
A Super-Quadratic Lower Bound for Depth Four

Arithmetic Circuits

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Faculty of Engineering

BY

Thankey Bhargav Deepakkumar

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

July, 2020



Declaration of Originality

I, Thankey Bhargav Deepakkumar, with SR No. 04-04-00-10-42-18-1-16040 hereby declare
that the material presented in the thesis titled

A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

represents original work carried out by me in the Department of Computer Science and
Automation at Indian Institute of Science during the years 2018-20.
With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated
and referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic miscon-
duct.

Date: 13 July 2020 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above state-
ments are true to the best of my knowledge, and I have carried out due diligence to ensure
the originality of the report.

Advisor Name: Advisor Signature

1





c© Thankey Bhargav Deepakkumar

July, 2020

All rights reserved





DEDICATED TO

To my parents

for their unconditional love.



Acknowledgements

First and foremost, I would like to thank my advisor Prof. Chandan Saha. I am extremely
fortunate to have him as my advisor and can not thank him enough for guiding and men-
toring me throughout my two years as a Masters student in IISc. Not only did he provide
me with invaluable advise for this work, but also helped me make an informed decision for
future endeavors. It was his enthusiasm and optimism that kept me going when I was stuck
on this project. This work would not have been possible without his constant support, both
moral and technical.

I would also like to thank all the amazing professors in the Department of Computer
Science and Automation. I would especially like to thank Chandan for teaching me Com-
plexity Theory and Representation Theory, Prof. Siddharth Barman for teaching me Algo-
rithms, Game Theory and Data Science, Prof. Anand Louis and Prof. Arindam Khan for
teaching me Approximation Algorithms, Prof. M. Narasimha Murty for teaching me Linear
Algebra and Prof. Shalabh Bhatnagar for teaching me Probability Theory; what I learned in
these courses has been immensely useful in this work. I am thankful to the organisers of the
Workshop on Algebraic Complexity Theory 2019; this workshop was an excellent exposure
to the area of Algebraic Complexity Theory. I also thank the organizers of the Theory Lunch
series in CSA; the talks in this series have helped me get a glimpse of the larger picture of
Theoritical Computer Science.

I would like to thank my collaborators Nikhil Gupta and Chandan Saha, their invalu-
able contributions have made this work possible. I am also grateful to Prof. Arindam Khan
for being the reader for mid-term and final evaluations of this project, providing valuable
feedback and asking interesting questions. I thank Ankit Garg and Neeraj Kayal for sitting
through presentations of this work. The insightful questions that they asked have helped
me improve my understanding of some crucial aspects of this work.

i



Acknowledgements

In my two years at IISc I have made some wonderful friends. I have been lucky to have
lab mates like Vineet Nair, Nikhil Gupta and Janaky Murthy. I have learned a lot from them
not only about Complexity Theory but also about graduate life in general. I am especially
thankful to Nikhil for all I learned from him in our many (and long) academic and a lot of
non-academic discussions. I thank Swati Allabadi for our (often late night) chats and dis-
cussions, her helpful musings about life and career and being a good friend despite all my
annoying idiosyncrasies. I thank Mahak Pancholi and Pooja Gupta for being amazing and
forever cheerful and optimistic friends and co-organizers of extra curricular activities at IISc.
I thank B Pratheek and Stanly Samuel for being amazing seniors and providing valuable ad-
vice about IISc. I would also like to thank Prasanna Patil, Raj Rajveer, Deepak Poonia, Dhiraj
Shanbhag, Aakash Panda, Hemanta Makawna, Proteek Paul and all my other batch mates
and juniors for making my stay at IISc enjoyable.

Last but certainly not the least, I would like to thank my family - my parents, my (late)
grandfather, my grandmother, and my sister - for loving me no matter what and always
being there for me. I do not have enough words to express how fortunate I am to have them
in my life and how much I owe them.

ii



Abstract

A depth four arithmetic circuit contains a sum gate (+-gate) at the top followed by a layer of
product gates (×-gates), a layer of sum gates and again a layer of product gates at the bot-
tom of the circuit; it can compute any multivariate polynomial. We prove a Ω̃(n2.5) lower
bound on the size, i.e. the number of edges (or wires) and a lower bound of Ω̃(n1.5) on the
number of gates of general depth four arithmetic circuits (here n is the number of variables
in the polynomial computed by the circuit). To the best of our knowledge this is the first
super-quadratic lower bound for this model.

Recently, the problems of proving lower bounds for depth three and depth four arith-
metic circuits have received a significant amount of attention, and with good reason. Due to
a line of work in depth reduction for arithmetic circuits starting with [VSBR83, AV08, Koi12]
and culminating in [GKKS16, Tav15], it is known that proving moderately strong exponen-
tial lower bounds for special classes of depth three and depth four circuits would solve the
long standing open problem of proving a separation between VP and VNP - the algebraic
analogues of the classes P and NP.

Because of a long line of recent work in lower bounds for constant depth circuits [KS16a,
KS17, KLSS17, FLMS15, KSS14, GKKS14, Kay12], we now know of such strong lower bounds
for special classes of depth three and depth four circuits, that improving them a little would
prove VP 6= VNP. While exponential lower bounds are now known for special classes of
depth three and depth four circuits, not a lot is known for general depth three and four
circuits. For a long time, the best known lower bound for general depth three circuits was
a lower bound of Ω(n2) [SW01], which was recently improved to Ω̃(n3) [KST16, BLS16,
Yau16]. We show a similar improvement of a factor of n for general depth four circuits.
Prior to our work, the best known lower bound for depth four circuits was a lower bound
of Ω̃(n1.5) [Sha17] which was a slight improvement on the lower bound of roughly Ω(n1.33)

obtained from [SS97, Raz10].
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Chapter 1

Introduction

An arithmetic circuit is a directed acyclic graph with input gates (nodes with in-degree zero),
output gates (nodes with out-degree zero), sum and product gates. The size of an arithmetic
circuit is the number of edges in the circuit, while the depth of a circuit is the length of
the longest directed path in the circuit. Such a circuit takes variables and field elements
as inputs and computes a multivariate polynomial over some field F. Arithmetic circuits
are algebraic analog of boolean circuits. Just as the complexity classes P and NP play a
crucial role in boolean complexity theory, the classes VP and VNP introduced by Valinat in
[Val79] are crucial in algebraic complexity theory. VP is the class of all polynomial families
{ fn}n≥1 such that fn is a polynomial in nO(1) many variables, of nO(1) degree and can be
computed by a polynomial size circuit. On the other hand, VNP is a class of all polynomial
families { fn}n≥1 such that there exists a polynomial family {gn(x, y)}n≥1 in VP satisfying
fn(x) = ∑y∈{0,1}|y| gn(x, y). It is easy to see that VP ⊆ VNP. It is believed that this contain-
ment is strict; in fact it is known that if VP = VNP, then the non-uniform versions of P and
NP are the same i.e P/poly = NP/poly and the polynomial hierarchy collapses to the second
level [Bür00]. However, proving that this containment is strict is a major open problem in
algebraic complexity theory. Showing that there exists a polynomial family in VNP that can
not be computed by polynomial size circuits will resolve this problem. This lower bound
problem is at the heart of algebraic complexity.

Despite decades of work in algebraic complexity, only modest lower bounds are known
for general circuits, formulas (circuits whose underlying graph is a tree) and algebraic branch-
ing programs (algebraic analogues of branching programs). Baur and Strassen [BS83, Str73]
showed than any arithmetic circuit computing the polynomial ∑i∈[n] xd

i must be of size
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Ω(n log d). A lower bound of Ω(n2) for arithmetic circuits computing the polynomial ∑i,j∈[n] xj
iyj

was shown in [Kal85]. Recently, [CKSV19] showed a lower bound of Ω(n2) on the size of
any algebraic branching program computing the polynomial ∑i∈[n] xn

i . Because of the appar-
ent difficulty of proving lower bounds for general circuits, formulas and algebraic branching
programs, lower bounds for special classes of these models like non-commutative circuits,
monotone circuits, multilinear circuits, constant depth circuits etc... have been studied ex-
tensively.

1.1 Motivation
Constant depth circuits form a natural and powerful special class of arithmetic circuits. A
long line of work in depth reduction starting with [VSBR83, AV08, Koi12] and culminating in
[Tav15, GKKS16] has shown that proving strong enough lower bounds on the size of depth
three and homogeneous depth four circuits would imply super-polynomial lower bounds
on the size of general arithmetic circuits - in particular, proving a nω(

√
d) lower bound on

the size of homogeneous depth four circuits, with bottom fan-in bounded by
√

d and com-
puting a degree d polynomial in VNP would separate VP and VNP. These results provide
compelling reasons for studying constant depth circuit lower bounds.

Using the technique of shifted partials introduced by Kayal in [Kay12], a series of lower
bound results for homogeneous depth four circuits [GKKS14, KSS14, FLMS15, KLSS17, KS17]
followed. In particular, [KLSS17] showed a lower bound of nΩ(

√
d) for a n-variate degree d

polynomial in VNP and [KS17] showed the same lower bound for a polynomial in VP; im-
proving the former to nω(

√
d) would separate VP and VNP. Moreover, [KS16a] showed a

lower bound of nΩ( d
τ ) for a depth three circuit with bottom fan-in bounded by τ computing

a n-variate degree d polynomial in VNP. Again improving this lower bound to nω( d
τ ) would

separate VP and VNP.

