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Abstract

Two of the most common ways in which arithmetic circuits can be restricted is by requiring
that they be constant read or constant depth. Over the last decade, constant depth circuits
have received a lot of attention in the arithmetic circuit literature as proving strong enough
lower bounds for constant depth arithmetic circuits imply lower bounds for general arith-
metic circuits. The orbits of constant read models are extremely interesting because the orbit
closures (i.e. the border of the orbit) of some constant read models capture arithmetic for-
mulas and algebraic branching programs. In this thesis we study some problems about the
orbits and borders of certain constant read models as well as the lower bound problem for
constant depth arithmetic circuits.

Let F be an arbitrary field. The orbit of f ∈ F[x1, . . . , xn] is defined as orb( f ) := { f (Ax +
b) : A ∈ GL(n, F), b ∈ Fn}, where x = (x1 . . . xn)T. The orbit of a circuit class C is defined
as the union of the orbits of all polynomials computable by circuits in C. In our first work,
we study the (black-box) PIT problem for the orbits of low individual degree commutative
ROABPs, multilinear constant width ROABPs, constant depth constant occur formulas, and
occur once formulas. We give quasi-polynomial time PIT algorithms for all four models.
The PIT algorithm for the first model implies a quasi-polynomial time PIT algorithm for
orbits of elementary symmetric polynomials and multilinear sparse polynomials. A quasi-
polynomial time PIT algorithm for the orbits of {IMM3,d}d∈N is obtained as a corollary to
the PIT algorithm for the orbits of multilinear constant width ROABPs. Also, the PIT algo-
rithm for the third model yields a quasi-polynomial time PIT algorithm for orbits of multi-
linear depth 4 circuits with constant top fan-in as well as polynomial time PIT algorithms
for the orbits of the sum-product polynomials and power symmetric polynomials. These re-
sults are obtained by building upon and strengthening the rank concentration by translation
technique of [ASS13].

In our second work, we study the equivalence test problem for read-once arithmetic
formulas (ROFs) as well as the polynomial equivalence problem for the orbits of ROFs. Two
polynomials f , g are said to be equivalent if g ∈ orb( f ). The equivalence test problem for
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Abstract

ROFs is as follows: given black-box access to an n-variate polynomial f check if it is in
the orbit of an ROF. If yes, output an ROF C as well as A ∈ GL(n, F), b ∈ Fn such that
f = C(Ax + b). In other words, it is the circuit reconstruction problem for orbits of ROFs.
The polynomial equivalence problem for the orbits of ROFs is the following: given black-box
access to n-variate polynomials f , g in the orbits of two unknown ROFs, determine if f and g
are equivalent. If yes, then output A ∈ GL(n, F), b ∈ Fn such that g = f (Ax + b). We give
the first randomized polynomial time equivalence testing algorithm for ROFs. We also give
the first randomized polynomial time algorithm for the polynomial equivalence problem
for orbits of additive constant free ROFs which are a slightly restricted class of ROFs. These
results are obtained by analyzing the Hessian determinant and the set of essential variables
of an ROF.

In our third work, we study the lower bounds problem for constant depth arithmetic
circuits. In a breakthrough work, Limaye, Srinivasan, and Tavenas [LST21] resolved the
long-standing open problem of proving super polynomial lower bounds for constant depth
arithmetic circuits. Their proof involves a hardness escalation step wherein the problem of
proving lower bounds for constant depth homogeneous circuits is reduced to the problem of
proving lower bounds for set-multilinear circuits. We give a more direct proof of their result
by avoiding this hardness escalation step. As this step introduces an exponential blow-up
in the circuit size, our proof opens up the possibility of proving exponential lower bounds
for constant depth homogeneous circuits. Our lower bounds hold for the IMM and Nisan-
Wigderson design polynomials. They are obtained by directly upper bounding the shifted
partials and affine projection of partials (APP) measures of constant depth homogeneous
circuits. We hope that this would help in obtaining average case reconstruction algorithms
for constant depth homogeneous circuits via the lower bounds to learning framework intro-
duced in [KS19a, GKS20, BGKS22].

Finally, in our fourth work, we study the border of sums of 2 ROFs. The border of a circuit
class C consists of all polynomials that can be “approximated” by a sequence of polynomials
computable by circuits in C. The border of ROFs is contained in ROFs. We show that the class
of sum of k many n-variate ROFs is not closed under the border for 2 ≤ k ≤ n

5 . Nevertheless,
we prove that the border of sums of 2 n-variate additive constant free ROFs is contained in
the sum of O(n) many ROFs. We also give a quasi-polynomial time PIT algorithm for the
border of sum of 2 homogeneous depth-5 ROFs.
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Chapter 1

Introduction

The central open question in the area of computational complexity is the celebrated P
?
= NP

problem which asks whether there is a computational problem that can be solved efficiently
by a non-deterministic Turing machine but not by a deterministic Turing machine. The most
widely used method for proving that Turing machines cannot perform some computation
in a given amount of time is the celebrated diagonalization technique introduced by Georg
Cantor in 1894 to show that there are strictly more real numbers than rational numbers.
When Alan Turing introduced the notion of Turing machines, he used diagonalization to
prove the existence of computational problems that cannot be solved by any Turing machine.
In particular, he showed that the Halting problem, which asks whether a Turing machine M
will ever halt if run with input string x, cannot be decided by any Turing machine. In doing
so, he gave a negative answer the Entscheidungsproblem posed by David Hilbert and Wil-
helm Ackermann. In subsequent decades, diagonalization was used to prove a wide variety
of results showing various limitations of Turing machines. Some examples of these results
are the “hierarchy” theorems [HS65, Coo72] for both deterministic and non-deterministic
Turing machines as well as Ladner’s result [Lad75] establishing the existence of problems
that are neither in P nor in NP if P ̸= NP. However, in 1975 Baker, Gill, and Solovay showed
that the diagonalization technique has some serious limitations [BGS75]. They proved that
diagonalization cannot be used to resolve the P

?
= NP question.1 This result is known as the

relativization barrier.
After the discovery of the relativization barrier, computational complexity theorists turned

their attention to studying models of computation like Boolean circuits. A Boolean circuit
is a directed acyclic graph whose nodes are called gates and edges are called wires. Every

1Interestingly this limitation of diagonalization was itself proved using diagonalization!
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gate with in degree 0 is labelled by a variable or 0/1 and these are called the input gates.
All other gates are AND, OR, or NOT gates. Gates with out degree 0 are the output gates.
A Boolean circuit with m output gates and with n variables naturally computes a function
f : {0, 1}n → {0, 1}m.1 The proof of the well-known Cook-Levin theorem [Coo71, Lev73]
shows that the computation performed by any Turing machine M can be captured by a fam-
ily of Boolean circuits {Cn}n∈N, with Cn capturing the computation performed by M on
inputs of size n. Thus, one can certainly hope that studying the limitations of Boolean cir-
cuits will help us better understand the limitations of Turing machines. Researchers have
defined many sub-classes of Boolean circuits and studied the relative computational pow-
ers of these sub-classes. Decades of efforts have resulted in a rich body of literature on the
limitations of these sub-classes of circuits and about the relationships between them.

The computational model studied in this thesis is an algebraic analogue of Boolean cir-
cuits variously called arithmetic circuits, algebraic circuits, or straight line programs. Just
like a Boolean circuit, an arithmetic circuit is also a directed acyclic graph with input and
output gates. However, in an arithmetic circuit the input gates are labeled by either variables
or elements from some field F. Also, instead of AND, OR, and NOT gates, an arithmetic cir-
cuit has + and × gates. An arithmetic circuit (with one output gate) naturally computes a
polynomial. The polynomial computed by an arithmetic circuit can be defined recursively
as follows: All input gates compute the variable or field element labeling them. A + gate
computes the sum of its inputs and a × gate computes a product of its inputs. The polyno-
mial computed by the circuit is the polynomial computed by its output gate. The size of a
circuit is the number of edges in it while the depth of a circuit is the length of the longest
path in it. See Definition 2.1 for a formal definition of an arithmetic circuit.

Just as Boolean circuits can capture the computation performed by Turing machines,
arithmetic circuits can be used to capture Boolean circuits: an AND gate with inputs f1, . . . , fk

can be replaced by a × gate with the same inputs. A NOT gate with input f can be re-
placed by a + gate with inputs 1 and − f , while every OR gate can first be replaced by
AND and NOT gates using De-Morgan’s laws and then these gates can be replaced by +,×
gates as just described. Note that an arithmetic circuit constructed in this manner from a
Boolean circuit agrees with the Boolean circuit on all Boolean inputs. This method of con-
verting Boolean computation into algebraic computation is called arithmetization and has
been widely used in complexity theory as well as cryptography to great effect. A couple of
examples of this are the proof of IP = PSPACE [Sha92] and the vast body of literature on
succinct zero-knowledge proofs (see [Tha22] for a survey). Furthermore, arithmetic circuits

1Generally, the Boolean circuits studied in computational complexity theory have a single output gate.
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are a natural model for studying many problems with an algebraic flavour frequently en-
countered in computer science. Some such problems are matrix multiplication, determinant
computation, polynomial multiplication, interpolation, and factorization. Algorithms for
these problems can be described as a sequence of additions and multiplications and there-
fore, as arithmetic circuits.

In his seminal 1979 paper [Val79], Leslie Valiant introduced the algebraic complexity
classes VP and VNP and initiated the study of computational hardness for arithmetic circuits;
VP and VNP can be thought of as the algebraic versions of P and NP.1 To define VP and VNP

we first fix a field F. Then VPF is a class of all polynomial families { fn}n∈N over F such that
there exists a polynomial function t : N → N, such that for all n ≥ 1, fn is a polynomial in
at most t(n) variables, of degree at most t(n) and computed by an arithmetic circuit of size
at most t(n). VNPF is a class of all polynomial families { fn}n∈N over a field F such that there
exist polynomial functions k, t : N → N and a family of polynomials {gn}n∈N ∈ VPF such
that for all n ≥ 1,

fn(x1, ..., xk(n)) = ∑
w∈{0,1}t(n)

gt(n)(x1, ..., xk(n), w1, ..., wt(n)).

It is easy to see that VP ⊆ VNP; Valiant conjectured that this containment is strict. To date,
the conjecture remains wide open and is the central open problem in algebraic complexity. In
the following section, we discuss the considerable body of literature that has been developed
about arithmetic circuits as well as the progress made towards this conjecture.

1.1 Algebraic complexity theory
We divide the discussion of the literature on arithmetic circuits into three fundamental cat-
egories: results on lower bounds for arithmetic circuits, polynomial identity testing algo-
rithms, and circuit reconstruction algorithms. These are discussed in Sections 1.1.1, 1.1.2,
and 1.1.3 along with the close relationships between these categories. In Section 1.1.4, we
talk briefly about geometric complexity theory and introduce orbits and borders, two ob-
jects studied in this thesis.

1.1.1 Lower bounds

Do there exist polynomial families { fn}n∈N, where fn is a polynomial in poly(n) variables
and of poly(n) degree such that for any circuit family {Cn}n∈N where Cn computes fn, Cn

must have size which is super-polynomial in n? The answer to this question is a resounding
1Actually VP is much closer to the class NC and VNP to the class #P.
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yes; it can be shown that most polynomial families cannot be computed by families of circuits
with polynomial size. The lower bounds problem asks this very question but requires that
the polynomial family { fn}n∈N be “explicit”. There are a few ways to formalize the notion
of an explicit polynomial family; in this thesis, when we say that a polynomial family is
explicit, we mean that it is in VNP. Note that since VP is the class of all polynomial families
of polynomial degree computed by families of polynomial sized circuits, the lower bounds
problem is just another way to phrase the question of whether VP ?

= VNP.
The VP

?
= VNP problem has some direct implications on the lower bounds question

for Boolean circuits. Bürgisser has shown that if VP = VNP over a finite field then the
non-uniform versions of P and NP, viz. P/poly and NP/poly are also the same [Bür00].
Bürgisser also proved a similar result for fields of characteristic 0 in the same work, but
this result assumes the Generalised Riemann Hypothesis. An improvement on the Karp-
Lipton theorem [KL80] by Michael Sipser states if P/poly = NP/poly, then the polynomial
hierarchy collapses to the second level. Thus, it is unlikely that VP = VNP and we expect
the lower bounds question to have an affirmative answer. The lower bounds question also
has deep connections to the existence of efficient polynomial identity testing and circuit
reconstruction algorithms, but we defer a discussion of these connections to Sections 1.1.2
and 1.1.3, respectively.

To make progress towards the VP
?
= VNP problem, researchers have defined many

restricted classes of arithmetic circuits and proved various lower bounds for these circuit
classes. They have also shown that proving strong enough lower bounds for some of these
restricted classes of circuits would actually imply that VP ̸= VNP. We now give a brief
account of various known lower bound results.

Prior work1

General circuits and formulas. Not much is known about lower bounds for general arith-
metic circuits and formulas computing explicit polynomials. Baur and Strassen [BS83, Str73]
proved that any arithmetic circuit computing the power symmetric polynomial (PSymn,d :=
xd

1 + · · · + xd
n) or the elementary symmetric polynomial (ESymn,d := ∑S⊆[n]:

|S|=d
∏i∈S xi) must

have size Ω(n log d); both these lower bounds are tight. However, we do expect there to be
polynomials in VNP which require exponential sized circuits. Yet, to date no lower bound
stronger than the Ω(n log d) is known for general arithmetic circuits.

1This account of the known lower bounds result appears in a joint work with Prashanth Amireddy, Ankit
Garg, Neeraj Kayal, and Chandan Saha [AGK+23].
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The best-known lower bound for general arithmetic formulas is quadratic.1 [Kal85]
proved that any arithmetic formula computing the polynomial ∑i,j∈[n] xj

iyj must have size
Ω(n2). Recently, [CKSV22] proved an Ω(n2) lower bound for arithmetic formulas comput-
ing ESymn,0.1n. They also showed that any ‘layered’ Algebraic Branching Program (ABP)
computing PSymn,n has size Ω(n2). ABPs are algebraic analogues of (Boolean) branching
programs and, as a model of computation, are known to be at least as powerful as formulas.
Because of the apparent difficulty of proving lower bounds for general models of computa-
tion, restricted classes of circuits like multilinear, homogeneous, and low-depth circuits have
received a lot of attention in the last few decades. We now discuss a few results for these
models.

Multilinear and set-multilinear circuits. A circuit or formula is said to be multilinear if
every gate in it computes a multilinear polynomial.2 [RSY08] showed a lower bound of
Ω(n4/3/ log2 n) for syntactically multilinear circuits. This lower bound was improved to an
Ω(n2/ log2 n) bound in [AKV18]. Unlike the case of general circuits and formulas, a super-
polynomial separation is known between multilinear circuits and formulas. [Raz06, RY08]
proved that there exists a polynomial computable by polynomial-size multilinear circuits
but can only be computed by multilinear formulas of size nΩ(log n). [DMPY12] showed a
similar lower bound but for a polynomial computable by a polynomial-size multilinear ABP.

Exponential lower bounds are known for low-depth multilinear circuits. A lower bound
of 2nΩ(1/∆) for multilinear circuits of product-depth ∆ = o(log n/ log log n) computing the
n× n permanent and determinant was shown in [RY09]. [CLS19] proved a lower bound of
2Ω(∆d1/∆) for multilinear circuits of product-depth3 at most ∆ ≤ log d computing the iter-
ated multiplication polynomial IMM2,d (see Definition 2.15). A quasi-polynomial separation
between product-depth ∆ multilinear circuits and product-depth ∆ + 1 multilinear circuits
was proved in [RY09] and improved to an exponential separation in [CELS18].

Notice that the lower bounds mentioned in the previous paragraph are of the form
nO(1) · f (d) where f (d) is a superpolynomial but sub-exponential function of the degree.
Borrowing terminology from parameterised complexity, [LST21] calls such lower bounds
FPT lower bounds. As pointed out in [LST21], it is unclear if FPT bounds can be used
to prove lower bounds for low-depth circuits. [LST21] and later [BDS22] prove a non-
FPT lower bound of ndexp(−∆)

for set-multilinear formulas of product-depth ∆ computing

1Arithmetic formulas are arithmetic circuits whose underlying graph is a tree.
2In a multilinear polynomial, the individual degree of every variable is at most 1.
3The product depth of a circuit is the maximum number of product gates on any root to leaf path in the

circuit.
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IMMn,d when d = O(log n). These lower bounds are then used to prove super-polynomial
lower bounds for low-depth circuits. In [TLS22], a non-FPT lower bound of (log n)Ω(∆d1/∆)

is proved for set-multilinear formulas of product-depth ∆ = O(log d) computing IMMn,d.
They also prove a lower bound of (log n)Ω(log d) for any set-multilinear formula computing
IMMn,d. [KS22] proved a lower bound of nΩ(d1/∆/∆) for set-multilinear formulas of product-
depth ∆ computing the Nisan-Wigderson design polynomial. Later [KS23b] improved this
result by obtaining an nΩ(d1/∆/∆) lower bound for depth ∆ set-multilinear formulas comput-
ing a polynomial Pn which can be computed by a set-multilinear ABP. They also show that
any set-multilinear formula of arbitrary depth computing Pn must have size nΩ(log d).

Homogeneous and low-depth circuits. A long line of work [VSBR83, AV08, Koi12, GKKS16,
Tav15] on depth-reduction results has shown if an n-variate, degree-d polynomial can be
computed by an arithmetic circuit of size s, then it can also be computed by a ΣΠΣ1 circuit of
size sO(

√
d) as well as by a homogeneous ΣΠΣΠ2 circuit of size sO(

√
d). Thus, an nΩ(

√
d) lower

bound for either ΣΠΣ circuits or homogeneous ΣΠΣΠ circuits would yield a separation
between VP and VNP. Motivated by these depth reduction results, a significant body of
work has developed for lower bounds against constant depth circuits.

[SS97, Raz10] proved a lower bound of Ω(∆n1+1/∆) for depth ∆ circuits with multiple
output gates. In a classic work [NW97], Nisan and Wigderson showed that any homo-
geneous depth 3 circuit computing ESymn,d has size

(n
d
)Ω(d). A series of papers [Kay12b,

GKKS14, KSS14, FLMS15, KLSS17, KS17b] resulted in an nΩ(
√

d) lower bound for homoge-
neous depth 4 circuits computing the Nisan-Wigderson design polynomial and IMMn,d.

[SW01] proved a quadratic lower bound for depth 3 circuits computing elementary sym-
metric polynomials of degree Ω(n). This was improved to an almost cubic lower bound
in [KST16a] for a polynomial in VNP. Subsequently, [BLS16, Yau16] proved similar lower
bounds for polynomials in VP. [GST20] obtained a lower bound of Ω̃(n2.5) for depth 4
circuits computing the Nisan-Wigderson design polynomial. In a recent breakthrough work

[LST21], Limaye, Srinivasan, and Tavenas proved a lower bound of nΩ(d1/(2∆−1)/∆) for product-
depth ∆ circuits computing IMMn,d, d = O(log n). [BDS22] improved this to a lower bound

of nΩ(d1/ϕ2∆
/∆) where ϕ = (

√
5 + 1)/2 ≈ 1.618.

We refer the reader to an excellent survey on lower bounds by Saptharishi (and other
contributors) [Sap] for more details about the above mentioned results.

1A depth 3 circuit with alternating layers of + and × gates with a + gate at the top.
2A depth 4 circuit with alternating layers of + and × gates with a + gate at the top.
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1.1.2 Polynomial identity testing

Given a polynomial f , is there an efficient algorithm that can determine whether f is identi-
cally zero or not? We say that a polynomial is identically zero (denoted by f ≡ 0) if the coeffi-
cients of all the monomials in it are 0.1 Algebraic geometers have known for at least a century
and a half that if an n-variate polynomial f is not identically zero and the field F it is defined
over is sufficiently large, then it will be non-zero at most of the points (a1, . . . , an) ∈ Fn. The
celebrated Schwartz-Zippel lemma [Ore22, DL78, Sch80, Zip79] shows that if f is a non-zero
n-variate, degree d polynomial then for any S ⊆ F,

Pr
(a1,...,an)∈Sn

( f (a1, . . . , an) = 0) ≤ d
|S| .

This gives a natural randomised polynomial time algorithm for checking if f is identically
zero or not: fix an S ⊆ F, |S| ≥ 2d, pick (a1, . . . , an) uniformly at random from Sn and check
if f (a1, . . . , an)

?
= 0. The Schwartz-Zippel lemma has played a crucial role in the proof of

IP = PSPACE [Sha92] and is also used in almost all succinct zero knowledge proofs.
The Polynomial Identity Testing (or PIT for short) problem asks if there is a deterministic

polynomial time algorithm to determine whether a given polynomial is identically zero or
not. Note that there are multiple ways to give a polynomial as input: it can be given as
a list of coefficients, as an arithmetic circuit, or we can be given black-box/oracle access
to the polynomial.2 Since the PIT problem becomes trivial when the polynomial is given
as a list of coefficients, we only consider the situations in which either a circuit computing
the polynomial or black-box access is given. The PIT problem for these two situations is
referred to as the white-box PIT problem and the black-box PIT problem, respectively. The
latter is also known as the hitting-sets problem. A hitting set H ⊆ Fn for a circuit class C
is a set of points such that for any f ̸≡ 0 ∈ C, there exists an (a1, . . . , an) ∈ H such that
f (a1, . . . , an) ̸= 0. It is not difficult to see that a deterministic polynomial time black-box PIT
algorithm exists for a circuit class C if and only if there exists a polynomial time constructible
hitting set for that class.

The PIT problem is one of the flagship de-randomization problems studied in theoretical
computer science. It has connections to proving computational hardness results as well as
to other important problems in algorithm design. The connection between PIT and com-

1Note that this is not the same as a polynomial evaluating to zero over the entire field; x2 − x over F2 is a
good example of a polynomial that is zero over the entire field but is not identically zero.

2By black-box access to a polynomial f ∈ F[x1, . . . , xn], we mean the ability to evaluate f (a1, . . . , an) at any
(a1, . . . , an) ∈ Fn in unit time.
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putational hardness was established in [HS80, KI04, Agr05]. [KI04] showed that a sub-
exponential time algorithm for the PIT problem in the white-box or the black-box setting
implies that either NEXP ̸⊆ P/poly or that the permanent polynomial cannot be computed by
polynomial sized arithmetic circuits. [HS80, Agr05] proved that a deterministic polynomial
time algorithm for black-box PIT would imply that there exists a polynomial which requires
exponential size circuits and whose coefficients can be computed in PSPACE. [KI04] showed
that an exponential lower bound for arithmetic circuits would imply a quasi-polynomial
time PIT algorithm. The celebrated deterministic primality testing algorithm of Agrawal,
Kayal, and Saxena [AKS04] was obtained by de-randomizing an instance of a polynomial
identity test from [AB03]. Further, a deterministic polynomial time algorithm for PIT can be
used to de-randomize the isolation lemma of Mulmuley, Vazirani, Vazirani [MVV87]; this
would yield a deterministic parallel algorithm for finding perfect matchings in graphs.

Prior work1

Constant-depth models. The polynomial-time hitting set construction for depth-2 circuits
(i.e., sparse polynomials) in [KS01] is one of the widely used results in black-box PIT. Depth-
3 circuit PIT has also received a lot of attention. [DS07] gave a quasi-polynomial time PIT
algorithm for depth-3 circuits with constant top fan-in by showing a structural result on the
rank2 [KS07] improved the complexity to polynomial-time using a different method, which
is based on a generalization of the Chinese Remaindering Theorem (CRT). The structural
result of [DS07], along with the rank extractors of [GR08], played a central role in devising
polynomial-time constructible hitting sets for depth-3 circuits with constant top fan-in over
Q by [KS11], [KS09b], [SS13]. Ultimately, a combination of ideas from the CRT method and
rank extractors led to a polynomial-time hitting set construction for the same model over
any field [SS12, SS13]. Meanwhile, [Sax08], [Kay10] gave polynomial-time PIT for depth-3
powering circuits. Using ideas from [KS07], [Sax08], [SSS13] gave polynomial-time PIT for
the sum of a depth-3 circuit with constant top fan-in and a semi-diagonal circuit (which is a
special kind of a depth-4 circuit). [SSS09] showed that polynomial-time PIT (hitting sets)
for the affine projections of IMM2,d implies polynomial-time PIT (hitting sets) for depth-3
circuits.

A quasi-polynomial time hitting set for set-multilinear depth-3 circuits with known variable-
partition was given by [FS12]. Independently and simultaneously, [ASS13] gave a quasi-
polynomial time hitting set for set-multilinear depth-3 circuits with unknown variable-partition

1This account of the known PIT result appears in a joint work with Chandan Saha [ST24].
2Rank of a depth-3 circuit is the number of linearly independent linear polynomials appearing in the “sim-

ple part” of a circuit.
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(and more generally, for constant-depth pure formulas of [NW97]) using a different tech-
nique, namely rank concentration by translation. Set-multilinear depth-3 circuits (in fact, pure
formulas) form a subclass of ROABPs. [dOSlV16] gave subexponential-time hitting sets for
multilinear depth-3 and depth-4 formulas (and more generally, for constant-depth multilin-
ear regular formulas) by reducing the problem to constructing hitting sets for ROABPs. For
multilinear depth-4 circuits with constant top fan-in, [KMSV13] gave a quasi-polynomial
time hitting set. This was improved to a polynomial-time hitting set in [SV18]. Multilinear
depth-4 circuits with constant top fan-in form a subclass of depth-4 constant-occur formu-
las. [ASSS16] gave a unifying method based on the algebraic independence technique in-
troduced by [BMS13] to design polynomial-time hitting sets for both depth-3 circuits with
constant top fan-in and constant-depth, constant-occur formulas over fields of large char-
acteristic. Recently, [BSV23] gave a polynomial time hitting set for constant-occur, depth-4
formulas over any field. A generalization of depth-3 powering circuits to depth-4 is sums
of powers of constant degree polynomials; Forbes [For15] gave a quasi-polynomial time hit-
ting set for this model. Recently, a sequence of works by [PS21, PS20] and [Shp19] led to a
polynomial-time hitting set for depth-4 circuits with top fan-in at most 3 and bottom fan-in
at most 2 via a resolution of a conjecture of Gupta [Gup14], [BMS13] on the algebraic rank of
the factors appearing in such circuits. [DDS21] gave a quasi-polynomial time PIT algorithm
for depth 4 circuits with constant top and bottom fan-in. In a breakthrough paper, Limaye,
Srinivasan, and Tavenas [LST21] proved super-polynomial lower bounds for low-depth cir-
cuits; this yields a sub-exponential hitting set for arithmetic circuits of depth o(log log log n).

Constant-read models. [SV15] initiated the study of PIT for read-once formulas. They gave
a polynomial-time PIT algorithm and a quasi-polynomial time hitting set construction for
sums of constantly many preprocessed read-once formulas (PROFs). The leaves of a PROF are
labelled by univariate polynomials and every variable appears in at most one leaf; PROFs
form a subclass of occur-once formulas. Later, a polynomial-time hitting set construction
for the same model was given by [MV18]. A sum of k ROFs is a special case of a multi-
linear read-k formula. [AvMV15] gave a quasi-polynomial time hitting set construction for
multilinear read-k formulas. Their construction also works for multilinear sparse-substituted
read-k formulas, wherein the leaves are replaced by sparse polynomials and every variable
appears in at most k of the sparse polynomials. Observe that a sparse-substituted read-
k formula is an occur-k formula (without the powering gates), however the arguments in
[AvMV15] additionally require the multilinearity assumption.

A polynomial-time PIT for ROABPs follows from the PIT algorithm for non-commutative
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formulas [RS05]. [FS13] gave a quasi-polynomial time construction of hitting sets for ROABPs,
when the order of the variables is known; prior to their work, a quasi-polynomial time
hitting set for multilinear, constant-width, known-variable-order ROABPs was given by
[JQS10]. Building on the rank concentration by translation technique from [ASS13] and the
merge-and-reduce idea from [FS13], [FSS14] gave a quasi-polynomial time hitting set con-
struction for multilinear ROABPs (more generally, low individual degree ROABPs). Finally,
[AGKS15] obtained a quasi-polynomial time constructible hitting set for ROABPs using a
different and simpler method, namely basis isolation, which can be thought of as a general-
ization of the monomial isolation method in [KS01]. It was also shown later by [GKST17],
[FGS18] that translation by a basis isolating weight assignment leads to rank concentra-
tion, and so, constructing a basis isolating weight assignment is a stronger objective than
showing rank concentration by translation. This fact was used effectively by [GKST17] to
design hitting sets for sums of constantly many ROABPs in quasi-polynomial time; they
also gave a polynomial-time PIT algorithm for the same model. A conjunction of the ba-
sis isolation and the rank concentration techniques have been used to give more efficient
constructions of hitting sets for ROABPs by [GG20]. [GKS17] gave a polynomial-time hit-
ting set for constant-width ROABPs, when the order of the variables is known as well as
an improved quasi-polynomial time hitting set for commutative ROABPs. For read-k oblivi-
ous algebraic branching programs, [AFS+18] obtained a subexponential-time PIT algorithm.

Edmonds’ model. An important special case of PIT is the following problem first posed by
Edmonds [Edm67]: given f = det(A0 + ∑i∈[n] xi Ai), where Ai ∈ Fn×n is a rank-1 matrix for
every i ∈ [n] and A0 ∈ Fn×n is an arbitrary matrix, check if f = 0. This case of PIT, which
can be thought of as a generalization of PIT for determinants of read-once symbolic matri-
ces, played an instrumental role in devising fast parallel algorithms for several problems
such as perfect matching, linear matroid intersection and maximum rank matrix completion
[Lov79, KUW86, MVV87, FGT16, ST17, NSV94, Mur93, GT20]. A polynomial-time PIT for
this model is known [Edm79, Lov89, Mur93, Gee99, IKS10]. [GT20] gave a quasi-polynomial
time hitting set via a certain derandomization of the Isolation Lemma of Mulmuley, Vazirani,
Vazirani [MVV87]. It is interesting to note that hitting sets for the orbits of polynomials com-
putable by this model imply hitting sets for the orbit of the determinant polynomial and also
the orbit of the iterated matrix multiplication polynomial via a known reduction by Valiant
[Val79] from ABPs to p-projections of the determinant polynomial family.
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Orbits and orbit closures.1 A polynomial-time hitting set for the orbit of the power sym-
metric polynomial PSymn,d = xd

1 + . . . + xd
n was given by [KS21]. For the orbit closures of

polynomials that are computable by low-degree, polynomial-size circuits (i.e., VP circuits),
[FS18], [GSS18] gave PSPACE constructions of hitting sets.

We refer the reader to the excellent surveys by Saxena [Sax09, Sax14], Shpilka and Yehu-
dayoff [SY10] for more details on some of the results and the models mentioned above.

1.1.3 Circuit reconstruction

Arithmetic circuit reconstruction is the problem of learning an arithmetic circuit given black-
box access to it. More precisely, given black-box access to an n-variate, degree-d polynomial
f , a circuit reconstruction algorithm has to output a circuit computing f , ideally in time
poly(n, d, s), where s is the size of the smallest circuit computing f . When one considers the
circuit reconstruction problem for a circuit class C, two natural variants emerge: the proper
reconstruction problem and the improper reconstruction problem. The proper circuit re-
construction problem requires that the circuit output by the algorithm also belong to the
class C, while the improper version of the problem imposes no such restriction. Both these
versions of the circuit reconstruction problem have been studied for various special circuit
classes. Our result on equivalence test for ROFs can be thought of as a circuit reconstruction
algorithm for formulas in the average case. We talk about the equivalence test and poly-
nomial equivalence problems in Section 1.1.4.1; here we shall discuss some of the reasons
for studying the circuit reconstruction problem and document known circuit reconstruction
algorithms.

The first reason that we shall discuss is the implication that a proper circuit reconstruction
algorithm for a circuit class has for the Minimum Circuit Size Problem (MCSP, for short) for
that circuit class. MCSP for arithmetic circuits is the following decision problem: Given the
(n+d

d ) dimensional coefficient vector of an n-variate, degree-d polynomial f and an s ∈ N,
does f have an arithmetic circuit of size s? It is known that the existence of cryptograph-
ically secure one-way functions implies that the Boolean version of the problem2 is not in
P [KC00]; in fact it is known that under this assumption, even an n1−o(1) approximation
algorithm cannot exist [AH19]. However, no such result is known in the algebraic setting.
Observe that a poly(n, d, s) time reconstruction algorithm for a circuit class C would imply

1See Section 2.9 for a definition of the orbit of a polynomial.
2In the Boolean MCSP, the input is the truth table of a Boolean function and one has to determine if there

is a size s Boolean circuit computing the given function.
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an sO(1) approximation algorithm for MCSP for C. This is so because the circuit output by a
poly(n, d, s) time algorithm must have size at most poly(n, d, s).

Another compelling reason for studying the circuit reconstruction problem is its inter-
play with the lower bounds problem. [FK09, Vol16] showed that a circuit reconstruction
algorithm for a circuit class implies a super-polynomial lower bound for that class. Con-
versely, reconstruction algorithms for a lot of classes have relied heavily on the ideas used to
prove lower bounds for those classes. However, a lot of such reconstruction algorithms
are only known for the average-case version of the reconstruction problem. An average-
case reconstruction algorithm for a circuit class C can learn random circuits picked from
C using some “nice” probability distributions. An average-case reconstruction algorithm
for set multilinear depth-3 circuits implies an average-case algorithm for tensor decomposi-
tion, while an average-case reconstruction algorithm for depth-3 powering circuits implies
an average-case algorithm for the decomposition of symmetric tensors. It has also been
observed recently that an average-case reconstruction algorithm for very special types of
depth-4 circuits leads to an algorithm for learning random mixtures of Gaussians [GKS20]
and subspace clustering [CGK+24, BESV24].

Prior work

Constant depth circuits. [KS01] gave a deterministic polynomial time circuit reconstruction
algorithm for spare polynomials, i.e. for ΣΠ circuits. This result, in conjunction with the ran-
domized polynomial time factorisation algorithm [KT90], immediately yields a randomized
polynomial time learning algorithm for ΠΣΠ circuits. Circuit reconstruction algorithms are
also known for ΣΠΣ circuits with top fan-in 2. [Shp07] gave an algorithm over finite fields
that runs in time which is quasi-polynomial in the number of variables and the degree of the
polynomial as well as in |F|, while [Sin16] gave an algorithm over fields of characteristic 0.
In a follow up paper [Sin22] an algorithm that works over finite fields was given. Building
upon [Shp07], [KS09a] gave a deterministic quasi-polynomial reconstruction algorithm for
ΣΠΣ circuits with constant top fan-in over finite fields. The case is open for characteristic 0
fields.

[KS19a] gave average-case reconstruction algorithms for homogeneous ΣΠΣ circuits as
well as for set-multilinear depth-3 circuits and depth-3 powering circuits. [GKS20, BHKX22,
CGK+24] gave average-case reconstruction algorithms for sums of powers of low-degree
polynomials. [BGKS22] gave an average-case polynomial time reconstruction algorithm for
learning generalized depth three circuits.
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Multilinear circuits. [Shp07] gave a randomized poly(n, |F|) reconstruction algorithm for
multilinear ΣΠΣ circuits with top fan-in 2 over finite fields. [GKL12] extended this result to
multilinear depth-4 circuits with top fan-in 2; their algorithm works over any field. [GKL11]
gave an average-case polynomial time reconstruction algorithm for multilinear formulas.
[BSV20] gave a quasi-polynomial time reconstruction algorithm for depth-4 multilinear cir-
cuits with constant top fan-in. [BSV21] gave polynomial time reconstruction algorithms for
multilinear depth-3 circuits with constant top fan-in for all fields of large enough or zero
characteristic as well as for depth-3 powering circuits with constant top fan-in.

ROFs and ROABPs. A deterministic polynomial time reconstruction algorithm for read-
once formulas is known [SV14, MV18]. Randomised polynomial time algorithms for learn-
ing ROABPs were obtained in [BBB+00, KS06]. [FS13] partially de-randomised these algo-
rithms to obtain a quasi-polynomial time reconstruction algorithm for ROABPs.

Other formulas and ABPs. An average-case polynomial time reconstruction algorithm for
fan-in 2 regular formulas (a.k.a. alternating normal form formulas) was given in [GKQ13].
[KNS19] gave an efficient average-case reconstruction algorithm for homogeneous constant
width ABPs.

1.1.4 Geometric complexity theory, orbits and borders of polynomials

Geometric Complexity Theory (GCT) is an ambitious program pioneered by Mulmuley and
Sohoni [MS01] to resolve the determinant versus permanent problem. The n2-variate de-
terminant polynomial Detn is the determinant of an n × n symbolic matrix. Similarly, the
n2-variate permanent polynomial Permn is the determinant of an n× n symbolic matrix. It is
conjectured that Permn is not in aproj(Detm) for any m = poly(n). The set aproj(Detm) is the
set of affine projections of Detm, that is aproj(Detm) =

{
Detm(Ax + b) : A ∈ Fm2×m2

, b ∈ Fm2
}

where x = (x1 . . . xm2)T. This conjecture is a weaker version of Valiant’s conjecture that
VP ̸= VNP. This is so because the determinant polynomial is complete for a sub-class of
VP called VBP while the permanent polynomial is complete for VNP. See Section 2.2 for a
definition of VBP.

Geometric complexity theory attempts to use ideas from algebraic geometry and rep-
resentation theory to separate Permn and aproj(Detm) for any m = poly(n). It is conceiv-
able that any proof of this separation that uses algebraic geometry would actually prove a
stronger result; it will end up proving that Permn is not contained in the Zariski closure of
aproj(Detm). The Zariski closure of any X ⊆ Fn is defined as follows: let I be the set of all
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polynomials in F[x1, . . . , xn] that vanish on X. Then, the Zariski closure of X is the set of
all points at which the polynomials in I vanish simultaneously. aproj(Detm) can be thought
of as a subset of FM, where M = (m2+m

m ), by identifying every polynomial in it with its co-
efficient vector. By the Zariski closure of aproj(Detm), we mean the Zariski closure of this
subset of FM. The Zariski closure of any circuit class computing n-variate, degree d polyno-
mials can be defined in an analogous manner by identifying all polynomials computed by
that circuit class with their coefficient vectors. The Zariski closure of a circuit class C is often
called the border or just the closure of that circuit class and is denoted by C.

It can be shown that the Zariski closure of the affine projections of a polynomial is the
same as the Zariski closure of its orbit (see Appendix E of [ST24] for an elementary proof over
fields of characteristic 0). The orbit of a polynomial f ∈ F[x1, . . . , xn] is defined as orb( f ) :=
{ f (Ax + b) : A ∈ GL(n, F), b ∈ Fn}. Thus, any proof of Permn /∈ aproj(Detpoly(n)) using al-
gebraic geometry must actually prove that Permn /∈ orb(Detpoly(n)), i.e. it must separate the
permanent and the orbit closure of the determinant. In this way, GCT introduces the notions
of orbits and borders into algebraic complexity theory. The introduction of these two notions
not only opens up new directions of investigations for the old problems of lower bounds,
PIT, and circuit reconstruction, but also introduces some interesting new problems. We shall
now discuss two such problems, one related to orbits and another to borders.

1.1.4.1 Polynomial Equivalence

Two n-variate polynomials f , g are said to be equivalent, denoted by f ∼ g, if g ∈ orb( f ).
The Polynomial Equivalence or PE problem asks if the given polynomials f , g are equivalent.
Also, if f ∼ g, then an algorithm for the PE problem should find an A ∈ GL(n, F) and
b ∈ Fn such that g = f (Ax + b). PE for a circuit class C can be defined by requiring that f , g
be computed by circuits in C.

PE is a natural isomorphism-type problem for polynomials. However, despite decades
of work, the exact complexity of the PE problems remains a mystery. Over finite fields, PE
is known to be in NP ∩ coAM [Thi98, Sax06], but to date, no sub-exponential algorithm for
this problem is known. Over C and R, nothing better than a reduction to the problem of
checking whether a system of polynomial equations has a solution is known. As a result, a
special case of the PE problem called the Equivalence Test or ET problem has been studied.
The ET problem is the version of the PE problem where f is a fixed polynomial like the de-
terminant or the permanent polynomial. One can also define the ET problem for a class C
of circuits like ROFs by requiring f to be some unknown polynomial computed by a circuit
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in C. Then, an algorithm for the ET problem needs to determine if a given polynomial g is
equivalent to some circuit in C. If yes, it must output a C ∈ C, A ∈ GL(n, F) and b ∈ Fn such
that g = C(Ax + b). Notice that the ET problem for C is the circuit reconstruction problem
for the orbit of C. As every formula is an affine projection of an ROF, ET for ROFs can be
thought of as a natural special case of formula reconstruction.

Prior work on PE and ET. The PE problem for quadratic forms, also called the Quadratic
Form Equivalence or QFE, has been long known to admit an efficient algorithm. How-
ever, even for cubic forms, PE is known to be a hard problem. More precisely, it is known
that cubic form equivalence is at least as hard as the graph isomorphism problem [AS05].
However, no reduction from cubic form equivalence to graph isomorphism is known, so
the former is possibly harder than graph isomorphism. The ET problem was first intro-
duced in [Kay12a]. Since then, efficient equivalence testing algorithms have been devel-
oped for a host of polynomials like sum-product polynomials and elementary symmetric
polynomials [Kay11], power symmetric polynomials [Kay11, KS21, KS23a], determinant
[Kay12a, GGKS19], permanent [Kay12a, Gro12], continuant [MS21], IMM [KNST17, MNS20],
and Nisan-Wigderson design polynomials [GS19, BDS24]. An equivalence test for the sums
of univariates was given in [GKP18]. [BDSS24] showed that the equivalence test for sparse
polynomials is NP-hard. Very recently, [BDGT24] have shown that the isomorphism testing
problem for ROABPs is NP-hard. The isomorphism testing problem is the variant of the ET
problem where A is a permutation matrix.

1.1.4.2 De-bordering

The de-bordering question for a circuit class C asks that if f ∈ C, then is f also in C? If not,
then can we find a class C ′ such that C ⊆ C ′? It is known that if f (x1, . . . , xn) ∈ C, then it can
be approximated by circuits in C (see Section 2.10). Thus, the de-bordering question asks that
if a polynomial can be approximated by circuits in a circuit class, can it also be computed
exactly by some circuit in that class? This is not only a natural question, but the de-bordering
problem for VP, i.e. VP ?

= VP has the following connection to the VP
?
= VNP problem: Most

known approaches for proving lower bounds not just prove lower bounds for a class, but
also for the border of that class. Thus, if VP ̸= VNP, but VNP ⊆ VP, then all of the known
approaches can never hope to separate VP and VNP. Another motivation for studying the
de-bordering question comes from the problem of factoring polynomials given as arithmetic
circuits. A conjecture about the efficiency of factoring algorithms called the factor conjecture
says that if f = ge · h, then g can be computed by a circuit of size poly(size( f ), deg(g)), where
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size( f ) is the size of input circuit computing f . Bürgisser showed in [Bür00] that if f = ge · h,
then g can be approximated by a circuit of size poly(size( f ), deg(g)). So, if VP = VP, then the
factor conjecture would be true.

Prior work on de-bordering. It is folklore that the classes of sparse polynomials, ROFs,
ROABPs, as well as non-commutative ABPs are closed under the border. The closure of the
last two follows from the characterisation of ROABPs and non-commutative ABPs given
by Nisan [Nis91]. It also follows from the duality trick [Sax08] that the border of depth-3
powering circuits is contained in the class of ROABPs. Also, the border of set-multilinear
depth-3 circuits is contained in the class of ROABPs. [Kum20] showed that the border of
ΣΠΣ circuits with top fan-in 2 is universal, that is, it can compute all polynomials. [BIM+20]
showed that the class of monotone ABPs is also closed under the border. [DDS21] proved
that the border of depth-3 circuits with constant top fan-in is contained in VBP. They also
gave a quasi-polynomial time hitting set construction for the border of this class. [DS22]
proved that for every k, the border of ΣΠΣ circuits with top fan-in k is strictly contained
in the border of ΣΠΣ circuits with top fan-in k + 1. [CGGR23] proved that the class of
polynomials of the form det

(
∑i∈[n] Aixi

)
is closed under the border provided that all Ai are

rank-1. It was shown in [DGI+24] that any degree d polynomial contained in the border of
depth-3 powering circuits with top fan-in k can be computed by a depth-3 powering circuit
with top fan-in 4k · d.

1.2 Our results
Having described the main directions of research in algebraic complexity theory, we now
motivate and discuss our results. In Sections 1.2.1, 1.2.2, we discuss our results on the hitting
sets and reconstruction problems related to orbits of constant read circuit classes. Section
1.2.4 has our results on the border of sums of ROFs. Our results on lower bounds for constant
depth circuits can be found in Section 1.2.3.

1.2.1 Hitting sets for orbits of circuit classes

We give quasi-polynomial time hitting sets for orbits of low individual degree commuta-
tive ROABPs, multilinear constant width ROABPs, constant-depth constant-occur formu-
las, as well as occur-once formulas. These models have been formally defined in Section
2.1. As corollaries, we get quasi-polynomial time hitting sets for the orbits of various poly-
nomials like the sum-product polynomials as well as the elementary and power symmetric
polynomials. More importantly, we also get quasi-polynomial hitting sets for the orbits of
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{IMM3,d}d∈N
which is complete for arithmetic formulas. The contents of this section are

from a joint work with Chandan Saha [ST24].
We have the following three reasons for studying hitting sets for orbits of ROABPs and

constant-occur formulas.

The power of orbit closures. Affine projections of polynomials computable by polynomial-
size ROABPs or constant-occur formulas have great expressive power. For example, the iter-
ated matrix multiplication polynomial IMMw,d – the (1, 1)-th entry of a product of d generic
w× w matrices – is computable by a linear-size ROABP, yet every polynomial computable
by a size-s general algebraic branching program1 is in aproj(IMMs,s). In fact, it was shown by
Ben-Or and Cleve [BC92] that every polynomial computable by a size-s arithmetic formula is
in aproj(IMM3,poly(s)). The sum-product polynomial SPs,d := ∑i∈[s] ∏j∈[d] xi,j is computable
by a depth-2 read-once formula, yet every polynomial computable by a general depth-3 cir-
cuit with top fan-in s and formal degree d is in aproj(SPs,d). As demonstrated by the depth
reduction results in [GKKS16, Tav15, Koi12, AV08, VSBR83], depth-3 circuits are incredibly
powerful. Also, affine projections of read-once formulas capture general arithmetic formu-
las. The orbit of f being a mathematically interesting subset of aproj( f ), it is natural to ask
if we can give efficient hitting set constructions for the orbits of the above-mentioned poly-
nomial families and circuit classes. Moreover, orb( f ) is not ‘much smaller’ than aproj( f ),
as the latter is contained in the orbit closure of f (orb( f )). The polynomials in orb( f ), and
hence also the polynomials in aproj( f ), can be approximated infinitesimally closely by the
polynomials in orb( f ) over C.2 In this sense, orb( f ) is a dense subset of aproj( f ).

Geometry of the circuit classes. Consider an n-variate polynomial f ∈ R[x] that is com-
putable by a polynomial-size ROABP or a polynomial-size constant-occur formula. Let
V( f ) be the variety (i.e., the zero locus) of f . The geometry of V( f ) is preserved by any
rigid transformation on Rn. A rigid transformation T is given by an orthogonal matrix
R ∈ O(n, R) (which stands for reflections and rotations) and a translation vector b ∈ Rn

such that every x ∈ Rn maps to T(x) = Rx + b. Computation of a set H ⊆ Rn that
is not contained in T(V( f )), for every rigid transformation T, would have to be “mind-
ful” of the geometry of V( f ) and oblivious to the choice of the coordinate system. Com-
puting such an H is exactly the problem of constructing a hitting set for the polynomials

1Thanks to the depth reduction result of Valiant, Skyum, Berkowitz, and Rackoff [VSBR83], low-degree
polynomials computable by arithmetic circuits are also computable by quasi-polynomially large algebraic
branching programs.

2However, orb( f ) can be strictly larger than aproj( f ).
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{ f (Rx + b) : R ∈ O(n, R) and b ∈ Rn}. We can generalize the problem slightly by replac-
ing R ∈ O(n, R) with A ∈ GL(n, R).1 A hitting set for ROABPs or constant-occur formulas
does not immediately give a hitting set for { f (Ax + b) : A ∈ GL(n, R) and b ∈ Rn}, as the
definitions of an ROABP and a constant-occur formula are tied to the choice of the coordi-
nate system.

Strengthening existing techniques. Finally, it is worth investigating whether the tech-
niques used to design hitting sets for ROABPs and constant-occur formulas can be applied
or strengthened or combined to give hitting sets for the orbits of these circuit classes.

Indeed, the results of this section are obtained by building upon, strengthening and com-
bining several tools and techniques from the literature, in particular the rank concentration
by translation technique from [ASS13]; the merge-and-reduce idea from [FS13], [FSS14]; the
algebraic independence based technique from [ASSS16, BMS13]; and the Shpilka-Volkovich
or the k-wise independent generator from [SV15]. Our work here on hitting sets for the or-
bits of the above-mentioned circuit classes probes a line of research that – to our knowledge
– has remained largely unexplored. In obtaining these results, we have highlighted the ef-
ficacy and the versatility of some of the existing tools and techniques. We now state our
results.

Theorem 1.1 (Hitting sets for the orbits of commutative ROABPs with low individual degree)
Let C be the set of n-variate polynomials with individual degree at most d that are computable by
width-w commutative ROABPs. If |F| > n2d, then a hitting set for orb(C) can be computed in
(nd)O(d log w) time.

An interesting subclass of commutative ROABPs is the class of sums of products of uni-
variates. This model, which is a broad generalization of the class of sparse polynomials, has
found important applications in several other works [Sax08, SSS13, GKKS16]. We say an
n-variate polynomial f (x1, x2, . . . , xn) can be expressed as a sum of s products of univariates
if f = ∑i∈[s] ∏j∈[n] fi,j(xj), where each fi,j(xj) is a univariate polynomial in xj. Theorem 1.2
below (which follows as a corollary from the above theorem) gives a quasi-polynomial time
hitting set for the orbits of sums of products of low degree univariates.

Theorem 1.2 (Hitting sets for the orbits of sums of products of low degree univariates) Let
C be the set of n-variate polynomials that can be expressed as sums of s products of univariates of de-
gree at most d. If |F| > n2d, then a hitting set for orb(C) can be computed in (nd)O(d log s) time.

1An invertible transformation A is essentially an orthogonal transformation up to “scaling”: from singular
value decomposition, we have A = UDV, where U, V are orthogonal matrices and D is a diagonal matrix.
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Remarks.

1. Even under the low individual degree restriction the above class remains reasonably
natural and interesting. For example, the elementary symmetric polynomial ESymn,D =

∑S∈([n]D )
∏i∈S xi can be expressed as a sum of n + 1 products of univariate affine forms.

This is due to a nice interpolation trick attributed to Ben-Or in [NW97, Shp02]. The
theorem then implies an nO(log n)-time hitting set for orb(ESymn,D).

2. The theorem also implies a quasi-polynomial time hitting set for the orbits of multi-
linear sparse polynomials, and more generally, for the orbits of sparse polynomials
with low individual degree. It is easy to see that the orbit of a multilinear sparse
polynomial may contain a non-sparse polynomial. So, the existing hitting set con-
structions for sparse polynomials by Klivans and Spielman [KS01], Lipton and Vishnoi
[LV03] (where the complexity depends polynomially on the sparsity parameter) may
no longer remain efficient for the orbits of sparse polynomials.

3. It turns out though that for the particular case of sparse polynomials it is possible to
remove the individual degree restriction from the above theorem. This is due to an
independent and simultaneous work by Medini and Shpilka [MS21].

Theorem 1.3 (Hitting sets for the orbits of multilinear constant-width ROABPs) Let C be the
set of n-variate multilinear polynomials that are computable by width-w ROABPs. If |F| > nO(w4),
then a hitting set for orb(C) can be computed in nO(w6·log n) time.

Remarks.

1. The theorem gives a quasi-polynomial time hitting set for orb(IMM3,d), as IMM3,d is
computable by a width-9 ROABP. As mentioned before, the family {IMM3,d}d∈N is
complete for the class of arithmetic formulas under affine projections (in fact, under
p-projections), as shown by Ben-Or and Cleve [BC92].

2. The set of affine projections of IMM2,d is also quite rich, despite the fact that there are
simple quadratic polynomials that are not in aproj(IMM2,d) for any d, as shown by Al-
lender and Wang [AW16], Saha, Saptharishi, and Saxena [SSS09]. This is because Saha,
Saptharishi, and Saxena [SSS09] proved that hitting sets for aproj(IMM2,d) give hitting
sets for depth-3 circuits. Moreover, Bringmann, Ikenmeyer, and Zuiddam [BIZ18] have
shown that orb(IMM2,d) captures the orbit closures of arithmetic formulas. The above
theorem implies a quasi-polynomial time hitting set for orb(IMM2,d).
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Theorem 1.4 (Hitting sets for the orbits of constant-depth, constant-occur formulas) Let C
be the set of n-variate, degree-D polynomials that are computable by depth-∆, occur-k formulas of size
s. Let R := (2k)2∆·2∆

. If char(F) = 0 or > (2ks)∆3R, then a hitting set for orb(C) can be com-
puted in (nRD)O(R(log R+∆ log k+∆ log s)+∆R) time. If the leaves are labelled by b-variate polynomials,
then a hitting set for orb(C) can be computed in (nRD)O(Rb+∆R) time. In particular, if ∆ and k are
constants, then the hitting sets can be constructed in time (nD)O(log s) and (nD)O(b), respectively.

Remarks.

1. The above theorem gives hitting sets for the orbits of two other interesting models that
have been studied in the literature: There is a polynomial-time constructible hitting set
for multilinear depth-4 circuits with constant top fan-in [SV18, KMSV13]. Theorem 1.4
implies a quasi-polynomial time hitting set for the orbit of this model, as a multilinear
depth-4 circuit with constant top fan-in can be viewed as a depth-4 constant-occur
formula (see Definition 2.5 for a definition of constant occur formulas). [BMS13] gave
a polynomial-time hitting set for C( f1, . . . , fm), where C is a low-degree circuit and
f1, . . . , fm are sparse polynomials with bounded transcendence degree. The proof of
the above theorem also implies a quasi-polynomial time hitting set for the orbit of this
model.

2. The theorem yields polynomial-time hitting sets for the orbits of the power symmetric
polynomial PSymn,D = ∑i∈[n] xD

i and the sum-product polynomial SPn,D = ∑i∈[n] ∏j∈[D] xi,j.
This is because the polynomials PSym and SP are computable by constant-depth, occur-
once formulas whose leaves are labelled by univariate polynomials. Prior to our work,
[KS21] gave a polynomial-time hitting set for orb(PSymn,D) using a different argument
that involves the Hessian matrix.

