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Synopsis

In this thesis we study the deterministic complexity of three problems belonging

to the subject of computational algebra and number theory. These problems are

- univariate polynomial factoring over finite fields, large integer multiplication and

polynomial identity testing. The choice of these problems is primarily motivated by

their fundamental nature as mathematical problems and by their important appli-

cations in areas like coding theory, cryptography and complexity theory.

Finding an efficient deterministic algorithm to factor univariate polynomials over

finite fields is a long standing open problem. Building on earlier work by Evdoki-

mov and Gao, we show that a given polynomial can be factored in deterministic

polynomial time, under the assumption of the Extended Riemann Hypothesis, un-

less the roots of the polynomial satisfy a strong symmetry property. Our symmetry

property strengthens the symmetry property (square balance) defined by Gao. We

also give a tight estimate of the fraction of square balanced polynomials (over fields

of characteristic p = 3 mod 4), showing it to be exponentially small. Our main

motivation behind this approach to factoring is that checking for inherent asym-

metries among the roots can be used to improve the time complexity of the best

deterministic algorithms on most input polynomials.

Integer multiplication is ubiquitous in computational number theory. We give

an n · log n · 2O(log∗ n) time algorithm to multiply two n bit integers that uses mod-

ular arithmetic for intermediate computations instead of arithmetic over complex

numbers as in Fürer’s algorithm, which also has the same and so far the best known

complexity. The previous best algorithm using modular arithmetic (by Schönhage

and Strassen) has complexity O(n · log n · log log n). The advantage of using mod-

ular arithmetic as opposed to complex arithmetic is that we can completely evade



the task of bounding the truncation error due to finite approximations of complex

numbers, and this imparts more transparency into our algorithm.

Polynomial Identity Testing (PIT) is a fundamental problem lying at the in-

terface of complexity theory and computational algebra. We study the problem of

identity testing for depth-2 arithmetic circuits over matrix algebra. We show that

identity testing of depth-3 (ΣΠΣ) arithmetic circuits over a field F is polynomial

time equivalent to identity testing of depth-2 (ΠΣ) arithmetic circuits over U2(F),

the algebra of upper-triangular 2 × 2 matrices with entries from F. Such a con-

nection is a bit surprising since we also show that, as computational models, ΠΣ

circuits over U2(F) are strictly ‘weaker’ than ΣΠΣ circuits over F. The equivalence

further implies that PIT of ΣΠΣ circuits reduces to PIT of width-2 commutative

Algebraic Branching Programs(ABP). Further, we give a deterministic polynomial

time identity testing algorithm for ΠΣ circuits of size s over commutative algebras

of dimension O(log s/ log log s) over F. Over commutative algebras of dimension

O(s), we show that identity testing of ΠΣ circuits is at least as hard as that of ΣΠΣ

circuits over F.

Finally, we study the complexity of two particular problems on identity testing.

One is a generalization of a problem considered by Kayal and Saxena. Here, we

are required to test if the output of a given depth-3 circuit with bounded top fanin

equals a given sparse polynomial. The second problem is on checking if a given

sparse polynomial equals the product of a given set of other sparse polynomials, a

problem that is noted as an open question by von zur Gathen. Using a technique

called dual representation of polynomials, we give deterministic polynomial time

solutions for the first problem and a special case of the second problem where every

polynomial in the input set of alleged factors is a sum of univariate polynomials.
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Chapter 1

Introduction

Much of our endeavor in the theoretical study of computation is aimed towards

either finding an efficient algorithm for a problem or gauging the hardness of a

problem. And in meeting both these goals mathematical insights and ingenuities are

constant companions. In particular, two branches of mathematics - combinatorics,

and algebra and number theory, have found extensive applications in theoretical

computer science. In this thesis, our focus is on problems belonging to the latter

branch.

For the past few decades there has been a growing interest among computer

scientists and mathematicians, in the field of computational number theory and

algebra. Computational number theory is the branch of computer science that

involves finding efficient algorithms for algebraic and number theoretic problems.

Since its inception in the early 1960s, this field has continued to grow with ever-

rising interest among researchers from diverse disciplines that resulted in a fruitful

union of different areas in mathematics and computer science, especially algebra,

number theory and computational complexity theory.

Factoring large integers, checking if an integer is prime, factoring polynomials,

multiplying large integers and matrices, and solving polynomial equations are a few

among a plethora of problems that have made this area so rich and fascinating.

Unlike numerical analysis, here we are interested in exact solutions to problems

instead of approximate solutions. Owing to the fundamental nature of the problems

involved, this is a subject of intense theoretical pursuit. And the tools and techniques

developed to solve these problems have provided researchers with deep mathematical
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insights. But interest in them has escalated in recent time because of their important

applications in key areas like cryptography, coding theory and complexity theory.

To cite a few examples, the security and efficiency of cryptographic protocols

such as the RSA cryptosystem and the Diffie-Hellman key exchange protocol, rely

on the hardness of problems like integer factoring and discrete logarithm and on

the efficiency of prime number generation and large integer multiplication. Further,

the efficiency of some of the decoding algorithms for error correcting codes like

Reed-Solomon and BCH codes, hinge on fast algorithms for solving a system of

linear equations and factoring polynomials over finite fields. Another important

application of algorithmic algebra is the development of computer algebra systems.

These systems are indispensable tools for research in many computation intensive

fields of physics, chemistry, biology, mathematics, geology and meteorology.

The basic computer algebra operations can be broadly classified as -

• Polynomial operations: Polynomial addition, multiplication, gcd computa-

tion, factoring, interpolation, multipoint evaluation, identity testing.

• Integer operations: Addition, multiplication, gcd computation, square root

finding, primality testing, integer factoring, etc.

• Linear algebra operations: Matrix addition, multiplication, inverse and

determinant computation, solving a system of linear equations, etc.

• Abstract algebra operations: Finding the order of a group element, com-

puting discrete logarithm, etc.

In this thesis, we study three such operations namely, univariate polynomial fac-

toring over finite fields, large integer multiplication and polynomial identity testing.

Our attempt in understanding the computational complexity of these problems is

driven both by the fundamental nature of these problems as well as by their strik-

ing applications in other areas. In this chapter we formally define these problems,

noting alongside a few motivating applications. We then give an overview of our

results with the intent of placing them in the context of earlier work.
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1.1 The Problems

We now state the problems that we work with in this thesis. Definition of a finite

field can be looked up from Section 2.1.1 in Chapter 2.

Problem 1.1.1. (Polynomial factoring) Given a univariate polynomial f of degree

n with coefficients taken from a finite field Fq, the field with q elements, find all the

irreducible factors of f .

Polynomial factoring is a fundamental problem that has been studied by the

research community for over four decades. So far there is no known deterministic

polynomial time solution. Polynomial f is given as an input in terms of all its n

coefficients. Since Fq has q elements, each coefficient can be represented by about

dlog qe bits. So a polynomial time algorithm must run in time (n log q)c, where c is an

absolute constant independent of n and log q. Problem 1.1.1 is known to admit effi-

cient randomized polynomial time algorithms (Ber67; Ber70; vzGS92; KS98; KU08).

However, the popular belief is that ‘a problem with a randomized polynomial time

solution can also be solved in deterministic polynomial time’ and hence our focus is

on deterministic solutions to Problem 1.1.1.

Polynomial factoring finds important applications in coding theory, as in the list

decoding algorithms of Reed-Solomon codes (Sud97; GS99), and also in designing

efficient algorithms for other algebraic problems like polynomial solvability (Kay05;

KY08).

Our second problem is integer multiplication.

Problem 1.1.2. (Integer multiplication) Find an efficient algorithm to multiply two

n-bit integers.

The high school algorithm to multiply two integers is efficient when the integers

involved are small, but it quickly becomes inapplicable for larger integers. Multi-

plication of large integers do arise in practice. For example, the RSA encryption

process starts by multiplying two large primes. Many other cryptosystems also

require to generate large primes, and choosing primes is usually accompanied by

primality testing. The only known deterministic polynomial time primality test is

the AKS family (AKS04) of tests. Crandall and Papadopoulos (CP03) remarked on
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their AKS implementation, “...in our implementation almost all of the time is spent

multiplying (and squaring) large integers.”

Our third problem is polynomial identity testing. Arithmetic circuits are defined

in Section 2.1.2 of Chapter 2.

Problem 1.1.3. (Polynomial Identity Testing) Given an arithmetic circuit C with

input variables x1, . . . , xn and constants taken from a field F, check if the polynomial

f(x1, . . . , xn) computed by C is identically zero.

Beside being a natural problem in algebraic computation, identity testing ap-

pears in important complexity theory results such as, IP = PSPACE (LFKN90;

Sha90) and the PCP theorem (ALM+98). It also plays a promising role in proving

super-polynomial circuit lower bound for the permanent polynomial (KI03; Agr05).

Moreover, algorithms for problems like primality testing (AKS04), graph matching

(Lov79) and multivariate polynomial interpolation (CDGK91) also involve identity

testing. Several efficient randomized algorithms (Sch80; Zip79; CK97; LV98; AB99;

KS01) are already known for identity testing. However, a deterministic polynomial

time algorithm has remained elusive. In this thesis, we are particularly interested in

a special case of identity testing that has received a lot of attention in recent times.

This is the problem of identity testing for circuits of depth 3.

We now move on to give a summary of our contributions to the above mentioned

problems.

1.2 Our Contributions

The purpose of this section is to present a brief overview of our results, all of which

are directed towards finding efficient deterministic algorithms for the problems stated

in the previous section. The definitions of the basic terminologies, like algebra,

endomorphism, zero-divisor, Fourier transform, circuits, etc., can be looked up from

Sections 2.1 and 2.3 in Chapter 2.
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1.2.1 Factoring Polynomials using Balance Test

As stated before, univariate polynomial factoring over finite fields is yet to be solved

in deterministic polynomial time, even under the powerful assumption of the Ex-

tended Riemann Hypothesis (ERH). Without the assumption of the ERH, it is not

even known how to efficiently find square root of an element a ∈ Fp, which can be

equivalently thought of as factoring polynomial x2 − a. The results in this section

assume the validity of the ERH.

The best deterministic factoring algorithm, due to Evdokimov (Evd94), runs in

time polynomial in nlogn and log p, where n is the degree of the input polynomial

f(x) and p is the characteristic of the finite field Fp. Evdokimov’s algorithm involves

finding factors of polynomials of ‘smaller’ degree but with coefficients coming from

algebras of dimension O(nlogn) over Fp. Using these factors eventually a nontrivial

endomorphism of the ring R = Fp[x]

(f)
is found, or in the process a zero-divisor of R is

encountered. Evdokimov showed that both these cases are sufficient to factor f .

An alternative approach, due to Gao (Gao01), is to exploit an inherent asym-

metry among the n roots of f to find a zero-divisor in R. This approach has its

merit as it avoids computation in algebras of superpolynomial dimension over Fp.
However, Gao’s algorithm fails to factor f if its roots satisfy a symmetry condition,

known as square balance. Square balanced polynomials do exist, although we show

in our work that the fraction of such polynomials is exponentially small in n over

fields of characteristic p = 3 mod 4.

In our work (Sah08), we propose an extension of Gao’s algorithm in a way that

attempts to bring together the merits of both Evdokimov’s and Gao’s approaches.

Our primary motivation in unifying the two approaches lies in the following informal

observation. If the number of roots, i.e. n is ‘large’ then they are ‘unlikely’ to sat-

isfy a sufficiently strong symmetry condition. Else, if n is small then Evdokimov’s

algorithm is efficient by itself. We briefly sketch how this observation is put to work.

Our algorithm (implicitly) constructs k simple digraphs G1, . . . , Gk on n vertices

(labelled 1, . . . , n) such that G` is a subgraph (not necessarily a proper subgraph) of

G`−1. There is an edge (i, j) in G` if the difference of the ith and the jth roots of f

satisfy a ‘certain’ condition. We show that if any of the k graphs is not regular (i.e.
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indegree and outdegree not same for all vertices) then a zero-divisor of R is found.

Otherwise, if all the graphs G1, . . . , Gk are regular then we require at most log2 n of

the graphs G` to be such that G` 6= G`−1, so that a nontrivial endomorphism of R is

obtained. As mentioned earlier, by the work of Evdokimov (Evd94), a zero-divisor

or an endomorphism in turn produces a factor of f . The time complexity of our

algorithm is k · (n log p)O(1). The graph G1 is regular exactly for the class of square

balanced polynomials, which makes the test that G1, . . . , Gk are regular (we call,

balance test) stronger than Gao’s test.

The construction of the graphs is flexible in the sense that any arbitrary but

deterministically chosen auxiliary polynomials q1(y), . . . , qk(y) of degree (n log p)O(1)

can be used to form the graphs. For instance, by choosing q`(y) = (y + 2−1`)2 a

bound of k ≤ √p log p can be shown for p = 3 mod 4, so that our algorithm

always succeeds in factoring f for this value of k. However, the task is to show

better bounds on k and we leave this question open, noting that for a random

choice of q`(y), G` 6= G`−1 with high probability. The ideal goal is to show that

k = (n log p)O(1) by appropriately fixing the auxiliary polynomials, in which case

factoring polynomials under ERH can be solved in deterministic polynomial time.

Theorem 1.2.1. Univariate polynomials over finite fields can be factored in deter-

ministic polynomial time, under the assumption of the ERH, unless the roots of the

polynomial satisfy a strong symmetry condition.

1.2.2 Integer Multiplication using Modular Arithmetic

How fast can we multiply two n-bit integers? In a seminal paper (SS71), Schönhage

and Strassen gave two algorithms to multiply integers - one having a time com-

plexity of O(n · log n · log log n . . . 2O(log∗ n)) bit operations, and another having a

complexity of O(n · log n · log log n) bit operations. The first algorithm involves

arithmetic over complex numbers while the second one uses modular arithmetic.

However, both these algorithms are based on one central theme - reduce integer

multiplication to polynomial multiplication and then multiply the polynomials us-

ing Fast Fourier Transform. The main technical step here is to suitably encode the

integers as polynomials over a ring that has a ‘good’ principal root of unity which

is crucial in making Discrete Fourier Transform (DFT) efficient.
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After a period of dormancy in progress, Fürer came up with a breakthrough re-

sult (Für07) that multiplies two n-bit integers using n · log n ·2O(log∗ n) bit operations.

While Fürer’s overall approach remains the same as in (SS71), he quite importantly

introduced the notion of inner and outer DFT and showed how repeated compu-

tation of inner DFTs, efficiently, leads to an overall saving in time. For the inner

DFT idea to work, an appropriate root of unity is required which is less of an issue

here as the underlying field of complex numbers is algebraically closed. However,

all intermediate complex numbers need to be approximated suitably during compu-

tation and this introduces the added task of bounding the total truncation error in

the analysis of the algorithm. The question that motivated us is - Can we dispense

with the elaborate error analysis by giving a ‘discrete’ adaption of Fürer’s algorithm?

In our work (DKSS08), we show that two n-bit integers can be multiplied in

n · log n · 2O(log∗ n) time using modular arithmetic. Our algorithm closely follows

Fürer’s algorithm, but departs from it by using modular arithmetic for intermedi-

ate computations instead of complex arithmetic. The primary technical hurdle here

is to make the inner DFTs efficient while working over a discrete ring. This we

overcome by invoking a deep result in analytic number theory on the least prime in

an arithmetic progression (Linnik’s theorem), and by using FFT over multivariate

polynomials as opposed to univariate-FFT, which is the case in both Fürer’s and

Schönhage-Strassen’s algorithms. This also means that the notion of inner and outer

DFT has to be translated properly to make it work in the multivariate world. Over-

all, the algorithm becomes more transparent and simple (without any truncation

error analysis), making it plausible that a suitable variant of it might lead to an

O(n log n) algorithm, thereby matching the popular belief on integer multiplication

complexity.

Theorem 1.2.2. There is an n·log n·2O(log∗ n) time algorithm to compute the product

of two n bit integers using only modular arithmetic for intermediate computations.

1.2.3 Identity Testing via Depth 2 Circuits over Algebras

Recall that, Polynomial Identity Testing (PIT) is the problem of efficiently decid-

ing if a multivariate polynomial given as an arithmetic circuit is identically zero.
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The goal is to find a deterministic polynomial time algorithm. One specific case of

PIT is identity testing for depth-3 (ΣΠΣ) arithmetic circuits. In the last few years

depth-3 PIT has been intensely studied (DS05; KS07; SS09; KS09; SS10b; SS10a)

by the research community. The best result known along this line of research is a

deterministic polynomial time ‘blackbox’ algorithm for PIT of ΣΠΣ circuits with

bounded top fan-in. However, PIT of general ΣΠΣ circuits remains a long standing

open problem.

In our work (SSS09), we take a different approach to depth-3 identity testing

by reducing the depth of the circuit to 2 while increasing the dimension of the

underlying algebra. We show that identity testing of depth 3 (ΣΠΣ) arithmetic

circuits over a field F is polynomial time equivalent to identity testing of depth 2

(ΠΣ) arithmetic circuits over U2(F), the algebra of upper-triangular 2× 2 matrices

with entries from F. Such a connection is a bit surprising since we also show that,

as computational models, ΠΣ circuits over U2(F) are strictly ‘weaker’ than ΣΠΣ

circuits over F. The equivalence further implies that PIT of ΣΠΣ circuits reduces

to PIT of width-2 commutative Algebraic Branching Programs(ABP). This is in

contrast to the fact that identity testing of any ‘non-commutative’ ABP can be

done in deterministic polynomial time (RS04) and the reduction justifies to some

extent the lack of progress for commutative ABPs.

We also show that PIT of a depth-3 circuit of size s reduces in polynomial time to

PIT of a depth-2 circuit of size O(s) over a commutative algebra of dimension O(s).

We make some progress along this line by giving a deterministic polynomial time

identity testing algorithm for depth-2 circuits of size s over commutative algebras

of dimension O(log s/ log log s). The main technical ingredient of our algorithm

is an effective version of a structure theorem that states that a finite dimensional

commutative algebra splits into local rings.

Thus, if we can extend the above result to O(s) dimension or use deeper algebraic

insight into the ring of 2× 2 matrices to solve PIT of ΠΣ circuits over U2(F), then

depth-3 PIT can be solved in polynomial time.

Theorem 1.2.3. (a) Identity testing of depth-3 circuits is polynomial time equiv-

alent to identity testing of depth-2 circuits over 2 × 2 upper-triangular matrices,
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although the latter model is ‘computationally weaker’ than the former.

(b) Also, PIT of depth-3 circuits of size s reduces to PIT of depth-2 circuits of size

O(s) over commutative algebras of dimension O(s). There is a deterministic polyno-

mial time identity testing algorithm for depth-2 circuits of size s over commutative

algebras of dimension O( log s
log log s

).

1.2.4 Applying Duality to Two Identity Testing Problems

Finally, we study the complexity of two particular problems on identity testing. The

first problem is a natural generalization of a problem on depth-3 identity testing

studied before by Kayal and Saxena (KS07).

Problem 1.2.4. Given a depth-3 circuit C with bounded top fanin and given a

sparse polynomial f explicitly, check if p(C) = f , where p(C) is the polynomial

computed by C.

Kayal and Saxena (KS07) showed that identity testing of a depth-3 circuit with

bounded top fanin can be solved in deterministic polynomial time, which thereby

solves the case when f = 0 in Problem 1.2.4 (Recently, Saxena and Seshadhri

(SS10a) gave a blackbox polynomial time algorithm to check if p(C) = 0). We gen-

eralize their result using a technique known as dual representation of polynomials

(introduced in (Sax08)), to show that Problem 1.2.4 can be solved in deterministic

polynomial time for any given sparse polynomial f .

The second problem we study is also a very natural case of identity testing.

Problem 1.2.5. Given a polynomial f explicitly, and also given t other polynomials

g1, . . . , gt explicitly (gi’s need not be distinct), check if f = g1 . . . gt.

This problem has been mentioned in a work by von zur Gathen (vzG83) as a problem

with no known efficient deterministic solution. Using the same tool of ‘duality’, we

give a deterministic polynomial time algorithm to solve Problem 1.2.5 for the case

when the input factors g1, . . . , gt are of the form of sum of univariates.

Roughly speaking, duality is an efficient technique to express a polynomial of

a special kind, we call a semidiagonal polynomial, as a ‘small’ sum of product of

univariates. This particular representation of semidiagonal polynomials turns out

to be quite useful in solving both the above problems.
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1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2 we give a brief overview

of the basic algebraic concepts and tools used in our work. Chapter 3 and Chapter

4 are devoted to our results on polynomial factoring and integer multiplication,

respectively. The results on identity testing are covered in Chapter 5 and Chapter

6.



Chapter 2

Preliminaries

In this chapter we give a concise introduction to the basic mathematical constructs

and tools that we allude to throughout the rest of this thesis. In the first section, we

define the algebraic and the computational structures and note some of their relevant

properties. While in the second section, we provide a more or less self contained

exposition to some of the standard mathematical tools that play an important role

in our results. The details provided in this section are primarily for completeness

and the reader’s convenience.

2.1 Basic Structures

2.1.1 Rings and Fields

In this section, we collect the definitions of some of the basic algebraic structures,

often accompanying them with simple representative examples. Extensive treatment

of these concepts can be found in any standard textbook (Lan02; DF99; Her75;

Art91) on abstract algebra.

Definition 2.1.1. (Group) A group G is a set of elements along with a binary op-

erator . that satisfies the following properties -

1. (Closure) For every two elements a, b ∈ G, a.b also belongs to G.

2. (Associativity) For every three elements a, b, c ∈ G, (a.b).c = a.(b.c).
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3. (Identity) There is an element e ∈ G such that for all a, a.e = e.a = a.

4. (Inverse) Every element a has an inverse b ∈ G satisfying a.b = b.a = e.

Example - (Symmetric groups) The set of all bijections from a set onto itself is a

group, where the binary operator . is composition of mappings.

A group, often written as a tuple (G, .), is commutative or abelian if for every

a, b ∈ G, a.b = b.a. If G satisfies only the closure and the associativity properties

under ., then (G, .) is called a semigroup.

Definition 2.1.2. (Ring) A ring R is a set of elements along with two binary oper-

ators + and . such that -

1. (R,+) is an abelian group.

2. (R− {0},.) is a semigroup, where 0 is the identity of (R,+).

3. For every a, b and c ∈ R, (a+ b).c = a.c+ b.c and a.(b+ c) = a.b+ a.c.
Example - (Integer and polynomial ring) The set of integers Z and the set of poly-

nomials with integer coefficients Z[x] are rings under normal integer and polynomial

addition and multiplication, respectively.

Some ring-theoretic concepts - A ring R is commutative if for all a, b ∈ R,

a.b = b.a. Ring R is said to have a unity, if there is an element e ∈ R for which

a.e = e.a = a, for all a ∈ R. By convention, the unity in R is denoted by 1 and

the identity element of (R,+) is denoted by 0. An element a 6= 0 is a zero divisor

if there exist a b 6= 0 such that a.b = 0; and a is nilpotent if an = 0 for a positive

integer n. A commutative ring with no zero divisor is called an integral domain.

Elements, in a ring R with unity, which are invertible in (R − {0}, .) are called

units. For two different rings (R1,+, .) and (R2,+, .), although we use the same

notation to denote the different rings operations + and ., they should be interpreted

appropriately from the context of their usage. The direct sum of two rings R1 and

R2, denoted as R1 ⊕ R2, is a ring R with elements of the form r = (r1, r2) for all

r1 ∈ R1 and r2 ∈ R2. Addition and multiplication in R is defined as componentwise

addition and multiplication over R1 and R2 i.e. if r = (r1, r2) and r′ = (r′1, r
′
2) then
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r + r′ = (r1 + r′1, r2 + r′2) and r.r′ = (r1.r′1, r2.r′2). Surely, this definition extends

to direct sum of multiple rings.

Definition 2.1.3. (Ring homomorphism) A mapping φ from a ring (R1,+,.) to a

ring (R2,+,.) is a ring homomorphism if for every a and b in R1,

1. φ(a+ b) = φ(a) + φ(b).

2. φ(a.b) = φ(a).φ(b).

3. φ(1) = 1.

The set of elements of R1 which map to the element 0 in R2, under the action of

a ring homomorphism φ, is called the kernel of φ denoted by ker(φ). When a ring

homomorphism φ is one-one and onto, it is called an isomorphism and the rings are

then said to be isomorphic. A homomorphism from R to itself is called an endomor-

phism, and an endomorphism that is also an isomorphism is called an automorphism.

Example - (Residues modulo n) Given a positive integer n, let Z/nZ = {0, . . . , n−1}
be the ring of residues under addition and multiplication modulo n. Then the map

which takes a ∈ Z to a (mod n) i.e. the (positive) remainder when a is divided by

n, is a ring homomorphism from Z to Z/nZ.

Definition 2.1.4. (Ideal) A subset I of a ring (R,+,.) is an ideal of R if (I,+) is

a subgroup of (R,+) and for every a ∈ I and b ∈ R, b.a and a.b belong to I.

An ideal of R which is not properly contained in any ideal other than R itself,

is called a maximal ideal. We say that an ideal I is generated by the elements

a1, . . . , ak ∈ I, denoted as I = (a1, . . . , ak), if and only if every b ∈ I can be expressed

as b = b1.a1 + . . .+ bk.ak where bi’s belong to R.

Definition 2.1.5. (Quotient ring) Given an ideal I of a ring R, the quotient ring

R/I is defined on the set of elements {a+I | a ∈ R} satisfying the following relations

for all a, b ∈ R :

1. a+ I = b+ I if and only if a− b ∈ I.

2. (a+ I) + (b+ I) = (a+ b) + I.
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3. (a+ I).(b+ I) = (a.b) + I.

Example - The set of integer multiples of a number n ∈ Z, denoted as nZ, is an

ideal of Z. If n is a prime then nZ is a maximal ideal. The ring Z/nZ of residues

modulo n is a quotient ring with respect to the ideal nZ.

Definition 2.1.6. (Primitive root of unity) Let R be a commutative ring with unity

1. An element ω ∈ R is called a primitive nth root of unity if ωn = 1, the element

n = 1 + 1 + . . . n times is a unit in R, and for every 1 ≤ m < n, ωm − 1 is nonzero

and not a zero divisor.

Observation 2.1.7. If ω is a primitive nth root of unity in R then for every 1 ≤
m < n,

∑n−1
j=0 ω

mj = 0.

Proof. Notice that, (ωm − 1) ·
∑n−1

j=0 ω
mj = ωmn − 1 = 0 and ωm − 1 6= 0 is not a

zero divisor, implying that
∑n−1

j=0 ω
mj = 0.

Example - In the ring Z/5Z, the element 2 is a primitive 4th root of unity.

Definition 2.1.8. (Local ring) A commutative ring R is local if it has a unique

maximal ideal.

Example - Let R = Q[x] be the ring of univariate polynomials in x with rational

coefficients, and xnR be the ideal of all polynomials that are divisible by xn, where

n is a positive integer. Then the quotient ring R/xnR is a local ring with exactly

one maximal ideal consisting of all polynomials that are divisible by x.

Definition 2.1.9. (Field) A ring (R,+,.) is a field if (R − {0},.) is an abelian

group. In other words, a commutative ring R with unity is a field if every nonzero

element in R is invertible.

Example - (Polynomial ring and rational functions) The sets of rationals, reals and

complex numbers are fields. The set of polynomials in the indeterminates x1, . . . , xn

with coefficients taken from a field F, denoted as F[x1, . . . , xn], is a ring under

‘natural’ polynomial addition and multiplication. This is called the polynomial ring.

Then the set F(x1, . . . , xn) = {f/g : f, g ∈ F[x1, . . . , xn] and g 6= 0} is a field also

known as the field of rational functions or the quotient field of the polynomial ring.
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Definition 2.1.10. (Finite field) A field with finite number of elements is called a

finite field.

Example - For every prime p, the quotient ring Z/pZ is a field consisting of p

elements. Let F be a finite field with q elements and f(x) ∈ F[x] be an irreducible

polynomial (see the definition below) of degree n. Then F[x]/(f) is a field with qn

elements, where (f) is the ideal of F[x] consisting of all multiples of f .

If p is the prime for which 1+1+. . . p times = 0 in F then p is called the characteristic

of F. If no such prime exists then field F is said to have zero characteristic.

Definition 2.1.11. (Unique factorization domain) Let R be an integral domain with

unity. An element p ∈ R is irreducible if whenever p = a.b with a, b ∈ R, either a

or b is a unit. Ring R is a unique factorization domain if every nonunit r ∈ R can

be uniquely expressed as a finite product of irreducible elements. The uniqueness of

the product is up to multiplication by units.

Example - The polynomial ring F[x1, . . . , xn] over a field F is a unique factorization

domain where every polynomial can be factored uniquely into irreducible factors.

Definition 2.1.12. (Vector space) A commutative group (V,+) is a vector space

over a field F if for every a ∈ F and v ∈ V there is an element av ∈ V satisfying the

following relations. For all a, b ∈ F and v, w ∈ V,

1. a(v + w) = av + aw.

2. (a+ b)v = av + bv.

3. a(bv) = (ab)v.

4. 1v = v.