Since the machinery of shifted partials works extremely well for homogeneous depth
four circuits and depth three circuits with small bottom fan-in, it is natural to wonder whether
it can be used to improve upon the known lower bounds for general depth three and depth
four circuits. Recently, [KST16, BLS16, Yau16] showed a lower bound of Ω̃(n3) for general
depth three circuits which is an improvement upon the previous best lower bound of Ω(n2)

from [SW01]. Similarly, we improve upon known super linear lower bounds for general
depth four circuits and prove, what is to the best of our knowledge (and mentioned in the

2



survey [SY10]), the first super quadratic lower bound for depth four arithmetic circuits.

1.2 Our contribution
We now state our result. By a depth four arithmetic circuit, we mean a ΣΠΣΠ circuit i.e. a
circuit with a sum gate at the top, followed by product gates in the second level, sum gates
in the third level and again product gates in the forth and the bottom most level.

Theorem 1.1 (Lower bound for depth four circuits). Over any field of characteristic zero1, there
exists a family of mulitilinear polynomials { fn}n≥1 in VNP, where fn is a polynomial in Θ(n) vari-
ables and of degree Θ(n) such that any depth four circuit computing fn has Ω

(
n2.5

(log n)6

)
many

wires/edges and Ω
(

n1.5

(log n)4

)
many gates.

A word about the polynomial family. The polynomial family { fn}n≥1 is a variant of the
Nisan-Wigderson design polynomial family. This family of polynomials was introduced in
[KSS14] and has been used to prove several lower bounds for depth three and depth four
circuits [Raz10, KLSS17, KS17, KS16a, KS16b, KST16, Sha17]. The n-th member of the family,
fn is a polynomial in x = {x1, ..., x3m} and y = {y1, ..., y3m} variables, where m is an integer
in
[n

2 , 2n
]
. The degree of the polynomial in y variables is degy( fn) = m, while its degree

in x variables is degx( fn) = dx = Θ(
√

m
ln m ). Informally, fn contains multiple ‘copies’ of the

design polynomial in different subsets of the x variables, while the y variables are used as
‘prefixes’ to uniquely identify each such copy. Note that because of the way we have defined
m and dx, proving that any depth four circuit computing fn has Ω

(
m2dx
(ln m)5

)
many edges and

Ω
(

mdx
(ln m)3

)
many gates would establish the theorem. The exact description of fn is given in

Chapter 4.

Much like a lot of recent work in lower bounds for constant depth circuits, we also use
a complexity measure to prove our result. The measure we use is a variant of the projected
shifted partials measure used in [KLSS17, KS14, KS16a, Sha17]. Much like those works, our
proof is divided into two main parts: proving that the measure of any depth four circuit
is ‘small’ (which we do in Chapter 3) and constructing an explicit polynomial with ‘large’
measure (done in Chapter 4).

1The lower bound holds even if the characteristic is sufficiently large (see Chapter 4).
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1.3 Related work
We now mention known lower bounds for general depth four circuits prior to our work. For
arithmetic circuits of depth ∆, a lower bound of n · λ∆(n) was shown in [Val75, DDPW83,
Pud94, RS03], where λ∆(n) is a slowly growing function; for ∆ = 4, λ∆(n) = log∗ n. Hence,
for depth four circuits, this yields a lower bound which is barely super linear. Shoup and
Smolensky [SS97] showed a lower bound of Ω(∆ · n1+ 1

∆ ) for a depth ∆ circuit with multi-
ple outputs computing the polynomials {∑j∈[n] xj

1yj, . . . , ∑j∈[n] xj
nyj}. For the same model,

Raz [Raz10] showed a lower bound of Ω(n1+ 1
2·∆ ). While the lower bound in [SS97] is for

polynomials of degree Θ(n), the lower bound in [Raz10] is for polynomials whose degree
is Θ(∆). In fact, the polynomials used in [Raz10] bear a striking resemblance to the family
of Nisan-Wigderson design polynomials that we use to prove our result. For ∆ = 4, the
lower bounds in [SS97, Raz10] are roughly Ω(n1.33). These lower bounds were improved by
Sharma in [Sha17] where they proved a lower bound of Ω̃(n1.5) for a depth four circuit with
single output.

1.4 Organisation
In Chapter 2, we establish some preliminaries about Algebraic Complexity Theory, define
our complexity measure and state some well known results that will come in handy later in
the thesis. In Chapter 3, we analyse the measure of a depth four circuit, while in Chapter 4,
we construct an explicit polynomial with a large measure. Finally, in Chapter 5, we conclude
and mention some interesting open problems for future investigations.

4



Chapter 2

Preliminaries

In this chapter we define some notations, introduce a few terms that we will use in this

thesis and mention some well known numerical estimates that will later help us in the

analysis.

2.1 Some notations

For n ∈ N, we will denote by [n] the set {1, ..., n}. For n, r ∈ N, by ([n]r ) we mean the set of
all subsets of [n] of size r.

2.2 Basic definitions
Definition 2.1 (Arithmetic circuit). An arithmetic circuit C over a field F and a set of variables
x = (x1, ..., xn) is a directed acyclic graph. The vertices of C are called gates. Each gate with in-degree
0 is called an input gate and is labelled by either a variable or a field element. Every other gate is either
labelled by a × (called a product gate) or a + (called a sum gate). Every edge is labelled by a field
element and every gate with out-degree 0 is called an output gate. An arithmetic circuit computes a
polynomial in the natural way: an input gate computes the field element or variable it is labelled with.
A sum gate computes the sum of polynomials computed by its inputs, each input scaled by the field
element on the corresponding edge. Similarly, a product gate computes the product of polynomials
computed by its inputs, each input scaled by the field constant on the corresponding edge.

The size of an arithmetic circuit is equal to the number of edges in it and the depth of an
arithmetic circuit is equal to the length of the longest directed path in it. The fan-in of a gate
is equal to the number of edges entering the gate and the fan-out of a gate is the number of
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edges leaving the gate. An example of an arithmetic circuit is shown in the Figure 2.1.

  

Figure 2.1: An arithmetic circuit.

A depth four circuit is a circuit with four alternating levels of gates. In this thesis, we deal
with a ΣΠΣΠ circuit - such a circuit has one sum gate in the top most (first) level followed
by a second level of product gates, a third level of sum gates and a bottom (fourth) level of
product gates. An illustration if ΣΠΣΠ is shown in Figure 2.2.

The classes VP and VNP defined by Valiant in [Val79] are the algebraic analogs of P and
NP respectively.

Definition 2.2 (Class VP). VPF is a class of all polynomial families { fn}n≥1 over a field F such that
there exists a polynomial function t : N→ N, such that for all n ≥ 1, fn is a polynomial in at most
t(n) variables, of degree at most t(n) and computed by an arithmetic circuit of size at most t(n).

Definition 2.3 (Class VNP). VNPF is a class of all polynomial families { fn}n≥1 over a field F such
that there exist polynomial functions k, t : N → N and a family of polynomials {gn}n≥1 such that

6



  

Figure 2.2: A depth four arithmetic circuit

for all n ≥ 1,
fn(x1, ..., xk(n)) = ∑

w∈{0,1}t(n)

gt(n)(x1, ..., xk(n), w1, ..., wt(n)).

2.3 The complexity measure
Now we define the complexity measure that we use to prove Theorem 1.1. Throughout this
section, we will assume that m ∈ N is as stated in the paragraph following Theorem 1.1,
M ⊆ [3m], |M| = m, f ∈ F[xM, yM] and S ⊆ F[xM, yM]. Note that the set M is not fixed
and will depend on the circuit under analysis. First let us define the support and degree of
a monomial.

Support and degree of a monomial. The support of a monomial η, denoted Supp(η), is
the set of variables appearing in it. Also, for any z ⊆ x∪ y we will use degz(η) to denote its
degree in z variables. We will say that η is z-multilinear if the degree of every z variable in
η is at most one.

Before defining the measure, let us define the operations that make up the measure.

7



1. Partial derivatives. Let η = x1 · · · xk be a monomial in x variables. Then, we define
the partial derivative of f with respect to η as

∂ f
∂η

:=
∂

∂x1

(
∂

∂x2

(
· · ·
(

∂ f
∂xk

)))
.

If the degree of η is k, then ∂ f
∂η is said to be a k-th order partial derivative of f . We

denote by ∂k
x f the set of all k-th order partial derivatives of f taken with respect to

multilinear monomials in x variables.

2. The shift operation. Let η be a degree ` multilinear monomial in xM variables. We
say that the polynomial η · f is obtained by shifting f by η. We denote by x`M f the
set of polynomials obtained by shifting f by all degree ` multilinear monomials in xM

variables and x`MS :=
{

x`M f : f ∈ S
}

.

3. Multilinear projection. We define a map πx : F[xM, yM] → F[xM, yM] with πx( f )
being the polynomial made up of exactly the x-multilinear monomials of f . Formally,
for a monomial η, πx(η) = η if η is x-multilinear and 0 otherwise. The map is then
linearly extended for arbitrary polynomials and πx(S) := {πx( f ) : f ∈ S} .

4. A degree based projection. For i ∈N and f ∈ F[xM, yM], we define [ f ]i to be the poly-
nomial made up of only those monomials of f whose y-degree is exactly i. Formally, for
a monomial η, [η]i = η if degy(η) = i and 0 otherwise. It is then linearly extended for
arbitrary polynomials and [S]m := {[ f ]m : f ∈ S} .