Theorem 1.5 (Hitting sets for the orbits of occur-once formulas) Let C be the set of n-variate,
degree-D polynomials that are computable by occur-once formulas whose leaves are labelled by s-
sparse polynomials. If |F| > nD and char(F) = 0 or > D, then a hitting set for orb(C) can be
computed in (nD)O(log n+log s) time. If the leaves are labelled by b-variate polynomials, then a hitting
set for orb(C) can be computed in (nD)O(log n+b) time.

Remark. The independent and concurrent work by Medini and Shpilka [MS21] gave (among
other results) a quasi-polynomial time hitting set construction for the orbits of read-once
formulas. We note that this result also follows from the second part of the above theorem
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which is already present in the original version of our work [ST24].

Simultaneous and subsequent work: Independent of our work here, Medini and Shpilka
[MS21] gave quasi-polynomial time hitting sets for the orbits of sparse polynomials and
read-once formulas. In a subsequent work, Bhargava and Ghosh [BG21] improved some
of the results of this work. They improved our (nd)O(d log w) time hitting set for the orbits
of width-w, individual degree d, commutative ROABPs to an (ndw)O(min{w2,2d log w}) time
hitting set for the orbits of width-w, individual degree d, any-order ROABPs. Any-order
ROABPs are a slight generalisation of commutative ROABPs. Observe that when w is a
constant, [BG21] gives a hitting set even when the individual degree is large. They also
improve our (nd)O(w6 log n) time hitting set for orbits of multilinear, width-w ROABPs to
an (ndw)O(w2 log n·min{w2,2d log w}) time hitting set for orbits of individual degree d, width-w
ROABPs.

1.2.2 Equivalence test for read-once arithmetic formulas

Here, our main result is a randomised polynomial time equivalence test for Read-Once
Arithmetic Formulas (ROFs). The contents of this section are from a joint work with Nikhil
Gupta and Chandan Saha [GST20]. Before stating our result, we give some motivation for
studying this problem.

Generalizing quadratic form equivalence. PE for the class of quadratic forms or homoge-
neous polynomials of degree 2 is known. Are there bigger classes of polynomials for which
PE is easy? An obvious way to generalize quadratic form equivalence is to solve PE for
higher degree forms. Unfortunately, even cubic form equivalence is at least as hard as graph
isomorphism and possibly harder. Another natural way to generalize quadratic form equiv-
alence is as follows: Over C, an n-variate quadratic form with no redundant variables1 is in the
orbit of x1x2 + x3x4 + . . . + xn−1xn, if n is even. The expression x1x2 + x3x4 + . . . + xn−1xn is
a read-once arithmetic formula (ROF). The quadratic form equivalence problem (QFE) over
C can thus be viewed as PE for orbits of quadratic ROFs. Thus, the following is a natural
question. Can we solve PE for orbits of general ROFs efficiently? A typical algorithm to
solve the search version of QFE over C finds invertible linear transformations that map the
two input quadratic forms to the canonical ROF x1x2 + x3x4 + . . .+ xn−1xn (see Section 2.6 for
a definition of a canonical ROF). In other words, such an algorithm solves the ET problem
for quadratic ROFs. So it is natural to ask if we can solve the ET problem for general ROFs

1i.e., the number of variables cannot be reduced by applying an invertible linear map on the variables.
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efficiently.

Learning random or non-degenerate formulas As mentioned before, a formula is an affine
projection of an ROF. Learning formulas in the worst-case is a potentially hard problem, how-
ever, it may be possible to learn formulas in the average-case by formulating natural distri-
butions under which formulas are learnable. A natural distribution on formulas is defined
as follows: pick a tree of size s arbitrarily, label the internal nodes by + and × operations
to form alternating layers of + and × gates, and label the leaves by random linear forms in
n variables. The corresponding learning problem asks to reconstruct a random formula –
picked according to this distribution – from black-box access to the formula. This problem
was studied in [GKQ13] by fixing the underlying tree to be a complete binary tree; the for-
mulas we thus get are called formulas in alternating normal form (ANF). [GKQ13] gave an
efficient learning algorithm for random ANFs. On the other hand, an ET for ROFs gives a
learning algorithm for random formulas, irrespective of the underlying tree, provided n ≥ s.
This is because a random formula is in the orbit of an ROF with high probability if n ≥ s
and |F| is sufficiently large. Thus, ET for ROFs provides supporting evidence for efficient
learnability of random formulas (that are not necessarily ANFs).

Having motivated the equivalence test problem for ROFs, we now state our results. Our
results hold over any field F of characteristic 0 or of sufficiently large characteristic and size.
As for the computation model, we assume that it allows basic field operations in unit time
and univariate polynomial factoring in randomized polynomial time. We say an algorithm
is efficient if it runs in randomized polynomial time.

For the ease of stating the theorems, we consider ROFs in canonical form (see Definition
2.23). The orbit of every ROF contains a canonical ROF. So, by removing redundant variables
from the input polynomial we can assume without any loss of generality that the underlying
ROF is canonical.

Our first result gives an efficient algorithm to solve ET for general ROFs. The algorithm is
randomized and has oracle access to the search version of QFE. In subsequent discussions,
we will mention “QFE” to mean “the search version of QFE”. We will also identify an ROF
with the polynomial it computes and denote the set of n× n matrices with entries in F by
M(n, F).

Theorem 1.6 (ET for ROFs) Let n ∈ N, char (F) = 0 or ≥ n2, and |F| ≥ n13. There is a
poly(n) time randomized algorithm (with oracle access to QFE over F) that takes input black-box
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access to an n-variate polynomial f ∈ F[x], which is in the orbit of an unknown canonical ROF
C, and outputs (with high probability) an A ∈ GL (n, F) such that f (Ax) = C(PSx + b), where
P ∈ M(n, F) and S ∈ M(n, F) are permutation and scaling (i.e., diagonal) matrices respectively,
and b ∈ Fn.

Remarks.

1. As C(PSx + b) is an ROF, we can apply any of the known polynomial-time ROF recon-
struction algorithms [HH91, BHH95, SV14, MV18] to first get an ROF for C(PSx + b),
and then obtain a formula for f by applying A−1 on the variables of the reconstructed
ROF.

2. QFE can be solved efficiently over C, R, Fq; hence, ET for ROFs can also be solved
efficiently over these fields. Over Q QFE and thus ET for ROFs can be solved with
oracle access to integer factoring.

3. Although ET has been studied for polynomial families like the determinant and IMM,
to our knowledge no ET was known for any natural circuit class of unbounded depth,
degree and fan-in (or even depth-4 ROFs) before this work.

4. Recently, [MS21] showed that ET for ROANFs and sum-product polynomials can be
solved efficiently. As ROANFs are special fan-in 2 ROFs and sum-product polynomials
are depth-2 ROFs, the theorem generalizes these two results considerably. Also, our
proof approach is entirely different from the ones in [MS21].

5. The constraints on char(F) and |F| originate primarily (but not solely) from the use
of the black-box multivariate polynomial factorization algorithm [KT90] in the equiv-
alence test. We have not made an attempt to optimize these constraints.

The second result gives an efficient algorithm to solve PE for orbits of ROFs that are
additive-constant-free. An ROF is additive-constant-free if no F-constant appears as a child
of a +-gate. For e.g., the canonical ROF x1x2 + x3x4 + . . . + xn−1xn is additive-constant-
free. ROANFs and sum-product polynomials are also examples of additive-constant-free
canonical ROFs. An additive-constant-free ROF is in the orbit of an additive-constant-free
canonical ROF.

Theorem 1.7 (PE for orbits of additive-constant-free ROFs) Let n ∈ N, char (F) = 0 or ≥
n2, and |F| ≥ n13. There is a poly(n) time randomized algorithm (with oracle access to QFE over F)
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that takes input black-box access to two n-variate polynomials f1, f2 ∈ F[x], which are in the orbits
of two unknown additive-constant-free canonical ROFs, and checks if f1 ∈ orb ( f2). Furthermore, if
f1 ∈ orb ( f2), then the algorithm outputs (with high probability) an A ∈ GL (n, F) and a b ∈ Fn

such that f1 = f2 (Ax + b).

As mentioned before, the above result is a broad generalization of efficient QFE. We also
show that the additive-constant-free restriction can be removed for the special case of the
orbits of ROFs with product-depth 2.

Theorem 1.8 (PE for orbits of product-depth 2 ROFs) Let n ∈ N, char (F) = 0 or ≥ n2, and
|F| ≥ n13. There is a poly(n) time randomized algorithm (with oracle access to QFE over F) that
takes input black-box access to two n-variate polynomials f1, f2 ∈ F[x], which are in the orbits of
two unknown canonical ROFs with product-depth 2, and checks if f1 ∈ orb ( f2). Furthermore, if
f1 ∈ orb ( f2), then the algorithm outputs (with high probability) an A ∈ GL (n, F) and a b ∈ Fn

such that f1 = f2 (Ax + b).

1.2.3 Lower bounds for constant depth arithmetic circuits

In a recent breakthrough work, [LST21] proved super-polynomial lower bounds for constant-
depth arithmetic formulas.1 In this section, we give an alternative and more “direct” proof
of their result. The contents of this section are from a joint work with Prashanth Amireddy,
Ankit Garg, Neeraj Kayal, and Chandan Saha [AGK+23].

The lower bounds of [LST21] are of the form nΩ(log(n)c∆ ) for a constant 0 < c∆ < 1 de-
pending on the depth ∆ of the formula. We examine the lower bound proof in [LST21] at
a high level. Their proof has two main steps: First, they reduce the problem of proving
lower bounds for low-depth formulas to the problem of proving lower bounds for low-
depth set-multilinear formulas; set-multilinear formulas are special homogeneous formulas
with an underlying partition of the variables into subsets. [LST21] calls such reductions
‘hardness escalation’. Second, they use an interesting adaptation of the rank of the partial
derivatives matrix measure [Nis91] to prove a lower bound for low-depth set-multilinear
formulas. They call this measure relative rank (relrk). The effectiveness of the relrk measure
crucially depends on a certain ‘imbalance’ between the sizes of the sets used to define set-
multilinear polynomials. The proof in [LST21] raises two natural questions:

1It is not difficult to see that if a polynomial has a size s, depth-∆ circuit, then it has a size sO(∆), depth-∆
formula. Thus, for ∆ = O(1), the formula size and circuit size are polynomially related. Because of this reason,
we can just work with constant depth formulas.
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Question 1: Can we bypass the hardness escalation, i.e., the set-multilinearization, step?

Question 2: Can we design a measure that exploits some weakness of homogeneous (but
not necessarily set-multilinear) formulas directly?

We answer both these question in affirmative by giving a direct lower bound for low-
depth homogeneous formulas via the shifted partials (SP) measure which was used in the
series of works on homogeneous depth-4 exponential lower bounds. We also show that the
lower bound can be obtianed using the affine projections of partials (APP) measure which
has been used to prove lower bounds for of depth 4 circuits with bounded bottom fan-in
[GKS20] . While our proof also yields lower bounds only in the low-degree setting, the hope
is that it could potentially lead to a stronger lower bound in the future. We now state our
result.

Consider the shifted partials (SP) and affine projection of partials (APP) measures for a
polynomial f : SP k,ℓ( f ) := dim⟨xℓ · ∂k( f )⟩; APP k,n0( f ) := max

L:x→⟨z⟩
dim

〈
πL

(
∂kP

)〉
, where

L : x→ ⟨z⟩, |z| = n0, are linear maps and for any g ∈ F[x], πL(g) := g(L(x1), . . . , L(xn)).
Also, for convenience, let us denote by M(n, k) := (n+k−1

k ) the number of monomials of
degree k in n variables.

Theorem 1.9 (Lower bound for low-depth homogeneous formulas via shifted partials) Let
C be a homogeneous formula of size s and product-depth ∆ that computes a polynomial of degree d in
n variables. Then for appropriate values of k and ℓ,

SP k,ℓ(C) ≤
s 2O(d)

nΩ(d21−∆ )
min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)}.

At the same time, there are homogeneous polynomials f of degree d in n variables (e.g., an appropriate
projection of iterated matrix multiplication polynomial, Nisan-Wigderson design polynomial, etc.)
such that

SP k,ℓ( f ) ≥ 2−O(d) min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)}.

This gives a lower bound of nΩ(d21−∆
)

2O(d) on the size of homogeneous product-depth ∆ formulas for f .

Remark 1.1 1. The above lower bound is slightly better than the bound of [LST21]. Instead of the
dO(d) loss incurred due to converting homogeneous to set-multilinear formulas, our analysis
incurs a 2O(d) loss; in fact, this loss can be brought down to 2O(k), but we ignore this distinc-
tion as we set k = Θ(d) in the analysis. So, for example, for homogeneous product-depth 2
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formulas, our super-polynomial lower bound continues to hold for a higher degree (log2(n) vs
(log(n)/ log log(n))2 in [LST21]). While the improvement may be insignificant, this hints at
something interesting going on with the direct approach.

2. [HLT24] uses the direct approach proposed in this work to strengthen some results about the
ideal proof system (see [GP18]) proved in [GHT22].

1.2.4 Border of the sums of two ROFs

The main result of this section is the de-bordering of the sum of two additive constant free
ROFs. We also give a quasi-polynomial time hitting set construction for the border of sums
of two homogeneous depth-5 ROFs. While ROF and sums of ROFs are simple circuit classes,
studying the PIT and learning questions for these classes led to the development of tech-
niques that turned out to be useful for other, more general classes of circuits. Thus one can
certainly hope that studying the border of these classes would be a first step towards study-
ing the borders of other more general circuit classes like sums of constantly many ROABPs
and depth-4 multilinear circuits. It is not too difficult to see that ROFs are closed under
the border. So the next natural step is to try and understand the power of the border of a
sum of constantly many ROFs. Moreover, a lot of known de-bordering results are for some
constant-depth circuit classes. The sum of constantly many ROFs is a natural model to ex-
plore de-bordering for circuits with larger depths.

Our first result shows that the class of sum of k many ROFs, denoted by ΣkROF is not
closed under the border. We use ROF(n) to denote the class of ROFs in n-variables.

Theorem 1.10 (Sum of ROFs not closed under border) For any n ∈ N, n ≥ 10 and 2 ≤ k ≤
n
5 , ∑k ROF(n) ⊊ ∑k ROF(n) over any field.

Next we show that the sum of two additive constant free ROFs is contained in the sum
of linearly many ROFs. We shall denote the class of additive constant free ROFs by ROF0.

Theorem 1.11 (De-bordering the border of sum of 2 ROFs) Over fields of characteristic other
than 2 and for any n ∈N, ∑2 ROF0(n) ⊆ ∑O(n) ROF0(n).

Finally, we give a quasi-polynomial time hitting set for the border of sums of two homo-
geneous depth 5 ROFs.

Theorem 1.12 (Hitting set for the border of sum of 2 homogeneous depth-5 ROFs) If F is a
field of size poly(n) and characteristic other than 2, then there is an nO(log n) time computable hitting
set for the border of sums of two homogeneous depth-5 ROFs computing n-variate polynomials over
F.
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1.3 Organisation of the thesis
We first give all the definitions and some preliminary results required for this thesis in Chap-
ter 2. The next two chapters are devoted to proving the results from Section 1.2.1. In Chapter
3 we prove Theorems 1.1, 1.2, and 1.3. Chapter 4 is devoted to the proofs of Theorems 1.4
and 1.5. Chapter 5 gives a proof of Theorem 1.6 while Chapter 6 gives a proof of Theorems
1.7 and 1.8. A proof of Theorem 1.9 can be found in Chapter 7. Theorems 1.10, 1.11, and
1.12 are proved in Chapter 8. Finally, we conclude by mentioning some directions for future
work in Chapter 9.
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Chapter 2

Preliminaries

This chapter describes the notations and conventions used throughout this thesis. It

defines notations required to describe the results of this thesis as well as states some

preliminary results used in the proofs of the main results of this work.

We begin by stating some of the notations that will be used throughout this work. Nota-
tions and conventions which are specific to a chapter will be defined at the beginning of that
chapter.

N denotes the set of natural numbers and Z the set of integers. For n ∈ N, [n] =

{1, . . . , n} and x = {x1, . . . , xn}. We shall use symbols like F, K to denote a field. For a
polynomial f ∈ F[x], var( f ) shall denote the set of variables present in f . The space of poly-
nomials having degree at most d will be denoted as F[x]≤d. For S ⊆ F[x], ⟨S⟩ is the F-linear
space spanned by S. GL(n, F) is the set of n× n invertible matrices over F.

2.1 Arithmetic models of computation
We start by defining an arithmetic circuit.

Definition 2.1 (Arithmetic circuit) An arithmetic circuit C over a field F and a set of variables
x = (x1, ..., xn) is a directed acyclic graph. The vertices of C are called gates. Each gate with in-
degree 0 is called an input gate and is labelled by either a variable or a field element. Every other
gate is either labelled by a × (called a product gate) or a + (called a sum gate). Every edge is labelled
by a field element and every gate with out-degree 0 is called an output gate. An arithmetic circuit
computes a polynomial in the natural way: an input gate computes the field element or variable it
is labelled with. A sum gate computes the sum of polynomials computed by its inputs, each input
scaled by the field element on the corresponding edge. Similarly, a product gate computes the product
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of polynomials computed by its inputs, each input scaled by the field constant on the corresponding
edge.

The size of an arithmetic circuit is equal to the number of edges in it and the depth of an arithmetic
circuit is equal to the length of the longest directed path in it. The product-depth of a circuit is equal
to the number of product gates on the longest directed path in it.

The fan-in of a gate is equal to the number of edges entering the gate and the fan-out of
a gate is the number of edges leaving the gate. An arithmetic formula is a special type of
arithmetic circuit.

Definition 2.2 (Arithmetic formula) An arithmetic formula is an arithmetic circuit whose under-
lying directed graph is a tree.

Algebraic Branching Programs or ABPs are a model of computation that is known to be
at least as powerful as arithmetic formulas.

Definition 2.3 (Algebraic branching program) Let M1, . . . , Mk be matrices whose entries are
affine forms in x1, . . . , xn such that M2, . . . , Mk−1 are w× w matrices and M1, Mk are 1× w and
w× 1 dimensional vectors. Then, M1 · · ·Mk is an algebraic branching program (ABP). w is called
the width of the ABP. The size of the ABP is defined to be the number of entries in M1, . . . , Mk, that
is, (k− 2)w2 + 2w.

Some of the chapters of this work consider an extremely restricted class of arithmetic
formulas called Read-Once Formulas or ROFs.

Definition 2.4 (Read-Once Formula) An arithmetic formula C over a field F is a read-once for-
mula (ROF) if every leaf in C is labelled by either a distinct variable or an F element.

We describe ROFs and some of the facts about them in more detail in Section 2.6. A natu-
ral way to generalise ROFs is to allow variables to label constantly many leaves; such circuits
are called read-k formulas, and more generally occur-k formulas as defined in [ASSS16].

Definition 2.5 (Occur-k formula) An occur-k formula is a rooted tree whose leaves are labelled by
s-sparse polynomials and whose internal nodes are sum (+) gates or product-power (×⋏) gates. Each
variable appears in at most k of the sparse polynomials that label the leaves. The edges feeding into a
+ gate are labelled by field elements and have 1 as edge weights, whereas the edges feeding into a
×⋏ gate have natural numbers as edge weights. A leaf node computes the s-sparse polynomial that
labels it. A + gate with inputs from nodes that compute f1, ..., fm and with the corresponding input
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edge labels α1, ..., αm, computes α1 f1 + · · ·+ αm fm. A×⋏ gate with inputs from nodes that compute
f1, ..., fm and with the corresponding input edge weights e1, ..., em, computes f e1

1 · · · f em
m . The formula

computes the polynomial that is computed by the root node.
The size of an occur-k formula is the weighted sum of all the edges in the formula (i.e., an edge

feeding into a ×⋏ gate is counted as many times as its edge weight, whereas an edge feeding into a +
gate is counted once) plus the sizes of the depth-2 circuits computing the s-sparse polynomials at the
leaves. The depth of an occur-k formula is equal to the depth of the underlying tree plus 2, to account
for the depth of the circuits computing the sparse polynomials at the leaves.1

Read-k formulas have been studied intensely in the literature. Occur-k formulas gener-
alize read-k formulas in two ways – the leaves are labelled by arbitrary sparse polynomials
instead of just variables, and powering gates are included along with the usual sum and
product gates. These generalizations help make the occur-k model complete2, and capture
other interesting circuit classes (such as multilinear depth-4 circuits with constant top fan-
in [SV18, KMSV13]) and polynomial families (such as the power symmetric polynomials).
Besides, there is no restriction of multilinearity on the model, unlike the case in some prior
works [AvMV15, SV18, KMSV13].

Another natural generalisation of ROFs are Read-Once Algebraic Branching Programs or
ROABPs (see [FS13]). They are algebraic analogues of Read-Once Branching Programs.

Definition 2.6 (ROABP) An n-variate, width-w read-once oblivious algebraic branching program
(ROABP) is a product of the form 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1, where 1 is the w× 1 column
vector of all ones, and for every i ∈ [n], Mi(xi) is a w× w matrix whose entries are in F[xi].

In Chapter 3, we study a special class of ROABPs called commutative ROABPs.

Definition 2.7 (Commutative ROABP) An n-variate, width-w commutative ROABP is an n-
variate, width-w ROABP 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1, where for all i, j ∈ [n], Mi(xi) and
Mj(xj) commute with each other.

A polynomial f is s-sparse if it has at most s monomials with non-zero coefficients; these
monomials will be referred to as the monomials of f . It is easy to see that an s-sparse polyno-
mial of degree d can be computed by a depth-2 circuit of size at most sd. Also, observe that
every s-sparse polynomial can be computed by a width-s commutative ROABP.

1Observe that if f is computable by a size-s, depth-∆, occur-k formula, then it is also computable by a size-s,
depth-∆ circuit that has only + and × gates.

2For example, the power symmetric polynomial xn
1 + . . . + xn

n cannot be computed by a read-k formula for
any k < n, but it can be computed by an occur-once formula.
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2.2 Algebraic complexity classes
In his seminal work [Val79], Valiant defined the following two complexity classes for families
of algebraic circuits. They can be thought of as the algebraic versions of P and NP.

Definition 2.8 (Class VP) VPF is a class of all polynomial families { fn}n≥1 over a field F such that
there exists a polynomial function t : N→ N, such that for all n ≥ 1, fn is a polynomial in at most
t(n) variables, of degree at most t(n) and computed by an arithmetic circuit of size at most t(n).

Definition 2.9 (Class VNP) VNPF is a class of all polynomial families { fn}n≥1 over a field F such
that there exist polynomial functions k, t : N → N and a family of polynomials {gn}n≥1 ∈ VPF

such that for all n ≥ 1,

fn(x1, ..., xk(n)) = ∑
w∈{0,1}t(n)

gt(n)(x1, ..., xk(n), w1, ..., wt(n)).

Observe that VP ⊆ VNP, Valiant conjuctured that VP is in fact strictly contained in VNP.
Proving Valiant’s conjecture is the central open problem of algebraic complexity theory.
Some of the polynomial families known to be in VP are the power and elementary sym-
metric polynomials, the iterated matrix multiplication polynomials and the determinant
polynomial. The most well-known example of a polynomial family in VNP is the perma-
nent polynomial family. In fact, the permanent polynomial family is known to be complete
for VNP.

Definition 2.10 (VNP completeness) A polynomial g(x1 . . . , xm) is said to be a p-projection of a
polynomial f (y1, . . . , yn) if there exist r1, . . . , rn ∈ {x1, . . . , xm} ∩ F such that g = f (r1, . . . , rn).
A polynomial family { fn}n∈N ∈ VNP is said to be VNP-complete if for every polynomial family
{gn}n∈N ∈ VNP, there exists a polynomial function t : N → N such that gn is a p-projection of
ft(n).

It is not difficult to see that to prove VP ̸= VNP, it is sufficient to show that there ex-
ists a VNP-complete polynomial family that is not in VP. In this way, VNP-completeness is
analogous to NP-completeness.

A class related to VP is VBP.

Definition 2.11 (Class VBP) VBPF is a class of all polynomial families { fn}n≥1 over a field F such
that there exists a polynomial function t : N → N, such that for all n ≥ 1, fn is a polynomial in
at most t(n) variables, of degree at most t(n) and computed by an algebraic branching program with
size at most poly(n).
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It is known that both IMM and determinant polynomial families are complete for VBP.

2.3 Polynomial families
In this section, we describe some of the polynomial families that the reader may encounter
in this work. We start by defining two well-known families of symmetric polynomials.

Definition 2.12 For any n ∈ N and 1 ≤ d ≤ n, the d-th elementary symmetric polynomial in n
variables is

ESymn,d = ∑
S∈([n]d )

∏
i∈S

xi.

The d-th power symmetric polynomial in n variables is

PSymn,d = ∑
i∈[n]

xd
i .

The sum-product polynomials are an extremely simple polynomial family.

Definition 2.13 For any s ∈ N and 1 ≤ d ≤ n, the d-th sum-product polynomial in sd variables
is,

SPs,d := ∑
i∈[s]

∏
j∈[d]

xi,j.

The following two polynomial families and their variants have been used extensively
in proving arithmetic circuit lower bounds [NW97, Raz10, KLSS17, KS17b, KS16, KST16a,
KST16b, FKS16, CLS19, KS19b, GST20, LST21, KS22].

Definition 2.14 (Nisan-Wigderson design polynomial) For a prime power q and d ∈ N, let
x = {x1,1, . . . , x1,q, . . . , xd,1, . . . , xd,q}. For any k ∈ [d], the Nisan-Wigderson design polynomial on
qd variables, denoted by NWq,d,k or simply NW, is defined as follows:

NWq,d,k = ∑
h(z)∈Fq[z]:
deg(h)<k

∏
i∈[d]

xi,h(i).

Definition 2.15 (Iterated Matrix Multiplication polynomial) For any n ∈ N and 1 ≤ d ≤ n,
the iterated matrix multiplication, IMMn,d is a polynomial in N = d ·n2 variables defined as the
(1, 1)-th entry of the matrix product of d many n× n matrices whose entries are distinct variables.

In a recent breakthrough [LST21], Limaye, Srinivasan, and Tavenas introduced what they
call the word polynomial which is a projection of the IMM.
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Definition 2.16 (Word polynomial Pw [LST21]) Given a word w = (w1, . . . , wd) ∈ Zd, let
x(w) be a tuple of d pairwise disjoint sets of variables (x1(w), . . . , xd(w)) with |xi(w)| = 2|wi| for
all i ∈ [d]. xi(w) will be called negative if wi < 0 and positive otherwise. As the set sizes are powers
of 2, we can map the variables in a set xi(w) to Boolean strings of length |wi|. Let σ : x → {0, 1}∗

be such a mapping.1 We extend the definition of σ from variables to set-multilinear monomials as
follows: Let X = x1 · · · xr be a set-multilinear monomial where xi ∈ xϕ(i)(w) and ϕ : [r]→ [d] be an
increasing function. Then, we define a Boolean string σ(X) := σ(x1) ◦ · · · ◦ σ(xr), where ◦ denotes
the concatenation of bits. Let M+(w) and M−(w) denote the set of all (monic) set-multilinear
monomials over all the positive sets and all the negative sets, respectively. For two Boolean strings
a, b, we say a ∼ b if a is a prefix of b or vice versa. For a word w, the corresponding word polynomial
Pw is defined as

Pw := ∑
m+∈M+(w), m−∈M−(w)

σ(m+) ∼ σ(m−)

m+ ·m−.

Notice that if ∑wi≥0 |wi| ≤ ∑wi<0 |wi|, then for any m+ ∈ M+ and m− ∈ M−, σ(m+)

will be a prefix of σ(m−) and if ∑i∈[d]:wi≥0 |wi| > ∑i∈[d]:wi<0 |wi|, then for any m+ ∈ M+ and
m− ∈ M−, σ(m−) will be a prefix of σ(m+). In Chapter 7, we will make use of the following
lemma from [LST21] which shows that IMM is at least as hard as Pw. For this, we recall the
notion of unbiased-ness of w = (w1, . . . , wd) from [LST21] – we say that w is h-unbiased if
maxi∈[d] |w1 + · · ·+ wi| ≤ h.

Lemma 2.1 (Lemma 7 in [LST21]) Let w ∈ {−h, . . . , h}d be h-unbiased. If for some n ≥ 2h,
IMMn,d has a formula C of product-depth ∆ and size s, then Pw has a formula C′ of product-depth at
most ∆ and size at most s. Moreover, if C is homogeneous, then so is C′.

2.4 Complexity measures
This section describes the two complexity measures that we use in Chapter 7.

Let n and n0 be positive integers. Define variable sets x := {x1, . . . , xn} and z :=
{z1, . . . , zn0}. For a monic monomial m and an f ∈ F[x], we define ∂m f ∈ F[x] to be the poly-
nomial obtained by successively taking partial derivatives with respect to all the variables of
m (counted with their multiplicities). For an integer ℓ ≥ 0, xℓ := {x1

e1 · · · xn
en : e1, . . . , en ∈

Z≥0 and ∑i∈[n] ei = ℓ}. For an integer k ≥ 0 and f ∈ F[x], ∂k f :=
{

∂m f : m ∈ xk} . For a
f ∈ F[x], a map L : x → ⟨z⟩, and S ⊆ F[x], πL( f ) ∈ F[z] and πL(S) ⊆ F[z] are defined as
πL( f ) := f (L(x1), . . . , L(xn)) and πL(S) := {πL( f ) : f ∈ S}, respectively.

1Note that σ may map a variable from xi(w) and a variable from xj(w) to the same string if i ̸= j.
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For S , T ⊆ F[x], S · T := { f · g : f ∈ S and g ∈ T } and S + T := { f + g : f ∈
S and g ∈ T }. For a S ⊆ F[x], we define its span as ⟨S⟩ ⊆ F[x] to be the set of all polyno-
mials which can be expressed as F-linear combinations of elements in S . For a S ⊆ F[x], its
dimension, denoted by dimS , refers to the maximum number of linearly independent polyno-
mials in S .

We can now define the complexity measures for polynomials that we use to prove our
lower bounds: the shifted partials (SP) measure and the affine projections of partials (APP)
measure. We remark here that both these measures (with different parameters) have been
used in the literature prior to our work – for example, the shifted partials measure in [GKKS14,
Kay12b] and the affine projections of partials in [GKS20, KNS20].

Definition 2.17 (SP and APP measures) For a polynomial f ∈ F[x], non-negative integers
k, ℓ, and n0 ∈ [n], we define SP k,ℓ( f ) := dim

〈
xℓ · ∂k f

〉
andAPP k,n0( f ) := max

L:x→⟨z⟩
dim

〈
πL

(
∂k f
)〉

.

SP and APP are sub-additive. That is, for any f , g ∈ F[x], SP( f + g) ≤ SP( f ) + SP(g)
and APP( f + g) ≤ APP( f ) +APP(g).

Remark 2.1 The lower bounds that we prove in Chapter 7 can also be obtained using the skewed par-
tials measure (SkewP) [KNS20], which is a special case of APP . [KNS20] used the SkewP measure
to prove an optimal “non-FPT”1 lower bound of nΩ(d) for multilinear depth-3 circuits computing
IMMn,d. However, we use the more general APP measure for several reasons: Firstly, APP has the
geometrically appealing feature that it is invariant under the application of invertible linear transfor-
mations on the variables. Secondly, there are models for which APP gives lower bounds but SkewP
does not (see [AGK+23]). The third reason is that for reconstruction of circuits using the recently
proposed learning from lower bounds framework [KS19a, GKS20], APP might give weaker non-
degeneracy conditions than SkewP. Thus using APP , we might be able to learn more circuits from
a circuit class than we can learn using the SkewP measure.

Also, there is a close connection between APP and the relative rank (relrk) measure used in
[LST21]: Both of them are variants of the evaluation dimension (evalDim) measure with the added
feature of ‘imbalance’. It is natural to wonder to what extent the imbalance is required. The relrk

measure works with an imbalance between the sizes of the sets involved in a set-multilinear partition.
An imbalance or skew between the sizes of variable sets also appears inAPP , albeit at a gross level:
APP uses two sets – one for taking derivatives, the other for affine projections – and there is an
imbalance between the sizes of these two sets. Drawing analogy with evalDim, one may also view
these two sets as the variables used for evaluations (y) and the remaining variables (z). It turns

1Borrowing terminology from [LST21].
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out that (for set-multilinear polynomials) the “finer” imbalance used in the relrk measure implies an
imbalance – at a gross level – between y and z.1 One may naturally ask if an imbalance at a gross
level, like inAPP and its precursor SkewP, is sufficient to prove lower bounds for low-depth circuits.

2.5 Hitting sets
Definition 2.18 (Hitting set) Let C be a set of n-variate polynomials. A set of points H ⊆ Fn is a
hitting set for C if for every non-zero f ∈ C, there is a point a ∈ H such that f (a) ̸= 0.

By a ‘T-time hitting set’, we mean that the hitting set can be computed in T time. Typi-
cally, T is a function of the input parameters such as the number of variables, the size of the
input circuit, and the degree or the individual degree of the input polynomial. The individual
degree of a monomial is the largest of the exponents of the variables that appear in it. The
individual degree of a polynomial is the largest of the individual degrees of its monomials.

Definition 2.19 (Hitting set generator) Let C be a set of n-variate polynomials and t ∈ N. A
polynomial map G : Ft → Fn is a hitting set generator for C if for every non-zero f ∈ C, we have
f ◦ G ̸= 0.

We say the number of variables of G is t, and the degree of G – denoted by deg(G) – is
the maximum of the degrees of the n polynomials that define G. We will denote the t-variate
polynomial f ◦ G by f (G). By treating a matrix A ∈ Fn×n as a linear transformation from Fn

to Fn, we will denote the polynomial map A ◦ G by AG and the t-variate polynomial f ◦ AG
by f (AG). If the defining polynomials of G have degree d0 and the degree of the polynomials
in C is at most D, then the degree of f (G) is at most d0D. Thus, if we are given the defining
polynomials of G, then we can construct a hitting set for C in time poly(n, (d0D)t) using the
Schwartz-Zippel lemma, provided also that |F| > d0D.

2.5.1 The Shpilka-Volkovich generator

Definition 2.20 (The Shpilka-Volkovich or SV hitting set generator [SV15]) Assume that |F| ≥
n and let α1, ..., αn be distinct elements of F. For i ∈ [n], let

Li(y) := ∏
j∈[n],j ̸=i

y− αj

αi − αj

1[LST21] talks about the (relative) rank of the partial derivatives matrix. The rank of this matrix is evalDim
with respect to an appropriate set y.
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be the i-th Lagrange interpolation polynomial. Then, for t ∈N, the Shpilka-Volkovich (SV) generator
GSV

t : F2t → Fn is defined as GSV
t :=

(
G(1)t , ...,G(n)t

)
where,

G(i)t (y1, . . . , yt, z1, ..., zt) =
t

∑
k=1

Li(yk) · zk.

The SV generator is also sometimes called the t-wise independent generator or a t-wise
independent monomial map. Notice that deg

(
G(i)t

)
= n, and GSV

t+1|(yt+1=αi)
= GSV

t + ei ·
zt+1, where ei is the i-th standard basis vector of Fn. Thus, Img

(
GSV

t
)
⊆ Img

(
GSV

t+1
)

and,
continuing in this manner, Img

(
GSV

t
)
⊆ Img

(
GSV

t′
)

for any t′ ≥ t. We say that a polynomial
f ∈ F[x] depends only on variables x1, . . . , xb if f ∈ F[x1, . . . , xb].

Observation 2.1 Let f ∈ F[x] be a non-zero polynomial that depends on only b of the x variables,
and g ∈ orb( f ). Then, g has a monomial of support at most b and g(GSV

b ) ̸= 0.

Proof: Suppose that f depends on only the variables x1, . . . , xb. Let g = f (Ax) ̸= 0, where
A ∈ GL(n, F). Suppose that A maps xi 7→ ℓi(x) for all i ∈ [n]. As A is invertible, ℓ1, . . . , ℓn

are F-linearly independent. Let B be the b× n matrix whose i-th row is the coefficient vector
of ℓi for all i ∈ [b]. Then, rank(B) = b and there are b columns j1, . . . , jb of B that are
also linearly independent. This means the linear forms ℓ′1, . . . , ℓ′b obtained from ℓ1, . . . , ℓb

after setting the variables other than xj1 , . . . , xjb to 0 are also linearly independent. Thus,
g(ℓ′1, . . . , ℓ′b) ̸= 0 which is only possible if g has a monomial whose support is contained in{

xj1 , . . . , xjb
}

. Now observe that g
(
GSV

b |(y1=αj1
,y2=αj2 ,...,yb=αjb

)

)
̸= 0. 2

The following observation, which allows us to construct a hitting set generator for a poly-
nomial f from a hitting set generator for ∂ f

∂xi
will be used crucially in the proofs of Theorems

3.1, 1.4 and 1.5.

Observation 2.2 Let f ∈ F[x] be an n-variate, degree d polynomial, and for some m ∈ N, let
G : Fm → Fn be a polynomial map of degree at most d′. If |F| > dd′ and there is an i ∈ [n] such
that ∂ f

∂xi
(G) ̸= 0, then f (G + GSV

1 ) is not a constant.

Proof: If ∂ f
∂xi

(G) ̸= 0, then the Schwartz-Zippel lemma implies that there is a (β1, ..., βn) ∈
Img (G) such that

∂ f
∂xi

(β1, ..., βn) ̸= 0,

36



because deg
(

∂ f
∂xi

(G)
)
≤ dd′ and |F| > dd′. Let r(z1) := f (β1, ..., βi−1, βi + z1, βi+1, ..., βn).

Then,
∂r
∂z1

(0) =
∂ f
∂xi

(β1, ..., βn) ̸= 0,

and so, f (β1, ..., βi−1, βi + z1, βi+1, ..., βn) is not a constant. Now, G + GSV
1 |(y1=αi)

= G + ei · z1.
Let Imgz1

(G + GSV
1 ) be the ”partial image” of G + GSV

1 obtained by keeping the z1 vari-
able alive and setting all other variables to field elements. This means that (β1, ..., βi−1, βi +

z1, βi+1, ..., βn) ∈ Imgz1
(G + GSV

1 ), and hence, f (G + GSV
1 ) is not a constant. 2

Observation 2.3 Let f ∈ F[x] be an n-variate, degree d polynomial, and for some m ∈ N, let G :
Fm → Fn be a polynomial map of degree at most d′. If |F| > dd′, then for any affine form ℓ ∈ F[x]
and variable sets u and {y, z} such that |u| = m and u ∩ {y, z} = ∅, f (G(u) + GSV

1 (y, z)) = 0
only if g(G) = 0, where g := f (xi = ℓ).

Proof: Suppose that g(G) ̸= 0. Then there exists (α1, . . . , αn) ∈ Img(G) such that

f (α1, . . . , αi−1, β, αi+1 . . . , αn) = g(α1, . . . , αn) ̸= 0,

where β := ℓ(α1, . . . , αn). It is easy to see that (β − αi)ei, where ei ∈ Fn is the i-th basis
vector is in the image of GSV

1 . So (α1, . . . , αi−1, β, αi+1 . . . , αn) ∈ Img(G + GSV
1 ) and f (G(u) +

GSV
1 (y, z)) ̸= 0. 2

2.5.2 Low support rank concentration

We now define the notion of low support rank concentration, which is a crucial component
of this work. The support of a monomial is defined to be the number of distinct variables in
it. For a monomial xα, we will denote its support by Supp (xα).

Definition 2.21 Let F be a polynomial in x-variables with coefficients from Kw×w, where K is a
field and w ∈ N. For an m ∈ N, we say that F has support-m rank concentration over K if the
coefficient of every monomial in F is in the K-span of the coefficients of the monomials of support at
most m in F.

Observation 2.4 Let f = 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1 ∈ F[x] be computable by an ROABP
of width w, and F = M1(x1)M2(x2) · · ·Mn(xn). For an m ∈ N and t1(z), . . . , tn(z) ∈ F[z],
where z is a set of variables different from x, suppose that F(x + t(z)) := M1(x1 + t1(z))M2(x2 +

t2(z)) · · ·Mn(xn + tn(z)) ∈ F(z)w×w[x] has support-m rank concentration over F(z). Then,
f (x1 + t1(z), . . . , xn + tn(z)), when viewed as a polynomial in x-variables with coefficients from
F[z], has an x-monomial of support at most m, provided f ̸= 0.
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Proof: Let F(x + t(z)) = ∑α Cαxα, where Cα ∈ F[z]w×w. Then, f (x1 + t1(z), . . . , xn +

tn(z)) = ∑α

(
1T · Cα · 1

)
xα. If f ̸= 0, then there is an α such that 1T · Cα · 1 ̸= 0. If

Supp (xα) ≤ m, then there is nothing to prove. Otherwise, as F(x + t(z)) has support-m
rank concentration over F(z), Cα is in the F(z)-span of

{
Cβ : Supp

(
xβ
)
≤ m

}
. Thus, there

is a β with Supp
(
xβ
)
≤ m such that 1T · Cβ · 1 is non-zero, as 1T · Cα · 1 is non-zero. 2

2.5.3 Algebraic rank and faithful homomorphisms

We say that polynomials f1, . . . , fm ∈ F[x] are algebraically independent over F, if they
do not satisfy any non-trivial polynomial equation over F, i.e., for any p ∈ F[y1, . . . , ym],
p( f1, . . . , fm) = 0 only if p = 0. For f = ( f1, . . . , fm), the transcendence degree (i.e., the alge-
braic rank) of f over F is the cardinality of any maximal algebraically independent subset of
{ f1, . . . , fm} over F. The notion of algebraic rank is well defined as algebraic independence
satisfies the matroid properties.

For f = ( f1, . . . , fm) ∈ F[x]m, let

Jx(f) :=


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
... · · · ...

∂ fm
∂x1

∂ fm
∂x2

· · · ∂ fm
∂xn


m×n

denote the Jacobian matrix of f. The following well-known lemma relates the transcendence
degree of f over F – denoted by tr-degF(f) – to the rank of the Jacobian.

Lemma 2.2 (The Jacobian criterion) Let f = ( f1, . . . , fm) ∈ F[x]m be a tuple of polynomials of
degree at most D and tr-degF(f) = r. If char(F) = 0 or char(F) > Dr, then tr-degF(f) =

rankF(x) Jx(f).

Definition 2.22 (Faithful homomorphisms) A homomorphism ϕ : F[x] → F[z] is said to be
faithful to f = ( f1, . . . , fm) ∈ F[x]m if tr-degF (f) = tr-degF (ϕ(f)).

Lemma 2.3 (Theorem 2.4 in [ASSS16]) If a homomorphism ϕ : F[x] → F[z] is faithful to f =

( f1, . . . , fm) ∈ F[x]m , then for any p ∈ F[y1, . . . , ym], p(f) = 0 if and only if p(ϕ(f)) = 0.

The following lemma was proved in [ASSS16, BMS13].
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Lemma 2.4 (Lemma 2.7 of [ASSS16]) Let f = ( f1, ..., fm) be a tuple of polynomials of degree at
most D, tr-degF(f) ≤ r, and char(F) = 0 or > Dr. Let ψ : F[x]→ F[z] be a homomorphism such
that rankF(x) Jx(f) = rankF(z)ψ(Jx(f)). Then, the map ϕ : F[x] → F[z, t, y1, ..., yr] that, for all
i ∈ [n], maps

xi →
(

r

∑
j=1

yjtij

)
+ ψ(xi)

is faithful to f.

We will also need the following observation in our proofs.

Observation 2.5 Let f = ( f1, . . . , fm) ∈ F[x]m be a tuple of polynomials with tr-degF(f) = r. For
any A ∈ GL(n, F), let gi = fi(Ax) for all i ∈ [m] and g = (g1, . . . , gm). Then, tr-degF(g) = r.

Proof: Assume without loss of generality that f1, . . . , fr is a transcendence basis of f. We will
show that g1, . . . , gr is a transcendence basis of g. For contradiction, let p ∈ F[y1, . . . , yr] be
such that p(g1, . . . , gr) = 0. Then, p(g1, . . . , gr) = p( f1, . . . , fr)(Ax) = 0. As A is invertible,
p( f1, . . . , fr) = 0. Because f1, . . . , fr are algebraically independent, this implies that p = 0,
and so, g1, . . . , gr are algebraically independent. Also, if there exists a j ∈ [r + 1, m] such
that g1, . . . , gr, gj are algebraically independent, then for all non-zero p ∈ F[y1, . . . , yr+1],
p(g1, . . . , gr, gj) ̸= 0. But, as p(g1, . . . , gr, gj) = p( f1, . . . , fr, f j)(Ax) and A is invertible, for
all p ̸= 0, p( f1, . . . , fr, f j) ̸= 0. This means that tr-degF(f) > r, which contradicts the hy-
pothesis of the observation. 2

[GKST17] gave a quasi-polynomial time hitting set construction for the sum of constantly
many ROABPs. As ROFs are a sub-class of ROABPs, we have the following theorem which
is used in Chapter 8.

Theorem 2.1 [GKST17] Let F be a field of size at least poly(n). There exists a hitting set generator
G : Fm → Fn with degree poly(n) and m = O(log n) for polynomials computed by ROABPs or
sum of constantly many ROFs.

2.6 Read-once arithmetic formulas
Recall that an arithmetic formula C is said to be read-once if every variable appears at most
once in C. We will identify a gate with the polynomial it computes and Cwith the polynomial
computed by its top-most gate. Without loss of generality, C has alternate layers of + and
× gates, every non-leaf gate has fan-in at least two, and every child of a × gate computes
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a non-constant polynomial. Furthermore, we assume that no leaf nor any wire of an ROF
is labelled by 0. This ensures that if C computes f , then all variables present in C are also
present in f , that is, they are in var( f ). We shall assume that all ROFs in this work satisfy
this property.

The product-depth of C, denoted ∆, is the number of × gates in a longest path in C from
the root to a leaf. We call C a +-rooted (similarly, a ×-rooted) ROF if the root of C is a + gate
(respectively, a × gate). The following fact is easy to verify.

Fact 2.1 (Irreducibility of an ROF) The polynomial computed by a +-rooted ROF is irreducible
over F.

If f ∈ F[x] is computed by an ROF, we shall denote this by f ∈ ROF. In Chapters 5 and
6, we consider ROFs with some additional structure.

Definition 2.23 (Canonical ROF) An ROF C is canonical if it satisfies the following properties:

1. C has alternate layers of + and × gates.

2. Every non-leaf gate in C has fan-in at least 2.

3. Every child of a × gate computes a non-constant polynomial.

4. There are no labels on the edges of C.

5. A + gate has at most one constant and at most one variable among its children, but not both.

6. Suppose there is a + gate that has among its children a variable and a × gate v such that v has
two children – a variable and a + gate v′. Then, v′ has no constant among its children.

Let C be a +-rooted canonical ROF over F. The equation C = T1 + · · ·+ Ts + γ means that
T1, . . . , Ts are the non-constant children and γ ∈ F is the constant child of the root + gate.
Note that a constant in a canonical ROF C only appears as a child of a + gate. Thus, all
constants present in C are additive-constants. An example of a canonical ROF is an ROANF.

Definition 2.24 (ROANF) A canonical ROF C is in the read-once alternating normal form
(ROANF) if it is a complete binary tree, the root of C is a + gate, the bottom-most layer of C contains
× gates, and all the leaves are labelled with distinct variables.
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Definition 2.25 An ROF is additive-constant-free if it has no additive-constants. We shall denote
the class of additive-constant-free ROFs by ROF0. If C ∈ ROF0 has n variables, then we shall say
that C ∈ ROF0(n).

For an ROF C and x, y ∈ x, fca(x, y) denotes the first common ancestor gate of x, y in C.
Because C is an ROF, the first common ancestor is unique for any pair of variables.

The product-depth of any gate G in C is the number of × gate on the path from the root
to G excluding G.

Definition 2.26 For an ROF C ∈ F[x], its gate graph G = (|x|, E), where

E := {{x, y} : fca(x, y) is a × gate} .

[SV15] showed that E =
{
{x, y} : ∂2C

∂x∂y ̸= 0
}

.
We shall denote the class of polynomials computed by sum of k many ROFs as ∑k ROF.

In addition, we shall use ∑k ROF(n) to denote the set of all polynomials computed by the
sum of k many ROFs in n variables. The following theorem is required in Chapter 8.

Theorem 2.2 [MT18] For each n ∈N, ESymn,n−1 /∈ ∑⌈ n
2⌉−1 ROF.

2.7 The Hessian of a polynomial
The Hessian matrix of an ROF is crucially used to obtain an equivalence test for ROFs in
Chapter 5. We now define the Hessian of a polynomial.

Definition 2.27 (Hessian of a polynomial) The Hessian of g ∈ F[x], denoted as Hg, is the n× n

matrix whose (i, j)-th entry is ∂2g
∂xi∂xj

. The determinant of Hg is called the Hessian determinant of
g.

The Hessian matrix appears naturally in the Taylor expansion of a polynomial and has
important applications in optimization, second derivative tests, etc. In algebraic complexity,
the rank of the Hessian plays a crucial role in the best known lower bound on the determi-
nantal complexity of the permanent [MR04, CCL10]. The Hessian determinant is an effective
tool for designing equivalence tests for the sum-product polynomial, the power symmetric
polynomial [Kay11], and the sum of univariates model [GKP18]. A suitable 4-th order gen-
eralization of the Hessian has been used in [GKP18] to study the Waring decomposition
problem in the average case. In this work, we focus on understanding the essential vari-
ables of the Hessian determinant of a general ROF (see Section 5.4) to devise an equivalence
test for ROFs.
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A few basic properties of the Hessian are given below.

Observation 2.6 Let C = T1 + · · · + Ts + γ be an ROF over F, where for every l ∈ [s], Tl

is a ×-rooted sub-ROF of C and γ ∈ F. Suppose the rows and columns of HC are labelled by
var(T1), . . . , var(Ts) in order. Then, HC is a block diagonal matrix, where for l ∈ [s], the l-th block
on the diagonal is HTl .

Fact 2.2 (Chain rule) Let g ∈ F[x] and h = g(Ax) for A ∈ M(|x|, F). Then, Hh = AT ·
Hg(Ax) · A.

Fact 2.3 Let g ∈ F[x] and b ∈ F|x|. Then, Hg(x+b) = Hg(x + b).

Fact 2.4 Let g ∈ F[x], A ∈ GL(|x|, F), b ∈ F|x| and h = g(Ax + b). Then, det(Hh) =

α2 · det(Hg)(Ax + b), where α = det(A).

2.8 Essential and redundant variables
The contents of this section are some definitions and preliminary results for the results in
Chapters 5 and 6 which are part of a joint work with Nikhil Gupta and Chandan Saha
[GST23]. A special case of the result in Chapter 5 is included in [Gup22]. As such, some
of the preliminary results mentioned in this section also appear in [Gup22].

Definition 2.28 (Essential and redundant variables) The number of essential variables of an
n-variate g ∈ F[x] is s := minA∈GL(n,F) |var(g(Ax))|. The number of redundant variables of g
is (n− s).

Following [Car06], we denote the number of essential variables of g by Ness(g). [Car06]
gave a polynomial-time algorithm that takes input the coefficient vector of g and finds an
A ∈ GL(n, F) such that |var(g(Ax))| = Ness(g). [Kay11] gave a randomized polynomial-
time algorithm that does the same given black-box access to g. These algorithms use a neat
relation between Ness(g) and dim

〈
∂g
∂x : x ∈ x

〉
. See Claim 2.3 in [KNST17] for a proof of the

following fact.

Fact 2.5 (Essential variables and partials) Let d ∈ N and char(F) = 0 or > d. If g ∈ F[x]≤d,
then Ness(g) = dim

〈
∂g
∂x : x ∈ x

〉
. For z ⊆ x,

{
∂g
∂z : z ∈ z

}
is a basis of

〈
∂g
∂x : x ∈ x

〉
if and

only if there is an A ∈ GL(|x|, F) that maps every variable in x \ z to itself, var(g(Ax)) = z, and
Ness(g(Ax)) = |z|.
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In the claim below, we mention a slightly general version of an algorithm to remove
redundant variables. Its proof follows from the above fact.

Claim 2.1 (Elimination of redundant variables) Let d ∈ N, char(F) = 0 or > d, and |F| ≥
2|x|d. There is a randomized poly(|x|, d) time algorithm Remove-Redundant-Vars that takes
input black-box access to a g ∈ F[x]≤d and a set y ⊆ x s.t. x \ y contains a set of essential variables
of g, and outputs an A ∈ GL(|x|, F) s.t. A maps every y-variable to itself and g(Ax) is y-free and
has no redundant variables.

We say a set z ⊆ x is a set of essential variables of g if
{

∂g
∂z : z ∈ z

}
is a basis of

〈
∂g
∂x : x ∈ x

〉
;

variables in x \ z are redundant for g. We categorize the essential variables further as follows.

Definition 2.29 (Truly and ordinary essential variables) An x ∈ x is a truly essential vari-
able of g ∈ F[x] if for every A ∈ GL(|x|, F) that maps x to itself, x ∈ var(g(Ax)). If z is a set of
essential variables of g, then a z ∈ z that is not truly essential is an ordinary essential variable of
g in z.

Observation 2.7 (Characterizing truly essential variables using partials) Let d ∈N and char(F) =
0 or > d. If g ∈ F[x]≤d, then x ∈ x is a truly essential variable of g if and only if ∑x′∈x αx′

∂g
∂x′ = 0

for αx′ ∈ F implies αx = 0, i.e., no F-linear dependence of
{

∂g
∂x′ : x′ ∈ x

}
involves ∂g

∂x .

It follows that every set of essential variables of g contains all the truly essential variables.

Proof: Let x be a truly essential variable of g. Suppose there exists αx′ ∈ F, for every x′ ∈ x,
such that ∑x′∈x\{x} αx′

∂g
∂x′ = αx

∂g
∂x , where αx ̸= 0. Then, it follows from Fact 2.5 that there is

an A ∈ GL(|x|, F) which maps x to itself and g(Ax) is x-free. Hence, by Definition 2.29, x is
not truly essential.

Suppose x is not a truly essential variable of g. Then, there exists an A ∈ GL(|x|, F) that
maps x to itself and g(Ax) is x-free. Suppose the column of A labelled by x is (αy,x)T

y∈x.

Then, it follows from the chain rule of derivatives that 0 = ∂g(Ax)
∂x = ∑y∈x αy,x

∂g
∂y (Ax), which

implies ∑y∈x αx,y
∂g
∂y = 0. As A maps x to itself, αx,x = 1 ̸= 0. This completes the proof. 2

The next fact follows from the proof of Fact 2.5.

Fact 2.6 (Structure of a matrix for removing redundant variables) Let d ∈ N, char(F) = 0
or > d, and g ∈ F[x]≤d. Let z be a set of essential variables of g, z1 the set of truly essential variables
of g, z2 = z \ z1, and y = x \ z. Then, there is an A ∈ GL(|x|, F) that maps every variable in
z1 ⊎ y to itself, maps every z ∈ z2 to a linear form in y ⊎ {z}, and var(g(Ax)) = z.
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Observation 2.8 (Truly essential variables map to linear forms in essential variables) Let d ∈
N, char(F) = 0 or > d, x and y be disjoint sets of variables, and h ∈ F[x]≤d. Let z ⊆ x ⊎ y and
A ∈ GL(|x|+ |y|, F) such that |z| = Ness(h) and h(A · (x, y)T) ∈ F[z] (where we pretend that h
is a polynomial in x ⊎ y). Then, A maps every truly essential variable of h to a linear form in z.