Example - The polynomial ring F[x1, . . . , xn] is a vector space over F. The set of

n× n matrices with entries from a field F, denoted as Mn(F), is also a vector space

over F. Also, the set of complex numbers is a vector space over reals.

Vectors v1, . . . , vm ∈ V are said to be linearly independent if any vector of the

form a1v1 + . . . amvm, with ai’s in F, cannot be 0 unless every ai is zero. Elements
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e1, . . . , en ∈ V are said to form a basis of V if every v ∈ V can be expressed as

a1e1 + . . . anen, where ai’s in F are unique depending only on v. In this case, n is

called the dimension of the vector space V.

Definition 2.1.13. (Algebra over fields) A ring (A,+,.) is called an algebra over

a field F if (A,+) forms a vector space over F and for every v, w ∈ A and a ∈ F,

a(v.w) = (av).w = v.(aw).

Example - The quotient ring F[x]/(f), where f is a polynomial of degree n is an

algebra over F of dimension n. The set of n× n matrices, Mn(F), forms an algebra

over F of dimension n2.

We say that an F-basis of an algebra is explicitly given if we know the basis elements

(say) {e1, . . . , en} and we also know how ei.ej expands as an F-linear combination

of {e1, . . . , en}, for every i and j. The direct sum of two algebras A1 and A2 is an

algebra A = A1 ⊕A2, which is the same as the direct sum of rings A1 and A2 with

the added property that if v = (v1, v2), where v1 ∈ A1, v2 ∈ A2 and v ∈ A, then

av = (av1, av2) for every a ∈ F.

2.1.2 Arithmetic Circuits

Arithmetic circuits form a natural model for computing multivariate polynomials.

It is the arithmetic analogue of boolean circuits, the nonuniform version of Turing

machines. Problems involving arithmetic circuits, in particular proving explicit cir-

cuit lower bounds, have been studied since the early 70s. Formally, an arithmetic

circuit is defined as follows.

Definition 2.1.14. (Arithmetic circuit) An arithmetic circuit over a field F is a

directed acyclic graph with nodes labelled by the two operations + and ×, while

nodes with indegree zero are labelled by the input variables x1, . . . , xn and by field

elements. The edges are labelled only by field elements (no label indicates a label

by 1). Circuit C computes polynomials in F[x1, . . . , xn] in a natural way. The

output of nodes labelled by xi (or, a constant) are xi (or, the constant). An edge

(v, w) which is labelled by α ∈ F multiplies the output of v with α and feeds in to

the input of w. Nodes labelled by + and × output the sum and the product of the
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corresponding input polynomials, respectively. Nodes with outdegree zero output the

final polynomials computed by the circuit.

The following figure shows an example of a circuit. The size of a circuit is the total

number of nodes and edges in the underlying directed graph. The depth of a circuit

is the length of the longest path from an input to an output node. A circuit is called

a formula if every node has outdegree at most one.

Figure 2.1: An arithmetic circuit.

Bounded depth circuits - An infinite family of circuits whose depths are bounded

by a constant is called a family of bounded depth circuits. Interestingly enough,

bounded depth circuits capture a great deal about circuits in general. This point

will be explained in Chapter 5. The following is an example of a depth-3 circuit

computing the polynomial (x1+x2+3x3)(x2−2x3)+x1(4x2−3x3)+(x1−x2)(x1−2x3).

The fanin of the topmost ‘+’ gate is called the top fanin of the depth-3 circuit. In

this case, the top fanin is 3. In Chapter 5 we will be interested in identity testing

of depth-3 circuits.
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Figure 2.2: A depth-3 circuit.

2.2 Notations and Conventions

Useful sets

The sets of integers, rationals, reals and complex numbers are denoted by Z,Q,R
and C, respectively. Z+ is the set of positive integers and ZN is the ring of integers

modulo N ∈ Z+. The multiplicative subgroup of ZN , consisting of all m ∈ Z+ with

gcd(m,N) = 1, is denoted by Z×N . F represents any arbitrary field, and Fq is the

finite field with q elements. F×q = Fq\{0} is the multiplicative subgroup of Fq.

The Order notation

Given two functions t1(n) and t2(n) from Z+ → Z+, we write t1(n) = O(t2(n)) if

there exist positive constants c and n0 such that t1(n) ≤ c · t2(n) for every n ≥ n0.

We write t1(n) = o(t2(n)) if for every constant c, there is an n0 > 0 such that

t1(n) < c · t2(n) for all n ≥ n0. We use the notation poly(n1, . . . , nk) to mean some

arbitrary but fixed polynomial in the parameters n1, . . . , nk. Throughout this thesis,

log refers to logarithm base 2 and ln is the natural logarithm. Sometimes, for the

sake of brevity we use the notation Õ(t(n)) to mean O(t(n) · poly(log t(n))).

Other conventions

In this thesis, a ring R always means a commutative ring with unity 1. We write

R1
∼= R2 to mean that the rings R1 and R2 are isomorphic. The characteristic of
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a field F is denoted by char(F). Given two polynomials f, g ∈ F[x], where F is

any field, gcd(f, g) refers to the unique monic largest common divisor of f and g

over F. For any f ∈ F[x], f ′ denotes the formal derivative of f with respect to x

i.e. df
dx

. For a positive real a, bac is the largest integer less than a, and dae is the

smallest integer greater than a. The determinant of a square matrix M is denoted by

det(M). Given two polynomials f, g ∈ R[x], where R is an integral domain, S(f, g)

denotes the Sylvester matrix of f and g over R. The resultant of f and g over R is

Resx(f, g) = det(S(f, g)). Refer to Appendix A.1, for a discussion on resultant.

2.3 Basic Tools

Our results rely heavily on certain fundamental mathematical results or tools, namely

- Chinese Remaindering Theorem, Hensel Lifting, Discrete Fourier Transform, and

a structure theorem on finite dimensional commutative algebra. This section is

devoted to a brief study of these tools. More details on them can be found in the

texts (GG03; Sho09; AM69) or in the lecture notes (Sud).

2.3.1 Chinese Remaindering

This is a structural result about rings which is used for speeding up computation

over integers and polynomials, and also for arguing over rings as in some of the

proofs in Chapter 3. For convenience, we present the theorem in a general form and

then apply it to the ring of integers and the ring of polynomials.

Two ideals I and J of a ring R are coprime if there are elements a ∈ I and b ∈ J

such that a+ b = 1. The product of two ideals I and J, denoted by IJ, is the ideal

generated by all elements of the form a · b where a ∈ I and b ∈ J. The theorem

states the following.

Theorem 2.3.1. (Chinese Remaindering Theorem) Let I1, . . . , Ir be pairwise coprime

ideals of R and I = I1 . . . Ir be their product. Then,

R

I
∼=

R

I1

⊕ . . .⊕ R

Ir
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Moreover, this isomorphism map is given by,

a mod I −→ (a mod I1, . . . , a mod Ir)

for all a ∈ R.

Proof. The proof uses induction on the number of coprime ideals. Let J = I2 . . . Ir.

Since I1 is coprime to Ij for every j, 2 ≤ j ≤ r, there are elements yj ∈ Ij and

xj ∈ I1 such that xj + yj = 1. Therefore,
∏r

j=2 (xj + yj) = x + y′ = 1 where x ∈ I1

and y′ ∈ J, implying that I1 and J are coprime.

We claim that I = I1 ∩ J. By definition, I = I1J and it is easy to see that

I1J ⊆ I1 ∩ J. If z ∈ I1 ∩ J then, from x + y′ = 1 we have zx + zy′ = z. The left

hand side of the last equation is an element of I1J as both zx, zy′ ∈ I1J. Therefore,

I1 ∩ J = I1J = I.

Consider the map φ : R
I
→ R

I1
⊕ R

J
defined as φ(a mod I) = (a mod I1, a mod J).

It is easy to check that φ is well-defined and is in fact a homomorphism. Let

a1 = a mod I1 and a′ = a mod J. We will abuse notation slightly and write φ(a) =

(a1, a
′).

If φ(a) = φ(b) = (a1, a
′) then a1 = a mod I1 = b mod I1, implying that a−b ∈ I1.

Similarly, a − b ∈ J. This means a − b ∈ I1 ∩ J = I and hence φ is a one-one map.

Also, since x+y′ = 1 for x ∈ I1 and y′ ∈ J, we have φ(a1y
′+a′x) = (a1, a

′) implying

that φ is onto. Therefore, φ is an isomorphism i.e. R
I
∼= R

I1
⊕ R

J
. Inductively, we can

show that R
J
∼= R

I2
⊕ . . .⊕ R

Ir
and hence, R

I
∼= R

I1
⊕ . . .⊕ R

Ir
.

In Z (or F[x]), two elements m1 and m2 are coprime integers (or polynomials) if

and only if the ideals (m1) and (m2) are coprime. Applying the above theorem to

the ring of integers (or polynomials) we get the following result.

Corollary 2.3.2. Let m ∈ R = Z (or F[x]) be such that m =
∏r

j=1 mj where

m1, . . . ,mr are pairwise coprime integers (or polynomials). Then R
(m)
∼= R

(m1)
⊕ . . .⊕

R
(mr)

.

Thus every element of the ring R
(m)

can be uniquely written as an r-tuple with

the ith component belonging to the ring R
(mi)

. Addition and multiplication in R
(m)

are just component-wise addition and multiplication in the rings R
(mi)

.
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2.3.2 Hensel Lifting

Given a ring R and an element m ∈ R, Hensel (Hen18) designed a method to

compute factorization of any element of R modulo m` (for an integer ` > 0), given

its factorization modulo m. This method, known as Hensel lifting, is used in many

algorithms including multivariate polynomial factoring and polynomial division. In

this thesis, we use this tool in Chapter 4 to ‘lift’ a root of unity, as stated in Lemma

2.3.5. Once again, we present the general theorem first and then apply it to prove

the case (Lemma 2.3.5) we need.

Lemma 2.3.3. (Hensel lifting) Let I be an ideal of ring R. Given elements f, g, h, s, t ∈
R with f = gh mod I and sg + th = 1 mod I there exist g′, h′ ∈ R such that,

f = g′h′ mod I2

g′ = g mod I

h′ = h mod I.

Further, any g′ and h′ satisfying the above conditions also satisfy:

1. s′g′ + t′h′ = 1 mod I2 for some s′ = s mod I and t′ = t mod I.

2. g′ and h′ are unique in the sense that any other solutions g∗ and h∗ sat-

isfying the above conditions also satisfy, g∗ = (1 + u)g′ mod I2 and h∗ =

(1− u)h′ mod I2, for some u ∈ I.

Proof. Let f−gh = e mod I2. Verify that g′ = g+te mod I2 and h′ = h+se mod I2

satisfy the conditions f = g′h′ mod I2, g′ = g mod I and h′ = h mod I. We refer to

these three conditions together by C.

For any g′, h′ satisfying C, let d = sg′ + th′ − 1 mod I2. Verify that s′ = (1 −
d)s mod I2 and t′ = (1 − d)t mod I2 satisfy the conditions s′g′ + t′h′ = 1 mod I2,

s′ = s mod I and t′ = t mod I.

Suppose g∗, h∗ be another solution satisfying C. Let v = g∗−g′ and w = h∗−h′.
The relation g∗h∗ = g′h′ mod I2 implies that g′w+h′v = 0 mod I2, as v, w ∈ I. Since

s′g′+t′h′ = 1 mod I2, multiplying both sides by v we get (s′v−t′w)g′ = v mod I2. By

taking u = s′v−t′w ∈ I, g∗ = (1+u)g′ mod I2. Similarly, h∗ = (1−u)h′ mod I2.

When applied to the ring of polynomials, Hensel lifting always generates a ‘unique

factorization’ modulo an ideal. The following lemma clarifies this point.
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Lemma 2.3.4. Let f, g, h ∈ R[x] be monic polynomials and I be an ideal of R[x]

generated by some set S ⊆ R. If f = gh mod I and sg + th = 1 mod I for some

s, t ∈ R[x] then,

1. there exist monic g′, h′ ∈ R[x] such that f = g′h′ mod I2, g′ = g mod I and

h′ = h mod I.

2. if g∗ is any other monic polynomial with f = g∗h∗ mod I2, for some h∗ ∈ R[x],

and g∗ = g mod I then g∗ = g′ mod I2 and h∗ = h′ mod I2.

Proof. Applying Hensel’s lemma, we can get g̃, h̃ ∈ R[x] such that f = g̃h̃ mod I2,

g̃ = g mod I and h̃ = h mod I. But g̃ and h̃ need not be monic. Let v = g̃ − g ∈ I.

Since g is monic, we can divide v by g to obtain q, r ∈ R[x] such that v = qg + r

and degx(r) < degx(g). Note that q, r ∈ I. Define g′ = g + r and h′ = h̃ + qh and

verify that f = g′h′ mod I2. Since degx(r) < degx(g), g′ is monic which also implies

that h′ is monic as f is monic.

Let g∗ be any other monic polynomial with f = g∗h∗ mod I2, for some h∗ and

g∗ = g mod I. This means, gh = g∗h∗ mod I implying that g(h − h∗) = 0 mod I.

Since g is monic, h∗ = h mod I. Therefore, by Hensel’s lemma, g∗ = (1+u)g′ mod I2

for some u ∈ I. Since g∗ is monic this can only mean g∗ = g′ mod I2 and also

h∗ = h′ mod I2.

Let us now use Lemma 2.3.3 and 2.3.4 to show how a root of unity can be lifted

to the ring Z/psZ, starting from a root in Z/pZ.

Lemma 2.3.5. Let ζs be a primitive (p− 1)-th root of unity in Z/psZ. Then there

exists a unique primitive (p − 1)-th root of unity ζ2s in Z/p2sZ such that ζ2s ≡ ζs

(mod ps). This unique root is given by ζ2s = ζs − f(ζs)
f ′(ζs)

(mod p2s) where f(x) =

xp−1 − 1.

Proof. In the above two lemmas, take the ring R = Z, f = xp−1 − 1 and I = (ps).

Since ζs is a root of f(x) modulo ps, f = (x− ζs)h (mod I) for a certain polynomial

h. Applying Lemma 2.3.4, there are unique monic polynomials g′ and h′ such that

g′ = (x − ζs) (mod ps) and f = g′h′ (mod p2s). Hence, g′ = (x − ζ2s) for a certain

ζ2s with ζ2s = ζs (mod ps) and ζ2s is a primitive (p− 1)th root of unity in Z
p2sZ . We

need to show that ζ2s = ζs − f(ζs)
f ′(ζs)

(mod p2s).
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To see this, let us revisit the proofs of Lemma 2.3.3 and 2.3.4. Going by the same

notation as in Lemma 2.3.4, g̃ = g+ te (mod I2), where s(x− ζs)+ th = 1 (mod ps)

and e = f − gh (mod p2s). Let a and b be the quotient and remainder, respectively,

when h is divided by (x − ζs). Then b = h(ζs) = f ′(ζs) (mod ps) and hence in the

above relation s can be taken as −a and t as 1
f ′(ζs)

(note that, f ′(ζs) 6= 0 (mod p)).

This gives, g̃ = g+ e
f ′(ζs)

(mod I2). Now notice that, in the proof of Lemma 2.3.4 by

taking v = g̃ − g, we get r = e(ζs)
f ′(ζs)

= f(ζs)
f ′(ζs)

(mod p2s). Therefore, g′ = g + r implies

that ζ2s = ζs − f(ζs)
f ′(ζs)

(mod p2s).

Thus, starting from a primitive root in Z/pZ one can apply Lemma 2.3.5 repeatedly

to find a primitive root in Z/psZ, for any s.

2.3.3 Discrete Fourier Transform

We use this tool extensively in Chapter 4 to design the integer multiplication al-

gorithm. Suppose f : [0, n − 1] → R be a function ‘selecting’ n elements of the

ring R. And let ω be a primitive nth root of unity in R. Then the Discrete Fourier

Transform (DFT) of f is defined to be the map,

Ff : [0, n− 1] → R given by

Ff (j) =
n−1∑
i=0

f(i)ωij.

Computing the DFT of f is the task of finding the vector (Ff (0), . . . ,Ff (n − 1)).

This task can be performed efficiently using an algorithm called the Fast Fourier

Transform (FFT), which was first found by Gauss in 1805 and later (re)discovered by

Cooley and Tukey (CT65). The algorithm (given below) uses a divide and conquer

strategy to compute the DFT of a function f , with domain size n, using O(n log n)

ring operations. For simplicity, assume that n is a power of 2.

Correctness of the algorithm - This is immediate from the following two obser-

vations,

Ff (2j) =
n−1∑
i=0

f(i)ω2ij =

n
2
−1∑
i=0

(f(i) + f(n/2 + i)) · (ω2)ij and

Ff (2j + 1) =
n−1∑
i=0

f(i)ωi(2j+1) =

n
2
−1∑
i=0

(f(i)− f(n/2 + i))ωi · (ω2)ij
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Algorithm 1 : Fast Fourier Transform

1. If n = 1 return f(0).

2. Define f0 : [0, n
2
− 1]→ R as f0(i) = f(i) + f(n

2
+ i).

3. Define f1 : [0, n
2
− 1]→ R as f1(i) = (f(i)− f(n

2
+ i))ωi.

4. Recursively, compute DFT of f0 with ω2 as the root of unity.

5. Recursively, compute DFT of f1 with ω2 as the root of unity.

6. Return Ff (2j) = Ff0(j) and Ff (2j + 1) = Ff1(j) for all 0 ≤ j < n
2
.

Thus, the problem of computing the DFT of f reduces to computing the DFT of

two functions f0 and f1 (as defined in the algorithm) with n/2 as the domain size.

Time complexity - Computing f0 takes n/2 additions in R, while computing f1

takes n/2 additions in R and n/2 multiplications by powers of ω. Each of Step 4

and 5 computes the DFT of a function with n/2 as the domain size. By solving the

recurrence, we get the following lemma.

Lemma 2.3.6. (DFT complexity) Algorithm 1 computes the DFT of f using n log n

additions in R and n
2

log n multiplications by powers of ω.

The reason the addition and the multiplication complexities are stated separately

and explicitly, instead of just saying O(n log n), will be clear in Chapter 4.

Application: Polynomial multiplication

Suppose f, g ∈ R[x] be two polynomials of degree less than n/2. We will assume that

R contains a primitive nth root of unity ω and the element n ·1 = 1+1+ . . . n times,

is not zero in R. Since ω is a primitive root, it satisfies the property
∑n−1

j=0 ω
ij = 0

for every 1 ≤ i ≤ n− 1.

Let f =
∑n−1

i=0 cix
i where cn/2, . . . , cn−1 are all zeroes, as deg(f) < n/2. Associate

a function f̂ : [0, n−1]→ R with f given by f̂(i) = ci. Define the DFT of f to be the

DFT of f̂ i.e. Ff (j) , Ff̂ (j) =
∑n−1

i=0 ciω
ij = f(ωj), for all 0 ≤ j ≤ n− 1. Similarly

define the DFT of g as Fg(j) = g(ωj), for all j. The product polynomial h = fg has

degree less than n and hence we can also define the DFT of h as Fh(j) = h(ωj) for
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all j. Let h =
∑n−1

i=0 rix
i and D(ω) be the following matrix.

D(ω) =


1 1 1 ... 1
1 ω ω2 ... ωn−1

...
...

...
...

1 ωn−1 ω2(n−1) ... ω(n−1)2


Define two vectors r = (r0, r1, . . . , rn−1) and h = (h(1), h(ω), . . . , h(ωn−1)). Then,

r ·D(ω) = h, implying that n · r = h ·D(ω−1). This is because D(ω) ·D(ω−1) = n · I,

which follows from the property
∑n−1

j=0 ω
ij = 0 for every 1 ≤ i ≤ n− 1. Here I is the

n × n identity matrix. Now observe that, computing the expression h · D(ω−1) is

equivalent to computing the DFT of the polynomial h̃ =
∑n−1

i=0 h(ωi)xi using ω−1 as

the primitive nth root of unity. We call this DFT of h̃ the inverse-DFT of h. This

observation suggests the following polynomial multiplication algorithm.

Algorithm 2 : Polynomial multiplication using FFT

1. Compute the DFT of f to find the vector (f(1), f(ω), . . . , f(ωn−1)).

2. Compute the DFT of g to find the vector (g(1), g(ω), . . . , g(ωn−1)).

3. Multiply the above two vectors component-wise.

4. Obtain (h(1), h(ω), . . . , h(ωn−1)).

5. Compute the inverse-DFT of h to get the vector n · r.
6. Divide n · r by n to get r = (r0, . . . , rn−1).

7. Return h =
∑n−1

i=0 rix
i.

Time complexity - In Steps 1, 2 and 5 the algorithm computes three DFTs,

each with domain size n. The component-wise multiplication in Step 3 require n

multiplications in R. This will be elaborated upon in Chapter 4.

2.3.4 Structure of Commutative Algebras

Our next tool is a structure theorem from the theory of commutative algebra. We use

this result in Chapter 5 to give a deterministic identity testing algorithm for depth-2

circuits over commutative algebras of small dimension. The structure theorem states

how a finite dimensional commutative algebra decomposes into local sub-algebras.
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Theorem 2.3.7. (Structure theorem) A finite dimensional commutative algebra R

over F is isomorphic to a direct product of local rings i.e.

R ∼= R1 ⊕ . . .⊕ R`

where each Ri is a local ring contained in R and any non-unit in Ri is nilpotent.

Our algorithm in Chapter 5 requires an effective and efficient version of this theorem.

Therefore, for the sake of convenience in presentation, we defer its proof to Section

5.4.1.

2.4 Randomized vs. Deterministic Algorithms

We end this chapter with a brief discussion of our motive in studying the determinis-

tic complexity of problems as opposed to their randomized complexity. Randomized

algorithms are often conceptually simpler and more efficient in practice compared

to their deterministic counterparts. A randomized algorithm takes as input a ran-

dom string in addition to an input string and does some computation to decide

the output. Randomized polynomial time computation is formally defined by the

complexity class BPP. A language L is in BPP if there is an algorithm which on

input (x, r), where x, r ∈ {0, 1}∗ and |r| = poly(|x|), runs in polynomial time and

correctly decides the membership of x in L with high probability over the random

choice of r.

As to whether truly random strings can be generated in practice remains a debat-

able issue. It is also not clear if randomness is absolutely necessary when restricted

to polynomial time computation. In fact, study of pseudo-random generators has

given rise to the general conjectural belief that BPP = P (NW94). One way to de-

randomize all randomized poly-time algorithms is to show efficient construction of

strong pseudo-random generators. But with our present state of knowledge this ap-

pears to be a difficult task. So, to support this conjecture it seems justified to look

for derandomization of specific problems. However, finding deterministic solutions

to specific problems has another important justification. It follows from the work of

Impagliazzo and Kabanets (KI03) and Agrawal (Agr05) that certain efficient deran-

domization of polynomial identity testing implies that the Permanent polynomial
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requires super-polynomial sized arithmetic circuit, which if true will settle the con-

jecture that VP 6= VNP (the arithmetic analogue of the famous P 6= NP problem).

In addition to these profound complexity theoretic implications, derandomization

of a problem often provide us with deeper and revealing mathematical insights.

These are our primary motivations in studying the deterministic complexity of the

problems in this thesis.
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Chapter 3

Polynomial Factoring over Finite

Fields

3.1 Introduction

The problem of computing the irreducible factors of a given polynomial is one of

the most fundamental and well-studied problem in algebraic computation. In this

chapter, we study the deterministic complexity of factoring a univariate polynomial

with coefficients taken from a finite field. This problem reduces in polynomial time to

factoring a monic, square-free and completely splitting polynomial f with coefficients

in a prime field Fp (see (Ber70), (LN94), and Section 3.1.2). Therefore, the factoring

problem can be stated simply as follows: given a polynomial f(x) ∈ Fp[x] in terms

of all its n coefficients, where f splits as

f(x) =
n∏
i=1

(x− ξi) , ξ1, . . . , ξn ∈ Fp are distinct roots,

find ξ1, . . . , ξn. Although there are efficient polynomial time randomized algorithms

for factoring f (see Section 3.1.1), as yet there is no deterministic polynomial time

(i.e. poly(n, log p) time) algorithm even under the assumption of the Extended Rie-

mann Hypothesis (ERH). This is in contrast to the state of the affair for its sister

problem - factoring polynomials over rationals. Indeed, the classical LLL algorithm,

given by Lenstra, Lenstra and Lovász (LJL82), factors a polynomial f ∈ Z[x] with



30 Polynomial Factoring over Finite Fields

coefficients fi, 0 ≤ i ≤ n, in time poly(n, logA), where A = max0≤i≤n | fi |.

We begin this chapter by giving a brief account of the known results on poly-

nomial factoring over finite fields. Assume throughout this chapter that n is the

degree of the input polynomial f .

3.1.1 Previous Work

Randomized algorithms - The first randomized factoring algorithm dates back

to the work of Berlekamp (Ber70). Several improvements in the running time came

up subsequently due to Cantor and Zassenhaus (CZ81), von zur Gathen and Shoup

(vzGS92), Kaltofen and Shoup (KS98), and others (refer to the survey by von zur

Gathen and Panario (vzGP01)). The current best randomized algorithm was given

recently by Kedlaya and Umans (KU08). Using a fast modular composition algo-

rithm along with ideas from Kaltofen and Shoup (KS98), they achieved a running

time of Õ(n1.5 +n log q) field operations, where Fq is the underlying finite field. Note

that, this time complexity is indeed polynomial in the input size (which is about

n log q bits), since a field operation takes (log q)O(1) bit operations.

A substantial amount of work has been directed towards achieving efficient deter-

ministic factoring algorithms. Such algorithms can be broadly classified into two

categories - ERH-free results and results assuming the validity of the ERH.

ERH-free results - Without the assumption of the ERH, it is not even known

how to find square root of an element a ∈ Fp efficiently. However, Schoof (Sch85)

showed that if a is fixed then square root can be computed in time polynomial in

log p. Another result (without assuming ERH) by Shoup (Sho90) showed that the

roots of f can be computed in O(p
1
2 (log p)2n2+ε) time. ERH-free results have been

largely limited until recently when Ivanyos, Karpinski, Rónyai and Saxena (IKRS08)

showed that either a nontrivial factor of f or a nontrivial automorphism of Fp[x]

(f)
of

order n can be found in deterministic poly(nlogn, log p) time. They also gave a deter-

ministic polynomial time algorithm to find a nontrivial factor of the rth cyclotomic
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polynomial, where r > 4 is such that either 4|r or r has two distinct prime factors.

Results assuming the ERH - The results obtained under the assumption of the

ERH can be broadly classified into two categories: 1) results that assume some

special property of the field characteristic p and 2) results that assume some special

property of the input polynomial f . Under the first category there are results by

von zur Gathen (vzG87), Mignotte and Schnorr (MS88), Rónyai (Rón89) and Shoup

(Sho91), which showed that f can be factored in (n log p)O(1) time if p−1 is smooth.

Another result by Bach, von zur Gathen and Lenstra (BvzGL95) showed the time

complexity of factoring to be (`n log p)O(1) where ` is the largest prime factor of

Φk(p), the kth cyclotomic polynomial evaluated at p.

Under the second category of results, Huang (Hua84) showed that the factors

of the nth cyclotomic polynomial and nth roots of any a ∈ Fp can be found in

(n log p)O(1) time (see also (AMM77)). Rónyai (Rón88) showed that f can be fac-

tored in a nontrivial way in time polynomial in nr and log p, where r is a prime

divisor of n. It follows immediately that every even degree polynomial can be fac-

tored efficiently. However, in the worst case the algorithm takes (nn log p)O(1) time.

Later, Huang (Hua91), Rónyai (Rón92) and Evdokimov (Evd92) gave deterministic

polynomial time algorithms for factoring special kinds of f using polynomial fac-

torizations over rationals and algebraic number fields (see (LJL82) and (Lan85)).

Huang (Hua91) showed that a poly-time factoring algorithm exists when the roots

of f generate an Abelian extension over Q. A more general result was given by

Rónyai (Rón92), where f can be factored in time polynomial in n, the degree of

the splitting field of f over Q and log p. Evdokimov (Evd92) gave a deterministic

poly-time algorithm when f is solvable over Q.

In 1994, Evdokimov (Evd94) gave the first deterministic sub-exponential time

algorithm that works in (nlogn log p)O(1) time. It is worth noting that Evdokimov’s

algorithm works for all finite fields and for all univariate polynomials. Cheng and

Huang (CH00) also developed an algorithm, with (nlogn log p)O(1) time complexity,

by exploiting interesting connections to the combinatorial problem of stable coloring

of tournaments. They further showed that under a purely combinatorial conjecture,

the algorithm runs in polynomial time. Ivanyos, Karpinski and Saxena (IKS09)

related the problem of factoring to certain combinatorial objects called m-schemes
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and showed that a nontrivial factor of a polynomial with prime degree n can be

obtained in poly-time if n−1 is smooth. Gao (Gao01) gave a deterministic poly-time

factoring algorithm that fails to find nontrivial factors if f belongs to a restricted

class of polynomials, namely square balanced polynomials.

Our work is mainly motivated by the work of Gao (Gao01) and Evdokimov

(Evd94). Although it shares some common concepts with (CH00) and (IKS09), the

work presented here appears to be incomparable to them. Before we move on to the

main content of this chapter let us briefly sketch how factoring gets reduced to root

finding.