5. An evaluation map. For α ∈ F and z ⊆ xM ∪ yM, we define a map σz=α : F[xM, yM]→
F[xM \ z, yM \ z] with σz=α( f ) being obtained from f by setting every variable in z to
α and σz=α(S) := {σz=α( f ) : f ∈ S} .

The operations given in 1, 2 and 3 constitute the projected shifted partials measure [KLSS17].
In this work, we define and use the measure PSPM,k,`, which is obtained by augmenting the
projected shifted partials measure with the operations in 4 and 5 as follows.

Definition 2.4 (The measure). For m, k, ` ∈N, M ⊆ [3m], |M| = m and f ∈ F[xM, yM],

PSPM,k,`( f ) := dim
〈

σyM=1

([
πx

(
x`M ∂k

x f
)]

m

)〉
.

Observation 2.1 (Sub-additivity of the measure). For any two polynomials f , g ∈ F[xM, yM],

PSPM,k,` ( f + g) ≤ PSPM,k,` ( f ) + PSPM,k,` (g) .

8



The above observation is easy to prove and we omit its proof here.

2.4 Some numerical estimates

Proposition 2.1 (Estimating Binomial Coefficients). For any n, k ∈ N, k ≤ n,
(n

k
)k ≤ (n

k) <( en
k
)k.

Proposition 2.2 ([GKKS14, KLSS17]). Let a(n), f (n), g(n) : Z>0 → Z be integer values func-
tions such that (| f |+ |g|) = o(a). Then, ln (a+ f )!

(a−g)! = ( f + g) ln(a)±O
(

f 2+g2

a

)
.
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Chapter 3

Upper Bounding the Measure for a Depth
Four Circuit

In this chapter, we derive a ”small” upper bound on the PSPM,k,`(·) measure for a depth

four circuit. This forms the first part of the proof of Theorem 1.1. The contents of this

chapter are from our work [GST20].

Let C be a depth four circuit computing the polynomial f = fn (recall that fn is a poly-
nomial in x = {x1, . . . , x3m} and y = {y1, . . . , y3m} variables, and its degree in x variables
dx = Θ

(√
m

ln m

)
). Then, if the top fan-in of C is s, we can express it as C = ∑s

i=1 Ti where

Ti = ∏ai
j=1 Q

eij
ij and Qij are distinct sparse polynomials computed by the sum gates in the

third level of C while eij ∈ N. Throughout this section we will refer to the polynomials
computed by the second, third and forth levels of any depth four circuit as product terms,
sparse polynomials and monomials respectively. Throughout this section, we will assume
that the underlying field F is algebraically closed. We will justify this assumption in Section
4.1. The proof of the upper bound is divided into the following three steps:

Step 1: Restricting bottom support of C. In this step, we remove all monomials with
‘large’ support. We observe that this is actually an instance of the Set Cover problem. The
universe is the set of all monomials with ‘large’ support and there is a set corresponding to
each variable xi (resp. yi); this is a set of all monomials in the universe containing xi (resp.
yi). Since setting xi (resp. yi) to 0 removes all monomials containing xi (resp. yi), our goal is
to simply find a small collection of variables which ‘covers’ all monomials in the universe.
This observation leads us to use a simple greedy approximation algorithm for the Set Cover
problem to restrict the bottom support (for more details, see Section 3.1.1). This restriction
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helps us in removing ‘heavy’ gates.

Step 2: Removing heavy gates from C. We say that a product term in C is heavy if it is
connected to more than Ω̃(mdx) distinct sum gates from the third level. In other words, a
heavy gate has more than Ω̃(mdx) distinct sparse factors. It is not clear to us how to obtain
a ‘small’ lower bound on C in presence of heavy gates. So, much like was done in the depth
three circuit lower bounds [SW01, KST16], we too remove heavy gets from the circuit. While
they remove heavy gates by going modulo the affine factors of heavy gates, we do not know
how to generalise this technique for depth four circuits. In the following paragraph we ex-
plain how we remove heavy gates from C.

We assume that the underlying field is algebraically closed. Then, we get rid of heavy
gates by sequentially evaluating one sparse factor of each heavy gate to 0. While there exists
a heavy gate in C, we pick a sparse factor for which the ratio of the number of heavy gates
connected to it to the number of monomials it contains is maximum and evaluate it to 0. As
we have restricted the bottom support, we are able to argue that this greedy procedure re-
moves Θ(m) heavy gates from C at the cost of setting only a few variables to field constants
(if C contains more than Θ(m) heavy gates, its size is already Ω̃(m1.5dx)). Since the prob-
lem of removing heavy gates can be reformulated as an instance of the Weighted Set Cover
problem, this procedure is similar to a greedy approximation algorithm for the Weighted Set
Cover problem [Vaz01] (Section 2.1, page-16), however its analysis - detailed in Section 3.1.2
- differs.

Step 3: Analysing the measure of C. After we have pruned C, we obtain a ‘small’ upper
bound on its measure using the analysis in [KST16]. However, instead of the shifted partials
measure used in that work, we make use of a variant of projected shifted partials measure
as this measure, in conjunction with steps 1 and 2 - roughly speaking - helps us control the
formal degree of the product terms of C.

3.1 Pruning a depth four circuit
We define a pruned depth four circuit as follows:

Definition 3.1 (Pruned depth four circuit). We say that a depth four circuit D is a pruned circuit
if the support of all monomials in D is at most τ = b20 ln mc, and it does not contain any heavy
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gate; i.e. the number of distinct sparse polynomials feeding into any product term in D is less than
w =

⌊
mdx

λ0·(ln m)3

⌋
.

We prune the circuit C in two steps. In step 1, we restrict the bottom support of C (Section
3.1.1) and in step 2, we remove all heavy gates from C (Section 3.1.2).

3.1.1 Restricting the bottom support of C

If the number of monomials in C is more than
⌊

m2dx
(ln m)5

⌋
, there is nothing to prove. Otherwise,

we show that we can get rid of all monomials with support more than τ = b20 ln mc by
setting m x and m y variables to 0.

Lemma 3.1. Let the number of monomials in C be at most
⌊

m2dx
(ln m)5

⌋
. Then, for sufficiently large

m, there exists M1 ⊆ [3m], |M1| = m such that all monomials in C1 obtained from C by setting
variables xM1 and yM1 to 0 have support at most τ.

Proof. We first present a greedy procedure to remove all monomials with support more than
τ and then argue that it sets m variables each from x and y to 0.

Procedure 1 Restriction procedure

1. M1 ← ∅,C1 ← C, H := set of all monomials of C1 with support more than τ.
2. For j ∈ [3m], e(j) := number of monomials in H containing xj or yj.
3. while H 6= ∅ do
4. Pick j′ ∈ [3m]\M1 such that e(j′) ≥ e(j) for all j ∈ [3m]. Set xj′ = 0 and yj′ = 0. Update

M1 ← M1 ∪ {j′}, C1 ← circuit obtained from C1 by setting xj′ and yj′ to 0, H ← set of
all monomials of C1 with support more than τ, and e(j) ← number of monomials in
H containing xj or yj.

5. end while

It is clear that the bottom support of C1 obtained after the termination of the procedure is
at most τ. Also, since we are only setting variables to 0, it trivially follows that the procedure
does not increase the number of gates nor does it increase the fan-in of any gate in the circuit.
Claim 3.1 (proved below) implies that the procedure terminates in at most m iterations. If it
terminates before m iterations, we arbitrarily add an appropriate number of j ∈ [3m] to M1

so that |M1| = m and set xj and yj to 0 for all such j.

Claim 3.1. Procedure 1 terminates in at most m iterations.

12



Proof. Let Hi be the set H after the i-th iteration of the procedure. Since each monomial in
Hi has support more than τ, for any such monomial there are at least τ

2 distinct j ∈ [3m]\M1

such that at least one of xj and yj appears in it. Counting the number of times at least one
of xj and yj appears in a monomial in Hi and summing up these counts for all j ∈ [3m]\M1,
we get that

∑
j∈[3m]\M1

e(j) ≥ τ · |Hi|
2

;

so from an averaging argument there exists a j such that

e(j) ≥ τ · |Hi|
6m

.

Hence, the size of Hi+1 is upper bounded as

|Hi+1| ≤ |Hi| ·
(

1− τ

6m

)
.

So after i iterations of the procedure we get,

|Hi| ≤ |H0| ·
(

1− τ

6m

)i

≤
⌊

m2dx

(ln m)5

⌋
·
(

1− b20 ln mc
6m

)i

≤ m2dx

(ln m)5 ·
(

1− (20 ln m− 1)
6m

)i

≤ m2dx

(ln m)5 · e
− 3i·ln m

m (for sufficiently large m)

=
m2dx

(ln m)5 ·m
− 3i

m .

For i = m, |Hi| < 1 (for sufficiently large m), i.e., the procedure terminates in at most m
iterations.
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3.1.2 Removing heavy gates from the circuit C1

Recall that a product term is called heavy if the number of distinct sparse polynomials feed-
ing into it is more than w =

⌊
mdx

λ0·(ln m)3

⌋
. We say that a sparse polynomial in C1 is light if its

fan-in is at most m
(ln m)2 and it is connected to a heavy gate. Notice that if the number of heavy

gates in C1 is more than m or there is a heavy product term connected to fewer than m·dx
2·λ0·(ln m)3

light sparse polynomials, then there is nothing to prove (where λ0 is a large enough constant
which will be fixed later in the analysis). Otherwise, we prove the following lemma.