Proof: Assume that z = x and all x-variables are essential for h. Suppose, A =

[
Ax A1

A2 Ay

]
,

where the rows and columns of Ax, Ay are labelled by x and y, respectively. It is sufficient
to show that A1 = 0. Let g = h(A(x, y)T) ∈ F[x]. Pretend that g, h are polynomials in x ⊎ y.
Let ∇g = ([∇g]x, [∇g]y)T, where [∇g]x =

(
∂g
∂x

)
x∈x

and [∇g]y =
(

∂g
∂y

)
y∈y

= 0. Similarly, let

∇h = ([∇h]x, [∇h]y)T, where [∇h]y = 0. By the chain rule,

∇g = AT · [∇h](A(x, y)T). (2.1)

Since x is the set of essential variables of h, the entries in [∇h]x are F-linearly independent,
and thus, the entries in [∇h]x(A(x, y)T) are also F-linearly independent. Now, it is easy to
see from Equation (2.1) and the structure of A that AT

1 = 0. Otherwise, we get a non-zero
linear combination of ∂h

∂x (A(x, y)T), x ∈ x, which is equal to 0 (as [∇g]y = [∇h]y = 0), and
this leads to a contradiction.

Now, suppose x ̸= z. Let P ∈ GL(|x|+ |y|, F) be a permutation matrix that maps x to
z, z to x and every other variable to itself. We know h(A(x, y)T) ∈ F[z]. Then, note that
h(AP(x, y)T) ∈ F[x]. It follows from the above argument that AP maps every x-variable to
a linear form in x. This implies A maps every x-variable to a linear form in z.

Now, suppose that not all x-variables are necessarily essential for h. Let C ∈ GL(|x| +
|y|, F) be such that h(C(x, y)T) has no redundant variables. Then, Fact 2.6 implies that every
truly essential variable of h is in var(h(C(x, y)T)). The argument in the above paragraph
implies that C−1A maps all variables in var(h(C(x, y)T)) to linear forms in z. Because C
maps every truly essential variable of h to itself, A maps every truly essential variable to a
linear form in z. 2

Observation 2.9 (Truly essential variables from factors) Let d ∈N, char(F) = 0 or > d, and
x and y be disjoint sets of variables. Let h(x, y) = g(x)e · p(x, y) ∈ F[x, y], where g(x), p(x, y) are
coprime, deg(h) ≤ d, and e ≥ 1. If Ness(g) = |x|, then every x-variable is truly essential for h.

Proof: Suppose, ∑x∈x αx
∂h
∂x + ∑y∈y βy

∂h
∂y = 0. Since h = g(x)e · p(x, y) and e ≥ 1, we get

∑
x∈x

αx

(
ge ∂p

∂x
+ e · ge−1 · p ∂g

∂x

)
+ ∑

y∈y
βyge ∂p

∂y
= 0.
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On dividing the above equation by ge−1 and rearranging the terms we get

g

(
∑
x∈x

αx
∂p
∂x

+ ∑
y∈y

βy
∂p
∂y

)
+ e · p

(
∑
x∈x

αx
∂g
∂x

)
= 0.

As g and p are coprime, and deg
(

∑x∈x αx
∂g
∂x

)
< deg(g), we get ∑

x∈x
αx

∂g
∂x = 0. But, this

implies αx = 0 for every x ∈ x, since Ness(g) = |x|. Hence, every x-variable is truly essential
for h. 2

Observation 2.10 (Truly essential pairs of variables) Let d ∈ N, char(F) = 0 or > d, and
{x1, x2} and y be disjoint sets of variables. Let h(x1, x2, y) = ∑i≥0 pi(y) · (x1x2)

i be a polynomial
of degree at most d such that pi(y) ̸= 0 for some i ≥ 1. Then, x1 and x2 are truly essential for h.

Proof: Let α1
∂h
∂x1

+ α2
∂h
∂x2

+ ∑y∈y βy
∂h
∂y = 0, where α1, α2, βy ∈ F for y ∈ y. Since h =

∑i≥0 pi(y)(x1x2)
i,

α1

(
∑
i≥1

i · pi · xi−1
1 xi

2

)
+ α2

(
∑
i≥1

i · pi · xi
1xi−1

2

)
+ ∑

y∈y
βy

(
∑
i≥0

(x1x2)
i ∂pi

∂y

)
= 0.

Notice that α1

(
∑i≥1 i · pi · xi−1

1 xi
2

)
, α2

(
∑i≥1 i · pi · xi

1xi−1
2

)
, and ∑y∈y βy

(
∑

i≥0
(x1x2)

i ∂pi
∂y

)
are

monomial disjoint. Thus, each of these three polynomials is zero. Suppose α1 ̸= 0. Then,

∑
i≥1

i · pi · xi−1
1 xi

2 = 0. As char(F) = 0 or > d, we get pi = 0 for every i ≥ 1, which is a

contradiction. Thus, α1 = 0. Similarly, α2 = 0. Hence, x1 and x2 are truly essential for h.
2

Essential variables modulo affine forms. Let g ∈ F[x] and ℓ = ∑i∈[n] αixi + β, a non-
constant affine form in F[x]. Let I = {i ∈ [n] : αi ̸= 0}, and ≺ a monomial ordering on
F[x]. Suppose, xj has the highest precedence among {xi : i ∈ I} according to ≺. There is a
natural ring isomorphism between the quotient ring F[x]/⟨ℓ⟩ and F[x \ {xj}], where ⟨ℓ⟩ is
the ideal generated by ℓ. We define g modulo ℓ (denoted gℓ) as:

gℓ := g

x1, . . . , xj−1,−αj
−1

 ∑
i∈[n]\{j}

αixi + β

 , xj+1, . . . , xn

 .

Definition 2.30 The number of essential variables of g modulo ℓ is defined as Ness(gℓ).

45



Notice that the ordering ≺ is implicit in the above definition. But, the following observa-
tion shows that the exact choice of ≺ is unimportant here.

Observation 2.11 (Soundness of Definition 2.30) For j ∈ I, let Wj =
〈

∂φj(g)
∂x : x ∈ x

〉
, where

φj(g) is obtained by substituting xj in g by−αj
−1
(

∑i∈[n]\{j} αixi + β
)

. Then, for j1, j2 ∈ I, dim Wj1 =

dim Wj2 .

Proof: For j ∈ I, let φj be the substitution map defined as: φj(xj) = −αj
−1
(

∑i∈[n]\{j} αixi + β
)

,
and φ(x) = x for every x ∈ x \ {xj}. For j1, j2 ∈ I, let gj1 := φj1(g) and gj2 := φj2(g). Observe
that gj1 − gj2 ∈ ⟨ℓ⟩, which implies gj1 = φj1(gj2), as φj1(ℓ) = 0 and gj1 is xj1-free. Hence, by

chain rule,
∂gj1
∂xi

= φj1

(
∂gj2
∂xi

)
− α−1

j1
αi · φj1

(
∂gj2
∂xj1

)
. As gj2 is xj2-free,

∂gj1
∂xj2

= −α−1
j1

αj2 · φj1

(
∂gj2
∂xj1

)
=⇒

∂gj1
∂xi
− α−1

j2
αi ·

∂gj1
∂xj2

= φj1

(
∂gj2
∂xi

)
.

Notice that the space spanned by
{

∂gj1
∂xi
− α−1

j2
αi ·

∂gj1
∂xj2

: xi ∈ x
}

is Wj1 , which (by the above

equations) is U :=
〈

φj1

(
∂gj2
∂xi

)
: xi ∈ x

〉
. As φj1 is linear, dim U ≤ dim Wj2 , implying

dim Wj1 ≤ dim Wj2 . Similarly, we can show that dim Wj2 ≤ dim Wj1 . Therefore, dim Wj1 =

dim Wj2 . 2

2.9 The orbit of a polynomial
For A ∈ GL(n, F), Ax denotes the column vector obtained by multiplying A with (x1 · · · xn)T.

Definition 2.31 (Orbit of a polynomial) The orbit of g ∈ F[x], denoted orb(g), is defined as
orb(g) := {g(Ax + b) : A ∈ GL(|x|, F), b ∈ F|x|}.

Remark. Some results in this work, like those in Chapters 3, 4, 5, 6, holds even if we consider
a more general definition of the orbit of a polynomial: Let x, y be sets of n and m variables,
where n ≥ m, and h ∈ F[x], g ∈ F[y]. Then, h ∈ orb(g) if there is exist a A ∈ Fm×n of rank
m and b ∈ Fm such that h = g(Ax + b).

By the ‘orbit of a circuit class C’, we mean the union of the orbits of the polynomials
computable by the circuits in the class C.

Definition 2.32 (PS orbit of a polynomial) Let g, h ∈ F[x]. We say that h is in the PS orbit
of g, denoted PS(g), if there exist a |x| × |x| permutation matrix P, a |x| × |x| invertible diagonal
(scaling) matrix S, and a b ∈ F|x| such that h = g(PSx + b).
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The following facts are easy to prove.

Fact 2.7 If h ∈ orb(g), then Ness(g) = Ness(h).

Fact 2.8 Let d ∈ N, char(F) = 0 or > d, g ∈ F[x]≤d, ℓ ∈ F[x] a non-constant affine form,
A ∈ GL(|x|, F), b ∈ F|x|, g′ = g(Ax + b), and ℓ′ = ℓ(Ax + b). Then, Ness(g′ℓ′) = Ness(gℓ).

2.10 The border of a circuit class
Recall from Chapter 1 that the closure or border of a circuit class C, denoted by C is the
Zariski closure of C obtained by identifying each n-variate degree-d polynomial computed
by some circuit in C with its coefficient vector. We now give an alternative and equivalent
definition of C. The equivalence between these two notions of border was proved in [Bür01,
LL89].

Let ϵ be a variable distinct from x. For f ∈ F[x] and g ∈ F[ϵ, x], we say that g approx-
imates f if there exists an h ∈ F[ϵ, x] such that f + ϵh = g. Alternatively, (over C and R),
f = limϵ→0 g. Throughout this work, we shall denote a polynomial in ϵ · F[ϵ, x] by O(ϵ).
Thus, f is approximated by g if f + O(ϵ) = g.

If C is a circuit over F(ϵ) that computes g, that is, C can have ”constants” from F(ϵ) and
these constants come for ”free” and do not count towards the size of C, then we say that f is
in the border of C denoted by f ∈ C. For a circuit class C, its border denoted by C is the union
of the border of all circuits in it. For example, the class VP contains all polynomial families
of polynomial degree that can be approximated by polynomial sized arithmetic circuits over
F(ϵ).

Note that for γ(ϵ) ∈ F(ϵ), γ can be written as ϵ−N · γ′ for some N ∈ N and a formal
power series γ′. A folklore result states that if f is in the border of C, then every F(ϵ)-
element appearing in C can be written as ϵ−N · γ for some γ ∈ F[ϵ]; i.e. every F(ϵ)-element
appearing in C is actually a Laurent polynomial. Throughout this work, whenever we say
that C is a circuit over F(ϵ), we assume that all F(ϵ)-elements in it are Laurent series. For an
α ̸= 0 = ∑b

i∈a αiϵ
i ∈ F(ϵ), val(α) is the smallest i ∈ {a, . . . , b} such that αi ̸= 0. val(0) := ∞.

For a g ∈ F(ϵ)[x], val(g) is the minimum valuation of a coefficient of any monomial of g. For
an α ∈ F[ϵ], α(0) ∈ F denotes the constant term of α.

The following folklore claim follows from Nisan’s characterisation of ROABPs [Nis91].

Claim 2.2 ROABP = ROABP.

It is also known that ROF = ROF. In Chapter 8, we need a similar statement for additive
constant free ROFs that we now prove.
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Claim 2.3 ROF0 = ROF0.

Proof: By induction on the number of variables n in a C ∈ ROF0. For n = 1, f = αx + O(ϵ)

for some α ∈ F(ϵ). Since αx + O(ϵ) ∈ F[ϵ], α ∈ F[ϵ]. Thus, f = α(0) · x and the claim is
true. Let the claim be true for all f ′ ∈ ROF0(n− 1) and let f ∈ ROF0(n); say it is C+ O(ϵ).
Note that C ∈ F[ϵ][x].

If the top gate of C is a + gate then C = T1 + T2, where Tis are ROFs over F(ϵ). They are
also non-constant, variable disjoint, and additive constant-free. Hence, they must be ROFs
over F[ϵ]. As they have fewer than n variables, from the induction hypothesis Ti(ϵ = 0) is
in ROF0 and f = T1(ϵ = 0) + T2(ϵ = 0) ∈ ROF0. Otherwise, C = Q1Q2 where Qi are non-
constant, variable disjoint, additive constant-free ROFs over F(ϵ). Without loss of generality,
val(Q1) ≤ val(Q2). As C ∈ F[ϵ][x] and Q1, Q2 are variable disjoint, val(Q1) + val(Q2) ≥ 0.
Let ℓ := max {0,−val(Q1)} and Q′1 := ϵℓQ1, Q′2 := ϵ−ℓQ′2. Note that Q′1, Q′2 ∈ F[ϵ][x].
As they have fewer than n variables, the induction hypothesis gives that, Q′1(ϵ = 0) and
Q′2(ϵ = 0) are in ROF0. Thus, f = Q′1(ϵ = 0)Q′2(ϵ = 0) is also in ROF0. 2

The above proof also works for ROF. However, we have given a proof the closure of
ROF0 under border as we need this precise statement in Chapter 8.
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Chapter 3

Hitting sets for orbits of ROABPs

This section gives hitting set constructions for orbits of low individual degree commuta-

tive ROABPs and multilinear constant-width ROABPs. The contents of this chapter are

from a joint work with Chandan Saha [ST24].

3.1 Introduction
A polynomial f ∈ F[x] where x = (x1, . . . , xn) the orbit of f , is defined as

orb( f ) := { f (Ax + b) : A ∈ GL(n, F), b ∈ Fn} ;

see Definition 2.31. Recall that for a circuit class C, its orbit orb(C) is defined as ∪ f∈C orb( f ).
In this section, we describe quasi-polynomial time hitting set constructions for two sub-
classes of ROABPs: commutative ROABPs with low individual degree and multilinear ROABPs
with constant width (see Definition 2.7). As corollaries we obtain quasi-polynomial time
hitting sets for orbits of sums of products of low degree univariate polynomials and sparse
polynomials with low individual degree. We construct these hitting sets using the rank con-
centration by translation technique introduced in [ASS13] and later used in multiple works
like [FSS14] to obtain hitting sets for various sub-classes of ROABPs. In this section, we
show how this technique can be extended to the setting of orbits.

This section contains the proofs of the following theorems.

Theorem 1.1 (Hitting sets for the orbits of commutative ROABPs with low individual degree)
Let C be the set of n-variate polynomials with individual degree at most d that are computable by
width-w commutative ROABPs. If |F| > n2d, then a hitting set for orb(C) can be computed in
(nd)O(d log w) time.
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Theorem 1.3 (Hitting sets for the orbits of multilinear constant-width ROABPs) Let C be the
set of n-variate multilinear polynomials that are computable by width-w ROABPs. If |F| > nO(w4),
then a hitting set for orb(C) can be computed in nO(w6·log n) time.

As corollaries to Theorem 1.1, we obtain the following two theorems.

Theorem 1.2 (Hitting sets for the orbits of sums of products of low degree univariates) Let
C be the set of n-variate polynomials that can be expressed as sums of s products of univariates of de-
gree at most d. If |F| > n2d, then a hitting set for orb(C) can be computed in (nd)O(d log s) time.

Theorem 3.1 (Hitting sets for orbits of sparse polynomials) Let C be the set of n-variate, s-
sparse polynomials with individual degree at most d. If |F| > nd and char(F) = 0 or > d, then a
hitting set for orb(C) can be computed in (nd)O(d log s) time.

Theorems 1.1, 1.2, and 3.1 are proved in Section 3.2 while Theorem 1.3 is proved in Sec-
tion 3.3. Since both low individual degree commutative ROABPs and constant width multi-
linear ROABPs are closed under translation, we just need to prove Theorems 1.1 and 1.3 for
polynomials of the form f (Ax) where f is computed by a low individual degree commuta-
tive ROABP or constant width multilinear ROABP.

3.2 Hitting sets for the orbits of commutative ROABPs
The strategy. Theorem 1.1 is proved by adapting the rank concentration by translation
technique of Agrawal, Saha, and Saxena [ASS13]1 to work for the orbits of commutative
ROABPs. Let f = 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1 be a width-w commutative ROABP;
here Mi(xi) ∈ Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn). For
any A ∈ GL(n, F), let g = f (Ax) and G = F(Ax). For i ∈ [n], suppose that A maps
xi 7→ ℓi(x), where ℓi is a linear form, and let yi = ℓi(x) and y = {y1, . . . , yn}. Then, g = 1T ·
M1(y1)M2(y2) · · ·Mn(yn) · 1 and G = M1(y1)M2(y2) · · ·Mn(yn). We will show that if g ̸= 0,
then there exist explicit “low” degree polynomials t1(z), . . . , tn(z), where z is a “small” set
of variables such that g(x1 + t1(z), . . . , xn + tn(z)) has a “low” support monomial. This will
be done by proving that G(x1 + t1(z), . . . , xn + tn(z)) has low support rank concentration in
the “y-variables”. Applying Observation 2.4, we will get that g(x1 + t1(z), . . . , xn + tn(z))
has a low support y-monomial. This will then imply that g(x1 + t1(z), . . . , xn + tn(z)) has a
low support x-monomial, provided f has low individual degree. Finally, we will plug in the

1[ASS13] proved their result for products of univariate polynomials over a Hadamard algebra which form
a subclass of commutative ROABPs. However, their analysis also works for general commutative ROABPs.
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SV generator (defined in Section 2.5.1) to preserve the non-zeroness of g. More precisely, we
will prove the following theorem at the end of Section 3.2.2.

Theorem 3.2 Let f be an n-variate polynomial with individual degree at most d that is computable
by a width-w commutative ROABP. If |F| ≥ n, then GSV

(2⌈log w2⌉(d+1)+1) is a hitting set generator for
orb( f ).

Our analysis differs from that in [ASS13] at a crucial point: In [ASS13], it was shown that
F(x + t) = M1(x1 + t1)M2(x2 + t2) · · ·Mn(xn + tn) has low support rank concentration over
F(t) if the nonzeroness of every polynomial in a certain collection of polynomials – each in
a “small” set of t-variables – is preserved. As each polynomial in the collection has “few”
t-variables, a substitution ti ← ti(z) that preserves its nonzeroness is relatively easy to con-
struct. But the collection of polynomials that we need to preserve to show low support rank
concentration for G(x + t) is such that every polynomial in the collection has potentially all
the t-variables. However, we are able to argue that each of these polynomials still has a low
support t-monomial. This then helps us construct a substitution ti 7→ ti(z) that preserves
the nonzeroness of these polynomials.

Notations and conventions. In the analysis, we will treat t1(z), . . . , tn(z) as formal variables
t = (t1, . . . , tn) while always keeping in mind the substitution map ti 7→ ti(z). For i ∈
[n], let ri = ℓi(t). For S ⊆ [n], define rS = {ri : i ∈ S}. The F-linear independence of
ℓ1, . . . , ℓn allows us to treat y and r as sets of formal variables. Notice that in this notation,
G(x + t) = M1(y1 + r1)M2(y2 + r2) · · ·Mn(yn + rn). Let A denote the matrix algebra Fw×w.
For i ∈ [n], let Mi(yi) = ∑d

ei=0 ui,ei y
ei
i , where ui,ei ∈ A and Mi(yi + ri) = ∑d

bi=0 vi,bi y
bi
i , where

vi,bi ∈ A[ri] ⊂ A[t]. As f is a commutative ROABP, M1(y1), . . . , Mn(yn) commute with each
other and hence ui,ei and uj,ej also commute for i ̸= j. The following observation, implies
that vi,ei and vj,ej also commute for i ̸= j.

Observation 3.1 For every i ∈ [n] and bi, ei ∈ {0, . . . , d},

1. vi,bi = ∑d
ei=0 (

ei
bi
) · rei−bi

i · ui,ei ,

2. ui,ei = ∑d
bi=0 (

bi
ei
) · (−ri)

bi−ei · vi,bi ,

where (a
b) = 0 if a < b.
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Proof: The proof of Observation 3.1 follows from the following which we prove below: Let
p(y) = ∑d

e=0 weye, where we ∈ A and p(y + r) = ∑d
b=0 w̃byb. Then, w̃b = ∑d

e=0 (
e
b)r

e−bwe.

p(y + r) =
d

∑
e=0

we(y + r)e

=
d

∑
e=0

we

d

∑
b=0

(
e
b

)
re−byb

=
d

∑
b=0

(
d

∑
e=0

(
e
b

)
re−bwe

)
yb.

Thus, w̃b = ∑d
e=0 (

e
b)r

e−bwe. 2

For a set S = {i1, i2, . . . , i|S|} ⊆ [n], where i1 < i2 < . . . < i|S|, the vector (bi1 , bi2 , . . . , bi|S|)

will be denoted by (bi : i ∈ S). Let Supp (b) denote the support of the vector b which
is defined as the number of non-zero elements in it. We also define a parameter m :=
2
⌈
log w2⌉+ 1.

3.2.1 The goal: low support rank concentration

We set ourselves the goal of proving that there exist explicit degree-n polynomials t1(z), . . . , tn(z),
where |z| = 2m, such that G(x1 + t1(z), . . . , xn + tn(z)) = M1(y1 + r1)M2(y2 + r2) · · ·Mn(yn +

rn) ∈ A[r1, . . . , rn][y] has support-(m− 1) rank concentration over F(z) in the y-variables.
We will show in this and the next section that this happens if all polynomials in a certain
collection of non-zero polynomials

{
hS(rS) : S ⊆ ([n]m )

}
⊆ F[r1, . . . , rn], where degrS

(hS(rS))

≤ mdm+1, remain non-zero under the substitution ti 7→ ti(z).1 The following lemma will
help us achieve this goal.

Lemma 3.1 Let G, t, z, y and rS be as defined above. Suppose that the following two conditions are
satisfied:

1. For every S ⊆ ([n]m ) and (bi : i ∈ S) ∈ {0, . . . , d}m, there is a non-zero polynomial hS(rS) such
that

hS(rS) ·∏
i∈S

vi,bi ∈ F[t]-span

{
∏
i∈S

vi,b′i
: Supp

(
b′i : i ∈ S

)
< m

}
.

1We do not really need the degree bound on hS(rS).
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2. There exists a substitution ti 7→ ti(z) that keeps hS(rS) non-zero for all S ⊆ ([n]m ).

Then, for every b = (bi : i ∈ [n]) ∈ {0, . . . , d}n,

∏
i∈[n]

vi,bi ∈ F(z)-span

∏
i∈[n]

vi,b′i
: Supp

(
b′i : i ∈ [n]

)
< m

 , (3.1)

and G(x1 + t1(z), . . . , xn + tn(z)) has support-(m − 1) rank concentration in the y-variables
over F(z).

Proof: Consider a b = (bi : i ∈ [n]) ∈ {0, . . . , d}n with Supp(b) ≥ m. Pick an S ⊆ ([n]m )

such that Supp (bi : i ∈ S) = m. As hS(rS) is a non-zero polynomial and the substitution
ti 7→ ti(z) keeps it non-zero,

∏
i∈S

vi,bi ∈ F(z)-span

{
∏
i∈S

vi,b′i
: Supp

(
b′i : i ∈ S

)
< m

}
.

Also, as vi,bi and vj,bj commute when i ̸= j,

∏
i∈[n]

vi,bi ∈ F(z)-span

∏
i∈S

vi,b′i
· ∏

j∈[n]\S
vj,bj : Supp

(
b′i : i ∈ S

)
< m


= F(z)-span

∏
i∈[n]

vi,b′i
: Supp

(
b′i : i ∈ S

)
< m and b′i = bi ∀i ∈ [n] \ S


⊆ F(z)-span

∏
i∈[n]

vi,b′i
: Supp

(
b′i : i ∈ [n]

)
< Supp(b)

 .

Repeat the above argument for every b′ ∈ {0, . . . , d}n such that m ≤ Supp(b′) <

Supp(b). Continuing in this manner yields (3.1) for all b ∈ {0, . . . , d}n. Since ∏i∈[n] vi,bi is
the coefficient of the monomial yb := yb1

1 · · · y
bn
n in G(x1 + t1(z), . . . , xn + tn(z)), the polyno-

mial G(x1 + t1(z), . . . , xn + tn(z)) has support-(m− 1) rank concentration in the y-variables
over F(z). 2

3.2.2 Achieving rank concentration

We will now see how to satisfy conditions 1 and 2 of Lemma 3.1 such that degrS
(hS(rS))

≤ mdm+1, ti(z) is an explicit degree-n polynomial, and |z| = 2m. It follows from Lemma
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3.1 that to achieve rank concentration, we only need focus on sets S of size exactly m. As-
sume without loss of generality that S = [m]. For b = (b1, . . . , bm) and e = (e1, . . . , em)

in {0, . . . , d}m, define (b
e) := ∏i∈[m] (

bi
ei
), where, as before, (bi

ei
) = 0 if bi < ei. Also, let

vb := ∏i∈[m] vi,bi and ue := ∏i∈[m] ui,ei . Define r := (−r1, . . . ,−rm), rb := ∏i∈[m](−ri)
bi

and r−e := ∏i∈[m](−ri)
−ei . We now define some vectors and matrices by fixing an arbitrary

order on the elements of {0, . . . , d}m.
Let V :=

(
vb : b ∈ {0, . . . , d}m) and U :=

(
ue : e ∈ {0, . . . , d}m); V is a row vector in

A[r](d+1)m
whereas U is a row vector in A(d+1)m

. Let C := diag(rb : b ∈ {0, . . . , d}m) and
D := diag(r−e : e ∈ {0, . . . , d}m); both C and D are (d + 1)m × (d + 1)m diagonal matrices.
Finally, let M be a (d + 1)m× (d + 1)m numeric matrix whose rows and columns are indexed
by b ∈ {0, . . . , d}m and e ∈ {0, . . . , d}m respectively. The entry of M indexed by (b, e)
contains (b

e). We now make the following claim.

Claim 3.1 Let U, V, C, M and D be as defined above. Then, U = VCMD.

Proof: The entry indexed by e ∈ {0, . . . , d}m of U is ue. Observe that

ue = ∏
i∈[m]

ui,ei

= ∏
i∈[m]

(
d

∑
bi=0

(
bi

ei

)
· (−ri)

bi−ei · vi,bi

)
(from Observation 3.1)

= ∑
b=(b1,...,bn)∈{0,...,d}m

(
b
e

)
∏

i∈[m]

(−ri)
bi · ∏

i∈[m]

vi,bi · ∏
i∈[m]

(−ri)
−ei

= ∑
b∈{0,...,d}m

(
b
e

)
· rb · vb · r−e

= ∑
b∈{0,...,d}m

vb · rb ·
(

b
e

)
· r−e.

The equation U = VCMD now follows easily from the definitions of these matrices. 2

In [ASS13], a very similar equation was called the transfer equation and we will refer
to U = VCMD by the same name. Let F :=

{
b ∈ {0, . . . , d}m : Supp(b) = m

}
; clearly,

|F| = dm. 1 Also, let us call the set of all vectors
(
ne : e ∈ {0, . . . , d}m) ∈ F(d+1)m

for which

∑e∈{0,...,d}m neue = 0 the null space of U. Then, we have the following lemma.

1There is a slight overloading of notation here: We have used F before at the beginning of Section 3.2 to
denote the product M1(x1)M2(x2) · · ·Mn(xn). However, since all our arguments involve only G = F(Ax) and
not F, we would use F in this section to denote the set that is mentioned here.
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Lemma 3.2 There are vectors {nb : b ∈ F} in the null space of U such that the following holds:
Let N be the (d + 1)m × dm matrix whose rows are indexed by e ∈ {0, . . . , d}m and whose columns
are indexed by b ∈ F and whose column indexed by b is nb. Then, the square matrix [CMDN]F is
invertible, where [CMDN]F is the sub-matrix of CMDN consisting of only those rows of CMDN
that are indexed by b ∈ F.

The proof of the above lemma is similar to the proof of Theorem 13 in [ASS13]. At a
high level, the proof proceeds as follows: We first impose an order on the monomials in
r variables and observe that this induces an order on the rows and columns of the matrices
U, V, C, M, D, N. Then we use this order and a certain greedy argument to construct an N
whose columns are in the null space of U. We again use the order along with the Cauchy-
Binet identity for the determinant to argue that det([M]FDN) has an r monomial with the
maximum order. As [C]F is a diagonal matrix, this proves the lemma.

Proof: The entries of U, the columns of M, the rows and columns of D, and the rows
of N are indexed by e ∈ {0, . . . , d}m. Impose an order ≺, say the lexicographical order,
on the indices e ∈ {0, . . . , d}m of U and the other three matrices. Pick the minimal basis
of the space spanned by the entries of U according to this order, i.e., consider the entries
of U in the order dictated by ≺ while forming the basis. Let B := {e ∈ {0, . . . , d}m :
ue is in the minimal basis of U w.r.t. ≺}.

Construction of the matrix N. The columns of N are indexed by b ∈ F. We will now spec-
ify a set of column vectors {nb : b ∈ F} in the null space of U such that the column of N
indexed by b ∈ F is nb. There are two cases for b ∈ F:

Case 1: b ∈ F \ B. In this case, ub is dependent on {ue : e ∈ B and e ≺ b}. Pick this depen-
dence vector as nb.
Case 2: b ∈ F ∩ B. Let there be p such b, where p ≤ |B| ≤ w2. For a set E ⊆ [m] and
b ∈ {0, . . . , d}m, let (b)E denote the vector obtained by projecting b to the coordinates in
E. Roughly speaking, the following claim says that each of these p vectors has a ”small
signature” that differentiates it from the other p− 1 vectors.

Claim 3.2 There exists a way of numbering all b ∈ F ∩ B as b1, . . . , bp and there exist non-empty
sets E1, . . . , Ep ⊆ [m], each of size at most log p ≤ log w2 such that for all k ∈ [p− 1],

(bk)Ek ̸= (bℓ)Ek ∀ℓ ∈ {k + 1, . . . , p} (3.2)
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Proof: Suppose that we have already identified b1, . . . , bk−1 for some k ∈ [p− 1] and have
constructed E1, . . . , Ek−1 satisfying (3.2). We will show how to identify bk and construct Ek

greedily.
Initially Ek = ∅. Let T be the set of the b vectors that have not been numbered yet;

|T| ≤ p. As each vector in T is unique, there exists an index i1 ∈ [m] such that the i1-th entry
is not the same for all b ∈ T. In fact, there must exist a j1 ∈ [d] such that the number of b
whose i1-th entry is j1 is at least 1 and at most |T|/2. Add i1 to Ek and remove from T all
those b whose i1-th entry is not j1. Again, as each vector in T is unique, there exists an index
i2 ∈ [m] \ Ek and a j2 ∈ [d] such that the number of b ∈ T whose i2-th entry is j2 is at least
1 and at most |T|/2. Again, add i2 to Ek and remove from T all those b whose i2-th entry is
not j2. Continuing in this fashion, in log p or fewer iterations, |T| = 1; call the only vector in
T, bk and stop. It is clear that |Ek| ≤ log p and that bk and Ek satisfy (3.2).

After having identified b1, . . . , bp−1, call the last remaining vector bp and pick Ep to be
any arbitrary singleton set. 2

We will call Ek the signature of bk for k ∈ [p]. The following claim tells us that for each
vector bk, there is a vector that is not in B and has support at most m− 1, but agrees with bk

on its signature and so in some sense can be used as a proxy for bk.

Claim 3.3 For every k ∈ [p], there exists a vector b′k ∈ {0, . . . , d}m \ (F ∪ B) such that (b′k)Ek =

(bk)Ek and also b′k and bk agree on all locations where b′k is non-zero.

Proof: As |Ek| ≤ log w2 and m = 2
⌈
log w2⌉+ 1, for any vector b′ ∈ {0, . . . , d}m satisfying

(b′)Ek = (bk)Ek , there are still at least
⌈
log w2⌉ + 1 coordinates whose values we are free

to choose. For each such free coordinate, we choose its value to be either 0 or the value at
the same coordinate in bk. There are 2⌈log w2⌉+1 ≥ 2w2 such b′, one of which is bk and the
remaining 2w2 − 1 are in {0, . . . , d}m \ F. As |B| ≤ w2, at least one of these 2w2 − 1 vectors
is in {0, . . . , d}m \ (F ∪ B). Pick any such vector and call it b′k. 2

We will now use the above two claims to construct nbk for all k ∈ [p]. We will use b′k
from Claim 3.3 as a proxy for bk. Notice that ub′k

is dependent on
{

ue : e ∈ B and e ≺ b′k
}

.
Let this dependence vector be nbk . This completes the construction of N. We will now show
that [CMDN]F is an invertible matrix.

[CMDN]F is invertible. As C is a diagonal matrix with non-zero entries, it is sufficient to
show that [MDN]F = [M]FDN is an invertible matrix, where [M]F is the sub-matrix of M
consisting of only those rows of M that are indexed by b ∈ F. The following claim lets us
simplify the structure of [M]F so that it becomes easier to argue that [M]FDN is invertible.
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Claim 3.4 There is a row operation matrix R ∈ GL(dm, F) having determinant 1 such that R[M]F

has the following structure: The rows of R[M]F are indexed by b = (b1, . . . , bm) ∈ F and its
columns by e = (e1, . . . , em) ∈ {0, . . . , d}m. Its entry indexed by (b, e) is non-zero if and only if
for all i ∈ [m], bi = ei if ei ̸= 0. All the non-zero entries of R[M]F are either 1 or −1.

Proof: We prove the claim by induction on m. For m = 1,

[M]F =



1 ( d
d−1) ( d

d−2) · · · (d
1) 1

0 1 (d−1
d−2) · · · (d−1

1 ) 1
0 0 1 · · · (d−2

1 ) 1
...

...
...

...
...

...
0 0 0 · · · 1 1


.

Let R1 be the row operation matrix that multiplies the last row of [M]F by (2
1) and sub-

tracts it from the second to last row; then it multiplies the last row by (3
1), the second to last

row by (3
2) and subtracts them from the third to last row, and so on. Then, the first d columns

of R1[M]F form a d× d identity matrix. Also, it is not hard to see that the entry in the last col-
umn of the row of R1[M]F indexed by e ∈ [d] is 1− (e

1) + (e
2)− · · ·+ (−1)e−1( e

e−1) = (−1)e−1.
Let R1 be R. Also, ignoring the last column of R[M]F and [M]F, the remaining sub-matrices
of both the matrices are upper triangular with ones on the diagonal. Thus both of them have
determinant 1. As R relates them, it also has determinant 1.

Assume that the claim is true for all values of m′ up to, but not including m ≥ 2. Let
the matrix M for m′ be denoted by Mm′ and R for m′ be denoted by Rm′ . Then, [Mm]F =

[Mm−1]F⊗ [M1]F. Let Rm := Rm−1⊗R1. Then, Rm[Mm]F = (Rm−1 ⊗ R1) ([Mm−1]F ⊗ [M1]F) =

(Rm−1[Mm−1]F) ⊗ (R1[M1]F). Thus, the claim that Rm[Mm]F has the desired structure fol-
lows from the induction hypothesis. Further, as both Rm−1 and R1 have determinant 1,
det(Rm) = 1. 2

Because of the above claim, showing that R[M]FDN is invertible would suffice. Just like
we did with M, we also impose the order ≺ on the columns of R[M]F that are indexed by
e ∈ {0, . . . , d}m. Recall that the rows of R[M]F and the columns of N are indexed by b ∈ F.
We order these indices as follows: we keep the indices b ∈ F \ B before b1, . . . , bp. We
will treat r−e as a monomial in (−r1)

−1, . . . , (−rm)−1 “variables” and impose the order ≺
on the monomials in these variables. Let A := {b : b ∈ F \ B} ∪

{
b′1, . . . , b′p

}
; notice that

|A| = |F|. Also, the elements of A are ordered as the elements of F but with b′k replacing
bk for k ∈ [p]. Then, from the Cauchy-Binet formula and the construction of the matrix N,
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det(R[M]FDN) equals

det ([R[M]F]•,A) [N]A ·∏
e∈A

r−e + lower order monomials in the (−r1)
−1, . . . , (−rm)

−1 variables.

Here [R[M]F]•,A denotes the restriction of R[M]F to the columns indexed by e ∈ A, and [N]A

denotes the restriction of N to the rows indexed by e ∈ A. Thus to show that R[M]FDN (and
therefore [CMDN]F) is invertible, it is sufficient to prove the following two claims.

Claim 3.5 [N]A is an identity matrix.

Proof: This basically follows from the construction of N: Consider a b ∈ F \ B. As A does
not contain any element of B, the column of [N]A indexed by b has only one non-zero entry
(which is 1) in the row indexed by b. Similarly, the column of [N]A indexed by bk for any
k ∈ [p] has only one non-zero entry (which is 1) in the row indexed by b′k. The claim then
follows from the fact that the elements of A are ordered as the elements of F but with b′k
replacing bk for all k ∈ [p]. 2

Claim 3.6 The matrix [R[M]F]•,A is an upper triangular matrix with 1 or −1 entries on the diago-
nal.

Proof: Consider the column of [R[M]F]•,A indexed by some b ∈ F \ B. From Claim 3.4, the
only non-zero entry in this column is in the row indexed by b itself. Now consider a column
of [R[M]F]•,A indexed by b′k for some k ∈ [p]. From Claims 3.2 and 3.3, (b′k)Ek = (bk)Ek ̸=
(bℓ)Ek for all ℓ > k. As every coordinate of bk is non-zero, it follows from Claim 3.4 that
the entry in the row indexed by bℓ must be 0 for every ℓ > k. Also, from Claim 3.3, bk and
b′k agree at all coordinates b′k is non-zero. So, from Claim 3.4, the entry in the row indexed
by bk must be non-zero. Also, recall from Claim 3.4 that the non-zero entries of R[M]F are
either 1 or −1. The claim then follows from the fact that the elements of A are ordered same
as elements of F but with b′k replacing bk for all k ∈ [p]. 2

This finishes the proof of the lemma. 2

Observe that det([CMDN]F) ∈ F[r]: Every entry of [CMDN]F is a F-linear combination
of some entries of the matrix CMD. The entry of CMD indexed by (b, e) is (b

e) · rb · r−e,
which is non-zero only if bi ≥ ei for all i ∈ [m]. In this case, rb · r−e is a monomial in the
r-variables. Thus, det([CMDN]F) – which is a polynomial in the entries of [CMDN]F – is a
polynomial in the r-variables. This observation leads to the following corollary of the above
lemma, which immediately gives a way to satisfy condition 1 of Lemma 3.1.
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Corollary 3.1 Let h(r) := det([CMDN]F). Then, degr (h(r)) ≤ mdm+1. Also, for every b ∈ F,

h(r) · vb ∈ F[t]-span
{

vb′ : b′ ∈ {0, . . . , d}m and Supp
(
b′
)
< m

}
.

Proof: As mentioned in the previous paragraph, every entry of [CMDN]F is an F-linear
combination of the entries of CMD which themselves are of the form (b

e) · rb · r−e. As, b, e ∈
{0, . . . , d}m and r has m variables, the degree of rb · r−e in the r-variables is at most md. Since
[CMDN]F is a dm × dm matrix, the degree of det([CMDN]F) in the r-variables is at most
mdm+1.

U = VCMD implies that VCMDN = 0. Let VF be the sub-vector of V consisting solely
of the entries indexed by b ∈ F. As VCMDN = 0, every entry of VF [CMDN]F is in

F[t]-span
{

vb′ : b′ ∈ {0, . . . , d}m \ F
}
= F[t]-span

{
vb′ : b′ ∈ {0, . . . , d}m and Supp(b′) < m

}
.

So by multiplying VF [CMDN]F by the adjoint of [CMDN]F, we get that every entry of VF

times det([CMDN]F), i.e., h(r) · vb where b ∈ F is in

F[t]-span
{

vb′ : b′ ∈ {0, . . . , d}m and Supp(b′) < m
}

.

2

The following claim about h(r) gives us a way to satisfy condition 2 of Lemma 3.1.

Claim 3.7 The polynomial h(r), when viewed as a polynomial in the t-variables after setting ri =

ℓi(t), has a t-monomial of support at most m.

Proof: The polynomial h(r) = h(ℓ1(t), . . . , ℓm(t)) ̸= 0 as [CMDN]F is an invertible matrix
and ℓ1, . . . , ℓm are F-linearly independent. Then, as there are only m r-variables, the claim
follows immediately from Observation 2.1. 2

Thus, by substituting GSV
m for t, the polynomial h(r) remains non-zero, satisfying condi-

tion 2. Note that the number of variables in GSV
m , i.e., |z| = 2m and its degree is n. We are

now in a position to prove Theorem 3.2.

3.2.3 Proof of Theorem 3.2

Let f = 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1 be a width-w commutative ROABP having individ-
ual degree at most d; here Mi ∈ Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn).
For any A ∈ GL(n, F), let g = f (Ax) and G = F(Ax). Suppose that A maps xi 7→ ℓi(x)
and let yi = ℓi(x) for all i ∈ [n]. Then, g = 1T · M1(y1)M2(y2) · · ·Mn(yn) · 1 and G =
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M1(y1)M2(y2) · · ·Mn(yn). In Sections 3.2.1 and 3.2.2, we have shown that G
(
x + GSV

m
)

has
support-(m − 1) rank concentration (for m = 2

⌈
log w2⌉ + 1) over F(z) in the y-variables;

the z-variables are the variables introduced by the GSV
m generator. From Observation 2.4,

if g(x) ̸= 0, then g
(
x + GSV

m
)
, when viewed as a polynomial over F[z] in the y-variables1,

has a y-monomial of support at most m− 1. Let the y-degree of this monomial be D′. As
the individual degree of every x-variable in f is at most d, the individual degree of every
y-variable in g is also at most d. Thus, D′ ≤ (m− 1)d. As the homogeneous component of
g
(
x + GSV

m
)

of y-degree D′ is non-zero, the homogeneous component of g
(
x + GSV

m
)

(now
viewed as polynomial over F[z] in the x-variables) of x-degree D′ must also be non-zero,
since ℓ1, . . . , ℓn are linearly independent. This means that g(x + GSV

m ), when viewed as a
polynomial over F[z] in the x-variables, has an x-monomial of support (in fact, degree) at
most D′ ≤ (m− 1)d. Thus, g

(
GSV
(m−1)d + G

SV
m

)
̸= 0. Now, it follows directly from the def-

inition of the SV generator that GSV
(m−1)d + G

SV
m = GSV

m+(m−1)d and so g
(
GSV

m+(m−1)d

)
̸= 0.

Replacing m by its value 2
⌈
log w2⌉ + 1 proves the theorem. Note that the SV generator

needs |F| ≥ n.

3.2.4 Proofs of Theorem 1.1

Let f be an n-variate polynomial computed by a width-w commutative ROABP of individ-
ual degree at most d, and g ∈ orb ( f ). Then, from Theorem 3.2, g

(
GSV
(2⌈log w2⌉(d+1)+1)

)
̸= 0

whenever g ̸= 0. Now, GSV
(2⌈log w2⌉(d+1)+1) has 2

(
2
⌈
log w2⌉ (d + 1) + 1

)
variables, and is

of degree n. So g
(
GSV
(2⌈log w2⌉(d+1)+1)

)
also has 2

(
2
⌈
log w2⌉ (d + 1) + 1

)
variables. Since

the individual degree of f is at most d, the deg( f ) = deg(g) ≤ nd. So the degree of
g
(
GSV
(2⌈log w2⌉(d+1)+1)

)
is at most n2d. Thus, as |F| > n2d, a hitting set for g can be computed

in time
(
n2d + 1

)2(2⌈log w2⌉(d+1)+1) = (nd)O(d log w).

3.2.5 Proofs of Theorem 1.2

Let f be an n-variate polynomial such that f = ∑i∈[s] ∏j∈[n] fi,j(xj), where each fi,j(xj) is a
univariate polynomial in xj. For all j ∈ [n], define the matrix Mj = diag( f1,j, . . . , fs,j). Then
f = 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1. Moreover, as the matrices M1, . . . , Mn are diagonal,
they commute with each other. Hence, f is computed by a width-s commutative ROABP
and the theorem follows from Theorem 1.1.

1This we can do as g
(
x + GSV

m
)
= 1T · G

(
x + GSV

m
)
· 1, and G

(
x + GSV

m
)

can be viewed as a polynomial
over A[z] in the y-variables.
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3.2.6 Proof of Theorem 3.1

Let f = ∑j∈[s] cjx
ej,1
1 · · · x

ej,n
n be a sparse polynomial, where cj ∈ F for j ∈ [s]. Observe that f

can be computed by a commutative ROABP as follows: Let M1(x1) := diag(c1xe1,1
1 , . . . csxes,1

1 )

and, for 2 ≤ i ≤ n, let Mi(xi) := diag(xe1,i
i , . . . xes,i

i ). Then, f = 1T · M1(x1) · · ·Mn(xn) · 1.
Notice that, as all matrices Mi are diagonal, it is a commutative ROABP and its width is s.
Thus, if the individual degree of f is at most d, then Theorem 1.1 implies a hitting set that
can be computed in time (nd)O(d log s).

A parallel and independent work [MS21] shows that for the case of sparse polynomials
the low individual degree restriction can be removed. They prove the following theorem.

Theorem 3.3 ([MS21]) Let f be an n-variate, s-sparse polynomial of degree d and g ∈ orb( f ).
Also, let |F| > nd and char(F) = 0 or > d. Then, g ̸= 0 implies g

(
GSV
⌈log s⌉+1

)
̸= 0. In fact, if g

is not a constant, then neither is g
(
GSV
⌈log s⌉+1

)
.

The above theorem yields an (nd)log s size hitting set for the orbits of n-variate, degree-d
polynomials. We will make use of the above theorem in Sections 4.3 and 4.4 to prove Theo-
rems 1.4 and 1.5, respectively.

3.3 Hitting sets for the orbits of multilinear constant-width

ROABPs
The strategy. Theorem 1.3 is proved by combining the rank concentration by translation
technique of Agrawal, Saha, and Saxena [ASS13] with the merge-and-reduce idea from
Forbes and Shpilka [FS13], Forbes, Saptharishi, and Shpilka [FSS14]. Let

f = 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1

be a multilinear, width-w ROABP; here Mi(xi) ∈ Fw×w[xi] for all i ∈ [n]. Also, let F =

M1(x1)M2(x2) · · ·Mn(xn). For any A ∈ GL(n, F), let g = f (Ax) and G = F(Ax). For
i ∈ [n], suppose that A maps xi 7→ ℓi(x), where ℓi is a linear form, and let yi = ℓi(x) and y =

{y1, . . . , yn}. Then, g = 1T ·M1(y1)M2(y2) · · ·Mn(yn) · 1 and G = M1(y1)M2(y2) · · ·Mn(yn).
Much like in the case of commutative ROABPs, we show that if g ̸= 0, then there exist ex-
plicit “low” degree polynomials t1(z), . . . , tn(z), where z is a “small” set of variables such
that G(x1 + t1(z), . . . , xn + tn(z)) has “low” support rank concentration in the “y-variables”.
While in the rank concentration argument for commutative ROABPs the x-variables were
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translated only once, here the translations can be thought of as happening sequentially and
in stages. There will be ⌈log n⌉ stages with each stage also consisting of multiple transla-
tions. After the p-th stage, the product of any 2p consecutive matrices in G will have low
support rank concentration in the y-variables. Thus, after ⌈log n⌉ stages, we will have low
support rank concentration in the y-variables for G(x1 + t1(z), . . . , xn + tn(z)). As in the
case of commutative ROABPs, we show that G(x + t) has low support rank concentration
if each polynomial in a certain collection of non-zero polynomials in the t-variables is kept
non-zero by the substitution ti 7→ ti(z). However, in this case, it is trickier to show that these
polynomials have low support t-monomials. We do this by arguing that each such polyno-
mial can be expressed as a ratio of a polynomial that contains a low support t-monomial and
a product of linear forms in the t-variables.

Remark. A quasi-polynomial time hitting set for general ROABPs was given by Agrawal,
Gurjar, Korwar, and Saxena [AGKS15] using an elegant generalization of the monomial iso-
lation method of Klivans and Spielman [KS01], namely the basis isolation method. As shown
in Gurjar, Korwar, Saxena, and Thierauf [GKST17], Forbes, Ghosh, and Saxena [FGS18], de-
signing a basis isolating weight assignment is a stronger objective than achieving rank con-
centration by translation. It is not immediately clear how to obtain efficient constructions of
basis isolating weight assignments for the orbits of ROABPs, even under additional restric-
tions such as commutativity, constant-width or low individual degree. However, our work
here shows that the weaker objective of rank concentration by translation can be achieved
for the orbits of the above-mentioned subclasses of ROABPs.

Notations and conventions. Much like in the previous section, we will first translate the
x-variables by the t-variables and then substitute the t-variables by low degree polynomials
in a small set of variables. We will translate the x-variables by ⌈log n⌉ groups of t-variables,
t1, . . . , t⌈log n⌉. For all p ∈ ⌈log n⌉, the group tp will have µ := w2 +

⌈
log w2⌉ sub-groups of

t-variables, tp,1, . . . , tp,µ. For all p ∈ ⌈log n⌉ and q ∈ [µ], tp,q :=
{

tp,q,1, . . . , tp,q,n
}

. Thus,
finally the translation will look like

xi → xi + ∑
p∈⌈log n⌉,

q∈[µ]

tp,q,i

for all i ∈ [n]. Finally, we will substitute the t-variables as tp,q,i 7→ sp,q · z
βp,q(i)
p,q , where

βp,q(i) will be fixed later in the analysis. Let rp,q,i := ℓi
(
tp,q
)
; notice that for all i ∈ [n], yi is
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translated as
yi → yi + ∑

p∈⌈log n⌉,
q∈[µ]

ℓi
(
tp,q
)
= yi + ∑

p∈⌈log n⌉,
q∈[µ]

rp,q,i.

For the purpose of analysis, we will think of the translation as happening sequentially in the
order t1,1, . . . , t1,µ, t2,1, . . . , t2,µ, . . . , tn,1, . . . tn,µ, i.e., we will first translate by t1,1, then by t1,2,
and so on. Let us denote the order thus imposed on the set {(p, q) : p ∈ [⌈log n⌉] , q ∈ [µ]}
by ≺.

For a set S = {i1, i2, . . . , i|S|} ⊆ [n], where i1 < i2 < . . . < i|S|, the vector (bi1 , bi2 , . . . , bi|S|)

will be denoted by (bi : i ∈ S). Let Supp (b) denote the support of the vector b which is
defined as the number of non-zero elements in it.

The inductive argument given on the next two subsections is inspired by the “merge-
and-reduce” idea from [FS13, FSS14].

3.3.1 Low support rank concentration: an inductive argument

In this and the next sections, we will prove the following lemma. Let A := Fw×w.

Lemma 3.3 There exist
{

βp,q(i) : p ∈ [⌈log n⌉] , q ∈ [µ], i ∈ [n]
}
⊂ Z≥0, such that

G

x1 + ∑
p∈⌈log n⌉,

q∈[µ]

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

p∈⌈log n⌉,
q∈[µ]

sp,q · z
βp,q(n)
p,q

 ,

when treated as a polynomial in the y-variables over A[rp,q,i : p ∈ [⌈log n⌉] , q ∈ [µ], i ∈
[n]], has support-µ rank concentration in the y-variables over F

(
sp,q, zp,q : p ∈ [⌈log n⌉] , q ∈ [µ]

)
.

Moreover,
{

βp,q(i) : p ∈ [⌈log n⌉] , q ∈ [µ], i ∈ [n]]
}

can be found in time nO(w4) and each βp,q(i)

≤ nO(w4).

We will prove this lemma by induction on (p, q). Let us call

{
βp,q(i) : p ∈ [⌈log n⌉] , q ∈ [µ], i ∈ [n]]

}
efficiently computable and good if they can be found in time nO(w4) and each βp,q(i) ≤ nO(w4).
Precisely, the induction hypothesis is as follows.

Induction hypothesis. Just before translating by tp∗,q∗-variables, we will assume that the
following is true: there exist efficiently computable and good

{
βp,q(i) : (p, q) ≺ (p∗, q∗)

}
such that the product of any 2p∗ consecutive matrices in
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G

x1 + ∑
(p,q)≺(p∗,q∗)

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

(p,q)≺(p∗,q∗)
sp,q · z

βp,q(n)
p,q


has support-(2µ− (q∗ − 1)) rank concentration in the y-variables over

F
(
sp,q, zp,q : (p, q) ≺ (p∗, q∗)

)
.

Base case. In the base case, (p∗, q∗) = (1, 1). Observe that we can assume that w ≥ 2; if
w = 1, then g is a product of univariates and the existence of a polynomial time hitting set
follows from Observation 2.1. For any w ≥ 2, 2 ≤ 2µ. As a product of any two consecutive
matrices in G has support 2µ rank concentration in the y-variables over F, the base case is
satisfied.

Induction step. We need to show that there exist efficiently computable and good
{

βp∗,q∗(i) : i ∈ [n]
}

such that after translating by tp∗,q∗ and substituting tp∗,q∗,i → sp∗,q∗ · z
βp∗ ,q∗ (i)
p∗,q∗ , the product of

any 2p∗ consecutive matrices in

G

x1 + ∑
(p,q)≼(p∗,q∗)

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

(p,q)≼(p∗,q∗)
sp,q · z

βp,q(n)
p,q


has support-(2µ− q∗) rank concentration in the y-variables over F

(
sp,q, zp,q : (p, q) ≼ (p∗, q∗)

)
.

If q∗ < µ, then this would mean that the induction hypothesis holds immediately before
translation by tp∗,q∗+1. On the other hand, if q∗ = µ, then the following easy-to-verify obser-
vation implies that the induction hypothesis holds immediately before translation by tp∗+1,1.

Observation 3.2 Suppose that
{

βp,q(i) : (p, q) ≼ (p∗, µ)
}

are such that the product of any 2p∗

consecutive matrices in

G

x1 + ∑
(p,q)≼(p∗,µ)

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

(p,q)≼(p∗,µ)
sp,q · z

βp,q(n)
p,q


has support-µ rank concentration in the y-variables over F

(
sp,q, zp,q : (p, q) ≼ (p∗, µ)

)
. Then

the product of any 2p∗+1 consecutive matrices in

G

x1 + ∑
(p,q)≼(p∗,µ)

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

(p,q)≼(p∗,µ)
sp,q · z

βp,q(n)
p,q


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has support-2µ rank concentration in the y-variables over F
(
sp,q, zp,q : (p, q) ≼ (p∗, µ)

)
.