3.1.2 Berlekamp’s Reduction to Root Finding

We use the Chinese remaindering theorem (Theorem 2.3.1) to show that polynomial

factoring reduces to the problem of root finding over finite fields.

Square free factoring - Let f ∈ Fq[x] be a polynomial of degree n that factors as

f = f1 . . . fk, where fi’s are irreducible polynomials over Fq. We can assume that f

is square-free or else we can take gcd of f and df
dx

, the formal derivative of f with

respect to x, and find nontrivial factors of f . The process can be continued until we

are left with only square-free polynomials to factor. It is easy to see that this step,

also known as square-free factorization, takes polynomial in n field operations.

Distinct degree factoring - Suppose that the irreducible factors of f are not of

the same degree. Then, there are two factors, say, f1 and f2 such that deg(f1) = d1

is minimum and deg(f2) = d2 > d1. Since f1 and f2 are irreducible, f1 divides

the polynomial xq
d1 − x whereas f2 does not. Therefore, gcd(xq

d1 − x, f) yields a

non-trivial factor of f . As d1 is unknown, we iteratively compute xq
t − x starting

from t = 1 till we hit t = d1. This can be done by using the repeated squaring

method to compute xq
t

mod f . This step, known as distinct-degree factorization,

takes (n log q)O(1) field operations.

Equal degree factoring - We are now left with the task of factoring a square-

free polynomial f = f1 . . . fk such that all the irreducible factors fi’s have the
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same degree, say, d. This step is called equal-degree factorization. By Chinese

remaindering theorem,

R =
Fq[x]

(f)
∼= ⊕ki=1

Fq[x]

(fi)
∼= ⊕ki=1Fqd .

Let g ∈ R\Fq be such that gq = g in R. First, let us show that such a g exists in

R. By the above isomorphism, any g whose direct-sum representation belongs to

⊕ki=1Fq satisfies the condition gq = g mod f . Also, if f is not irreducible then such

a g 6∈ Fq exists. This means, there exists ci, cj ∈ Fq (i 6= j) such that ci = g mod fi,

cj = g mod fj and ci 6= cj. This also implies that there is a c ∈ Fq such that the

gcd(g − c, f) yields a non-trivial factor of f . For instance, for c = ci, fi divides the

gcd(g − c, f) but fj does not.

To compute g, start with a generic element
∑n−1

i=0 aix
i ∈ R, where n = deg(f) and

ai’s are variables, and solve for ai ∈ Fq such that
∑n−1

i=0 aix
qi =

∑n−1
i=0 aix

i mod f .

Solving this equation reduces to solving a system of linear equations in the ai’s.

This reduction follows once we compute xqi rem f for all i and equate the coeffi-

cients of xj, for 0 ≤ j ≤ n− 1, from both sides of the equation. Now all we need to

do, while solving the linear equations, is to choose a solution for the ai’s such that∑n−1
i=0 aix

i 6∈ Fq. Take g =
∑n−1

i=0 aix
i for that choice of ai’s. Taking into account

that xqi rem f can be computed using repeated squaring, we conclude that g can

be found in polynomial time.

Reduction to root finding - The only task that remains is to find a c ∈ Fq such

that the gcd(g − c, f) gives a nontrivial factor of f . This is where the problem gets

reduced to root finding. The fact that the gcd(g − c, f) 6= 1 means resultant of

the polynomials g − c =
∑n−1

i=1 aix
i + (a0 − c) and f is zero. This means, we need

to solve for a y ∈ Fq such that h(y) = Resx(
∑n−1

i=1 aix
i + (a0 − y), f) = 0, treating

a0 − y as the constant term of the polynomial g − y. We can find h by computing

the determinant of the Sylvester matrix, S(
∑n−1

i=1 aix
i + (a0 − y), f), of g − y and

f . Although there are entries in S containing variable y, we can find det(S) in

polynomial time using interpolation. In this way, factoring polynomial f(x) reduces

to finding a root of the polynomial h(y). Finally, root finding over Fq reduces to

root finding over Fp, where p = char(F). Details of this last step can be found in

Chapter 4 of (LN94).
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3.2 Our Approach

An Overview - Our approach to factoring can be summarized as follows. Let f

be a monic, square-free and completely splitting polynomial in Fp[x] with n roots

ξ1, . . . , ξn. Our factoring algorithm uses an arbitrary (but deterministically chosen)

collection of k = (n log p)O(1) small degree auxiliary polynomials p1(.), . . . , pk(.), and

from each p`(·) (1 ≤ ` ≤ k) and f it implicitly constructs a simple n-vertex digraph

G` such that, (for ` > 1) G` is a subgraph (but not necessarily a proper subgraph)

of G`−1. A proper factor of f is efficiently retrieved if any one of the graphs is

either not regular, or is regular with in degree and out degree of every vertex less

than a chosen constant c. This condition of regularity of all the k graphs imposes

a tight symmetry condition on the roots of f , and we point out that this may be

exploited to improve the worst case time complexity of the best known deterministic

algorithms. Further, we show that if the polynomials p`(·) (1 ≤ ` ≤ k) are randomly

chosen then the symmetry breaks with high probability and our algorithm works

in randomized polynomial time. We call the checking of this symmetry condition a

balance test.

We now present a little more details.

Square Balance property - Gao (Gao01) designed a polynomial time algorithm

that fails to factor only if the input polynomial satisfies a strong symmetry property,

namely square balance. Square balance property is defined as follows. Define the

sets ∆i for 1 ≤ i ≤ n as,

∆i = {1 ≤ j ≤ n : j 6= i, σ((ξi − ξj)2) = −(ξi − ξj)},

where σ is the square root algorithm described in (Gao01) (see Section 3.3.6). The

polynomial f is called a square balanced polynomial if #∆1 = . . . = #∆n. (The

square root algorithm σ has the property that for p = 3 mod 4, σ(a2) = a if and

only if a is a quadratic residue.)

Example 3.2.1. (Square Balance) Let p = 19 = 3 mod 4 and f = (x−2)(x−6)(x−
9)(x − 12)(x − 15) be the input polynomial. Then verify using the above definition

that f is square balanced. (See also Example 3.2.4.)
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In Section 3.5, we show that for p = 3 mod 4 about n−n/2 fraction of all polynomials

of degree n are square balanced when p is sufficiently large.

3.2.1 The Main Theorem

We propose an extension of Gao’s algorithm that fails only under an even stronger

symmetry property that we call cross balance. Cross balance property is defined as

follows. For ` > 1, define the polynomial f` as,

f` =
n∏
i=1

(x− p`(ξi)),

where p`(.) is an arbitrary but deterministically chosen polynomial with degree

bounded by (n log p)O(1). Further, p`1(.) 6= p`2(.) for `1 6= `2, and f1 is taken to be f

i.e. p1(y) = y. Assume that, for a given k = (n log p)O(1), for every `, 1 ≤ ` ≤ k, the

polynomial f` = f̃d`` , where f̃` is a square-free and square balanced polynomial and

d` > 0. Later, we show that, if f` is not of the above form then a proper factor of f

can be retrieved efficiently. For each polynomial f`, 1 ≤ ` ≤ k, define the sets ∆
(`)
i

for 1 ≤ i ≤ n as,

∆
(`)
i = {1 ≤ j ≤ n : p`(ξi) 6= p`(ξj), σ((p`(ξi)− p`(ξj))2) = −(p`(ξi)− p`(ξj))}

Further, define the sets Di
(`) iteratively over ` as,

D
(1)
i = ∆

(1)
i

For ` > 1, D
(`)
i = D

(`−1)
i ∩∆

(`)
i

If D
(`)
i = φ for all i, 1 ≤ i ≤ n, then redefine D

(`)
i as D

(`)
i = D

(`−1)
i .

For 1 ≤ ` ≤ k, let G` be a directed graph with n vertices v1, . . . , vn, such that there

is an edge from vi to vj if and only if j ∈ D
(`)
i . Note that, G` is a subgraph of

G`−1 for 1 < ` ≤ k. Denote the in degree and out degree of a vertex vi by indeg(vi)

and outdeg(vi), respectively. We say that the graph G` is regular (or t-regular) if

indeg(v1) = outdeg(v1) = . . . = indeg(vn) = outdeg(vn) = t. Call t the regularity of

G`.

Definition 3.2.2. (Cross Balance) A polynomial f is called k-cross balanced, for

k > 0, if for every `, 1 ≤ ` ≤ k, the polynomial f` = f̃d`` , where f̃` is a square-free,

square balanced polynomial with d` > 0, and the graph G` is regular.
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The following theorem is proved in this chapter.

Theorem 3.2.3. (Main Theorem) Polynomial f can be factored into nontrivial fac-

tors in time k · (n log p)O(1) if f is not k-cross balanced. Further, if G1, . . . , Gk are

all regular then we require at most log2 n of the graphs G` to be such that G` 6= G`−1

(1 < ` ≤ k), so that f can be factored in k · (n log p)O(1) time.

3.2.2 The Motivation

Let us motivate the usefulness of generalizing the square balance property to cross

balance. Suppose f(y) splits as f(y) = (y −X) · f̂(y) in the quotient ring R = Fp[x]

(f)

where X = x mod f . Our algorithm iteratively tests the graphs G1, G2, . . . so on,

to check if any one of them is not regular. (Note that, G1 is regular if and only

if f is square balanced.) If at the `th iteration the graph G` turns out to be not

regular, then a proper factor of f is obtained in polynomial time. However, if G`

is regular, then the algorithm returns a nontrivial monic factor g`(y) of f̂(y) with

degree equal to the regularity of G`. Moreover, g`(y) is also a factor of (although

may be equal to) g`−1(y), the factor obtained at the (` − 1)th iteration, and it can

be ensured that if g`(y) is a proper factor of g`−1(y) (which happens iff G` 6= G`−1)

then deg(g`(y)) ≤ 1
2
· deg(g`−1(y)). Thus, if the graphs repeatedly turn out to be

regular (which in itself is a stringent condition) and about log2 n times it happen

that G` 6= G`−1, for 1 < ` ≤ k, then we obtain a nontrivial linear factor g(y) of f̂(y).

The element −g(0) defines a nontrivial endomorphism in the ring R, and by using a

result from (Evd94) (see Section 3.3.5) we can find a proper factor of f in polynomial

time. Further, if for only εdlog2 ne times we get G` 6= G`−1 (1 < ` ≤ k) for some

ε, 0 < ε ≤ 1, then we obtain a nontrivial factor g(y) of f̂(y) with degree at most
n1−ε

2
. Now if we apply Evdokimov’s algorithm on g(y) (instead of f̂(y)), we can get

a proper factor of f in time (n
(1−ε)2

2
logn+ε+c1 log p)c2 (c1 and c2 are constants). For

most polynomials ε > 0 (i.e. at least about 1
logn

) and this gives an improvement over

the time complexity of (n
1
2

logn+c1 log p)c2 in (Evd94) (c1, c2 are the same constants).

Assuming n << p, all the best known deterministic algorithms (e.g. (Evd94),

(CH00)) use computations in rings with large dimensions over Fp to get smaller

degree factors of f̂(y). Unlike these approaches, the balance test is an attempt to

exploit an asymmetry among the roots of the input polynomial to obtain smaller
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degree factors of f̂(y) without having to carry out computations in rings with large

dimensions over Fp. This attribute of our approach yields a better time complexity

for most polynomials in a way as discussed in the previous paragraph.

We now demonstrate the usefulness of the cross balance property with a simple

example. Let H` (1 ≤ ` ≤ k) be a digraph with n vertices v1, . . . , vn such that there

is an edge from vi to vj iff j ∈ ∆
(`)
i . Then, graph G` = G`−1 ∩H` or G` = G`−1 (if

G`−1 ∩ H` = Φ, where Φ is the null graph with n vertices but no edge). Here the

symbol ∩ denotes the edge intersection of graphs defined on the same set of vertices.

Suppose we choose the auxiliary polynomials p`(y) = y` for 1 ≤ ` ≤ k. (In fact,

Gao (Gao01) used this choice of auxiliary polynomials to define a restricted class of

square balanced polynomials called super square balanced polynomials.)

Example 3.2.4. Let p = 19 and f = f1 = (x− 2)(x− 6)(x− 9)(x− 12)(x− 15) be

the input polynomial. Then, f2 = (x−4)(x−17)(x−5)(x−11)(x−16). Since p = 3

mod 4, there is an edge from vi to vj in H1 (resp. H2) iff ξi − ξj (resp. ξ2
i − ξ2

j )

is a quadratic nonresidue. The nonresidues in F19 are {2, 3, 8, 10, 12, 13, 14, 15, 18}.
The graphs G1, H2 and G2 are depicted in Figure 3.1. Note that, both f1 and f2 are

square free and square balanced. But, since G2 is irregular, f is not 2-cross balanced

and hence by Theorem 3.2.3 f can be factored in polynomial time.

Figure 3.1: An example showing the usefulness of the cross balance property.
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3.3 Background Concepts

In this section, we explain the background concepts and results required to prove

the main theorem (Theorem 3.2.3). Assume throughout that f is a monic, square-

free and completely splitting polynomial over Fp, and R = Fp[x]

(f)
is the quotient ring

consisting of all polynomials modulo f . Denote the element x mod f in R by X.

3.3.1 Primitive Idempotents

Elements χ1, . . . , χn of the ring R are called the primitive idempotents of R if,∑n
i=1 χi = 1 and for 1 ≤ i, j ≤ n, χi · χj = χi if i = j and 0 otherwise. By the

Chinese Remaindering theorem, R ∼= Fp⊕. . .⊕Fp (n times), such that every element

in R can be uniquely represented by an n-tuple of elements in Fp. Addition and

multiplication between two elements in R can be viewed as componentwise addition

and multiplication of the n-tuples. Any element α = (a1, . . . , an) ∈ R can be equated

as, α =
∑n

i=1 aiχi where ai ∈ Fp. Let g(y) be a polynomial in R[y] given by,

g(y) =
m∑
i=0

γiy
i where γi ∈ R and

γi =
n∑
j=1

gijχj where gij ∈ Fp for 0 ≤ i ≤ m and 1 ≤ j ≤ n.

Then g(y) can be alternatively expressed as,

g(y) =
n∑
j=1

gj(y)χj where gj(y) =
m∑
i=0

gijy
i ∈ Fp[y] for 1 ≤ j ≤ n.

The usefulness of this representation is that, operations on polynomials in R[y] (mul-

tiplication, gcd etc.) can be viewed as componentwise operations on polynomials in

Fp[y].

3.3.2 Characteristic Polynomial

Consider an element α =
∑n

i=1 aiχi ∈ R where ai ∈ Fp, 1 ≤ i ≤ n. The element

α defines a linear transformation on the vector space R (over Fp), mapping an
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element β ∈ R to αβ ∈ R. The characteristic polynomial of α (viewed as a linear

transformation) is independent of the choice of a basis in R and is equal to

cα(y) =
n∏
i=1

(y − ai).

In order to find cα, take {1, X,X2, . . . , Xn−1} as the basis of R and form the matrix

(mij) where α·Xj−1 =
∑n

i=1mijX
i−1, mij ∈ Fp, 1 ≤ i, j ≤ n. Then cα is constructed

by evaluating the det(y · I − (mij)) at n distinct values of y and solving the n

coefficients of cα using linear algebra. This process takes polynomial time. The

notion of characteristic polynomial extends to higher dimensional algebras over Fp.

3.3.3 GCD of Polynomials over Algebras

Let g(y) =
∑n

i=1 gi(y)χi and h(y) =
∑n

i=1 hi(y)χi be two polynomials in R[y], where

gi, hi ∈ Fp[y] for 1 ≤ i ≤ n . Then, the gcd of g and h is defined as,

gcd(g, h) =
n∑
i=1

gcd(gi, hi)χi

We note that, the concept of gcd of polynomials does not make sense in general

over any arbitrary algebra. However, the fact that R is a completely splitting,

semisimple algebra over Fp allows us to work component-wise over Fp and this makes

the notion of gcd meaningful in this context. (Note that, R is completely splitting as

R ∼= Fp⊕ . . .⊕Fp (n times), and semisimple as it has no nonzero nilpotent element.)

Lemma 3.3.1. Given two polynomials g, h ∈ R[y], gcd(g, h) can be computed in

time polynomial in the degrees of g and h, n and log p.

Proof. Apply the extended Euclidean algorithm to the polynomials g and h pretend-

ing that they are polynomials over Fp. Either the algorithm goes through and finds a

gcd or during the process a zero divisor z ∈ R is encountered. Let v = zp−1 in R, im-

plying that v2 = v in R. Using v split the algebra as R = Rv⊕R(1−v), where v and

(1−v) are the identity elements of the orthogonally complement subalgebras Rv and

R(1−v), respectively. Let g1 = gv; g2 = g(1−v) and similarly h1 = hv;h2 = h(1−v).

Now notice that gcd(g, h) = gcd(g1, h1)+gcd(g2, h2) (assuming gcd(0, 0) = 0). Com-

pute the gcd(g1, h1) and gcd(g2, h2) by recursively applying the Euclidean algorithm
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in the subalgebras Rv and R(1 − v) using v and (1 − v) as the identity elements,

respectively. To carry out computations in the subalgebras, find explicit Fp-bases of

Rv and R(1− v) from a basis of R. Since dimFp R = dimFp Rv+ dimFp R(1− v) = n,

the recursion can finally give rise to at most n subalgebras. Therefore, the gcd

algorithm runs in time poly(n, log p, deg(g, h)).

3.3.4 ERH: Ankeny-Bach Estimates and `th Root Finding

Many of the results mentioned in Section 3.1.1 use the assumption of the Ex-

tended Riemann Hypothesis. The ERH appears in these factoring algorithms mainly

through the following result on the least nonresidue in a prime field. An element

a ∈ Fp is called an `th nonresidue if there is no b ∈ Fp for which b` = a.

Theorem 3.3.2. (Least nonresidue estimate) Assuming the ERH, the value of the

least `th nonresidue in F×p is bounded by c log2 p, where ` is a prime dividing p − 1

and c is an effectively computable constant independent of ` and p.

Finding `th power roots - It is known from the work of Vinogradov (Vin72) (see

also Proposition 7 in (Evd94)) that given an `th nonresidue, all the `th power roots

of an element a ∈ Fp i.e. all x such that x` = a, can be found in time (` log p)O(1).

In fact, it is this step of finding `th roots in Fp that appears in many factoring algo-

rithms (including our algorithm), and it is here that the assumption of the ERH is

used. The `th root finding algorithm also extends to completely splitting semisimple

algebras over Fp (like the Fp-algebra R).

A restricted version of Theorem 3.3.2 was first shown by Ankeny (Ank52).

Ankeny’s result - The least quadratic nonresidue in Fp has value O(log2 p).

This result was later generalized by Bach (Bac82), who gave the following estimate.

Theorem 3.3.3. (Bach) If G is a proper subgroup of Z×n (where n is sufficiently

large), then assuming the ERH there is a positive integer m ∈ Z×n \G such that

m ≤ c log2 n, where c is a constant.

Extension to general finite fields - Over general finite fields, Evdokimov (Evd92)

gave a deterministic algorithm, under the assumption of the ERH, to construct an

`th nonresidue in Fq in time (` log q)O(1).
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3.3.5 From Endomorphism to Factors

In order to see how an endomorphism of R can be useful in finding factors of f , let

us examine its structure a little more closely. Let φ be an endomorphism of R that

fixes Fp, i.e. φ(a) = a for all a ∈ Fp. Since any element in R can be expressed as

a polynomial in X, the map φ is completely specified by its action on X. For any

element g ∈ R, use the Chinese remaindering isomorphism and write g = (c1, . . . , cn)

to mean g = ci mod (x − ξi) for every 1 ≤ i ≤ n. For example, in this direct sum

notation the element X ∈ R is (ξ1, . . . , ξn). Let φ(X) = (α1, . . . , αn) for some αi’s

in Fp.
Since φ(f(X)) = f(φ(X)) = 0 in R, each αi = ξj for some j. Now suppose that

there exist k and `, 1 ≤ k < ` ≤ n, such that αk = α`. Then g , characteristic

polynomial of φ(X) =
∏n

i=1 (x− αi) is not square free and the gcd(f, g) yields a

nontrivial factor of f . Clearly, g 6= 0 in R. But, φ(g(X)) = g(φ(X)) = 0 in R which

means kernel of φ is nontrivial and so φ is not an automorphism.

Not let φ be an automorphism of R fixing Fp. Then, αk 6= α` for every pair k and

` with k 6= `. In other words, φ induces a permutation ρ among the n coordinates

of the direct sum representation, i.e. αi = ξρ(i) for all 1 ≤ i ≤ n, where ρ ∈ Sn, the

symmetric group of degree n. It is also easy to verify that any such permutation

defines an automorphism, implying that there are a total of n! automorphisms of R

fixing Fp.
Among these automorphisms suppose we could compute n + 1 distinct auto-

morphisms φ1, . . . , φn+1. Here computing these automorphisms means finding the

elements φs(X) ∈ R, for 1 ≤ s ≤ n+ 1. By the Pigeonhole principle, there is a pair

of automorphisms φs and φt with s 6= t, such that the first coordinates of the direct

sum representations of φs(X) and φt(X) are the same. Since φs and φt are distinct,

φs(X)−φt(X) 6= 0 in R, and hence the gcd(φs(x)−φt(x), f) gives a nontrivial factor

of f .

Evdokimov’s result - Evdokimov showed that assuming the ERH, finding even one

nontrivial automorphism of R (instead of n of them) is sufficient to factor f . Since

any automorphism φ(X) is a root of the polynomial f(y) ∈ R[y] (as f(φ(X)) = 0 in
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R) and any root α(X) of f(y) defines an endomorphism of R (mapping X to α(X)),

we have the following theorem (see Lemma 9 in (Evd94)).

Theorem 3.3.4. (Evd94) A root of the polynomial f(y) in R other than X yields a

nontrivial factor of f(x) over Fp.

The proof of the above theorem goes via finding `th roots of elements in R and this

is where the assumption of the ERH is used (see Section 3.3.4).

3.3.6 Gao’s Algorithm

In this section, we briefly present Gao’s factoring algorithm (Gao01), based on which

our algorithm has been designed. Suppose, the polynomial f(y) splits in R as f(y) =

(y −X)f̂(y). Define the quotient ring S = R[y]

(f̂)
= R[Y ], where Y = y mod f̂ . Like

R, ring S is also a completely splitting semisimple algebra over Fp with dimension

n′ = n(n− 1). Gao (Gao01) described an algorithm σ for taking square root of an

element in S. If p− 1 = 2ew where w is odd and η is a primitive 2e-th root of unity

in Fp, then σ has the following properties:

1. Let µ1, . . . , µn′ be the primitive idempotents of S and α =
∑n′

i=1 aiµi ∈ S where

ai ∈ Fp. Then, σ(α) =
∑n′

i=1 σ(ai)µi.

2. Let a = ηuθ where θ ∈ Fp with θw = 1 and 0 ≤ u < 2e. Then σ(a2) = a if and

only if u < 2e−1.

Notice that, when p = 3 mod 4, η = −1 and property 2 implies that σ(a2) = a if

and only if a is a quadratic residue in Fp. The following is Gao’s algorithm to factor

f . It either finds a proper factor of f or outputs that “f is square balanced”.

Algorithm 3 : Gao’s algorithm

1. Form X, Y , R and S as before.

2. Compute C = 1
2
(X + Y + σ((X − Y )2)) ∈ S..

3. Compute the characteristic polynomial c(y) of C over R.

4. Factor c(y) = h(y)(y −X)t, where t is the largest possible.

5. If h(X) is a zero divisor in R, find a proper factor of f.

6. Otherwise output that ‘f is square balanced’.
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Gao’s result - It was shown in (Gao01) that Algorithm 3 fails to find a proper

factor of f if and only if f is square balanced. Moreover, it follows from the anal-

ysis in (Gao01) (see Theorem 3.1 in (Gao01)) that when f is square balanced the

polynomial h(y) takes the form,

h(y) =
n∑
i=1

[∏
j∈∆i

(y − ξj)

]
χi

where ∆i = {j : j 6= i, σ((ξi−ξj)2) = −(ξi−ξj)} and #∆i = n−1
2

for all i, 1 ≤ i ≤ n.

3.4 Our Algorithm and Analysis

We are now ready to present our algorithm and analyse it. The algorithm involves

k polynomials, f1 = f, f2, . . . , fk, where the polynomial f`, 1 < ` ≤ k, is defined as,

f` =
n∏
i=1

(x− p`(ξi)),

p`(.) is an arbitrary but deterministically fixed polynomial with degree bounded by

(n log p)O(1) and p`1(.) 6= p`2(.) for `1 6= `2. The polynomial f` can be constructed

in polynomial time by considering the element p`(X) in R, and then computing its

characteristic polynomial over Fp. We begin by simplifying the form of f`.

3.4.1 A Simplifying Lemma

Lemma 3.4.1. If f` is not of the form f` = f̃`
d`

, where f̃` is a square-free, square

balanced polynomial and d` > 0, then a proper factor of f can be retrieved in poly-

nomial time.

Proof. By definition, f` =
∏n

i=1 (x− p`(ξi)). Define the sets Ei, for 1 ≤ i ≤ n, as

Ei = {1 ≤ j ≤ n : p`(ξj) = p`(ξi)}. Consider the following gcd in the ring R[y],

g(y) = gcd (p`(y)− p`(X), f(y)) =
n∑
i=1

[∏
j∈Ei

(y − ξj)

]
χi
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The leading coefficient of g(y) is a zero-divisor in R, unless #E1 = . . . = #En = d`

(say). Therefore, we can assume that,

f` =

m∏̀
j=1

(
x− p`(ξsj)

)d` where p`(ξs1), . . . , p`(ξsml ) are all distinct and m` =
n

d`

= f̃`
d`

where f̃` =

m∏̀
j=1

(
x− p`(ξsj)

)
is square-free.

If polynomial f̃` (obtained by square-freeing f`) is not square balanced then a proper

factor g̃` of f̃` is returned by Algorithm 3. But then,

gcd (g̃`(p`(x)), f(x)) =
∏

j:g̃`(p`(ξj))=0

(x− ξj)

is a proper factor of f .

On input f̃` =
∏m`

j=1

(
x− p`(ξsj)

)
, Algorithm 3 returns a polynomial h`(y) such that,

h`(y) =

m∑̀
j=1

 ∏
r∈∆̃

(`)
j

(y − p`(ξsr))

χ(`)
j (3.1)

where χ
(`)
j ’s are the primitive idempotents of the ring R` = Fp[x]

(f̃`)
,

∆̃
(`)
j = {1 ≤ r ≤ m` : r 6= j, σ((p`(ξsj)− p`(ξsr))2) = −(p`(ξsj)− p`(ξsr))}

and #∆̃
(`)
j = m`−1

2
for 1 ≤ j ≤ m`.

3.4.2 Our Algorithm

The algorithm consists of four main steps. For convenience of presentation, we

first deal with each of these steps separately, explaining how they are implemented.

Finally, we combine these steps together to present the factoring algorithm. In what

follows, assume that p > n2 and n is odd, as even degree polynomials can be factored

in polynomial time. Also, parameter k is taken to be a fixed polynomial in n and

log p and c is a fixed constant.
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Step 1: Constructing polynomial f` and checking if f factors

Construct polynomial f` - Compute the characteristic polynomial, cα(x), of element

α = p`(X) ∈ R, over Fp. Then f` = cα(x).

Check if f can be factored using f` - Check if f` is of the form f` = f̃`
d`

, where f̃`

is a square-free, square balanced polynomial and d` > 0. If not, then find a proper

factor of f as in Lemma 3.4.1.

Step 2: Constructing graph G` implicitly

Apply Algorithm 3 to f` - From Step 1, f̃` is square balanced and Algorithm 3 returns

a polynomial h`(y) = yt +α1y
t−1 + . . .+αt (as in equation 3.1), where t = m`−1

2
and

αu ∈ R` for 1 ≤ u ≤ t.

Change to a common ring - Each αu ∈ R` is a polynomial αu(x) ∈ Fp[x] of degree

less than m`. Compute α′u as, α′u = αu(p`(x)) mod f , for 1 ≤ u ≤ t, and construct

the polynomial h′`(y) = yt + α′1y
t−1 + . . . + α′t ∈ R[y]. This step is to ensure that

taking gcd is feasible.

Construct graph G` implicitly - If ` = 1 then assign g`(y) = h′`(y) ∈ R[y] and continue

with the next value of `. Else, construct the polynomial h′`(p`(y)) by replacing y by

p`(y) in h′`(y) and compute g`(y) as,

g`(y) = gcd(g`−1(y), h′`(p`(y))) ∈ R[y].

Check if G` is a null graph - Let g`(y) = βt′y
t′ + . . . + β0, where t′ is the degree of

g`(y) and βu ∈ R for 0 ≤ u ≤ t′. If t′ = 0 then make g`(y) = g`−1(y) and continue

with the next value of `.

Step 3: Checking for equal out degrees of the vertices of G`

Check if out degrees are equal - Say, t′ > 0. If βt′ is a zero divisor in R, construct a

proper factor of f from βt′ and stop.
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Factor if out degrees are small - Else, if t′ ≤ c then use Evdokimov’s algorithm

(Evd94) on g`(y) to find a proper factor of f in (n log p)O(1) time.