Lemma 3.2. Let C1 be the circuit obtained from C after applying Lemma 3.1. If the number of heavy
gates in C1 is at most m, every heavy gate is connected to at least m·dx

2·λ0·(ln m)3 many light sparse

polynomials and the sum of fan-ins of all the light sparse polynomials is at most m2·dx
160·λ0·(ln m)5 , then

there exist M2 ⊆ [3m] \M1, |M2| = m and αu, βu ∈ F for u ∈ M2, such that the circuit D obtained
by setting xu = αu, yu = βu for all u ∈ M2 is a pruned circuit.

Proof. For a light sparse polynomial Qj in C1, let bj be its fan-in and cj denote the number of
distinct heavy gates connected to it. Consider the following procedure which greedily picks
the light sparse polynomial Qj for which the ratio

cj
bj

is maximum and evaluates it to 0. This
is possible since we have assumed the field F to be algebraically closed.

Procedure 2 Removing Heavy Gates

1. M2 ← ∅,D← C1, H := set of all heavy gates in C1, i← 1.
2. while H 6= ∅ do
3. Let Qi be the light sparse polynomial such that the ratio ci

bi
is maximum among all the

light sparse polynomials present in D. Evaluate Qi to 0.
4. Add the indices of variables appearing in Qi to M2, D ← circuit obtained form D by

evaluating Qi to 0 and H ← set of all heavy gates in D. Increment i.
5. end while

It is clear that the circuit D obtained after the termination of the above procedure has no
heavy gates. Moreover, at no point during the execution of the procedure does the support
of any monomial increase and hence the bottom support of D is at most τ. Hence, D is a
pruned circuit. Claim 3.2 (proved below) implies that the procedure sets at most m variables
to field constants i.e. |M2| ≤ m. If |M2| < m, then we arbitrarily add an appropriate number
of i ∈ [3m]\M1 to M2 so that |M2| = m and for each i ∈ M2, set xi = 0 (or yi = 0) if xi (or yi)
has not already been set to a field constant.

14



Claim 3.2. Let M1 = [3m]\M1. Procedure 2 sets at most m many variables in xM1
∪ yM1

to field
constants.

Proof. Suppose that the procedure terminates after t iterations. For 1 ≤ i ≤ t + 1, let Hi

denote the set H at the beginning of the i-th iteration. Then, Ht+1 = ∅, Ht 6= ∅ and for any
1 ≤ i ≤ t,

|Hi+1| ≤ |Hi| − ci. (3.1)

Let the sparse polynomials during the i−th iteration be Qi,1, .., Qi,ri , and j be such that
ci,j
bi,j

= max1≤u≤ri
ci,u
bi,u

. Then, ci = ci,j and bi = bi,j. Since every heavy gate has at least m·dx
2·λ0·(ln m)3

many light sparse polynomials connected to it,

|Hi| ·
m · dx

2 · λ0 · (ln m)3 ≤ ci,1 + · · · ci,ri

= bi,1 ·
ci,1

bi,1
+ · · ·+ bi,ri ·

ci,ri

bi,ri

≤ ci

bi
·
(
bi,1 + · · ·+ bi,ri

)
As the sum of fan-ins of all the light sparse polynomials is at most m2·dx

160·λ0·(ln m)5 at the
beginning of the procedure and at no point in time during the execution of the procedure
does the fan-in of any gate of D increase,

(
bi,1 + · · ·+ bi,ri

)
≤ m2·dx

160·λ0·(ln m)5 . Hence,

|Hi| ·
m · dx

2 · λ0 · (ln m)3 ≤
ci

bi
·
(

m2 · dx

160 · λ0 · (ln m)5

)
=⇒ |Hi| ·

80 · (ln m)2 · bi

m
≤ ci (3.2)

From (3.1) and (3.2), we get,

|Hi+1| ≤ |Hi| ·
(

1− 80 · (ln m)2 · bi

m

)
and hence,
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|Ht| ≤ |H1| ·
t−1

∏
i=1

(
1− 80 · (ln m)2 · bi

m

)
≤ m ·

t−1

∏
i=1

e−
80·(ln m)2·bi

m

= m · e−
80·(ln m)2

m ·(b1+···+bt−1)

where the last inequality follows from |H1| ≤ m and 1 + x ≤ ex which is true for all x ∈
R. As |Ht| ≥ 1, (b1 + · · · bt−1) ≤ m

80·ln m . Since Qt is a light sparse polynomial, its fan-in
bt ≤ m

(ln m)2 and thus b1 + · · ·+ bt ≤ m
40·ln m . Then, as the support of each monomial in D is

upper bounded by τ, the number of variables in xM1
∪ yM1

set to field constants is at most
τ · (b1 + · · · bt) ≤ b20 · ln mc · m

40·ln m ≤ m.

Remark. Procedure 2 resembles an approximation algorithm for the Weighted Set Cover
problem [Vaz01] (Section 2.1, page-16). This is no coincidence as the problem of removing
heavy gates can be formulated as an instance of Weighted Set Cover with the universe being
all heavy gates and with a set corresponding to every sparse polynomial Q. The set corre-
sponding to Q contains all heavy gates connected to Q and has a cost equal to the number
of monomials feeding into Q.

3.2 Analysing the measure of a pruned depth four circuit
Lemma 3.3. Let D be a pruned depth four circuit obtained from Lemma 3.2. Also, let dx, τ, w be as
defined earlier, t =

⌊
dx

(ln m)3

⌋
, δ = 1

(ln m)2 , k =
⌊

δdx
t

⌋
and ` =

⌊
m

mδ/t+1

⌋
. Then, for sufficiently large

m,

PSPM,k,`(D) ≤ s ·mO(1)
(

m
`+ 2ktτ

)(⌈w
t
⌉
+ k− 1
k

)
.

We prove the lemma at the end of this section. As D = T1 + · · ·+ Ts, where Ti is a product
term and as PSPM,k,` is sub-additive, to prove the lemma it suffices to show that for all i ∈ [s],

PSPM,k,`(Ti) ≤ mO(1)
(

m
`+ 2ktτ

)(⌈w
t
⌉
+ k− 1
k

)
.
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Consider any such product term T = ∏i∈[a] Qei
i , where Qi ∈ F[xM, yM], and since D is a

pruned depth four circuit, a ≤ w. Write Qi = Q′i + Q′′i , where Q′i is the sum of all monomials
of Qi wherein the individual degree of every x variable is at most two and Q′′i = Qi − Q′i.
Then,

T = ∏
i∈[a]

(Q′i + Q′′i )
ei = ∏

i∈[a]
Q′i

ei + Q′′,

where Q′′ is a polynomial whose every monomial has a x variable with degree at least
three. Thus, PSPM,k,`(Q′′) = 0 and hence from the sub-additivity of PSPM,k,` we have that

PSPM,k,`(T) ≤ PSPM,k,`

(
∏
i∈[a]

Q′i
ei
)

.

Let T′ = ∏i∈[a] Q′i
ei . We will now upper bound PSPM,k,`(T′). First, we assume without

loss of generality that a = w since if a < w then we can multiply with additional sparse
polynomials all of which are 1. Next we divide the sparse polynomials into disjoint sets
such that each set (except perhaps the last) has size exactly t. Then, we have that

T′ = P1 · · · Pdw
t e, where Pi =

min(it,w)

∏
j=(i−1)t+1

Q′j
ej .

Claim 3.3. Let P = Q′1
e1 · · ·Q′t

et be one of the polynomials Pi. For k ≥ 0, let P(k) := ∏i∈[t] Q′i
max(ei−k,0).

Then, ∂k
xP ⊆ F-span{y≤∞

M x≤k(2tτ−1)
M P(k)}.

Proof. We prove the claim by induction on k. If k = 0, then ∂0
xM

P = {P} = {P(0)} and hence
the claim is true. Assume that the claim is true for k. Let X be a multilinear monomial of
degree k + 1 in x variables. Then X = xX′ where X′ is a multilinear monomial of degree k in
x variables and x one of the x variables. From the induction hypothesis we have that,

∂P
∂X′

= g · P(k)

where g is a polynomial in F[xM, yM] with xM degree of g being at most k(2tτ− 1) while
its yM degree can be arbitrarily large.

Let J := {j ∈ [t] : ej > k}. We have that,
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∂P
∂X

=
∂

∂x

(
g · P(k)

)
=

∂

∂x

(
g ·∏

j∈J
Q′j

ej−k
)

=
∂g
∂x
·∏

j∈J
Q′j

ej−k
+ g ·∑

j∈J
(ej − k) ·Q′j

ej−k−1 ·
∂Q′j
∂x
· ∏

i∈J\{j}
Q′i

ei−k

=

∂g
∂x
·∏

j∈J
Q′j + g ·∑

j∈J
(ej − k) ·

∂Q′j
∂x
· ∏

i∈J\{j}
Q′i

 ·∏
j∈J

Q′j
ej−k−1

Observe that as D is a pruned depth four circuit, the support of all monomials of Q′j is
upper bounded by τ and as in any monomial the individual degree of any x variable is at
most two, degx(Q

′
j) ≤ 2τ. Also, |J| ≤ t and hence

degx

∂g
∂x
·∏

j∈J
Q′j + g ·∑

j∈J
(ej − k) ·

∂Q′j
∂x
· ∏

i∈J\{j}
Q′i

 ≤ (k + 1)(2tτ − 1).