Simplifying notations for the ease of exposition. By focusing on the induction step, we
will henceforth denote F

(
sp,q, zp,q : (p, q) ≺ (p∗, q∗)

)
by F, and for all i ∈ [n],

Mi

yj + ∑
(p,q)≺(p∗,q∗)

ℓi

(
sp,q · z

βp,q(1)
p,q , . . . , sp,q · z

βp,q(n)
p,q

)
by Mi(yi), tp∗,q∗,i by ti, rp∗,q∗,i by ri, sp∗,q∗ by s, zp∗,q∗ by z and βp∗,q∗(i) by β(i).

Without loss of generality, we shall consider the product M1(y1 + r1) · · ·Mm(yn + rm)

of the first m = 2p∗ matrices. Our goal is to show that there exist efficiently computable
and good {β(i) : i ∈ [m]} such that after substituting ti → s · zβ(i), the above product has
support-(2µ− q∗) rank concentration in the y-variables over F(s, z) assuming that M1(y1) · · ·
Mm(ym) has support-(2µ− (q∗ − 1)) rank concentration in the y-variables over F.

3.3.2 Details of the induction step

Recalling some notations. Before we show how to achieve rank concentration, let us recall
some notations defined in Section 3.2. While in Section 3.2, the individual degree is d, here
the individual degree is 1 and so, we modify the definitions accordingly. A is used to denote
the matrix algebra Fw×w. For i ∈ [m], Mi(yi) = ∑1

ei=0 ui,ei y
ei
i , where ui,ei ∈ A and Mi(yi +

ri) = ∑1
bi=0 vi,bi y

bi
i , where vi,bi ∈ A[ri] ⊂ A[t]. For b = (b1, . . . , bm) and e = (e1, . . . , em)

in {0, 1}m, (b
e) := ∏i∈[m] (

bi
ei
). Also, vb := ∏i∈[m] vi,bi and ue := ∏i∈[m] ui,ei . Moreover,

r := (−r1, . . . ,−rm), rb := ∏i∈[m](−ri)
bi and r−e := ∏i∈[m](−ri)

−ei . Let t := (t1, . . . , tn).
The following vectors and matrices are defined by fixing an arbitrary order on the el-

ements of {0, 1}m. V :=
(
vb : b ∈ {0, 1}m) and U :=

(
ue : e ∈ {0, 1}m); V is a row vec-

tor in A[r]2
m

whereas U is a row vector in A2m
. Both C := diag(rb : b ∈ {0, 1}m) and

D := diag(r−e : e ∈ {0, 1}m) are 2m × 2m diagonal matrices. Finally, M is a 2m × 2m numeric
matrix whose rows and columns were indexed by b ∈ {0, 1}m and e ∈ {0, 1}m, respectively.
The entry of M indexed by (b, e) contains (b

e). The proof of the following transfer equation
is same as the proof of Claim 3.1.

Claim 3.8 Let U, V, C, M and D be as defined above. Then, U = VCMD.

Let F :=
{

b ∈ {0, 1}m : Supp(b) > 2µ− q∗
}

.1 Also, recall that the the null space of U is

1There is a slight overloading of notation here: We have used F before at the beginning of Section 3.3 to
denote the product M1(x1)M2(x2) · · ·Mn(xn). However, since all our arguments involve only G = F(Ax) and
not F, we would use F in this section to denote the set that is mentioned here.
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the set of all vectors
(
ne : e ∈ {0, 1}m) ∈ F2m

for which ∑e∈{0,1}m neue = 0. We have the
following lemma.

Lemma 3.4 There are vectors {nb : b ∈ F} in the null space of U such that the following holds: Let
N be the 2m × |F| matrix whose rows are indexed by e ∈ {0, 1}m and whose columns are indexed by
b ∈ F and whose column indexed by b is nb. Then, the square matrix [CMDN]F is invertible, where
[CMDN]F is the sub-matrix of CMDN consisting of only those rows of CMDN that are indexed by
F. Also, det ([CMDN]F) ∈ F[r] ⊂ F[t] can be expressed as the ratio of a polynomial in F[t] that
contains a monomial of degree at most 2w2µ in the t-variables and a product of linear forms in F[t].

The proof of this lemma is mostly similar to the proof of Lemma 3.2. However we need to
do a little more work since now we also want to prove that det ([CMDN]F) has the desired
structure.

Proof: The entries of U, the columns of M, the rows and columns of D, and the rows of
N are indexed by e ∈ {0, 1}m. Impose the degree lexicographic order, denoted by ≺dlex,
on the indices e ∈ {0, 1}m of U and the other three matrices1. Pick the minimal basis of
the space spanned by the entries of U according to this order, i.e., consider the entries
of U in the order dictated by ≺dlex while forming the basis. Let B := {e ∈ {0, 1}m :
ue is in the minimal basis of U w.r.t. ≺dlex}.

Observation 3.3 By the induction hypothesis, for every e ∈ F ∩ B, Supp(e) = 2µ− (q∗ − 1).

Construction of the matrix N. The columns of N are indexed by b ∈ F. We will now spec-
ify a set of column vectors {nb : b ∈ F} in the null space of U such that the column of N
indexed by b ∈ F is nb. There are two cases for b ∈ F:

Case 1: b ∈ F \ B. In this case, ub is dependent on {ue : e ∈ B and e ≺dlex b}. Pick this
dependence vector as nb.
Case 2: b ∈ F ∩ B. Let there be p such b, b1, . . . , bp, where p ≤ |B| ≤ w2. For a set E ⊆ [m]

and b ∈ {0, 1}m, let (b)E denote the vector obtained by projecting b to the coordinates in
E. Roughly speaking, the following claim says that each of these p vectors has a ”small
signature” that differentiates it from the other p− 1 vectors.

Claim 3.9 There exist sets E1, . . . , Ep ⊆ [m], each of size w2 − 1 such that for all k ∈ [p],

1by identifying e with an m-variate monomial.
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1. Supp
(
(bk)Ek

)
= w2 − 1,

2. (bk)Ek ̸= (bℓ)Ek ∀ℓ ̸= k.

Proof: For k ∈ [p], let S(bk) be the set of coordinates where bk is non-zero. Fix any k ∈ [p].
Notice that Supp(bk) = |S(bk)| = 2µ− (q∗ − 1) ≥ µ + 2 = w2 +

⌈
log w2⌉+ 2. For ℓ ̸= k,

as Supp(bk) = Supp(bℓ) and bk ̸= bℓ, there must exist an iℓ ∈ S(bk), such that the iℓ-th
coordinate of bk and bℓ are distinct. Put all such iℓ for ℓ ̸= k in Ek. If |Ek| is still less than
w2− 1, then arbitrarily put some more elements in Ek from S(bk) so that |Ek| = w2− 1. This
can be done as S(bk) is sufficiently large. 2

As before, we will call Ek the signature of bk. The following claim tells us that for each
vector bk, there is a vector that is not in B and has support less than 2µ− (q∗− 1), but agrees
with bk on its signature and so in some sense can be used as a proxy for bk.

Claim 3.10 For every k ∈ [p], there exists a vector b′k ∈ {0, 1}m \ (F ∪ B) such that (b′k)Ek =

(bk)Ek and also b′k and bk agree on all locations where b′k is non-zero.

Proof: Similar to the proof of Claim 3.3. 2

We will now use the above two claims to construct nbk for all k ∈ [p]. We will use b′k from
Claim 3.10 as a proxy for bk. Notice that ub′k

is dependent on
{

ue : e ∈ B and e ≺dlex b′k
}

.
Let this dependence vector be nbk . This completes the construction of N. We will now show
that [CMDN]F is invertible. In fact, we will show that det ([CMDN]F) is the ratio of a poly-
nomial in F[t] which contains a monomial of degree at most 2w2µ and a product of a bunch
of non-zero linear forms in F[t].

[CMDN]F is invertible. Let [M]F be the restriction of M to the rows indexed by F, and [C]F
the restriction of C to the rows and columns indexed by F.

Observation 3.4 The matrix [M]F has the following structure: The rows of [M]F are indexed by
b = (b1, . . . , bm) ∈ F and its columns by e = (e1, . . . , em) ∈ {0, 1}m. Its entry indexed by (b, e)
is non-zero if and only if for all i ∈ [m], bi = ei if ei ̸= 0. All non-zero entries are 1.

We order the indices b ∈ F as follows: Let F0 := {b ∈ F : Supp(b) > 2µ− (q∗ − 1)} and
F1 := {b ∈ F : Supp(b) = 2µ− (q∗ − 1)}. We first keep the b ∈ F0 in (descending) degree
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lexicographic order1, followed by b ∈ F1 \ B in (reverse) lexicographic order2, and then
b1, . . . , bp. Also, let A := (F \ B) ⊎

{
b′1, . . . , b′p

}
. Notice that |A| = |F|. Also, the elements

of A are ordered as the elements of F but with b′k replacing bk for k ∈ [p]. For any S ⊆ {0, 1}m

of size |S| = |F|, let [M]F,S denote the restriction of [M]F to the columns indexed by e ∈ S,
and [N]S denote the restriction of N to the rows indexed by e ∈ S. Now,

det([CMDN]F)

= det([C]F)det([M]FDN)

= ∏
b∈F

rb ·

 ∑
S⊆{0,1}m

|S|=|F|

det ([M]F,S) · det([N]S) ·∏
e∈S

r−e



= ∏
b∈F

rb ·

 ∑
S⊆A⊎B
|S|=|F|

det ([M]F,S) · det([N]S) ·∏
e∈S

r−e



= ∏
b∈F

rb ·

 ∑
S⊆A⊎B
|S|=|F|

det ([M]F,S) · det([N]S) · ∏
e∈S∩A

r−e · ∏
e∈S∩B

r−e



= ∏
b∈F

rb · ∏
e∈A⊎B

r−e ·

 ∑
S⊆A⊎B
|S|=|F|

det ([M]F,S) · det([N]S) · ∏
e∈A\S

re · ∏
e∈B\S

re

 ,

where the second equality follows from the Cauchy-Binet formula and the third equality
from the fact that for any S ̸⊆ A ⊎ B, det([N]S) = 0. Now, notice that ∏b∈F rb ·∏e∈A⊎B r−e

is the reciprocal of a product of non-zero linear forms in t-variables, as F ⊆ A ⊎ B. We shall
now prove that

∑
S⊆A⊎B
|S|=|F|

det ([M]F,S) · det([N]S) · ∏
e∈A\S

re · ∏
e∈B\S

re (3.3)

has a t-monomial of degree at most w2(2µ− (q∗ − 1)).

Claim 3.11 [N]A is an identity matrix.

1i.e., b comes before b̂ if Supp(b) > Supp(b̂), or if Supp(b) = Supp(b̂) and b̂ ≺lex b.
2i.e., b comes before b̂ if b̂ ≺lex b.
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Proof: Same as that of Claim 3.5. 2

Claim 3.12 The matrix [M]F,A is an upper triangular matrix with ones on the diagonal.

Proof: Consider the column of [M]F,A indexed by some b ∈ F \ B. Because of the way we
have ordered the elements in F and A, it follows from Observation 3.4, the only non-zero
entries in this column are in and above the row indexed by b. Now consider a column of
[M]F,A indexed by b′k for some k ∈ [p]. From Claims 3.9 and 3.10, (b′k)Ek = (bk)Ek ̸= (bℓ)Ek

for all ℓ ̸= k. As every coordinate of (bk)Ek is non-zero, it follows from Observation 3.4 that
the entry in the row indexed by bℓ must be 0 for every ℓ ̸= k. Also, from Claim 3.10, as bk

and b′k agree at all coordinates b′k is non-zero. So, from Observation 3.4, the entry in the row
indexed by bk must be non-zero. Also, recall from Observation 3.4 that the non-zero entries
of [M]F are ones. The claim then follows from the fact that the elements of A are ordered as
that of F but with b′k replacing bk for k ∈ [p]. 2

Claim 3.13 det ([M]F,A) · det([N]A) ·∏e∈B\A re = ∏e∈B re ̸= 0 and has t-degree at most 2w2µ.

Proof: det ([M]F,A) · det([N]A) ·∏e∈B\A re = ∏e∈B re ̸= 0 follows from Claims 3.11 and
3.12 and the fact that A ∩ B is empty. For every e ∈ B, degt(r

e) ≤ 2µ − (q∗ − 1). So,
degt (∏e∈B re) ≤ w2 · (2µ− (q∗ − 1)) ≤ 2w2µ, as |B| ≤ w2. 2

Claim 3.14 For any S ⊆ A⊎B such that |S| = |F| and det([N]S) is non-zero, there is a one-to-one
correspondence between A \ S and S ∩ B such that if e ∈ A \ S corresponds to e′ ∈ S ∩ B, then
e′ ≺dlex e.

Proof: As det([N]S) ̸= 0, there must be a one-to-one correspondence between the rows and
columns of [N]S such that if the column indexed by b ∈ F corresponds to a row indexed
by e ∈ S, then the (e, b)-th entry of [N]S must be non-zero. Obtain a one-to-one corre-
spondence between A and S from the above correspondence by replacing bk with b′k for all
k ∈ [p]. Notice that, if e ∈ A corresponds to e′ in S, then either e′ ≺dlex e or e′ = e. Now,
removing A ∩ S from A yields A \ S, and removing A ∩ S from S yields S ∩ B. So the cor-
respondence between A and S yields the desired correspondence between A \ S and S∩B. 2

The above claim implies that for every S ∈ A⊎B of size |F|, either det ([M]F,S) ·det([N]S) ·
∏e∈A\S re · ∏e∈B\S re is 0, or ∏e∈B re ≺dlex ∏e∈A\S re · ∏e∈B\S re. Hence, ∏e∈B re is the
smallest r-monomial in the polynomial given in (3.3) w.r.t. ≺dlex order, and so, the homoge-
neous component of this polynomial that has the same r-degree as that of ∏e∈B re survives.
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Now, from Claim 3.13 and the fact that ℓ1, . . . , ℓn are linearly independent, the polynomial
in (3.3) has a t-monomial of degree ≤ 2w2µ. 2

We now complete the induction step using lemma that we just proved. As det([CMDN]F)

is a polynomial in F[r] we get the following corollaries.

Corollary 3.2 Let h(r) := det([CMDN]F). Then, for every b ∈ F,

h(r) · vb ∈ F[t]-span
{

vb′ : b′ ∈ {0, 1}m and Supp
(
b′
)
≤ 2µ− q∗

}
. (3.4)

Proof: Same as the proof of Corollary 3.1. 2

Corollary 3.3 Suppose {β(i) : i ∈ [n]} are such that the substitution ti 7→ s · zβ(i) keeps all non-
zero polynomials in F[t] containing a monomial of degree at most 2w2µ in the t-variables non-zero.
Then, the product M1(y1 + r1) · · ·Mm(ym + rm) has support-(2µ− q∗) rank concentration in the
y-variables over F(s, z) after substituting ti → s · zβ(i).

Proof: Multiply both sides of (3.4) by (h(r))−1 after substituting ti 7→ s · zβ(i). 2

We now prove that {β(i) : i ∈ [n]} as in the above corollary can be computed efficiently.

Claim 3.15 There exist {β(i) : i ∈ [n]} such that the substitution ti 7→ s · zβ(i) keeps all non-
zero polynomials in F[t] containing a monomial of degree at most 2w2µ in the t-variables non-zero.
Moreover, we can find all the β(i) in time nO(w4) and each β(i) ≤ nO(w4).

Proof: Because of the presence of s, the substitution ti 7→ s · zβ(i) keeps any two ho-
mogeneous polynomials of different degrees distinct (unless it maps both of them to 0).
So, we need to find {β(i) : i ∈ [n]} such that the substitution ti 7→ zβ(i) maps any two t-
monomials of degree at most 2w2µ = O(w4) to distinct monomials in z. Now, there are
at most (

n+2w2µ
2w2µ

) = nO(w4) such monomials. Klivans and Spielman [KS01] proved that
given k distinct monomials in y1, . . . , yn of degree at most r, one can find a1, . . . , an in time
poly(n, k, r) such that every pair of monomials continues to remain distinct even after sub-
stituting yai for yi, where y is a fresh variable. So we can find a {β(i) : i ∈ [n]} where each
β(i) ≤ nO(w4) in time nO(w4). 2

This completes the induction step. We now ready to prove Lemma 3.3 stated in Section
3.3.1.
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Proof of Lemma 3.3. So far we have proved that there exist
{

βp,q(i) : p ∈ [⌈log n⌉] , q ∈ [µ], i ∈ [n]]
}

,
such that

G

x1 + ∑
p∈⌈log n⌉,

q∈[µ]

sp,q · z
βp,q(1)
p,q , . . . , xn + ∑

p∈⌈log n⌉,
q∈[µ]

sp,q · z
βp,q(n)
p,q


has support-µ rank concentration in the y-variables over F

(
sp,q, zp,q : p ∈ [⌈log n⌉] , q ∈ [µ]

)
.

Moreover, for each (p, q), we can find all βp,q(i) in time nO(w4) and each βp,q(i) ≤ nO(w4).
However, since the algorithm that follows from [KS01] is oblivious,1 the βp,q(i) found for
some fixed (p, q) can be used for all values of (p, q). This proves the lemma.

3.3.3 Proof of Theorem 1.3

Let f = 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1 be a multilinear width-w ROABP; here Mi(xi) ∈
Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn). For any A ∈ GL(n, F), let
g = f (Ax) and G = F(Ax). For i ∈ [n], suppose that A maps xi 7→ ℓi(x), where ℓi is a linear
form, and let yi = ℓi(x) and y = {y1, . . . , yn}. Then, g = 1T ·M1(y1)M2(y2) · · ·Mn(yn) · 1
and G = M1(y1)M2(y2) · · ·Mn(yn). Let µ = w2 +

⌈
log w2⌉. From Lemma 3.3, there ex-

ist polynomials, say t1, . . . , tn, in F
[
sp,q, zp,q : p ∈ [⌈log n⌉] , q ∈ [µ]

]
of degree at most nO(w4)

such that G(x1 + t1, . . . , xn + tn) has support-µ rank concentration in the y-variables over
F
({

sp,q, zp,q
}

p,q

)
. Moreover, these polynomials can be computed in time nO(w4). Suppose

that g ̸= 0. Then, from Observation 2.4, g(x1 + t1, . . . , xn + tn) has a support-µ, y-monomial
when viewed as a polynomial over F

[{
sp,q, zp,q

}
p,q

]
in the y-variables. Since f is mul-

tilinear, as seen in the proof of Theorem 3.2, g(x1 + t1, . . . , xn + tn) has a support-µ, x-
monomial. Thus, g

(
GSV

µ + (t1, . . . , tn)
)
̸= 0. Now, g

(
GSV

µ + (t1, . . . , tn)
)

is a polynomial

in 2µ + µ · ⌈log n⌉ variables over F. Also, its degree is at most nO(w4). So, if |F| > nO(w4), a
hitting set for g can be computed in time

nO(w4·µ·log n) = nO(w6·log n).

This, along with the time required to compute t1, . . . , tn, still gives a nO(w6·log n)-time
hitting set for g.

1I.e. given n, k, r ∈ N, the algorithm in [KS01] outputs an H ⊆ Nn such that for every set of k distinct
monomials in y1, . . . , yn, there exists (a1, . . . , an) ∈ H such that the monomials continue to remain distinct
under the substitution yi 7→ yai .
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Chapter 4

Hitting sets for orbits of constant occur
formulas

This section gives hitting set constructions for orbits of constant occur, constant depth

formulas as well as occur once formulas. The contents of this chapter are from a joint

work with Chandan Saha [ST24].

4.1 Introduction
In this section, we describe quasi-polynomial time hitting set constructions for two sub-
classes of constant occur formulas: constant depth, constant occur formulas and occur once
formulas (see Definition 2.5). As a corollary to our result for the former, we also obtain
a quasi-polynomial time hitting set for the orbit of depth-4 set-multilinear formulas. This
model has been studied extensively in the literature [SV18, KMSV13]. Moreover, hitting sets
for orbits of the sum-product polynomial and power symmetric polynomials (see Defini-
tions 2.12, 2.13) also follow from that result. The hitting set for orbits of constant depth,
constant occur formulas is obtained by combining the algebraic independence technique of
[ASSS16, BMS13] with the hitting set for orbits of sparse polynomials given by [MS21] and
mentioned in Theorem 3.3. The hitting set for orbits of occur-once formulas is obtained by
using techniques similar to those used to obtain hitting sets for read-once formulas [SV15].

This section contains the proofs of the following theorems.

Theorem 1.4 (Hitting sets for the orbits of constant-depth, constant-occur formulas) Let C
be the set of n-variate, degree-D polynomials that are computable by depth-∆, occur-k formulas of size
s. Let R := (2k)2∆·2∆

. If char(F) = 0 or > (2ks)∆3R, then a hitting set for orb(C) can be com-
puted in (nRD)O(R(log R+∆ log k+∆ log s)+∆R) time. If the leaves are labelled by b-variate polynomials,
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then a hitting set for orb(C) can be computed in (nRD)O(Rb+∆R) time. In particular, if ∆ and k are
constants, then the hitting sets can be constructed in time (nD)O(log s) and (nD)O(b), respectively.

Theorem 1.5 (Hitting sets for the orbits of occur-once formulas) Let C be the set of n-variate,
degree-D polynomials that are computable by occur-once formulas whose leaves are labelled by s-
sparse polynomials. If |F| > nD and char(F) = 0 or > D, then a hitting set for orb(C) can be
computed in (nD)O(log n+log s) time. If the leaves are labelled by b-variate polynomials, then a hitting
set for orb(C) can be computed in (nD)O(log n+b) time.

For ease of exposition, we first prove 1.4 in the special case of ∆ = 4 in Section 4.2; the
general case is proved in Section 4.3. Section 4.4 is dedicated to the proof of Theorem 1.5.

4.2 Hitting sets for the orbits of depth-4, constant-occur for-

mulas
The strategy. We prove Theorem 1.4 by combining the algebraic independence based tech-
nique in Agrawal, Saha, Saptharishi, and Saxena [ASSS16, BMS13] with Theorem 3.1. Let f
be a constant-depth, constant-occur formula. We first show that it can be assumed without
loss of generality that the top-most gate of f is a + gate whose fan-in is upper bounded by
the occur of f , say k. In [ASSS16], they were able to upper bound the top fan-in by simply
translating a variable by 1 and subtracting the original formula. However, the same idea
does not quite work here because we have only access to a polynomial in the orbit of f . To
upper bound the top fan-in, we show that there exists a variable xi such that ∂ f

∂xi
is a constant-

depth, constant-occur formula with top fan-in bounded by k. Then, using the chain rule of
differentiation, we show that one can construct a hitting set generator for orb( f ) from a gen-
erator for orb

(
∂ f
∂xi

)
; this means that we can shift our attention to f ′ = ∂ f

∂xi
, which we shall

henceforth refer to as f .
Let f = f1 + · · · + fk, A ∈ GL(n, F), g = f (Ax), g = g1 + . . . + gk where for all

i ∈ [k], gi = fi(Ax). It was shown in [ASSS16] that a homomorphism, which is faithful
(see Definition 2.22) to f1, . . . , fk, is a hitting set generator for f . In our case, this translates
to ‘a homomorphism that is faithful to g1, . . . , gk is a hitting set generator for g ’. [ASSS16]
also showed that the problem of constructing a homomorphism ϕ that is faithful to f1, . . . , fk

reduces to constructing a homomorphism ψ that preserves the determinant of a certain ma-
trix. This matrix is an appropriate sub-matrix of the Jacobian of f1, . . . , fk. Also, it was
argued that its determinant is a product of sparse polynomials and so ψ was obtained from
Klivans and Spielman [KS01]. We use a similar argument, along with the chain rule, to show
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that the problem of constructing a homomorphism ϕ that is faithful to g1, . . . , gk reduces to
constructing a homomorphism ψ that preserves the determinant of a sub-matrix of the same
Jacobian evaluated at Ax. As this determinant is a product of polynomials in the orbit of
sparse polynomials, we can use Theorem 3.1 to construct such a ψ.

Notations. For some k ∈ N, let f ∈ F[x] be an n-variate, degree-D polynomial computed
by a (4, k, s) formula, i.e., a depth-4, occur-k formula of size-s. We will identify f with the
formula computing it. We first upper bound the top fan-in of f in Section 4.2.1 and then use
the notion of faithful homomorphisms, defined in Section 2.5.3, to construct hitting sets for
orb( f ).

4.2.1 Upper bounding the top fan-in of f

To upper bound the fan-in of f , we show that for all i ∈ [n], ∂ f
∂xi

is a depth-4, occur-k′ formula
with top fan-in at most k; here k′ is not too large compared to k (see Claim 4.1 below). We
then argue in Claim 4.2 that there exists an i ∈ [n] such that a hitting set generator for
orb( f ) can be constructed using a hitting set generator for orb( ∂ f

∂xi
). Thus, by overloading

the notation and referring to ∂ f
∂xi

as f , we can assume that the top fan-in of f is at most k.

Claim 4.1 Let f be a (4, k, s) formula. Then, for every i ∈ [n], ∂ f
∂xi

is a (4, 2k2, 2ks) formula with
top fan-in bounded by k.

Proof: Let x = xi. Let f = ∑i∈[m] fi, and x be present only in f1, . . . , fr, where r ≤ k.
Furthermore, for all i ∈ [r], let fi = ∏j∈mi

q
ei,j
i,j and x be present only in qi,1, . . . qi,ri , ∑i∈[r] ri ≤

k. Here, qi,j are s-sparse polynomials. Now,

∂ f
∂x

= ∑
i∈[r]

(
mi

∏
j=ri+1

q
ei,j
i,j

)
·

 ∑
j∈[ri]

ei,j
∂qi,j

∂x
· qei,j−1

i,j · ∏
j′∈[ri]
j′ ̸=j

q
ei,j′

i,j′


= ∑

i∈[r]
∑

j∈[ri]

ei,j
∂qi,j

∂x
· ∏

j′∈[mi]

q
e′i,j′
i,j′

 ,

where e′i,j′ = ei,j′ for j′ ̸= j and e′i,j = ei,j − 1. First of all, notice that the top fan-in of ∂ f
∂x is

at most ∑i∈[r] ri ≤ k, its depth is 4, and as the leaves are still qi,j or
∂qi,j
∂x , the sparsity of the

polynomials labelling the leaves are also at most s. However, the size and the occur may
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change.

For all i ∈ [r], let the occur of fi be pi ≤ k; then the occur of ∏j′∈[mi]
q

e′i,j′
i,j′ is at most pi.

Also, as
∂qi,j
∂x is an s-sparse polynomial, its occur is 1. Then, the occur of ∂ f

∂x is at most

∑
i∈[r]

ri (1 + pi) ≤ ∑
i∈[r]

ri + ∑
i∈[r]

rik ≤ k + k2 ≤ 2k2.

Similarly, suppose that the size of fi is si ≤ s − 1 1; then the size of ∏j′∈[mi]
q

e′i,j′
i,j′ is at most

si − 1 (as e′i,j = ei,j − 1). Also, as the size of qi,j is ≤ s, the size of
∂qi,j
∂x is at most s. So, the size

of ∂ f
∂x is at most

∑
i∈[r]

ri (s + si + 1) ≤ ∑
i∈[r]

ri (s + s) ≤ 2ks.

2

We now show that there exists an i ∈ [n] such that a hitting set generator for orb( f ) can
be constructed using a hitting set generator for orb( ∂ f

∂xi
).

Claim 4.2 Let f ∈ F[x] be an n-variate polynomial of degree D, and char(F) = 0 or > D. There is
an i ∈ [n] such that ∂ f

∂xi
̸= 0, and if G is a hitting set generator for orb

(
∂ f
∂xi

)
, then G̃ := G + GSV

1 is
a hitting set generator for orb( f ), provided |F| > deg(G) · D.

Proof: Let A ∈ GL(n, F) and g = f (Ax). If f is a constant, then constructing a hitting set
for orb( f ) is trivial. Otherwise, there exists an i ∈ [n] such that ∂ f

∂xi
̸= 0 (because char(F) =

0 or > D). Suppose that a polynomial map G is a hitting set generator for orb
(

∂ f
∂xi

)
. The

gradient of a polynomial p(x), denoted by ∇p, is the column vector
(

∂p
∂x1

∂p
∂x2

. . . ∂p
∂xn

)T
. By

the chain rule of differentiation,

∇g = AT · [∇ f ](Ax).

As AT is invertible, ∂ f
∂xi

(AG) ̸= 0 =⇒ [∇ f ](AG) ̸= 0 =⇒ [∇g](G) ̸= 0 =⇒ ∃j ∈
[n] such that ∂g

∂xj
(G) ̸= 0. Since |F| > deg(G) · D, by Observation 2.2, g(G̃) is not a constant.

2

11 less than s, as fi is connected to the top-most + gate by an edge.
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All we need to do now is construct a hitting set generator for orb
(

∂ f
∂xi

)
. Overloading the

notation, we refer to ∂ f
∂xi

as f , which is computed by a (4, k, s) formula whose top fan-in is at
most k.

4.2.2 Constructing a faithful homomorphism for the orbits

Let f = ∑i∈[m] fi be a (4, k, s) formula. From the discussion in the previous section, we
can assume without loss of generality that m ≤ k. Let A ∈ GL(n, F), and gi = fi(Ax)
for all i ∈ [m]. Recall that a homomorphism ϕ is said to be faithful to g = (g1, . . . , gm) ∈
F[x]m if tr-degF (g) = tr-degF (ϕ(g)). Also, from Lemma 2.3, if ϕ is faithful to g, then for
any m-variate polynomial p, p(ϕ(g)) = 0 if and only if p(g) = 0. Thus, if we have a
homomorphism ϕ that is faithful to g (irrespective of A), then we can use ϕ as a hitting set
generator for orb( f ). The following lemma helps us construct such a homomorphism.

Lemma 4.1 Let f = ( f1, ..., fm) ∈ F[x]m be a tuple of n-variate polynomials of degree at most
δ, A ∈ GL(n, F), gi = fi(Ax) for all i ∈ [m], and g = (g1, . . . , gm). Further, suppose that
tr-degF(f) ≤ r, and char(F) = 0 or > δr. Let ψ : F[x] → F[z] be a homomorphism such that
rankF(x) Jx(f)(Ax) = rankF(z) ψ(Jx(f)(Ax)). Then, the map ϕ : F[x] → F[z, t, y1, ..., yr] that,
for all i ∈ [n], maps

xi 7→
(

r

∑
j=1

yjtij

)
+ ψ(xi)

is faithful to g.

Proof: Let Jx(g) be the Jacobian matrix of g, and Jx(f)(Ax) the Jacobian matrix of f eval-
uated at Ax. From the chain rule of differentiation, Jx(g) = Jx(f)(Ax) · A. As A in an
invertible matrix,

rankF(x) Jx(g) = rankF(x) Jx(f)(Ax). (4.1)

Also, for any homomorphism ψ : F[x]→ F[z], ψ (Jx(g)) = ψ (Jx(f)(Ax)) · A and hence,

rankF(z) ψ (Jx(g)) = rankF(z) ψ (Jx(f)(Ax)) . (4.2)

So, if we have a homomorphism ψ satisfying rankF(x) Jx(f)(Ax) = rankF(z) ψ (Jx(f)(Ax)),
then from (4.1) and (4.2),

rankF(x) Jx(g) = rankF(z) ψ (Jx(g)) .
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Also, from Observation 2.5, tr-deg(g) = tr-deg(f) ≤ r, and deg(gi) = deg( fi) ≤ δ. So,
using Lemma 2.4, we can construct a homomorphism ϕ faithful to g from ψ, as stated in the
lemma. 2

Let us apply Lemma 4.1 to the (4, k, s) formula f = ∑i∈[m] fi, where m ≤ k. Let f =

( f1, ..., fm) and tr-degF(f) = r ≤ m ≤ k.1 Observe that the degree of each fi is at most δ ≤ s2.
Then, from Lemma 2.2, rankF(x) Jx(f) = r, provided char(F) = 0 or > δr. As A is invertible,
this means that rankF(x) Jx(f)(Ax) = r. Assume without loss of generality that { f1, . . . , fr}
is a transcendence basis of f. Then, again from Lemma 2.2, the sub-matrix of Jx(f) consisting
of the rows corresponding to f1, . . . , fr must be full rank. Thus, we can assume without loss
of generality that the minor M of Jx(f) consisting of those rows, and columns corresponding
to x1, . . . , xr, has non-zero determinant. Notice that, as A is invertible, the determinant of
M evaluated at Ax, i.e., det(M(Ax)) = [det(M)](Ax) is also non-zero. To ensure that the
rankF(z) ψ (Jx(f)(Ax)) is also r, it suffices to construct a homomorphism ψ that is a hitting
set generator for orb(det(M)).

Constructing ψ. Let us look at det(M) a little more closely. As before, let fi = ∏j∈mi
q

ei,j
i,j ,

where qi,j are s-sparse polynomials of degree at most s. For i ∈ [r], let the number of qi,j

containing any of x1, . . . , xr be ci. As f is an occur-k formula, ∑i∈[m] ci ≤ kr ≤ k2. From the
i-th row of M, we can factor out q

ei,j
i,j if qi,j does not contain any of x1, . . . , xr. Moreover, even

if qi,j contains some variable from x1, . . . , xr, we can still factor out q
ei,j−1
i,j . After we have

taken out all these factors, let the residual matrix be M′. Then, each entry of the i-th row
of M′ is a polynomial with sparsity at most cisci and degree at most cis. Thus, det(M′) is a
polynomial with sparsity at most r! ·∏i∈[r] cisci ≤ k! · kk · sk2 ≤ k2k · sk2

and degree at most

∑i∈[r] cis ≤ k2s. So, det(M) is a product of polynomials with sparsity at most k2k · sk2
and

degree at most k2s. From Theorem 3.3, ψ = GSV(⌈
log
(

k2k·sk2
)⌉

+1
) = GSV

O(k2(log k+log s)) is a hitting

set generator for orb(det(M)), if |F| > nk2s and char(F) = 0 or > k2s.
If the qi,j are b-variate polynomials, then det(M′) is a polynomial in ∑i∈[r] cib ≤ k2b vari-

ables. From Observation 2.1, ψ = GSV
k2b is a hitting set generator for orb(det(M)).

Constructing ϕ. Using ψ and Lemma 4.1, we get a homomorphism ϕ that is faithful to g. Ob-
serve that ϕ is a polynomial map in at most O

(
k2 (log k + log s)

)
+ k+ 1 = O

(
k2 (log k + log s)

)
variables and of degree at most nk + 1 (as the degree of the polynomial map ψ is at most n

1Recall that, by definition, tr-degF(f) is just the transcendence degree of the set { f1, . . . , fm}.
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and, in Lemma 4.1, deg
(

∑r
j=1 yjtij

)
≤ nk + 1).

If the qi,j are b-variate polynomials, then ϕ is a polynomial map in at most O(k2b) + k +
1 = O(k2b) variables and of degree at most nk + 1.

4.2.3 Proof of Theorem 1.4: the depth-4 case

For ∆ = 4, the value of R in the statement of theorem is (2k)128. However, in this special
case, one can work with a much smaller value for R. We choose R = k4 so that char(F) =

0 or > (2ks)6k2
. This ensures that the constraints on char(F) and |F|, coming from Claim

4.2, Lemma 4.1 and the application of Theorem 3.3 in the construction of ψ, are satisfied.
Let f be a (4, k, s) formula. If f is a constant, then so is every polynomial in orb( f ). In this

case, the set containing any non-zero point in Fn is a hitting set for orb( f ); so suppose that f
is not a constant. There exists an i ∈ [n] such that ∂ f

∂xi
̸= 0 (as char(F) = 0 or > s2 ≥ D). From

Claim 4.1, ∂ f
∂xi
̸= 0 can be computed by a (4, 2k2, 2ks) formula with top fan-in at most k. More-

over, from the proof of Claim 4.2, if G is a hitting set generator for orb
(

∂ f
∂xi

)
, then G̃ = G +

GSV
1 is a hitting set generator for orb( f ), provided char(F) = 0 or > D and |F| > deg(G) ·

D. From Section 4.2.2, there exists a G that has at most O
((

2k2)2 (log 2k2 + log 2ks
))

=

O
(
k4 (log k + log s)

)
many variables and has degree at most 2nk2 + 1. As GSV

1 has 2 vari-
ables and has degree n, G̃ has O

(
k4 (log k + log s)

)
variables and has degree at most 2nk2 + 1.

Thus, for any g ∈ orb( f ), g(G̃) has O
(
k4 (log k + log s)

)
variables and has degree at most

(2nk2 + 1)D. So, a hitting set for orb( f ) can be computed in time (nk2D)O(k4(log k+log s)) =

(nRD)O(R(log k+log s)).
The proof for the case where the leaves are labelled by b-variate polynomials is similar.

Now, G has O(k4b) variables and has degree at most 2nk2 + 1. Thus, g(G̃) has O(k4b) vari-
ables and is of degree at most (2nk2 + 1)D, and so, a hitting set for orb( f ) can be computed
in (nk2D)O(k4b) time.

4.3 Hitting sets for the orbits of constant-depth, constant-

occur formulas
Let f ∈ F[x] be a n-variate, degree-D polynomial computed by a (∆, k, s) formula i.e., a
depth-∆, occur-k formula of size-s. Let us identify f with a (∆, k, s) formula computing it.
In this section, the level of a gate in f will be one plus its distance from the output gate of f .
Just like we did in Section 4.2, we first upper bound the top fan-in of f in Section 4.3.1 and
then use the notion of faithful homomorphisms to construct hitting sets for orb( f ) in Section
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4.3.2.

4.3.1 Upper bounding the top fan-in of f

We begin by showing that f can be written in a ”canonical” form.

Claim 4.3 If f is a (∆, k, s) formula, then it can also be computed by a (∆, k, (2s)∆) formula in a
canonical form with the following properties:

1. All gates connected to the leaves of f are ×⋏ gates.

2. f has alternating levels of + and ×⋏ gates.

Proof: While f contains a + gate connected to the leaves, we merge all the leaves connected
to it into a single leaf node computing their sum. Now, if this + gate is not connected to any
gate other than this leaf, it can simply be replaced by the leaf after multiplying the sparse
polynomial computed by the leaf by the label of the edge between it and the + gate. This
does not increase the depth, size or occur of f . Otherwise, we add a ×⋏ gate between the +

gate and the leaf. While this can increase the size of f by a factor of 2, the occur remains the
same. The depth does not increase, because the + gate is also connected to some non-leaf
node. Now f has property 1.

If f has a + gate q which is fed another + gate h as input and the edge connecting them is
labelled by α, then we can simply remove h, connect all its inputs directly to q and multiply
the labels of edges connecting all these inputs to q by α. This modification to f clearly does
not increase its depth, size or occur. Also, now each sum gate in f is connected solely to ×⋏
gates.

Consider any maximal sub-tree of f made up, solely, of ×⋏ gates. Let its root be q and its
inputs h1, . . . , hm. Then, q = he1

1 · · · h
em
m , where ei is the product of the weights of all edges

on the path from hi to q. As the sub-tree is maximal, none of h1, . . . , hm are ×⋏ gates and q
is also not an input to a ×⋏ gate. Thus, if we replace each such sub-tree with a single ×⋏
gate computing the same polynomial, f will also satisfy 2. Notice that, doing this does not
increase the depth or occur; size on the other hand, may increase. Suppose that the depth
of the sub-tree is ∆′. Let the sum of weights of edges connecting gates at level ℓ+ 1 (from
q) to gates at level ℓ be rℓ ≤ 2s, for all ℓ ∈ [∆′ − 1]. Also, let the sum of weights of edges
connecting the leaves be r∆′ . As, all edge weights are non-negative, ∑i∈[m] ei ≤ ∏ℓ∈[∆′] rℓ ≤
(2s)∆′ ≤ (2s)∆−2. Since, there can be no more than (2s) such sub-trees, the size of f can
increase by at most (2s)∆−1. Thus, size of f is at most 2s + (2s)∆−1 ≤ (2s)∆. 2
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We can also assume that the output gate of f is not a ×⋏ gate, for otherwise, we only
need to construct a hitting set generator for orbits of all of its factors which themselves are
(∆− 1, k, (2s)∆) formulas, with + gates at the top or are sparse polynomials. Thus, we can
assume without loss of generality that ∆ is an even number: if ∆ ̸= 2, then the top most gate
is a + gate, f has alternating levels of + and ×⋏ gates and gates connected to the leaves
are ×⋏ gates. We now make the following claim which will allow us to assume that the top
fan-in of f is at most k.

Claim 4.4 Let f be a (∆, k, s) formula in the canonical form of Claim 4.3, with either a + gate at the
top or ∆ = 2. Then, for any i ∈ [n], ∂ f

∂xi
is a (∆, (2k)∆/2, (2k)∆/2s) formula in the canonical form

with the top fan-in bounded by k.

Proof: When ∆ = 2, f is a polynomial of sparsity s and k = 1. So, the sparsity of ∂ f
∂xi

is at
most s and the depth and occur do not increase, making the claim true. Assume, by the way
of induction, that the claim is true for all formulas of depth ∆− 2. Let x = xi, f = ∑i∈[m] fi

and x be present only in f1, . . . , fr, r ≤ k. Furthermore, for all i ∈ [r], let fi = ∏j∈mi
q

ei,j
i,j and

x be present only in qi,1, . . . qi,ri , ∑i∈[r] ri ≤ k. Then,

∂ f
∂x

= ∑
i∈[r]

(
mi

∏
j=ri+1

q
ei,j
i,j

)
·

 ∑
j∈[ri]

ei,j
∂qi,j

∂x
· qei,j−1

i,j · ∏
j′∈[ri]
j′ ̸=j

q
ei,j′

i,j′


= ∑

i∈[r]
∑

j∈[ri]

∂qi,j

∂x
· ∏

j′∈[mi]

q
e′i,j′
i,j′

 ,

where e′i,j′ is either ei,j′ or ei,j′ − 1. First of all, notice that, the top fan-in of ∂ f
∂x is at most

∑i∈[r] ri ≤ k. As all qi,j are formulas of depth ∆ − 2, from the induction hypothesis,
∂qi,j
∂x is

also a depth ∆− 2 formula. Thus, the depth of ∂ f
∂x is at most ∆. However, the size and occur

may change.

For all i ∈ [r], let the occur of fi be pi ≤ k; then the occur of ∏j′∈[mi]
q

e′i,j′
i,j′ is at most

pi. Also, from the induction hypothesis,
∂qi,j
∂x has occur (2k)(∆−2)/2. So, the occur of ∂ f

∂x is

at most ∑i∈[r] ri

(
(2k)(∆−2)/2 + pi

)
, which can be bounded from above by (2k)∆/2. Simi-

larly, suppose that the size of fi is si ≤ s − 1; then the size of ∏j′∈[mi]
q

e′i,j′
i,j′ is at most si.
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Also, from the induction hypothesis,
∂qi,j
∂x has size (2k)

∆−2
2 s. So, the size of ∂ f

∂x is at most

∑i∈[r] ri

(
(2k)

∆−2
2 s + si + 1

)
≤ (2k)∆/2s. 2

We now upper bound the top fan-in of f using this claim. Let A ∈ GL(n, F) and g(x) =
f (Ax). If f is a constant, then constructing a hitting set for orb( f ) is trivial. Otherwise,
there exists an i ∈ [n] such that ∂ f

∂xi
̸= 0 (because char(F) > (2ks)∆3R ≥ D). Suppose

that a polynomial map, G : Ft → Fn of degree at most nR + 1 is a hitting set generator
for orb

(
∂ f
∂xi

)
. The gradient of a polynomial p(x), denoted by ∇p, is the column vector(

∂p
∂x1

∂p
∂x2

. . . ∂p
∂xn

)T
. By the chain rule of differentiation,

∇g = AT · [∇ f ](Ax).

As AT is invertible, ∂ f
∂xi

(AG) ̸= 0 =⇒ ∇ f (AG) ̸= 0 =⇒ ∇g(G) ̸= 0 =⇒ ∃ ∈
[n], such that ∂g

∂xj
(G) ̸= 0. Then, from Observation 2.2, for G̃ := G + GSV

1 , g(G̃) ̸= 0, i.e.,

G̃ is a hitting set generator for orb( f ). So, all we need to do now is construct a hitting set
generator for orb

(
∂ f
∂xj

)
and from Claim 4.4, ∂ f

∂xj
has top fan-in at most k. Overloading the

notation, we refer to ∂ f
∂xj

as f , which is computed by a (∆, k, s) formula in the canonical form
and with a + gate at the top whose fan-in is at most k.

4.3.2 Constructing a faithful homomorphism

Let f = f1 + · · · + fk and A ∈ GL(n, F). Let gi = fi(Ax) for all i ∈ [k], f = ( f1, . . . , fk)

and g = (g1, . . . , gk). We now show how to create a homomorphism ϕ that is faithful to g;
from Lemma 2.3, this homomorphism will be a hitting set generator for orb( f ). ϕ will be
constructed recursively as follows: each level of recursion corresponds to a level in f , with
the recursion starting at level 2 and ending at level ∆ − 2. At level ℓ, our goal will be to
construct a homomorphism ϕℓ which is faithful to every tuple in a certain set Cℓ of tuples.
Each tuple in Cℓ consists of at most rℓ derivatives, of order at most aℓ, of disjoint groups of
gates at level ℓ of f , evaluated at Ax. Note that, as the derivatives are of disjoint groups of
gates in f , |Cℓ| ≤ s.

For ℓ = 2, C2 contains only one tuple, namely g, r2 = k and a2 = 0. For any ℓ ≥ 2, let
q ∈ Cℓ, q = (q1, . . . , qrℓ), where qi = hi(Ax) for all i ∈ [rℓ] and let h = (h1, . . . , hrℓ). If ϕℓ+1

is such that rankF(x) Jx(h)(Ax) = rankF(z) ϕℓ+1 (Jx(h)(Ax)), then using Lemma 4.1, we can
construct a ϕℓ faithful to q. The following lemma which was proved in [ASSS16], helps us
reduce the problem from level ℓ to level ℓ+ 1.

Lemma 4.2 (Lemma 4.4 of [ASSS16]) Let h be a tuple of rℓ derivatives, of order at most aℓ, of
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gates G at level ℓ of f , tr-degF(h) = r′ℓ and h′ be a transcendence basis of h. Any r′ℓ × r′ℓ minor of
Jx(h′) is of the form ∏i pei

i , where pis are polynomials in at most rℓ+1 := (aℓ + 1) · 2aℓ+1k · r2
ℓ many

derivatives of order at most aℓ+1 := aℓ + 1 of disjoint groups of children of G.

For each h, we will use the above lemma for a non-zero r′ℓ × r′ℓ minor of Jx(h′). Then, the
lemma gives a bunch of tuples h1, . . . , hu, one for each pi. Suppose that pi is a polynomial in
pi,1, . . . , pi,m, which are derivatives of gates at level ℓ+ 1 of f . Then, hi = (pi,1(Ax), . . . , pi,m(Ax))
and Cℓ+1 is a set of all hi, for all h. If ϕℓ+1 is faithful to each tuple in Cℓ+1, then from Lemma
2.3, ϕℓ+1

(
pei

i (Ax)
)
̸= 0 and hence it preserves the rank of Jx(h)(Ax).

The base case of the recursion is when ℓ = ∆− 2. Our goal is to create a homomorphism
ϕ∆−2 which is faithful to every tuple in the set C∆−2, |C∆−2| ≤ s of at most r∆−2 many
sparse polynomials (because any derivative of a sparse polynomial is a sparse polynomial)
evaluated at Ax. r∆−2 can be bounded from above by R := (2k)2∆·2∆

. For all q = h(Ax) =
(h1(Ax), . . . , hR(Ax)) ∈ C∆−2, we will create a ϕ∆−1 such that

rankF(x) Jx(h)(Ax) = rankF(z) ϕ∆−1 (Jx(h)(Ax)) .

Let h1, . . . , hR′ be a transcendence basis of h. As the size of f is s, every entry of any |R′| × |R′|
sub-matrix of Jx(h) is a polynomial with sparsity and degree at most s. So, the determinant
of any such sub-matrix is a polynomial with sparsity at most R′! · sR′ ≤ R! · sR and degree
at most sR. Hence, from Theorem 3.3, GSV

(⌈log(R!·sR)⌉+1)
= GSV

(O(R(log R+log s))) is a hitting set

generator for orbits of these determinants. Thus, we can put ϕ∆−1 = GSV
(O(R(log R+log s))). We

then repeatedly use Lemma 4.1 to construct ϕ2. At level ℓ of the recursion, we add at most
rℓ + 1 ≤ R + 1 many new variables for a total of at most (∆− 2)(R + 1) new variables. Also,
notice that at level ℓ, the polynomial that we add to ϕℓ+1 to create ϕℓ has degree at most
nrℓ + 1 ≤ nR + 1. Thus, there exists a homomorphism ψ in at most (∆− 2)(R + 1) variables
and of degree at most nR + 1, such that GSV

(O(R(log R+log s))) + ψ is a hitting set generator for
orb( f ). We are now ready to prove Theorem 1.4.

4.3.3 Proof of Theorem 1.4

A non-zero polynomial f ∈ C is computed by a (∆, k, s) formula. Then, f is also computed
by a (∆, k, (2s)∆) formula in the canonical form of Claim 4.3. There are two cases:

Case 1: The top most gate of the formula is a + gate. If f is constant, then so is every
polynomial in orb( f ). In this case, the set containing any point in Fn is a hitting set for
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orb( f ); so we will assume that f is not constant. Then, there exists a xi such that ∂ f
∂xi
̸=

0 (as char(F) > (2ks)∆3R ≥ D) and as argued in Section 4.3.1, ∂ f
∂xi

can be computed by
a (∆, (2k)∆/2, (2k)∆/2(2s)∆) formula with + gate at the top and top fan-in bounded by k.
Moreover, if G is a hitting set generator for orb

(
∂ f
∂xi

)
, then since char(F) > (2ks)∆3R ≥

(nR + 1)D, G̃ = G + GSV
1 is a hitting set generator for orb( f ). As char(F) = 0 or > (2ks)∆3R,

Lemma 4.1 works, since the degree of polynomials computed by gates in f can be at most(
(2k)∆/2(2s)∆)∆ ≤ (2ks)∆3

. Thus, as shown in Section 4.3.2, there exists a G that has at most

O
(

R
(

log R + log
(
(2k)∆/2(2s)∆

)))
+(∆− 2)(R+ 1) = O (R (log R + ∆ log k + ∆ log s) + ∆R)

many variables and of degree nR + 1. As GSV
1 has 2 variables and is of degree n, the number

of variables in G̃ is O (R (log R + ∆ log k + ∆ log s) + ∆R) and its degree is nR + 1. Thus, for
any A ∈ GL(n, F), and g(x) := f (Ax), g(G̃) is a polynomial in

O (R (log R + ∆ log k + log s) + ∆R)

variables and of degree at most (nR + 1)D. So, a hitting set for g can be constructed in time
(nRD)O(R(log R+∆ log k+∆ log s)+∆R).

Case 2: The top most gate of the formula is a ×⋏ gate. Then, all inputs to this gate are
computed by (∆ − 1, k, (2s)∆) formulas in the canonical form of Claim 4.3 and with a +

gates at the top. Hence, all inputs of f are in Case 1.
The proof for the case where the leaves are labelled by b-variate polynomials is similar;

all we need to do is observe that GSV
Rb is a hitting set generator for b-variate polynomials. So,

we can use G = GSV
Rb + ψ.

4.4 Hitting sets for the orbits of occur-once formulas
The strategy. We prove Theorem 1.5 by building upon the arguments in Shpilka and Volkovich
[SV15] and linking it with Theorem 3.1. At first, we show two structural results (Lemma 4.3
and 4.4) for occur-once formulas. These lemmas are generalizations of similar structural
results for read-once formulas shown in [SV15]. Much like in [SV15], the structural results
help us show that for a ”typical” occur-once formula f with a + gate as the root node, there
exists a variable xi such that ∂ f

∂xi
is a product of occur-once formulas, each of which has at

most half as many non-constant leaves as f . We then use this fact to show that a hitting-
set generator for orb( f ) can be constructed from a generator for orb

(
∂ f
∂xi

)
. [SV15] uses the

83



derivatives of f in a similar way to show that a generator for f can be constructed from that
for ∂ f

∂xi
using the SV generator (see Definition 2.20). However, in our case, we want a genera-

tor for orb( f ) and not just for f . For this reason, we first use the chain rule for derivatives to
relate the gradient of a g ∈ orb( f ) with that of f , and then argue that there exists a xj such

that a generator for orb
(

∂ f
∂xi

)
is also a generator for ∂g

∂xj
. Finally, we use this generator for

∂g
∂xj

to construct a generator for g. The argument then proceeds by induction on the number
of non-constant leaves. In the base case, we need a hitting set generator for orbits of sparse
polynomials which we get from Theorem 3.1.

Notations. Assume, without loss of generality, that none of the edge labels of an occur-once
formula is zero. We will identify an occur-once formula with the polynomial f it computes
and define the width of f - denoted by width( f ) - to be the number of non-constant sparse
polynomials at the leaves of the formula. Observe that if width( f ) ≥ 1, then f is not a
constant. As mentioned above, we reduce the problem of finding a hitting set generator for
orb( f ) to that of finding a generator for orb( ∂ f

∂xi
), where xi is such that ∂ f

∂xi
is a product of

occur-once formulas of widths at most width( f )
2 ; this is done in Theorem 4.1.

We start by proving two structural results.

4.4.1 Structural results

We will call an occur-once formula an s-sparse occur-once formula if the leaves of the formula
are labelled by s-sparse polynomials. Without loss of generality, assume that an s-sparse
occur-once formula is layered with all the leaves appearing in layer 0. If a gate appears in
layer k, then the depth of the occur-once formula rooted at the gate is k + 2. We will also
identify a gate with the occur-once formula rooted at the gate.

Lemma 4.3 Let f be an s-sparse occur-once formula having width( f ) ≥ 2. Then, f can be expressed
in one of the following three forms:

1. f = α( f1 + f2) + β,

2. f = α( f1 · f2) + β,

3. f = α f e
1 + β,

where α, β ∈ F, α ̸= 0 and f1, f2 are non-constant, variable disjoint, s-sparse occur-once formulas.
Further, width( f1) + width( f2) = width( f ) in the first two forms, and width( f1) = width( f )
and depth( f1) < depth( f ) in the third form.
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Proof: Let the depth of f be ∆, which equals the number of layers in f plus 1. Let h be any
gate in f in layer 1 (i.e., the layer just above the leaves) and width(h) ≥ 2. If h is a + gate,
then it can be expressed in form 1. If h is a ×⋏ gate, then it can be written in form 2.