Step 4: Checking for equal in degrees of the vertices of G`

Obtain the values of a nice polynomial at multiple points - If t′ > c, evaluate g`(y) ∈
R[y] at n · t′ distinct points y1, . . . , ynt′ taken from Fp. Find the characteristic poly-

nomials of the elements g`(y1), . . . , g`(ynt′) ∈ R over Fp as c1(x), . . . , cnt′(x) ∈ Fp[x],

respectively. Collect the terms ci(0) for 1 ≤ i ≤ nt′.

Construct the nice polynomial from the values - Construct the polynomial r(x) =

xnt
′
+ r1x

nt′−1 + . . .+ rnt′ ∈ Fp[x] such that r(yi) = −ci(0) for 1 ≤ i ≤ nt′. Solve for

ri ∈ Fp, 1 ≤ i ≤ nt′, using linear algebra.

Check if in degrees are equal - For 0 ≤ i < t′, if f i(x) divides r(x) then compute the

gcd
(
r(x)
f i(x)

, f(x)
)
∈ Fp[x]. If a proper factor of f is found, stop. Else, continue with

the next value of `.

Algorithm 4 : Cross Balance Factoring Algorithm

0. Choose the auxiliary polynomials p2, . . . , pk. Take p1(y) = y.

for ` = 1 to k do

1. Construct the polynomial f`.

2. Construct the graph G` (implicitly).

3. Check if out degrees of the vertices of G` are equal.

4. Check if in degrees of the vertices of G` are equal.

If no proper factor is found in Steps 1-4, return ‘Failure’.

3.4.3 Proof of the Main Theorem

The proof of Theorem 3.2.3 follows from the next theorem and the lemma thereafter.

Theorem 3.4.2. Algorithm 4 fails to find a proper factor f in k · (n log p)O(1) time

if and only if f is k-cross balanced and regularity of the graph Gk is greater than c.
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Proof. We show that Algorithm 4 fails to find a proper factor of f at the `th iteration

of the loop if and only if f is `-cross balanced and the regularity of G` is greater

than c. Recall the definitions of the sets ∆
(`)
i and D

(`)
i , 1 ≤ i ≤ n, from Section

3.2.1. The set ∆
(`)
i is defined as,

∆
(`)
i = {1 ≤ j ≤ n : p`(ξi) 6= p`(ξj), σ((p`(ξi)− p`(ξj))2) = −(p`(ξi)− p`(ξj))}

And the set D
(`)
i is defined iteratively over ` as,

D
(1)
i = ∆

(1)
i

For ` > 1, D
(`)
i = D

(`−1)
i ∩∆

(`)
i

If D
(`)
i = φ for all i, 1 ≤ i ≤ n, then D

(`)
i is redefined as D

(`)
i = D

(`−1)
i .

Graph G`, with n vertices v1, . . . , vn, has an edge from vi to vj iff j ∈ D(`)
i .

Algorithm 4 fails at the first iteration (` = 1) if and only if f is square balanced.

In this case, D
(1)
i = ∆

(1)
i = ∆i, the polynomial g1(y) is,

g1(y) = h(y) =
n∑
i=1

 ∏
j∈D(1)

i

(y − ξj)

χi
and G1 is regular with in degree and out degree of a vertex vi equal to #D

(1)
i =

#∆i = n−1
2

. Thus, the polynomial f is 1-cross balanced and deg(g1(y)) = n−1
2

.

If Algorithm 4 fails at the `th iteration, then we can assume that the polynomials

f = f̃1, . . . , f̃` are square free and square balanced (by Lemma 3.4.1).

Suppose that, Algorithm 4 fails at the `th iteration. Then, f̃` =
∏m`

j=1

(
x− p`(ξsj)

)
is square free and square balanced, and Algorithm 3 returns the polynomial h`(y) ∈
R`[y] such that,

h`(y) =

m∑̀
j=1

 ∏
r∈∆̃

(`)
j

(y − p`(ξsr))

χ(`)
j (3.2)

where χ
(`)
j ’s are the primitive idempotents of the ring R` = Fp[x]

(f̃`)
and,

∆̃
(`)
j = {1 ≤ r ≤ m` : r 6= j, σ((p`(ξsj)− p`(ξsr))2) = −(p`(ξsj)− p`(ξsr))}

Let, h`(y) = yt + α1y
t−1 + . . . + αt, where t = m`−1

2
and αu ∈ R` for 1 ≤ u ≤

t. Each αu ∈ R` is a polynomial αu(x) ∈ Fp[x] with degree less than m` and if
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αu =
∑m`

j=1 aujχ
(`)
j for auj ∈ Fp, then by the Chinese Remaindering theorem (and

assuming the correspondence between χ
(`)
j and the factor (x− p`(ξsj)) of f̃`) we get,

αu(x) = q(x)(x− p`(ξsj)) + auj for some polynomial q(x) ∈ Fp[x]

⇒ αu(p`(x)) = q(p`(x))(p`(x)− p`(ξsj)) + auj

⇒ αu(p`(x)) = auj mod (x− ξ) for every ξ ∈ {ξ1, . . . , ξn} such that p`(ξ) = p`(ξsj).

Suppose that, for a given i (1 ≤ i ≤ n), j(i) (1 ≤ j(i) ≤ m`) is a unique index

such that, p`(ξi) = p`(ξsj(i)). Then, the polynomial α′u(x) = αu(p`(x)) mod f has

the following direct sum (or canonical) representation in the ring R,

α′u(x) =
n∑
i=1

auj(i)χi.

This implies that the polynomial h′`(y) = yt + α′1y
t−1 + . . . + α′t ∈ R[y] has the

canonical representation,

h′`(y) =
n∑
i=1

 ∏
r∈∆̃

(`)
j(i)

(y − p`(ξsr))

χi. (3.3)

Inductively, assume that g`−1(y) has the form,

g`−1(y) =
n∑
i=1

 ∏
j∈D(`−1)

i

(y − ξj)

χi.
Then,

g`(y) = gcd (g`−1(y), h′`(p`(y)))

=
n∑
i=1

gcd

 ∏
j∈D(`−1)

i

(y − ξj),
∏

r∈∆̃
(`)
j(i)

(p`(y)− p`(ξsr))

χi

=
n∑
i=1

 ∏
j∈D(`−1)

i ∩∆
(`)
i

(y − ξj)

χi (as r ∈ ∆̃
(`)
j(i) ⇔ sr ∈ ∆

(`)
i )
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Therefore,

g`(y) =
n∑
i=1

 ∏
j∈D(`)

i

(y − ξj)

χi
= βt′y

t′ + . . .+ β0 (say)

where t′ = maxi

(
#D

(`)
i

)
and βu ∈ R for 1 ≤ u ≤ t′ ≤ n−1

2
. The element βt′ is not

a zero divisor in R if and only if #D
(`)
1 = . . . = #D

(`)
n = t′. If t′ ≤ c then a factor

of f can be retrieved from g`(y) in polynomial time using already known methods

(Evd94). The condition #D
(`)
i = t′ for all i, 1 ≤ i ≤ t′, makes the out degree of every

vertex in G` equal to t′. However, this may not necessarily imply that the in degree

of every vertex in G` is also t′. Checking for identical in degrees of the vertices of

G` is handled in Step 4 of the algorithm. Consider evaluating the polynomial g`(y)

at a point ys ∈ Fp.

g`(ys) =
n∑
i=1

 ∏
j∈D(`)

i

(ys − ξj)

χi ∈ R.

The characteristic polynomial of g`(ys) over Fp is,

cs(x) =
n∏
i=1

x− ∏
j∈D(`)

i

(ys − ξj)


⇒ −cs(0) =

n∏
j=1

(ys − ξj)kj (since n is odd),

where kj is the in degree of vertex vj in G`. Let r(x) = xnt
′
+ r1x

nt′−1 + . . .+ rnt′ ∈
Fp[x] be a polynomial of degree nt′, such that,

r(ys) = −cs(0) =
n∏
j=1

(ys − ξj)kj ,

for nt′ distinct points {ys}1≤s≤nt′ taken from Fp. Since we have assumed that p >

n2 > n(n−1)
2
≥ nt′, we can solve for the coefficients r1, . . . , rnt′ using any nt′ distinct

points from Fp. Then,

r(x) =
n∏
j=1

(x− ξj)kj .
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If kj 6= t′ for some j, then there is an i = min {k1, . . . , kn} < t′ such that f i(x)

divides r(x) and the gcd
(
r(x)
f i(x)

, f(x)
)

yields a nontrivial factor of f(x). This shows

that the graph G` is regular if the algorithm fails at the `th step. Since deg(g`(y))

equals the regularity of G`, if the latter quantity is less than c then we can apply Ev-

dokimov’s algorithm (Evd94) on g`(y) and get a non trivial factor of f in polynomial

time.

Recall the definition of graph H` from Section 3.2.2. We say that an auxiliary

polynomial p`(·) is good if either H` is not regular or G` 6= G`−1. We show that,

only a few good auxiliary polynomials are needed.

Lemma 3.4.3. Algorithm 4 (with a slight modification) requires at most log2 n good

auxiliary polynomials to find a proper factor of f .

Proof. Consider the following modification of Algorithm 4. For ` > 1, take g`(y)

to be either gcd(g`−1(y), h′`(p`(y))) or g`−1(y)/ gcd(g`−1(y), h′`(p`(y))), whichever has

the smaller nonzero degree. Accordingly, we modify the definition of graph G`.

Define the set ∆̄
(`)
i (1 ≤ i ≤ n) as,

∆̄
(`)
i = {1 ≤ j ≤ n : j 6= i, σ((p`(ξi)− p`(ξj))2) = (p`(ξi)− p`(ξj))}

= {1 ≤ j ≤ n : j 6= i} −∆
(`)
i

and modify the definition of the sets D
(`)
i (1 ≤ i ≤ n) as,

D
(1)
i = ∆

(1)
i

For ` > 1, Di
(`) = Di

(`−1) ∩∆
(`)
i if g`(y) = gcd(g`−1(y), h′`(p`(y)))

= Di
(`−1) ∩ ∆̄

(`)
i else if g`(y) = g`−1(y)/ gcd(g`−1(y), h′`(p`(y)))

As before, an edge (vi, vj) is present in G` iff j ∈ D(`)
i . This modification ensures

that, if g`(y) 6= g`−1(y) has an invertible leading coefficient (i.e if g`(y) is monic) then

the degree of g`(y) is at most half the degree of g`−1(y). Hence, for every good choice

of polynomial p`(·) if G`−1 and G` are t`−1-regular and t`-regular, respectively, then

t` ≤ t`−1

2
. Therefore, at most log2 n good choices of polynomials p`(·) are required

by the algorithm.

Theorem 3.2.3 follows as a corollary to Theorem 3.4.2 and Lemma 3.4.3. As

already pointed out in Section 3.2.2, if only εdlog2 ne good auxiliary polynomials are
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available for some ε, 0 < ε ≤ 1, then we obtain a nontrivial factor g(y) of f̂(y) with

degree at most n1−ε

2
. If we apply Evdokimov’s algorithm on g(y) instead of f̂(y),

then the maximum dimension of the rings considered is bounded by n
(1−ε)2

2
logn+ε+O(1)

instead of n
logn

2
+O(1) (as is the case in (Evd94)).

3.5 Density of Square Balanced Polynomials

In this section, we give a bound on the fraction of square balanced polynomials for

the case of p = 3 mod 4, when p is sufficiently large. We need a result by Weil (see

Schmidt (Sch76), page - 43) on character sums to prove the following lemma.

Weil’s theorem - Let χ be the quadratic character, mapping an a ∈ Fp to 1 if a is

a quadratic residue and −1 otherwise. If h ∈ Fp[x] is a degree d monic polynomial

that is not a square of another polynomial then,∣∣∣∣∣∣
∑
a∈Fp

χ(h(a))

∣∣∣∣∣∣ ≤ (d− 1)
√
p.

Lemma 3.5.1. If p = 3 mod 4 and p ≥ n622n then about (1+o(1))n

(π
2
n)
n
2

fraction of all

completely splitting, square-free polynomials of degree n are square balanced.

Proof. With every completely splitting, square-free polynomial f =
∏n

i=1 (x− ai),
we can associate a tournament H on n vertices {v1, . . . , vn} with the natural cor-

respondence between vertex vi and root ai for all i, 1 ≤ i ≤ n, such that (vi, vj)

is an edge in H iff (ai − aj) is a quadratic non-residue. Such a tournament is also

known as Paley tournament. Since p = 3 mod 4, f is a square balanced polynomial

iff H is a labeled regular tournament on n vertices. We now bound the fraction of

polynomials that can be associated to a particular labeled tournament.

Let T be a fixed labeled tournament. Suppose that, for some i > 1, the ele-

ments in Si−1 = {a1, . . . , ai−1} are already chosen in a way that is compatible to

the subgraph of T induced by the vertices v1, . . . , vi−1. Let ni be the number of

possible values of ai such that the edge constraints from vi to vertices v1, . . . , vi−1
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are maintained. Then ni can be equated as,

2i−1 · ni =
∑

xi∈F×p \Si−1

i−1∏
j=1

(1 +j χ(xi − aj)),

where χ is the quadratic character and the symbol +j is + if (vj, vi) is an edge in T

and − if (vi, vj) is an edge in T . By expanding the inner product we get,

2i−1 · ni =
∑

xi∈F×p \Si−1

∑
0≤e1,...,ei−1≤1

sign(e1, . . . , ei−1) · χ

(
i−1∏
j=1

(xi − aj)ej
)

=
∑

0≤e1,...,ei−1≤1

sign(e1, . . . , ei−1) ·
∑

xi∈F×p \Si−1

χ

(
i−1∏
j=1

(xi − aj)ej
)
.

The term corresponding to e1 = . . . = ei−1 = 0 is (p − i). For any other fixed

e1, . . . , ei−1, the inner sum is of the form,

sign(e1, . . . , ei−1) ·
∑

xi∈F×p \Si−1

χ(q(xi)),

where q(xi) =
∏i−1

j=1 (xi − aj)ej is not a perfect square as a1, . . . , ai−1 are distinct,

and 1 ≤ deg(q(xi)) ≤ (i− 1). By applying Weil’s theorem we get,

sign(e1, . . . , ei−1) ·
∑

xi∈F×p \Si−1

χ(q(xi)) ≤
∑

xi∈F×p \Si−1

χ(q(xi))

≤

∣∣∣∣∣∣
∑
xi∈Fp

χ(q(xi))

∣∣∣∣∣∣+ i

≤ (i− 2)
√
p+ i.

Therefore,

2i−1 · ni ≤ (p− i) + (2i−1 − 1)((i− 2)
√
p+ i)

⇒ ni ≤
p− i
2i−1

+ (i− 2)
√
p+ i

⇒ ni
p− i

≤ 1

2i−1

(
1 +

2i−1((i− 2)
√
p+ i)

p− i

)
≤ 1

2i−1

(
1 +

1

n2

)
if p ≥ n622n
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And hence,

Pr
a1,...,an

{T is induced by {a1, . . . , an}} ≤
e

1
n

2(n2)
=

1 + o(1)

2(n2)

By a similar argument we get,

sign(e1, . . . , ei−1) ·
∑

xi∈F×p \Si−1

χ(q(xi)) ≥ −
∑

xi∈F×p \Si−1

χ(q(xi))

≥ −((i− 2)
√
p+ i)

which implies that,

ni
p− i

≥ 1

2i−1

(
1− 1

n2

)
if p ≥ n622n

⇒ Pr
a1,...,an

{T is induced by {a1, . . . , an}} ≥
e−

1
n

2(n2)
=

1 + o(1)

2(n2)

⇒ Pr
a1,...,an

{T is induced by {a1, . . . , an}} =
1 + o(1)

2(n2)

The polynomial f is square balanced iff the associated tournament H is regular.

The number of regular tournaments on n vertices is given by (Spe74) as,

Rn = 2(n2) (1 + o(1))n

(π
2
n)

n
2

Therefore,

Pr
a1,...,an

{polynomial f =
n∏
i=1

(x− ai) is square balanced} ≈ (1 + o(1))n

(π
2
n)

n
2

Corollary 3.5.2. If p = 3 mod 4, p > n622n and p`(y) is a uniformly randomly

chosen polynomial of degree (n− 1) then the probability that f` is either not square-

free or is a square-free and square balanced polynomial is upper bounded by (1+o(1))n

(π
2
n)
n
2

.

It follows that, for p = 3 mod 4 and p > n622n, if the auxiliary polynomials p`(·)’s
are uniformly randomly chosen then Algorithm 4 works in randomized polynomial

time. However, the argument used in the proof of Lemma 3.5.1 does not seem to

apply to the case p = 1 mod 4. Therefore, we resort to a different analysis in the

following section, although in the process we get a slightly weaker probability bound.
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3.6 Choice of Auxiliary Polynomials

3.6.1 Random Auxiliary Polynomials

We show that random choices of auxiliary polynomials break the cross balance sym-

metry with high probability thereby making the randomized variant of Algorithm 4

run in polynomial time.

Lemma 3.6.1. If G` (1 ≤ ` < k) is regular and p`+1(y) =
∑n−1

m=1 cmy
m ∈ Fp[x] is

a randomly chosen polynomial of degree (n− 1) then G`+1 6= G` with probability at

least 1− 1
20.9n−2 .

Proof. Suppose that, G` is t-regular where t ≥ 5. Otherwise, if t = deg(g`(y)) < 5

then we can efficiently solve for a root of g`(y) (or f(y), since g`(y) divides f(y))

in R using radicals. In the process either a nontrivial endomorphism of R or a zero

divisor in R is obtained.

Assume that G` has c connected components. Surely, c ≤ n
2t+1

as G` is t-regular.

Consider any connected component Gs
` (1 ≤ s ≤ c) with ns vertices and T s` be a tree

formed by a depth-first traversal of Gs
` with any particular vertex in Gs

` as the root.

Since G` is a regular digraph, any connected component is also strongly connected

and hence T s` is a spanning tree of Gs
` containing ns vertices with ns − 1 edges. Let

the vertices of T s` be v1, . . . , vns and the roots of f associated with these vertices be

ξ1, . . . , ξns , respectively. For every edge eij = (vi, vj) in T s` , 1 ≤ s ≤ c, consider the

equation,

p`+1(ξi)− p`+1(ξj) =
n−1∑
m=1

cm(ξmi − ξmj ) = aij (3.4)

for a given aij ∈ Fp with c̄ = (c1, . . . , cn−1) as the variables. Let p− 1 = 2ew, where

w is odd. Recall from Section 3.3.6, Gao (Gao01) showed that given a primitive

2e-th root of unity η, if a = ηuθ where θw = 1 then σ(a2) = a iff u < 2e−1. We

say that two elements a, b ∈ Fp have the same character if, σ(a2) = a if and only

if σ(b2) = b. For convenience, assume that 0 has the same character as any other

non-zero element a iff σ(a2) = a.

An edge eij in G` is also present in G` ∩ H`+1 if and only if aij = ηuθ with

u ≥ 2e−1. Therefore, all the trees T s` , 1 ≤ s ≤ c, are either totally present or totally

absent in G` ∩ H`+1 iff all aij’s (corresponding to all the edges of the trees T s` ’s)
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have the same character. Writing down the equation (as in (3.4)) for every edge in

every tree T s` , 1 ≤ s ≤ c, gives a set of (n − c) linear equations in n − 1 variables,

namely c̄ = {c1, . . . , cn−1}. Let Mn−c,n−1 be the coefficient matrix of the set of linear

equations. It is not difficult to verify that rank(Mn−c,n−1) = n − c. Otherwise, the

determinant of the matrix (ξji )i,j, 1 ≤ i ≤ n, 0 ≤ j ≤ n−1 is 0, which is not possible

since ξi 6= ξj for i 6= j. This means, for every choice of values of the aij’s we have

at most pc−1 choices of the polynomials p`+1(.) satisfying the linear equations. A

polynomial p`+1(.) is a bad choice only if all aij’s have the same character. This can

happen for at most,(
p− 1

2

)n−c
+

(
p+ 1

2

)n−c
≤ 3 ·

(p
2

)n−c
(assuming n− 1 ≤ p

2
)

different choices of the aij’s. Therefore, the probability that a random choice of

p`+1(.) is bad is at most,

Pr
c̄
{ p`+1(.) is bad} <

pc−1 · 3 ·
(
p
2

)n−c
pn−1

<
1

2n−c−2

Since G` is t-regular c ≤ n
2t+1

. Therefore,

Pr
c̄
{ p`+1(.) is bad} < 1

2n·(
2t

2t+1)−2
<

1

20.9n−2
assuming t ≥ 5

Thus, if polynomials p`(y), 1 < ` ≤ dlog2 ne, are randomly chosen, then the prob-

ability that f is not factored by Algorithm 4 within dlog2 ne iterations is less than
dlog2 ne
20.9n−2 .

3.6.2 A Deterministic Choice with a Weak Bound

We show that if p = 3 mod 4 and the auxiliary polynomials are chosen as p`+1(y) =

(y+2−1`)2 for 1 ≤ ` < k then it is sufficient to take k = d√p log pe to factor f . This

can be argued as follows.

Suppose graph G1 has the edges (vi, vj) and (vi, vr) where j 6= r. Then, ξi − ξj
and ξi − ξr must have the same quadratic character. Also,

p`+1(ξi)− p`+1(ξj) = (ξi − ξj)(ξi + ξj + `) and

p`+1(ξi)− p`+1(ξr) = (ξi − ξr)(ξi + ξr + `).
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Therefore, edges (vi, vj) and (vi, vr) are present in graph G`+1 only if ξi + ξj + ` and

ξi + ξr + ` have the same quadratic character. Shoup (Sho90) showed that if a and

b are distinct elements of Fp and the quadratic characters of a+ i and b+ i are the

same for all 0 ≤ i ≤ M then M <
√
p log p. (This result holds for any odd prime p

not just p = 3 mod 4.) Since ξi+ ξj and ξi+ ξr are distinct elements of Fp, it follows

from Shoup’s result that if all the graphs G2, . . . , Gk have both the edges (vi, vj)

and (vi, vr) then k ≤ √p log p. In other words, within
√
p log p iterations Algorithm

4 finds a proper factor of f for this particular choice of auxiliary polynomials.

3.7 Conclusion

In this work, we have extended the square balance test by Gao (Gao01) and showed

a direction towards improving the time complexity of the best previously known de-

terministic factoring algorithms. Using certain auxiliary polynomials, our algorithm

attempts to exploit an inherent asymmetry among the roots of the input polyno-

mial f in order to efficiently find a proper factor. The advantage of using auxiliary

polynomials is that, unlike (Evd94), it avoids the need to carry out computations in

rings with large dimensions, thereby saving overall computation time to a significant

extent. Motivated by the stringent symmetry requirement from the roots of f , we

pose the following question:

• Is it possible to construct good auxiliary polynomials in deterministic polyno-

mial time?

An affirmative answer to the question will immediately imply that factoring poly-

nomials over finite fields can be done in deterministic polynomial time under the

assumption of the ERH.



Chapter 4

Integer Multiplication

-Joint work with Anindya De, Piyush Kurur and Ramprasad Saptharishi.

4.1 Introduction

In this chapter, we study the complexity of another important problem in compu-

tational number theory namely, integer multiplication. Being a basic arithmetic

operation, it is no surprise that multiplications of integers occur as intermediate

steps of computation in algorithms from every possible domain of computer science.

But seldom do the complexity of such multiplication influence the overall efficiency

of the algorithm as the integers involved are relatively small in size and their mul-

tiplications can often be implemented as a few fast hardware operations. However,

with the advent of modern cryptosystems, the study of the bit complexity of integer

multiplication received a significant impetus. Indeed, large integer multiplication

forms the foundation of many modern day public-key cryptosystems, like RSA, El-

Gamal and Elliptic Curve cryptosystems. One of the most notable applications is

the RSA cryptosystem, where it is required to multiply two primes that are hun-

dreds or thousands of bits long. The larger these primes the harder it is to factor

their product, and this makes the RSA extremely secure in practice.

In this work, our focus is more on the theoretical aspects of integer multipli-

cation, it being a fundamental problem in its own right. This is to say, we will

be concerned with the asymptotic bit complexity of multiplying two N -bit integers

with little emphasis on optimality in practice. It is worth mentioning that in most
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cryptographic applications the key sizes are still sufficiently small to make simpler

algorithms, like Karatsuba’s algorithm (see Section 4.1.1), more efficient in practice

than FFT based approaches that are nonetheless asymptotically better than the

former. We begin with a brief account of the earlier work on integer multiplication

algorithms.

4.1.1 Previous Work

The naive approach to multiply two N -bit integers leads to an algorithm that uses

O(N2) bit operations. Karatsuba (KO63) showed that some multiplication op-

erations of such an algorithm can be replaced by less costly addition operations

which reduces the overall running time of the algorithm to O(N log2 3) bit opera-

tions. Shortly afterwards, this result was improved by Toom (Too63) who showed

that for any ε > 0, integer multiplication can be done in O(N1+ε) time. This led

to the question as to whether the time complexity can be improved further by re-

placing the term O(N ε) by a poly-logarithmic factor. In a major breakthrough,

Schönhage and Strassen (SS71) gave two efficient algorithms for multiplying inte-

gers using Fast Fourier Transform (FFT). One of the algorithms achieved a running

time of O(N · logN · log logN . . . 2O(log∗N)) using arithmetic over complex numbers

(approximated to suitable precisions), while the other used arithmetic modulo care-

fully chosen integers to improve the complexity further to O(N · logN · log logN)

bit operations. The modular algorithm remained the best for a long period of time

until a recent remarkable result by Fürer (Für07) (see also (Für09)). Fürer gave an

algorithm that uses arithmetic over complex numbers and runs in N ·logN ·2O(log∗N)

time. Till date this is the best time complexity known for integer multiplication and

indeed our result is inspired by Fürer’s algorithm.

4.1.2 The Motivation

Schönhage and Strassen introduced two seemingly different approaches to integer

multiplication – using complex and modular arithmetic. Fürer’s algorithm improves

the time complexity in the complex arithmetic setting by cleverly reducing some

costly multiplications to simple shift operations. However, the algorithm needs to

approximate the complex numbers to certain precisions during computation. This
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introduces the added task of bounding the total truncation errors in the analysis of

the algorithm. On the contrary, in the modular setting the error analysis is virtually

absent or rather more implicit, which in turn simplifies the overall analysis. In

addition, modular arithmetic gives a discrete approach to a discrete problem like

integer multiplication. Therefore, it seems natural to ask whether we can achieve a

similar improvement in time complexity of this problem in the modular arithmetic

setting. In this work, we answer this question affirmatively. We give an N · logN ·
2O(log∗N) time algorithm for integer multiplication using only modular arithmetic,

thus matching the improvement made by Fürer.

4.1.3 Overview of Our Result

As is the case in both Schönhage-Strassen’s and Fürer’s algorithms, we start by

reducing the problem to polynomial multiplication over a ring R by properly encod-

ing the given integers. Polynomials can be multiplied efficiently using the Discrete

Fourier Transforms (DFT). However, in order that we are able to use the Fast

Fourier Transform (FFT), the ring R should have some special roots of unity. For

instance, to multiply two polynomials of degree less than M using the FFT, we re-

quire a principal 2M -th root of unity (see Definition 4.2.1 for principal roots). One

way to construct such a ring in the modular setting is to consider rings of the form

R = Z/(2M + 1)Z as in Schönhage and Strassen’s work (SS71). In this case, the

element 2 is a 2M -th principal root of unity in R. This approach can be equivalently

viewed as attaching an ‘artificial’ root to the ring of integers. However, this makes

the size of R equal to 2M and thus a representation of an arbitrary element in R takes

M bits. This means an N -bit integer is encoded as a polynomial of degree M with

every coefficient about M bits long, thereby making M ≈
√
N the optimal choice.

Indeed, the choice of such an R is the basis of Schönhage and Strassen’s modular

algorithm in which they reduce multiplication of N -bit integers to multiplication of
√
N -bit integers and achieve a complexity of O(N · logN · log logN) bit operations.

It turns out that such rings are a little too expensive in our setting. We would

rather like to find a ring whose size is bounded by some polynomial in M and which

still contains a principal 2M -th root of unity. In fact, it is this task of choosing a
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suitable ring that poses the primary challenge in adapting Fürer’s algorithm and

making it work in the discrete setting.

We choose the ring to be R = Z/pcZ, for a prime p and a constant c such that

pc = poly(M). The ring Z/pcZ, has a principal 2M -th root of unity if and only if

2M divides p− 1, which means that we need to find a prime p from the arithmetic

progression {1 + i · 2M}i>0. To make this search computationally efficient, we also

need the degree of the polynomials, M to be sufficiently small. This we can achieve

by encoding the integers as multivariate polynomials instead of univariate ones. It

turns out that the choice of the ring as R = Z/pcZ is still not quite sufficient and

needs a little more refinement. This is explained in Section 4.2.1.

