. If f = NW(B · x), then a monomial mh = ∏i∈Fd

xi,h(i) of NW gets mapped
to ch · mh, where ch = ∏i∈Fd

αi,h(i). Let ch = τeh . Then, we get the following system of linear
equations for every h ∈ Fd[z]k over the ring Z|F|−1.

∑
i∈Fd

yi,h(i) = eh. (15)

Recall C, S and y from Step 3 of the algorithm. On restricting to the polynomials in S, we get the
following

C · yT = e,
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where e = (e0 ez . . . e(d−1)z e1 ez+1 . . . e(d−1)z+1 . . . ed−2 ez+d−2 . . . e(d−1)z+d−2 ed−1)
T. Recall γ and δh

from Step 3 and 4. From Cramer’s rule, we get

yi,j = γ · (∑
h∈S

eh · δh) mod (|F| − 1),

This immediately implies,

αi,j = τyi,j = τγ·(∑h∈S eh·δh) mod (|F|−1),

As ch = τeh ,
αi,j = ∏

h∈S
c(δh·γ) mod (|F|−1)

h .

As C is a 0/1 matrix, |det(C)| is bounded by (d2 − d + 1)!, which implies the bit complexity of
det(C) is poly(d). This implies that the above calculations can be done in poly(d, ρ) time using
repeated squaring.

F.4 Scaling equivalence test for NW over R

We first state the model of computation over R. We assume that addition, subtraction, multiplica-
tion and division of two real numbers can be done in unit time. In addition, we also assume that
the positive real root of a univariate real polynomial yr − δ can be computed in poly(log r) time
(see [Bre76, Ye94]).

Suppose a degree d polynomial f ∈ F[x] is scaling equivalent to NW. We wish to find a B =
diag(α0,0, . . . , αd−1,d−1) ∈ GLd2(R), such that f = NW(B · x). Note that every αi,j can be written
as αi,j = (−1)si,j · 2βi,j , where si,j ∈ F2 and βi,j ∈ R. Assume si,j, βi,j, i, j ∈ [d] are formal variables.
Here also, we can assume without loss of generality that α1,0 = . . . = αd−1,0 = 1, which sets
si,0 = βi,0 = 0 for i ∈ {1, . . . , d − 1}. For h ∈ {az + b : a ∈ [d], b ∈ [d − 1]} ∪ {d − 1}, let
ch = (−1)δh · 2γh be the coefficient of ∏i∈Fd

xi,h(i) in f . This gives us the following system of linear
equations in β and s variables over R and F2 respectively.

∑
i∈Fd

βi,h(i) = γh and ∑
i∈Fd

si,h(i) = δh. (16)

Hereon, the algorithm for the scaling equivalence test for NW over R can be obtained by easily
adapting Algorithm 4 to solve the system of linear equations mentioned in Equation (16) and
compute B.

G Permutation symmetries of NW

Let P ∈ GNW be a permutation matrix, and µ be the corresponding permutation on x, i.e. µ(xi,j) =
(P · x)(i, j). As P is block-permuted (by Claim 4.1), there exist a permutation σ on Fd and a per-
mutation φ on Fd[z]k such that for every h ∈ Fd[z]k, µ(xi,h(i)) = xσ(i),φ(h)(σ(i)). It can be easily
verified that a (σ, φ) pair (where σ is a permutation on Fd and φ is a permutation on Fd[z]k) yields
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a permutation symmetry of NW via the map σ : xi,h(i) 7→ xσ(i),φ(h)(σ(i)) if and only if for every i ∈ Fd
and h1, h2 ∈ Fd[z]k, the following is satisfied:

h1(i) = h2(i) implies φ(h1)(σ(i)) = φ(h2)(σ(i)) and vice versa. (17)

The task now boils down to understanding which (σ, φ) pairs satisfy the above condition. We give
a partial answer to this. In particular, we characterize all (σ, φ) pair when σ is linear, i.e. there exist
bσ ∈ F×d , cσ ∈ Fd, such that for every i ∈ Fd, σ(i) = bσ · i + cσ.

Lemma G.1. Let d ≥ 4k + 1, σ be a linear permutation on [d] and φ be a permutation on Fd[z]k, such that
(σ, φ) gives a symmetry of NW. Then, there exist a ∈ F×d and p ∈ Fd[z]k, such that for every h ∈ Fd[z]k,

φ(h) = a · h′ + p, (18)

where h′ ∈ Fd[z]k, such that h′(σ(i)) = h(i) for every i ∈ Fd.

The proof of Lemma G.1 is given in Section G.1. It is open if these the only permutation symmetries
of NW.