Assume, by the way of induction, that the lemma is true for all gates h′ in f of width(h′) ≥
2 and at layers less than k for some 1 < k ≤ ∆ − 2. Let h be a gate in the k-th layer with
width(h) ≥ 2. There are two cases:

Case 1: h is a + gate, say h = α1h1 + · · · + αmhm. Clearly, if at least two of its children
are non-constants, then h is in form 1. On the other hand, if only one child, say h1, is a
non-constant, then width(h1) = width(h) ≥ 2. As h1 is in layer k − 1, from the induction
hypothesis, it can be written in one of the three forms with the corresponding constants α

and β. Then, by adding α2h2 + · · ·+ αmhm (which is a constant) to α1β and multiplying α1

by α, h can also be written in the same form.

Case 2: h is a ×⋏ gate, say h = h1
e1 · · · hm

em . Clearly, if at least two of its children are
non-constants, then h is in form 2. On the other hand, if only one child, say h1, is a non-
constant, then width(h1) = width(h) ≥ 2. In this case, by taking α = h2

e2 · · · hm
em (which is

a constant), and observing that depth(h1) = k− 1 + 2 < k + 2 = depth(h), we see that h is
in form 3. 2

Lemma 4.4 Let f be an s-sparse occur-once formula. Then for any i ∈ [n], ∂ f
∂xi

is a product of
s-sparse occur-once formulas of widths at most width( f ).

Proof: Let the depth of f be ∆. Notice that the lemma is true for all the leaves (i.e., at layer
0) of f as any derivative of an s-sparse polynomial is also an s-sparse polynomial. Assume,
by the way of induction, that the lemma is true for all gates at layers less than k, for some
1 ≤ k ≤ ∆− 2 and let h be any gate in the k-th layer of f . There are two cases:

Case 1: h is a + gate, say h = α1h1 + · · ·+ αmhm. As f , and hence h, is an s-sparse occur-once
formula, we can assume without loss of generality that xi appears only in h1, if it appears at
all. Then, ∂h

∂xi
= α1

∂h1
∂xi

. From the induction hypothesis, ∂h1
∂xi

is a product of s-sparse occur-once
formulas of widths at most width(h1) ≤ width(h), and so, the lemma is true for h.

Case 2: h is a ×⋏ gate, say h = h1
e1 · · · hm

em . As, in the previous case, assume that xi appears
only in h1. Then,
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∂h
∂xi

= e1 · h1
e1−1 · h2

e2 · · · · · hm
em · ∂h1

∂xi
.

From the induction hypothesis, ∂h1
∂xi

is a product of s-sparse occur-once formulas of widths
at most width(h1) ≤ width(h). Moreover, h1

e1−1, h2
e2 , ..., hm

em are also s-sparse occur-once
formulas of widths at most width(h). Thus, the lemma is true for h. 2

4.4.2 Proof of Theorem 1.5

We now show the existence of an efficient hitting set generator for orbits of occur-once for-
mulas.

Theorem 4.1 Let f be an n-variate, degree-D polynomial that is computable by an s-sparse occur-
once formula, and g ∈ orb( f ). Also, let |F| > nD and char(F) = 0 or > D. Then for any
t ≥ log(width( f )), g ̸= 0 implies g

(
GSV
(⌈log s⌉+1+t)

)
̸= 0. In fact, if g is not a constant, then

neither is g
(
GSV
(⌈log s⌉+1+t)

)
.

Proof: Notice that if g is a non-zero constant, then g
(
GSV
(⌈log s⌉+1+t)

)
̸= 0 for all t. So, to

prove the theorem, we need to show that if g is not a constant, then neither is g
(
GSV
(⌈log s⌉+1+t)

)
.

Let h be an s-sparse occur-once formula satisfying width(h) = 1. Then, h must be of the
form

αm
(
· · ·
(
α2 (α1p(x)e1 + β1)

e2 + β2
)
· · ·
)em + βm,

where p(x) is an s-sparse polynomial, e1, ..., em ∈ N, α1, ..., αm ∈ F \ {0} and β1, ..., βm ∈ F.
Let A ∈ GL(n, F). If h(Ax) is not a constant, then neither is p(Ax). Thus, from Theorem 3.3
and the fact that Img(GSV

k ) ⊆ Img(GSV
k+1) for any k ≥ 0, we have that p

(
AGSV

(⌈log s⌉+1+t)

)
is

not a constant for any t ≥ 0. Hence, h
(

AGSV
(⌈log s⌉+1+t)

)
is also not a constant for any t ≥ 0.

Assume, by the way of induction, that the theorem is true for all g′ such that g′ ∈ orb( f ′)
for some n-variate, degree-D, s-sparse occur-once formula f ′ with 1 ≤ width( f ′) < ℓ ≤
width( f ). Let h be an n-variate, degree-D, s-sparse occur-once formula having width(h) =
ℓ ≥ 2, and A ∈ GL(n, F). From Lemma 4.3, there are three cases,

Case 1: h = α(h1 + h2)+ β. Then, we can assume without loss of generality that width(h1) ≤
width(h)

2 = ℓ
2 , as width(h1) + width(h2) = width(h). Since h1 is not a constant, there ex-

ists an i ∈ [n] such that ∂h1
∂xi
̸= 0 (because char(F) is 0 or > D). As ∂h

∂xi
= α · ∂h1

∂xi
(h1 and

h2 being variable disjoint) and α ̸= 0, ∂h
∂xi
̸= 0. Now, from Lemma 4.4, ∂h1

∂xi
is a product

of s-sparse occur-once formulas of width at most ℓ
2 . Then, from the induction hypothesis,
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∂h
∂xi

(
AGSV

(⌈log s⌉+1+t)

)
̸= 0 for any t ≥ log ℓ − 1. Let q = h(Ax). The gradient of a poly-

nomial p(x), denoted by ∇p, is the column vector
(

∂p
∂x1

∂p
∂x2

. . . ∂p
∂xn

)T
. By the chain rule of

differentiation,
∇q = AT · [∇h](Ax).

As AT is invertible, there exists a j ∈ [n] such that ∂q
∂xj

(
GSV
(⌈log s⌉+1+t)

)
̸= 0 for any t ≥

log ℓ− 1. This means, by Observation 2.2, q(GSV
(⌈log s⌉+1+t)) is not a constant for any t ≥ log ℓ

(as deg(q) ≤ D and |F| > nD). In other words, h(AGSV
(⌈log s⌉+1+t)) is not a constant for any

t ≥ log ℓ.

Case 2: h = α(h1 · h2) + β. As width(h1), width(h2) < width(h), from the induction hy-
pothesis, we have that for any t ≥ log ℓ, h1

(
AGSV

(⌈log s⌉+1+t)

)
, h2

(
AGSV

(⌈log s⌉+1+t)

)
are not

constants and so neither is h
(

AGSV
(⌈log s⌉+1+t)

)
.

Case 3: h = αhe
1 + β. In this case, width(h1) = width(h) = ℓ ≥ 2, but depth(h1) < depth(h).

As h
(

AGSV
(⌈log s⌉+1+t)

)
is not a constant if and only if h1

(
AGSV

(⌈log s⌉+1+t)

)
is not a constant,

the problem reduces to showing that for any g1 ∈ orb(h1), g1

(
GSV
(⌈log s⌉+1+t)

)
is not a con-

stant for any t ≥ log ℓ. We now run the argument from the beginning with h replaced by h1,
which has a smaller depth. Eventually, we will land up in Case 1 or 2, as a depth-3 occur-
once formula having width ≥ 2 is either in form 1 or 2 (see proof of Lemma 4.3). 2

A non-zero polynomial f ∈ C is computable by an s-sparse occur-once formula. Observe
that width( f ) ≤ n. Let g ∈ orb( f ). From Theorem 4.1, we have that g

(
GSV
(⌈log s⌉+1+⌈log n⌉)

)
is a non-zero polynomial in 2 (⌈log s⌉+ 1 + ⌈log n⌉) variables of degree at most nD. As
|F| > nD, a hitting set for orb(C) can be computed in time (nD + 1)2(⌈log s⌉+1+⌈log n⌉) =

(nD)O(log n+log s).
The proof is similar if the leaves of the occur-once formulas in C are labelled by b-variate

polynomials. We just need to apply Observation 2.1 instead of Theorem 3.3 in the base case.
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Chapter 5

Equivalence test for read-once arithmetic
formulas

This chapter gives an equivalence test for read-once arithmetic formulas. The
contents of this chapter are from a joint work with Nikhil Gupta and Chandan
Saha [GST23]. A read-once arithmetic formula is said to be regular if no + gate in
it has a variable directly connected to it. An equivalence test for the special case
of regular read-once arithmetic formulas can be found in [Gup22].

5.1 Introduction
We say that f , g ∈ F[x] are equivalent polynomials, denoted f ∼ g, if there exists an A ∈
GL(|x|, F) and b ∈ F|x| such that g(x) = f (Ax + b) (see Definition 2.31). The equivalence
test problem for a circuit class C is as follows: given a g ∈ F[x] check if there exists an
f ∈ F[x] computed by a circuit in C such that g ∼ f . If yes, find A ∈ GL(|x|, F) and
b ∈ F|x| such that g(x) = f (Ax + b). This section is devoted to designing and analyzing a
randomized polynomial time algorithm for equivalence test for ROFs (see Definition 2.4). In
particular, we prove the following theorem.

Theorem 1.6 (ET for ROFs) Let n ∈ N, char (F) = 0 or ≥ n2, and |F| ≥ n13. There is a
poly(n) time randomized algorithm (with oracle access to QFE over F) that takes input black-box
access to an n-variate polynomial f ∈ F[x], which is in the orbit of an unknown canonical ROF
C, and outputs (with high probability) an A ∈ GL (n, F) such that f (Ax) = C(PSx + b), where
P ∈ M(n, F) and S ∈ M(n, F) are permutation and scaling (i.e., diagonal) matrices respectively,
and b ∈ Fn.
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Quadratic Form Equivalence can be solved efficiently over C, R, Fq and also over Q with
oracle access to integer factoring (see Fact 5.3). Hence, ET for ROFs can also be solved effi-
ciently over these fields.

Note that as C(PSx + b) is an ROF, we can apply any of the known polynomial-time
ROF reconstruction algorithms [HH91, BHH95, SV14, MV18] to first get an ROF for C(PSx+
b), and then obtain a formula for f by applying A−1 on the variables of the reconstructed
ROF. We present a randomized polynomial-time ROF reconstruction algorithm in Section
5.6 as we need to use some of its properties for designing an algorithm for the polynomial
equivalence problem for orbits of ROFs in Chapter 6.

We first give a high-level overview of our proof of Theorem 1.6 in Section 5.2. Then
we prove some preliminary results in Section 5.3 and analyse the Hessian determinant of
an ROF in Section 5.4; the results of both of these sections are crucially used to give an
equivalence test for ROFs in Section 5.5. Finally we give an algorithm for reconstructing
ROFs in Section 5.6.

5.2 Proof techniques
First, an example. The algorithm in Theorem 1.6 is based on a few crucial properties of the
Hessian determinant of an ROF (see Definition 2.27). The effectiveness of the Hessian, in this
context, is best demonstrated by an equivalence test for the sum-product polynomial SP :=

∑i∈[s] ∏j∈[d] xi,j, which is an ROF of product-depth 1. Assume that d ≥ 3. The algorithm
takes input an f = SP(Bx), where B ∈ GL(sd, F) is unknown. It computes the Hessian
determinant of f , which is denoted as det(H f ). By Fact 2.4, det(H f ) is a non-zero F-multiple
of det(HSP)(Bx) – the Hessian determinant of SP evaluated at Bx. Now, it can be shown that
det(HSP) factorizes as follows:

det(HSP) = (−1)s(d−1) · (d− 1)s · ∏
i∈[s],j∈[d]

xd−2
i,j .

So, the algorithm factorizes det(H f ) into irreducible factors and figures out1 B from the
factors. The test can be implemented in the black-box setting by observing that black-box
access to the second-order partials of f can be computed efficiently (see Fact 5.1) and by
invoking a black-box polynomial factorization algorithm (see Fact 5.2). The running time is
polynomial in s and d.

1The algorithm finds an A = PSB, where P is a permutation matrix and S is a diagonal matrix, from
the factors of det(H f ). It then interpolates f (A−1x) (using the sparse polynomial interpolation algorithm in
[KS01]) to learn P and S (up to the symmetries of the polynomial SP).
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5.2.1 A basic approach

Can the Hessian determinant be exploited to devise an equivalence test for ROFs of ar-
bitrary product-depth and fan-in? A rudimentary approach is outlined in [Kay11]: Let
g = g1(x1, . . . , xi) + g2(xi+1, . . . , xn), where g1 and g2 are variable disjoint polynomials.
Given black-box access to f = g(Bx), where g and B ∈ GL(n, F) are unknown, can we
find an A ∈ GL(n, F) such that f (Ax) can be expressed as a sum of two variable disjoint
polynomials?1 [Kay11] gave an algorithm that finds such an A provided the number of essen-
tial variables2 of det(Hg) is exactly n.

The algorithm uses the fact that det(Hg) = det(Hg1)(x1, . . . , xi) · det(Hg2)(xi+1, . . . , xn),
and so, det(H f ) is a non-zero F-multiple of det(Hg1)(Bx) · det(Hg2)(Bx). It turns out that an
A ∈ GL(n, F) can be found efficiently from black-box access to det(H f ) such that det(Hg1)(BAx)
and det(Hg2)(BAx) are variable disjoint; this step involves black-box factorization of det(H f )

[KT90] and elimination of redundant variables from the irreducible factors of det(H f ) in a
careful way (see Claim 5.3). Now, it can also be shown that if the number of essential vari-
ables of det(Hg) is exactly n, then g1(BAx) and g2(BAx) are variable disjoint (see Observa-
tion 2.8).

The correctness of the algorithm depends critically on the condition that the number of
essential variables of det(Hg) is exactly n. If this condition does not hold, then the algorithm
fails completely. The approach can be viewed as a generalization of the algorithm given
in the above example for the SP polynomial. Indeed, the number of essential variables of
det(HSP) is n = sd.

Can the basic approach be used to learn orbits of ROFs? At a high level, the basic ap-
proach is encouraging as a +-rooted ROF is a sum of variable disjoint polynomials. Let C =

T1 + . . . + Ts be a +-rooted canonical ROF, where T1, . . . , Ts are the terms of C, i.e., the poly-
nomials computed by the second (from the top) layer of gates in C. Given black-box access
to f = C(Bx) = T1(Bx) + . . . + Ts(Bx), where C and B ∈ GL(n, F) are unknown, we hope to
apply the approach in [Kay11] to find an A ∈ GL(n, F) such that T1(BAx), . . . , Ts(BAx) are
variable disjoint. If we succeed in finding A, then we wish to obtain efficient black-box access
to T1(BAx), . . . , Ts(BAx) by exploiting their variable disjointness. From black-box access to
Ti(BAx), we get black-box access to Qi,1(BAx), . . . , Qi,mi(BAx), where Qi,1, . . . , Qi,mi are the

1This problem was referred to as the polynomial decomposition problem in [Kay11]. It should not be confused
with the functional decomposition of polynomials which is also known as the polynomial decomposition prob-
lem.

2See Definition 2.28.
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irreducible factors of Ti. Claim 5.2 then lets us find a C ∈ GL(n, F) such that Qi,1(BACx), . . . ,
Qi,mi(BACx), for all i ∈ [s], are variable disjoint. At this point, we plan to recurse on
Qi,1(BACx), . . . , Qi,mi(BACx) that are in the orbits of variable disjoint +-rooted ROFs of
smaller size and depth.

Although the method looks promising, there are a few significant hurdles that render
the basic approach almost useless. First, we shall see (in the next section) that the number
of essential variables of the Hessian determinant of a canonical ROF can be dramatically
smaller than n, although the ROF itself has no redundant variable. This is indeed a serious
problem for the approach as the step of making T1(BAx), . . . , Ts(BAx) variable disjoint may
break down completely. Second, even if we manage to make T1(BAx), . . . , Ts(BAx) variable
disjoint, the complexity of the recursive algorithm may grow exponentially with the product
depth of the ROF unless we generate super-efficient black-box access to T1(BAx), . . . , Ts(BAx).
In the next section, we elaborate on these (and more) hurdles and explain how we overcome
them and salvage the basic approach.

5.2.2 Outline of the ROF equivalence test: Salvaging the basic approach

Without loss of generality, assume that the root node of an ROF C is a +-gate; if not, use
black-box polynomial factorization to reduce to the +-rooted case. We need to answer two
questions:

1. How do we efficiently find a transformation that makes the terms variable disjoint?

2. How do we get efficient black-box access to the terms once they are variable disjoint?

We now elaborate on the technical hurdles that we encounter and deal with while answering
these.

A. Making the terms variable disjoint

We know that the terms can be made variable disjoint if the number of essential variables
in det(HC) is exactly n. But this need not be the case. In fact, we face an even more basic
hurdle.

• Hurdle 1: The Hessian determinant of a non-zero canonical ROF can be identically
zero.

For instance, the Hessian determinant of (x1x2 + x3x4)(x5x6 + x7x8) + (y1y2 + y3y4)(y5y6 +

y7y8) is identically zero over F3; the Hessian determinant of x1x2x3 + x4 is zero over any F.
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None of these ROFs have redundant variables (see Observation 5.2), and yet their Hessian
determinants are zero.

When is the Hessian determinant non-zero? We show in Lemma 5.1 that the Hessian determi-
nant of a non-zero n-variate canonical ROF C is non-zero provided char(F) = 0 or ≥ n
and none of the children of the top +-gate of C is a variable1. Henceforth, we assume that
char(F) = 0 or ≥ n. We call a variable that is directly connected to a +-gate a dangling vari-
able, and a variable that is directly connected to the top +-gate the top dangling variable. Since
C is in canonical form (see Definition 2.23), it can have at most one top dangling variable.

Few words on the proof of Lemma 5.1: We show that the coefficient of a certain high de-
gree monomial in det(HC) is a product of “small”, non-zero numbers. Depending on the
structure of C, we first carefully pick a variable x in it and treat det(HC) as a univariate
polynomial over F[x \ {x}]. We then show that the coefficient of the highest degree term
in x is a product of the Hessian determinants of “smaller”, ×-rooted ROFs. We repeat this
process inductively on these smaller ROFs to show that their Hessian determinants are non-
zero. The inductive process constructs a high degree monomial implicitly. The base case
of the induction deals with Hessians of monomials of degree at least 2. The Hessian deter-
minant of a degree d monomial is itself a monomial with a non-zero coefficient. Thus, the
coefficient of the special monomial constructed by the inductive process is a product of the
coefficients of the Hessian determinants of monomials.

The presence of a top dangling variable makes det(HC) zero. We will see shortly how to
prevent det(HC) from vanishing. At first, let us assume that C has no top dangling variable.
Now, even if the Hessian determinant of C is non-zero, there is no guarantee that the number
of essential variables of det(HC) is the maximum possible. This poses the second and the
main hurdle.

• Hurdle 2: The number of essential variables of det(HC) ̸= 0 can be much smaller than
n.

For example, the Hessian determinant of x1(x2x3 + x4) + y1(y2y3 + y4) has merely two es-
sential variables; the Hessian determinant of x1x2x3 + x4x5 has only three essential variables.
For ease of explanation, we split the above hurdle into two questions. The first one is,

1Observe that if the top +-gate has a variable child, then the Hessian determinant is identically zero over
any F.
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• Hurdle 2a: Which variables of a canonical ROF C are essential for its Hessian determi-
nant?

The notion of “skewed paths” turns out to be quite useful in answering this question.

Skewed paths, truly essential variables, and good and bad terms: A skewed path in C is a special
structure that can be identified with a unique “marker” monomial (see Definition 5.1). In
Claim 5.8, we show that every variable other than the dangling variables along skewed
paths, the variables in quadratic forms along skewed paths, and the variables in the (top)
quadratic form of C, are truly essential for det(HC) (see Definition 2.29)1. This knowledge
enables us to categorize the terms of C into three types – good, bad, and the quadratic form of
C. A bad term looks like x · Q, where x ∈ x and Q is a +-rooted ROF. In the example, both
x1(x2x3 + x4) and y1(y2y3 + y4) are bad terms. In x1(x2x3 + x4), the “marker” monomial x1

(which is a variable in this simple case) defines a skewed path, x2 and x3 are the variables of
the quadratic form along this skewed path, and x4 is the dangling variable along this skewed
path. Terms that are not bad and have degree ≥ 3 are good.

Making good terms variable disjoint. If T is a good (similarly, bad) term of C, then we say
T(Bx) is a good (respectively, bad) term of the input f = C(Bx). It follows from Definition
5.1 that the skewed paths in C occur only in the bad terms of C, and so, from Claim 5.8, all
the variables of the good terms of C are truly essential for det(HC). This fact along with
Claim 5.3 and Observation 2.8 help us infer that a slight variant of the basic strategy given
in Section 5.2.1 succeeds in finding an A0 ∈ GL(n, F) such that the good terms of f become
variable disjoint under the action of A0. See Step 1 in Section 5.5.1 and Section 5.7 for a more
detailed and pictorial overview of this step.

Making the good terms of f variable disjoint is the first step towards overcoming Hurdle
2. But it is far from sufficient even if C is devoid of bad terms, the top quadratic form, and
the top dangling variable. This is because the algorithm may encounter bad terms, quadratic
forms and dangling variables at deeper levels of the recursion, whence the basic strategy will
fail. Therefore, we must answer the following (second) question to tackle the acute loss of
essential variables in the Hessian determinant due to the presence of skewed paths in bad
terms.

• Hurdle 2b: How do we handle the bad terms and the quadratic form of C?

1See the paragraph before Claim 5.8 for relevant terminologies. Partitioning a set of essential variables into
truly essential variables and ordinary essential variables helps us crucially in the arguments.
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We call the dangling variables along skewed paths, the variables in quadratic forms along
skewed paths, and the variables of the top quadratic form of C the bad variables of C. The re-
maining variables are the good variables. Note that a good term of C has only good variables,
whereas a bad term has both good and bad variables. For example, x1 is a good variable
of the bad term x1(x2x3 + x4), and x2, x3, x4 are its bad variables. By Claim 5.8, the good
variables are truly essential for det(HC), but they need not be the only essential variables.
Some bad variables can be truly or ordinarily essential for det(HC) or totally absent from
det(HC); this complicates the matter a bit.

Making the bad terms and the top quadratic form variable disjoint. It turns out that Claim
5.8, Claim 5.3 and Observation 2.8 together imply that the transformation A0 is such that
BA0 maps every good variable of a (good or bad) term Tk to a linear form in zk ⊆ x, where
the variable sets zk (as Tk runs over all good and bad terms) are disjoint. Let z be the disjoint
union of these sets zk, and y := x \ z. Let ℓx := BA0 ◦ x for x ∈ x. Observe that the
y-variables appear only in the linear forms ℓx where x is a bad variable. Let [ℓx]y be ℓx

restricted to the y-variables. Loosely speaking, we make the bad terms and the top quadratic
form of f variable disjoint in three (implicit) steps: “access” the linear forms [ℓx]y, map them
to distinct y-variables, and then remove “external variables” from each of the terms. Let us
elaborate on these steps by focusing on the bad terms.

Mapping “garbled” skewed paths back to monomials to access [ℓx]y: How do we access [ℓx]y,
where x is a variable in a quadratic form along a skewed path or a dangling variable along a
skewed path? The answer lies in the fact that a skewed path is identified with a unique
“marker” monomial µ. This monomial can potentially help us access [ℓx]y, where x a
quadratic form or a dangling variable along the skewed path µ. But the problem is that the
transformation BA0 may have “garbled” the variables of µ. If for every variable z of µ, we
find ℓz ∈ F[z], then we can map ℓz to a distinct z-variable and get back a marker monomial
– this works as z is a good variable. By Claim 5.7, such an ℓz is a factor of det(H f )(A0x). We
can factorize det(H f )(A0x) and try to find ℓz, but there is a problem: det(H f )(A0x) might
have other spurious linear factors that are not ℓz for any z ∈ x. Fortunately, we can distin-
guish ℓz from spurious linear factors of det(H f )(A0x) by examining the number of essential
variables of f (A0x) modulo affine forms; this crucial result is proved in Claim 5.1. So, we
can safely assume without any loss of generality that ℓz = z for every variable z in µ.

Processing quadratic forms along skewed paths and the top quadratic form: We focus on a quadratic
form q = y1y2 + . . .+ yl−1yl along a skewed path µ, and let q̃ = [ℓy1 ]y[ℓy2 ]y + . . .+[ℓyl−1 ]y[ℓyl ]y.
We can access q̃ as follows: Treat f (BA0x) as a polynomial in y over F[z] and extract out
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black-box access to the homogeneous degree-2 component in y; call it q̂. As the degree-
2 monomials in y are contributed only by the quadratic forms on skewed paths and the
quadratic form of C, and there are at most n different skewed paths, q̂ is n3-sparse as a
polynomial in F[y, z]. We find the dense representation of q̂ using the sparse polynomial
interpolation algorithm of [KS01]. Observe that the coefficient of µ in q̂ (as a polynomial in
z over F[y]) is q̃. Once we collect all the q̃ for quadratic forms along skewed paths, we map
them simultaneously to quadratic SP polynomials in distinct y-variables using Claim 5.2
and the QFE oracle. The existence of such a map A1 is ensured by Claim 5.9 which shows
that the variables of a quadratic form are either all truly essential for det(HC) or they are
absent from det(HC). We then argue (in Claim 5.15) that q(BA0A1x) can be expressed as
(y1 + h1)(y2 + h2) + · · ·+ (yl−1 + hl−1)(yl + hl) for some (hitherto unknown) linear forms
h1, . . . , hl ∈ F[z]. A similar process for µ = 1 takes care of the top quadratic form of C. See
Step 2.1 in Section 5.5.1 and Section 5.7 for a more detailed and pictorial overview of this
step.

Handling dangling variables on skewed paths: Now let ℓx := BA0A1 ◦ x and u be the y-
variables that have not been ‘used up’ by the QFE oracle in the previous step. Consider
a dangling variable x along a skewed path µ. We can access [ℓx]u using µ, just as we ac-
cessed q̃ before, by treating f (BA0A1x) as a polynomial in u over F[x \ u] and extracting out
the homogeneous degree-1 component in u. However, unlike the variables of a quadratic
form along a skewed path, a dangling variable x might not enjoy the property that it is either
truly essential for det(HC) or it is absent from det(HC). So it may not be possible to map
all the linear forms [ℓx]u for dangling variables along skewed paths to distinct u-variables.
This makes the argument here a bit subtle: We show, using Observation 5.17, Claim 5.17 and
Observation 5.19, that it is sufficient to work with any basis B of the vector space spanned by
the linear forms [ℓx]u as x varies over dangling variables along skewed paths. Mapping the
elements of B to distinct u-variables, using a transformation A2, automatically ‘takes care
of’ the linear forms outside B. At a high level, this strategy works because the elements of
B essentially corresponds to a set of redundant variables of det(HC). See Step 2.2 in Section
5.5.1 and Section 5.7 for a more detailed and pictorial overview of this step.

Removing external variables from the terms: Let ℓx := BA0A1A2 ◦ x for x ∈ x. For a bad
term Tk, let yk be the union of the y-variables appearing in all ℓx, where x is a variable of a
quadratic form along a skewed path in Tk, and the u-variables present in all ℓx, where x is
a dangling variable along a skewed path in Tk. The variables not in zk ⊎ yk are the external
variables of Tk. Observe that the external variables appear in ℓx only if x is a dangling variable
along a skewed path in Tk or a variable of a quadratic form along a skewed path in Tk. In
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this step, we intend to remove these external variables and complete the process of making
the bad terms and the top quadratic form of f variable disjoint. At a high level, this is done
by examining some carefully chosen first-order partials of f (BA0A1A2x) and engaging the
skewed paths again to access the external variables. The proof of correctness of this step
involves a few “disambiguation arguments” (see Observations 5.20, 5.21 and 5.22) which
ensure that relevant monomials are generated “uniquely”. See Step 2.3 in Section 5.5.1 and
Section 5.7 for a more detailed and pictorial overview of this step.

Handling the top dangling variable. If det(HC) = 0 (which, by Lemma 5.1, happens if and
only if C has a top dangling variable) then we can reduce to the non-zero Hessian determi-
nant case as follows: Apply a random transformation on the variable set x = {x1, . . . , xn}
and consider the Hessian of the resulting f with respect to only x1, . . . , xn−1. Intuitively,
the random transformation lets us assume two facts – one, the top dangling variable of C
is xn, i.e., C = C1(x1, . . . , xn−1) + xn, where C1 is a canonical ROF with no top dangling
variable; two, f = C1(Bx) + ℓ(x) for some B ∈ GL(n, F) such that B ◦ xn = xn and ℓ

is an affine form. Now observe that the determinant of the Hessian of f with respect to
x1, . . . , xn−1 is an F-multiple of det(HC1

)(Bx), which is non-zero as C1 has no top dangling
variable. We can then remove the redundant variable xn from det(HC1

)(Bx) and hope to find
a D ∈ GL(n, F) such that T1(BDx), . . . , Ts−1(BDx) are variable disjoint, where T1, . . . , Ts−1

are the terms of C1. Once D is obtained, we are left with finding ℓ(Dx) from black-box access
to f (Dx) = C1(BDx) + ℓ(Dx). Indeed, the knowledge of D and ℓ(Dx) is sufficient to con-
struct an A ∈ GL(n, F) such that T1(BAx), . . . , Ts(BAx) are variable disjoint (here, Ts = xn).
See Step 3 in Section 5.5.1 for a more detailed overview on how to find ℓ(Dx) by exploiting
the Hessian determinant again! A special case of this problem when ℓ is a constant also
arises in the resolution of the final hurdle (stated below). We give the proof idea for this
special case next.

B. Obtaining efficient black-box access to the terms

The above process finds an A ∈ GL(n, F) such that the terms T1(BAx), . . . , Ts(BAx) are
variable disjoint. Let ri(xi) := Ti(BAx).

• Hurdle 3: How do we get efficient black-box access to r1(x1), . . . , rs(xs)?

In other words, how do we simulate a black-box query to ri(xi) using only one query to the
black-box for the input polynomial f . It is important to use only one query to f , as otherwise
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the time complexity of the recursive algorithm will become exponential in the product-depth
of the ROF. The product depth of an n-variate ROF can be as high as Ω(n). We address this
issue as follows.

At first, we examine the second-order derivatives of f to learn the variable sets x1, . . . , xs

(see Claim 5.23). Then, we set the variables in x1, . . . , xi−1, xi+1, . . . , xs to arbitrary field con-
stants to reduce the problem to securing black-box access to ri(xi) from black-box access to
gi := ri(xi) + c, where c ∈ F is unknown. If ri is quadratic or linear, then we simply interpo-
late gi and know ri. Otherwise, we can still hope to learn c as it is the unique constant such
that gi − c is reducible 1. The uniqueness of c follows from the irreducibility of a +-rooted
ROF (see Fact 2.1). But how do we learn c efficiently? The Hessian determinant comes in
handy again.

Finding c. Suppose ri(xi) = ri,1(xi) · . . . · ri,mi(xi), where ri,1, . . . , ri,mi are the irreducible
factors of ri, and deg(ri) ≥ 3. It follows from Corollary 5.1 that det(Hri), which equals
det(Hgi), has as one of its irreducible factors an F-multiple of ri,j for some j ∈ [mi]. The
efficient black-box polynomial factorization algorithm [KT90] gives us black-box access to
all the irreducible factors of det(Hgi). Now suppose we pick the irreducible factor α · ri,j,
where α ∈ F×, from among the irreducible factors of det(Hgi). Define a random sub-
stitution map π on the variables of xi as follows: π(x) := cxt, where cx ∈r F and t is
a fresh variable, for every x ∈ xi. Interpolate the univariate polynomials π(gi)(t) and
π(α · ri,j)(t) that are non-constant with high probability, if |F| is sufficiently large. The de-
grees of π(gi) and π(α · ri,j) are upper bounded by n. To find c, we set up and solve a linear
system via the equation π(gi) = (an−1tn−1 + . . . + a0) · π(α · ri,j) + c0, 2 by pretending that
an−1, . . . , a0 and c0 are variables. The system has a solution that is obtained by choosing
an−1tn−1 + . . . + a0 = π(α−1 ·∏l∈[mi]\{j} ri,l) and c0 = c. This solution is unique. To see this,
suppose an−1,1, . . . , a0,1, c0,1 and an−1,2, . . . , a0,2, c0,2 are two different solutions. Then,

((an−1,1 − an−1,2)tn−1 + . . . + (a0,1 − a0,2)) · π(α · ri,j) + (c0,1 − c0,2) = 0,

indicating that π(α · ri,j) divides (c0,1 − c0,2). But this is not possible as π(α · ri,j) is not a
constant. So, we solve the above system and declare the solution for c0 as c. This proce-
dure works if we pick an irreducible factor of det(Hgi) that is an F-multiple of ri,j for some

1More generally, this is true if ri is a multilinear polynomial having at least two non-trivial factors. But, c
need not be unique if ri is not multilinear. For example, if ri = x2, then gi − c is reducible for both c = 0 and
c = 1.

2As deg(α · ri,j) ≥ 1, the degree of α−1 ·∏l∈[mi ]\{j} ri,l is at most n− 1.
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j ∈ [mi]. But what if we pick a “wrong” factor? Indeed, the Hessian determinant can have
other “spurious” factors. The point is that irrespective of what factor we choose, we can run
the above procedure and find some c0. If no c0 is found, then we know immediately that a
wrong factor is chosen. Otherwise, we check if gi − c0 is reducible, and if so, then take c0

as c. The uniqueness of c implies that we always find the right c. Once we know c, we can
simulate a black-box query to ri using only one query to f .

Preparing for recursion. From efficient black-box access to ri, we need to gain efficient
black-box access to the irreducible factors of ri as the algorithm essentially recurses on these
factors. This is done as follows: Use the efficient black-box polynomial factorization algo-
rithm [KT90] to get (not necessarily efficient) black-box access to αj · ri,j for every j ∈ [mi],
where αj ∈ F× and α1 · α2 · . . . · αmi = 1. Claim 5.2 then allows us to find a Ci ∈ GL(|xi|, F)

such that α1 · ri,1(Cixi), . . . , αmi · ri,mi(Cixi) are variable disjoint. Notice that we can easily get
efficient black-box access to ri(Cixi) from the efficient black-box for ri. It is now sufficient
to create an efficient black-box for αj · ri,j(Cixi) from the black-box for ri(Cixi). Substitute
the variables in αl · ri,l(Cixi) by random field constants for every l ∈ [mi]\{j}; denote this
substitution map by ρ. Let βl = ρ(αl · ri,l(Cixi)). Observe that we know βl from the already
acquired (possibly inefficient) black-box for αl · ri,l(Cixi). Also, βl ̸= 0 with high probability.
Then, the relation αj · ri,j(Cixi) = ρ(ri(Cixi)) ·∏l∈[mi]\{j} β−1

l produces an efficient black-box
for αj · ri,j(Cixi). The algorithm recurses on αj · ri,j(Cixi) with this black-box.

To summarize, irrespective of the level of the recursion, a required black-box can be ob-
tained as an expression α f (Cx+ c) + β, where C ∈ M(n, F), c ∈ Fn, and α, β ∈ F are known.
Thus, the black-box query time is independent of the recursion depth. Moreover, the time
taken to prepare a black-box for a subsequent level of the recursion (i.e., to make ready the
knowledge of a relevant affine projection C, c and appropriate constants α, β) is independent
of the recursion depth.

5.3 Preliminaries
In this section, we give a detailed list of notations used in this and the next chapter and men-
tion a few structural and algorithmic results crucially used in the equivalence test. These
preliminary results are part of a joint work [GST23]. Some of the preliminary results men-
tioned here are also required for equivalence test for regular ROFs which can be found in
[Gup22]. As such, they also appear in [Gup22].

Recall the definition of canonical ROF from Section 2.23. The following tables lists the
notations used in this and the next chapter.
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Notations Usage
C, ∆ An ROF and its product depth, respectively
T, Q (with or without subscripts) ×-rooted and +-rooted sub-ROFs, respectively
A, B, C, P, R, S Matrices over F

U, W Spaces spanned by the first order partials of polynomials
E, F, I, J, N, V Sets
f , g, h, p, q, ℓ, r Polynomials
t, u, x, y, z Variables
x, y, z, u Sets of variables
α, β, γ, c Elements of F

d, e, i, j, k, l, m, n, s Natural numbers
a, b, d, α Vectors over F

Table 5.1: Notations

5.3.1 Structural preliminaries

Observation 5.1 (Orbit of a canonical ROF) Let C be an ROF over F. Then, there is a canonical
ROF C′ over F such that C′ ∈ orb(C). If C is additive-constant-free, then so is C′.

Proof: From the definition of a formula, the first three properties of Definition 2.23 are
satisfied by C. We now “push” the labels on the edges of C down to the leaves so that the
variables labelling the leaves are scaled. Then, we apply an invertible diagonal transforma-
tion S to x to rescale the variables appropriately. This ensures that property 4 is satisfied.
To satisfy property 5, observe that if a + gate has variable children xi1 , . . . , xim and constant
children γ1, . . . , γk, then we can replace all the constants by γ = γ1 + . . . + γk, and apply an
invertible affine transformation that maps xi1 to xi1 − (xi2 + · · ·+ xim + γ) and every other
variable to itself.

Suppose u is a + gate that has among its children a variable x and a × gate v such that
v has two children – a variable y and a + gate v′. Suppose v′ has a constant child γ. The
polynomial computed at v is of the form x + y(T + γ) + other terms = (x + γy) + yT +

other terms, where T is x and y free. Now, if we apply an invertible linear transformation
that maps x to x − γy and every other variable to itself, then property 6 is satisfied with
respect to nodes u and v. Finally, it is easy to see that this canonization process does not
introduce any extra additive-constant. 2

Observation 5.2 (Essential variables of a canonical ROF) The set of variables labelling the non-
constant leaves of a canonical ROF C is the set of essential variables of C, i.e., C has no redundant
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variable.

Proof: Let var(C) = x. Over any field, Ness(C) ≥ dim
〈

∂C
∂x : x ∈ x

〉
. So it is sufficient to

show that dim
〈

∂C
∂x : x ∈ x

〉
= |x|. We will prove this by induction on the product depth

∆ of C. In the base case, ∆ = 0, and C computes a polynomial x + γ, for γ ∈ F; so,
dim

〈
∂C
∂x : x ∈ x

〉
= |x| = 1. Suppose that the induction hypothesis holds for canonical

ROFs of product depth ∆− 1 or less.
Let C = T1 + . . . + Ts + γ be a canonical ROF of product depth ∆, where each Ti is a ×-

rooted ROF having at least two non-constant, variable disjoint factors. Consider an F-linear
dependence ∑x∈x αx

∂C
∂x = 0, where αx ∈ F. Then, ∑x∈var(Ti)

αx
∂Ti
∂x ∈ F for every i ∈ [s].

This is because Ti and Tj are variable disjoint for i ̸= j. But ∑x∈var(Ti)
αx

∂Ti
∂x ∈ F implies

∑x∈var(Ti)
αx

∂Ti
∂x = 0, as Ti is a product of at least two non-constant factors and a common

root of these variable disjoint factors is also a root of ∑x∈var(Ti)
αx

∂Ti
∂x . Now suppose αx ̸= 0

for some x ∈ var(Ti) and i ∈ [s]. Let Ti = Q1 · · ·Qm, where Q1, . . . , Qm are variable disjoint
+-rooted canonical ROFs of product depth at most ∆ − 1. Suppose that the x mentioned
above is in var(Ql). By the induction hypothesis, ∑y∈var(Ql)

αy
∂Ql
∂y ̸= 0 unless every αy = 0.

So the dependence ∑x∈var(Ti)
αx

∂Ti
∂x = 0 implies Ql divides ∑y∈var(Ql)

αy
∂Ql
∂y ̸= 0, which is

not possible as the latter has a smaller degree. Therefore, αx = 0 for every x ∈ x, and so,
dim

〈
∂C
∂x : x ∈ x

〉
= |x|. 2

If C is not canonical, then all the variables of C need not be essential. For e.g., x1 + · · ·+ xn

is an ROF with only one essential variable. The above observations imply the following:

Observation 5.3 Let C be an ROF, C′ a canonical ROF, and C′ ∈ orb(C). Then, Ness(C) =

|var(C′)|.

We now state an important property of a canonical ROF which will be used in the equiv-
alence test.

Claim 5.1 (Canonical ROF modulo an affine form) Let n ∈ N, char(F) ̸= 2, |F| > n, C be
a +-rooted n-variate canonical ROF, and ℓ an affine form which is not a constant multiple of some
variable. Then, Ness(Cℓ) ≥ n− 2.

Proof: Let x = {x1, . . . , xn} be var(C), where C = T1 + · · ·+ Ts + γ is a canonical ROF. Let
ℓ = ∑x∈x αxx + α, where either |var(ℓ)| ≥ 2, α ∈ F and for every x ∈ x, αx ∈ F or |var(ℓ)| =
1 and α ∈ F×. Let x′ = x \ {y1}, ℓ1 = ∑x∈x′ −α′xx− α′, where for every x ∈ x′, α′x = αxα−1

y1

and α′ = αα−1
y1

. Notice that ℓ1 ̸= 0. Then, we know that Cℓ = C(y1 = ℓ1, x′). As C is
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canonical, there exists at most one l ∈ [s], such that Tl is a variable. If such an l exists
and var(Tl) ∩ var(ℓ) ̸= ∅ then we assume without loss of generality that l = 1. We also
assume that y1 ∈ var(T1). Then, note that Cℓ = T′1 + T2 + · · ·+ Ts + γ, where T′1 := T1(y1 =

ℓ1, var(T1) \ {y1}). For l ∈ [2, s]1, let x′l = var(Tl) and x′1 = var(T1) \ {y1}. We first prove
the following two useful observations.

Observation 5.4 U :=
〈

∂C
∂x : x ∈ var(Tl), l ∈ [s], |var(Tl)| ≥ 2

〉
does not contain a non-zero

constant.

Proof: Suppose there exists an α ∈ U ∩ F \ {0}. Let C′ = ∑l∈[s],|var(Tl)|≥2 Tl + αy, where
y is a fresh variable. Then, C′ is in the orbit of the canonical ROF ∑l∈[s],|var(Tl)|≥2 Tl + y
and it follows from Fact 2.8 and Observation 5.2 that Ness(C

′) = |var(C′)|. Thus, W :={
∂C′
∂x : x ∈ var(C′)

}
is F-linearly independent. Note that U = ⟨W⟩ but dim U < |W|; a

contradiction. So U ∩F \ {0} = ∅. 2

Observation 5.5 If |var(T1)| ≤ 2, then Ness (Cℓ) ≥ n− 2.

Proof: There are two cases, T1 = y1 and T1 = y1y for some y ∈ x′. For both cases, it follows
from Observation 5.2 that

{
∂Tl
∂x : l ∈ [2, s], x ∈ var(Tl)

}
⊎
{

∂T1
∂y1

}
is F-linearly independent.

Now, for any l ∈ [2, s] and x ∈ var(Tl),
∂Cℓ
∂x = ∂Tl

∂x − α′x
∂T1
∂y1

. Thus,
{

∂Cℓ
∂x : x ∈ var(Tl), l ∈ [2, s]

}
is F-linearly independent. Hence, from Fact 2.5, when T1 = y1, Ness (Cℓ) ≥ n− 1, and when
T1 = y1y, Ness (Cℓ) ≥ n− 2. 2 As C is multilinear, for every x ∈ x, the individual degree of
x in C is at most 2. Since char(F) ̸= 2, for every l ∈ [s], x ∈ x′l,

∂Cℓ
∂x ̸= 0. For l ∈ [s], x ∈ x′l, let

βl,x ∈ F, such that ∑l∈[s] ∑x∈x′l
βl,x

∂Cℓ
∂x = 0, which implies

∑
l∈[2,s]

∑
x∈x′l

βl,x

(
∂Tl
∂x

+
∂T′1
∂x

)
+ ∑

x∈x′1

β1,x
∂T′1
∂x

= 0. (5.1)

Let I = {l ∈ [s] : |var(Tl)| = 1} and J = [2, s] \ I. As C is canonical, |I| ≤ 1. If l ∈ I, we call
Tl as z. Now, we prove the claim by induction on the product-depth ∆ of C.

Base case: ∆ = 1. Then, Cℓ = ℓ1T′′1 + T2 + · · · + Ts + γ, where for every l ∈ [2, s], Tl is a
multilinear monomial and T′′1 = ∏x∈x′1

x. Because of Observation 5.5, we can assume that
z /∈ var(ℓ1). Thus Equation (5.1) becomes

∑
l∈J

∑
x∈x′l

βl,x

(
−α′xT′′1 +

Tl
x

)
+ ∑

l∈I
βl,z + ∑

x∈x′1

β1,x

(
−α′xT′′1 + ℓ1

T′′1
x

)
= 0. (5.2)

1For m < n ∈N, [m, n] := {m, . . . , n}
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If |x′1| ≤ 1, we immediately have from Observation 5.5 that Ness(Cℓ) ≥ n− 2. So suppose
that |x′1| ≥ 2. Then for every l ∈ J, x ∈ x′l, the coefficient of Tl

x in the above equation is

βl,x, which implies βl,x = 0. Also, as T′′1 and T′′1
x are non-constant monomials for every

x ∈ x′1 and as |I| ≤ 1, βl,z = 0. If var(ℓ1) ∩ var(T′1) = ∅, then Equation (5.2) becomes

∑x∈x′1
β1,x · ℓ1

T′′1
x = 0 which implies ∑x∈x′1

β1,x ·
T′′1
x = 0. Then from Observation 5.2, β1,x = 0

for all x ∈ x′1 and Ness(Cℓ) = n− 1. Otherwise pick any y ∈ var(ℓ1) ∩ var(T′′1 ) arbitrarily.

Observe that the polynomial multiplied by y2 in Equation (5.2) is −α′y ∑x∈x′1\{y} β1,x
T′′1
y·x . As

T′′1
y is a canonical ROF, it follows from Observation 5.2 that β1,x = 0 for all x ∈ x \ y. Then,

from Equation (5.2) we have β1,y

(
−α′yT′′1 + ℓ1

T′′1
y

)
= 0. As the coefficient of T′′ in this poly-

nomial is −2α′yβ1,y, and char(F) ̸= 2, β1,y = 0. Hence, again Ness(Cℓ) = n− 1. This proves
the base case.

Induction step: Suppose ∆ > 1 and the claim holds for all canonical ROFs of product-
depth at most ∆ − 1. Let T1 = Q1 · · ·Qm, where for every i ∈ [m], Qi is either a variable
or a +-rooted ROF. As in the base case, if |x′1| ≤ 1 or z ∈ var(ℓ1), then there is nothing to
prove. So, suppose that |x′1| ≥ 2 and z /∈ var(ℓ1). We assume without loss of generality
that y1 ∈ var(Q1). It follows from the definition of Cℓ that T′1 = Q′1Q2 · · ·Qm, where Q′1 =

Q1(y1 = ℓ1, var(Q1) \ {y1}). For i ∈ [2, m], let Q̃i = Q′1 ∏j∈[2,m]\{i} Qj and Q̃1 = Q2 · · ·Qm.
Let x′1,1 = var(Q1) \ {y1} and for i ∈ [2, m], x′1,i = var(Qi). For i ∈ [m], x ∈ x′1,i, rename the

coefficient of ∂T′1
∂x in Equation (5.1) as ci,x. Then, Equation (5.1) becomes

∑
l∈J,x∈x′l

βl,x
∂Tl
∂x

+ ∑
l∈I

βl,z + Q̃1

 ∑
l∈J,x∈x′l

βl,x
∂Q′1
∂x

+ ∑
i∈[m],x∈x′1,i

ci,x
∂Q′1
∂x


+ ∑

i∈[2,m]

Q̃i

 ∑
x∈x′1,i

ci,x
∂Qi

∂x

 = 0. (5.3)

Observation 5.6 If T1 ̸= y1Q2, then for every l ∈ J, x ∈ x′l, βl,x = 0.

Proof: If m ≥ 3 then we substitute roots of Q2 and Q3 in Equation (5.3). As |F| > n and Q2

and Q3 are variable disjoint multilinear polynomials, roots of Q2 and Q3 exist over F. Then,
Observation 5.2 implies for l ∈ J, x ∈ x′l, βl,x = 0 and as |I| ≤ 1, βl,z = 0.

Now, suppose m = 2. Let the polynomial multiplied with Q̃2 = Q′1 in Equation (5.3) be
q1. We plug in a root a of Q2 in Equation (5.3). Let h′ = ∑l∈J,x∈x′l

βl,x
∂Tl
∂x and h = h′+∑l∈I βl,z.
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Then h = h(x′1,2 = a, x′ \ x′1,2), and Equation (5.3) implies that h = −q1(a)Q′1(x
′
1,2 =

a, x′ \ x′1,2). Note that q1(a) ∈ F. If either q1(a) = 0 or var(ℓ1)∩
(
⊎l∈Jx′l

)
= ∅, then Observa-

tion 5.4 implies that h′ = 0. Otherwise, deg(Q′1(x
′
1,2 = a, x′ \ x′1,2)) = deg(Q′1). Also, in this

case, deg(Q′1) = deg(Q1). As Q1 ̸= y1, deg(Q1) ≥ 2. Hence, deg(Q′1(x
′
1,2 = a, x′ \ x′1,2)) ≥

2. Then there exists a monomial p in Q′1(x
′
1,2 = a, x′ \ x′1,2), such that deg(p) ≥ 2 and

var(p) ∩ var(Q1) ̸= ∅. Clearly, p is not in h, and as h = −q1(a)Q′1(x
′
1,2 = a, x′ \ x′1,2), we get

h = 0. This along with Observation 5.4 implies h′ = 0. Thus from Observation 5.2, βl,x = 0
for every l ∈ J, x ∈ x′l. 2

It follows from the above observation that when T1 ̸= y1Q2, Equation (5.3) becomes

∑
l∈I

βl,z + Q̃1

 ∑
i∈[m],x∈x′1,i

ci,x
∂Q′1
∂x

+ ∑
i∈[2,m]

Q̃i

 ∑
x∈x′1,i

ci,x
∂Qi

∂x

 = 0. (5.4)

Now, we consider all the possible cases of T′1. Recall |x′1| ≥ 2, which implies that if m = 2
and Q′1 is a linear polynomial then deg(Q2) ≥ 2.

Case 1: m = 2, deg(Q1) ≥ 2, and Q2 = y for some y ∈ x′. Then, Equation (5.4) looks like

∑
l∈I

βl,z + y

 ∑
x∈x′1,1

c1,x
∂Q′1
∂x

+ c2,y
∂Q′1
∂y

+ Q′1c2,y = 0. (5.5)

If y /∈ var(ℓ1), we put y = 0 in Equation (5.5). As Q′1(y = 0, x′ \ {y}) = Q′1, c2,y = 0.

As |I| ≤ 1, βl,z = 0. Thus we are left with ∑x∈x′1,1
c1,x

∂Q′1
∂x = 0. Let a ∈ F

|x′\x′1,1| be a
point such that ℓ1(x′ \ x′1,1 = a, x′1,1) ̸= 0; such a point exists. Notice that Ness(Q′1(x

′ \
x′1,1 = a, x′1,1)) ≤ Ness(Q′1). Because Q1 is a product-depth ∆ − 1 ROF and ℓ1(x′ \ x′1,1 =

a, x′1,1) ̸= 0, it follows from the induction hypothesis that Ness(Q′1(x
′ \ x′1,1 = a, x′1,1)) ≥

|var(Q1)| − 2. This means that at least |var(Q1)| − 2 many elements in
{

∂Q′1
∂x : x ∈ x′1,1

}
are

F-linearly independent. Hence, at least n− 2 many elements in
{

∂Cℓ
∂x : x ∈ x′

}
are F-linearly

independent, and Ness(Cℓ) ≥ n− 2.
If y ∈ var(ℓ1), Q′1 = yQ + q for some Q ∈ F[x′1,1] and q ∈ F[x′ \ {y}]. If q is not a

constant, just as before, we set y = 0 in Equation (5.5). This gives us c2,y = βl,z = 0. If

q ∈ F, note that x′1,1 ⊆ var(Q), and hence y2 divides y · ∂Q′1
∂x for all x ∈ x′1,1. This means

that ∑l∈I βl,z + c2,y

(
y ∂Q′1

∂y + Q′1
)
= 0. Now y ∂Q′1

∂y = yQ. Thus, y ∂Q′1
∂y + Q′1 = 2c2,yyQ + q. As
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char(F) ≥ 2, c2,y = 0, and thus βl,z = 0. Then, using the induction hypothesis as before, we
get Ness(Cℓ) ≥ n− 2.

Case 2: m = 2, Q1 = y1, and deg(Q2) ≥ 2. If y2 ∈ var(ℓ1) ∩ x′1,2 then we redo this entire
analysis by considering Cℓ = C(y2 = ℓ2, x \ {y2}), where ℓ2 := −α−1

y2
(ℓ− αy2y2). Definition

2.30 and Observation 2.11 ensure that Ness(Cℓ) is not affected by making this change to the
definition of Cℓ. Then, this case is same as Case 1 and we get the desired result. Otherwise,
Equation (5.3) looks like

∑
l∈J,x∈x′l

βl,x
∂Tl
∂x

+ ∑
l∈I

βl,z + Q2

 ∑
l∈J,x∈x′l

−βl,xα′x

+ ℓ1

 ∑
x∈x′1,2

c2,x
∂Q2

∂x

 = 0.

If Q2 has a dangling variable connected to its top + gate, let it be y2. We shall consider the
above equation without c2,y

∂Q2
∂y2

. Observe that any monomial of the highest degree in Q2

is not present in any other summand in the above equation. Hence ∑l∈J,x∈x′l
−βl,xα′x = 0.

Also, for every x ∈ x′1,2 \ {y2}, ∂Q2
∂x ∈ F[x′1,2]. Hence, ∑x∈x′1,2\{y2} c2,x

∂Q2
∂x = c for a c ∈ F. It

follows from Observation 5.4 that c = 0, and hence from Observation 5.2 that c2,x = 0 for
all x ∈ x′1,2 \ {y2}. Observation 5.4 and the fact that |I| ≤ 1 imply that βl,z = 0. Then, from

Observation 5.2 βl,x = 0 for all l ∈ J and x ∈ x′l. Hence,
{

∂Cℓ
∂x : x ∈ x′ \ {y2}

}
is F-linearly

independent and Ness(Cℓ) ≥ n− 2.

Case 3: m = 2, deg(Q1) ≥ 2, and deg(Q2) ≥ 2. In this case, Equation (5.4) becomes

∑
l∈I

βl,z + Q2

 ∑
i∈[2],x∈x′1,i

ci,x
∂Q′1
∂x

+ Q′1

 ∑
x∈x′1,2

c2,x
∂Q2

∂x

 = 0.