The use of multivariate polynomial multiplications along with a small base ring

are the main steps where our algorithm differs from earlier algorithms by Schönhage-

Strassen and Fürer. Towards understanding the notion of the inner and outer

DFTs in the context of multivariate polynomials, we also present a group theoretic

interpretation of the Discrete Fourier Transform (DFT). The use of inner and outer

DFTs play a central role in both Fürer’s as well as our algorithm. Arguing along the

line of Fürer (Für07), we show that repeated applications of efficiently computable

inner DFTs, using some special roots of unity in R, make the overall process efficient

and leads to an N · logN · 2O(log∗N) time algorithm.

4.2 The Basic Setup

4.2.1 The Underlying Ring

Rings of the form R = Z/(2M + 1)Z have the nice property that multiplications

by powers of 2, the 2M -th principal root of unity, are mere shift operations and

are therefore very efficient. Although by choosing the ring R = Z/pcZ we ensure

that the ring size is small, it comes with a price: multiplications by principal roots

of unity are no longer just shift operations. Fortunately, this can be redeemed by

working with rings of the form R = Z[α]/(pc, αm + 1) for some m whose value will

be made precise later. Elements of R are thus (m − 1)-degree polynomials over

α with coefficients from Z/pcZ. By construction, α is a 2m-th root of unity and

multiplication of any element in R by any power of α can be achieved by shift
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operations — this property is crucial in making some multiplications in the FFT

less costly (see Section 4.3.2).

Given an N -bit number a, we encode it as a k-variate polynomial over R with

degree in each variable less than M . The parameters M and m are powers of two

such that Mk is roughly N
log2N

and m is roughly logN . The parameter k will be

ultimately chosen a constant (see Section 4.4.2). We now explain the details of this

encoding process.

4.2.2 Encoding Integers into k-variate Polynomials

Given an N -bit integer a, we first break these N bits into Mk blocks of roughly N
Mk

bits each. This corresponds to representing the number a in base q = 2
N

Mk . Let

a = a0 + . . . + aMk−1q
Mk−1, where every ai < q. The number a is converted into a

polynomial as follows:

1. Express i in base M as i = i1 + i2M + · · ·+ ikM
k−1.

2. Encode each term aiq
i as the monomial ai · X i1

1 X
i1
2 · · ·X

ik
k . As a result, the

number a gets converted to the polynomial
∑Mk−1

i=0 ai ·X i1
1 · · ·X

ik
k .

Further, we break each ai into m
2

equal sized blocks where the number of bits

in each block is u = 2N
Mk·m . Each coefficient ai is then encoded as a polynomial in

α of degree less than m
2

. The polynomials are then padded with zeroes to stretch

their degrees to m. Thus, the N -bit number a is converted to a k-variate polynomial

a(X) over Z[α]/(αm + 1).

Given integers a and b, each of N bits, we encode them as polynomials a(X) and

b(X) and compute the product polynomial. The product a · b can be recovered by

substituting Xs = qM
s−1

, for 1 ≤ s ≤ k, and α = 2u in the polynomial a(X) · b(X).

The coefficients in the product polynomial could be as large as Mk · m · 22u and

hence it is sufficient to do arithmetic modulo pc where pc > Mk ·m · 22u. Our choice

of the prime p ensures that c is in fact a constant (see Section 4.4.2).
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4.2.3 Choosing the Prime

The prime p should be chosen such that the ring Z/pcZ has a principal 2M -th root

of unity, which is required for polynomial multiplication using the FFT. A principal

root of unity is defined as follows.

Definition 4.2.1. (Principal root of unity) An n-th root of unity ζ ∈ R is said to be

primitive if it generates a cyclic group of order n under multiplication. Furthermore,

it is said to be principal if n is coprime to the characteristic of R and ζ satisfies∑n−1
i=0 ζ

ij = 0 for all 0 < j < n.

(Note the similarity of the above definition with Definition 2.1.6. We are using the

terminology ‘principal’ instead of ‘primitive’ just to be consistent with some of the

existing literature.)

In Z/pcZ, a 2M -th root of unity is principal if and only if 2M | p− 1 (see also Sec-

tion 4.5). As a result, we need to choose the prime p from the arithmetic progression

{1 + i · 2M}i>0, which is potentially the main bottleneck of our approach. We now

explain how to circumvent this bottleneck.

An upper bound for the least prime in an arithmetic progression is given by the

following theorem (Lin44):

Theorem 4.2.2. (Linnik) There exist absolute constants ` and L such that for any

pair of coprime integers d and n, the least prime p such that p ≡ d mod n is less

than `nL.

Heath-Brown (HB92) showed that the Linnik constant L ≤ 5.5 (a recent work

by Xylouris (Xyl09) showed that L ≤ 5.2). Recall that M is chosen such that

Mk is O
(

N
log2N

)
. If we choose k = 1, that is if we use univariate polynomials

to encode integers, then the parameter M = O
(

N
log2N

)
. Hence the least prime

p ≡ 1 (mod 2M) could be as large as NL. Since all known deterministic sieving

procedures take at least NL time this is clearly infeasible (for a randomized approach

see Section 4.4.2). However, by choosing a larger k we can ensure that the least prime

p ≡ 1 (mod 2M) is O(N ε) for some constant ε < 1.

Remark 4.2.3. If k is any integer greater than L + 1, then ML = O
(
N

L
L+1

)
and

hence the least prime p ≡ 1 (mod 2M) can be found in o(N) time.
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4.2.4 Finding the Root of Unity

We require a principal 2M -th root of unity ρ(α) in R to compute the Fourier trans-

forms. This root ρ(α) should also have the property that its
(
M
m

)
-th power is α, so

as to make some multiplications in the FFT efficient (see Section 4.3.2). The root

ρ(α) can be computed by interpolation in a way similar to that in Fürer’s algorithm

(Für07, Section 3), except that we need a principal 2M -th root of unity ω in Z/pcZ
to start with. To obtain such a root, we first obtain a (p− 1)-th root of unity ζ in

Z/pcZ by lifting a generator of F×p . The
(
p−1
2M

)
-th power of ζ gives us the required

2M -th root of unity ω. A generator of F×p can be computed by brute force, as p is

sufficiently small. Having obtained a generator, we use Hensel Lifting.

Lemma 4.2.4 (Lemma 2.3.5 restated). Let ζs be a primitive (p − 1)-th root of

unity in Z/psZ. Then there exists a unique primitive (p− 1)-th root of unity ζs+1 in

Z/ps+1Z such that ζs+1 ≡ ζs (mod ps). This unique root is given by ζs+1 = ζs− f(ζs)
f ′(ζs)

where f(x) = xp−1 − 1.

It can be shown that the root ζ in Z/pcZ thus obtained by lifting is principal.

Furthermore, different powers of ζ are distinct modulo p. Therefore, the difference

between any two of them is a unit in Z/pcZ and this makes the following interpola-

tion feasible in our setting.

Finding ρ(α) from ω - Since ω is a principal 2M -th root of unity, γ = ω
2M
2m is

a principal 2m-th root of unity in Z/pcZ. Notice that, αm + 1 uniquely factorizes

as, αm + 1 = (α − γ)(α − γ3) . . . (α − γ2m−1), and the ideals generated by (α − γi)
in R are mutually coprime as γi − γj is a unit for i 6= j. Therefore, using Chinese

Remaindering, α has the direct sum representation (γ, γ3, . . . , γ2m−1) in R. Since we

require ρ(α)
2M
2m = α, it is sufficient to choose a ρ(α) whose direct sum representation

is (ω, ω3, . . . , ω2m−1). Now use Lagrange’s formula to interpolate ρ(α) as,

ρ(α) =
2m−1∑

i=1, i odd

ωi ·
2m−1∏

j=1, j 6=i, j odd

α− γj

γi − γj

The inverses of the elements γi − γj can be easily computed in Z/pcZ.
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4.3 Fourier Transform

4.3.1 Inner and Outer DFT

Suppose that a(x) ∈ S[x] is a polynomial of degree less than M , where S is a ring

containing a 2M -th principal root of unity ρ. Let us say that we want to compute

the 2M -point DFT of a(x) using ρ as the root of unity. In other words, we want

to compute the elements a(1), a(ρ), . . . , a(ρ2M−1) is S. This can be done in two steps.

Step 1 - Compute the following polynomials using α = ρ2M/2m.

a0(x) = a(x) mod (x2M/2m − 1)

a1(x) = a(x) mod (x2M/2m − α)
...

a2m−1(x) = a(x) mod (x2M/2m − α2m−1),

where deg(aj(x)) < 2M
2m

for all 0 ≤ j < 2m.

Step 2 - Note that, aj(ρ
k·2m+j) = a(ρk·2m+j) for every 0 ≤ j < 2m and 0 ≤ k < 2M

2m
.

Therefore, all we need to do to compute the DFT of a(x) is to evaluate the polyno-

mials aj(x) at appropriate powers of ρ.

The idea is to show that both Step 1 and Step 2 can be performed by computation

of some ‘smaller’ DFTs. Let us see how.

Performing Step 1 - The crucial observation here is the following. Fix an integer

` in the range [0, 2M
2m
− 1]. Then the `th coefficients of a0(x), a1(x), . . . , a2m−1(x) are

exactly e`(1), e`(α), . . . , e`(α
2m−1), respectively, where e`(y) is the polynomial,

e`(y) =
2m−1∑
j=0

aj· 2M
2m

+` · yj.

But then, finding e`(1), e`(α), . . . , e`(α
2m−1) is essentially computing the 2m-point

DFT of e`(y) using α as the 2mth root of unity. Therefore, all we need to do to find

a0(x), . . . , a2m−1(x) is to compute the DFTs of e`(y) for all 0 ≤ ` < 2M
2m

. These 2M
2m
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many 2m-point DFTs are called the inner DFTs.

Performing Step 2 - In order to find aj(ρ
k·2m+j), for 0 ≤ k < 2M

2m
and a fixed j, we

first compute the polynomial ãj(x) = aj(x ·ρj) followed by a 2M
2m

-point DFT of ãj(x)

using ρ2m as the root of unity. These 2m many 2M
2m

-point DFTs (j running from 0

to 2m− 1) are called the outer DFTs. The polynomials ãj(x) can be computed by

multiplying the coefficients of aj(x) by suitable powers of ρ. Such multiplications

are termed as bad multiplications.

The above discussion is summarized in the following lemma.

Lemma 4.3.1. (DFT time = Inner DFTs + Bad multiplications + Outer DFTs)

Time taken to compute a 2M-point DFT over S is sum of:

1. Time taken to compute 2M
2m

many 2m-point inner DFTs over S using α as the

2m-th root of unity.

2. Time to do 2M multiplications in S by powers of ρ (bad multiplications).

3. Time taken to compute 2m many 2M
2m

-point outer DFTs over S using ρ2m as

the 2M
2m

-th root of unity.

4.3.2 Analysis of the FFT

We are now ready to analyse the complexity of multiplying the two k-variate poly-

nomials a(X) and b(X) (see Section 4.2.2) using the Fast Fourier Transform. Treat

a(X) and b(X) as univariate polynomials in variableXk over the ring S = R[X1, . . . , Xk−1].

We write a(X) and b(X) as a(Xk) and b(Xk), respectively, where deg(a(Xk)) and

deg(b(Xk)) are less than M . Multiplication of a(X) and b(X) can be thought of as

multiplication of the univariates a(Xk) and b(Xk) over S. This makes Algorithm 2

(in Section 2.3.3, Chapter 2) applicable here with parameter n = 2M . Also note

that, the root ρ(α) (constructed in Section 4.2.4) is a primitive 2M -th root of unity

in S ⊃ R. Denote the multiplication complexity of a(Xk) and b(Xk) by F(2M,k).

Algorithm 2 computes three 2M -point DFTs over S and does 2M pointwise (or

componentwise) multiplications in S. Let D(2M,k) be the time taken to compute a
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2M -point DFT over S. By Lemma 4.3.1, the time to compute a DFT is the sum of

the time for the inner DFTs, the bad multiplications and the outer DFTs. Let us

analyse these three terms separately. We will go by the notation in Section 4.3.1,

using S = R[X1, . . . , Xk−1] and ρ = ρ(α).

Inner DFT time - By Lemma 2.3.6, computing a 2m-point DFT requires 2m log(2m)

additions in S and m log(2m) multiplications by powers of α. The important ob-

servation here is: since R = Z[α]/(pc, αm + 1), multiplication by a power of α with

an element in R can be readily computed by simple cyclic shifts (with possible

negations), which takes only O(m · log p) bit operations. An element in S is just a

polynomial over R in variables X1, . . . , Xk−1, with degree in each variable bounded

by M . Hence, multiplication by a power of α with an element of S can be done

using NS = O(Mk−1 ·m · log p) bit operations. A total of m log(2m) multiplications

takes O(m logm ·NS) bit operations. It is easy to see that 2m log(2m) additions in

S also require the same order of time.

Since there are 2M
2m

many 2m-point DFTs, the total time spent in the inner DFTs

is O(2M · logm ·NS) bit operations.

Bad multiplication time - Suppose that two arbitrary elements in R can be mul-

tiplied using MR bit operations. Multiplication in S by a power of ρ amounts to

cS = Mk−1 multiplications in R. Since there are 2M such bad multiplications, the

total time is bounded by O(2M · cS ·MR).

Outer DFT time - By Lemma 4.3.1, the total outer DFT time is 2m ·D
(

2M
2m
, k
)
.

Total DFT time - Therefore, the net DFT time is bounded as,

D(2M,k) = O (2M · logm ·NS + 2M · cS ·MR) + 2m ·D
(

2M

2m
, k

)
= O (2M · logm ·NS + 2M · cS ·MR) · log 2M

log 2m

= O

(
Mk logM ·m log p+

Mk logM

logm
·MR

)
,
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putting the values of NS and cS.

Pointwise multiplications - Finally, Algorithm 2 does 2M pointwise multiplica-

tions in S. Since elements of S are (k − 1)-variate polynomials over R, with degree

in every variable bounded by M , the total time taken for pointwise multiplications

is 2M · F(2M,k − 1) bit operations.

Total polynomial multiplication time - This can be expressed as,

F(2M,k) = O

(
Mk logM ·m log p+

Mk logM

logm
·MR

)
+ 2M · F(2M,k − 1)

= O

(
Mk logM ·m log p+

Mk logM

logm
·MR

)
, (4.1)

as k is a constant.

We now present an equivalent group theoretic interpretation of the above process

of polynomial multiplication which could be of independent interest.

4.3.3 A Group Theoretic Interpretation

A convenient way to study polynomial multiplication is to interpret it as multipli-

cation in a group algebra.

Definition 4.3.2. (Group Algebra) Let G be any group. The group algebra of G

over a ring R is the set of formal sums
∑

g∈G αgg where αg ∈ R with addition defined

point-wise and multiplication defined via convolution as follows(∑
g

αgg

)(∑
h

βhh

)
=
∑
u

(∑
gh=u

αgβh

)
u

Multiplying univariate polynomials over R of degree less than n can be seen as

multiplication in the group algebra R[G] where G is the cyclic group of order 2n.

Similarly, multiplying k-variate polynomials of degree less than n in each variable

can be seen as multiplying in the group algebra R[Gk], where Gk denotes the k-fold

product group G× . . .×G.
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In this section, we study the Fourier transform over the group algebra R[E]

where E is an additive abelian group. Most of this, albeit in a different form, is well

known but is provided here for completeness (Sha99, Chapter 17).

In order to simplify our presentation, we will fix the base ring to be C, the field

of complex numbers. Let n be the exponent of E, that is the maximum order of any

element in E. A similar approach can be followed for any other base ring as long as

it has a principal n-th root of unity.

We consider C[E] as a vector space with basis {x}x∈E and use the Dirac notation

to represent elements of C[E] — the vector |x〉, x in E, denotes the element 1.x of

C[E].

Definition 4.3.3. (Characters) Let E be an additive abelian group. A character of

E is a homomorphism from E to C∗.

An example of a character of E is the trivial character, which we will denote by

1, that assigns to every element of E the complex number 1. If χ1 and χ2 are two

characters of E then their product χ1.χ2 is defined as χ1.χ2(x) = χ1(x)χ2(x).

Proposition 4.3.4. (Sha99, Chapter 17, Theorem 1) Let E be an additive abelian

group of exponent n. Then the values taken by any character of E are n-th roots of

unity. Furthermore, the characters form a multiplicative abelian group Ê which is

isomorphic to E.

An important property that the characters satisfy is the following (Isa94, Corol-

lary 2.14).

Proposition 4.3.5. (Schur’s Orthogonality) Let E be an additive abelian group.

Then

∑
x∈E

χ(x) =

0 if χ 6= 1,

#E otherwise
and

∑
χ∈Ê

χ(x) =

0 if x 6= 0,

#E otherwise.

It follows from Schur’s orthogonality that the collection of vectors |χ〉 =
∑

x χ(x) |x〉
forms a basis of C[E]. We will call this basis the Fourier basis of C[E].

Definition 4.3.6. (Fourier Transform) Let E be an additive abelian group and let

x 7→ χx be an isomorphism between E and Ê. The Fourier transform over E is the

linear map from C[E] to C[E] that sends |x〉 to |χx〉.
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Thus, the Fourier transform is a change of basis from the point basis {|x〉}x∈E to

the Fourier basis {|χx〉}x∈E. The Fourier transform is unique only up to the choice

of the isomorphism x 7→ χx. This isomorphism is determined by the choice of the

principal root of unity.

Remark 4.3.7. Given an element |f〉 ∈ C[E], to compute its Fourier transform it

is sufficient to compute the Fourier coefficients {〈χ|f〉}χ∈Ê.

Fast Fourier Transform

We now describe the Fast Fourier Transform for general abelian groups in the char-

acter theoretic setting. For the rest of the section fix an additive abelian group E

over which we would like to compute the Fourier transform. Let A be any subgroup

of E and let B = E/A. For any such pair of abelian groups A and B, we have

an appropriate Fast Fourier transformation, which we describe in the rest of the

section.

Proposition 4.3.8. 1. Every character λ of B can be “lifted” to a character of

E (which will also be denoted by λ) defined as follows λ(x) = λ(x+ A).

2. Let χ1 and χ2 be two characters of E that when restricted to A are identical.

Then χ1 = χ2λ for some character λ of B.

3. The group B̂ is (isomorphic to) a subgroup of Ê with the quotient group Ê/B̂

being (isomorphic to) Â.

We now consider the task of computing the Fourier transform of an element

|f〉 =
∑
fx |x〉 presented as a list of coefficients {fx} in the point basis. For this,

it is sufficient to compute the Fourier coefficients {〈χ|f〉} for each character χ of

E (Remark 4.3.7). To describe the Fast Fourier transform we fix two sets of cosets

representatives, one of A in E and one of B̂ in Ê as follows.

1. For each b ∈ B, b being a coset of A, fix a coset representative xb ∈ E such

b = xb + A.

2. For each character ϕ of A, fix a character χϕ of E such that χϕ restricted to

A is the character ϕ. The characters {χϕ} form (can be thought of as) a set

of coset representatives of B̂ in Ê.
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Since {xb}b∈B forms a set of coset representatives, any |f〉 ∈ C[E] can be written

uniquely as |f〉 =
∑
fb,a |xb + a〉.

Proposition 4.3.9. Let |f〉 =
∑
fb,a |xb + a〉 be an element of C[E]. For each

b ∈ B and ϕ ∈ Â let |fb〉 ∈ C[A] and |fϕ〉 ∈ C[B] be defined as follows.

|fb〉 =
∑
a∈A

fb,a |a〉

|fϕ〉 =
∑
b∈B

χϕ(xb)〈ϕ|fb〉 |b〉

Then for any character χ = χϕλ of E the Fourier coefficient 〈χ|f〉 = 〈λ|fϕ〉.

We are now ready to describe the Fast Fourier transform given an element |f〉 =∑
fx |x〉.

1. For each b ∈ B compute the Fourier transforms of |fb〉. This requires #B

many Fourier transforms over A.

2. As a result of the previous step we have for each b ∈ B and ϕ ∈ Â the Fourier

coefficients 〈ϕ|fb〉. Compute for each ϕ the vectors |fϕ〉 =
∑

b∈B χϕ(xb)〈ϕ|fb〉 |b〉.
This requires #Â.#B = #E many multiplications by roots of unity.

3. For each ϕ ∈ Â compute the Fourier transform of |fϕ〉. This requires #Â = #A

many Fourier transforms over B.

4. Any character χ of E is of the form χϕλ for some ϕ ∈ Â and λ ∈ B̂. Using

Proposition 4.3.9 we have at the end of Step 3 all the Fourier coefficients

〈χ|f〉 = 〈λ|fϕ〉.

If the quotient group B itself has a subgroup that is isomorphic to A then we

can apply this process recursively on B to obtain a divide and conquer procedure to

compute Fourier transform. In the standard FFT we use E = Z/2nZ. The subgroup

A is 2n−1E which is isomorphic to Z/2Z and the quotient group B is Z/2n−1Z.
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Analysis of the Fourier Transform

Our goal is to multiply k-variate polynomials over R, with the degree in each variable

less than M . This can be achieved by embedding the polynomials into the algebra

of the product group E =
( Z

2M ·Z

)k
and multiplying them as elements of the algebra.

Since the exponent of E is 2M , we require a principal 2M -th root of unity in the ring

R. We shall use the root ρ(α) (as defined in Section 4.2.4) for the Fourier transform

over E.

For every subgroup A of E, we have a corresponding FFT. We choose the sub-

group A as
( Z

2m·Z

)k
and let B be the quotient group E/A. The group A has exponent

2m and α is a principal 2m-th root of unity. Since α is a power of ρ(α), we can

use it for the Fourier transform over A. As multiplications by powers of α are just

shifts, this makes Fourier transform over A efficient.

Let F(M,k) denote the complexity of computing the Fourier transform over( Z
2M ·Z

)k
. We have

F(M,k) =

(
M

m

)k
F(m, k) +MkMR + (2m)kF

(
M

2m
, k

)
(4.2)

where MR denotes the complexity of multiplications in R. The first term comes

from the #B many Fourier transforms over A (Step 1 of FFT), the second term

corresponds to the multiplications by roots of unity (Step 2) and the last term

comes from the #A many Fourier transforms over B (Step 3).

Since A is a subgroup of B as well, Fourier transforms over B can be recursively

computed in a similar way, with B playing the role of E. Therefore, by simplifying

the recurrence in Equation 4.2 we get:

F(M,k) = O

(
Mk logM

mk logm
F(m, k) +

Mk logM

logm
MR

)
(4.3)

Lemma 4.3.10. F(m, k) = O(mk+1 logm · log p)

Proof. The FFT over a group of size n is usually done by taking 2-point FFT’s

followed by n
2
-point FFT’s. This involves O(n log n) multiplications by roots of

unity and additions in base ring. Using this method, Fourier transforms over A

can be computed with O(mk logm) multiplications and additions in R. Since each

multiplication is between an element of R and a power of α, this can be efficiently
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achieved through shifting operations. This is dominated by the addition operation,

which takes O(m log p) time, since this involves adding m coefficients from Z/pcZ.

Therefore, from Equation 4.3,

F(M,k) = O

(
Mk logM ·m · log p+

Mk logM

logm
MR

)
.

4.4 Algorithm and Analysis

4.4.1 Integer Multiplication Algorithm

We are given two integers a, b < 2N to multiply. We fix constants k and c whose

values are given in Section 4.4.2. The algorithm is as follows:

1. Choose M and m as powers of 2 such that Mk ≈ N
log2N

and m ≈ logN . Find

the least prime p ≡ 1 (mod 2M) (Remark 4.2.3).

2. Encode the integers a and b as k-variate polynomials a(X) and b(X), respec-

tively, over the ring R = Z[α]/(pc, αm + 1) (Section 4.2.2).

3. Compute the root ρ(α) (Section 4.2.4).

4. Use ρ(α) as the principal 2M -th root of unity to compute the Fourier trans-

forms of the k-variate polynomials a(X) and b(X). Multiply component-wise

and take the inverse Fourier transform to obtain the product polynomial. (Sec-

tions 4.3.1 and 4.3.2)

5. Evaluate the product polynomial at appropriate powers of two to recover the

integer product and return it (Section 4.2.2).

4.4.2 Complexity Analysis

The choice of parameters should ensure that the following constraints are satisfied:

1. Mk = O
(

N
log2N

)
and m = O(logN).
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2. ML = O(N ε), where L is the Linnik constant (Theorem 4.2.2) and ε is any

constant less than 1. Recall that this makes picking the prime by brute force

feasible (see Remark 4.2.3).

3. pc > Mk ·m · 22u where u = 2N
Mkm

. This is to prevent overflows during modular

arithmetic (see Section 4.2.2).

It is straightforward to check that k > L + 1 and c > 5(k + 1) satisfy the above

constraints. Since L ≤ 5.2, it is sufficient to choose k = 7 and c = 42.

Let T (N) denote the time complexity of multiplying two N bit integers. This

consists of:

• Time required to pick a suitable prime p,

• Computing the root ρ(α),

• Encoding the input integers as polynomials,

• Multiplying the encoded polynomials,

• Evaluating the product polynomial.

As argued before, the prime p can be chosen in o(N) time. To compute ρ(α),

we need to lift a generator of F×p to Z/pcZ followed by an interpolation. Since c is a

constant and p is a prime of O(logN) bits, the time required for Hensel Lifting and

interpolation is o(N).

The encoding involves dividing bits into smaller blocks, and expressing the ex-

ponents of q in base M (Section 4.2.2) and all these take O(N) time since M is

a power of 2. Similarly, evaluation of the product polynomial takes linear time as

well. Therefore, the time complexity is dominated by the time taken for polynomial

multiplication.
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Time complexity of Polynomial Multiplication

From Equation 4.1, the complexity of polynomial multiplication is given by,

F(2M,k) = O

(
Mk logM ·m · log p+

Mk logM

logm
·MR

)
.

Proposition 4.4.1. (Sch82) Multiplication in R reduces to multiplying O(log2N)

bit integers and hence MR = T
(
O(log2N)

)
.

Proof. Elements of R can be viewed as polynomials in α over Z/pcZ with degree

at most m. Given two such polynomials f(α) and g(α), encode them as follows:

Replace α by 2d, transforming the polynomials f(α) and g(α) to the integers f(2d)

and g(2d) respectively. The parameter d is chosen such that the coefficients of the

product h(α) = f(α)g(α) can be recovered from the product f(2d) · g(2d). For this,

it is sufficient to ensure that the maximum coefficient of h(α) is less than 2d. Since

f and g are polynomials of degree m, we would want 2d to be greater than m · p2c,

which can be ensured by choosing d = O (logN). The integers f(2d) and g(2d) are

bounded by 2md and hence the task of multiplying in R reduces to O(log2N)-bit

integer multiplication.

Therefore, the complexity of our integer multiplication algorithm T (N) is given

by,

T (N) = O(F(2M,k)) = O

(
Mk logM ·m · log p+

Mk logM

logm
·MR

)
= O

(
N logN +

N

logN · log logN
· T (O(log2N))

)
Solving the above recurrence leads to the following theorem.

Theorem 4.4.2. Given two N bit integers, their product can be computed using

N · logN · 2O(log∗N) bit operations.

Choosing the Prime Randomly

To ensure that the search for a prime p ≡ 1 (mod 2M) does not affect the overall

time complexity of the algorithm, we have considered multivariate polynomials to

restrict the value of M ; an alternative is to use randomization.
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Proposition 4.4.3. Assuming the ERH, a prime p ≡ 1 (mod 2M) can be computed

by a randomized algorithm with expected running time Õ(log3M).

Proof. Titchmarsh (Tit30) (see also Tianxin (Tia90)) showed that, assuming the

ERH, that the number of primes less than x in the arithmetic progression {1 + i ·
2M}i>0 is given by,

π(x, 2M) =
Li(x)

ϕ(2M)
+O(

√
x log x)

for 2M ≤
√
x · (log x)−2, where Li(x) = Θ( x

log x
) and ϕ is the Euler totient function.

In our case, since M is a power of two, ϕ(2M) = M , and hence for x ≥ 4M2 · log6M ,

we have π(x, 2M) = Ω
(

x
M log x

)
. Therefore, for an i chosen uniformly randomly in

the range 1 ≤ i ≤ 2M · log6M , the probability that i · 2M + 1 is a prime is at least
d

log x
for a constant d. Furthermore, primality test of an O(logM) bit number can be

done in Õ(log2M) time using Rabin-Miller primality test (Mil76; Rab80). Hence,

with x = 4M2 · log6M a suitable prime for our algorithm can be found in expected

Õ(log3M) time.

4.5 A Different Perspective

Our algorithm can be seen as a p-adic version of Fürer’s integer multiplication

algorithm, where the field C is replaced by Qp, the field of p-adic numbers (for a quick

introduction, see Baker’s online notes (Bak07)). Much like C, where representing a

general element (say in base 2) takes infinitely many bits, representing an element

in Qp takes infinitely many p-adic digits. Since we cannot work with infinitely many

digits, all arithmetic has to be done with finite precision. Modular arithmetic in the

base ring Z[α]/(pc, αm + 1), can be viewed as arithmetic in the ring Qp[α]/(αm + 1)

keeping a precision of ε = p−c.

Arithmetic with finite precision naturally introduces some errors in computation.