As ∏j∈J Q′j
ej−k−1 = P(k+1), the claim is true for k + 1.

Proof of Lemma 3.3. Recall that it is enough to show the following

PSPM,k,`(T′) ≤ mO(1)
(

m
`+ 2ktτ

)(⌈w
t
⌉
+ k− 1
k

)
,

where T′ = P1 · · · Pdw
t e. Let v =

⌈w
t
⌉

. Now,

∂k
xT′ ⊆ F-span

{
∂k1

x P1 · · · ∂kv
x Pv : k1 + · · ·+ kv = k

}
⊆ F-span

{
y≤∞

M x≤k1(2tτ−1)
M P(k1)

1 · · · y≤∞
M x≤kv(2tτ−1)

M P(kv)
v : k1 + · · ·+ kv = k

}
⊆ F-span

{
y≤∞

M x≤k(2tτ−1)
M P(k1)

1 · · · P(kv)
v : k1 + · · ·+ kv = k

}
,

where the second to last inclusion follows from Claim 3.3. Hence,

x`M∂k
xT′ ⊆ F-span

{
y≤∞

M x≤`+k(2tτ−1)
M P(k1)

1 · · · P(kv)
v k1 + · · ·+ kv = k

}
.
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In other words, the space of shifted partials of T′ is contained in the F-span of polyno-
mials of the form Y · X · P(k1)

1 · · · P(kv)
v where Y is a monomial in yM variables and X is a

monomial in xM variables of degree at most `+ k(2tτ − 1). Let us analyse the effect of the
operations σyM=1, [·]m and πx on one such polynomial. We will assume that degy(Y) ≤ m
and X is multilinear for otherwise the polynomial will vanish after the operations are ap-
plied. Then, we have that,

σyM=1

([
πx

(
Y · X · P(k1)

1 · · · P(kv)
v

)]
m

)
= X · σyM=1

([
πx

(
σSupp(X)=0

(
P(k1)

1 · · · P(kv)
v

))]
m−deg(Y)

)
.

Thus,

σyM=1

([
πx

(
x`M∂k

xT′
)]

m

)
⊆ F-span

{
X · σyM=1

([
πx

(
σSupp(X)=0

(
P(k1)

1 · · · P(kv)
v

))]
i

)
:

X is a multilinear monomial in xM variables, deg(X) is

at most `+ k(2tτ − 1), 0 ≤ i ≤ m and k1 + · · ·+ kv = k

}
.

Once we fix i, X, and k1, ..., kv, X · σyM=1

([
πx

(
σSupp(X)=0

(
P(k1)

1 · · · P(kv)
v

))]
i

)
is fixed.

So,

PSPM,k,`(T′) = dim
〈

σyM=1

([
πx

(
x`M∂k

x T′
)]

m

)〉
≤ (m + 1) ·

`+k(2tτ−1)

∑
j=0

(
m
j

)(
v + k− 1

k

)
≤ (m + 1) · (`+ 2ktτ) ·

(
m

`+ 2ktτ

)(
v + k− 1

k

)
= mO(1) ·

(
m

`+ 2ktτ

)(⌈w
t
⌉
+ k− 1
k

)
,

where the second last inequality follows from Claim 3.4.

Claim 3.4. Let `, k, t and τ be as defined earlier. Then, `+ 2ktτ < m
2 .

Proof. We will show that the ratio
m
2 −2ktτ

` > 1. Putting the values of k and `,
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m
2 − 2ktτ

`
=

m
2 − 2

⌊
δdx

t

⌋
tτ⌊

m
mδ/t+1

⌋
≥
(

1
2
− 2δdxτ

m

)
(mδ/t + 1).

So, we need to show that

1
1
2 −

2δdxτ
m

< mδ/t + 1 ⇐⇒ 1
1
2 −

2δdxτ
m

− 1 < mδ/t

⇐⇒
1 + 4δdxτ

m

1− 4δdxτ
m

< mδ/t.

For large enough m, 4δdxτ
m ≤ 1

2 . Using 1 + x ≤ ex, which holds for all x ∈ R, and
1

1−x ≤ e2x, which holds for 0 ≤ x ≤ 1
2 we get:

1 + 4δdxτ
m

1− 4δdxτ
m

≤ e
12δdxτ

m .

So showing that e
12δdxτ

m < mδ/t would suffice. Now,

e
12δdxτ

m < mδ/t ⇐⇒ e
12dxtτ

m < m.

Putting the values of dx, t an τ, we get that 12dxtτ
m =

12dx

⌊
dx

(ln m)3

⌋
b20 ln mc

m ≤ 12d2
x ·20 ln m

m(ln m)3 =

Θ
(

m
m(ln m)2(ln m)2

)
= Θ

(
1

(ln m)4

)
= o(1) as dx = Θ

(√
m

ln m

)
. Thus e

12dxtτ
m < m.
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Chapter 4

An Explicit Polynomial Family with High
Measure

In this chapter we construct a polynomial family { fn}n≥1 with a ”large” PSPM,k,`(·) mea-

sure - this forms the second part of the proof of Theorem 1.1. We also prove Theorem

1.1 in this chapter. The contents of this chapter up to and including Section 4.1 are

from our work [GST20]. Section 4.2 contains a proof Lemma 4.1, which was proved

in [KLSS17, KS16a, Sha17]; we provide its proof for the sake of completeness.

We now describe the family { fn}n≥1, whose n-th member fn is a polynomial in variables
x = {x1, ..., x3m} and y = {y1, ..., y3m}, where m ∈

[n
2 , 2n

]
will be fixed later.

fn := ∑
S⊆[3m],|S|=m

(
∏
i∈S

yi

)
· NWr(xS),

where NWr is a variant of the Nisan-Wigderson design polynomial (introduced in [KSS14]),
the construction of which is described later and r is a parameter fixed in this construction.
Note that { fn}n≥1 is in VNP. Given a monomial, in order to find its coefficient in fn, we
first check if the monomial is multilinear and of degree m in y variables. If it is so and S
is the set of the indices of the m many y variables in the monomial then simply return the
coefficient of the part of the monomial in x variables in NWr(xS) – this can be done as the
Nisan-Wigderson polynomial family is in VNP.

Let M1 and M2 be as in Chapter 3 and M = [3m] \ (M1 ∪M2). Let f1 be the polynomial
computed by the pruned circuit D, which is obtained from f = fn by setting the variables
xM and yM to field constants as in Section 3.1. Let us now see how PSPM,k,`( f1) is related to
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dim
〈
πx
(
x`M∂k

x NWr
)〉

.

Lemma 4.1. Let f1 be as defined above. Then, PSPM,k,`( f1) = dim
〈
πx
(
x`M∂k

x NWr(xM)
)〉

.

Proof. The proof follows easily from the following two observations:

1. The two operations in y variables and the three operations in x variables (in the defini-
tion of PSPM,k,`) commute. That is, we have

σyM=1

([
πx(x`M∂k

x f1)
]

m

)
= πx

(
x`M∂k

x
(
σyM=1 ([ f1]m)

))
.

2. f1 = (∏i∈M yi) · NWr(xM) + f ′, where f ′ ∈ F[xM, yM] and degy( f ′) < m.

From these observations we have that

PSPM,k,`( f1)

= dim
〈

σyM=1

([
πx(x`M∂k

x f1)
]

m

)〉
= dim

〈
πx

(
x`M∂k

x

(
σyM=1

([(
∏
i∈M

yi

)
· NWr(xM) + f ′

]
m

)))〉
= dim

〈
πx

(
x`M∂k

x NWr(xM)
)〉

.

The last equality follows from the fact that
(
σyM=1 ([(∏i∈M yi) · NWr(xM) + f ′]m)

)
=

NWr(xM).

Construction of NWr. Let dx =
⌊√

n
ln n

⌋
. Pick an α such that dx

⌈
d1+α

x
⌉
≤ n ≤ 2dx

⌈
d1+α

x
⌉
;

this forces α to be Θ( ln ln n
ln n ). Let q be a prime number between

⌈
d1+α

x
⌉

and 2
⌈
d1+α

x
⌉

– such
a prime exists [Erd32] – and let m = dxq. Thus, dx

⌈
d1+α

x
⌉
≤ m ≤ 2dx

⌈
d1+α

x
⌉

and hence
n
2 ≤ m ≤ 2n; moreover, it can be easily verified that dx ∈

[ √
m

2
√

2·ln m
, 2
√

2·
√

m
ln m

]
; both being

as required in Section 1.2. Also notice that this means q = Θ(
√

n ln n). Let β = 1
ln m and

r =
⌊

α+β
2(1+α)

dx

⌋
− 1, u = (u1,1, ..., u1,q, ..., udx,1, ..., udx,q) and define

NWr(u) := ∑
h(z)∈Fq[z], deg(h)≤r

u1,h(1) · · · udx,h(dx).

A lower bound on dim
〈
πx
(
x`M∂k

x NWr
)〉

was proved in [KS16a, Sha17]. Their analysis
continues to hold for our choice of parameters – which only slightly differ from the param-
eters in [Sha17]. Moreover, while they prove this lower bound over fields of characteristic
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zero, the same proof also works if the characteristic is greater than q(r+1)·min{(m
k )(

m
` ),(

m
`−dx−k)}.