Let the polynomials multiplied by Q′1 and Q2 in the above equation be q1 and q2, respec-
tively. Let v be the parent of y1 in C and path(v) be the path from the root of C to v. If v
is the top-most + gate then substitute a root a of Q2 in the above equation; q1(a) ∈ F. As
deg(Q′1) ≥ 2 and |I| ≤ 1, we get βl,z = 0. Otherwise, there exists a× gate v′ on path(v), such
that Qv′,1 and Qv′,2 are children of v′, where Qv′,1 lies on path(v) and Qv′,2 does not. Clearly,
ℓ1 is present in Qv′,1, and Qv′,2 is a +-rooted sub-ROF or a variable of Q1. We first substitute
a root a of Qv′,2 in the above equation and then plug in a root of Q′1(x

′
1,2 = a, x′ \ x′1,2). In this

process, note that x′1,2 ∪ var(ℓ1) \ x′1,1 is untouched. As |I| ≤ 1, βl,z = 0. Further, since Q2 is
irreducible (Fact 2.1), we get that Q2 either divides Q′1 or q1. As deg(Q2) ≥ 2, Q2 contains a

104



monomial not present in Q′1 and Q2 does not divide Q′1. As deg(Q2) > deg(q1), Q2 dividing
q1 implies that q1 = 0. Thus, using Observation 5.2 we get that c2,x = 0 for all x ∈ x′2,x. Then,
using the induction hypothesis like in Case 1, we get Ness(Cℓ) ≥ n− 2.

Case 4: m ≥ 3. By putting the roots of Q2 and Q3 in Equation (5.4), we get βl,z = 0. For
i ∈ [2, m], let qi be the polynomial multiplied with Q̃i in Equation (5.4). Then for every
i ∈ [2, m], Qi divides Q̃iqi. As Qi is irreducible (Fact 2.1), Qi must divide qi or Q̃i. Sup-
pose there exists an i such that Qi divides Q̃i. This happens if and only if Qi = x and
Q′1 = ℓ1 = −α′xx, where x ∈ x′. Note that such an i is unique, say i = 2. Now, for every
j ∈ [3, m], Qj must divide qj. As deg(Qj) > deg(qj), qj = 0. Then, Equation (5.4) becomes
c2,x(−αxQ̃1 + Q̃2) = −2c2,xαx ·∏j∈[3,m] Qj = 0. As char(F) ̸= 2 and α′x ̸= 0, ci,x = 0. If such
an i does not exist, then qj = 0 for all j ∈ [2, m]. In either case, using Observation 5.2 we get,

cj,x = 0 for every j ∈ [2, m], x ∈ x′1,j. Then, Equation (5.4) becomes ∑x∈x′1,1
c1,x

∂Q′1
∂x = 0. Using

the induction hypothesis like in Case 1, we get Ness(Cℓ) ≥ n− 2. 2

5.3.2 Algorithmic preliminaries

Fact 5.1 (Black-box for partials) Let d ∈ N, char(F) = 0 or char(F) > d, and g ∈ F[x] be a
degree d polynomial given as a black-box. Then, for x ∈ x, a black-box for ∂g

∂x can be computed in
poly(|x|, d) time.

The above fact is well-known; a proof of it can be found in Section 2.2 of [KNST17].

Fact 5.2 (Black-box polynomial factorization [KT90]) Let d ∈ N, char(F) = 0 or char(F) >
d, and |F| ≥ d6. There is a randomized algorithm, with oracle access to univariate polynomial
factorization over F, that takes input black-box access to a polynomial g ∈ F[x] of degree d and
outputs black-boxes for the irreducible factors of g in poly(|x|, d) time.

Remark. Since our model of computation allows univariate polynomial factorization, we will
assume that black-box polynomial factorization can be done in randomized polynomial-
time. This assumption is justified particularly for finite fields and Q [Ber70, LLL82].

Quadratic Form Equivalence. Known algorithms for quadratic form equivalence (QFE)
over C, R, Q, and finite fields are based on well-known classification of quadratic forms.
Refer to [Ser73, Lam04, Ara11] for a comprehensive discussion on this. We record the com-
plexity of QFE over these fields in the fact below. Over R and C, the model of computation
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is an arithmetic circuit with oracle access to a square root finding algorithm; every operation
in the circuit takes a unit time. Whereas, over Q and finite fields, the model of computation
is a Turing machine, i.e., the running time is measured as bit operations.

Fact 5.3 (Complexity of QFE) Let n be the number of variables in each of the two input quadratic
forms.

1. (Over C and R). There is a deterministic poly(n) time QFE algorithm.

2. (Over finite fields). Let char(F) ̸= 2. There is a randomized poly(n, log |F|) time QFE
algorithm.

3. (Over Q) [Wal13]. There is a deterministic poly(n, b) time QFE algorithm with oracle access
to integer factoring, where b is the bit length of the coefficients of the input quadratic forms.

Let g1, . . . , gm ∈ F[x] be pairwise variable disjoint. Recall that we use Ness(g) to denote
the number of essential variables in a polynomial g (see Definition 2.28). It can be shown that
Ness(g1 · · · gm) = Ness(g1) + . . . + Ness(gm) over any field. The following claim proves the
converse and, more importantly, provides an algorithm to find a transformation that makes
g1, . . . , gm pairwise variable disjoint.

Claim 5.2 (Making polynomials variable disjoint) Let d ∈ N, char(F) = 0 or > d, and
|F| ≥ 2|x|d. There is a randomized poly(|x|, d) time algorithm that takes input black-box access to
g1, . . . , gm ∈ F[x], where g1 · · · gm ∈ F[x]≤d and Ness(g1 · · · gm) = ∑i∈[m] Ness(gi), and outputs
an A ∈ GL(|x|, F) such that g1(Ax), . . . , gm(Ax) are pairwise variable disjoint and individually
free of redundant variables.

Proof:

Algorithm 1 Make-Polys-Var-Disjoint(g1, . . . , gm)
Input: Black-box access to g1, . . . gm ∈ F[x] such that Ness(g1 · · · gm) = Ness(g1) + · · · +
Ness(gm).
Output: An A ∈ GL(|x|, F) such that g1(Ax), . . . , gm(Ax) are pairwise variable disjoint and
individually free of redundant variables.

1: A← I|x|×|x|, y← ∅.
2: for i = 1, . . . , m do
3: Ai ← Remove-Redundant-Vars(gi(Ax), y) (see Claim 2.1); yi ← var(gi(AAix)).
4: A← AAi, y← y ∪ yi.
5: end for
6: Return A.

The correctness of the algorithm follows from the observations below.
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Observation 5.7 For every i ∈ [m], Ness(g1 · · · gi) = Ness(g1) + · · ·+ Ness(gi).

Proof: Follows from the fact that over any F, Ness(h1h2) ≤ Ness(h1) + Ness(h2), for h1, h2 ∈
F[x]. 2

Observation 5.8 Suppose x = y ⊎ z and h1(y), h2(z, y) ∈ F[x] such that Ness(h1) = |y| and
Ness(h1h2) = Ness(h1) + Ness(h2). Then, z contains a set of essential variables of h2.

Proof: Observe that dim
〈

∂h1h2
∂z : z ∈ z

〉
= dim

〈
∂h2
∂z : z ∈ z

〉
; let this dimension be l.

Then, by Fact 2.5, Ness(h1h2) ≤ l + |y|, which implies Ness(h2) ≤ l (as Ness(h1) = |y|
and Ness(h1h2) = Ness(h1) + Ness(h2)). On the other hand, dim

〈
∂h2
∂z : z ∈ z

〉
= l implies

Ness(h2) ≥ l. Hence, Ness(h2) = l, and so by Fact 2.5, z contains a set of essential variables of
h2. 2

This finishes the proof of Claim 5.2. 2

The next claim generalizes the above claim and is used crucially in the equivalence test
presented in Section 5.5.

Claim 5.3 (Making factors variable disjoint) Let d ∈ N, char(F) = 0 or > d, and |F| ≥
max

{
2|x|d, d6}. There is a randomized poly(|x|, d) time algorithm that takes input black-box access

to an f = g(Bx + d), where B ∈ GL(|x|, F), d ∈ F|x|, and g ∈ F[x]≤d such that g = g1 · · · gm

for pairwise variable disjoint g1, . . . , gm ∈ F[x]≤d, and does the following: (Here, B, d, g, and
g1, . . . , gm are unknown to the algorithm.)

1. It computes an A ∈ GL(|x|, F) such that g1(BAx + d), . . . , gm(BAx + d) are pairwise vari-
able disjoint and individually free of redundant variables. (g1, . . . , gm need not be irreducible.)

2. It computes a set V of pairwise disjoint subsets of x such that for every i ∈ [m], there exist
hi,1, . . . , hi,mi ∈ F[x] satisfying ∏l∈[mi]

hi,l = gi(Bx + d), and V = {var(hi,l(Ax)) : i ∈
[m], l ∈ [mi]}.

Proof:
The correctness of the algorithm follows from the following observation. Note that the num-
ber of essential variables of a polynomial can be computed efficiently using Claim 2.1. As we
are merging factors in Step 4, it is clear that the running time of the algorithm is poly(|x|, d).

Observation 5.9 At Step 4, hk and hl are factors of gi(Bx + d) for some i ∈ [m].
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Algorithm 2 Make-Factors-Var-Disjoint(g(Bx + d))
Input: Black-box access to a g(Bx + d) ∈ F[x]≤d, where g = g1 · · · gm for pairwise variable
disjoint g1, . . . , gm. (B ∈ GL(|x|, F), d ∈ F|x|, and g, g1, . . . , gm are unknown to the algo-
rithm.)
Output: An A ∈ GL(n, F) and a set V as stated in Claim 5.3.

1: Factorize g(Bx + d) using Fact 5.2. Let F ← {h1, . . . , he} be the set of (black-boxes for
the) irreducible factors of g(Bx + d).

2: while Ness(∏h∈F h) ̸= ∑h∈F Ness(h) do
3: For the first l ∈ [|F|] s.t. Ness(h1 · · · hl) ̸= ∑j∈[l] Ness(hj), find a k ∈ [l − 1]

s.t. Ness(h1 · · · hk−1 · hl) = ∑j∈[k−1] Ness(hj) + Ness(hl) but Ness(h1 · · · hk · hl) ̸=
∑j∈[k] Ness(hj) + Ness(hl).

4: F ← F ∪ {hk · hl}, F ← F \ {hk, hl}. Rename the elements of F as {h1, . . . , hs}.
5: end while
6: Let F = {h1, · · · , hs}. A← Make-Polys-Var-Disjoint(h1, . . . , hs) (see Algorithm 1).
7: V ← {var(h1(Ax)), . . . , var(hs(Ax))}.
8: Return A and V.

Proof: For contradiction, suppose hk is a factor of gi(Bx + d) and hl is a factor of gj(Bx + d)
for i ̸= j. Let p be the product of all h ∈ {h1, . . . , hk−1} such that h is a factor of gi(Bx + d),
q the product of all h ∈ {h1, . . . , hk−1} such that h is a factor of gj(Bx + d), and r the
product of all h ∈ {h1, . . . , hk−1} such that h is neither a factor of gi(Bx + d) nor a factor
of gj(Bx + d). Then, h1 · · · hk−1 = pqr. Observe that Ness(pqrhl) = Ness(p) + Ness(r) +
Ness(qhl), as g1, . . . , gm are pairwise variable disjoint. On the other hand, from the con-
dition Ness(h1 · · · hk−1 · hl) = Ness(h1) + . . . Ness(hk−1) + Ness(hl) in Step 3, Ness(pqrhl) =

Ness(p) + Ness(q) + Ness(r) + Ness(hl). Hence, Ness(qhl) = Ness(q) + Ness(hl). For a sim-
ilar reason, Ness(phk) = Ness(p) + Ness(hk). Now, Ness(pqrhkhl) = Ness(phk) + Ness(qhl) +

Ness(r), as g1, . . . , gm are variable disjoint. This implies, Ness(pqrhkhl) = Ness(p) + Ness(hk) +

Ness(q) + Ness(hl) + Ness(r) = ∑j∈[k] Ness(hj) + Ness(hl), which contradicts the condition
Ness(h1 · · · hk · hl) ̸= Ness(h1) + . . . Ness(hk) + Ness(hl) in Step 3. 2

This finishes the proof of Claim 5.3. 2

5.4 The Hessian of an ROF
In this section, we state some important properties of the Hessian determinant of a canoni-
cal ROF. These properties play a crucial role in the equivalence test given in Section 5.5 and
allow us to use the Hessian determinant to learn valuable information about the matrix map-
ping the input polynomial to a canonical ROF. We shall denote the Hessian of a polynomial
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g by Hg.

Theorem 5.1 (det(HC) ̸= 0) Let n ∈ N and char(F) = 0 or ≥ n. Let C = T1 + · · ·+ Ts + γ be
a canonical ROF over F, where for every k ∈ [s], Tk is a ×-rooted canonical ROF, |var(Tk)| ≤ n and
γ ∈ F. If for every k ∈ [s], Tk computes a polynomial of degree at least 2, then det(HC) ̸= 0.

Proof: Notice that ∂2C
∂x∂y = 0 if x ∈ var(Tk) and y ∈ var(Tk′) for k ̸= k′ ∈ [s]. Thus HC

is a block diagonal matrix with the diagonal blocks being HT1 , . . . , HTs . Hence, det(HC) =

∏k∈[s] det
(

HTk

)
. So to prove that det(HC) ̸= 0, it suffices to show that det

(
HTk

)
̸= 0 for all

k ∈ [s].

Lemma 5.1 Let n ∈ N, F be a field with char(F) = 0 or ≥ n, and x be a variable set with
|x| ≤ n. If T is a ×-rooted canonical ROF computing a polynomial in F[x] of degree at least 2, then
det(HT) ̸= 0.

Proof: We begin by developing an understanding of the entries of HT. To do this, we first
understand the derivatives of T. Let path(x) denote the path from the root of T to the leaf
labelled by x. For an x ∈ x, we define the product-depth of x, denoted by ∆x, to be the num-
ber of × gates on path(x). We say that x is a dangling variable if x is directly connected to
a + gate. For an x ∈ x, we expand T along path(x) as follows: let T = Qx,1,1 · · ·Qx,1,m1 ,
and x ∈ var (Qx,1,1). Let Qx,1,1 = Tx,1,1 + · · · + Tx,1,s1 + γ1, and x ∈ var(Tx,1,1). Let l
be any number less than ∆x − 1. After inductively defining Qx,i,j and Tx,i,j′ for all i ∈
[l], j ∈ [mi], and j′ ∈ [si], let Tx,l,1 = Qx,l+1,1 · · ·Qx,l+1,ml+1

, with x ∈ var(Qx,l+1,1), and
Qx,l+1,1 = Tx,l+1,1 + · · · + Tx,l+1,sl+1

+ γl+1, with x ∈ var(Tx,l+1,1). If x is not a dangling
variable, let Tx,∆x−1,1 = xQx,∆x,2 · · ·Qx,∆x,m∆x

(here Qx,∆x,1 = x). If x is a dangling vari-
able, let Tx,∆x−1,1 = Qx,∆x,1 · · ·Qx,∆x,m∆x

and Qx,∆x,1 = x + Tx,∆x,2 + · · ·+ Tx,∆x,s∆x
+ γ∆x (here

Tx,∆x,1 = x). Then, ∂T
∂x = ∏

i∈[∆x]
∏

2≤j≤mi

Qx,i,j.

The entries of HT. For x, y ∈ x, let [HT]x,y denote the (x, y)-th enrty of HT. Because T is
multilinear, [HT]x,x = 0 for all x ∈ x. For x ̸= y ∈ x, we define the first common ancestor of
x and y, denoted by fca(x, y), to be the first gate that appears on both the path from the leaf
labelled by x to the root of T as well as on the path from the leaf labelled by y to the root of
T. There are two cases: fca(x, y) is a + gate and fca(x, y) is a × gate. We now describe ∂2T

∂x∂y
in both these cases.

Observation 5.10 For all x ̸= y ∈ x such that fca(x, y) is a + gate, [HT]x,y = [HT]y,x = 0.
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Proof: Suppose that fca(x, y) = Qx,l,1 for some 1 ≤ l ≤ min
{

∆x, ∆y
}

, and y ∈ var(Tx,l,2).
∂2T
∂x∂y =

∂2Qx,l,1
∂x∂y · ∏

i∈[l]
∏

2≤j≤mi

Qx,i,j =
(

∂2Tx,l,1
∂x∂y +

∂2Tx,l,2
∂x∂y

)
· ∏

i∈[l]
∏

2≤j≤mi

Qx,i,j = 0. So, [HT]x,y =

[HT]y,x = 0. 2

The second case is when fca(x, y) is a × gate. Suppose that fca(x, y) = T or fca(x, y) =
Tx,l,1 for some 1 ≤ l < min

{
∆x, ∆y

}
. As we expanded T along path(x), we also expand it

along path(y) by defining Qy,i,1, . . . , Qy,i,m′i
for all i ∈ [∆y] and Ty,i,1, . . . , Ty,i,s′i

for all i ∈ [∆y]

if y is a dangling variable, and for all i ∈ [∆y − 1] otherwise. Notice that for all i ∈ [l],
every Qx,i,j = Qy,i,j and every Tx,i,j′ = Ty,i,j′ . Also, we can assume without loss of generality
that Qy,l+1,1 = Qx,l+1,2, Qx,l+1,1 = Qy,l+1,2, and Qx,l+1,j = Qy,l+1,j for all 3 ≤ j ≤ ml+1 =

m′l+1. Let Q̃x,y = ∏
i∈[l]

∏
2≤j≤mi

Qx,i,j · ∏
3≤j≤ml+1

Qx,l+1,j. Notice that Q̃x,y = ∏
i∈[l]

∏
2≤j≤m′i

Qy,i,j ·

∏
3≤j≤m′l+1

Qy,l+1,j. Then,

Observation 5.11 For all x ̸= y ∈ x such that fca(x, y) is a × gate,

[HT]x,y = [HT]y,x = Q̃x,y ∏
l+1<i≤∆x

∏
2≤j≤mi

Qx,i,j · ∏
l+1<i≤∆y

∏
2≤j≤m′i

Qy,i,j.

Proof:

∂2T
∂x∂y

= ∏
i∈[l]

∏
2≤j≤mi

Qx,i,j ·
∂2Qx,l,1

∂x∂y

= ∏
i∈[l]

∏
2≤j≤mi

Qx,i,j ·
∂2Tx,l,1

∂x∂y

= ∏
i∈[l]

∏
2≤j≤mi

Qx,i,j · ∏
3≤j≤ml+1

Qx,l+1,j ·
∂Qx,l+1,1

∂x
·

∂Qy,l+1,1

∂y

= Q̃x,y ∏
l+1<i≤∆x

∏
2≤j≤mi

Qx,i,j · ∏
l+1<i≤∆y

∏
2≤j≤m′i

Qy,i,j.

2

Having gained an understanding of the entries of HT, we proceed with the proof of the
lemma. We shall call a ×-rooted canonical ROF a (∆, m) ROF if it has product-depth ∆ and
has exactly m many product-depth ∆− 1 ROFs connected to the top-most × gate. Let H′T be
the matrix obtained from HT by taking x−1 common from the x-th row and the x-th column
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of HT. Observe that for all x, y ∈ x, [H′T]x,y = xy · [HT]x,y. Also, notice that it suffices to show
that det(H′T) ̸= 0. We show this by induction on tuples of the form (∆, m).

Base case. T is a (1, m) ROF, where 2 ≤ m ≤ |x|. Then, T is a multilinear monomial, say
x1 · · · xm, and det(H′T) = (−1)m−1(m− 1)∏i∈[m] xm

i ̸= 0, as char(F) = 0 or ≥ n ≥ |x|.

Induction step. T is a (∆, m) ROF, for some ∆ ≥ 2. Assume, by the way of induction, that
det(H′T′) ̸= 0 for all (∆′, m′) ROFs T′, where:

1. ∆′ = 1 and m′ ∈ {2, . . . , |x|}, or

2. 1 < ∆′ < ∆ and m′ ∈ [|x|], or

3. ∆ = ∆′ and m′ < m.

Pick a variable x ∈ var(T) as follows: arbitrarily pick a factor of T with product-depth
exactly ∆− 1. If there is no dangling variable inside this factor, then let x be any variable in
it. Otherwise let x be a dangling variable with the smallest product-depth in it. As before,
we expand T along path(x) by defining Qx,i,j for all i ∈ [∆x] and Tx,i,j′ for all i ∈ [∆x] if x
is a dangling variable, and for all i ∈ [∆x − 1] otherwise. Also, we assume without loss of
generality that Qx,1,1, . . . , Qx,1,m are the only sub-ROFs of T with product-depth ∆− 1. If x is
not a dangling variable, let χ = ∆x − 1; otherwise let χ = ∆x. Let

U = {y ∈ var(T) : fca(x, y) is a × gate} ⊎ {x}

and
U = var(T) \U = {y ∈ var(T) : fca(x, y) is a + gate} .

The following, easy to see observation gives a characterisation of U and U.

Observation 5.12 U = ⊎
i∈[∆x]

⊎
2≤j≤mi

var(Qx,i,j) ⊎ {x} and U = ⊎
i∈[χ]

⊎
2≤j≤si

var(Tx,i,j).

We now upper bound the degree of x in det(H′T), denoted by degx(det(H′T)), in terms of
|U|.

Observation 5.13 degx(det(H′T)) ≤ |U|.

Proof: det(H′T) = ∑σ∈Sx(−1)sgn(σ) ∏y∈x[H′T]y,σ(y), where Sx is the group of permutations
of x. It follows from Observations 5.10 and 5.11 that the only rows of H′T containing x are
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the rows labelled by variables in U. Thus, for any σ ∈ Sx, [H′T]y,σ(y) contains x only if y ∈ U.

Hence, at most |U| many entries in
{
[H′T]y,σ(y) : y ∈ x

}
contain x. Also, the degree of x in

each of those entries is at most 1. The observation follows. 2

Let N ⊂ Sx be the set of all σ ∈ Sx such that the image of U under σ is U, and let
N = Sx \ N.

Observation 5.14 For any σ ∈ N, degx

(
∏y∈x[H′T]y,σ(y)

)
< |U|.

Proof: As σ ∈ N, there exists a y′ ∈ U such that σ(y′) ∈ U. It follows from Observations
5.10 and 5.11 that the only columns of H′T containing x are the columns labelled by variables
in U. Hence, x /∈ var

(
[H′T]y′,σ(y′)

)
. Then, even if all entries in

{
[H′T]y,σ(y) : y ̸= y′ ∈ U

}
contain x, degx

(
∏y∈x[H′T]y,σ(y)

)
< |U|. 2

Now,

det(H′T) = ∑
σ∈N

(−1)sgn(σ) ∏
y∈x

[H′T]y,σ(y) + ∑
σ∈N

(−1)sgn(σ) ∏
y∈x

[H′T]y,σ(y).

Let the first summand in the above expression be h. It follows from Observations 5.13 and
5.14 that to prove det(H′T) ̸= 0, it suffices to show that degx(h) = |U|.

Claim 5.4 h =

(
∑

σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T]y1,σ1(y1)

)
·
(

∑
σ2∈SU

(−1)sgn(σ2) ∏
y2∈U

[H′T]y2,σ2(y2)

)
.

Proof: For any σ ∈ Sx, let σ1 be σ restricted to U and σ2 be σ restricted to U. For any σ ∈ N,
notice that σ1 ∈ SU and σ2 ∈ SU. Thus,

h = ∑
σ∈N

(−1)sgn(σ) ∏
y∈x

[H′T]y,σ(y)

= ∑
σ1∈SU ,
σ2∈SU

(−1)sgn(σ1)+sgn(σ2) ∏
y1∈U

[H′T]y1,σ1(y1)
· ∏

y2∈U

[H′T]y2,σ2(y2)

= ∑
σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T]y1,σ1(y1)

 ∑
σ2∈SU

(−1)sgn(σ2) ∏
y2∈U

[H′T]y2,σ2(y2)


=

 ∑
σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T]y1,σ1(y1)

 ·
 ∑

σ2∈SU

(−1)sgn(σ2) ∏
y2∈U

[H′T]y2,σ2(y2)

 .
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2

Observation 5.15 degx

(
∑

σ2∈SU

(−1)sgn(σ2) ∏
y2∈U

[H′T]y2,σ2(y2)

)
= 0.

Proof: It follows from from Observations 5.10 and 5.11 that for no y2 ∈ U, does the row of
H′T labelled by y2 contain x. 2

Claim 5.5 ∑
σ2∈SU

(−1)sgn(σ2) ∏
y2∈U

[H′T]y2,σ2(y2) ̸= 0.

Proof: Notice that the given polynomial is the determinant of [H′T]U,U, the sub-matrix of
[H′T] whose rows and columns are labelled by variables in U. We show that [H′T]U,U is a
block diagonal matrix and all the diagonal blocks have non-zero determinant.

From Observation 5.12, the rows and columns of [H′T]U,U are labelled by variables in

⊎
i∈[χ]

⊎
2≤j≤si

var(Tx,i,j). We claim that ∂2T
∂x1∂x2

= 0 for all x1 ∈ var(Tx,i,j) and x2 ∈ var(Tx,i′,j′),

where i ̸= i′ or j ̸= j′. If i = i′, then both Tx,i,j and Tx,i′,j′ are children of the gate Qx,i,1, and
fca(x1, x2) = Qx,i,j. As Qx,i,j is a + gate, from Observation 5.10, ∂2T

∂x1∂x2
= 0. On the other

hand, if i ̸= i′, assume without loss of generality that i < i′. Then, observe that Tx,i′,j′ is a
sub-ROF of Tx,i,1. Thus fca(x1, x2) is again Qx,i,j, and just as before ∂2T

∂x1∂x2
= 0. This implies

that [H′T]U,U is a block diagonal matrix with diagonal blocks [H′T]var(Tx,i,j),var(Tx,i,j)
for i ∈ [χ]

and 2 ≤ j ≤ si.
We now show that for all i ∈ [χ] and 2 ≤ j ≤ si, the determinant of [H′T]var(Tx,i,j),var(Tx,i,j)

is non-zero; this would prove the claim. Fix an i ∈ [χ] and a j ∈ {2, . . . , si}. Observe that

for any x1, x2 ∈ var(Tx,i,j), ∂2T
∂x1∂x2

=
∂2Tx,i,j
∂x1∂x2

· ∏
i′∈[i]

∏
2≤j′≤mi′

Qx,i′,j′ . So, [H′T]var(Tx,i,j),var(Tx,i,j)
=

∏
i′∈[i]

∏
2≤j′≤mi′

Qx,i′,j′ · [H′Tx,i,j
], and it is sufficient to prove that det([H′Tx,i,j

]) ̸= 0.1 We claim that

Tx,i,j is not a single variable. The only way it can be a single variable is if it is a dangling vari-
able. If x is not a dangling variable, then because of the way we picked x, there is no dangling
variable inside Qx,1,1. As Tx,i,j is a sub-ROF of Qx,1,1, it is not a dangling variable. Otherwise,
as x is a dangling variable in Qx,1,1 with the smallest product-depth, for all i′ ≤ ∆x − 1, and
2 ≤ j′ ≤ si′ , Tx,i′,j′ cannot be a dangling variable. Also, x and Tx,∆x,2, . . . , Tx,∆x,s∆x

are children
of the same gate, viz. Qx,∆x,1. Because T is a canonical ROF, Tx,∆x,2, . . . , Tx,∆x,s∆x

cannot be
dangling variables. Thus, Tx,i,j is not a dangling variable, and is a (∆′, m′) ROF for some
∆′ < ∆ such that if ∆′ = 1, then m′ ≥ 2. Then it follows from the induction hypothesis that

1Since Tx,i,j is a ×-rooted sub-ROF of T, we can define [H′Tx,i,j
] in the same way as [H′T ].
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det([H′Tx,i,j
]) ̸= 0, proving the claim. 2

Because of Claim 5.4, Observation 5.15, and Claim 5.5, to prove that degx(h) = |U|, we
only need to show that for g := ∑

σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T]y1,σ1(y1)
, degx(g) = |U|. Let T′ be

the ROF obtained from T by replacing Tx,i,2 + · · · + Tx,i,si + γi by 0 for all i ∈ [χ]. Notice
that T′ = x ∏

i∈[∆x]
∏

2≤j≤mi

Qx,i,j = x · ∂T
∂x . Hence, ∂T

∂x = ∂T′
∂x . Also, from Observation 5.12,

var(T′) = U.

Claim 5.6 When g and det(H′T′) are viewed as polynomials over F[x \ {x}], the coefficient of x|U|

is same in both the polynomials.

Proof: g = ∑
σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T]y1,σ1(y1)
, det(H′T′) = ∑

σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T′ ]y1,σ1(y1)

and for all y1, y2 ∈ U, [H′T]y1,y2 and [H′T′ ]y1,y2 are multilinear. Thus, it is sufficient to show
that the coefficient of x is same in [H′T]y1,y2 and [H′T′ ]y1,y2 for all y1, y2 ∈ U. This is the same

as showing that
∂[H′T ]y1,y2

∂x =
∂[H′T′ ]y1,y2

∂x for all y1, y2 ∈ U. There are three cases.

Case 1: Neither y1 nor y2 is x. Then,

∂[H′T]y1,y2

∂x
=

∂

∂x

(
y1y2

∂2T
∂y1∂y2

)
= y1y2

∂2

∂y1∂y2

(
∂T
∂x

)
= y1y2

∂2

∂y1∂y2

(
∂T′

∂x

)
=

∂[H′T]y1,y2

∂x
.

Case 2: Exactly one of y1 and y2 is x; say y1 = x. Then,

∂[H′T]y1,y2

∂x
=

∂

∂x

(
xy2

∂2T
∂x∂y2

)
= y2

∂

∂y2

(
∂T
∂x

)
= y2

∂

∂y2

(
∂T′

∂x

)
=

∂

∂x

(
xy2

∂2T′

∂x∂y2

)
=

∂[H′T′ ]y1,y2

∂x
.

Case 3: y1 = y2 = x. In this case, both [H′T]y1,y2 and [H′T′ ]y1,y2 are 0. So,
∂[H′T ]y1,y2

∂x =
∂[H′T′ ]y1,y2

∂x = 0. 2

Now, every non-zero entry of H′T′ contains x and the rows of H′T′ are labelled by vari-
ables in U. Because we can take x common from all the rows of H′T′ , if det(H′T′) ̸= 0,
then degx(det(H′T′)) = |U|. Thus Claim 5.6 implies that, degx(g) = |U| if and only if
det(H′T′) ̸= 0. Recall that T is a (∆, m) ROF. If m ≥ 2, then it follows from the definition
of T′ that it is a (∆, m− 1) ROF. Otherwise, if m = 1, i.e., if Qx,i,1 is the only sub-ROF of T
of product-depth ∆, then T′ is a (∆′, m′) ROF for some ∆′ < ∆ and m′ ≤ |x|. Also as T is
a ×-rooted ROF, its fan-in, m1 ≥ 2. Thus, if ∆′ = 1, then m′ ≥ 2. So from the induction
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hypothesis, we have that det(H′T′) ̸= 0. This proves the lemma. 2

This concludes the proof of the theorem. 2

For our equivalence test, the mere non-zeroness of the Hessian determinant is not enough;
we also need some knowledge about its factors. The following claim gives us some of these
factors.

Claim 5.7 (Factors of det(HC)) Let F be an arbitrary field and C a canonical ROF over F. Let Q
be a +-rooted sub-ROF of C or a variable connected to a × gate in C. Let Q1, . . . , Qm be the siblings
of Q, i.e., for every l ∈ [m], Ql is either a variable or a +-rooted sub-ROF of C and has the same
parent as Q. If |var(Q1)|+ · · ·+ |var(Qm)| = e, then the multiplicity of Q as a factor of det(HC)
is at least (e− 1).

Proof: Let T = Q · Q1 · · ·Qm be a ×-rooted sub-ROF of C. Let C = T1 + · · ·+ Ts + γ. We
saw in the proof of Lemma 5.1 that det(HC) = ∏k∈[s] det(HTk). Thus, if T is a sub-ROF
of Tk, then it is sufficient to show that Qe−1 is a factor of det(HTk). Let x ∈ ⊎

l∈[m]
var(Ql)

and consider the x-th row of HTk . Like in the proof of Lemma 5.1, we expand Tk along the

path(x). Then for any y ∈ var(Tk), [HTk ]x,y = ∂
∂y

(
∏

i∈[∆x]
∏

2≤j≤mi

Qx,i,j

)
. Notice that for some

λx ∈ [∆x] and j ∈ [mλx ], say for j = 2, Q = Qx,λx,2. Thus, Q is not a factor of [HTk ]x,y only if
y ∈ var(Q). For such a y,

[HTk ]x,y =
∂Q
∂y
· ∏

i∈[λx−1]
∏

2≤j≤mi

Qx,i,j · ∏
3≤j≤mλx

Qx,λx,j. (5.6)

We take Q common from every row of HTk labelled by variables in ⊎
l∈[m]

var(Ql) to obtain

a matrix H′′Tk
. Now, det(HTk) = Qe det(H′′Tk

). So it suffices to show that det(H′′Tk
) is either a

polynomial, or if it has a denominator, the denominator is just Q. Notice that the only entries
of H′′Tk

which are not polynomials but rational functions are [H′′Tk
]x,y, where x ∈ ⊎

l∈[m]
var(Ql)

and y ∈ var(Q). Let σ ∈ Svar(Tk)
be any permutation that maps x1 ̸= x2 ∈ ⊎

l∈[m]
var(Ql) to

y1 ̸= y2 ∈ var(Q). Define σ′ ∈ Svar(Tk)
such that it maps x1 to y2, x2 to y1, and for all other

x ∈ var(Tk), σ′(x) = σ(x). Then,
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(−1)sgn(σ) ∏
x∈var(Tk)

[H′′Tk
]x,σ(x) − (−1)sgn(σ′) ∏

x∈var(Tk)

[H′′Tk
]x,σ′(x)

= (−1)sgn(σ) ∏
x∈var(Tk)\{x1,x2}

[H′′Tk
]x,σ(x)

(
[H′′Tk

]x1,y1 [H
′′
Tk
]x2,y2 − [H′′Tk

]x1,y2 [H
′′
Tk
]x2,y1

)
.

Now, expanding T along path(x1) as well as path(x2) we get,

Q2
(
[H′′Tk

]x1,y1 [H
′′
Tk
]x2,y2 − [H′′Tk

]x1,y2 [H
′′
Tk
]x2,y1

)
=

 ∂Q
∂y1
· ∏

i∈[λx1−1]
∏

2≤j≤mi

Qx,i,j · ∏
3≤j≤mλx1

Qx1,λx1 ,j


 ∂Q

∂y2
· ∏

i∈[λx2−1]
∏

2≤j≤m′i

Qx,i,j · ∏
3≤j≤m′λx2

Qx2,λx2 ,j


−

 ∂Q
∂y2
· ∏

i∈[λx1−1]
∏

2≤j≤mi

Qx,i,j · ∏
3≤j≤mλx1

Qx1,λx1 ,j


 ∂Q

∂y1
· ∏

i∈[λx2−1]
∏

2≤j≤m′i

Qx,i,j · ∏
3≤j≤m′λx2

Qx2,λx2 ,j


(from Equation (5.6))

= 0.

Let U be the set of all permutations σ such that σ maps at most one variable in ⊎
l∈[m]

var(Ql)

to a variable in var(Q). Then,

det[H′′Tk
] = ∑

σ∈U
(−1)sgn(σ) ∏

x∈var(Tk)

[H′′Tk
]x,σ(x).

As at most one of the
{
[H′′Tk

]x,σ(x) : x ∈ var(Tk)
}

has a denominator and this denominator
is Q, either det[H′′Tk

] is a polynomial, or if it has a denominator, the denominator is just Q.
Thus, Qe−1 is a factor of det(HTk). 2

The following corollary is an immediate consequence of the above claim.

Corollary 5.1 Let F be an arbitrary field and C = T1 + · · ·+ Ts + γ a canonical ROF over F, where
for every k ∈ [s], Tk is a ×-rooted canonical ROF and γ ∈ F. If k ∈ [s] is such that Tk computes a
polynomial of degree at least 3, then there is a +-rooted or a variable child Q of Tk such that Q is a
factor of det(HC).

In the remainder of this section, we describe the variables that are essential for det(HC)
and the variables that do not appear in it. We first define the notion of “skewed paths” which
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helps us in characterizing these variables.

Definition 5.1 (Skewed path) Let Q be a +-rooted sub-ROF of C and T1, . . . , Tm be the product
gates on the path from the root of C to Q. If for all i ∈ [m], Ti has just two children – a +-rooted
ROF containing Q and a variable xi – then we say that the path to Q is skewed and identify this
path with the “marker” monomial µ = ∏i∈[m] xi. We say x1, . . . , xm are in the skewed path.

Few other terminologies. We call a variable x a dangling variable if its parent in C is a +

gate. For a +-rooted sub-ROF Q = T1 + · · · + Ts + γ, where at most one of T1, . . . , Ts is a
variable and the rest are ×-rooted ROFs, we call the sum of all Ti computing a degree two
monomial the quadratic form of Q. Also, a variable x is said to be in the quadratic form of Q
if it is in var(Ti) for some Ti computing a degree two monomial. Suppose that the path to
a +-rooted sub-ROF Q is skewed, and the skewed path to Q is identified by the monomial
µ. Then, if x is a dangling variable connected to the top-most + gate in Q, we say that x is
the dangling variable along the skewed path µ. Similarly, we call the quadratic form of Q the
quadratic form along the skewed path µ. We now describe the essential variables of det(HC)
using these terminologies.

Claim 5.8 (Essential variables of det(HC)) Let n ∈ N, char(F) = 0 or ≥ n, and C = T1 +

· · ·+Ts +γ be a canonical ROF computing an n-variate polynomial such that for all k ∈ [s], deg(Tk) ≥
2 and γ ∈ F. Then, every variable in var(C) other than the variables in the quadratic form of the
top-most + gate of C, the dangling variables along skewed paths and the variables appearing in the
quadratic forms along skewed paths is truly essential for det(HC).

Proof: From Lemma 5.1, det(HC) ̸= 0. Suppose that x ∈ var(C) is not a variable in the
quadratic form of the top-most + gate of C, nor a dangling variable along some skewed path,
nor a variable appearing in a quadratic form along some skewed path. There there exists a
×-gate T on the path from the root of C to the leaf labelled by x such that if T = Q1 · · ·Qm′ ,
then x ∈ var(Q1) and |var(Q2)| + · · · + |var(Qm′)| ≥ 2. Then, Claim 5.7 implies that Q1

is a factor of det(HC). Now Q1 is either a variable or a +-rooted sub-ROF, and therefore is
irreducible (Fact 2.1). Then, the claim immediately follows from Observation 2.9. 2

Claim 5.9 (Variables of quadratic forms) Let Q be a +-rooted sub-ROF of C and y be the set of
all variables in the quadratic form of Q. Then, either all y-variables are present in det(HC) or all
are absent. Further if all y-variables are present in det(HC), then they are also truly essential for
det(HC).
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Proof: Suppose that y1 ∈ y is present in det(HC). Let the quadratic form of Q be y1y2 +

. . . + yl−1yl. Let P be a permutation matrix acting on x := var(C) such that P maps y1 to y2,
y2 to y1, and every other variable to itself. As, C = C(Px), det

(
HC
)
= det

(
HC(Px)

)
. Also,

from Fact 2.4, det
(

HC(Px)

)
= det

(
HC
)
(Px). As y1 is present in det

(
HC
)
, y2 is present in

det
(

HC
)
(Px) = det

(
HC
)
. For any odd i ≤ l− 1, let P be a permutation matrix mapping y1

to yi, y2 to yi+1, yi to y1, yi+1 to y2, and all other variables to themselves. Again det
(

HC
)
=

det
(

HC(Px)

)
and det

(
HC(Px)

)
= det

(
HC
)
(Px). As y1 and y2 appear in det

(
HC
)
, yi and

yi+1 also appear in det
(

HC
)
(Px) = det

(
HC
)
.

For any odd i ≤ l − 1, let S be a scaling matrix mapping yi to 2yi, yi+1 to yi+1
2 and every

other variable to itself. C = C(Sx), and hence det
(

HC
)
= det

(
HC(Sx)

)
. Also, from Fact 2.4,

det
(

HC(Sx)

)
= det(HC)(Sx). Consider a monomial µ of det

(
HC
)

in which the degree of yi

is di, that of yi+1 is di+1, and whose coefficient is β. In det
(

HC
)
(Sx), the coefficient of µ is

β · 2di−di+1 . Thus, di = di+1. Then from Observation 2.10 yi and yi+1 are truly essential for
det

(
HC
)
. 2

Claim 5.10 (Missing dangling variables) Let C = T1 + · · ·+ Ts + γ, where T1, . . . , Ts are ×-
rooted sub-ROFs and γ ∈ F. If for any k ∈ [m], Tk = xQ for a +-rooted sub-ROF Q, and y is a
dangling variable connected to the top-most + gate of Q, then y is not present in det(HC).

Proof: As argued in the proof of Theorem 5.1, det(HC) = ∏k∈[s] det
(

HTk

)
. It is sufficient

to show that y is not present in det
(

HTk

)
. It follows from Observations 5.10 and 5.11, that

y does not appear in any entry of HTk because the only x′ ∈ x for which ∂2Tk
∂x′∂y ̸= 0 is x. But

∂2Tk
∂x′∂y = 1. Hence, y /∈ var

(
det

(
HTk

))
. 2

5.5 Equivalence test for ROFs
In this section, we prove Theorem 1.6. Suppose that we are given black-box access to an
f ∈ F[x] in the orbit of an unknown canonical ROF C. We can assume that C is +-rooted:
Suppose the root of C is a × gate and C = g1 · · · gm, where for every i ∈ [m], gi is either a
variable or a +-rooted canonical ROF. We obtain black-box access to the irreducible factors
f1, . . . , fm′ of f using the algorithm in [KT90]. Fact 2.1 implies m = m′. We can assume
that for every i ∈ [m], fi ∈ orb(gi)

1. Then, we apply the algorithm given in Claim 5.2
on f1, . . . , fm to compute an A0 ∈ GL(n, F) such that f1(A0x), . . . , fm(A0x) are pairwise
variable disjoint. For i ∈ [m], let xi = var( fi(A0x)) and f ′i (xi) = fi(A0x). Suppose, for
every i ∈ [m], we could compute an Ai ∈ GL(|xi|, F) such that f ′i (Aixi) ∈ PS-orb(gi).

1Here we are using a slightly general definition of orbit; see the remark after Definition 2.31.
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Let A := diag(A1, . . . , Am), which is block-diagonal. Then, f (A0Ax) ∈ PS-orb(C). Thus,
the problem reduces to performing equivalence tests for +-rooted canonical ROFs. Before
giving the equivalence test, we first give a high-level description of it.

5.5.1 An overview of the algorithm

We are given black-box access to an f ∈ F[x] such that there exist a B ∈ GL(n, F), a d ∈ Fn,
and a canonical ROF C satisfying f = C(Bx + d). Let C = T1 + · · · + Ts + γ, where at
most one of the terms T1, . . . , Ts is a variable and the rest are ×-rooted ROFs, and γ ∈ F.
Also, f = T̂1 + · · · + T̂s + γ, where for all k ∈ [s], T̂k = Tk(Bx + d). The equivalence test
can be divided into two phases. In the first phase, we compute an A0 ∈ GL(n, F) such
that T̂1(A0x), . . . , T̂s(A0x) are variable disjoint. In the second phase, we recursively perform
equivalence test on the factors of T̂1(A0x), . . . , T̂s(A0x). A pictorial overview of the algo-
rithm is given in Section 5.7.

Phase 1: Making terms variable disjoint

We rearrange and divide the terms of C and of f into four groups: Terms T1, . . . , Ts1 are called
the “good” terms of C if none of them is a dangling variable, nor a degree 2 monomial, nor
does it look like x · Q for some x ∈ x and a +-rooted ROF Q. Similarly, T̂1, . . . , T̂s1 are the
good terms of f . Terms Ts1+1, . . . , Ts2 are called the “bad” terms of C if each of them looks like
x · Q for some x ∈ x and a +-rooted ROF Q; similarly T̂s1+1, . . . , T̂s2 are the bad terms of f .
Observe that the skewed paths in C occur only in the bad terms of C. If C has a top dangling
variable, then without loss of generality Ts = xn, and Ts2+1 + · · ·+ Ts′ is the top quadratic
form where s′ = s− 1. If C does not have a top dangling variable, then Ts2+1 + · · ·+ Ts′ is
the top quadratic form where s′ = s. If C has a top dangling variable, then let ℓ := T̂s. This
phase can be divided into three steps. In the first step, we make all the good terms vari-
able disjoint. In the second step, we make all the bad and quadratic terms variable disjoint
and ensure that ∑s′

k=s2+1 T̂k maps to (y1 + c1)(y2 + c2) + · · · (yl−1 + cl−1)(yl + cl) for some
y1, . . . , yl ∈ x and c1, . . . , cl ∈ F. If C has a top dangling variable, then in the third step, we
map ℓ to an affine form in a single variable.

Step 1: Making the good terms variable disjoint. To make the terms variable disjoint, we
make extensive use of the Hessian determinant. If C does not have a top dangling vari-
able, then h = det(H f ) ̸= 0 (see Lemma 5.1 and Fact 2.4). Otherwise, we apply a ran-
dom transformation R ∈ Fn×n to f and compute h = det(H1); here H1 is the Hessian

119



of f (Rx) with respect to {x1, . . . , xn−1}. In this case, we refer to xn as u0. If C does not
have a top dangling variable, then let R = In×n and H1 = H f . Let H2 be the Hessian
of ∑k∈[s′] Tk.1 Note that H1 and H2 are n × n matrices if C has no top dangling variable
and (n− 1)× (n− 1) matrices otherwise. We show in Claim 5.12 that in both cases, h is a
non-zero constant multiple of det(H2)(BRx + d). We then invoke Make-Factors-Variable-
Disjoint() (see Claim 5.3) on h to compute an A0 ∈ GL(n, F) that makes the factors of h, i.e.,
h1 = det (HT1) (BRx + d), . . . , hs2 = det(HTs2

)(BRx + d) variable disjoint.2

For all k ∈ [s2], let var(hk(A0x)) = zk; as hk(A0x) has no redundant variables, all
variables in zk are essential for it. Let z′k ⊆ zk be the set of truly essential variables and
z′′k := zk \ z′k the set of ordinary essential variables in zk. Let z = ⊎k∈[s2]zk and y = x \ z.
From Claim 5.8, all variables in C other than the top dangling variable, the variables appear-
ing in the top quadratic form, the dangling variables along skewed paths (see Definition 5.1)
and the variables appearing in the quadratic forms along skewed paths are truly essential
for det(H2). In particular, for all good terms Tk, |var(Tk)| =

∣∣z′k∣∣ = |zk|; by applying a per-
mutation on the variables in C if necessary, we can assume that var(Tk) = z′k = zk. We then
argue (using Observation 2.8) that for all k ∈ [s1] and all z ∈ zk, BRA0 ◦ z ∈ F[zk]. Hence,
the good terms T̂1(RA0x), . . . , T̂s1(RA0x) are variable disjoint.

We also use Claim 5.1 to compute an affine transformation3 Cx + b that maps all the
“good” linear factors of h(A0x) to constant multiples of distinct variables (while preserving
the variable disjointness of T̂1(RA0x), . . . , T̂s1(RA0x)). A linear factor of h(A0x) is good, if
there exists an x ∈ x connected to a × gate (of C) computing a polynomial of degree at least
3 such that BRA0x + d maps x to a constant multiple of that factor. Finally, we update A0 to
RA0C and b to RA0b.

Step 2: Making the bad and quadratic terms variable disjoint. The only variables in a bad
term Tk that need not be truly essential for det (H2) are the dangling variables along skewed
paths and the variables appearing in the quadratic forms along skewed paths – call these
the “bad” variables. We show (using Observation 2.8) that all other variables are already
mapped to affine forms in zk by BA0x + Bb + d. Thus, we only need to handle the linear
forms that these bad variables map to. Here skewed paths help us. If z ∈ z′k is a variable in a
skewed path in Tk and its sibling in Tk is Q, then by “absorbing” an appropriate constant in

1We stress that the Hessian of a polynomial g is with respect to var(g) (unless mentioned otherwise).
2We need not mention det

(
HTs2+1

)
, . . . , det

(
HTs′

)
as these are nonzero constants.

3Although Phase 1 computes an affine transformation A0x + b, it only outputs A0. Indeed, the terms of
f (A0x + b) are variable disjoint if and only if the terms of f (A0x) are variable disjoint.
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Q(BA0x + Bb + d), we can assume that BA0x + Bb + d maps z to a variable z′.1 In fact, by
permuting the variables in C if necessary, we can assume that z′ = z. Hence, each skewed
path in f (A0x + b) is a “marker” monomial in z.

Step 2.1 (Processing quadratic forms along skewed paths). At first, we treat f (A0x + b) as a poly-
nomial in y = x \ z over F[z] and obtain black-box access to the homogeneous degree-2
component q̂ in y of f (A0x + b). The coefficients of the y-monomials of q̂ are n-sparse poly-
nomials in F[z]; the monomials of these coefficients correspond to skewed paths and the
constant terms of these coefficients originate from the top quadratic form of C. As q̂ is an
n3-sparse polynomial in F[z, y], we can interpolate it using the sparse polynomial interpola-
tion algorithm in [KS01]. Now, by treating q̂ as a polynomial in z over F[y], we see that the
coefficients of the z-monomials of q̂ are related to the “unprocessed” quadratic forms along
skewed paths as follows.

Let q0 be the top quadratic form of C, q1, . . . , qm the quadratic forms along skewed paths
whose variables do not appear in det(H2) (see Claim 5.9), and µ1, . . . , µm the corresponding
skewed paths. If qi = y1y2 + · · · + yl−1yl, then we show that the coefficient of µi in q̂ (if
i = 0, then the F[y]-constant term in q̂) is q̃i :=

[
ℓy1

]
y

[
ℓy2

]
y + · · ·+

[
ℓyl−1

]
y

[
ℓyl

]
y. Here, for

any x ∈ x, ℓx = BA0 ◦ x and [ℓx]y is ℓx restricted to the y-variables. So, we can use Claim
5.2 and QFE (see Fact 5.3) to map the coefficients of all the z-monomials of q̂ to variable
disjoint, canonical quadratic forms (i.e., quadratic forms that look like y1y2 + · · ·+ yl−1yl).
We then argue (in Claim 5.15) that if A′1 is the matrix obtained by combining the matrices
output by QFE on q̃1, . . . , q̃m and A1 = A0A′1, then for q̂i := qi(Bx + d), q̂i(A1x + b) =

(y1 + h1)(y2 + h2) + · · ·+ (yl−1 + hl−1)(yl + hl) for some (hitherto unknown) affine forms
h1, . . . , hl ∈ F[z].2 We can assume that the y-variables in qi and q̂i(A1x + b) are the same by
applying a permutation on the variables of C if necessary.

Step 2.2 (Handling dangling variables along skewed paths). Call the y-variables not appearing in
q̂0(A1x + b), . . . , q̂m(A1x + b) the u-variables. The u-variables appear only in the linear
forms corresponding to the dangling variables along skewed paths (that are not truly essen-
tial for det(H2)) and the top dangling variable. We treat f (A1x + b) as a polynomial in u
over F[x \ u] and obtain black-box access to the homogeneous degree-1 component ℓ̂ in u
of f (A1x + b). The coefficients of the u-variables of ℓ̂ are n-sparse polynomials in F[z]; the

1Absorbing an appropriate constant into Q (i.e., rescaling Q) essentially means that we are starting with a
different (but equally valid) B and d. But this is fine as the algorithm is oblivious to the choice of B and d.

2The affine form hi in Step 2.1 should not be confused with the Hessian determinant hi in Step 1.
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monomials of these coefficients correspond to skewed paths and the constant terms of these
coefficients originate from the top dangling variable. As ℓ̂ is an n2-sparse polynomial in
F[z, u], we interpolate it using [KS01]. Now, by treating ℓ̂ as a polynomial in z over F[u], we
see that the coefficients of the z-monomials of ℓ̂ are related to the “unprocessed” dangling
variables along skewed paths as follows.

Let u0 be the top dangling variable of C, x1, . . . , xm′ the dangling variables along skewed
paths in C that are not truly essential for det(H2), and µ1, . . . , µm′ the corresponding skewed
paths. Then, [ℓxi ]u (where ℓxi is the linear form that BA1x maps xi to) is the coefficient of µi

in ℓ̂ and the F[u]-constant term in ℓ̂ is [ℓu0 ]u. We then find a basis B of the coefficients of z-
monomials (which are linear forms in u) and compute an A′2 that maps these basis elements
to distinct u-variables. Now there is a subtle point to address here: The size of B can possibly
be strictly less than m′ + 1, which is the number of “unprocessed” dangling variables. And
yet we wish to show that A′2 takes care of all the m′ + 1 dangling variables. Let us see (at a
high level) how this works.

We argue that the elements of B are of two kinds. First, we show (in Observation 5.17)
that for x ∈ {u0, x1, . . . , xm′}, [ℓx]u is always in B if x does not appear in det(H2); this part
of B is independent of the choice of the basis B. Second, we show in Claim 5.17 that the
remaining elements of B correspond to a set of redundant variables of det(H2) among the
variables appearing in det(H2); this part varies with the choice of B. This structure of B
helps us prove the following: For k ∈ {s1 + 1, . . . , s2}, let x′k be the set of all x ∈ var(Tk) such
that [ℓx]u is in B. Let yk be the union of the y-variables present in the quadratic forms along
skewed paths in T̂k(A1A′2x + b) and the u-variables in ℓx(A′2x) for x ∈ x′k. Then, we show in
Observation 5.19 that as long as we map ℓx(A′2x) to a linear form in F[zk ⊎ yk] for all x ∈ x′k,
we would have mapped all ℓx′ , where x′ ∈ var(Tk) is a dangling variable along a skewed
path, to linear forms in F[zk ⊎ yk].

It follows that [ℓu0 ]u is in B (as u0 /∈ var(det(H2))) and A′2 maps it to u0 (without
loss of generality by applying a permutation on var(C) if required). Apart from [ℓu0 ]u, let
[ℓx1 ]u , . . . , [ℓxm ]u be the other B-elements. Then, ℓu0(A′2x) looks like u0 + h0,1(y \ u) + h0,2(z)
and ℓxi(A′2x) looks like ui + hi,1(y \ u) + hi,2(z), where hi,1(y \ u) is an affine form in y \ u
and hi,2(z) is an affine form in z for all 0 ≤ i ≤ m. In fact, by renaming the variables of C
if required, we can assume xi = ui for all i ∈ [m]. So, we will refer to x′k as uk. We save
V := {(1, u0), (µ1, u1), . . . , (µm, um)} for Step 2.3. Let A2 = A1A′2 and ℓx be the linear form
that BA2 maps x to. Our goal in the next step is to compute a linear transformation that for
all k ∈ {s1 + 1, . . . , s2} removes “external” variables, i.e., variables not in zk ⊎ yk, from all
ℓy and ℓu for y ∈ yk \ uk and u ∈ uk. Also, we want to map the top quadratic form to an
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expression (y1 + c1)(y2 + c2) + · · · (yl−1 + cl−1)(yl + cl), where ci ∈ F.