However, the nature of Qp makes the error analysis simpler. The field Qp comes with

a norm | · |p called the p-adic norm, which satisfies the stronger triangle inequality

|x+ y|p ≤ max
(
|x|p , |y|p

)
(Bak07, Proposition 2.6). As a result, unlike in C, the

errors in computation do not compound.
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Recall that the efficiency of FFT crucially depends on a special principal 2M -

th root of unity in Qp[α]/(αm + 1). Such a root is constructed with the help of a

primitive 2M -th root of unity in Qp. The field Qp has a primitive 2M -th root of

unity if and only if 2M divides p − 1 (Bak07, Theorem 5.12). Also, if 2M divides

p − 1, a 2M -th root can be obtained from a (p − 1)-th root of unity by taking a

suitable power. A primitive (p − 1)-th root of unity in Qp can be constructed, to

sufficient precision, using Hensel Lifting starting from a generator of F×p .

4.6 Conclusion

As mentioned earlier, there has been two approaches to multiplying integers -

one uses arithmetic over complex numbers while the other uses modular arith-

metic. Using complex numbers, Schönhage and Strassen (SS71) gave an O(N ·
logN · log logN . . . 2O(log∗N)) algorithm. Fürer (Für07) improved this complexity to

N · logN · 2O(log∗N) using some special roots of unity. The other approach, that is

modular arithmetic, can be seen as arithmetic in Qp with certain precision. A direct

adaptation of the Schönhage-Strassen’s algorithm in the modular setting leads to

an O(N · logN · log logN . . . 2O(log∗N)) time algorithm. In this work, we show that

by choosing an appropriate prime and a special root of unity, a running time of

N · logN · 2O(log∗N) can be achieved through modular arithmetic as well. Therefore,

in a way, we have unified the two paradigms. The important question that remains

open is:

• Can N -bit integers be multiplied using O(N · logN) bit operations?

Even an improvement of the complexity to O(N · logN · log∗N) operations will be

a significant step forward towards answering this question.



Chapter 5

Identity Testing: Depth 2 Circuits

over Algebras

-Joint work with Ramprasad Saptharishi and Nitin Saxena.

5.1 Introduction

Quite often in high school algebra we come across polynomial identities like, x3+y3+

z3−3xyz = (x+y+z)(x+ωy+ω2z)(x+ω2y+ωz) and x3−y3 = (x−y)(x−ωy)(x−
ω2y), where ω is a complex cube root of unity. Such identities equate two ‘different

looking’ polynomials, thereby revealing that they are just different expressions of

the same polynomial. It is natural to ask, given two polynomial expressions f(X)

and g(X), where X is the set of variables {x1, . . . , xn}, how fast can we check if

f(X) = g(X)? Stated differently, the problem is to find out if f(X) − g(X) is

identically zero. It is this problem that is known as Polynomial Identity Testing

(PIT, for short), when the polynomial expressions are given in the concise form of

arithmetic circuits (see Section 2.1.2). Recalling the formal definition from Section

1.1, PIT is the following problem.

Problem 5.1.1. (Polynomial Identity Testing) Given an arithmetic circuit C with

input variables x1, . . . , xn and constants taken from a field F, check if the polynomial

f(x1, . . . , xn) computed by C is identically zero.
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This natural algebraic problem finds widespread applications in complexity the-

ory and general algorithm design. Some of the high profile results in complexity

theory, like IP = PSPACE (LFKN90; Sha90) and the PCP theorem (ALM+98), in-

volve identity testing. More interestingly, it has been shown that (KI03; Agr05) if

certain efficient derandomization of PIT is possible then the class VNP (as defined

by Valiant (Val79)) is different from the class VP. This can be viewed as proving

the arithmetic analogue of the much coveted result, P 6= NP. It is perhaps not an

exaggeration to say that identity testing came into the limelight after a remark-

able derandomization of primality testing, by Agrawal, Kayal and Saxena (AKS04),

that is based on identity testing over a certain ring. Several other algorithms like

graph matching (Lov79), multivariate polynomial interpolation (CDGK91) also use

identity testing.

The idea of randomly choosing a point and evaluating the polynomial at it to

see if it is zero, was first proposed by Schwartz (Sch80) and Zippel (Zip79), and

this naturally gave a randomized polynomial time algorithm. Several other efficient

randomized algorithms (CK97; LV98; AB99; KS01) came up subsequently, resulting

in a significant improvement in the number of random bits used. However, so far

identity testing is yet to be derandomized even for the case of depth 3 arithmetic

circuits (the problem is trivial for depth 2 and depth 1 circuits). It is this problem

of depth 3 identity testing that motivated our work.

Assume that a circuit C has alternate layers of addition and multiplication gates.

A layer of addition gates is denoted by Σ and that of multiplication gates is denoted

by Π. Kayal and Saxena (KS07) gave a deterministic polynomial time identity

testing algorithm for depth 3 (ΣΠΣ) circuits with constant top fan-in. This case

of identity testing was subsequently made blackbox by a series of interesting work

by Kayal and Saraf (KS09), and Saxena and Seshadhri (SS09; SS10b; SS10a). A

justification behind the hardness of PIT even for small depth circuits was provided

by Agrawal and Vinay (AV08). They showed that a deterministic black box identity

test for depth 4 (ΣΠΣΠ) circuits implies a quasi-polynomial time deterministic PIT

algorithm for circuits computing polynomials of low degree. A polynomial is said

to have low degree if its degree is less than the size of the circuit that computes it.
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Thus, the non-trivial case for identity testing starts with depth 3 circuits; whereas

circuits of depth 4 are almost the general case. At this point, it is natural to ask as

to what is the complexity of the PIT problem for depth 2 (ΠΣ) circuits if we allow

the constants of the circuit to come from an algebra R that has dimension over F,

dimF (R) > 1. Can we relate this problem to the classical PIT problem for depth 3

and depth 4 circuits? In this work, we address and answer this question. We assume

that the algebra R is given in basis form i.e. we know an F-basis {e1, . . . , ek} of R

and we also know how eiej can be expressed in terms of the basis elements, for all i

and j. The problem at hand is the following,

Problem 5.1.2. Given an expression,

P =
d∏
i=1

(Ai0 + Ai1x1 + . . .+ Ainxn)

where Aij ∈ R, an algebra over F given in basis form, check if P is zero.

How hard is the above problem? At first sight, this problem might look decep-

tively simple. For instance, if R is a field or even a division algebra (say, the real

quaternion algebra) then it is trivial to check if P = 0 using polynomial number of

F-operations. However, in general this is far from what might be the case.

Since elements of a finite dimensional algebra, given in basis form, can be ex-

pressed as matrices over F we can equivalently write the above problem as,

Problem 5.1.3. Given an expression,

P =
d∏
i=1

(Ai0 + Ai1x1 + . . .+ Ainxn) (5.1)

where Aij ∈ Mk(F), the algebra of k × k matrices over F, check if P is zero using

poly(k · n · d) many F-operations.

It is quite easy to verify that if we allow randomness then it is solvable just like

the usual PIT problem (using Schwartz-Zippel test (Sch80; Zip79)). We are only

interested in deterministic methods in this work. To avoid confusion we use the
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following convention:

Convention - Whenever we say ‘arithmetic circuit (or formula)’ without an extra

qualification, we mean a circuit (or formula) over a field. Otherwise, we explicitly

mention ‘arithmetic circuit (or formula) over some algebra’ to mean that the con-

stants of the circuit are taken from ‘that’ algebra. Also, by depth 3 and depth 2

circuits, we always mean ΣΠΣ and ΠΣ circuits respectively.

5.2 The Depth 2 Model

5.2.1 Depth 2 Circuits over Matrices

A depth 2 circuit C over matrices, as in Equation 5.1, naturally defines a compu-

tational model. Assuming R = Mk(F), for some k, a polynomial P ∈ R[x1, . . . , xn]

outputted by C can be viewed as a k×k matrix of polynomials in F[x1, . . . , xn]. We

say that a polynomial f ∈ F[x1, . . . , xn] is computed by C if one of the k2 polyno-

mials in matrix P is f . Sometimes we say P computes f to mean the same. The

following is an example of a depth 2 circuit over M2(F).

Figure 5.1: A depth-2 circuit over 2× 2 matrices.

In the following discussion, we denote the algebra of upper-triangular k× k ma-

trices by Uk(F). The algebra U2(F) is the smallest non-commutative algebra with

unity over F, in the sense that dimF U2(F) = 3 and any algebra of smaller dimension

is commutative. We show here that already U2(F) captures an open case of identity
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testing.

Ben-Or and Cleve (BC88) showed that a polynomial computed by an arithmetic

formula E of depth d, and with fan-in (of every gate) bounded by 2, can also be

computed by a straight-line program of length at most 4d using only 3 registers. The

following fact can be readily derived from their result (see Appendix A.2): From an

arithmetic formula E of depth d and fan-in bounded by 2, we can efficiently compute

the expression,

P =
m∏
i=1

(Ai0 + Ai1x1 + . . .+ Ainxn)

where m ≤ 4d and Aij ∈ M3(F) such that P computes the polynomial that E does.

Thus solving Problem 5.1.3 in polynomial time even for 3 × 3 matrices yields a

polynomial time algorithm for PIT of constant depth circuits, in particular depth

4 circuits. There is an alternative way of arguing that the choice of R as M3(F) is

almost the general case.

Given an arithmetic circuit of size s, computing a low degree polynomial, Al-

lender, Jiao, Mahajan and Vinay (AJMV98) (see also (VSBR83)) showed how to

efficiently construct an equivalent circuit of size sO(1) and depth O(log s). Such a cir-

cuit can be readily converted to a bounded fan-in formula of size sO(log s) and depth

O(log2 s). From this formula one can obtain a depth 2 circuit over M3(F) of size

4O(log2 s) = sO(log s) (using Ben-Or and Cleve’s result) that computes the same poly-

nomial as the formula. Thus, derandomization of PIT for depth 2 circuits over 3×3

matrices yields a quasi-polynomial time PIT algorithm for any circuit computing a

low degree polynomial. This means, in essence a depth 2 circuit over M3(F) plays

the role of a depth 4 circuit over F (in the spirit of Agrawal and Vinay’s result).

It is natural to ask how the complexity of PIT for depth 2 circuits over M2(F)

relates to PIT for arithmetic circuits. In this work, we provide an answer to this. We

show a surprising connection between PIT of depth 2 circuits over U2(F) and PIT of

depth 3 circuits. The reason this is surprising is because we also show that, a depth

2 circuit over U2(F) is not even powerful enough to compute a simple polynomial

like, x1x2 + x3x4 + x5x6!
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5.2.2 Known Related Models

Identity testing and circuit lower bounds have been studied for different algebraic

models. Nisan (Nis91) showed an exponential lower bound on the size of any arith-

metic formula computing the determinant of a matrix in the non-commutative

free algebra model. The result was generalized by Chien and Sinclair (CS04) to

a large class of non-commutative algebras satisfying polynomial identities, called

PI-algebras. Identity testing has also been studied for the non-commutative model

by Raz and Shpilka (RS04), Bogdanov and Wee (BW05), and Arvind, Mukhopad-

hyay and Srinivasan (AMS08). But unlike those models where the variables do not

commute, in our setting the variables always commute but the constant coefficients

are taken from an algebra R. The motivation for studying this latter model (besides

it being a natural generalization of circuits over fields) is that, it provides a different

perspective to the complexity of the classical PIT problem in terms of the dimen-

sion of the underlying algebra. It seems to ‘pack’ the combinatorial nature of the

circuit into a larger base algebra and hence opens up the possibility of using algebra

structure results. The simplest nontrivial circuit in this model is a ΠΣ circuit over

the non-commutative algebra R = U2(F), and even this, as we show, represents the

frontier of our understanding.

5.2.3 Our Results

The results we present are of two types. Some are related to identity testing while

the rest are related to the weakness of the depth 2 computational model over U2(F)

and M2(F).

Identity testing

We show the following result.

Theorem 5.2.1. Identity testing for depth 3 (ΣΠΣ) circuits is polynomial time

equivalent to identity testing for depth 2 (ΠΣ) circuits over U2(F).

The above theorem has an interesting consequence on identity testing for Algebraic

Branching Program (ABP) (Nis91) (see Definition 5.3.2). It is known that identity

testing for non-commutative ABP can be done in deterministic polynomial time (a
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result due to Raz and Shpilka (RS04)). But no progress is made on identity testing

of even width-2 commutative ABP. The following result justifies this.

Corollary 5.2.2. Identity testing of depth 3 circuits (ΣΠΣ) reduces to identity

testing of width-2 ABPs.

We have mentioned before about the prospect of using structural results to solve

PIT for depth 2 circuits over algebras. Our next result shows this idea at work for

commutative algebras.

Theorem 5.2.3. Given an expression,

P =
d∏
i=1

(Ai0 + Ai1x1 + . . .+ Ainxn),

where Aij ∈ R, a commutative algebra of dimension k over F, there is a deterministic

algorithm to test if P is zero running in time poly
(
kk, n, d

)
.

The above result gives a polynomial time algorithm for k = O (log nd/ log log nd).

This result establishes that the power of depth 2 circuits over small algebras is

primarily derived from the non-commutative nature of the algebra. However, we

show that commutative algebras of polynomial dimension over F are much more

powerful.

Theorem 5.2.4. Identity testing of a depth 3 (ΣΠΣ) circuit of size s reduces to

identity testing of a depth 2 (ΠΣ) circuit of size O(s) over a commutative algebra of

dimension O(s).

Our argument for proving Theorem 5.2.1 is relatively simple in nature. Perhaps

the reason why such a connection was overlooked before is that, unlike a depth 2

circuit over M3(F), we do not have the privilege of exactly computing a polynomial

over F using a depth 2 circuit over U2(F). Showing this weakness of the latter

computational model constitutes the second part of our results.

Weakness of the depth 2 model over U2(F) and M2(F)

We show that depth 2 circuits over U2(F) are computationally weaker than depth 3

circuits.
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Theorem 5.2.5. Let f ∈ F[x1, . . . , xn] be a polynomial such that there are no two

linear functions l1 and l2 (with 1 6∈ (l1, l2), the ideal generated by l1 and l2) which

make f mod (l1, l2) also a linear function. Then f is not computable by a depth 2

(ΠΣ) circuit over U2(F).

Even a simple polynomial like x1x2 +x3x4 +x5x6 satisfies the condition stated in the

above theorem, and so it is not computable by any depth 2 circuit over U2(F), no

matter how large! This contrast makes Theorem 5.2.1 surprising as it establishes an

equivalence of identity testing in two models of different computational strengths.

We further show that the computational power of depth 2 circuits over M2(F) is also

severely restrictive. Let P` denote the partial product P` =
∏d

i=`

∑n
j=0Aijxj, where

Aij ∈ M2(F), x0 = 1 and 1 ≤ ` ≤ d.

Definition 5.2.6. A polynomial f is computed by a depth 2 circuit (ΠΣ) under a

degree restriction of m if the degree of every partial product P` is bounded by m, for

1 ≤ ` ≤ d.

Theorem 5.2.7. There exists a class of polynomials over F of degree n that cannot

be computed by a depth 2 (ΠΣ) circuit over M2(F), under a degree restriction of n.

The motivation behind imposing a condition like degree restriction comes nat-

urally from depth 2 circuits over M3(F). Given a polynomial f =
∑

imi, where

mi’s are the monomials of f , it is easy to construct a depth 2 circuit over M3(F)

that literally forms these monomials and adds them up one by one. This computa-

tion is degree restricted, if we extend our definition of degree restriction to M3(F).

However, the above theorem shows that this simple scheme fails over M2(F).

5.3 Identity Testing over M2(F)

In this section, we show that PIT of depth 2 circuits over M2(F) is at least as hard

as PIT of depth 3 circuits. This further implies that PIT of a width-2 commutative

ABP is also ‘harder’ than the latter problem.
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5.3.1 Equivalence with Depth 3 Identity Testing

Given a depth 3 circuit, assume (without loss of generality) that the fan-in of the

multiplication gates are the same. This multiplicative fan-in is referred to as the

degree of the depth 3 circuit. For convenience, we call a matrix with linear functions

as entries, a linear matrix.

Lemma 5.3.1. Let f ∈ F[x1, . . . , xn] be a polynomial computed by a depth 3 circuit

C of degree d and top fan-in s. Given circuit C, it is possible to construct in

polynomial time a depth 2 circuit over U2(F) of size O((d + n)s2) that computes a

polynomial L · f , where L is a product of non-zero linear functions.

Proof. A depth 2 circuit over U2(F) is simply a product sequence of 2 × 2 upper-

triangular linear matrices. We show that there exists such a sequence of length

O((d+ n)s2) such that the product 2× 2 matrix has L · f as one of its entries.

Since f is computed by a depth 3 circuit, we can write f =
∑s

i=1 Pi, where each

summand Pi =
∏

j lij is a product of linear functions. Observe that a single Pi can

be computed using the following product sequence of length d.[
li1

1

]
· · ·

[
li(d−1)

1

][
1 lid

1

]
=

[
L′ Pi

1

]
, (5.2)

where L′ = li1 · · · li(d−1).

Each matrix of the form

[
1 l

1

]
, where l = a0 +

∑
aixi, can be further expanded

as, [
1 a0

1

][
1 a1x1

1

]
· · ·

[
1 anxn

1

]
=

[
1 l

1

]
These will be the only type of non-diagonal matrices that would appear in the se-

quence.

The proof proceeds through induction, where Equation 5.2 serves as the induc-

tion basis. A generic intermediate matrix looks like

[
L1 L2g

L3

]
, where each Li is

a product of non-zero linear functions and g is a partial sum of the Pi’s. We will

inductively double the number of summands in g as follows.
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At the i-th iteration, let us assume that we have the matrices

[
L1 L2g

L3

]
and[

M1 M2h

M3

]
, each computed by a sequence of ni linear matrices. We want a

sequence that computes a polynomial of the form L · (g+h). Consider the following

sequence,[
L1 L2g

L3

][
A

B

][
M1 M2h

M3

]
=

[
AL1M1 AL1M2h+BL2M3g

BL3M3

]
,

(5.3)

where A, B are products of linear functions. By setting A = L2M3 and B = L1M2

we get the desired sequence,[
L1 L2g

L3

][
A

B

][
M1 M2h

M3

]
=

[
L1L2M1M3 L1L2M2M3(g + h)

L1L3M2M3

]
.

This way, we have doubled the number of summands in g + h. By induction, the

length of the sequence computing L2g and M2h is ni, and each Li and Mi is a

product of ni many linear functions. Therefore, both A and B are products of at

most 2ni linear functions and the matrix

[
A

B

]
can be written as a product

of at most 2ni diagonal linear matrices. The total length of the sequence given in

Equation 5.3 is hence bounded by 4ni.

As the number of summands in f is s, the above process of doubling the sum-

mands needs to be repeated at most log s + 1 times. The final sequence length is

hence bounded by (d+ n) · 4log s = (d+ n)s2.

Proof of Theorem 5.2.1: It follows from Lemma 5.3.1 that given a depth 3 circuit C

computing f we can efficiently construct a depth 2 circuit over U2(F) that outputs

a matrix,

[
L1 L · f

L2

]
, where L is a product of non-zero linear functions. Multi-

plying this matrix by

[
1 0

0

]
to the left and

[
0 0

1

]
to the right yields another

depth 2 circuit D that outputs

[
0 L · f

0

]
. Thus D computes an identically zero

polynomial over U2(F) if and only if C computes an identically zero polynomial.
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This shows that PIT for depth 3 circuits reduces to PIT of depth 2 circuits over

U2(F).

The other direction, that is PIT for depth 2 circuits over U2(F) reduces to PIT

for depth 3 circuits, is trivial to observe. The diagonal entries of the output 2 × 2

matrix is just a product of linear functions whereas the off-diagonal entry is a sum

of at most d′ many products of linear functions, where d′ is the multiplicative fan-in

of the depth 2 circuit over U2(F).

5.3.2 Width-2 Algebraic Branching Programs

Algebraic Branching Program (ABP) is a model of computation defined by Nisan

(Nis91). Formally, an ABP is defined as follows.

Definition 5.3.2. (Algebraic Branching Program) An algebraic branching program

(ABP) is a directed acyclic graph with one source and one sink. The vertices of this

graph are partitioned into levels labelled 0 to d, where edges may go from level i to

level i+ 1. The parameter d is called the degree of the ABP. The source is the only

vertex at level 0 and the sink is the only vertex at level d. Each edge is labelled with

a homogeneous linear function of x1, . . . , xn (i.e. a function of the form
∑

i cixi).

The width of the ABP is the maximum number of vertices in any level, and the size

is the total number of vertices.

An ABP computes a polynomial by taking sum over all paths from source to sink,

the product of all linear functions by which the edges of the path are labelled.

An ABP is said to be planar if the underlying graph is planar.

The following argument shows how Corollary 5.2.2 follows easily from Theorem 5.2.1.

Proof of Corollary 5.2.2: In the proof of Theorem 5.2.1 we have constructed a depth 2

circuit D that computes P =
∏

j(Aj0+Aj1x1+. . .+Ajnxn), where each Aji ∈ U2(F).

We can make D homogeneous by introducing an extra variable z, such that P =∏
j(Aj0z + Aj1x1 + . . . + Ajnxn). This means, the product sequence considered in

Lemma 5.3.1, is such that all the linear matrices have homogeneous linear functions

as entries and the only non-diagonal linear matrices are of the form

[
z cxi

z

]
. It
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is now straightforward to construct a width-2 ABP by making the jth linear matrix

in the sequence act as the biadjacency matrix between level j and j+ 1 of the ABP.

The ABP constructed is planar since it has layers only of the following two kinds:

•

•

•

•

............................................................... ............
l2

............................................................... ............
l1

•

•

•

•

............................................................... ............z

............................................................... ............z
..................................................................................................... .........

...

cxi

where l1. l2 are homogeneous linear functions.

As a matter of fact, the above argument actually shows that PIT of depth 2

circuits over M2(F) reduces to PIT of width-2 ABPs.

5.4 Identity Testing over Commutative Algebras

We will prove Theorem 5.2.3 in this section. The main tool used in this proof is

the structure theorem for finite dimensional commutative algebra stated in Section

2.3.4. We will first prove this theorem.

5.4.1 Proof of the Structure Theorem

Theorem 2.3.7 (restated.) A finite dimensional commutative algebra R over F is

isomorphic to a direct product of local rings i.e.

R ∼= R1 ⊕ . . .⊕ R`

where each Ri is a local ring contained in R and any non-unit in Ri is nilpotent.

Proof. If all non-units in R are nilpotents then R is a local ring and the set of

nilpotents forms the unique maximal ideal. Suppose, there is a non-nilpotent non-

unit z in R. (Any non-unit z in a finite dimensional algebra is a zero-divisor i.e.

∃y ∈ R and y 6= 0 such that yz = 0.) We will later show that using z it is possible

to find an idempotent v 6∈ {0, 1} (i.e. v2 = v) in R. But at first, let us see what

happens if we already have a non-trivial idempotent v ∈ R.

Let Rv be the sub-algebra of R generated by multiplying elements of R with v.

Since any a = av + a(1− v) and for any b ∈ Rv and c ∈ R(1− v), b · c = 0, we get
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R ∼= Rv⊕R(1− v) as a non-trivial decomposition of R. (This is the place where we

use commutativity of R.) By repeating the splitting process on the sub-algebras we

can eventually prove the theorem.

It remains to see how to find an idempotent from a zero-divisor z. An element

a ∈ R can be equivalently expressed as a matrix in Mk(F), where k = dimF(R), by

treating a as the linear transformation on R that takes b ∈ R to a · b. Therefore,

z is a zero-divisor if and only if z as a matrix is singular. Consider the Jordan

normal form of z. Since it is merely a change of basis we can assume, without loss

of generality, that z is already in Jordan normal form. (We will not compute the

Jordan normal form in our algorithm, it is used only for the sake of argument.) Let,

z =

[
A 0

0 N

]
where A,N are block diagonal matrices and A is non-singular and N is nilpotent.

Then,

w = zk =

[
B 0

0 0

]
where B = Ak is non-singular. The claim is, there is an identity element in the

sub-algebra Rw which can be taken to be the idempotent v that splits R. First

observe that the minimum polynomial of w over F is m(x) = x ·m′(x), where m′(x)

is the minimum polynomial of B. Also if m(x) =
∑k

i=1 αix
i then α1 6= 0 as it is the

constant term of m′(x) and B is non-singular. Therefore, there exists an a ∈ R such

that w · (aw − 1) = 0. Hence v = aw is the identity element of Rw and is also an

idempotent in R.

We are now ready to prove Theorem 5.2.3.

5.4.2 A Deterministic Algorithm

Theorem 5.2.3 (restated.) Given an expression,

P =
d∏
i=1

(Ai0 + Ai1x1 + . . .+ Ainxn),

where Aij ∈ R, a commutative algebra of dimension k over F, there is a deterministic

algorithm to test if P is zero running in time poly
(
kk, n, d

)
.
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Proof. Let {e1, . . . , ek} be a basis of R over F. Since any element in R can be equiv-

alently expressed as a k×k matrix over F (by treating it as a linear transformation),

we will assume that Aij ∈ Mk(F), for all i and j. Further, since R is given in basis

form, we can find these matrix representations of Aij’s efficiently.

If every Aij is non-singular, then surely P 6= 0. This can be argued by fixing

an ordering x1 � x2 � . . . � xn among the variables. The coefficient of the leading

monomial of P , with respect to this ordering, is a product of invertible matrices

and hence P 6= 0. Therefore, assume that ∃Aij = z such that z is a zero-divisor

i.e. singular. From the proof of Theorem 2.3.7 it follows that the sub-algebra Rw,

where w = zk, contains an identity element v which is an idempotent. We now

argue that the idempotent v can be found by solving a system of linear equations

over F. Let b1, . . . , bk′ be a basis of Rw, which we can find easily from the elements

e1w, . . . , ekw. To solve for v write it as,

v = ν1b1 + . . .+ νk′bk′

where νj ∈ F are unknowns. Since v is an identity in Rw it satisfies the relation,

(ν1b1 + . . .+ νk′bk′) · bi = bi for 1 ≤ i ≤ k′.

Expressing each bi in terms of e1, . . . , ek, we get a system of linear equations in the

νj’s. Find v by solving this linear system.

Since R ∼= Rv ⊕ R(1 − v), we can split the identity testing problem into two

subproblems. That is, P is zero if and only if,

Pv =
d∏
i=1

(Ai0v + Ai1v · x1 + . . .+ Ainv · xn) and

P (1− v) =
d∏
i=1

(Ai0(1− v) + Ai1(1− v) · x1 + . . .+ Ain(1− v) · xn)

are both zero. What we just did with P ∈ R we can repeat for Pv ∈ Rv and

P (1− v) ∈ R(1− v) by applying the above process, recursively, to Pv and P (1− v).

By decomposing the algebra each time an Aij is a non-nilpotent zero-divisor, we are

finally left with the easier problem of checking if,

P =
d∏
i=1

(Ai0 + Ai1x1 + . . .+ Ainxn)
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is zero, where the coefficients Aij’s are either nilpotent or invertible matrices.

Let Ti = (Ai0 + Ai1x1 + . . .+ Ainxn) be a term such that the coefficient of xj in

Ti, i.e. Aij is invertible. And let Q be the product of all terms other than Ti. Then

P = Ti · Q (since R is commutative). Fix an ordering among the variables so that

xj gets the highest priority. The leading coefficient of P , under this ordering, is Aij

times the leading coefficient of Q. Since Aij is invertible this implies that P = 0

if and only if Q = 0. (If Ai0 is invertible, we can arrive at the same conclusion

by arguing with the coefficients of the least monomials of P and Q under some

ordering.) In other words, P = 0 if and only if the product of all those terms

for which all the coefficients are nilpotent matrices is zero. If the number of such

terms is greater than k then P is automatically zero. This follows from the fact

that commuting matrices (over an algebraically closed field) can be simultaneously

triangularized and the product of k upper-triangular k × k nilpotent matrices is

always zero.

Otherwise, treat each term (Ai0 + Ai1x1 + . . .+ Ainxn) as a k× k linear matrix.

Since, there are at most k such linear matrices in P , the total number of linear

functions occurring as entries of these linear matrices is bounded by k3. Using a

basis of these linear functions we can reduce the number of effective variables in P

to k3. Now, checking if P is zero takes only poly(kk) field operations and hence the

overall time complexity is bounded by poly(kk, n, d).

5.4.3 Reduction from Depth 3 Identity Testing

It is clear from the discussion in Section 5.4.2 that identity testing of depth 2 (ΠΣ)

circuits over commutative algebras reduces in polynomial time to that over local

rings. As long as the dimensions of these local rings are O(log nd/ log log nd), we

have an efficient algorithm. But what happens for larger dimensions? The following

result shows the hardness of this problem.

Theorem 5.4.1. Given a depth 3 (ΣΠΣ) circuit C of degree d and top level fan-in

s, it is possible to construct in polynomial time a depth 2 (ΠΣ) circuit C̃ over a local

ring of dimension s(d−1)+2 over F such that C̃ computes a zero polynomial if and

only if C does so.