For the sake of completeness, we provide a proof of the following lemma in Section .

Lemma 4.2 (Lemma 5.2 of [KS16a], Lemma 4.1 of [Sha17]).

dim
〈

πx

(
x`M∂k

x NWr(xM)
)〉
≥ 1

mO(1)
min

{
1
4k ·

(
m
`

)(
m
k

)
,
(

m
`+ dx − k

)}
.

Hence, from Lemmas 4.1 and 4.2 we get

Lemma 4.3.

PSPM,k,`( f1) ≥
1

mO(1)
min

{ 1
4k ·

(
m
`

)(
m
k

)
,
(

m
`+ dx − k

)}
.

4.1 Proof of Theorem 1.1
Before proving the theorem, let us first justify the assumption that F is an algebraically
closed field that we made in Chapter 3. Suppose not. Then, let F be its algebraic closure.
Since C is also a circuit over F and fn a polynomial over F, we can make all arguments
assuming the underlying field to be F. Since the size of a circuit does not depend on the
underlying field, the lower bound so obtained will continue to hold when we treat C as a
circuit over F.

First we will prove a lower bound on the number of wires of C. If the number of mono-
mials in C is

⌊
m2dx
(ln m)5

⌋
then there is nothing to prove. Otherwise from Lemma 3.1, we can

obtain a circuit C1 such that the support of all the monomials of C1 is at most τ = b20 ln mc,
the number of gates in C1 is at most the number of gates in C and the fan-in of each gate in C1

is upper bounded by the fan-in of the corresponding gate in C. Then, if C1 does not satisfy
the hypothesis of Lemma 3.2, the size of C1 and hence the size of C is at least Ω

(
m2dx
(ln m)5

)
.

Otherwise, we can obtain a pruned circuit D such that the top fan-in and the bottom support
of D are upper bounded by the top fan-in and bottom support of C1 and so proving a lower
bound on the top fan-in of D would suffice.

As D computes f1, PSPM,k,`(D) = PSPM,k,`( f1). Lemma 3.3 and 4.3 imply
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s ≥
1

mO(1) min
{

1
4k · (m

` )(
m
k ), (

m
`+dx−k)

}
mO(1) · ( m

`+2ktτ)(
dw

t e+k−1
k )

≥
1

mO(1) min
{

1
4k · (m

` )(
m
k ), (

m
`+dx−k)

}
mO(1) · ( m

`+2ktτ)(
dw

t e+k−1
k )

≥ 1

mO(1)(d
w
t e+k−1

k )
min

{
(m

k )

4k ·
( m
`+1)

( m
`+2ktτ+1)

,
( m
`+dx−k)

( m
`+2ktτ)

}

=
1

mO(1)(d
w
t e+k−1

k )
min

{
(m

k )

4k ·
(m− `− 2ktτ − 1)!

(m− `− 1)!
· (`+ 2ktτ + 1)!

(`+ 1)!
,

(m− `− 2ktτ)!
(m− `− dx + k)!

· (`+ 2ktτ)!
(`+ dx − k)!

}
=

1

mO(1)(d
w
t e+k−1

k )
min

{
(m

k )

4k · e
(−2ktτ) ln m−`−1

`+1 ±o(1), e(dx−2ktτ−k) ln m−`
` ±o(1)

}
(Using Proposition 2.2.)

≥ 1

mO(1)(d
w
t e+k−1

k )
min

{
(m

k )

4k ·
(

m
`+ 1

− 1
)−2ktτ

,
(m
`
− 1
)(dx−2ktτ−k)

}

=
1

mO(1)(d
w
t e+k−1

k )
min

 (m
k )

4k ·

 m⌊
m

mδ/t+1

⌋
+ 1
− 1

−2ktτ

,

 m⌊
m

mδ/t+1

⌋ − 1

(dx−2ktτ−k)


≥ 1

mO(1)(d
w
t e+k−1

k )
min

 (m
k )

4k ·
(

m
m

mδ/t+1
− 1

)−2ktτ

,

(
m
m

mδ/t+1
− 1

)(dx−2ktτ−k)


≥ 1

mO(1)(d
w
t e+k−1

k )
min

{
(m

k )

4k ·m
−2kδτ, m(1−2δτ− δ

t )k
}

Since (m
k )

4k ·m−2kδτ =
(m

k )

4k·m(1− δ
t )k
·m(1−2δτ− δ

t )k ≤ ( em
k )k · m

δk
t

4kmk ·m(1−2δτ− δ
t )k. For our choice of

parameters δ, k and t, m
δk
t = O(1). Hence, (m

k )

4k ·m−2kδτ ≤ m(1−2δτ− δ
t )k and thus,

s ≥ 1
mO(1)

·
(m

k ) ·m−2kδτ

4k · (d
w
t e+k−1

k )
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≥ 1
mO(1)

·
(

m · k
4e · k ·m2δτ · (w

t + k)

)k
(Using Proposition 2.1.)

≥ 1
mO(1)

·
(

m · t
8e ·m2δτ · w

)k
(Since kt ≤ w =

⌊
mdx

λ0·(ln m)3

⌋
.)

=
1

mO(1)
·

 m ·
⌊

dx
(ln m)3

⌋
8e ·m2δτ ·

⌊
mdx

λ0·(ln m)3

⌋
k

≥ 1
mO(1)

·

 m · dx
(ln m)3

16e ·m2δτ · mdx
λ0·(ln m)3

k

≥ 1
mO(1)

·
(

λ0

16e ·m2· 1
(ln m)2

·b20 ln mc

)ln m

(Since k ≥ bln mc.)

=
1

mO(1)
·
(

λ0

16e · eO(1)

)ln m

= ω

(
m2dx

(ln m)5

)
,

if we choose λ0 to be a large enough constant.

Now let us prove the lower bound on the number of gates. Notice that if the circuit C
computing f has a heavy gate as defined in Chapter 3 then we are done. So assume that it
does not have any heavy gates. Now, if the number of monomials in C is

⌊
m2dx
(ln m)5

⌋
then there

is nothing to prove. Otherwise from Lemma 3.1, we can obtain a circuit C1 such that the
support of all the monomials of C1 is at most τ = b20 ln mc, the number of gates in C1 is at
most the number of gates in C and the fan-in of each gate in C1 is upper bounded by the fan-
in of the corresponding gate in C. Obtain a circuit D from C1 by picking a set M2 ⊆ [3m] \M1

(where M1 is as in Lemma 3.1), |M2| = m arbitrarily and setting variables in xM2 and yM2 to
0 (notice that the top fan-in and bottom support of D are upper bounded by the top fan-in
and bottom support of C1 ). Now D computes f1 and just as it was done in the preceding
paragraph, we can show that the top fan-in of D is ω

(
m2dx
(ln m)5

)
. However, we only get an

Ω
(

mdx
(ln m)3

)
lower bound on the number of gates since the definition of a heavy gate is the

bottleneck.
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4.2 Proof of Lemma 4.1
For the sake of completeness, we now give a proof of Lemma 4.2 by replicating the analysis
in [KS16a] and [Sha17]. We first construct a matrix N with 0, 1 entries whose rank is a lower
bound on dim

〈
πx
(
x`M∂k

x NWr(xM)
)〉

and then derive a lower bound on the rank N using
a lemma in real matrix analysis. Before we describe the construction of N, let us establish
some conventions.

By simply re-indexing the variable set xM, we can assume that M = [m]. For the sake of
making the notation a little simple, we will drop the subscript M from xM. Notice that there
is a 1− 1 correspondence between the indices of variables x and the set [q] × [dx] ≡ [m].
These is also a 1− 1 correspondence between the monomials in NWr and the set ([q]×[dx]

dx
) ≡

([m]
dx
) as NWr is a homogeneous and multilinear polynomial of degree dx. Moreover, every

monomial in NWr corresponds to a unique polynomial of degree at most r in Fq[z]. Because
of these reasons, going forward, we will represent a monomial of NWr using an either an
element of the set ([m]

dx
) or a polynomial of degree at most r in Fq[z].

Definition 4.1 (Support of NWr). We define the support of NWr - denoted be Supp(NWr) - as
follows:

Supp(NWr) :=

D ∈
(
[m]

dx

)
: ∏

i∈[m]

xi is a monomial in NWr


Construction of the matrix N. The rows of N are indexed by ordered pairs of the form

(A, C) ∈ ([m]
` )× ([m]

k ) such that A ∩ C = ∅ and its columns are indexed by sets S ∈ ( [m]
`+dx−k).

The row indexed by (A, C) corresponds to the polynomial

gA,C =

(
∏
i∈A

xi

)
· σxA=0

(
∂

∂(∏j∈C xj)
NWr

)
.

The S-th entry of the row (A, C) is the coefficient of the monomial ∏i∈S xi in gA,C. Note
that as monomials in NWr have 0, 1 coefficients, every entry of N is either 0 or 1. Now as

dim
〈

πx

(
x`∂k

x NWr(x)
)〉

= dim
〈{

gA,C : A ∈
(
[m]

`

)
, C ∈

(
[m]

k

)}〉
we have the following proposition.

Proposition 4.1. rank(N) ≤ dim
〈
πx
(
x`∂k

x NWr(x)
)〉

.
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For sets A, B we define the operations A \\ B and A ] B as follows

1.

A \\ B :=

{
A \ B B ⊆ A

InvalidSet otherwise

2.