Step 2.3 (Removing external variables from terms). We first remove external z-variables from ℓy

for y ∈ y \ u; such an ℓy does not have external y-variables. We also remove external (y \ u)-
variables from ℓu for u ∈ u; such an ℓu does not have external u-variables. This is done
as follows: For all y ∈ y \ u, compute g = ∂ f (A2x+b)

∂y ; it will contain only one y-variable,
say y′. The sparsity of g is at most 2n, so we can interpolate it. If y′ is multiplied by the
z-monomial µ in g (µ can be 1), then we express g as µ(y′ + ℓ′) + r(z), where ℓ′ is an affine
form in z, and r(z) ∈ F[z]. Suppose y ∈ yk \ uk (k can be figured out from µ). We show
in Observation 5.20 that for every z /∈ zk in ℓ′, the coefficient β of z in ℓ′ can be assumed
to be the same as its coefficient in ℓy′ . So, by translating y′ by −βz we can remove z from
ℓy′ . Then, we show in Observation 5.21 that for all monomials µi in r(z) (µi can be 1) such
that (µi, ui) ∈ V and ui /∈ uk, the coefficient β of µi in r(z) can be assumed to be the same
as the coefficient of y in ℓui . So, to remove y from the latter, we just need to translate ui

by −βy. The transformation A′3 computed thus removes external z-variables from ℓy for
y ∈ y \ u and external (y \ u)-variables from ℓu for u ∈ u. It also follows from the disam-
biguation argument in Observations 5.20 and 5.21 that A′3 maps the top quadratic form to
(y1 + c1)(y2 + c2) + · · · (yl−1 + cl−1)(yl + cl) for ci ∈ F.

Let A3 = A2A′3 and ℓx be the linear form that BA3 maps x to. Then, we only need to
remove the external z-variables from ℓu for all u ∈ uk and k ∈ {s1 + 1, . . . , s2}. Let ui ∈ uk.
To remove z /∈ zk from ℓui , we obtain g from f (A3x + b) by setting all variables other than
var(µi) and z to 0. Then, using the disambiguation argument in Observation 5.22, we show
that the coefficient β of z in ℓui can be readily derived from the coefficient of µi in ∂g

∂z . Thus,
by translating ui by−βz, we can remove z from the ℓui . If A′4 is the transformation computed
this way and A4 = A3A′4, then in f (A4x + b) all non-linear terms are variable disjoint.

Step 3: Learning the top linear form. Let ℓx be the linear form that BA4 maps x to. If C
has a top dangling variable, then Steps 1 and 2 ensure that u0 is only present in the linear
form ℓu0 . Moreover, Step 2.3 implies that ℓu0 is free of y \ {u0} variables. In particular,
none of the variables in the quadratic term ∑s′

k=s2+1 T̂k(A4x + b) is in ℓu0 . So, we only need
to remove the variables in T̂1(A4x + b), . . . , T̂s2(A4x + b) from ℓu0 . Towards this, we first
use second derivatives (in Claim 5.23) to learn var(T̂1(A4x + b)), . . . , var(T̂s2(A4x + b)); let
these variable sets be z1, . . . , zs2 .1 Then, we iteratively learn ℓu0 in s2 iterations. In the k-

1Here, we are overloading the notation a bit. In Steps 1 and 2, zk was the variables of the Hessian determi-
nant of Tk evaluated at BRA0x + d. In other words, the new set of zk variables is the disjoint union of the old
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th iteration, we learn [ℓu0 ]zk
. To do this, we first obtain T̂ := T̂k(A4x + b) + [ℓu0 ]zk

+ γ′,
where γ′ ∈ F, by setting all but zk-variables to zero. The argument to learn [ℓu0 ]zk

from
T̂ is a generalization of the argument used for ‘Finding c’ under Hurdle 3 in Section 5.2.2.
However, it is more involved as (unlike the constant c in Section 5.2.2) [ℓu0 ]zk

is not uniquely
determined. This leads to a couple of complications: One, the circuit that we derive by
“learning” [ℓu0 ]zk

is strictly speaking not canonical. Two, it is now unclear how to test if a
chosen factor of the Hessian determinant of T̂ is “good”. We elaborate on these next to show
how the non-uniqueness of [ℓu0 ]zk

is handled.
We use the factors of h′, the Hessian determinant of T̂ with respect to the zk-variables,

to learn an affine form ℓk such that T̂ − ℓk is reducible. Observe that h′ is the Hessian de-
terminant of Tk evaluated at BA4x + Bb + d. Corollary 5.1 implies that at least one of the
factors of T̂k(A4x + b) is a factor of h′. We will refer to the factors of h′ that are also factors
of T̂k(A4x + b) as “good” factors of h′. Let Q̂ be a constant multiple of a good factor of h′.
We now show how to learn ℓk using Q̂.

Q̂ is not linear. Let a1, . . . , a|zk| be random F-vectors of size |zk| and t be a fresh variable. For
all i ∈ [|zk|], interpolate Q̂(tai) and T̂(tai). Discover Q̂′i(t) of degree at most n and βi,0, βi,1 ∈
F such that Q̂(tai) · Q̂′i(t) + βi,1 · t + βi,0 = T̂(tai) by solving a system of linear equations
in the coefficients of Q̂′i(t) and βi,0, βi,1. One solution is Q̂′i =

(
T̂k(A4x + b)/Q̂

)
(tai),

βi,1 = [ℓu0 ]zk
(ai), and βi,0 = γ′. We show in the proof of Claim 5.25 that this solution

is unique with high probability over the randomness of a1, . . . , a|zk|. Then, we set ℓk to
be the affine form obtained by interpolation using β1,1, . . . , β|zk|,1 and βi,0 = γ′. Hence,
ℓk = [ℓu0 ]zk

+ γ′, and T̂ − ℓk = T̂k(A4x + b) is reducible.

Q̂ is linear. Suppose that Q̂ = z (recall that in Step 1, we would have mapped Q̂ to a sin-
gle variable). Let a1, . . . , a|zk|−1 be random F-vectors of size |zk| − 1 and t a fresh variable.
For all i ∈ [|zk| − 1], interpolate the bivariate polynomial T̂(z, zk \ {z} = tai). Find Q̂′i(z, t)
of degree at most n and βi,0, βi,1, βi,2 ∈ F such that zQ̂′i(z, t) + βi,2 · z + βi,1 · t + βi,0 =

T̂(z, zk \ {z} = tai) by solving a system of linear equations in the coefficients of Q̂′i(z, t) and
βi,0, βi,1, βi,2. One such solution is Q̂′i =

(
T̂k(A4x + b)/Q̂

)
(z, tai), βi,2 = cz, the coefficient

of z in [ℓu0 ]zk
, βi,1 = [ℓu0 ]zk\{z} (ai) and βi,0 = γ′. We show in the proof of Claim 5.26 that βi,1

and βi,0 are unique with high probability over the randomness of a1, . . . , a|zk|−1. So, after us-
ing β1,1, . . . , β|zk|−1,1 and βi,0 = γ′ to interpolate an affine form ℓk, we get ℓk = [ℓu0 ]zk\{z}+γ′.
Hence, T̂ − ℓk = z(T̂k(A4x + b)/z + cz) is reducible.

zk and yk.
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What if Q̂ is not good? As at least one factor Q̂ of h′ is good, by iterating over all its fac-
tors, we ultimately find an ℓk such that T̂ − ℓk is reducible. If Q̂ is good, then either ℓk =

[ℓu0 ]zk
+ γ′ and T̂ − ℓk = T̂k(A4x + b) or ℓk = [ℓu0 ]zk\{z} + γ′ and T̂ − ℓk = z(T̂k(A4x +

b)/z + cz) (where Q̂ = z). But, what if Q̂ is not good? It turns out that the algorithm
only needs to care about finding an ℓk such that T̂ − ℓk is reducible; such an ℓk is always
the desired one. This is because, it is implied by the proof of Claim 5.27 that if T̂ − ℓk

is reducible, then the following holds: If T̂k(A4x + b) has no linear factors, then ℓk =

[ℓu0 ]zk
+ γ′. On the other hand, if T̂k(A4x + b) = Q̂k,1 · · · Q̂k,mk

and Q̂k,1 = z, then ℓk

and [ℓu0 ]zk
must agree on the coefficients of all variables in zk except perhaps that of z.

In both the cases, T̂ − ℓk = Q̂k,1

(
Q̂k,2 · · · Q̂k,mk

+ c
)

for some c ∈ F. Thus, if we redefine

T̂k(A4x + b) as Q̂k,1

(
Q̂k,2 · · · Q̂k,mk

+ c
)

, then T̂k(A4x + b) = T′k(BA4x + Bb + d), where if

Tk = Qk,1 · · ·Qk,mk
then T′k := Qk,1(Qk,2 · · ·Qk,mk

+ c). Let C′ be obtained from C by replacing
Tk with T′k whenever necessary. If A5 is obtained from A4 by translating u0 by the linear
part of ∑k∈s2

ℓk, then f (A5x + b) = T̂1(A5x + b) + · · ·+ T̂s′(A5x + b) + u0 + γ for γ ∈ F,
and f (A5x + b) = C′(BA5x + Bb + d). Notice that all the terms of f (A5x + b) are variable
disjoint.

Re-canonizing the ROF. Circuit C′ need not be a canonical ROF as Property 6 of Definition
2.23 may fail. However, for all k ∈ [s2], all the factors of T′k are canonical. As we recursively
perform ET on only the factors of T̂k(A5x), C′ not being canonical is not a problem during
recursion. However, at the end of the recursion, we are left with reconstructing a canonical
ROF where Property 6 may not hold. But this is not an issue as the ROF reconstruction algo-
rithm (Algorithm 9) in Section 5.6 works for canonical ROFs that may not satisfy Property 6.
Once an ROF is constructed using Algorithm 9, we go over the ROF in linear time to ensure
that Property 6 is satisfied.

Phase 2: Recursively performing equivalence test on the factors of variable disjoint terms

To perform equivalence test on the factors Q̂k,1(A5x), . . . , Q̂k,mk
(A5x) of T̂k(A5x) we need to

obtain black-box access to each of the factors using only one query to the black-box of f . It
is important that a single query to f is used, or else, the running time of the algorithm will
blow up exponentially with the product depth of the ROF. A detailed overview of this phase
is already provided in the discussion following Hurdle 3 in Section 5.2.2. Other details are
given in Sections 5.5.3.4 and 5.5.3.6.
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5.5.2 The algorithm

Having given a high level overview of the algorithm, we now describe it formally.

Algorithm 3 Find-Equivalence( f (x))
Input: Black-box access to an n-variate polynomial f in the orbit of an unknown +-rooted
canonical ROF C such that every x ∈ x is essential for f .
Output: An A ∈ GL (n, F) such that f (Ax) ∈ PS-orb(C).

1: /* The base case. */
2: If deg( f ) = 1, return In×n. Making the non-linear terms of f variable disjoint.
3: A0, b, z, {u0} , {ẑ1, . . . , ẑm} ←Make-Good-Terms-Var-Disjoint( f ) (Algorithm 4).
4: A←Make-Bad-And-Quadratic-Terms-Var-Disjoint( f (x), A0, b, z, u0) (Algorithm 5).
5:

6: /* Learning var
(

T̂1(Ax + b)
)

, . . . , var
(

T̂s2(Ax + b)
)

. */
7: y← x \ z. E← ∅, G ← ({ẑ1, . . . , ẑm} ⊎ y, E), a graph.
8: for i, j ∈ [m] do
9: If for any z1 ∈ ẑi and z2 ∈ ẑj,

∂2 f (Ax+b)
∂z1∂z2

̸= 0, add edge
{

ẑi, ẑj
}

to E.
10: end for
11: for i ∈ [m] and y ∈ y do
12: If for any z ∈ ẑi and y ∈ y, ∂2 f (Ax+b)

∂z∂y ̸= 0, add edge {ẑi, y} to E.
13: end for
14: z1, . . . , zs2 ← the variable sets of size more than 1 corresponding to the different con-

nected components of G. z← ⊎s2
k=1zk, y← x \ z.

15:

16: /* Learning the top linear form if it exits. */
17: if {u0} ̸= ∅ then
18: ℓ′ ← Find-Top-Linear-Form( f (Ax + b)) (Algorithm 7). Update A to map u0 to u0− ℓ′.
19: end if
20:

21: for k ∈ [s2] do
22: T̂ ← Compute-Term-Black-Box( f (A (zk, x \ zk = 0))) (Algorithm 8).
23:

24: /* Making the factors of T̂k(Ax) variable disjoint. */
25: Q̂1, . . . , Q̂mk ← black-boxes of the factors of T̂ obtained using the algorithm in [KT90].

26: Compute an Ak,0 ∈ GL(|zk|, F) s.t. Q̂1(Ak,0zk), . . . , Q̂mk(Ak,0zk) are variable disjoint
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using Make-Polys-Var-Disjoint() (see Claim 5.2). ∀l ∈ [mk], Q̂l ← Q̂l (Ak,0zk) , zk,l ←
var

(
Q̂l

)
.

27: /* Performing equivalence test on Q̂1, . . . , Q̂mk . */
28: F ← a subset of F of size n5.1 a ← a vector of size zk containing random elements

from F.
29: for l ∈ [mk] do
30: a′ ← a restricted to entries corresponding to z \ zk,l.3em
31: βl ← ∏l′∈[mk]\{l} Q̂l′ (zk,l, zk \ zk,l = a′). Q̂l′ ← β−1

l · T̂ (Ak,0 (zk,l, zk \ zk,l = a′)).

Ak,l ← Find-Equivalence
(

Q̂l

)
.

32: end for
33: Construct an A′k,0 ∈ GL(|zk|, F) that maps every z ∈ zk,l to Ak,l ◦ z, ∀l ∈ [mk]. Ak ←

Ak,0A′k,0.
34: end for
35: Construct an A′ ∈ GL(n, F) that maps all z ∈ zk to Ak ◦ z , ∀k ∈ [s2] and all y ∈ y to y.

A← AA′.
36: if {u0} ̸= ∅ then
37: f ′ ← Reconstruct-ROF( f (Ax)) (see Section 5.6, Algorithm 9).
38: For every term of f ′ that looks like (α1x + α0)Q and Q has a constant β attached to the

top + gate but not a dangling variable, modify A to map u0 to u0 − α1 · β · x.
39: end if
40: Return A.

Recall that the algorithm is given black-box access to an f ∈ F[x] such that there exist a
B ∈ GL(n, F), a d ∈ Fn, and a canonical ROF C satisfying f = C(Bx + d). Also, there are
no redundant variables in f . Further C = T1 + · · ·+ Ts + γ, where T1, · · · , Ts are ×-rooted
canonical ROFs and γ ∈ F. Also, f = T̂1 + · · ·+ T̂s +γ, where for all k ∈ [s], Tk(Bx+d) = T̂k.
T1, . . . , Ts1 are the “good” terms of C, i.e. none of them is a dangling variable, nor a degree
2 monomial, nor does it look like x · Q for some x ∈ x and a +-rooted ROF Q. Similarly,
T̂1, . . . , T̂s1 are the good terms of f . Ts1+1, . . . , Ts2 are the “bad” terms of C, i.e. they look like
x · Q, while T̂s1+1, . . . , T̂s2 are the bad terms of f . If C has a top dangling variable, Ts = xn,
s′ := s− 1, and Ts2+1 + · · ·+ Ts−1 is the top quadratic form. If C does not have a top dangling
variable, then Ts2+1 + · · ·+ Ts is the top quadratic form and s′ := s. If C has a top dangling

1Here n5 is somewhat arbitrary. We simply want to ensure that after we apply union bound to the error
probabilities in different steps of the algorithm, the total error probability is still small.
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variable, then ℓ := T̂s.
We shall give a formal description of the algorithms Make-Good-Terms-Var-Disjoint(),

Make-Bad-And-Quadratic-Terms-Var-Disjoint(), Find-Top-Linear-Form(), and Compute-Term-
Black-Box() while analysing the algorithm. Make-Good-Terms-Var-Disjoint() outputs an
A0 ∈ GL(n, F) and a b ∈ Fn such that T̂1(A0x), . . . , T̂s1(A0x) are variable disjoint. Make-
Bad-And-Quadratic-Terms-Var-Disjoint() outputs an A ∈ GL(n, F) and b ∈ Fn such that
T̂1(Ax + b), . . . , T̂s′(Ax + b) are variable disjoint and

s′

∑
k=s2+1

T̂k(Ax + b) =
s′

∑
k=s2+1

(yk,1 + ck,1) (yk,2 + ck,2) ,

where ck,1, ck,2 ∈ F. Find-Top-Linear-Form() maps ℓ(Ax) to a single variable u0. Compute-
Term-Black-Box() helps obtain black-box access to T̂1(Ax), . . . , T̂s2(Ax) using just one query
to the black-box of f . Finally Steps 21-34 recursively perform equivalence test on the factors
of T̂1(Ax), . . . , T̂s2(Ax).

5.5.3 Analysis of the algorithm

In this section, we prove the following lemma. This lemma along with the analysis of the
running time in Section 5.5.3.6 proves Theorem 1.6.

Lemma 5.2 (Correctness of Algorithm 3) Let F be a field of char(F) = 0 or≥ n2 and |F| ≥ n13.
Given black-box access to an n-variate polynomial f in the orbit of an unknown +-rooted canonical
ROF C such that every x ∈ x is essential for f , Algorithm 3 outputs an A ∈ GL(n, F) such that
f (Ax) ∈ PS-orb(C).

Towards proving this lemma, we first formally describe the Make-Good-Terms-Var-Disjoint(),
Make-Bad-And-Quadratic-Terms-Var-Disjoint(), Find-Top-Linear-Form(), and Compute-Term-
Black-Box() algorithms in the following sections.

5.5.3.1 Making the good terms variable disjoint

The following algorithm is used to make all the good terms variable disjoint.
We now prove the following lemma which establishes the correctness of the above algo-

rithm.

Lemma 5.3 (Correctness of Algorithm 4) Make-Good-Terms-Variable-Disjoint( f (x)) outputs an
A0 ∈ GL(n, F) and a b ∈ Fn such that T̂1(A0x + b), . . . , T̂s1(A0x + b) are pairwise variable
disjoint. Further for all x ∈ x connected to a ×-gate in C computing a polynomial of degree at
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Algorithm 4 Make-Good-Terms-Var-Disjoint( f (x))
Input. f (x), a polynomial in the orbit of a +-rooted canonical ROF C.
Output.

1. A0 ∈ GL(n, F), b ∈ Fn such that for k ̸= k′ ∈ [s1], var(T̂k(A0x + b)) ∩ var(T̂k′(A0x +
b)) = ∅.

2. For all x ∈ x connected to a×-gate in C computing a polynomial of degree≥ 3, BA0x+
Bb + d maps x to constant multiple of a variable. If C has a top dangling variable, then
u0 = xn.

3. {ẑ1, . . . , ẑm} such that there exists a partition I1, . . . , Is2 of [m] such that for all k ∈ [s2],
⊎i∈Ik ẑi = var

(
det(HTk)(BA0x + Bb + d)

)
. z = ⊎i∈[m]ẑi.

1: /* Computing the Hessian determinant of f . */
2: if det(H f ) = 0 then
3: F ← a subset of F of size at least n5. R← an n× n random matrix with entries picked

independently and uniformly from F. u0 ← xn.
4: h← the Hessian determinant of f (Rx) with respect to x \ {u0} variables.
5: A0 ← Remove-Redundant-Vars(h, u0) (see Claim 2.1).
6: else
7: {u0} ← ∅, h← det(H f ), R← In×n, A0 ← In×n.
8: end if
9: A′0, ẑ1, . . . , ẑm ← Make-Factors-Var-Disjoint(h(A0x)) (see Claim 5.3). A0 ← A0A′0. z ←

var (h(A0x)).
10: /* Mapping the good linear factors of h(A0x) to distinct variables. */

11: V ← the set of all linear factors of h(A0x). C ← In×n, b′ ← 0.
12: for ℓ′ ∈ V do
13: If Ness ( f (RA0x) mod ℓ′) < n− 2, pick a z ∈ var(ℓ′) and update C and b′ such that

ℓ(Cx + b′) = z (see Claim 5.1).
14: end for
15: b← RA0b′, A0 ← RA0C. Return A0, b, z, {u0} , {ẑ1, . . . , ẑm}.
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least 3, BA0x + Bb + d maps x to constant multiple of a variable. Moreover, there exists a parti-
tion I1, . . . , Is2 of [m] such that for all k ∈ [s2], ⊎i∈Ik ẑi = var

(
det(HTk)(BA0x + Bb + d)

)
and

z = ⊎i∈[m]ẑi.

Proof: If C has no dangling variable, then we know from Lemma 5.1 that det(HC) ̸= 0;
from Observation 2.4 this implies det(H f ) ̸= 0. Otherwise, we apply a random transforma-
tion R to x in f and compute the Hessian determinant of f (Rx) with respect to x \ {u0} =
{x1, . . . , xn−1} variables. Notice that f (Rx) = C(BRx + d). The following two claims show
that this Hessian determinant is non-zero with high probability.

Claim 5.11 The sub-matrix [BR]x\{u0},x\{u0} of BR, whose rows and columns are labelled by x \
{u0}-variables is invertible with high probability.

Proof: [BR]x\{u0},x\{u0} = [B]x\{u0},x [R]x,x\{u0}, where [B]x\{u0},x is the sub-matrix of B
whose rows and columns are labelled by variables in x \ {u0} and x, respectively, while
[R]x,x\{u0} is the sub-matrix of R whose rows and columns are labelled by variables in x and
x \ {u0}, respectively. For x ∈ x \ {u0}, let ℓx be the linear form that x is mapped to by
B. Let R = (rx,x′)x,x′∈x. Then the (x, x′)-the entry of [BR]x\{u0},x\{u0} is ℓx(rx′), where rx′ =

{rx,x′ : x ∈ x}. As B is invertible, {ℓx(x) : x ∈ x \ {u0}} is linearly independent. Thus, the
columns of [BR]x\{u0},x\{u0} are evaluations of linearly independent, degree 1 polynomials
at independently chosen random points from Fn, where |F| ≥ n5. It is well known (see for
instance Claim 2.2 of [KNS19]) that any such matrix is invertible with probability at least
1− 1

n4 . 2

Claim 5.12 Let H1, H2 be the Hessians of f (Rx) and C with respect to x \ {u0}-variables, respec-
tively. Then, h = det(H1) = β2 det(H2)(BRx + d), where β = det

(
[BR]x\{u0},x\{u0}

)
and

h ̸= 0 with high probability. Also, u0 is redundant for h with high probability.

Proof: Observe that H2 is the Hessian of ∑k∈[s′] Tk + γ. Then HC =

[
H2 0
0 0

]
. Fact 2.2

implies that H f (Rx) = (BR)T · HC(BRx + d) · (BR). It is easy to that H1 = [BR]Tx\{u0},x\{u0} ·
H2(BRx + d) · [BR]x\{u0},x\{u0}, which implies h = det(H1) = β2 det(H2)(BRx + d), where
β is the determinant of [BR]x\{u0},x\{u0}. From Lemma 5.1, det(H2) ̸= 0 and from Claim
5.11 β ̸= 0 with high probability. Hence, h is also non-zero with high probability. Also,
u0 /∈ var(det(H2)) and hence Ness(det(H2)) ≤ n− 1. Now, [∇h]x\{u0} = [BR]Tx\{u0},x\{u0} ·
[∇det(H2)]x\{u0} (BRx+d), where [∇h]x\{u0} and [∇det(H2)]x\{u0} are the gradient vectors
of h and det(H2) restricted to the entries corresponding to variables in x \ {u0}. From Claim
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5.11, [BR]Tx\{u0},x\{u0} is invertible with high probability. So the spaces
〈

∂h
∂x : x ∈ x \ {u0}

〉
and

〈
∂

∂x det(H2) : x ∈ x \ {u0}
〉

have the same dimension with high probability. Then Facts
2.7 and 2.5 imply that a subset of x \ {u0} contains a set of essential variables of h with high
probability. Thus, u0 is redundant for h with high probability. 2

It is easy to see that H2 is the Hessian of ∑k∈[s′] Tk +γ. Since H2 is a block-diagonal matrix
with HTk , k ∈ [s′] as the diagonal blocks, Claim 5.12 implies that h = β2 ·∏k∈[s′] det(HTk)(BRx+
d). Observe that for every k ∈ [s2], det(HTk) is non-constant. So for every k ∈ [s2],
det

(
HTk

)
(BRA0x + d) is a non-constant factor of h(A0x). Thus, after we compute A′0 by

invoking Make-Factors-Var-Disjoint() on h(A0x) and update A0 to be A0A′0 in Step 9, Claim
5.3 implies that for k1 ̸= k2 ∈ [s2], det

(
HTk1

)
(BRA0x + d) and det

(
HTk2

)
(BRA0x + d) are

variable disjoint.
For all k ∈ [s], let xk = var(Tk), hk = det

(
HTk

)
(BRx + d), and gk = hk(A0x), where A0

is as after Step 9. Then from Claim 5.3, gk has no redundant variables. Let zk = var(gk).
Fix a k ∈ [s′]. By permuting the variables of C if necessary, we can assume that zk is also
a set of essential variables for h′k := det(HTk). Let Ck ∈ GL(n, F) be a matrix that removes
redundant variables from h′k and g′k = h′k(Ckx). Then, var(g′k) = var(gk) = zk. Let z′k
be the set of truly essential variables, z′′k = zk \ z′k be a set of ordinary essential variables,
and yk = xk \ zk be a set of redundant variables for h′k. Let y = ⊎k∈[s′]yk ⊎ {u0}. Note
that z = var (h(A0x)) = ⊎k∈[s′]zk, and define z′ = ⊎k∈[s′]z′k, z′′ = ⊎k∈[s′]z′′k . Notice that

x = z′ ⊎ z′′ ⊎ y. For all x ∈ x let ℓ(0)x be the linear form that x is mapped to by BRA0.

Claim 5.13 (Structure of BRA0) For every k ∈ [s′],

1. For all z ∈ z′k, ℓ(0)z ∈ F[zk].

2. For all z ∈ z′′k , ℓ(0)z = ℓ′z + ∑
y∈yk∩

var(h′k)

αyℓ
(0)
y , where ℓ′z ∈ F[zk] and for all y ∈ yk ∩ var

(
h′k
)
,

αy ∈ F.

Proof: T̂k(Rx) = Tk(BRx + d) implies that gk(x) = g′k(C
−1
k BRA0x + C−1

k d). As var(gk) =

var(g′k) = zk and none of them have any redundant variables, zk are the truly essential vari-
ables of g and g′. Thus Observation 2.8 implies that C−1

k BRA0 maps every z ∈ zk to a linear
form in zk. Also, from Fact 2.6 we have that Ck maps every z ∈ z′k and every y ∈ yk to itself,
and every z ∈ z′′k to a linear form that looks like z + ∑y∈yk∩var(h′k)

αyy. Multiplying Ck to

C−1
k BRA0 yields the claim. 2
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Claim 5.8 implies that zk = z′k = xk. Hence, the above claim immediately implies that
T̂1(A0x), . . . , T̂s1(A0x) are pairwise variable disjoint.

Now consider the for loop of lines 12-14. Claim 5.8 implies that for all x ∈ x connected
to a × gate in C computing a polynomial of degree at least three, a constant multiple of the
affine form ℓ

(0)
x + dx that BA0x + d maps x to is in V. Also, as Ness (C mod x) < n− 2, Fact

2.8 implies that Ness

(
f (RA0x) mod

(
ℓ
(0)
x + dx

))
< n − 2. Conversely, if ℓ′ ∈ V is such

that Ness ( f (RA0x) mod ℓ′) < n − 2, then it follows and from Claim 5.1 and Fact 2.8 that
there exists an x ∈ x such that ℓ′ is a constant multiple of ℓ(0)x + dx. Observe that if x is not
connected to a product gate computing a polynomial of degree at least three, then Ness(C

mod αx) ≥ n − 2 for any α ∈ F×. Hence from Fact 2.8, we have that x is connected to a
product gate computing a polynomial of degree at least three. Thus the affine forms ℓ′ ∈ V
such that Ness ( f (RA0x) mod ℓ′) < n − 2 are exactly the constant multiples of ℓ(0)x + dx,
where x is connected to a × gate computing a polynomial of degree at least three. Because{
ℓ
(0)
x : x ∈ x

}
is linearly independent, it is possible to map all such ℓ′ to distinct variables.

Observation 2.9 implies that every x connected to a × gate computing a polynomial of
degree at least three is in z′. Also, Claim 5.13 implies that if x ∈ z′k, then ℓ′ ∈ F[zk]. Thus after
the loop has been executed and A0 updated to be RA0C, the affine transformation BA0x +

Bb + d maps every x ∈ xk connected to a × gate computing a polynomial of degree at least
three to a constant multiple of a zk-variable. Also this means that T̂1(A0x+b), . . . , T̂s1(A0x+
b) are still variable disjoint.

Immediately before Step 9 is executed, det(HT1)(BRA0x + d), . . . , det(HTs2
)(BRA0x +

d) are non-constant factors of h(A0x). So from Point 2 of Claim 5.3 there exists a par-
tition I1, . . . , Is2 of [m] such that after A0 has been updated to be A0A′0, for all k ∈ [s2],
⊎i∈Ik ẑi = var

(
det(HTk)(BRA0x + d)

)
and z = ⊎i∈[m]ẑi. As for all k ∈ [s2], C only maps

some variables in z′k to linear forms in F[z′k], we have that var
(
det(HTk)(BRA0x + d)

)
=

var
(
det(HTk)(BRA0(Cx + b′) + d)

)
. Because A0 is updated to be RA0C and b := RA0b′ in

Step 15, the moreover part of the lemma follows. 2

Remark. After A0 has been updated to be RA0A′0 in Step 15, for all x ∈ x, we redefine ℓ
(0)
x to

be the linear form that x is mapped to by BA0. Notice that Claim 5.13 continues to hold.

5.5.3.2 Making bad and quadratic terms variable disjoint

The following algorithm is used to make all the bad and quadratic terms variable disjoint as
well. After this algorithm is executed, all the non-linear terms will be variable disjoint.

For now, we postpone describing the Remove-External-Vars() algorithm and start the
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Algorithm 5 Make-Bad-And-Quadratic-Terms-Var-Disjoint( f (x), A0, b, z, u0)

Input. f (x). A0, b, z, and u0 are as returned by Make-Good-Terms-Var-Disjoint( f (x)).
Output. A ∈ GL(n, F) such that all the non-linear terms of f (Ax + b) are variable dis-
joint.

1: y← x \ z. {Discovering the y parts of quadratic forms.}
2: q̂ ← the degree-2 homogeneous component in y of f (A0x + b) when it is viewed as a

polynomial over F[z].
3: Use sparse polynomial interpolation to interpolate q̂. {q̃1, . . . , q̃m} ← the coefficients of

non-constant z-monomials when q̂ is treated as a polynomial in F[y]. q̃0 ← coefficient of
1.

4: A′1 ←Make-Polys-Var-Disjoint(q̃0, . . . , q̃m) (see Claim 5.2). u← y.
5: for i = 0, . . . , m do
6: p ← the canonical quadratic form in var (q̃i(A′1x)). Ci ← QFE(q̃i(A′1x), p). Extend Ci

to map every variable in x \ var (q̃i(A′1x)) to itself. u← u \ var (q̃i(A′1x)).
7: end for
8: A′1 ← A′1 ∏m

i=0 Ci. A1 ← A0A′1.
9:

10: /* Discovering the u parts of dangling linear forms. */
11: ℓ̂ ← the degree-1 homogeneous component in u of f (A1x + b) when it is viewed as a

polynomial over F[z].
12: Use sparse polynomial interpolation to interpolate ℓ̂. Let µ′1, . . . , µ′m′ be the non-constant

z-monomials of ℓ̂, and ℓ̂1 . . . , ℓ̂m′ be their coefficients. ℓ̂0 ← the coefficient of 1.
13: ℓ̂i1 , . . . , ℓ̂im ← a basis of

〈
ℓ̂1, . . . , ℓ̂m′

〉
. Construct a matrix A′2 that maps ℓ̂i1 , . . . , ℓ̂im to

distinct u variables, say ui1 , . . . , uim , such that if ℓ̂0 maps to u0. Also, A′2 acts as identity
on x \ u.

14: V ←
{
(µ′i1 , ui1), . . . , (µ′im , uim)

}
. A2 ← A1A′2.

15: C ← Remove-External-Vars( f (x), A2, b, z, y, u, u0, V) (Algorithm 6).
16: A← A2C. Return A.
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proof of correctness of the Make-Bad-And-Quadratic-Terms-Var-Disjoint() algorithm. In
particular, we prove the following lemma.

Lemma 5.4 (Correctness of Algorithm 5) Make-Bad-And-Quadratic-Terms-Var-Disjoint( f (x), A0, b,
z, u0), where A0, b, z, and u0 are as returned by Make-Good-Terms-Var-Disjoint( f (x)) outputs
an A ∈ GL(n, F) such that T̂1(Ax + b), . . . , T̂s′(Ax + b) are pairwise variable disjoint. Also,

∑s′
k=s2+1 T̂k(Ax+b) = ∑s′

k=s2+1(yk,1 + ck,1)(yk,2 + ck,2), where for all k ∈ {s2 + 1, . . . , s′}, ck,1, ck,2 ∈
F. Further, for all x ∈ x connected to a ×-gate in C computing a polynomial of degree at least 3,
BAx + Bb + d maps x to constant multiple of a variable. Also, if C has a top dangling variable, then
u0 only appears in ℓ(Ax + b).

Proof: We begin by stating the following useful claim. For a linear form ℓ′, we denote its
projection to variables in a variable set x′′ by [ℓ′]x′′ . Recall that for an x ∈ x, ℓ(0)x is the linear
form that x is mapped to by BA0.

Claim 5.14
{[

ℓ
(0)
y

]
y

: y ∈ y
}

is linearly independent.

Proof: BA0 is invertible and from Claim 5.13, for every z ∈ z′,
[
ℓ
(0)
z

]
y
= 0. Hence, the

sub-matrix [BA0]z′′⊎y,y of BA0 containing rows corresponding to variables in z′′ ⊎ y and
columns corresponding to variables in y is full rank. From Claim 5.13, we have that all rows
of [BA0]z′′,y are in the F-span of the rows of [BA0]y,y. Thus [BA0]y,y is full rank. The claim

follows by noticing that the entries of [BA0]y,y y are exactly the linear forms
[
ℓ
(0)
y

]
y

for all
y ∈ y. 2

From Claim 5.8, only the top dangling variable, the variables in the top quadratic form,
the dangling variables along skewed paths, and variables appearing in the quadratic forms
along the skewed paths in C need not be truly essential for det(H2). Hence, from Claim 5.13,
if for some k ∈ [s′], x ∈ xk is such that ℓ(0)x /∈ F[zk], then k ∈ {s1 + 1, . . . , s2} and x is either
a dangling variable along a skewed path or a variable appearing in some quadratic form
along a skewed path in Tk which is not truly essential for det(H2), or k ∈ {s2 + 1, . . . , s′} and
x is a variable appearing in the top quadratic form of C. Also, if x is a variable appearing
in a skewed path in Tk, then from Lemma 5.3, ℓ(0)x + bx = αz for some z ∈ zk and α ∈ F×.
Suppose that the other gate connected to the parent of x is Q. Then by ‘absorbing’ β in-
side Q(BA0x + Bb + d), we can assume without loss of generality that β = 1.1 Thus each

1As mentioned in Section 5.5.1, absorbing β in Q means that we are starting with a different but equally
valid B. This ‘new’ B is obtained from the ‘old’ B by scaling rows labelled by appropriate variables in z′. Hence,
Claim 5.13 continues to hold.
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skewed path is a monomial in F[z]. Also, we can assume without loss of generality that ev-
ery variable appearing in a skewed path in C is mapped to itself by the affine transformation
BA0x + Bb + d, i.e. the skewed paths in C and f (A0x + b) are the same. This is so because
if a variable x appearing in a skewed path in C is mapped to z ̸= x, then we can permute the
variables in C so that the leaf labelled by x is now labelled by z.1

Let q0 be the top quadratic form of C and µ1, . . . , µm be all the skewed paths in f (A0x+b)
such that no variable of the quadratic forms q1, . . . , qm corresponding to these skewed paths
in C appears in det(H2) (see Claim 5.9). Also, let the corresponding quadratic forms in
f (A0x + b) be q̂0, . . . , q̂m. Then for all i ∈ {0, . . . , m}, q̂i = qi(BA0x + Bb + d). Suppose that
q̂i = ℓ

(0)
yi,1,1ℓ

(0)
yi,1,2 + · · ·+ ℓ

(0)
yi,mi ,1

ℓ
(0)
yi,mi ,2

. It follows from the discussion in the above paragraph that

q̂ = q̃0 + µ1q̃1 + · · ·+ µmq̃m, where q̃i =
[
ℓ
(0)
yi,1,1

]
y

[
ℓ
(0)
yi,1,2

]
y
+ · · ·+

[
ℓ
(0)
yi,mi ,1

]
y

[
ℓ
(0)
yi,mi ,2

]
y
. Observe

that each q̃i is an n2-sparse polynomial. As there are at most n skewed paths in C, this means
that q̂ is an n3-sparse polynomial and can be interpolated efficiently. Claim 5.2 ensures that
after Step 4 is executed, q̃0(A′1x), . . . , q̃m(A′1x) are variable disjoint and have no redundant
variables.

Claim 5.15 After the for loop of lines 5-7 has been executed and A′1 updated to be A′1 ∏m
i=0 Ci, for all

i ∈ {0, . . . , m}, q̂i (A′1x) =
(

y′i,1,1 + hi,1,1

) (
y′i,1,2 + hi,1,2

)
+ · · ·+

(
y′i,mi,1

+ hi,mi,1

) (
y′i,mi,2

+ hi,mi,2

)
,

for some y′i,1,1, y′i,1,2, . . . , y′i,mi,1
, y′i,mi,2

∈ y and affine forms hi,1,1, hi,1,2, . . . , hi,mi,1, hi,mi,2 ∈ F[z].

Proof: Observe that for every i ∈ [m], the i-th iteration of the loop only works with q̃i(A′1x)
(where A′1 is as in Step 4) and computes a Ci which only acts non-trivially on var (q̃i(A′1x)).
Thus, we can analyse every iteration of the loop in isolation, and it sufficient to prove that
after the i-th iteration,

q̂i(A′1Cix) =
(
y′i,1,1 + hi,1,1

) (
y′i,1,2 + hi,1,2

)
+ · · ·+

(
y′i,mi,1 + hi,mi,1

) (
y′i,mi,2 + hi,mi,2

)
.

Fix an i ∈ {0, . . . , m} and let var (q̃i(A′1x)) =
{

y′i,1,1, y′i,1,2, . . . , y′i,mi,1
, y′i,mi,2

}
. As mentioned

before, q̃i(A′1x) has no redundant variables. Thus, Ci ∈ GL(2mi, F) output by the QFE

1If the permutation matrix that we need to apply to C is P, then the new ROF is C(Px) and the matrix
transforming it to f (A0x + b) is P−1BA0. While we proved Claim 5.13 for C and BA0, it continues to hold for
C(Px) and P−1BA0. This is so, because if the leaf in C labelled by x is labelled by x′ in C(Px), then the linear
form that P−1BA0 maps x′ to, i.e., the ‘new’ ℓ(0)x′ , is the ‘old’ ℓ(0)x . In other words, permuting the variables in C
just results in the leafs of C and the rows of BA0 being relabelled consistently. Through out the analysis, we
shall permute the variables of C many times, however each time we do this, everything that we have proved
up to that point for C and the matrix transforming it to f (A0x + b) would continue to hold for the new C and
the new matrix.
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algorithm is such that after it has been extended to map every variable in x \ var (q̃i(A′1x))
to itself, q̃i(A′1Cix) = y′i,1,1y′i,1,2 + · · ·+ y′i,mi,1

y′i,mi,2
.

For all j ∈ [mi] and l ∈ [2], let αl,j be the yi,j,l-th entry of Bb + d and pj,l =
[
ℓ
(0)
yi,j,l

]
z
+ αl,j.

Then,

∑
j∈[mi]

([
ℓ
(0)
yi,j,1

]
y
+ pj,1

)([
ℓ
(0)
yi,j,2

]
y
+ pj,2

)
(A′1Cix) = ∑

j∈[mi]

(
ℓj,1 + pj,1

) (
ℓj,2 + pj,2

)
,

where for j ∈ [mi], l ∈ [2], ℓj,l :=
[
ℓ
(0)
yi,j,1

]
y
(A′1Cix). Since A′1Ci ∈ GL(n, F), Claim 5.14 im-

plies that
{
ℓj,l : j ∈ [mi], l ∈ [2]

}
is linearly independent. Now q̃i(A′1Ci) = ∑j∈[mi]

ℓj,1ℓj,2 and
q̃ ∈ orb(qi). Also neither qi nor q̃i have any redundant variables. Hence from Observation
2.8, for all j ∈ [mi] and l ∈ [2], ℓj,l is a linear form solely in

{
y′i,1,1, y′i,1,2, . . . , y′i,mi,1

, y′i,mi,2

}
.

Expanding the right hand side of the above equation,

∑
j∈[mi]

(ℓj,1 + pj,1)(ℓj,2 + pj,2) = ∑
j∈[mi]

ℓj,1ℓj,2 + ∑
j∈[mi]

(ℓj,1pj,2 + ℓj,2pj,1) + ∑
j∈[mi]

pj,1pj,2. (5.7)

For j ∈ [mi], let hi,j,1 and hi,j,2 be the coefficients of yi,j,2 and yi,j,1 in ∑j∈[mi]
(ℓj,1pj,2 + ℓj,2pj,1)

respectively. Then, hi,j,1, hi,j,2 ∈ F[z] are linear polynomials and ∑j∈[mi]
(ℓj,1pj,2 + ℓj,2pj,1) =

∑j∈[mi]
(yi,j,1hi,j,2 + yi,j,2hi,j,1). Now, ∑j∈[mi]

ℓj,1ℓj,2 = ∑j∈[mi]
yi,j,1yi,j,2. Putting these in equation

(5.7),

∑
j∈[mi]

(ℓj,1 + pj,1)(ℓj,2 + pj,2) = ∑
j∈[mi]

(yi,j,1 + hi,j,1)(yi,j,2 + hi,j,2) + ∑
j∈[mi]

(pj,1pj,2 − hi,j,1hi,j,2)

(5.8)

Substitute yi,j,l = yi,j,l − hi,j,l for every j ∈ [mi], l ∈ [2] in the above equation. Then we get

∑
j∈[mi]

(ℓj,1 + p′j,1)(ℓj,2 + p′j,2) = ∑
j∈[mi]

yi,j,1yi,j,2 + ∑
j∈[mi]

(pj,1pj,2 − hi,j,1hi,j,2),

where for every j ∈ [mi], l ∈ [2], p′j,l ∈ F[z] is a linear polynomial. Note that the right
hand side of the above equation does not have a monomial containing variables from both
y and z. Thus we get ∑j∈[mi]

(ℓj,1p′j,2 + ℓj,2p′j,1) = 0. Since
{
ℓj,l : j ∈ [mi], l ∈ [2]

}
is lin-

early independent, it is easy to see that for every j ∈ [mi], p′j,1 = p′j,2 = 0, which implies
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∑j∈[mi]
(pj,1pj,2 − hi,j,1hi,j,2) = 0. Hence,

q̂i(A′1Cix) = ∑
j∈[mi]

([
ℓ
(0)
yi,j,1

]
y
+ pj,1

)([
ℓ
(0)
yi,j,2

]
y
+ pj,2

)
(A′1Cix)

= ∑
j∈[mi]

(ℓj,1 + pj,1)(ℓj,2 + pj,2)

= ∑
j∈[mi]

(yi,j,1 + hi,j,1)(yi,j,2 + hi,j,2) (from Equation (5.8)).

2

The following observation is easy to see.

Observation 5.16 All the y-variables appearing in q̂1(A′1x), . . . , q̂m(A′1x) are distinct. Also, A′1 ∈
GL(n, F) and acts as identity on variables not in var(q̃1(A1x))⊎ · · · ⊎ var(q̃m(A1x)) i.e. on z⊎ u.

In Step 8, A1 := A0A′1. For every k ∈ {s1 + 1, . . . , s′} let uk be an arbitrary subset of
u \ {u0} of size equal to the number of dangling variables in Tk which are redundant for
det(H2). While defining uks we ensure that for k ̸= k′, uk and uk′ are disjoint. Redefine yk

to be the union of the set of y variables appearing in the quadratic forms in T̂k(A1x + b)
and uk. Then, by permuting the variables in C if necessary, we can assume that yk \ uk are
the y variables appearing in the quadratic forms in Tk that are redundant for det(H2) and
uk are the dangling variables in Tk that are redundant for det(H2). For all x ∈ x, let ℓ(1)x be
the linear part of the affine form that replaces x in f (A1x + b). That is, for all x ∈ z ⊎ u,
ℓ
(1)
x = ℓ

(0)
x (A′1x) is the linear form that x is mapped to by BA1, while for all y ∈ y \ u, if

y = yi,j,l, then ℓ
(1)
y = y′i,j,l + hi,j,l.1 Also by permuting the variables in C if required, we can

assume that y = y′i,j,l.

Claim 5.16
{[

ℓ
(1)
u

]
u

: u ∈ u
}

is linearly independent.

Proof:
{
ℓ
(1)
x : x ∈ x

}
is linearly independent. As A′1 acts as identity on z ⊎ u (Observation

5.16), from Claim 5.13, we get that ℓ(1)z ∈ F[z] for all z ∈ z′. Hence, dim
〈[

ℓ
(1)
x

]
y

: x ∈ z′′ ⊎ y
〉

=

|y|. From Claim 5.9, no y ∈ y \ u is in var(det(H2)). Thus, by applying A′1 on both
sides of the equation in the second point of Claim 5.13, we get that for all z ∈ z′′, ℓ(1)z =

ℓ′z + ∑u∈u αuℓ
(1)
u , where ℓ′z ∈ F[z]. Hence,

{[
ℓ
(1)
z

]
y

: z ∈ z′′
}
∈ F-span

{[
ℓ
(1)
y

]
y

: y ∈ y
}

;

1y′i,j,l + hi,j,l need not necessarily be ℓ
(0)
y (A′1x). This is so, because for any i ∈ {0, . . . , m}, an invertible

matrix mapping qi to q̃i need not be unique.
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so
{[

ℓ
(1)
y

]
y

: y ∈ y
}

is linearly independent. Now,
{[

ℓ
(1)
y

]
y

: y ∈ y \ u
}

= y \ u. Thus,{[
ℓ
(1)
u

]
u

: u ∈ u
}

is linearly independent. 2

Recall that in f (A0x + b), y-variables are only present in ℓ
(0)
x if x the top dangling vari-

able, a variable in the top quadratic form, a dangling variable along a skewed path or a vari-
able in some quadratic form along a skewed path which is not truly essential for det(H2).
Also, A′1 acts as identity on z, and

[
ℓ
(1)
y

]
y

is a single variable in y \ u for all y ∈ y \ u.

Hence, a u-variable is only present in ℓ
(1)
x if x is the top dangling variable (i.e. u0) or a dan-

gling variable along a skewed path which is not truly essential for det(H2). So, if u1, . . . , um′

are dangling variables that are not truly essential for det(H2) and µ′1, . . . , µ′m are the corre-
sponding skewed paths, then ℓ̂ in Step 12 looks like

[
ℓ
(1)
u0

]
u
+ µ′1

[
ℓ
(1)
u1

]
u
+ · · ·+ µ′m′

[
ℓ
(1)
um′

]
u

.

Because m′ ≤ n, ℓ̂ is n2-sparse and can be interpolated efficiently. If B =
{
ℓ̂i1 , . . . , ℓ̂im

}
is a

basis of
〈
ℓ̂1, . . . , ℓ̂m′

〉
=
〈[

ℓ
(1)
u0

]
u

, . . . ,
[
ℓ
(1)
um′

]
u

〉
, then it is clearly possible to map the linear

forms ℓ̂i1 , . . . , ℓ̂im to distinct u-variables. Claims 5.13 and 5.9 imply that〈[
ℓ
(1)
x

]
u

: x ∈ z′′k ⊎ (uk ∩ var(h′k))
〉
=
〈[

ℓ
(1)
u

]
u

: u ∈ uk ∩ var(h′k)
〉

for every k ∈ {s1 + 1, . . . , s2}. Thus, Claim 5.16 implies the following observation.

Observation 5.17 For any u /∈ var(det(H2)),
[
ℓ
(1)
u

]
u
∈ B. Also, for any k ∈ {s1 + 1, . . . , s2}, B

contains |uk ∩ var(h′k)| many linear forms from
{[

ℓ
(1)
u

]
u

: u ∈ uk ∩ var(h′k)
}

.

In particular, if C has a top dangling variable, then ℓ̂0 =
[
ℓ
(1)
u0

]
u
∈ B and it is mapped to

u0 in Step 13. So, after A2 is set to A1A′2, ℓ(A2x + b), i.e. the top linear form in f (A2x + b)
contains u0. Also, because A′1 acts as identity on z ⊎ u and A′2 act as identity on z ⊎ y, A′1A′2
is identity on z. For every k ∈ {s1 + 1, . . . , s2}, let x′k ⊆ z′′k ⊎ uk, |x′k| = |uk| be such that{[

ℓ
(1)
x

]
u

: x ∈ x′k
}
⊆ B. Let x′ = ⊎s1+1≤k≤s2x′k ⊎ {u0}. Then the following observation is

easy to see.

Observation 5.18 For all x ∈ x′, ℓ(1)x (A′2x) looks like u+ h′u, for some u ∈ u and h′u ∈ F[z, y \ u].
Also, if the skewed path corresponding to x is µ, then (µ, u) ∈ V.

We now show that x′ is in a set of redundant variables for det(H2).

Claim 5.17 x′ ⊎ (y \ u) is a set of redundant variables for det(H2).
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Proof: Immediately after Step 9 of Algorithm 4 is executed, det(H2)(BRA0x+d) = h(A0x) ∈
F[z]. Because C computed in the for loop of lines 12-14 only maps some variables in z′ to lin-
ear forms in F[z], after this loop is executed, det(H2)(BRA0(Cx+b)+d) ∈ F[z]. Thus, after
A0 is updated to be RA0C and b := RA0b′ in Step 15 of Algorithm 4, det(H2)(BA0x + Bb +

d) ∈ F[z]. Since A′1 acts as identity on z and A1 = A0A′1, h′ := det(H2)(BA1x + Bb + d) ∈
F[z]. Now, from the chain rule of derivatives we have that

∇h′ = (BA1)
T [∇det(H2)] (BA1x + Bb + d),

where∇h′ and∇det(H2) are gradients of h′ and det(H2) with respect to x, respectively. As
h′ does not contain any u-variable,

0 =
[
∇h′

]
u = [(BA1)

T]u [∇det(H2)] (BA1x + Bb + d),

where [∇h′]u is ∇h′ restricted to entries corresponding to u and [(BA1)
T]u is (BA1)

T re-
stricted to rows corresponding to u. Thus,

[(BA1)
T]u,x′ [∇det(H2)]x′ = −[(BA1)

T]u,x\x′ [∇det(H2)]x\x′ ,

where [(BA1)
T]u,x′ and [(BA1)

T]u,x\x′ are the sub-matrices of (BA1)
T whose rows and columns

are labelled by variables in u, x′ and u, x \ x′ variables respectively. As B = [BA1]x′,uu,
[(BA1)

T]u,x′ is invertible. By right multiplying its inverse on both sides of the above equa-
tion, we get that for all x′ ∈ x′, ∂

∂x′ det(H2) ∈ F-span
{

∂
∂x det(H2) : x ∈ var(det(H2)) \ x′

}
.

Hence, x′ is redundant for det(H2). Then, as no variable y \u is present in det(H2), the claim
follows. 2

Using an argument similar to the one used to prove Claim 5.13, we can prove the follow-
ing observation.

Observation 5.19 For all k ∈ {s1 + 1, . . . , s2} and all x ∈ z′′k ⊎ (uk ∩ var(h′k)), ℓ
(1)
x = ℓ′′x +

∑
x′∈x′∩
var(h′k)

α′x′ℓ
(1)
x′ , where ℓ′′x ∈ F[zk] and α′x′ ∈ F for all x′ ∈ x′k ∩ var(h′k).

For all x ∈ x, let ℓ
(2)
x = ℓ

(1)
x (A′2x) be the linear part of the affine from that replaces

x in f (A2x + b). Because A′1A′2 acts as identity on zk, Observations 5.17 and 5.19 imply
that if for all k ∈ {s1 + 1, . . . , s2} and x ∈ x′k, we can remove variables not in zk ⊎ yk - i.e.
“external” variables - from ℓ

(2)
x , then all linear forms corresponding to dangling variables
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along skewed paths in Tk would just be in zk ⊎ yk variables. Similarly, because A′2 acts as
identity on y, Claim 5.15 implies that if we can remove variables not in zk from ℓ

(2)
y for all

y ∈ yk \ uk, then all linear forms corresponding to variables appearing in quadratic forms
along skewed paths in Tk would just be in zk ⊎ yk variables. Then all the non-linear terms of
f (A2x + b) would become variable disjoint. We now describe the Remove-External-Vars()
algorithm and show that it does just this.

Algorithm 6 Remove-External-Vars( f (x), A2, b, z, y, u, u0, V)
Input. f (x), A2, b, z, y, u, u0, and V are as in Step 14 of Algorithm 5.
Output. A ∈ GL(n, F) such that all the non-linear terms of f (Ax + b) are variable dis-
joint.

1: /* Removing external z-variables from quadratic forms and external y-variables from
linear forms. */

2: A′3 ← In×n.
3: for y ∈ y \ u do
4: Interpolate g ← ∂ f (A2x+b)

∂y . If µ is the z-monomial multiplied to the only y-variable,
say y′, in g, then write g = µ(y′ + ℓ′y′ + αy′) + r(z), where ℓ′y′ ∈ F[z] is a linear form,
αy′ ∈ F, and r(z) ∈ F[z].

5: Update A′3 so that it maps y′ to y′ − ℓ′y′ .
6: for every monomial µ′ in r(z) do
7: If there exists a u′ such that (µ′, u′) ∈ V, update A′3 to map u′ to u′ − βy, where β is

the coefficient of µ′ in r(z).
8: end for
9: end for

10: A3 ← A2A′3.
11:

12: /* Removing external z variables from linear forms. */
13: A′4 ← In×n. F ← a subset of F of size n5.
14: for (µ, u) ∈ V such that deg(µ) ≥ 2 do
15: for z ∈ z do
16: g← f (A3(var(µ), z, x \ (var(µ) ⊎ {z}) = 0) + b).
17: Interpolate ∂g

∂z . Let α be the coefficient of µ in ∂g
∂z . Update A′4 to map u to u− αz.