Proof. Consider a depth 3 (ΣΠΣ) circuit computing a polynomial f =
∑s

i=1

∏d
j=1 lij,

where lij’s are linear functions. Consider the ring R = F[y1, . . . , ys]/I, where
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I is an ideal generated by the elements {yiyj}1≤i<j≤s and {yd1 − ydi }1<i≤s. Ob-

serve that R is a local ring, as yd+1
i = 0 for all 1 ≤ i ≤ s. Also the elements

{1, y1, . . . , y
d
1 , y2, . . . , y

d−1
2 , . . . , ys, . . . , y

d−1
s } form an F-basis of R. Now notice that

the polynomial,

P =
d∏
j=1

(lj1y1 + . . .+ ljsys)

= f · yd1

is zero if and only if f is zero. Polynomial P can indeed be computed by a depth 2

(ΠΣ) circuit over R.

5.5 Weakness of the Depth 2 Model

In Lemma 5.3.1, we have constructed a depth 2 circuit over U2(F) that computes

L · f instead of f . Is it possible to drop the factor L and simply compute f? In this

section, we show that in many cases it is impossible to find a depth 2 circuit over

U2(F) that computes f .

5.5.1 Depth 2 Model over U2(F)

The ideal of F[x1, . . . , xn] generated by two linear functions l1 and l2 is denoted by

(l1, l2). We say that l1 is independent of l2 if 1 6∈ (l1, l2).

Theorem 5.2.5 (restated.) Let f ∈ F[x1, . . . , xn] be a polynomial such that there

are no two independent linear functions l1 and l2 which make f mod (l1, l2) also a

linear function. Then f is not computable by a depth 2 (ΠΣ) circuit over U2(F).

Proof. Assume on the contrary that f can be computed by a depth 2 circuit over

U2(F). In other words, there is a product sequenceM1 · · ·Mt of 2×2 upper-triangular

linear matrices such that f appears as the top-right entry of the final product matrix.

Let Mi =

[
li1 li2

li3

]
, then

f =
[

1 0
] [ l11 l12

l13

][
l21 l22

l23

]
· · ·

[
lt1 lt2

lt3

][
0

1

]
(5.4)



5.5 Weakness of the Depth 2 Model 93

Case 1: Not all the li1’s are constants.

Let k be the least index such that lk1 is not a constant and li1 = ci for all i < k.

To simplify Equation 5.4, let[
B

L

]
= Mk+1 · · ·Mt

[
0

1

]
[
di Di

]
=

[
1 0

]
·M1 · · ·Mi−1

Observe that L is just a product of linear functions, and for all 1 ≤ i < k, we have

the following relations.

di+1 =
i∏

j=1

cj

Di+1 = dili2 + li3Di

Hence, Equation 5.4 simplifies as

f =
[
dk Dk

] [ lk1 lk2

lk3

][
B

L

]
= dklk1B + (dklk2 + lk3Dk)L

Suppose there is some factor l of L with 1 6∈ (lk1, l). Then f = 0 mod (lk1, l), which

is not possible. Hence, L must be a constant modulo lk1. For appropriate constants

α, β, we have

f = αlk2 + βlk3Dk (mod lk1) (5.5)

By inducting on k, we argue that the above relation can not be true. If lk3 was

independent of lk1, then f = αlk2 mod (lk1, lk3) which is not possible. Therefore, lk3

must be a constant modulo lk1. We then have the following (reusing α and β to

denote appropriate constants):

f = αlk2 + βDk (mod lk1)

= αlk2 + β
(
dk−1l(k−1)2 + l(k−1)3Dk−1

)
(mod lk1)

=⇒ f =
(
αlk2 + βdk−1l(k−1)2

)
+ βl(k−1)3Dk−1 (mod lk1).

The last equation can be rewritten in the form of Equation 5.5 with the term βlk3Dk

replaced by βl(k−1)3Dk−1. Notice that the expression
(
αlk2 + βdk−1l(k−1)2

)
is linear



94 Identity Testing: Depth 2 Circuits over Algebras

just like αlk2. Hence, by using the argument iteratively we eventually get a contra-

diction at D1.

Case 2: All the li1’s are constants.

In this case, Equation 5.4 can be rewritten as

f =
[
dt Dt

] [ ct lt2

lt3

][
0

1

]
= dtlt2 + lt3Dt

The last equation is again of the form in Equation 5.5 (without the mod term)

and hence the same argument can be repeated here as well to give the desired

contradiction.

The following corollary provides some explicit examples of functions that cannot

be computed.

Corollary 5.5.1. A depth 2 circuit over U2(F) cannot compute the polynomial

x1x2 + x3x4 + x5x6. Other examples include well known functions like detn and

permn, the determinant and permanent polynomials, for n ≥ 3.

Proof. It suffices to show that f = x1x2 + x3x4 + x5x6 satisfy the requirement in

Theorem 5.2.5.

To obtain a contradiction, let us assume that there does exist two linear functions

l1 and l2 (with 1 6∈ (l1, l2)) such that f mod (l1, l2) is linear. We can evaluate

f mod (l1, l2) by substituting a pair of the variables in f by linear functions in the

rest of the variables (as dictated by the equations l1 = l2 = 0). By the symmetry of

f , we can assume that the pair is either {x1, x2} or {x1, x3}.
If x1 = l′1 and x3 = l′2 are the substitutions, then l′1x2 + l′2x4 can never contribute

a term to cancel off x5x6 and hence f mod (l1, l2) cannot be linear.

Otherwise, let x1 = l′1 and x2 = l′2 be the substitutions. If f mod (l1, l2) =

l′1l
′
2 + x3x4 + x5x6 is linear, there cannot be a common xi with non-zero coefficient

in both l′1 and l′2. Without loss of generality, assume that l′1 involves x3 and x5 and

l′2 involves x4 and x6. But then the product l′1l
′
2 would involve terms like x3x6 that

cannot be cancelled, contradicting linearity again.



5.5 Weakness of the Depth 2 Model 95

5.5.2 Depth 2 Model over M2(F)

In this section we show that the power of depth 2 circuits is very restrictive even

if we take the underlying algebra to be M2(F) instead of U2(F). In the following

discussion, we call a homogeneous linear function a linear form.

Definition 5.5.2. A polynomial f of degree n is said to be r-robust if f does not

belong to any ideal generated by r linear forms.

For instance, it can be checked that detn and permn, the symbolic determinant and

permanent of an n×n matrix, are (n−1)-robust polynomials. For any polynomial f ,

denote the dth homogeneous part of f by [f ]d. And let (h1, · · · , hk) denote the ideal

generated by h1, · · · , hk. Recall the definition of degree restriction from Definition

5.2.6.

Theorem 5.5.3. A polynomial f of degree n, such that [f ]n is 5-robust, cannot be

computed by a depth 2 circuit over M2(F) under a degree restriction of n.

We prove this with the help of the following lemma, which basically applies Gaussian

column operations to simplify matrices.

Lemma 5.5.4. Let f1 be a polynomial of degree n such that [f1]n is 4-robust. Suppose

there is a linear matrix M and polynomials f2, g1, g2 of degree at most n satisfying[
f1

f2

]
= M

[
g1

g2

]

Then, there is an appropriate invertible column operation A such that

M · A =

[
1 h2

c3 h4 + c4

]

where c3, c4 are constants and h2, h4 are linear forms.

We will defer the proof of this lemma to the end of this section, and shall use it to

prove Theorem 5.5.3.

Proof of Theorem 5.5.3. Assume, on the contrary, that there is a sequence of 2 × 2

linear matrices computing f . Since only one entry is of interest to us, assume without
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loss of generality that the first matrix in the sequence is a row vector v̄ and the last

matrix is a column vector w̄. Let,

f = v̄ ·M1M2 · · ·Md · w̄

be a sequence of minimum length computing f . Using Lemma 5.5.4 we repeatedly

transform the above sequence by replacing the term MiMi+1 by (MiA)(A−1Mi+1)

for an appropriate invertible column transformation A. Since entries of A are just

constants, MiA and A−1Mi+1 continue to be linear matrices.

To begin, let v̄ = [l1, l2] for two linear functions l1 and l2. And let [f1, f2]T =

M1 · · ·Mdw̄. Then, [
f

0

]
=

[
l1 l2

0 0

][
f1

f2

]
.

Applying Lemma 5.5.4, we can assume that v̄ = [1, h] and so f = f1 + hf2. By the

minimality of the sequence, h 6= 0. This forces [f1]n = [f ]n to be 4-robust and the

degree restriction makes [f2]n = 0.

Let [g1, g2]T = M2 · · ·Mdw̄. The goal is to translate the properties that [f1]n

is 4-robust and [f2]n = 0 to the polynomials [g1]n and [g2]n respectively. We use

induction and translate these properties to the vectors Mi · · ·Mdw̄, for all i ≥ 2. So,

suppose that the relation, [
f1

f2

]
= Mi

[
g1

g2

]
holds in general for some i, where [f1]n is 4-robust and [f2]n = 0.

Since [f1]n is 4-robust, using Lemma 5.5.4 again, we can assume that[
f1

f2

]
=

[
1 h2

c3 c4 + h4

][
g1

g2

]
(5.6)

by reusing the symbols g1, g2 and others. Observe that in the above equation if

h4 = 0 then Mi−1Mi still continues to be a linear matrix (since, by induction, Mi−1

is of the form as dictated by Lemma 5.5.4) and that would contradict the minimality

of the sequence. Therefore h4 6= 0.

Claim: c3 = 0 (by comparing [f1]n and [g1]n, as explained below).
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Proof: As h4 6= 0, the degree restriction forces [g2]n = 0. And since [f2]n = 0, we

have the relation c3[g1]n = −h4[g2]n−1. If c3 6= 0, we have [g1]n ∈ (h4), contradicting

4-robustness of [f1]n as then [f1]n = [g1]n + h2[g2]n−1 ∈ (h2, h4).

Therefore Equation 5.6 gives,[
f1

f2

]
=

[
1 h2

0 c4 + h4

][
g1

g2

]
with h4 6= 0. Also, since [f2]n+1 = [f2]n = 0 this implies that [g2]n = [g2]n−1 =

0. Hence, [g1]n = [f1]n is 4-robust. Thus, we have translated the properties to

[g1 g2]T , showing that [g1]n is 4-robust and [g2]n = 0. However, since there are only

finitely many matrices in the sequence, there must come a point when degree of

g1 in [g1 g2]T = Mi · · ·Mdw̄ drops below n for some i ≥ 2. At this point we get a

contradiction as [g1]n = 0 (reusing symbol) which contradicts robustness.

We only need to finish the proof of Lemma 5.5.4.

Proof of Lemma 5.5.4. Suppose we have an equation of the form,[
f1

f2

]
=

[
h1 + c1 h2 + c2

h3 + c3 h4 + c4

][
g1

g2

]
, (5.7)

where c1, . . . , c4 are constants and h1, . . . , h4 are linear forms. On comparing degree

n+ 1 terms, we have the relations,

h1[g1]n + h2[g2]n = 0

h3[g1]n + h4[g2]n = 0.

If h3 and h4 (a similar reasoning holds for h1 and h2) are not proportional (i.e. not

multiple of each other), then the above equation implies that [g1]n, [g2]n ∈ (h3, h4).

But this means,

[f1]n = h1[g1]n−1 + h2[g2]n−1 + c1[g1]n + c2[g2]n ∈ (h1, h2, h3, h4),

contradicting the 4-robustness of [f1]n. Thus, h3 and h4 (as well as h1 and h2) are

proportional, in the same ratio as −[g2]n and [g1]n. Using an appropriate column

operation, Equation 5.7 simplifies to[
f1

f2

]
=

[
c1 h2 + c2

c3 h4 + c4

][
g1

g2

]
,
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reusing symbols g1, g2 and others. If c1 = 0 and [g2]n = 0 then [f1]n = h2[g2]n−1,

contradicting robustness. Therefore, either c1 6= 0, in which case another column

transformation gets the matrix to the form claimed, or [g2]n 6= 0 implying that

h2 = h4 = 0. But then c1 and c2 both cannot be zero, [f1]n being 4-robust, and

hence a column transformation yields the desired form.

5.6 Conclusion

We give a new perspective to identity testing of depth 3 arithmetic circuits by

showing an equivalence to identity testing of depth 2 circuits over U2(F) and a

reduction to identity testing of depth 2 circuits over commutative algebra. We also

show that identity testing of depth 2 circuits over commutative algebra of small

dimension can be solved in deterministic polynomial time. For this, our algorithm

crucially uses an interesting structural result involving local rings. This naturally

poses the following questions:

• Can we exploit properties very specific to the ring of upper-triangular 2 × 2

matrices to solve PIT of depth 3 circuits?

• Can we use more algebraic insights into commutative algebras or local rings

to extend our deterministic algorithm to commutative algebras of linear di-

mension?

Although we show a reduction from depth 3 circuits, the exact power of depth

2 circuits over commutative algebras of polynomial dimension is not very clear.

Same is true for depth 2 circuits over M2(F), in which case we are able to show its

computational limitation only under the assumption of degree restriction. We are

therefore interested in answering the following questions:

• Does identity testing of depth 4 circuits reduce to identity testing of depth 2

circuits over commutative algebra of polynomial dimension?

• Can we show that depth 2 circuits over M2(F) are not powerful enough to

compute depth 3 polynomials?



Chapter 6

Two Problems on Identity Testing

-Joint work with Ramprasad Saptharishi and Nitin Saxena.

6.1 Introduction

6.1.1 The Problems

In this chapter, we give deterministic solutions to two problems on identity testing.

The first one is a generalization of the problem considered by Kayal and Saxena

(KS07).

Problem 6.1.1. Given a depth-3 circuit C with bounded top fanin and given a

sparse polynomial f explicitly, check if p(C) = f , where p(C) is the polynomial

computed by C.

We say that a polynomial is given explicitly if it is presented as a list of monomials,

where every monomial is given by its exponent vector and its nonzero coefficient.

We assume that the integer entries of the exponent vectors are given in unary. (See

the paragraph after the statement of Problem 6.1.3).

As mentioned in Chapter 5 (Section 5.1), the Kayal-Saxena test (KS07) checks

if p(C) = 0, where C is a bounded top fanin depth-3 circuit. Building on their idea

of using ‘Chinese remaindering over local rings’, we show that the general Problem

6.1.1 can also be solved in deterministic polynomial time.

Our second problem is checking the validity of a given factorization. That is,
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Problem 6.1.2. Given a polynomial f explicitly, and also given t other polynomials

g1, . . . , gt explicitly (gi’s need not be distinct), check if f = g1 . . . gt.

This natural case of depth-4 identity testing has been mentioned as a problem with

no known efficient deterministic solution in a work by von zur Gathen (vzG83)

on sparse polynomial factoring. We are not aware of any progress made towards

efficiently solving this problem. In this work, we give a deterministic algorithm to

solve the following special case of this problem.

Problem 6.1.3. Given a polynomial f and t other polynomials g1, . . . , gt explicitly,

where every gi is of the form of a sum of univariate polynomials, check if f = g1 . . . gt.

We show that Problem 6.1.3 can be solved in deterministic polynomial time. It is

worth noting, the assumption that the exponent vector of every monomial is given in

unary, instead of binary, is made to avoid certain unpleasant situations where even

basic questions on univariate polynomials like, checking coprimeness of univariates,

division of the product of a set of univariates by a single univariate etc., become

NP-hard (see the work by Plaisted (Pla77)).

6.1.2 Overview of Our Approach

The Dual Representation

The common tool we use in solving both Problem 6.1.1 and Problem 6.1.3 is some-

thing known as the dual representation of polynomials (borrowing terminology from

(Sax08)). It is a technique to express a power of a sum of univariates as a ‘small’

sum of product of univariates. The usefulness of this latter representation is that

identity testing of sum of product of univariates can be done very efficiently using

a dimension argument that we will describe in Section 6.2. It is similar in spirit to

the argument on identity testing of noncommutative formulas by Raz and Shpilka

(RS04). An added feature of this dimension argument is that it not only tells us if

the input polynomial is zero or not, but also gives us the leading monomial of the

polynomial under natural lexicographic ordering of the monomials. This observation

turns out to be crucial in extending the Kayal-Saxena test to a solution for Problem

6.1.1.
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We note that finding the leading monomial of a given depth-3 circuit is sup-

posedly a harder problem than identity testing. In a recent work, Kayal (Kay10)

gives it as a challenge problem to either devise a randomized algorithm to find the

leading monomial of a ΣΠΣ circuit or show that the existence of any efficient al-

gorithm imply that the polynomial hierarchy collapses. Fortunately, to our benefit,

the problem turns out to be easy in the particular case we are interested in.

Approach to Solving Problem 6.1.1

The general idea is to begin by applying the Kayal-Saxena test to the polynomial

p(C) − f . This test uses some invertible linear maps to transform the polynomial

p(C)− f , thereby altering f to some nonsparse polynomial at various stages of the

algorithm. However, it can be ensured that the transformed f always stays in a

special form that we call a semidiagonal form.

Definition 6.1.4. (Semidiagonal Polynomial) A polynomial f =
∑m

i=1 Qi is said to

be semidiagonal if every Qi is a product of a monomial and constantly many powers

of linear functions in the variables.

In our case, the constant in ‘constantly many powers of linear functions’ is bounded

by k, the top fanin of the circuit C. Identity testing of a semidiagonal f can be

made easy by using the dual representation of f . So if we can also ensure that in

the base case the Kayal-Saxena test on p(C)− f always reduces to identity testing

of a semidiagonal f then we are done. Let p(C) =
∑k

i=1 Pi, where Pi’s are product

of linear functions. The original Kayal-Saxena test (where we test if p(C) = 0)

chooses a Pj such that LM(Pj) � LM(p(C)) (LM stands for leading monomial and

� refers to the monomial ordering). But now the test is on p(C) − f and not just

p(C). So, at an intermediate stage of the algorithm we need to find a Pj such that

LM(Pj) � LM(p(C) − f), where f is semidiagonal. This is where we need to find

the leading monomial of f . As mentioned before, finding the leading monomial of

a general depth-3 polynomial has no known efficient algorithm. But, once again

the semidiagonal nature of f and its corresponding dual representation come to our

rescue. Finding leading monomial of a semidiagonal f turns out to be efficiently

doable.
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Approach to Solving Problem 6.1.3

The approach we take to check if f = g1 . . . gt is very natural - reduce the problem to

divisibility and then use Chinese remaindering. But the issue here is that gi’s need

not be distinct. So in general we need to check if gd divides f for some d ≥ 1. Since

gd may not be a sparse polynomial we reduce this divisibility problem to checks of

the kind, g divides h, where h is a sparse polynomial, using partial derivatives. We

show that such divisibility checks reduce to identity testing of a slightly general form

of semidiagonal polynomials, if g is a sum of univariates. And this identity test can

be done efficiently using dual representation. Finally, for Chinese remaindering to

take its effect, we need to say something about the coprimeness of gi and gj when

gi 6= gj. Towards this, we show an irreducibility result on polynomials of the form

f(x) + g(y) + h(z) that helps us conclude the proof.

Remark - The technique of dual representation of polynomials is used by Saxena

(Sax08) to solve identity testing of diagonal depth-3 circuits and some of its gener-

alizations. Very recently, Kayal (Kay10) shows that an argument based on partial

derivatives can also be used to solve these problems. Just like dual representations,

Kayal’s technique can also be applied to solve Problem 6.1.1 and Problem 6.1.3. In

fact, it appears to us that Problem 6.1.1 and 6.1.3 are two natural problems where

both Saxena’s and Kayal’s techniques fit in to give something productive.

6.2 The Dual Representation

6.2.1 Finding the Dual Polynomial

In this section, we show how to express a power of a sum of univariate polynomi-

als as a ‘small’ sum of product of univariates. The argument is already present in

(Sax08). We reproduce it here for self-containment.

Let f = (
∑n

i=1 gi(xi))
D

, where gi(xi) (or simply gi) is a univariate in xi of degree

at most d. Assume that the underlying field F has size greater than nD + 1 and

char(F) = 0 or char(F) > D. Let z be a new variable and g =
∑n

i=1 gi. Then in

the exponential series expansion egz =
∑∞

j=0
gj

j!
zj, f/D! is the coefficient of zD. On
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the other hand, egz is also the product of the formal series egiz for 1 ≤ i ≤ n i.e.

egz =
∏n

i=1 e
giz. Define the polynomials,

ED(gi, z) =
D∑
j=0

gi
j

j!
zj

Then the coefficient of zD in the formal series
∑∞

j=0
gj

j!
zj is exactly equal to the coeffi-

cient of zD in the polynomial P (z) =
∏n

i=1ED(gi, z). The idea is to use interpolation

to express this coefficient of zD as an F-linear combination of few evaluations of P (z)

at different field points.

Suppose P (z) =
∑nD

j=0 pjz
j, where pj’s are polynomials in x1, . . . , xn. Choose

nD + 1 distinct points α0, . . . , αnD from F and V be the (nD + 1) × (nD + 1)

Vandermonde matrix (αkj )0≤j,k≤nD. Then,

V · (p0, . . . , pnD)T = (P (α0), . . . , P (αnD))T

⇒ (p0, . . . , pnD) = V−1 · (P (α0), . . . , P (αnD))T

In other words, pD can be expressed as an F-linear combination of the P (αj)’s for

0 ≤ j ≤ nD. Now, to complete the proof, notice that pD = f/D! and each P (αj)

is a product of the univariates ED(gi, αj) of degree at most dD. This proves the

following theorem (Sax08).

Theorem 6.2.1. Given f = (
∑n

i=1 gi(xi))
D

, where gi is a univariate in xi of degree

at most d, f can be expressed as a sum of nD + 1 products of univariates of degree

dD, using poly(n, d,D) F-operations.

6.2.2 Leading Monomial of Sum of Product of Univariates

Let us now see how identity testing of a sum of product of univariates can be

performed in deterministic polynomial time. Surely, the result follows as a corollary

to Raz and Shpilka’s (RS04) algorithm on noncommutative formula identity testing.

But we choose to present an argument here not only because of self-containment but

also to point out an interesting feature of this identity testing - it finds the leading

monomial of the input polynomial (something we will need in Section 6.3). Our

argument is similar in spirit to that of Raz and Shpilka (RS04).
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Let f =
∑k

i=1

∏n
j=1 gij(xj), where gij(xj) (or simply gij) is a univariate in xj of

degree at most d. Denote by � the natural lexicographic ordering among mono-

mials with x1 � . . . � xn. The following discussion suggests an efficient recursive

algorithm to find LM(f).

In general, at any `th step of the recursion we need to find the leading monomial of

a polynomial of the form f` =
∑k

i=1Gi `−1 ·
∏n

j=` gij, where Gi `−1’s are polynomials

in x1, . . . , x`−1 and LM(f) = LM(f`). To begin, ` = 1 and Gi0 = 1 for all 1 ≤ i ≤ k.

Fix an integer ` ∈ [1, n]. Consider the monomials with nonzero coefficients

occurring in the products Gi `−1 · gi` for all i between 1 and k. Let the set of these

monomials be M` = {m1, . . . ,mµ(`)} such that m1 � m2 � . . . � mµ(`). Similarly,

consider the monomials with nonzero coefficients in the partial products
∏n

j=`+1 gij

for all 1 ≤ i ≤ k and call them N` = {n1, . . . , nν(`)} (also assume that n1 � n2 �
. . . � nν(`)). Then, for any i, Gi `−1 · gi` =

∑µ(`)
r=1 cirmr and

∏n
j=`+1 gij =

∑ν(`)
s=1 disns,

where the coefficients cir and dis belong to F.

Notice that the monomials mr ·ns are distinct for distinct tuples (r, s). The coef-

ficient of mr ·ns in f` is exactly
∑k

i=1 cirdis. Put differently, if cr is the k-dimensional

vector (c1r, . . . , ckr) and ds is the vector (d1r, . . . , dks) then Coeff(mr · ns) = cr.dTs .

Consider the µ(`) × k matrix C with vectors cr as rows for all 1 ≤ r ≤ µ(`), and

D be the k × ν(`) matrix with vectors dTs as columns for all 1 ≤ s ≤ ν(`). The

coefficient of mr · ns is the (r, s)th entry of the product matrix C ×D.

We are interested in finding the leading monomial of f`. Now notice that, the

minimum possible r for which there is a nonzero entry (r, s) in C × D, gives the

leading monomial mr ·ns of f`, where s is also the minimum possible for that choice

of r. This is because of the monomial orderings m1 � m2 � . . . � mµ(`) and

n1 � n2 � . . . � nν(`). Therefore, if there is a row vector cr in C that is F-linearly

dependent on the vectors c1, . . . , cr−1 then the leading monomial of f` can never be

of the form mr · ns for any s, and so we can safely drop the row cr from C. Since

C is a µ(`)× k matrix, the number of linearly independent rows of C is at most k.

Hence, we can iteratively remove rows from C starting from the first row c1; at the

rth iteration dropping cr if and only if cr is F-linearly dependent on c1, . . . , cr−1.

Finally, we are left with a new matrix C̃ with at most k rows.
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The dropping of a row cr from C corresponds to pruning of the monomialmr from

the product Gi `−1 ·gi`. By this we mean the following. Let M̃` be the subset of those

monomials of M` such that mr ∈ M̃` if and only if cr is a row of C̃. Let Gi` be the

product Gi `−1 · gi` projected to only the monomials in M̃` i.e. Gi` =
∑

mr∈M̃`
cirmr.

Then the leading monomial of f`+1 =
∑k

i=1Gi` ·
∏n

j=`+1 gij is the same as the leading

monomial of f` for reason explained in the last paragraph.

The good part is that M̃` has at most k monomials and so do the polynomials

Gi` for all 1 ≤ i ≤ k. Since the number of monomials in Gi` does not grow with `, it

is easy to see that LM(f) can be found in poly(n, k, d) time by adapting the above

discussion into a recursive algorithm. We have thus shown the following theorem.

Theorem 6.2.2. Given f =
∑k

i=1

∏n
j=1 gij(xj), where gij is a univariate in xj of

degree at most d, the leading monomial of f under natural lexicographic ordering

can be found using poly(n, k, d) F-operations.

Note - The above approach actually gives the coefficient of LM(f).

6.3 Generalizing Kayal-Saxena test

In this section, we show how the Kayal-Saxena identity test on bounded top fanin

depth-3 circuits can be generalized to tests of the kind: Is p(C) = f , where C is

a given bounded top fanin depth-3 circuit computing polynomial p(C) and f is a

given sparse polynomial. This reduces to testing if the depth-3 polynomial p(C)−f
is identically zero. Our algorithm builds on ideas from the Kayal-Saxena test. So,

to put things in context, we will review their algorithm first.

To begin with, assume that the circuit C and the polynomial f are homogenized

so that all the product terms of p(C) and all the monomials of f have the same

degree, which is d (say). Also assume that char(F) = 0 or char(F) > d. Let

p(C) =
∑k

i=1 Pi, where k is a constant and Pi is a product of d linear forms over F,

for all 1 ≤ i ≤ k. Let X = {x1, . . . , xn} be the underlying set of variables.

6.3.1 Revisiting Kayal-Saxena Test

Kayal and Saxena’s algorithm uses recursion (on the top fanin of circuit C) to check

if p(C) = 0. At an intermediate level of the recursion, the algorithm finds out if a
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polynomial of the form,

α1T1 + . . .+ αk′Tk′

is zero over a local ring R ⊇ F given explicitly in terms of an F-basis, where k′ ≤ k

and αi’s are elements of R. Each Ti is a product of linear forms over R, where a

linear form over R is of the kind,

a1xv1 + . . .+ an′xvn′ +m,

where ai ∈ F and m ∈ M, the unique maximal ideal of R. In addition, there is

at least one nonzero ai and xvi ∈ X is a free variable over R. At the start of the

recursion, R = F and M = (0), the null ideal.

The Algorithm

The following Algorithm ID takes as input an F-basis of a local ring R, a set of ele-

ments 〈α1, . . . , αk′〉 in R and a set of products of linear forms (over R), 〈T1, . . . , Tk′〉.
It checks if the polynomial

∑k′

i=1 αiTi is identically zero over R and returns YES or

NO accordingly.

The description of Algorithm ID given below is exactly the same as in (KS07),

except a slight modification in Step 3.1. This change is somewhat necessary for our

purpose (see the remark on Step 3.1 later).

Algorithm ID(R, 〈α1, . . . , αk′〉, 〈T1, . . . , Tk′〉):

Step 1: (Rearranging terms) Order the terms αiTi so that LM(T1) � LM(Ti), for

all 2 ≤ i ≤ k′. Let p =
∑k′

i=1 αiTi.

Step 2: (Base Case) If k′ = 1 check if α1 = 0. If so, return YES otherwise NO.

Step 3: (Verifying that p = 0 mod T1) The product T1 can be split as T1 = S1 . . . Sr,

with possible change in the constant α1, such that each Sj is of the form,

Sj = (`j +m1) · (`j +m2) . . . (`j +mt),

where mi ∈ M and `j is a linear form over F. Further, for i 6= j, `i and `j are

coprime linear forms over F.

Check if p = 0 mod Sj, for every 1 ≤ j ≤ r. This is done in the following way.
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Step 3.1: (Applying a linear transformation) Find a free variable xu with

nonzero coefficient cu in `j. Let σ be a linear transformation on the free

variables (occuring in T1, . . . Tk′) that sends `j to xu. More precisely,

σ(xu) = c−1
u (xu − `j + cuxu) and for any other free variable xv 6= xu,

σ(xv) = xv.