A ] B :=

{
A ∪ B A ∩ B = ∅

InvalidSet otherwise

We label the ((A, C), S)-th entry of N by the set D = (S \\ A)] C. It is not too hard to see
that D ∈ Supp(NWr) if and only if N((A,C),S) = 1.

Note that while N is a matrix over some characteristic 0 field F, since it has 0, 1 entries,
we can treat it as a matrix over the field R of real numbers. As the determinant of any real
0, 1 matrix is an integer and as any characteristic 0 field contains the field of rational num-
bers Q as a sub-field, the determinant of any sub-matrix of N will be the same over R and
F. Thus the rank of N over F is the same as its rank over R. Because of this reason, from
now on we will treat N as a real matrix. We will now focus our attention on deriving a lower
bound on rank(N) using the notion of surrogate rank.

Deriving a lower bound on rank(N). Let B = NT N. Then B is a real positive semi-
definite matrix and it is easy to show that,

Proposition 4.2. Over any field F, rank(B) ≤ rank(N). Moreover, over the field of real numbers
R, rank(B) = rank(N).

So in order to lower bound rank(N), we can simply lower bound rank(B). Let us now
define the surrogate rank of B.

Definition 4.2. The surrogate rank of B - denoted SurRank(B) - is the ratio Tr(B)2

Tr(B2)
.

The following lemma gives us a way of obtaining a lower bound on rank(B) by lower
bounding SurRank(B).

Lemma 4.4 ([Alo09]). SurRank(B) ≤ rank(B).

The above lemma can be proved by using the Cauchy-Schwarz inequality the vector of
non-zero eigenvalues of B.

In what follows, we will show that SurRank(B) ≥ 1
mO(1) min{ 1

4k · (m
` )(

m
k ), (

m
`+dx−k)} by first

deriving a lower bound on Tr(B) and then an upper bound on Tr(B2).
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4.2.1 Lower bound on Tr(B)

Claim 4.1. Tr(B) = qr+1 · (dx
k ) · (

m−dx
` ).

Proof. Since all entries of N are either 0 or 1, we have that

Tr(B) = Tr(NT N) = number of non zero entries in N.

The number of non-zero entries in N is just the sum over all D ∈ Supp(NWr) of the
number of cells of N labelled by D. The ((A, C), S)-th entry of N is labelled by D if and only
if D = (S \\ A) ] C i.e. S = (D \\C) ] A. Then, as A ∩ C = ∅, the number of cells labelled
by D is (dx

k ) · (
m−dx

` ). Since |Supp(NWr)| = qr+1, the claim follows.

4.2.2 Upper bound on Tr(B2)

The following proposition easily follows from the definition of B.

Proposition 4.3.

Tr(B2) = ∑ N(A1,C1),S1
· N(A1,C1),S2

· N(A2,C2),S1
· N(A2,C2),S2

.

where the sum is over all tuples ((A1, C1), (A2, C2), S1, S2) such that (A1, C1), (A2, C2) ∈
([m]

` )× ([m]
k ), A1 ∩ C1 = ∅, A2 ∩ C2 = ∅ and S1, S2 ∈ ( [m]

`+dx−k).

Let us define the notion of a box which shall use in the calculations. For any pair of row
indices (A1, C1), (A2, C2) ∈ ([m]

` )× ([m]
k ) and any pair of columns indices S1, S2 ∈ ( [m]

`+dx−k),
we define the box

b = box((A1, C1), (A2, C2), S1, S2)

to be the ordered tuple

(((A1, C1), S1), ((A1, C1), S2), ((A2, C2), S1), ((A2, C2), S2))

of the cells of N. As every entry of N is either 0 or 1,

Tr(B2) = number of boxes b whose all four entries are 1.

Now, all the four entries of

b = box((A1, C1), (A2, C2), S1, S2))

28



can be non-zero only if all four entries of b are labelled by sets in Supp(NWr) i.e. only if

(S1 \\ A1) ] C1, (S2 \\ A1) ] C1, (S1 \\ A2) ] C2, (S2 \\ A2) ] C2 ∈ Supp(NWr).

For a box
b = box((A1, C1), (A2, C2), S1, S2),

labels(b) is the tuple of labels of entries in b,

labels(b) = ((S1 \\ A1) ] C1, (S2 \\ A1) ] C1, (S1 \\ A2) ] C2, (S2 \\ A2) ] C2).

Proposition 4.4. Tr(B2) is the number of boxes

b = box((A1, C1), (A2, C2), S1, S2)

such that all four labels in labels(b) are valid sets in Supp(NWr).

Now we will compute Tr(B2), by counting the number of boxes whose all four labels are
sets in Supp(NWr). To do this, we need to analyse the structure of such a box

b = box((A1, C1), (A2, C2), S1, S2).

Let labels(b) = (D1, D2, D3, D4). Then,

D1 = (S1 \\ A1) ] C1, D2 = (S2 \\ A1) ] C1,

D3 = (S1 \\ A2) ] C2, D4 = (S2 \\ A2) ] C2.

Let us define the following sets:

E1 := A1 \ A2 E2 := A2 \ A1

E3 := C1 E4 := C2

E5 := D1 \ (E2 ] E3) E6 := D2 \ (E2 ] E3)

= D3 \ (E1 ] E4) = D4 \ (E1 ] E4)

Notice that:

1. As D2 and D4 are valid sets, A1, A2 ⊆ S2 and so E2 ⊆ S2 \\ A1. Also, as D2 is a valid set,
S2 \\ A1 and C1 are disjoint. These together imply that E2 and E3 are disjoint. Similarly
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E1 and E4 are disjoint.

2. As D1 and D3 are valid sets, A1, A2 ⊆ S1, so E2 ⊆ S1 \\ A1. Then, since D1 = (S1 \
\ A1) ] C1, E2 ] E3 ⊆ D1. Similarly, E2 ] E3 ⊆ D2, E1 ] E4 ⊆ D3 and E1 ] E4 ⊆ D4.

3. Since D1 = (S1 \\ A1) ] C1, D1 \ C1 = (S1 \\ A1) and thus (D1 \ C1) \ E2 = (S1 \\ A1) \
E2; i.e. D1 \ (E2 ] E3) = S1 \\ (A1 ∪ A2) as C1 = E3 and E2 ∩ E3 = ∅. Similarly, it can be
shown that D3 \ (E1 ] E4) = S1 \\ (A1 ∪ A2) and hence D1 \ (E2 ] E3) = D3 \ (E1 ] E4).
Similarly, D2 \ (E2 ] E3) = D4 \ (E1 ] E4).

It is easy to see that D1, D2, D3 and D4 can be expressed as follows:

D1 = E2 ] E3 ] E5, D2 = E2 ] E3 ] E6,

D3 = E1 ] E4 ] E5, D4 = E1 ] E4 ] E6. (4.1)

Then, if |A1 ∩ A2| = v, we have that,

|E1| = |E2| = `− v,

|E3| = |E4| = k, (4.2)

|E5| = |E6| = dx − (`− v + k).

Claim 4.2. Exactly one of the following holds for the sets D1, D2, D3 and D4:

1. All sets are distinct,

2. All four are the same i.e. D1 = D2 = D3 = D4,

3. D1 = D2, D3 = D4 and D1 6= D3,

4. D1 = D3, D2 = D4 and D1 6= D2.

Moreover, if D1, D2 and D3 are distinct, then `− v + k ≤ r and dx − (`− v + k) ≤ r.

Proof. If all sets are distinct, then we are done. Otherwise we show that if D1 is the same as
at least one of D2, D3 and D4, the proposition holds; the argument for other cases is similar.

If D1 = D2, then by equation (4.1), E5 = E6 and hence D3 = D4; thus either 2 or 3 holds.
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If D1 = D3, then by equation (4.1), E2 ] E3 = E1 ] E4 and hence D2 = D4; thus either 2
or 4 holds.

If D1 = D4, then by equation (4.1), E6, E1 ] E4 ⊆ D1. Thus D2, D3 ⊆ D1. However, as
|D1| = |D2| = |D3|, this is only possible if D1 = D2 = D3 i.e. if 2 holds.

For the ’moreover’ part of the proposition, notice that |D1 ∩ D2| ≥ |E2 ] E3| = `− v + k.
So, if `− v + k ≥ r + 1, then D1 = D2 because of the low intersection property of NWr. Also,
|D1 ∩ D3| ≥ |E5| = dx − (`− v + k). Hence, if dx − (`− v + k) ≥ r + 1, then D1 = D3.

The above claim gives a characterization of all the boxes

b = box((A1, C1), (A2, C2), S1, S2)

that can contribute to Tr(B2) and the following corollary follows.

Corollary 4.1. For any four distinct sets D1, D2, D3, D4 ∈ ([m]
d ) define

ν0(D1) := {box b : labels(b) = (D1, D1, D1, D1)},
ν1(D1, D2) := {box b : labels(b) = (D1, D2, D1, D2)},
ν2(D1, D2) := {box b : labels(b) = (D1, D1, D2, D2)},
ν3(D1, D2, D3, D4) := {box b : labels(b) = (D1, D2, D3, D4)}.

Also, define

T0 := ∑
D1∈Supp(NWr)

|ν0(D1)|,

T1 := ∑
D1,D2∈Supp(NWr)

|ν1(D1, D2)|,

T2 := ∑
D1,D2∈Supp(NWr)

|ν2(D1, D2)|,

T3 := ∑
D1,D2,D3,D4∈Supp(NWr)

|ν3(D1, D2, D3, D4)|. (4.3)

Then
Tr(B2) = T0 + T1 + T2 + T3.
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We now upper bound T0, T1, T2 and T3.