G.1 Proof of Lemma G.1

Proof. It is easy to check that the pair (σ, φ) given in the lemma satisfies Equation (17) and thus
gives a symmetry of NW. Now we show that if φ is a permutation on Fd[z]k, such that (σ, φ) gives
a symmetry of NW, then φ satisfies Equation (18) for every h ∈ Fd[z]k. We can assume without
loss of generality that φ(0) = 0. This is so because if φ′ is a permutation on Fd[z]k defined as
φ′(h) = φ(h)− φ(0) for every h ∈ Fd[z]k, then (σ, φ′) gives a symmetry of NW if and only if (σ, φ)
is a symmetry giving pair. Suppose ψ : F×d → Fd[z]k, defined as ψ(b) = φ(b)− φ(b− 1) for every
non zero constant polynomial b ∈ Fd[z]k. Clearly, ψ(1) = φ(1). We here note some easy to verify
observations about ψ.

Observation G.1. Let b ∈ F×d . Then, for every ` ∈ Fd, ψ(b)(`) 6= 0.

Observation G.2. Suppose b ∈ F×d . Then, φ(b) = ∑b
l=1 ψ(l).

The following observation is implied from Equation (17) as h(i) = (h(i))(i) for every i ∈ Fd.

Observation G.3. Let h ∈ Fd[z]k. Then, for every i ∈ Fd

φ(h)(σ(i)) = φ(h(i))(σ(i)).

Claim G.1. To prove the lemma, it is sufficient to show that for every non zero constant polynomial b ∈
Fd[z]k, ψ(b) = a.

The proof of Claim G.1 is given in Section G.1.1. Now we show that for every b ∈ F×d , ψ(b) = a
for some a ∈ F×d . Let B be a (d − 1) × d size matrix, whose rows and columns are indexed
by the ordered tuples (ψ(1), . . . , ψ(d − 1)) and (0, . . . , d − 1) respectively and for b ∈ F×d , ` ∈
Fd, B(b, `) := ψ(b)(`). Note that Observation G.1 implies that all the entries of B are non-zero.

Observation G.4. To show ψ(b) = a for every b ∈ F×d , it is sufficient to show that all the entries of B are
a.

Claim G.2. There exists a ∈ F×d , such that every entry of B is equal to a.
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Proof. For r ∈ [d] \ {1, . . . , k}, let hr ∈ Fd[z]k, such that hr(1) = · · · = hr(k− 1) = hr(r) = 0, h(k) =
1. It is easy to see that for distinct r1, r2 ∈ [d] \ {1, . . . , k}, hr1 and hr2 are distinct polynomials.

Observation G.5. For every i ∈ Fd \ {1, . . . , k − 1, r}, hr(i) 6= 0. Further, for distinct r1, r2 ∈ [d] \
{1, . . . , k} and for every i ∈ Fd \ {1, . . . , k}, hr1(i) 6= hr2(i).

Fix r ∈ [d] \ {1, . . . , k}. Then Equation (17) implies that

φ(hr)(σ(1)) = · · · = φ(hr)(σ(k− 1)) = ψ(hr)(σ(r)) = 0. (19)

As hr(k) = 1, Observations G.2 and G.3 imply

φ(hr)(σ(k)) = φ(hr(k))(σ(k)) = φ(1)(σ(k)) = ψ(1)(σ(k)) = ψ(1)(σ(k)) · hr(k). (20)

Set a = ψ(1)(σ(k)). The two equations above imply the following.

Observation G.6. Let r ∈ [d] \ {1, . . . , k}. Then, for every i ∈ Fd, φ(hr)(σ(i)) = a · hr(i).

Proof. As σ is linear, there exist bσ ∈ F×d , cσ ∈ Fd, such that for every i ∈ Fd, σ(i) = bσ · i + cσ.
Then, for every i ∈ Fd, φ(hr)(σ(i)) = φ(hr)(bσ · i + cσ). Equations (19) and (20) imply that the
polynomials a · hr and φ(hr)(bσ · z + cσ) agree on k + 1 points 1, . . . , k, r. Since these are two degree
atmost k polynomials, a · hr = φ(hr)(bσ · z + cσ).

Fix i ∈ Fd \ {1, . . . , k}. Observations G.2 and G.6 imply the following for every r ∈ [d] \ {1, . . . , k, i}
as hr(i) 6= 0.

φ(hr)(σ(i)) =
hr(i)

∑
l=1

ψ(l)(σ(i)) = a · hr(i).

Let

Sσ(i) :=

{
hr(i)

∑
l=1

ψ(l)(σ(i)) = a · hr(i) : r ∈ [d] \ {1, . . . , k, i}
}

(21)

We claim that Sσ(i) contains d − k − 1 distinct equations. Suppose not, then there exist distinct
r1, r2 ∈ [d] \ {1, . . . , k, i} such that

hr1 (i)

∑
l=1

ψ(l)(σ(i)) =
hr2 (i)

∑
l=1

ψ(l)(σ(i)).

This means a · (hr1 − hr2)(i) = 0. As noted in Observation G.5, this happens if either i ∈ {1, . . . , k}
or i = r1 = r2, which is a contradiction. Using Sσ(i), we show the following subclaim.

Subclaim G.1. All the entries in the σ(i)-th column of B are a.