Step 3.2: (Recursively verify if σ(p) = 0 mod σ(Sj)) Define ring R′ as

R′ = R[xu]/(σ(Sj)),

where xu is the same variable xu in Step 3.1. Notice that, σ(Sj) is of the

form,

σ(Sj) = (xu +m1) · (xu +m2) . . . (xu +mt),

and σ(T1) = 0 mod σ(Sj). For i = 2 to k′ compute elements βi ∈ R′ and

T ′i such that,

σ(Ti) = βiT
′
i mod σ(Sj),

where T ′i is a product of linear forms over R′.

Recursively call ID(R′, 〈β2, . . . , βk′〉, 〈T ′2, . . . , T ′k′〉). If the recursive call

returns NO then output NO and exit, otherwise declare p = 0 mod Sj.

Declare p = 0 mod T1, if p = 0 mod Sj for all 1 ≤ j ≤ r.

Step 4: Check if Coeff(LM(T1)) in p is zero. If so, return YES otherwise NO.

Correctness of the Algorithm

Suppose Step 3 ensures that p = 0 mod T1, where LM(T1) � LM(Ti) for all 2 ≤
i ≤ k′ which also means that LM(T1) � LM(p). The way a linear form is defined

over R, it follows that Coeff(LM(T1)) in T1 is a nonzero field element. Therefore,

p = α · T1 for some α ∈ R, implying that p = 0 if and only if Coeff(LM(T1)) in p is

zero. This is verified in Step 4.

It remains to show the correctness of Step 3. In order to check if p = 0 mod T1,

the algorithm finds out if p = 0 mod Sj for every 1 ≤ j ≤ r. That this is a sufficient

condition is implied by the following lemma (also known as ‘Chinese Remaindering

over local rings’). The way a local ring R is formed in Algorithm ID it has the
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property that every element r ∈ R can be uniquely expressed as r = a + m, where

a ∈ F and m ∈ M. Let φ be a projection map, taking r to a i.e. φ(r) = a. This

map naturally extends to polynomials over R by acting on the coefficients.

Lemma 6.3.1. [(KS07)] Let R be a local ring over F and p, g, h ∈ R[x1, . . . , xn] be

multivariate polynomials such that φ(g) and φ(h) are coprime over F. If p = 0 mod g

and p = 0 mod h then p = 0 mod gh.

Since φ(Sj) = `j and `i, `j are coprime for i 6= j, the correctness of Step 3 follows.

Finally notice that, p = 0 mod Sj if and only if σ(p) = 0 mod σ(Sj) as σ is an

invertible linear transformation. The check σ(p) = 0 mod σ(Sj) is done recursively

in Step 3.2. The recursion is on the top fanin, as σ(p) =
∑k′

i=2 βiT
′
i over the local

ring R′ so that the top fanin of σ(p) is lowered to k′ − 1.

Complexity of the Algorithm

Note that, deg(T ′i ) ≤ deg(Ti) in Step 3.2. At the start, Algorithm ID is called

on polynomial p(C). So, at every intermediate level deg(Sj) ≤ deg(T1) ≤ d.

Therefore, dimF(R′) ≤ d · dimF(R). Time spent by Algorithm ID is at most

poly(n, k′, d, dimF(R)) in Steps 1, 2, 3.1 and 4. Whereas, time spent in Step 3.2

is at most d times a smaller problem with top fanin reduced by 1 while dimension

of the underlying local ring raised by a factor of at most d. Unfolding the recursion,

we get the time complexity of Algorithm ID on input p(C) to be poly(n, dk).

Remark on Step 3.1 - In (KS07), the linear transformation σ is described as a

map that takes `j to some fixed variable x1 and transforms the remaining variables

x2, . . . , xn accordingly so that σ is invertible. In our case, we also need the property

that σ maps only one variable to a general linear form, whereas any other variable

is mapped to a variable only. To stress upon this property, we have defined σ in a

slightly different way. We will need this attribute of σ, in Section 6.3.2, to ensure

that certain ‘semidiagonal’ structure of the given sparse polynomial f is preserved

at every intermediate stage of the algorithm.
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6.3.2 The Generalization

With the description of the Kayal-Saxena algorithm at hand, and equipped with

the tool of dual representation (Section 6.2), it is now easier for us to point out the

changes one needs to make in Algorithm ID so that it solves Problem 6.1.1 when

applied to polynomial p(C)− f .

We will work with lexicographic ordering among monomials with x1 � . . . � xn.

Let the number of monomials with nonzero coefficients in f be s. At an intermediate

level of the recursion, Algorithm ID tests if a polynomial of the form,

p = α1T1 + . . .+ αk′Tk′ + β1ω1 + . . .+ βs′ωs′

is zero over a local ring R, where k′ ≤ k, s′ ≤ s and αi, βj are elements of R. As

before, every Ti is a product of linear forms over R. And each ωr is a product of a

monomial (in the free variables over R) and at most k− k′ powers of distinct linear

forms over R. Further, it can be ensured that deg(Ti) and deg(ωr) are bounded by d.

Adapting Algorithm ID - Let us apply Algorithm ID to p(C)− f and see what

happens. The part β1ω1 + . . .+βs′ωs′ = f̃ (say), in the above expression, shows how

the polynomial f in p(C) − f evolves with different levels of the recursion. At the

beginning, f̃ = −f .

In Step 1 of Algorithm ID, we are required to find a term T1 such that LM(T1) �
LM(Ti) for all 2 ≤ i ≤ k′. The purpose of this step is to ensure that LM(T1) �
LM(p), something we need for arguing the correctness of the algorithm. But now,

our polynomial p has an added term f̃ . So, to ensure LM(T1) � LM(p), we also

need to find the leading monomial of f̃ . We will show in a short while how to find

LM(f̃). Suppose that we know LM(f̃). If LM(f̃) � LM(Ti) for all 1 ≤ i ≤ k′ then

surely p 6= 0 over R and the algorithm returns NO. Otherwise, there is a T1 such

that LM(T1) � LM(p) and Algorithm ID proceeds to Step 2 with that T1.

In Step 2, the base case is no longer k′ = 1 but instead k′ = 0. In this case,

we have to check if f̃ = 0 in R and this can be done efficiently since we will know

shortly how to find LM(f̃).

Step 3 remains the same as before, except that in Step 3.2 we also need to find

σ(f̃), where σ is the linear transformation. Notice that, σ maps only xu to a general



110 Two Problems on Identity Testing

linear form and keeps other free variables intact. So, the product term σ(ωr) has

at most one power of a linear form more than that of ωr (as xu gets replaced by

σ(xu)). Since the depth of the recursion of Algorithm ID is at most k, every ωr in

f̃ is the product of a monomial and at most k powers of linear forms over R. In

other words, f̃ is a semidiagonal polynomial over R (by extending Definition 6.1.4

to semidiagonal polynomials over rings).

Finally, in Step 4, we need to confirm that Coeff(LM(T1)) in p is zero. For this,

we may have to find the coefficient of LM(f̃) in f̃ , if LM(f̃) happens to be the same

as LM(T1). This is taken care of by the way we find LM(f̃) which also gives us its

coefficient.

We now show how to find leading monomial of f̃ .

Dual representation of f̃ - Let `d
′

be a term occuring in the product ωr, where

` = a1xv1 + . . . + anxvn′ + m is a linear form over R. (Assume that xv1 , . . . xvn′ are

the free variables over R). Replace m by a formal variable z and use Theorem 6.2.1

to express (a1xv1 + . . .+ anxvn′ + z)d
′

as,

(a1xv1 + . . .+ anxvn′ + z)d
′
=

(n′+1)d′+1∑
i=1

gi(z) · gi1(xv1) . . . gin′(xvn′ ),

where gi and gij are univariates over F of degree at most d′. Therefore, `d
′

can be

expressed as,

`d
′
=

(n′+1)d′+1∑
i=1

γi · gi1(xv1) . . . gin′(xvn′ ), (6.1)

where γi = gi(m) ∈ R, in time poly(n, d, dimF R). Since ωr is a product of a

monomial (in xv1 , . . . xvn′ ) and at most k products of powers of linear forms over R,

using Equation 6.1, each ωr can be expressed as,

ωr =

O((nd)k)∑
i=1

γi · gi1(xv1) . . . gin′(xvn′ ),

(reusing symbols γi and gij) where γi ∈ R and gij is a polynomial over F of degree

O(kd), in time poly((nd)k, dimF R).
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Therefore, given the polynomial f̃ ,

dual (f̃) =

O(s·(nd)k)∑
i=1

γi · gi1(xv1) . . . gin′(xvn′ ),

(again reusing symbols γi and gij) can be computed in time poly(s, (nd)k, dimF R).

Finding leading monomial of f̃ - Let {e1, . . . , edimF R} be an F-basis of R. In

the sum,

dual (f̃) =

O(s·(nd)k)∑
i=1

γi · gi1(xv1) . . . gin′(xvn′ ),

let γi =
∑dimF R

j=1 bijej, where bij ∈ F. Consider the polynomials,

qj =

O(s·(nd)k)∑
i=1

bij · gi1(xv1) . . . gin′(xvn′ ),

for all 1 ≤ j ≤ dimF R. Then, the leading monomial of f̃ is the highest among

the leading monomials of the polynomials qj, with respect to the monomial order-

ing. From Theorem 6.2.2, the leading monomial (and its coefficient) of every qj

can be computed in time poly(s, (nd)k) and so LM(f̃) can also be found in time

poly(s, (nd)k, dimF R).

Using an analysis similar to the complexity analysis of Algorithm ID before

and observing that dimF R ≤ dk, we can show that Algorithm ID adapted to work

for p(C) − f takes time poly(s, (nd)k). This solves Problem 6.1.1 in deterministic

polynomial time. Note that, the complexity remains polynomial time even if f is a

sparse semidiagonal polynomial over F in Problem 6.1.1.

6.4 Checking Sparse Polynomial Factorization

We have mentioned in Chapter 5 (Section 5.1) that solving depth-4 identity testing

is almost as hard as solving the general problem of identity testing. One special,

but natural case of depth-4 identity testing is given by Problem 6.1.2, where we

need to verify the validity of a given sparse polynomial factorization. That is, given
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polynomials f and g1, . . . , gt explicitly, check if f = g1 . . . gt. This problem is also

mentioned in a work by von zur Gathen (vzG83) and we are not aware of any progress

in derandomizing it. Note that, the naive approach of multiplying all the factors

could be infeasible because of intermediate swelling in the number of monomials. In

the view of a lack of progress, we investigate a special case of this problem, which

is Problem 6.1.3, where every polynomial gi is of the form of a sum of univariates.

The motivation for considering this special kind of gi actually comes from the case

when gi’s are linear functions. Consider the following example. Let

f = (xd1 − 1) · (xd2 − 1) . . . (xdn − 1)

be the input polynomial that has s = 2n monomials. Suppose that the factors given

to us are,

(x1 − 1), (x1 − ζ), . . . , (x1 − ζd−1), . . . , (xn − 1), (xn − ζ), . . . , (xn − ζd−1)

where ζ is a primitive dth root of unity, and we want to check if f equals the product

of these factors. If we do not follow any particular rule in multiplying these factors

then we may as well end up with the intermediate product,

p = (xd−1
1 + xd−1

1 + . . .+ 1) . . . (xd−1
n + xd−1

n + . . .+ 1),

which has dn = slog d monomials. Thus, given f with s monomials we might have to

spend time O(slog d) if we follow this naive approach. However, with a deterministic

polynomial time solution to Problem 6.1.3 we can solve this example problem in

poly(s, d) time.

When gi’s are linear functions, Problem 6.1.3 become a special case of Problem

6.1.1 and can therefore be solved in deterministic polynomial time. However, the

approach given in Section 6.3 does not seem to generalize directly to the case when,

instead of linear functions, gi’s are sums of univariates. It is this latter case that

we solve in this section. As a note to the reader we would like to mention that

polynomials of the kind of sums of univariates also appear in the work of Saxena

(Sax08) and Kayal (Kay10).

Throughout this section, we will assume that either char(F) = 0 or char(F) is greater

than the total degree of the input polynomial f . Let, X = {x1, . . . , xn} be the set

of variables.
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6.4.1 Reduction to Sparse Divisibility

Given f and g1, . . . , gt, group together the polynomials gi’s that are just F-multiples

of each other. After this is done, we need to check if f is equal to a product of the

form a · gd11 . . . gdtt (reusing symbol t), where a ∈ F and gi 6= b · gj for any b ∈ F if

i 6= j. Suppose that gi and gj are irreducible for i 6= j. (This assumption will be

justified later in Section 6.4.2). Then, Problem 6.1.3 gets reduced to the problem of

divisibility of sparse polynomials as follows.

Since gi and gj are coprime, if we can confirm that gdii divides f for all 1 ≤ i ≤ t

then by unique factorization (or Chinese Remaindering), f = 0 mod gd11 . . . gdtt . Fix

a monomial ordering and notice that LM(gdii ) = LM(gi)
di . Then f = b · gd11 . . . gdtt

for some b ∈ F if and only if LM(f) = LM(gd11 ) . . . LM(gdtt ). Finally, compare

the coefficients of the leading monomials of f and gd11 . . . gdtt to conclude that f =

a · gd11 . . . gdtt .

But, how do we check if gdii divides f . We cannot possibly expand out gdii
completely as it may not be sparse. This problem can be circumvented by using the

following observation.

Observation 6.4.1. Let f and g be multivariate polynomials and g be irreducible.

Suppose x is a variable such that ∂f
∂x
6= 0 and ∂g

∂x
6= 0. Then, gd divides f if and only

if g divides f and gd−1 divides ∂f
∂x

.

Proof. Suppose gd divides f , then f = gd · h for some polynomial h. Therefore,
∂f
∂x

= gd ∂h
∂x

+ d · gd−1 ∂g
∂x
h, which is clearly divisible by gd−1.

As for the other direction, suppose f = ge · h with e ≥ 1 (assuming g | f) and

let g - h. Then

f ′ =
∂f

∂x
= ge · ∂h

∂x
+ ege−1 ∂g

∂x
· h

= ge−1 ·
(
g
∂h

∂x
+ e

∂g

∂x
h

)
Since, char(F) ≥ deg(f) ≥ e, g does not divide

(
g ∂h
∂x

+ e ∂g
∂x
h
)
. Therefore, gd−1 | f ′

implies that e ≥ d, in other words gd | f .

Notice that, since f is a sparse polynomial, ∂f
∂xj

is also sparse and easily computable

from an explicitly given f , for every 1 ≤ j ≤ n. So, by the above observation, the
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check “if gdii divides f” reduces to di checks of the kind “if gi divides f̃” where f̃ is

a sparse polynomial. What remains to be answered is - how do we check divisibility

of a sparse polynomial by a sum of univariates gi. Before going into that let us at

first justify our assumption that gi is irreducible.

6.4.2 Irreducibility of Sums of Univariates

In this section, we prove the following theorem. Denote by F̄ the algebraic closure

of field F.

Theorem 6.4.2. Let g be a polynomial over a field F that is a sum of univariates. If

g depends on at least three variables then g is irreducible over F, assuming char(F) =

0 or char(F) > deg(g). (In other words, g is absolutely irreducible over any such

F.)

Proof. We need the following observation to prove the theorem. Assume that g

depends on at least three variables, say x1, x2 and x3.

Observation 6.4.3. Let g = u · v where u and v are nontrivial factors. Then both

u and v are monic in every variable that g depends on.

Proof. If u is not monic in, say, xi then fix an ordering amongst the variables so

that xi is the highest. Then, the product u ·v has its highest degree term as a mixed

term which is not possible.

If g = u · v is a nontrivial factorization of g then,

∂g

∂x1

=
∂u

∂x1

v +
∂v

∂x1

u. (6.2)

We can assume that degree of x1 in ∂g
∂x1

is not zero as otherwise degree of x1 in g is

one and by Observation 6.4.3, g is irreducible. Denote by hxi=α the polynomial h

evaluated at xi = α, where α ∈ F̄.

Claim 6.4.4. There exists an α ∈ F̄ such that ux1=α and vx1=α are both non-zero

and they share a nontrivial factor.
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Proof. Suppose g′ = ∂g
∂x1

, u′ = ∂u
∂x1

and v′ = ∂v
∂x1

, and let w = gcd(g′, u′, v′) which is

a univariate in x1 as g′ is a univariate. From Equation 6.2,

g′

w
=

(
u′

w

)
v +

(
v′

w

)
u

Since x1-degree of u′ is less than that of g′, the univariate g′/w has degree in x1 at

least one. Let α ∈ F̄ be a root of g′/w. Substituting x1 = α in the above expression,

we get an equation of the form,

ũ · vx1=α + ṽ · ux1=α = 0

where ũ =
(
u′

w

)
x1=α

and ṽ =
(
v′

w

)
x1=α

. The above equation is nontrivial as none of

ũ · vx1=α and ṽ · ux1=α is zero. This is because none of the polynomials ux1=α and

vx1=α can be zero by Observation 6.4.3. Also, this means that none of ũ and ṽ is

zero, as g′/w, u′/w and v′/w do not share any common factor, in particular x1− α.

Now notice that, since u is monic in x2 (by Observation 6.4.3), degree of x2 in u′

is strictly less than that in u. Which means, degree of x2 in ũ is also strictly less

than degree of x2 in ux1=α. Therefore, by the above equation, ux1=α and vx1=α must

share a nontrivial factor.

Let us see how the above claim implies the theorem. Consider the following relations,

∂g

∂x2

=
∂u

∂x2

v +
∂v

∂x2

u

=⇒ ∂g

∂x2

∣∣∣∣
x1=α

=
∂g

∂x2

=
∂u

∂x2

∣∣∣∣
x1=α

· vx1=α +
∂v

∂x2

∣∣∣∣
x1=α

· ux1=α

Similarly,
∂g

∂x3

=
∂u

∂x3

∣∣∣∣
x1=α

· vx1=α +
∂v

∂x3

∣∣∣∣
x1=α

· ux1=α

Since both ∂g
∂x2

and ∂g
∂x3

are non-zero, the last two equations force the gcd (ux1=α, vx1=α)

(which is nontrivial by Claim 6.4.4) to divide ∂g
∂x2

and ∂g
∂x3

. But this leads to a con-

tradiction since the partial derivatives are univariates in x2 and x3 respectively. This

completes the proof of the theorem.

Note that, Theorem 6.4.2 cannot hold in general when g is a bivariate. For instance,

the polynomial xd1 − xd2 is divisible by x1 − x2 over any field.
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Remark - Ehrenfeucht and Pelczynski proved in an unpublished work that poly-

nomials of the form f(x) + g(y) + h(z) are irreducible over fields of characteristic

zero. We came to know about their work from here (Dav83) (page 221) after having

independently produced the above proof of Theorem 6.4.2. We are not quite aware

if the original argument by Ehrenfeucht and Pelczynski is the same as ours, which

going by the not so difficult nature of our proof could as well be the same.

6.4.3 From Sparse Divisibility to Identity Testing

Handling bivariates and univariates - In Section 6.4.1, we have assumed that

the polynomials g1, . . . , gt are irreducible. Although, Theorem 6.4.2 justifies our

assumption when gi depends on three or more variables, we need to slightly change

our strategy for bivariates and univariates. In this case, we first take pairwise gcd of

the bivariates (similarly, pairwise gcd of the univariates) and factorize accordingly

till all the bivariates (similarly, the univariates) are mutually coprime. Computing

the gcd of two bivariate polynomials takes only polynomial time using Hensel lifting.

Once coprimeness is ensured, we can directly check if a bivariate gdii divides f by

expressing f as f =
∑

j fjmj, where fj’s are bivariate polynomials depending on the

same two variables as gi and mj’s are monomials in the remaining variables. Then,

gdii | f if and only if gdii | fj for all j. Once again, just like gcd, bivariate divisibility

is also a polynomial time computation. Finally, we can use Chinese remaindering

to complete the argument in a similar fashion as in Section 6.4.1.

By the reduction of Section 6.4.1, it remains to show that checking if a sparse

polynomial f is divisible by a sum of univariates g can be done in deterministic

polynomial time. For this, we once again use the tool of dual representation of

polynomials.

Let us extend Definition 6.1.4 and call a polynomial q =
∑m

i=1 Qi a general

semidiagonal polynomial if every Qi is a product of a monomial and constantly

many powers of sums of univariates. Using this extended definition, we show the

following.



6.4 Checking Sparse Polynomial Factorization 117

Theorem 6.4.5. Checking divisibility of a sparse polynomial f by a sum of univari-

ates g reduces to identity testing of a general semidiagonal polynomial.

Proof. Let g =
∑n

i=1 ui(xi), where ui is a univariate in xi. Assume without loss of

generality that u1 6= 0. Consider replacing the partial sum
∑n

i=2 ui(xi) in g by a

new variable y so that we get a bivariate h = u1(x1) + y. Let degx1
u1 = e. Given

any power of x1, say xd1, we can employ long division with respect to the variable

x1 to find the remainder when xd1 is divided by h. This division is possible since h

is monic in x1. It is not hard to see that the remainder, say rd, thus obtained is a

bivariate in x1 and y with degree in x1 less than e and degree in y at most d.

To check if g divides f , do the following. For every monomial of f , replace

the power of x1 occuring in the monomial, say xd1, by the corresponding remainder

rd. After the replacement process is over, completely multiply out terms in the

resulting polynomial, say f̃(x1, x2, . . . , xn, y), and express it as sum of monomials in

the variables x1, . . . , xn and y. Now notice that,

f mod g = f̃(x1, x2, . . . , xn,
n∑
i=2

ui(xi))

Since degree of x1 in f̃ is at most e, polynomial g divides f if and only if the

polynomial f̃(x1, x2, . . . , xn,
∑n

i=2 ui(xi)) is identically zero. Polynomial f̃ with y

evaluated at
∑n

i=2 ui(xi) is a general semidiagonal polynomial. Also, verify that the

above reduction takes only polynomial time.

Checking if f̃(x1, x2, . . . , xn,
∑n

i=2 ui(xi)) = 0 :- When we evaluate f̃ at y =∑n
i=2 ui(xi), every monomial in f̃ becomes a product of a monomial in x1, . . . , xn

and a power of
∑n

i=2 ui(xi). Now use Theorem 6.2.1 to express this power of∑n
i=2 ui(xi) as a sum of product of univariates. Then multiply out terms to express

f̃(x1, x2, . . . , xn,
∑n

i=2 ui(xi)) as a sum of product of univariates. Finally, use Theo-

rem 6.2.2 to do identity testing on this expression of f̃(x1, x2, . . . , xn,
∑n

i=2 ui(xi)).

It is not hard to see that the whole process takes time poly(n, d, s), where d is the

bound on the degree and s is the bound on the sparsity of the input polynomials f

and g1, . . . , gt.

This concludes our solution to Problem 6.1.3.
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6.5 Conclusion

In this chapter, we have used the trick of expressing polynomials in dual repre-

sentations to solve two very natural problems on identity testing. We have shown

that it can be efficiently checked if a given depth-3 polynomial with bounded top

fanin equals a given sparse polynomial, thereby extending the Kayal-Saxena test.

However, our algorithm is not blackbox in nature as it heavily relies on explicit

information about the input polynomials. On the other hand, due to a recent devel-

opment (SS10a), it is now known how to check if p(C) = 0 in blackbox polynomial

time over any field. We wonder if the present techniques can be used to give a

blackbox solution to Problem 6.1.1 as well. We leave this as an open question.

• Find a blackbox deterministic polynomial time algorithm to solve Problem

6.1.1.

We have shown that checking sparse polynomial factorization can be done effi-

ciently if the input factors are sums of univariates. Another natural case that we

leave open here is the following.

• Can we solve Problem 6.1.2 in deterministic polynomial time if the degrees of

the input factors g1, . . . , gt are bounded?

It would be interesting to see if duality yields anything useful for this case.

Further, notice that it follows directly from Theorem 6.4.2 that identity testing

of a depth-4 circuit with top fanin 2 can be solved in polynomial time if each of

the two ‘×’ gates is just a product of sums of univariates. It is natural to ask the

following.

• Can we solve identity testing of depth-4 circuits with bounded top fanin k in

deterministic polynomial time if each of the k multiplications is a product of

sums of univariates?

We also leave this as an open problem.
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Appendix

A.1 The Resultant

Let R be an integral domain and F be its field of fractions. Let f and g be two

polynomials in R[x] of degree n and m, respectively. Assume that the gcd(f, g) is

the unique, monic largest common divisor of f and g over F.

Lemma A.1.1. The gcd(f, g) is nontrivial if and only if there exists polynomials

s, t ∈ F[x], with deg(s) < m and deg(t) < n, such that sf + tg = 0.

Proof. Suppose h = gcd(f, g). If gcd(f, g) 6= 1 then deg(h) > 1. Now, if we take

s = g
h

and t = −f
h

then deg(s) < m, deg(t) < n and sf + tg = 0.

To show the other direction, suppose that there exist s and t with deg(s) <

m, deg(t) < n and sf + tg = 0. If the gcd(f, g) = 1 then by unique factorization

over F, g should divide s. But, this is not possible as deg(s) < deg(g). Hence the

gcd(f, g) is nontrivial.

Let f =
∑n

i=0 fix
i and g =

∑m
j=0 gjx

j, where fi, gj ∈ F for 0 ≤ i ≤ n and

0 ≤ j ≤ m. Suppose s =
∑m−1

k=0 αkx
k and t =

∑n−1
`=0 β`x

`. Treat the coefficients

α0, . . . , αm−1 and β0, . . . , βn−1 as variables. Now, consider the relation sf + tg = 0.

By multiplying s, f and t, g, and then equating the coefficients of xi to zero for all

0 ≤ i ≤ n + m− 1, we get a system of n + m homogeneous linear equations in the

variables α0, . . . , αm−1, β0, . . . , βn−1. The coefficient matrix of this linear system is

called the Sylvester matrix of f and g, and is denoted by S(f, g). It is easy to verify

that S(f, g) is the following (n+m)× (n+m) matrix.
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S(f, g) =



fn gm
fn−1 fn gm−1 gm
...

...
. . .

...
...

. . .
...

... fn g1
...

. . .
...

... fn−1 g0
...

. . .

f1
...

... g0 gm

f0
...

...
. . .

...

f0
...

. . .
...

. . .
...

. . .
...

f0 g0



.

The resultant of f and g is defined as, Resx(f, g) = det(S(f, g)). By Lemma

A.1.1, the above linear system has a nonzero solution if and only if gcd(f, g) is

nontrivial. This has the following implication.

Lemma A.1.2. The gcd(f, g) is nontrivial if and only if Resx(f, g) = det(S(f, g)) =

0.

Another useful fact about the resultant is the following.

Lemma A.1.3. There exist s, t ∈ R[x], with deg(s) < m and deg(t) < n, such that

sf + tg = Resx(f, g).

Proof. If the gcd(f, g) 6= 1, then from Lemma A.1.1 and A.1.2 it follows that, there

exist s′, t′ ∈ F[x], with deg(s′) < m and deg(t′) < n, such that s′f + t′g = 0 =

Resx(f, g). Since a coefficient of s′ or t′ is of the form a
b
, where a, b ∈ R and b 6= 0,

by clearing out the denominators of the coefficients of s′ and t′ we get s, t ∈ R[x]

such that sf + tg = 0. Clearly, deg(s) = deg(s′) < m and deg(t) = deg(t′) < n.

Suppose, the gcd(f, g) = 1. By extended Euclidean algorithm, there exist

s′, t′ ∈ F[x], with deg(s′) < m and deg(t′) < n, such that s′f + t′g = 1. Let

s′ =
∑m−1

k=0 αkx
k and t′ =

∑n−1
`=0 β`x

`. Once again, by multiplying s′, f and t′, g, and

then equating the coefficients of xi for 0 ≤ i ≤ n + m − 1, we get a linear system

in α0, . . . , αm−1, β0, . . . , βn−1 with S(f, g) as the coefficient matrix. By Cramer’s

rule, the polynomials s = Resx(f, g) · s′ and t = Resx(f, g) · t′ both belong to R[x].

Therefore, sf + tg = Resx(f, g).
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A.2 Ben-Or and Cleve’s Result

For the sake of completeness, we provide a proof of the result by Ben-Or and

Cleve (BC88).

Theorem A.2.1. (BC88) Let E be an arithmetic formula of depth d with fan-in

(of every gate) bounded by 2. Then, there exists a sequence of 3× 3 matrices, whose

entries are either variables or constants, of length at most 4d such that one of the

entries of their product is E.

Proof. The proof is by induction on the structure of E. The base case when E = c·xi
is computed as,  1

1

c · xi 1


Suppose E = f1 +f2 and that we have inductively constructed sequences computing

f1 and f2. Then the following equation gives a sequence for E. 1

1

f1 1


 1

1

f2 1

 =

 1

1

f1 + f2 1


If E = f1 · f2, then the following sequence computes E 1

−f2 1

1


 1

1

f1 1


 1

f2 1

1


 1

1

−f1 1

 =

 1

1

f1f2 1


Applying the above two equations inductively, it is clear that E can be computed

by a sequence of length at most 4d.
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