4.2.3 Upper bound on T0

First we observe that

Observation 4.1. A D1 ∈ ([m]
d ) can label at most one cell of a row (A, C) of the matrix N.

Hence for any box
b = box((A1, C1), (A2, C2), S1, S2)

that contributes to either ν0(D1) or ν2(D1, D2), S1 = S2.

Now every box b ∈ ν0(D1), D1 = D3, from equation (4.1), E1 ⊆ D3 = D1. However,
E1 ⊆ A1 and A1 and D1 are disjoint. Thus, E1 = A1 \ A2 = ∅. Similarly, E2 = A2 \ A1 = ∅.
This and Equation (4.1) imply that E3 = E4 (i.e. C1 = C2). Hence we have the following
claim,

Claim 4.3.

|ν0(D1)| =
(

m− dx

`

)(
dx

k

)
and T0 = qr+1 ·

(
m− dx

`

)(
dx

k

)
.

Proof. Fix a D1 ∈ ([m]
d ). As A1 = A2 and C1 = C2, the number of cells labelled by D1 is

(m−dx
` ) · (dx

k ) - the number of ways of picking C1 times the number of ways of picking an A1

that is disjoint from C1. Summing over all D1 ∈ Supp(NWr) yields the desired expression
for T0.

4.2.4 Upper bound on T1

In this section, we will need an estimate of the number of polynomials in Fq[z] of degree at
most r having exactly w distinct roots in [dx]; so let us first estimate this number. We denote
this number by R(w, r). Since any polynomial h(z) ∈ Fq[z] of degree at most r having w
roots in [dx] is of the form

h(z) = (z− α1) · (z− α2) · · · (z− αw) · ĥ(z)

where α1, α2, ..., αw are in [dx] and ĥ(z) ∈ Fq[z] is a polynomial of degree at most r − w,
we have that

R(w, r) ≤ qr−w+1 ·
(

dx

w

)
≤ qr+1 ·

(
dx

q

)w
· 1

w!
. (4.4)
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Let D1 and D2 be distinct sets in Supp(NWr). Consider the box

b = box((A1, C1), (A2, C2), S1, S2)

in the set ν1(D1, D2). Just as in the previous section, even here D1 = D3; thus A1 = A2 and
C1 = C2. We then have the following claim,

Claim 4.4. If |D1 ∩ D2| = w, then

|ν1(D1, D2)| =
(

m− 2dx + w
`

)(
w
k

)
and T1 ≤ dx ·

q2(r+1)

dαk
x · k!

·
(

m− 2dx + k
`

)
.

Proof. Let us fix D1 and D2 and then count the number of rows (A, C) where in D1 and D2

both can occur as labels. C ⊆ D1 ∩ D2 can be picked in (w
k ) ways. Then, since A must be

disjoint from D1 ∪ D2 and |D1 ∪ D2| = 2dx − w, A can be picked in (m−2dx+w
` ) ways. Then,

from equation (4.3), we get,

T1 = ∑
D1∈Supp(NWr)

∑
k≤w<dx

∑
D2∈Supp(NWr),
|D1∩D2|=w

(
m− 2dx + w

`

)
·
(

w
k

)

= ∑
D1∈Supp(NWr)

∑
k≤w<dx

Rd(w, r) ·
(

m− 2dx + w
`

)
·
(

w
k

)
≤ ∑

D1∈Supp(NWr)
∑

k≤w<dx

qr+1 ·
(d

q

)w
· 1

w!
·
(

m− 2dx + w
`

)
·
(

w
k

)
≤ qr+1 ∑

D1∈Supp(NWr)
∑

k≤w<dx

( 1
dα

)w
· 1

w!
·
(

m− 2dx + w
`

)
·
(

w
k

)

The maxima of
(

1
dα

x

)w
1

w! (
m−2dx+w

` )(w
k ) is attained at w = k. Hence,

T1 ≤ dx ·
q2(r+1)

dαk
x · k!

·
(

m− 2dx + k
`

)
.
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4.2.5 Upper bound on T2

Let D1 and D2 be distinct sets in Supp(NWr). Then, from Observation 4.1, any box b ∈
ν2(D1, D2) is of the form

b = box((A1, C1), (A2, C2), S1, S1).

Let |C1 ∩ C2| = u. Then, we get

Claim 4.5. If |D1 ∩ D2| = w, then

|ν2(D1, D2)| =
k

∑
u=0

(
m− 2dx + w

`− dx + k + w− u

)(
dx − w
k− u

)2(w
u

)
and T2 ≤ dx · k · q2(r+1) ·

(
m− 2dx

`− dx + k

)
·
(

dx

k

)2

.

Proof. The calculation for T2 is similar to that for T1 and hence is omitted. In this case, the
maxima of the expression is attained at w = u = 0.

4.2.6 Upper bound on T3

Claim 4.6. For our choice of the parameter r and large enough m, T3 = 0.

Proof. From Claim 4.2, we have that if any box

b ∈ ν3(D1, D2, D3, D4),

then `− v + k ≤ r and dx − (`− v + k) ≤ r and hence dx ≤ 2r. However, recall that

r =
⌊

α + β

2(1 + α)
dx

⌋
− 1,

where α = Θ( ln ln m
ln m ) and β = 1

ln m . Thus,

r ≤
c·ln ln m

ln m + 1
ln m

2
(

1 + c·ln ln m
ln m

)dx (where c is a constant)

=
c · ln ln m + 1

2(ln m + c · ln ln m)
dx

≤ c · ln ln m
ln m

dx (for large enough m)

34



≤ 1
3

dx (for large enough m)

Thus we have 3r ≤ dx ≤ 2r which can only happen when r ≤ 0. However, for large enough
m, r > 0 and hence dx ≤ 2r is not possible.

4.2.7 Lower bound on SurRank(B)

Comparing ( m−2dx
`−dx+k) and (m−dx

` ) we get(
m− 2dx

`− dx + k

)
≥ 1

3dx
·
(

m− dx

`

)
.

Hence, from Claims 4.3 and 4.5, the upper bound on T2 dominates the upper bound on
T0. This in conjunction with Corollary 4.1 and Claims 4.6, 4.4 and 4.5 yields,

Tr(B2) ≤
dx ·

q2(r+1)

dαk
x · k!

·
(

m− 2dx + k
`

)
+ 2dx · k · q2(r+1) ·

(
m− 2dx

`− dx + k

)
·
(

dx

k

)2

.

This along with Claim 4.1 implies that SurRank(B) ≥ min(R1, R2), where

R1 =
q2(r+1) · (dx

k )
2 · (m−dx

` )
2

2dx · q2(r+1)

dαk·k! · (
m−2dx+k

` )

and

R2 =
q2(r+1) · (dx

k )
2 · (m−dx

` )
2

4dx · k · q2(r+1) · ( m−2dx
`−dx+k) · (

dx
k )

2 .

Since

(m−dx
` )

2

(m−2dx+k
` )

≥ 1

2kdO(1)
x

·
(

m
`

)
and

dαk
x · k! ·

(
dx

k

)2

≥ 1

2kdO(1)
x

·
(

m
k

)
,

R1 ≥ 1
dO(1) · 1

4k · (m
k ) · (

m
` ). Similarly, as
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(m−dx
` )

2

( m−2dx
`−dx+k)

≥ 1

dO(1)
x

(
m

`+ dx − k

)
,

R2 ≥ 1
dO(1) (

m
`+dx−k). Hence,

SurRank(B) ≥ 1

dO(1)
x

min
(

1
4k ·

(
m
k

)(
m
`

)
,
(

m
`+ dx − k

))

=
1

mO(1)
min

(
1
4k ·

(
m
k

)(
m
`

)
,
(

m
`+ dx − k

))
.
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Chapter 5

Conclusion and Future Work

In this thesis, we proved, what is to the best of our knowledge, the first super-quadratic
lower bound for depth four arithmetic circuits. Some interesting avenues for future work
are as follows:

1. Prove a super quadratic lower bound on the number of gates of a depth four circuit. The
almost cubic lower The almost cubic lower bound for depth three circuits in [KST16] is
on the number of gates.

2. Improve the lower bound to an almost cubic lower bound.

3. Prove a super-quadratic lower bound for a polynomial in VP. An almost cubic lower
bound for depth three circuits is known for polynomials computed by polynomial size
depth five circuits [BLS16, Yau16].

4. Prove lower bounds for the IMM2,n ”polynomial”. It follows from ideas in [CT19] that
if IMM2,n - the 2 × 2 matrix of polynomials obtained by multiplying n many 2 × 2
symbolic matrices whose entries ae distinct variables - can be computed by a depth
∆ circuit of size nk, then it can also be computed by a depth ∆0 circuit of size O( ∆

∆0
·

n1+exp(− ∆
∆0k )).1 So, proving a lower bound of Ω(∆ · n1+ 1

∆ ) for a depth circuit computing
IMM2,n would give a super-polynomial lower bound for constant depth circuits! In
fact, even for depth five circuits, we have the following: a quadratic lower bound on
the number of gates of a depth five circuit computing IMM2,n would yield a super-
cubic lower bound on the size of depth three circuits.

1We thank Ankit Garg for pointing this out to us.
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