The proof of Subclaim G.1 is given in Section G.1.1. This shows that for every i ∈ Fd \ {1, . . . , k},
all the entries in the σ(i)-th column of B are a. Now we show that this is also the case with the
remaining k columns σ(1), . . . , σ(k). For r ∈ [d] \ {k + 1, . . . , 2k} redefine hr to be a polynomial in
Fd[z]k, such that hr(r) = hr(k + 1) = · · · = hr(2k− 1) = 0, hr(2k) = 1. Now, a subclaim similar to
Subclaim G.1 shows that all the entries in some d− k columns including the columns indexed by
σ(1), . . . , σ(k) are ã for some ã ∈ Fd. As d ≥ 4k + 1, there is atleast one column in B, where a and
a′ coincide. This implies that a = ã.
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G.1.1 Proofs of a claim and a subclaim used in Lemma G.1

Proof of Claim G.1:
Let h ∈ Fd[z]k. We want to show that φ(h) satisfies Equation (18), i.e. for every i ∈ Fd,

φ(h)(σ(i)) = a · h′(σ(i)) = a · h(i) (p = 0 as φ(0) = 0)

Observe that if φ(h)(σ(i)) = 0 then Equation (17) implies h(i) = 0. Suppose φ(h)(σ(i)) 6= 0, then
Observations G.2 and G.3, imply that

φ(h)(σ(i)) = φ(h(i))(σ(i)) =
h(i)

∑
l=1

ψ(l)(σ(i)).

Since, ψ(l) = a for every l ∈ F×d , we get φ(h)(σ(i)) = a · h(i).

Proof of Subclaim G.1:

Proof. First we show that atleast d− 2k− 1 entries in the σ(i)-th column of B are a. Note that the
(d− k− 1) equations in Sσ(i) can be identified with d− k− 1 distinct non-zero elements {hr(i) : r ∈
[d] \ {1, . . . , k, i}}. As i is fixed, for simplicity, we set hr(i) as br for r ∈ [d] \ {1, . . . , k, i}. For some
r, if the equation corresponding to br and br + 1 are in Sσ(i) then observe that ψ(br + 1)(σ(i)) =
B(br + 1, σ(i)) = a.

Suppose r ∈ [d] \ {1, . . . , k, i} be such that the equation corresponds to br is not in Sσ(i) but the
equations corresponding to br− 1 and br + 1 are in Sσ(i). Then, we can not say if ψ(br)(σ(i)), ψ(br +
1)(σ(i)) are equal to a or not. Notice that there are k values of such r, such that corresponding br
are non-zero. Thus, we do not know if 2k entries of the σ(i)-th column of B are a or not. Observe
that for such distinct r1, r2, if br1 , br2 are consecutive elements in F×d , then the number of entries in
the σ(i)-th column of B not known to be a is strictly less than 2k. This shows that atleast d− 2k− 1
entries in the σ(i)-th column of B are a.

Now we show that the remaining entries in the σ(i)-th column are also a. Recall that Sσ(i) contains
equations corresponding to elements in V := {br : r ∈ [d] \ {1, . . . , k, i}}. Pick b′ ∈ F×d \ V and
i′ ∈ [d] \ {1, . . . , k, i}. Let U ⊆ [d] \ {i}, such that i′ ∈ U, and |U| = k. For s ∈ [d] \U, let ps ∈ Fd[z]k
such that ps(i1) = ps(s) = 0 for every i1 ∈ U \ {i′} and ps(i′) = b′. Then, from Equation (17),
Observations G.2 and G.3, we get

φ(ps)(σ(i1)) = φ(ps)(σ(s)) = 0 for every i1 ∈ U \ {i′} and

φ(ps)(σ(i′)) =
ps(i′)

∑
l=1

ψ(l)(σ(i′)).

Clearly, ∑
ps(i′)
l=1 ψ(l)(σ(i′)) 6= 0. Observe that for i1 ∈ U ∪ {s},

φ(ps)(σ(i1)) = a′ · ps(i1),

where a′ := ∑
ps(i′)
l=1 ψ(l)(σ(i′))

b′ . It is immediate that a′ 6= 0. An observation similar to Observation G.6
implies that for every i1 ∈ Fd,

φ(ps)(σ(i1)) = a′ · ps(i1).
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Then we get the following system of linear equations (similar to Sσ(i) defined in Equation 21)

Tσ(i),U =

{
ps(i)

∑
l=1

ψ(l)(σ(i)) = a′ · ps(i) : s ∈ [d] \U

}
.

From the arguments used above, it follows that atleast d− 2k− 1 entries in the σ(i)-th column of
B are a′. As d− 2k− 1 > d

2 , we get a = a′. Observe that there exist different subsets U, such that
Tσ(i),U 6= Sσ(i) and Tσ(i),U ∩ Sσ(i) is also not empty. Thus, going over such subsets U, implies that
all the entries in the σ(i)-th column of B are a.
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