18: end for
19: end for
20: for (µ, u) ∈ V such that deg(µ) = 1 do
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21: for z ∈ z do
22: Set all variables in f (A3A′4x + b) other then var(µ) and z to random elements from

F. g← the resulting polynomial.
23: Interpolate ∂g

∂z . Let α be the coefficient of µ in ∂g
∂z . Update A′4 to map u to u− αz.

24: end for
25: end for
26: A← A3A′4. Return A.

We first consider the for loop of lines 3-9 and show that the matrix A′3 computed by
this loop is such that it removes all variables not in zk ⊎ yk from ℓ

(2)
y for all y ∈ yk and

k ∈ {s1 + 1, . . . , s′}, and removes all variables in y \ yk from ℓ
(2)
x for all x ∈ x′k and k ∈

{s1 + 1, . . . , s2}. Before arguing this, we remark that in any iteration of this loop, g is a 2n-
sparse polynomial. This is so, because any y ∈ y is only present in ℓ

(2)
y and in ℓ

(2)
x for x ∈ x′.

Thus, every monomial in r(z) is a skewed path and there are at most n skewed paths.

Claim 5.18 The matrix A′3 computed after the execution of the for loop of lines 3-9 is such that for
every k ∈ {s1 + 1, . . . , s2} and every y′ ∈ yk \ uk, ℓ(2)y′ (A′3x) ∈ F[zk ⊎ yk].

Proof: Pick any arbitrary k ∈ {s1 + 1, . . . , s2} and y′ ∈ yk. If ℓ(2)y′ contains a variable not
in zk ⊎ yk, because of Claim 5.15 and the fact that A′2 acts as identity on z ⊎ (y \ u), it must
be in z \ zk. Suppose that yy′ is a term in the quadratic form along a skewed µ in Tk. Fix
any z ∈ z \ zk; if z ∈ var

(
ℓ
(2)
y′

)
, then during the y-th iteration of the for loop of lines 3-9,

g contains the monomial µz. We now argue that the only place in f (A2x + b) which can
contribute µz to g is µℓ

(2)
y′ . This implies that the coefficient of µz in g, i.e., the coefficient of z

in ℓ′y′ after Step 4 is equal to its coefficient in ℓ
(2)
y′ .

For µz to be present in g, µzy must be present in f (A2x + b). We claim that µzy is not
present in T̂k′(A2x + b) for any k′ ̸= k. If k′ ∈ [s1], then this directly follows from Claim
5.13 and the fact that A′1A′2 act as identity on zk. For a k′ ∈ {s1 + 1, . . . , s}, note that as
k ∈ {s1 + 1, . . . , s2}, deg(µ) ≥ 1. Because y and variables in var(µ) are not in zk′ ⊎ yk′ , y
can only be present in ℓ

(2)
x for some x ∈ xk′ if x is a dangling variable along some skewed

path. Hence any monomial of T̂k′(A2x + b) containing y cannot contain any other variable
in zk ⊎ yk. So, µyz is not present in T̂k′(A2x + b).

Now, apart from ℓ
(2)
y , y can only appear in ℓ

(2)
x for some x ∈ xk, if x is a dangling variable

along some skewed path, say µ′. However, since z /∈ zk, z /∈ var(µ′). So, µzy cannot be
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present in µ′ℓ
(2)
x . This only leaves µℓ

(2)
y′ as the place that can contribute µz. Hence the coeffi-

cient of z in ℓ′y′ is equal to its coefficient in ℓ
(2)
y1 . Now, notice that y′ is not present in g in any

iteration of the for loop other than the y-th iteration. Hence, through out the execution of the
loop, A′3 only acts on y′ during the y-th iteration. In this iteration, after Step 5 is executed,
ℓ
(2)
y′ (A′3x + b′) does not contain z as A′3 is updated to map y′ to y′ − ℓ′y′ . Since this is true for

any z ∈ z \ zk, the claim follows. 2

To show that BA2A′3 maps the top quadratic form to ∑s′
k=s2+1(yk,1 + ck,1)(yk,2 + ck,2) and

A′3 removes external y variables from ℓ
(2)
u0 , we shall use the following two observations.

Observation 5.20 For any y ∈ ⊎s′
k′=s2+1yk′ and any k ∈ {s1 + 1, . . . , s2}, if Tk = zQ and the top

dangling variable of Q is x, then it can be assumed without loss of generality that y is not present in
ℓ
(2)
x .

Proof: Suppose that yy′ is a term in ∑s′
k′=s2+1 Tk′ and that the coefficient of y in ℓ

(2)
x is β. Then

we ‘absorb’ βz in ℓ
(2)
y′ and subtract β

(
ℓ
(2)
y + c− y

)
from ℓ

(2)
x ; here c is the constant term of

the affine form that replaces y in f (A2x + b). This does not change f (A2x + b). 2

Observation 5.21 If C has a top dangling variable, then for any y ∈ ⊎s′
k=s2+1yk, it can be assumed

without loss of generality that the affine form replacing y in f (A2x + b) has no constant.

Proof: Suppose that Tk = y1y2 for some k ∈ {s2 + 1, . . . , s′} and that T̂k(A2x + b) =

(ℓ
(2)
y1 + c1)(ℓ

(2)
y2 + c2), where c1, c2 ∈ F. Then we add c2ℓ

(2)
y1 + c1ℓ

(2)
y2 to ℓ

(2)
u0 and add c1c2 to the

constant of the affine form replacing u0 in f (A2x + b). This does not change f (A2x + b). 2

We call every x ∈ x′ such that some Tk = zQ and x is the top dangling variable of Q, a
bad dangling variable. For every y ∈ ⊎s′

k′=s2+1yk′ , every bad dangling variable x, and u0 we

redefine ℓ
(2)
y , ℓ(2)x and ℓ

(2)
u0 as mentioned in the proofs of the above observations.

Claim 5.19 The matrix A′3 computed after the execution of the for loop of lines 3-9 is such that for
every y′ ∈ ⊎s2+1≤k≤s′yk, ℓ(2)y′ (A′3x) = y′ + c for some c ∈ F.

Proof: Pick any arbitrary k ∈ {s2 + 1, . . . , s′} and y′ ∈ yk. If ℓ(2)y′ contains a variable not in yk

(as zk = ∅), because of Claim 5.15 and the fact that A′2 acts as identity on z ⊎ (y \ u), it must
be in z. Suppose that Tk = yy′. Fix any z ∈ z; if z ∈ var

(
ℓ
(2)
y′

)
, then during the y-th iteration

of the for loop of lines 3-9, g contains z. We now show that the only place in f (A2x + b)
that can contribute z to g is ℓ

(2)
y′ . Observe that for z to be present in g, yz must be present
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in f (A2x + b). Apart from ℓ
(2)
y , y is only present in ℓ

(2)
x if x is a dangling variable along a

skewed path in some bad term Tk′ or x = u0. However, Observation 5.20 implies that we
can assume without loss of generality that the only place in f (A2x + b) that contains zy is
ℓ
(2)
y ℓ

(2)
y′ . Thus, after Step 5 is executed, y′ is mapped to an affine form in y′ in f (A2A′3x + b).

2

Claims 5.18 and 5.19 ensure that external variables are removed from the linear forms
corresponding to variables appearing in quadratic forms along skewed paths and the top
quadratic form. The following claim proves that external y variables are removed from
linear forms corresponding to dangling variables along skewed paths and the top dangling
variable.

Claim 5.20 The matrix A′3 computed after the execution of the for loop of lines 3-9 is such that for
every k ∈ {s1 + 1, . . . , s2} and x ∈ x′k, ℓ(2)x (A′3x) does not contain any variable from y \ yk. Also if
C has a top dangling variable, then ℓ

(2)
u0 (A′3x) does not contain any y variable other than u0.

Proof: Fix a k ∈ {s1 + 1, . . . , s2} and an x ∈ x′k. Suppose that y ∈ y \ yk is present in
ℓ
(2)
x . Then, in the y-th iteration of the for loop of lines 3-9, the monomial µ′ representing the

skewed path corresponding to x is in r(z). Observe that deg(µ′) ≥ 1. Note that the only
time A′3 translates the sole u-variable u′ in ℓ

(2)
x by a multiple of y is in the y-th iteration of the

loop. So it suffices to prove that in this iteration, β in Step 7 is the coefficient of y in ℓ
(2)
x . We

do this by showing that the only place in f (A2x + b) from which µ′ can appear in g is from
µ′ℓ

(2)
x .
For µ′ to be present in g, µ′y must be present in f (A2x + b). We claim that µ′y cannot be

present in T̂k′(A2x + b) for any k′ ̸= k. Because of Claims 5.18 and 5.19, variables in var(µ′)
can only be present in ℓ

(2)
x′ for some x′ ∈ xk′ if x′ is a dangling variable along some skewed

path in Tk′ or x′ = u0. Hence any monomial of T̂k′(A2x + b) containing a variable in var(µ′)
cannot contain any other variable in zk ⊎ yk. So, µ′y is not present in T̂k′(A2x + b).

Now, in T̂k(A2x + b), y is only present in ℓ
(2)
x′ for some x′ ∈ xk if x′ is a dangling variable

along some skewed path. However, if that skewed path is µ′′, then the monomial present in
T̂k(A2x + b) is µ′′y. Hence µ′′ℓ

(2)
x′ can contain the monomial µ′y only if µ′′ = µ′ and x′ = x.

Thus only µ′ℓ
(2)
x contributes µ′ to g, and β is precisely the coefficient of y in ℓ

(2)
x . Hence, after

A′3 has been updated to map u′ to u′ − βy in Step 7, ℓ(2)x (A′3x) does not contain y.
For any y ∈ ℓ

(2)
u0 , in the y-th iteration of the loop, r(z) contains a constant, say β. Because

u0 is only translated by a constant multiple of y in the y-th iteration of the loop, it is sufficient
to show that β is the coefficient of y in ℓ

(2)
u0 . If y ∈ yk for some k ∈ {s1 + 1, . . . , s2}, then every

monomial in f (A2x + b) containing y must also contain a skewed path. Observation 5.21
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implies that A′3 maps the top quadratic from to ∑s′
k=s2+1 yk,1yk,2. Thus βy is also not present in

the top quadratic form. Hence β is exactly the coefficient of y in ℓ
(2)
u0 . Also, in this case when

Step 7 is executed, u′ = u0. So after A′3 has been updated to map u′ to u′ − βy, ℓ(2)u0 (A′3x)
does not contain y. 2

After A3 has been defined as A2A′3, let ℓ(3)x be the linear part of the affine form replacing
x in f (A3x + b). Note that for all x other than those in ⊎s2+1≤k≤s′yk, bad dangling variables,
and u0, ℓ(3)x = ℓ

(2)
x (A′3x). Now from Claim 5.18, for all k ∈ {s1 + 1, . . . , s2}, the only x ∈ xk

for which ℓ
(3)
x contains variables not in zk ⊎ yk are dangling variables along skewed paths.

Also, for all x ∈ x′k, Claim 5.20 implies that ℓ(3)x ∈ F[z ⊎ yk]. Now A′2A′3 acts as identity on z
and Claim 5.10 implies that no bad dangling variable is in var(det(H2)). Thus Observation
5.19 implies that for all k ∈ {s1 + 1, . . . , s2}, x ∈ z′′k ⊎ uk, ℓ(3)x ∈ F[z ⊎ yk].

Claim 5.21 The matrix A′4 computed after the execution of the for loop of lines 14-19 is such that for
every k ∈ {s1 + 1, . . . , s2}, x ∈ x′k is not a bad dangling variable, ℓ(3)x (A′4x) ∈ F[zk ⊎ yk].

Proof: Fix any k ∈ {s1 + 1, . . . , s2} and x ∈ x′k which is not a bad dangling variable. If the
corresponding skewed path is µ, then deg(µ) ≥ 2. Also, from Observation 5.18, if the sole
u variable in ℓ

(3)
u is u, then (µ, u) ∈ V. We analyse the iteration of the for loop of lines 14-19

corresponding to (µ, u). Fix any z ∈ z \ zk. We show that in the z-th iteration of the for loop
of lines 15-18 the coefficient of µz in g is exactly the coefficient of z in ℓ

(3)
x .

As deg(µ) ≥ 2, µz is not present in T̂k′(A3x + b) for any k′ ̸= k. Also, in T̂k(A3x + b),
z is only present in ℓ

(3)
x for some x ∈ xk, if x is a dangling variable along a skewed path.

However, if the skewed path corresponding to x is µ′, then we get the monomial µ′z form
µ′ℓ

(3)
x . This means that µ′ = µ and hence in T̂k(A3x + b), µz is only obtained from µℓ

(3)
x .

This means that in Step 17, α is precisely the coefficient of z in ℓ
(3)
x . Hence, after that step

is executed and A′4 updated to map u to u − αz, ℓ(3)x (A′4x) does not contain z. Also, ob-
serve that the only monomials containing z in T̂k′(A3(var(µ′), z, x \ (var(µ′) ⊎ {z}) =

0) + b), for k′ ̸= k can be of degree at most 2. Further any monomial containing z in
T̂k(A3(var(µ′), z, x \ (var(µ′) ⊎ {z}) = 0) + b) must look like µ′z, where µ′ is a sub-
monomial of µ. Hence, ∂g

∂z is sparse and can be interpolated efficiently. 2

The above claim immediately implies that for all k ∈ {s1 + 1, . . . , s2}, ℓ(3)x (A′4x) ∈ F[zk ⊎
yk] for all x ∈ z′′k ⊎ uk which is not a bad dangling variable. To prove an analogous statement
for the bad dangling variables we need the following observation. Note that Claim 5.10 and
Observation 5.17 imply that every bad dangling variable is in x′.
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Observation 5.22 Suppose that x1, . . . , xm are all the bad dangling variables, the corresponding
skewed paths are µ1, . . . , µm, the sole u variables in ℓ

(3)
x1 , . . . , ℓ(3)xm are u1, . . . , um, and the for loop of

lines 20-25 processes (µ1, u1), . . . , (µm, um) in that order. Then, it can be assumed without loss of
generality that for all i ∈ [m] and all j < i, ℓ(3)xi does not contain zj.

Proof: For all i ∈ [m] and all j < i, let the coefficient of zj in ℓ
(3)
xi be βi,j. For all j ∈ [m],

we ‘absorb’ ∑m
i=j+1 βi,jzi in ℓ

(3)
xj and remove βi,jzj from ℓ

(3)
xi for all i > j. This does not change

f (A3x + b). 2

For every bad dangling variable x, we redefine ℓ
(3)
x as mentioned in the proof of the

above observation. The following claim shows that variables in z \ zk are removed from ℓ
(3)
x

for every bad dangling variable x ∈ x′k as well.

Claim 5.22 The matrix A′4 computed after the execution of the for loop of lines 20-25 is such that for
every k ∈ {s1 + 1, . . . , s2}, and every bad dangling variable x ∈ x′k, ℓ(3)x (A′4) ∈ F[zk ⊎ yk].

Proof: We prove the claim by showing that the following loop invariant holds: The ma-
trix A′4 computed after the i-th iteration of the loop is such that for all j ≤ i, if xj ∈ x′k,

then ℓ̂
(3)
xj (A′4x) ∈ F[zk ⊎ yk]. Suppose that the invariant is true before the execution of the

i-th iteration of the loop; it is trivially true before the first iteration. Suppose that xi ∈ x′k.
First we consider the z-th iteration of the for loop of lines 21-24 for a z /∈ zk ∪ {z1, . . . , zm}.
Since for any k ∈ [s], the only x ∈ xk such that ℓ

(3)
x (A′4x) contains variables not in zk

are x ∈ {u0, x1, . . . , xm}, the only place in f (A3A′4x + b) that can contribute ziz to g is
zi · ℓ

(3)
xi (A′4x). Hence, in Step 23 α is exactly the coefficient of z in ℓ

(3)
ui (A′4x). Thus after

that step is executed and A′4 is updated to map the sole u variable ui in ℓ
(3)
xi (A′4x) to ui − αz,

ℓ
(3)
xi (A′4x) does not contain z. For a z ∈ {z1, . . . , zi−i}, the assumption that the loop invariant

is true before the i-th iteration and Observation 5.22 imply that ziz is not a monomial in g
and hence z is not present in ∂g

∂z . On the other hand, for all z ∈ {zi+1, . . . , zm}, Observation
5.22 implies that in Step 23 α is exactly the coefficient of z in ℓ

(3)
xi (A′4x). Hence, after that step

is executed and A′4 updated to map the sole u variable ui in ℓ
(3)
xi (A′4x) to ui − αz, ℓ(3)xi (A′4x)

does not contain z. Notice that this also implies that the monomial ziz is no longer present in
f (A′4x + b). Also, in the i-th iteration, A′4 does not act on any variable other than ui. Hence,
the invariant is also true after the execution of this iteration. 2

Let ℓ(4)x be the linear part of the affine form replacing x in f (Ax + b). For all k ∈ [s′] and
x ∈ xk, ℓ(4)x is now a linear form in zk ⊎ yk = xk. Also, Claim 5.19 and the fact that A′4 acts as
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identity on y implies that
s′

∑
k∈s2+1

T̂k(Ax + b) =
s′

∑
k∈s2+1

(yk,1 + ck,1) (yk,2 + ck,2). Now, as seen

in the proof of Lemma 5.3, for every x ∈ x connected to a × gate computing a polynomial of
degree at least three, ℓ(1)x is a constant multiple of a z-variable. As A′1 · · · A′4 acts as identity
on z, so is ℓ

(4)
x . Moreover, if C has a top dangling variable u0 = xn, then from Claim 5.20,

the only u variable in ℓ
(2)
u0 was u0. As A′3 merely translates u0 by constant multiples of y-

variables and A′4 acts as identity on u0, the only u variable in ℓ
(4)
u0 is u0. Also, u0 /∈ var

(
ℓ
(4)
x

)
for any x ̸= u0. 2

5.5.3.3 Discovering the top linear form

We begin by stating the following useful claim.

Claim 5.23 (Learning variable sets) After Step 14 of Algorithm 3 is executed, zk = var
(

T̂k(Ax + b)
)

for all k ∈ [s2].1

Proof: There are two cases.

Case 1: k ∈ [s1], say Tk = Qk,1 · · ·Qk,mk
, mk ≥ 2 or neither Qk,1 nor Qk,2 is linear, T̂k =

Q̂k,1 · · · Q̂k,mk
, and Q̂k,l = Qk,l(Bx + d) for all l ∈ [mk]. Then from Claim 5.7,

Q̂k,1(RA0x), . . . , Q̂k,mk
(RA0x)

are irreducible factors of h(A0x) where R, A0, and h are as just before Step 9 of Algorithm
4 is executed. Because ẑ1, . . . , ẑm are returned by Make-Factors-Var-Disjoint(h(A0x)), from
Claim 5.3, for every l ∈ [mk], there exists an i ∈ [m] such that var

(
Q̂k,l(RA0x)

)
⊆ ẑi, where

A0 is as after Step 9 of Algorithm 4 has been executed. It follows from Observation 2.8 that
every variable in var(Qk,l) is mapped to a linear from in ẑi by BRA0. As C only maps some
of these linear forms to constant multiples of variables in ẑi, even after A0 is updated to be
RA0C in Step 15 of Algorithm 4, var

(
Q̂k,l(A0x + b)

)
= var

(
Q̂k,l(A0x)

)
⊆ ẑi. Because in

Algorithms 5 and 6, A′1, . . . , A′4 act as identity on z, var
(

Q̂k,l(Ax + b)
)
⊆ ẑi where A and b

are as after Step 4 of Algorithm 3.
If var

(
Q̂k,1(Ax + b)

)
∪ · · · ∪var

(
Q̂k,mk

(Ax + b)
)
⊆ ẑi, then var

(
T̂k(Ax + b)

)
is clearly

contained in a single connected component of G. So suppose that there exist disjoint sets

1Here we are overloading the notation. Now zk = var
(

T̂k(Ax + b)
)

. but in Sections 5.5.3.1 and 5.5.3.2 it
was a set of essential variables of det(HTk ) evaluated at BRAx + d. The new zk is the union of the old zk and
zy.
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I1, I2 ⊆ [mk] and i ̸= j ∈ [m] such that∪l∈I1var
(

Q̂k,l(Ax + b)
)
⊆ ẑi, ∪l∈I2var

(
Q̂k,l(Ax + b)

)
⊆

ẑj, and ∪l /∈I1⊎I2var
(

Q̂k,l(Ax + b)
)
∩ (ẑi ⊎ ẑj) = ∅. Then, for any z1 ∈ ẑi and z2 ∈ ẑj,

∂2 f (Ax + b)
∂z1∂z2

=
∂2T̂k(Ax + b)

∂z1∂z2

=
∂

∂z1

(
∏
l∈I1

Q̂k,l(Ax + b)

)
· ∂

∂z2

(
∏
l∈I2

Q̂k,l(Ax + b)

)
·
(

∏
l /∈I1⊎I2

Q̂k,l(Ax + b)

)
̸= 0

So the edge
{

ẑi, ẑj
}

is added to G, and var
(

T̂k(Ax + b)
)

is in a single connected component
of G.
Case 2: k ∈ {s1 + 1, . . . , s2}, say T̂k = Q̂k,1Q̂k,2, where Q̂k,1 is in the orbit of a variable. If there
exists an i such that var

(
Q̂k,1(Ax + b)

)
∪ var

(
Q̂k,2(Ax + b)

)
⊆ ẑi, then var

(
T̂k(Ax + b)

)
is clearly contained in a single connected component of G. Otherwise, it follows from
Lemma 5.4 that Q̂k,1(Ax + b) is a constant multiple of a variable, say z1 ∈ ẑi. Let x be
any variable in Q̂k,2(Ax + b). First suppose that x ∈ ẑj for some j ̸= i and x = z2.

Then ∂2 f (Ax+b)
∂z1∂z2

= ∂2T̂k(Ax+b)
∂z1∂z2

= ∂
∂z1

(
Q̂k,1(Ax + b) · ∂Q̂k,2(Ax+b)

∂z2

)
. As, ∂Q̂k,2(Ax+b)

∂z2
̸= 0, z1 ∈

var
(

Q̂k,1(Ax + b) · ∂Q̂k,2(Ax+b)
∂z2

)
. Thus, ∂2 f (Ax+b)

∂z1∂z2
̸= 0 and the edge

{
ẑi, ẑj

}
is added to G.

Now, if x ∈ y and x = y, even then using the same argument as above, ∂2 f (Ax+b)
∂z1∂y ̸= 0 and

the edge {ẑ, y} is added to G. Thus var
(

T̂k(Ax + b)
)

is contained in a single connected
component of G.

So for all k ∈ [s2], var
(

T̂k(Ax + b)
)

is contained in a single connected component of

G. Also, for k ̸= k′ ∈ [s′] and any z1 ∈ T̂k(Ax + b), z2 ∈ T̂k′(Ax + b), ∂2 f (Ax+b)
∂z1∂z2

=

0. Thus, var
(

T̂k(Ax + b)
)

corresponds to a connected component in G. Further for any

y1, y2 ∈ var
(

T̂s2+1(Ax + b)
)
⊎ . . . ⊎ var

(
T̂s′(Ax + b)

)
observe that ∂2 f (Ax)

∂y1∂y2
is never com-

puted, hence they are in distinct connected components of G of size 1 each. u0 is also in
a connected component containing just itself. Hence the only connected components of G
with more then 1 variable correspond to var

(
T̂1(Ax + b)

)
, . . . , var

(
T̂s2(Ax + b)

)
. 2

Because of Step 17 of Algorithm 3, the following algorithm will only be called if C has a
top dangling variable. It finds an affine form ℓ′ such that when we map u0 to u0 − ℓ′ in
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f (Ax + b), all its terms become variable disjoint and ℓ(Ax + b) becomes u0 + c for some
c ∈ F (recall that ℓ is the affine form that the top dangling variable is mapped to by Bx + d).
This is done in s2 iterations. In the k-th iteration it finds ℓ′ restricted to zk variables, denoted
by ℓk.

Algorithm 7 Find-Top-Linear-Form( f ′)
Input: f ′ = f (Ax + b), where A and b as after Step 4 of Algorithm 3.
Output: An affine form ℓ′ such that all terms in f ′ (x \ {u0} , u0 = u0 − ℓ′) are variable dis-
joint.

1: for k ∈ [s2] do
2: T̂ ← f ′(zk, x \ zk = 0). h′ ← the Hessian determinant of T̂ with respect to zk-variables.

N ← the set of irreducible factors of h′. F ← a subset of F of size at least n5.
3: for Q̂ ∈ N do
4: if Q̂ is not linear then
5:

6: /* Q̂ is non-linear. */
7: a1, . . . , a|zk| ← vectors of size |zk| containing random elements from F. t← a fresh

variable.
8: ∀i ∈ [|zk|], interpolate Q̂(tai) and T̂(tai). Discover Q̂′i(t) and βi,0, βi,1 ∈ F such

that Q̂(tai) · Q̂′i(t) + βi,1 · t + βi,0 = T̂(tai) by solving a system of linear equations
in the coefficients of Q̂′i(t) and βi,0, βi,1.

9: Interpolate ∑z∈zk
αzz using βi,1, . . . , β|zk|,1. If T̂−∑z∈zk

αzz− β1,0 is reducible, ℓk ←
∑z∈zk

αzz− β1,0 and T̂ ← T̂ − ℓk. Break.
10:

11: else
12: /* Q̂ is linear. */

13: Suppose Q̂ = z; if not, move to the next iteration. ai, . . . , a|zk|−1 ← vectors of size
|zk| − 1 containing random elements from F. t← a fresh variable.

14: ∀i ∈ [|zk| − 1], interpolate T̂(z, zk \ {z} = tai). Find Q̂′i(z, t) and βi,0, βi,1, βi,2 ∈ F

such that z · Q̂′i(z, t) + βi,2 · z + βi,1 · t + βi,0 = T̂(z, zk \ {z} = tai) by solving a
system of linear equations in the coefficients of Q̂′i(z, t) and βi,0, βi,1, βi,2.

15: Interpolate ∑z′∈zk\{z} αz′z′ using βi,1, . . . , β|zk|−1,1. If T̂ − ∑z′∈zk\{z} αz′z′ − β1,0 is
reducible, ℓk ← ∑z′∈zk\{z} αz′z′ − β1,0 and T̂ ← T̂ − ℓk. Break.

16: end if
17: end for
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18: end for
19: ℓ′ ← ∑k∈[s2] ℓk. Return ℓ′.

We now prove the following lemma.

Lemma 5.5 (Correctness of Algorithm 7) Find-Top-Linear-Form( f (Ax + b)), where A and b
are as after Step 4 of Algorithm 3, finds an affine form ℓ′ such that when u0 is mapped to u0 − ℓ′

in f (Ax + b), all its terms become variable disjoint and ℓ(Ax + b) becomes u0 + α for some α ∈ F.

Proof: Because of Step 17 of Algorithm 3, this algorithm will only be called if C has a
top dangling variable. Recall that the variable sets of T̂1(Ax + b), . . . , T̂s2(Ax + b), and

∑s′
k=s2+1 T̂k(Ax + b) are z1, . . . , zs2 , and y \ {u0} respectively. From Observation 5.18 the

coefficient of u0 in ℓ(Ax + b) is 1, and from Claim 5.20 no y ∈ y \ {u0} appears in ℓ(Ax + b).
Let ℓ(Ax + b) = u0 + ∑z∈z cz · z + c0; recall that z = z1 ⊎ · · · ⊎ zs2 . Fix a k ∈ [s2]. We now
show that in k-th iteration of the loop of lines 1-18 (the outer loop), the algorithm finds ℓk

which is ℓ′ restricted to zk variables. Towards this, we first show that in the k-th iteration of
the outer loop, T̂ is reducible after the execution of the for loop of lines 3-17 (the inner loop).

Claim 5.24 For any k ∈ [s2], after the execution of the inner loop during the k-th iteration of the
outer loop, T̂ is reducible.

Proof: At the beginning of the k-th iteration, T̂ = T̂k(Ax+ b) + [ℓ(Ax + b)]zk
+ γ′, for some

γ′ ∈ F. In the algorithm N is the set of irreducible factors of h′ which is the Hessian determi-
nant of T̂ with respect to the zk-variables. Let T̂k = Q̂k,1 · · · Q̂k,mk

. It follows from Corollary
5.1 and Fact 2.4, that at least one of the Q̂k,1(Ax + b), . . . , Q̂k,mk

(Ax + b) is in an irreducible
factor of h′. Hence, a constant multiple of at least one of the Q̂k,1(Ax + b), . . . , Q̂k,mk

(Ax + b)
is present in N along with some other ‘bad’ factors. Fix a Q̂ ∈ N. Then it is either a ‘good’
non-linear factor, ‘good’ linear factor, or a bad factor. In the following two claims we show
that in the first two cases, T̂ is made reducible.

Claim 5.25 If Q̂ is a constant multiple of one of the Q̂k,1(Ax + b), . . . , Q̂k,mk
(Ax + b) and is non-

linear, then after the execution of the first inner loop, T̂ is reducible.

Proof: Fix an i ∈ [|zk|]. As ai is chosen randomly, deg(Q̂(tai)) ≥ 2 with high probability.
Notice that there exist Q̂′i, βi,0, βi,1 such that Q̂(tai) · Q̂′i(t) + βi,1 · t + βi,0 = T̂(tai) is satisfied;
one solution is Q̂′i =

(
T̂k(Ax + b)/Q̂

)
(tai), βi,1 = (∑z∈zk

cz · z)(ai), and βi,0 = γ′. We claim
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that this solution is unique with high probability. Suppose that there existed two solutions
Q̂′i, βi,0, βi,1 and Q̂′′i , β′i,0, β′i,1. Then Q̂(tai) · (Q̂′i(t)− Q̂′′i (t)) = (β′i,1 − βi,1) · t + β′i,0 − βi,0. As
deg(Q̂(tai)) ≥ 2 with high probability, this is only possible if Q̂′i(t) = Q̂′′i (t), βi,1 = β′i,1 and
βi,0 = β′i,1. In particular βi,1 = (∑z∈zk

cz · z)(ai) and βi,0 = γ′. Thus, after we interpolate

∑z∈zk
αzz using βi,1, . . . , β|zk|,1 and set ℓk = ∑z∈zk

αzz + β1,0, T̂ = T̂k(Ax + b) + [ℓ(Ax +

b)]zk + γ′ − ℓk = T̂k(Ax + b) is reducible. 2

Claim 5.26 If Q̂ is a constant multiple of one of the Q̂k,1(Ax+ b), . . . , Q̂k,mk
(Ax+ b) and is linear,

after the execution of the first inner loop, T̂ is reducible.

Proof: Fix an i ∈ [|zk| − 1]. Because deg(Tk) ≥ 3, Lemma 5.4 implies that Q̂ is a variable.
Notice that there exist Q̂′i(z, t), βi,2, βi,1, βi,0 satisfying z · Q̂′i(z, t) + βi,2 · z + βi,1 · t + βi,0 =

T̂(z, zk \ {z} = ai · t); one such solution is Q̂′i =
(

T̂k(Ax + b)/Q̂
)
(z, tai), βi,2 = cz, βi,1 =

(∑z′∈zk\{z} cz′ · z′)(ai) and βi,0 = γ′. We now show that βi,1, and βi,0 are unique with high
probability. Suppose there are two solutions Q̂′i(z, t), βi,2, βi,1, βi,0 and Q̂′′i (z, t), β′i,2, β′i,1, β′i,0.
Then, z · (Q̂′i(z, t) − Q̂′′i (z, t)) + (βi,2 − β′i,2) · z = (β′i,1 − βi,1) · t + (β′i,0 − βi,0). By putting
z = 0 it can be seen that βi,1 = β′i,1 = (∑z′∈zk\{z} cz′ · z′)(ai) and βi,0 = β′i,0 = γ′. Thus,
after we interpolate ∑z′∈zk\{z} αz′z′ using βi,1, . . . , β|zk|,1 and set ℓk = ∑z′∈zk\{z} αz′z′ + β1,0,
T̂ = T̂k(Ax + b) + [ℓ(Ax + b)]zk + γ′ − ℓk = T̂k(Ax + b) is reducible. 2

Consider an iteration of the inner loop for a bad Q̂. If in this iteration T̂ is made reducible,
then there is nothing to prove. Otherwise it follows from the above two observations that
for all previous iterations of the inner loop, Q̂ must have been a bad factor. It follows from
Corollary 5.1, that at least one of Q̂k,1(Ax + b), . . . , Q̂k,mk

(Ax + b) is an irreducible factor of
h′. This means that the next iteration of this loop will be executed and this will continue to
happen until for an iteration Q̂ is a constant multiple of Q̂k,1(Ax + b), . . . , Q̂k,mk

(Ax + b).
The claim follows from Claims 5.25 and 5.26. 2

We now prove a structural result.

Claim 5.27 Suppose that Q1 · · ·Qm + u is a canonical ROF. Let T = Q1 · · ·Qm + ℓ(z), where ℓ is
a non-zero affine form and Q1 · · ·Qm is not a quadratic polynomial. Then T is reducible if and only
if for some l ∈ [m], Ql is an affine form in a single variable and ℓ is a constant multiple of Ql.

Proof: One direction is simple. If ℓ = c · Q̂l for some l ∈ [m], then it is clear that T is
reducible.
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For the other direction, pick a z ∈ var(ℓ) and let its coefficient be c. Note that there
must exist an l ∈ [m] such that z ∈ var(Ql), for otherwise T is in the orbit of the +-rooted
ROF Q1 · · ·Qm + z and therefore irreducible. So assume without loss of generality that z ∈
var(Q1). Let T = r1 · r2 where r1 is an irreducible factor of T containing z and r2 is not
necessarily irreducible. Note that as T is multilinear r1 and r2 are variable disjoint. Now,

r1r2 = Q1Q + c · z + ℓ′

where Q = Q2 · · ·Qm and ℓ = c · z + ℓ′. Let Q1 = g1 · z + g2 and r1 = w1 · z + w2 where
g1, g2, w1, and w2 are z-free polynomials. Then,

(w1 · z + w2) · r2 = (g1 · z + g2) ·Q + c · z + ℓ′. (5.9)

Observation 5.23 w1 ∈ F×.

Proof: Taking derivatives with respect to z on both sides of Equation (5.9), we see that
w1 · r2 = g1 ·Q + c. If g1 is a non-constant polynomial, then the latter is a + rooted ROF and
therefore from Fact 2.1, irreducible. Hence, r2 is irreducible and g1 ∈ F.

If g1 is a constant and g2 is also a constant, then as Q1Q + u is a canonical ROF, either Q
must be a product of at least two + rooted ROFs or if it is just a single + rooted ROF, then it
cannot have a constant attached to its top-most + gate. In either of these cases g1 · Q + c is
irreducible and hence we again get that r2 is irreducible and g1 ∈ F.

Suppose that g1 is a constant, but g2 is not. As Q is non-constant (since m ≥ 2), there
exists a z2 ∈ var(Q). Then, for any z1 ∈ var(g2), as zz1 does not appear on the right side of
Equation (5.9), z1 /∈ var(w1) or var(r2). Also, for any z′2 ∈ var(Q), z′2 /∈ var(w1). This is so
because, for any z′1 ∈ var(g2), z′1z′2 appears on the right side of Equation (5.9). If z′1 were to
be in var(w1), then z′1z′2 cannot appear on the left side of (5.9) since z′1 /∈ var(w1) or var(r2).
Thus, no variable in var(g2) or var(Q) can be present in var(w1) forcing w1 to be a constant.
2

Assume without loss of generality that w1 = 1. Thus,

(z + w2) · r2 = (g1 · z + g2) ·Q + c · z + ℓ′,

which implies that r2 = g1 ·Q + c. Hence,

(z + w2) · (g1 ·Q + c) = (g1 · z + g2) ·Q + c · z + ℓ′.
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Observation 5.24 g1 ∈ F \ {0}.

Proof: By contradiction. Suppose that g1 is a non-constant polynomial. Then we have

(z + w2) · (g1 ·Q + c) = (g1 · z + g2) ·Q + c · z + ℓ′

=⇒ (w2 · g1 − g2)Q = −c · w2 + ℓ′.

Suppose that w2 · g1 − g2 ̸= 0. Then Q and w2 must be variable disjoint, we get

1. Q is linear and so as it is a canonical ROF is an affine form in a single variable,

2. w2 · g1 − g2 ∈ F×, say it is c′, and

3. w2 is an affine form.

Hence, Q1 = g1 · z + g2 = g1 · z + g1 · w2 − c′. We claim that c′ must be 0. It given that
Q1Q + u is a canonical ROF and Q is an affine form in a single variable. Thus it follows
from property 6 of the definition of a canonical ROF that Q1 cannot have a constant attached
to its top-most + gate; hence c′ = 0. However this contradicts our assumption that c′ =
w2 · g1− g2 ̸= 0. Hence, w2 · g1− g2 = 0. So, g2 = w2 ·w1. This implies that Q1 = g1(z+w2),
which implies that g1 ∈ F× because Q1 being a +-rooted ROF is irreducible. 2

Assume without loss of generality that g1 = 1; if it is not, then replace Q by g1 ·Q and g2 by
g−1

1 · g2. Then,

(z + w2)(Q + c) = (z + g2) ·Q + c · z + ℓ′

=⇒ (w2 − g2)Q = −c · w2 + ℓ′.

Then, just as before, Q and w2 are variable disjoint. Thus,

1. Q is linear and so as it is a canonical ROF is an affine form in a single variable,

2. w2 − g2 ∈ F×, say it is c′′, and

3. w2 is an affine form.

Suppose w2 − g2 ̸= 0. Hence, Q1 = z + w2 − c′′ and as Q1 is canonical, w2 has to be a
constant. But then, Q1 and Q are both affine which contradicts the hypothesis that Q1 · · ·Qm

is not a quadratic polynomial. Thus, w2 = g2. Then,

(z + w2)(Q + c) = (z + w2) ·Q + ℓ

=⇒ (z + w2) · c = ℓ.
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Now, as Q1 = (z + w2) is a canonical ROF, w2 ∈ F. Hence, ℓ = c ·Q1. 2

We complete the proof of the lemma by combining Claims 5.24 and 5.27. As the k-
th iteration of the outer loop only works with zk, we can analyse each iteration in isola-
tion. Claim 5.24 implies that after the execution of the inner loop, T̂ is reducible. Initially,
T̂ = T̂k(Ax+b)+ [ℓ(Ax + b)]zk

+γ′ for some γ′ ∈ F. The inner loop only subtracts an affine
form from T̂. So after the execution of the inner loop, T̂ = T̂k(Ax + b) + ℓ̃ for some affine
form ℓ̃. Notice that T̂ ∈ orb(Tk + ℓ̃′) for ℓ̃′ := ℓ̃(A−1B−1(x− Bb−d)). Let Tk = Qk,1 . . . Qk,mk

,
T̂k = Q̂k,1 . . . Q̂k,mk

, and Q̂k,l = Qk,l(Bx + d) for all l ∈ [mk]. Claim 5.24 implies that T̂
is reducible. Then, if none of the factors Q̂k,1, . . . , Q̂k,mk

are linear, Claim 5.27 implies that
ℓ̃ = 0. On the other hand, if one of the factors, say Q̂k,1 is linear, then Claim 5.27 implies that
ℓ̃ = c′k · Q̂k,1 for some c′k ∈ F and T̂ = Q̂k,1

(
Q̂k,2 . . . Q̂k,mk

+ c′k
)

. In the first case, ℓk must be
[ℓ(Ax)]zk

+ γ′. Because Qk,1 is a variable connected to a × gate computing a polynomial of
degree at least 3, Lemma 5.4 implies that Q̂k,1(Ax + b) is a constant multiple of a variable,
say z. Thus, in this case, ℓk and [ℓ]zk

must agree on the coefficients of all z′ ∈ zk except
perhaps that of z. For every k ∈ {s2 + 1, . . . , s′}, every k ∈ [s2] such that Tk is in the first
case, and every k ∈ [s2] in the second case that looks like xQ, where Q has a top-dangling
y, let T′k = Tk. For every other k, let T′k = Qk,1

(
Qk,2 . . . Qk,mk

+ c′k
)
. We also redefine d as

follows: For every k ∈ [s2] such that Tk is in the second case, it looks like zQ, and the top
dangling variable of Q is y, we add c′k to the y-th entry of d; all other entries remain un-
changed. If we redefine T̂(Ax + b) = T′k(BAx + Bb + d), and C′ = T′1 + · · ·+ T′s + γ, then
f (Ax + b) = T̂1 + · · ·+ T̂s + γ = C′ (BAx + Bb + d). Now, when we map u0 to u0 − ℓ′ in
f (Ax+b), all its terms are variable disjoint and ℓ(Ax+b) becomes u0 + α for some α ∈ F. 2

Remark. Notice that C′ need not be a canonical ROF. However, for all k ∈ [s2], all the factors
of T′k are still canonical. As we only recursively perform equivalence test on the factors of
T̂k(Ax), C′ not being canonical is not a problem.

5.5.3.4 Obtaining efficient black-box access to a term

The next algorithm is used to obtain black-box access to a term T̂k(Ax) using a single query
to f .

Algorithm 8 Compute-Term-Black-Box(g)
Input: Black-box access to a term of f (Ax) plus an unknown constant.
Output: Black-box access to the term using just one query to the black-box of f .
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1: F ← a subset of F of size at least n5.
2: Obtain black-box access to det(Hg) with respect to var(g) and factorize it using the al-

gorithm in [KT90]. N ← set of black-boxes of the irreducible factors.
3: for r ∈ N do
4: a← a vector of size |var(g)| containing random elements from F. For a fresh variable

t, interpolate r(ta) and g(ta).
5: Discover r′(t) and β ∈ F such that r(ta)r′(t) + β = g(ta) by solving a system of linear

equations in the coefficients of r′ and β.
6: If g− β is reducible, then return black-box access to g− β.
7: end for

The following lemma establishes the correctness of the above algorithm.

Lemma 5.6 (Correctness of Algorithm 8) Compute-Term-Black-Box( f (A (zk, x \ zk = 0))) gives
black-box access to T̂k(Ax) with high probability. Also, one query to T̂k(Ax) needs just one query to
f .

Proof: As f (Ax) = T̂1(Ax) + · · · + T̂s(Ax) + γ, T̂1(Ax), . . . , T̂s(Ax) are variable disjoint,
and for all k ∈ [s2] zk = var

(
T̂k(Ax)

)
, f (A (zk, x \ zk = 0)) = T̂k(Ax) + γ′ for some γ′ ∈ F.

So all that needs to be done to obtain black-box access to T̂k(Ax) is to find γ′ and subtract it
from g = f (A (zk, x \ zk = 0)). We show that this is exactly what the algorithm does.

In the algorithm, N is the set of irreducible factors of det
(

Hg
)
. Suppose that T̂k =

Q̂k,1 · · · Q̂k,mk
. It follows from Claim 5.7 and Fact 2.4, that a non-zero constant multiple of

at least one of the factors Q̂k,1(Ax), . . . , Q̂k,mk
(Ax) is in N along with some other ‘bad’ fac-

tors. First let us analyse the behaviour of the for loop of lines 3-7 when r is a constant
multiple of one of the Q̂k,1(Ax), . . . , Q̂k,mk

(Ax). In this case, there exist r′(t) and β ∈ F such

that r(ta)r′(t) + β = g(ta); one solution is r′(t) =
(

T̂k(Ax)/r
)
(A(ta)) and β = γ′. r′(t)

and β can be discovered as follows: first interpolate r(ta) and g(ta) which are univariate
polynomials in t. Treat the coefficients of r′(t) and β as unknowns. Then, by equating the
coefficients of monomials on both sides of r(ta)r′(t) + β = g(ta), we get a system of linear
equations in these unknowns which the algorithm solves. As mentioned before, this system
has a solution, we now show it is unique.

Suppose that there existed two solutions r′1(t), β1 and r′2(t), β2. Then, r(ta) (r′1(t)− r′2(t))
= β2− β1. Because a is chosen randomly, with high probability r(ta) is a non-constant poly-
nomial in t. Thus, this is only possible when r′1(t) = r′2(t) and β1 = β2 = γ′. Hence, if r is a
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constant multiple of one of the Q̂k,1(Ax), . . . , Q̂k,mk
(Ax), then β = γ′ and g− β is reducible.

Thus, the algorithm returns a black-box of g− β = T̂k(Ax).
On the other hand, when r is one of the bad factors, there are two cases: β = γ′ and

β ̸= γ′. In the first case there is noting to prove. On the other hand, if β ̸= γ′, then notice
that g + γ′ − β is in the orbit of Tk + γ′ − β. As the latter is a +-rooted ROF, Fact 2.1 implies
that it is irreducible. Hence g − β is also irreducible. Now, the fact that the for loop was
executed for this bad factor implies that in all of the previous iterations, r must have been
a bad factor, for otherwise as seen above, the loop would have terminated. This along with
the fact that N contains a constant multiple of at least one of the Q̂k,1(Ax), . . . , Q̂k,mk

(Ax)
implies that in this case, the next iteration of the loop will be executed. This will continue
to happen until the loop is executed for an r which is a non-zero constant multiple of one of
the Q̂k,1(Ax), . . . , Q̂k,mk

(Ax) and γ′ is discovered.
Notice that T̂k(Ax) = f (A (zk, x \ zk = 0)) − β. Hence, to query T̂k(Ax) at zk = a, for

some a ∈ F|zk|, f (Ax) just needs to be queried at the point (zk = a, x \ zk = 0) and then β,
which is a fixed, known constant, subtracted from the result. Now as A is known to us, to
query f (Ax) at any point, we just need to query f at one point. 2

5.5.3.5 Proof of Lemma 5.2

By induction on the product-depth ∆ of C. If ∆ = 0, as C is a canonical ROF, C = x1 and f
is an affine form. Since all variables in f are essential, n = 1 and f = α1x1 + α0 for some
α0, α1 ∈ F, α1 ̸= 0. Then, f (In×nx) ∈ PS-orb(C) and the algorithm works correctly for
product-depth 0 ROFs.

Assume that the algorithm works correctly for all polynomials in the orbit of a canonical
ROF of product-depth ∆ ≥ 0 and let C be a canonical ROF of product-depth ∆+ 1. Recall that
the algorithm is given black-box access to an f ∈ F[x] such that there exist a B ∈ GL(n, F)

and a d ∈ Fn satisfying f = C(Bx + d). Also, there are no redundant variables in f . Further
C = T1 + · · · + Ts + γ, where T1, · · · , Ts are ×-rooted canonical ROFs and γ ∈ F. Also,
f = T̂1 + · · ·+ T̂s + γ, where for all k ∈ [s], T̂k = Tk(Bx + d). T1, . . . , Ts1 are the good terms
of C, while, T̂1, . . . , T̂s1 are the good terms of f . Similarly, Ts1+1, . . . , Ts2 are the bad terms of
C, while T̂s1+1, . . . , T̂s2 are the bad terms of f . If C has a top dangling variable, it is Ts = xn,
s′ := s− 1, and Ts2+1 + · · ·+ Ts−1 is the top quadratic form. Otherwise, Ts2+1 + · · ·+ Ts is
the top quadratic form and s′ := s. If C has a top dangling variable, then ℓ := B ◦ xn + dn,
where dn is the n-th coordinate of d.

It follows from Lemma 5.4 that after Step 4 is executed, T̂1(Ax + b), . . . , T̂s′(Ax + b), and
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hence T̂1(Ax), . . . , T̂s′(Ax) are variable disjoint while ∑s′
k=s2+1 T̂k(Ax) = (y1 + c1) (y2 + c2) +

· · ·+ (y2m−1 + c2m−1) (y2m + c2m), where c1, . . . , c2m ∈ F. Then, Claim 5.23 implies that after
Step 14, z1, . . . , zs2 are variable sets of T̂1(Ax), . . . , T̂s2(Ax), respectively. Further, if there is a
dangling variable, then Lemma 5.5 implies that ℓ(Ax) = u0 + c for some c ∈ F. However,
now f ∈ orb(C′), where C′ is as defined in the proof of Lemma 5.5. If C does not have a
top-dangling variable, then let C′ = C. We first show that after Step 35 is executed, f (Ax) ∈
PS-orb(C′). As there are no redundant variables in T̂1(Ax), . . . , T̂s′(Ax), for all k ∈ [s2], |zk| =∣∣var

(
T′k
)∣∣ and |y| =

∣∣∣var
(

∑s
k=s2+1 T′k

)∣∣∣. So there exists a permutation matrix P0 ∈ M(n, F)

(that maps u0 to u0) such that for all k ∈ [s2], var(T′k(P0x)) = zk and var
(

∑s
k=s2+1 T′k(P0x)

)
=

y. There exists a B′ ∈ GL(n, F) and d′ ∈ Fn such that f (Ax) = C′(P0(B′x + d′)). Notice that
it suffices to prove that f (Ax) ∈ PS-orb(C′(P0x)). We now analyse the for loop of lines 21-34.
For any k ∈ [s2], as the k-th iteration of the loop only works on T̂k(Ax) and zk, we can look
at it in isolation.

Claim 5.28 For any k ∈ [s2], after the execution of the k-th iteration of the for loop of lines 21-34
there exists a permutation matrix Pk ∈ M(|zk|, F), an invertible scaling matrix Sk ∈ M(|zk|, F),
and a bk ∈ F|zk| such that T̂k (A (Akzk, x \ zk)) = T′k(P0 (PkSkzk + bk, x \ zk)).

Proof: Fix a k ∈ [s2]. The hypothesis of Claim 5.6 is satisfied. Hence after Step 22 is
executed, T̂ is the black-box of T̂k(Ax). Suppose that T̂k(Ax) = Q̂k,1(Ax) · · · Q̂k,mk

(Ax),
the corresponding term T′k(P0x) of C′(P0x) is a product of +-rooted canonical sub-ROFs
Qk,1, . . . , Qk,mk

and for all l ∈ [mk], Q̂k,l(Ax) = Qk,l(B′x + d′). The factors Q̂1, . . . , Q̂mk of
T̂ computed in Step 25 are non-zero constant multiples of Q̂k,1(Ax), . . . , Q̂k,mk

(Ax), respec-
tively, say they are c1Q̂k,1(Ax), . . . , cmk Q̂k,mk

(Ax); here ∏l∈[mk]
cl = 1. Now, as Qk,1, . . . , Qk,mk

are variable disjoint ROFs, Ness
(
Qk,1 · · ·Qk,mk

)
= Ness (Qk,1) + · · · + Ness (Qmk). Also, for

all l ∈ [mk] Ness

(
Q̂l

)
= Ness

(
Q̂k,l(Ax)

)
= Ness (Qk,l) and similarly Ness

(
Q̂1 · · · Q̂mk

)
=

Ness
(
Qk,1 · · ·Qk,mk

)
. This means that Ness

(
Q̂1 · · · Q̂mk

)
= Ness

(
Q̂1

)
+ · · ·+ Ness

(
Q̂mk

)
. So

from Claim 5.2, there exists an Ak,0 ∈ GL(|zk|, F) such that Q̂1(Ak,0zk), . . . , Q̂mk(Ak,0zk) are
variable disjoint. It also implies that Q̂1(Ak,0zk), . . . , Q̂mk(Ak,0zk) do not contain any redun-
dant variables. In Step 26, Q̂l has been updated to be Q̂l(Ak,0zk) for all l ∈ [mk]. Now
Q̂l(Ak,0zk), |var (Qk,l) | = |zk,l|, where zk,l = var

(
Q̂l(zk)

)
. So, there exists a permutation

matrix Pk,0 ∈ M(|zk|, F) such that for all l ∈ [mk], var (Qk,l(Pk,0zk)) = zk,l.
Much like the outer loop, the l-th iteration of the inner loop of lines 29-32, also only works

with Q̂l(zk) and zk,l; so we can also look at an iteration of this loop in isolation. We now anal-
yse the l-th iteration of this loop for some l ∈ [mk]. a is a random vector of size |zk| and a′ is
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a restricted to entries corresponding to zk \ zk,l. Also βl = ∏l′∈[mk]\{l} Q̂l′(zk,l, zk \ zk,l = a′).
Because a is random, βl ̸= 0 with high probability. Thus Q̂l = β−1

l T̂ (Ak,0 (zk,l, zk \ zk,l = a′)) =
clQ̂k,l(A(Ak,0zk, x \ zk)). Now consider a product-depth ∆ canonical ROF Ql obtained by
multiplying Qk,l(Pk,0zk) by cl, pushing it down to the leaves, and removing it from any non-
constant leaf. Let B′′ = P′k,0

−1B′A′k,0, where P′k,0 ∈ M(n, F) maps every z ∈ zk to Pk,0 ◦ z and
every other variable to itself, while A′k,0 ∈ GL(n, F) maps every z ∈ zk to Ak,0 ◦ z and every
other variable to itself. Also, let d′′ = P′k,0

−1d′. It can be verified that Q̂l = Ql (B′′x + d′′). To
recursively perform equivalence test on Q̂l we shall show that there exists a Bl ∈ GL(|zk,l|, F)

and a dl ∈ F|zk,l | such that Q̂l(zk,l) = Ql (Blzk,l + dl).
Because var (Ql) = zk,l, Q̂l(zk,l) = Ql

(
[B′′]zk,l

x + [d′′]zk,l

)
, where [B′′]zk,l and [d′′]zk,l

are B′′ and d′′ restricted to the rows corresponding to zk,l. Also, since var
(

Q̂l

)
= zk,l,

Q̂l(zk,l) = Ql

(
[B′′]zk,l×zk,l

zk,l + [d′′]zk,l

)
, where [B′′]zk,l×zk,l

is B′′ restricted to the rows and
columns corresponding to zk,l. It follows from Observation 2.8 that [B′′]zk,l×zk,l

is invertible.
So we can set Bl = [B′′]zk,l×zk,l

and dl = [d′′]zk,l
.

Thus, by the induction hypothesis, Ak,l computed in Step 31, is such that there exist a
permutation matrix Pk,l ∈ M(|zk,l|, F), a scaling matrix Sk,l ∈ M(|zk,l|, F) and a bk,l ∈ F|zk,l |

satisfying Q̂l(Ak,lzk,l) = Ql(Pk,lSk,lzk,l + bk,l). Since this is true for all l ∈ [mk], after the
execution of the for loop of lines 29-32 and Step 33, for all l ∈ [mk], clQ̂k,l(A(Akzk, x \ zk)) =

clQk,l(PkSkzk + bk), where for all l ∈ [mk] and z ∈ zk,l, Pk maps z to Pk,l ◦ zk,l, Sk maps
z to Sk,l ◦ zk,l and the z-th coordinate of dk is the same as that of [Pk,0]zk,l×zk,l

dk,l. Because

∏l∈[mk]
cl = 1, T̂k(A(Akzk, x \ zk)) = T′k(P0(PkSkzk + bk, x \ zk)), proving the claim. 2

Now we finish the proof of the lemma assuming the claim. After Step 19, there already exists
a permutation matrix Ps2+1 ∈ M(|y|, F), an invertible scaling matrix Ss2+1 ∈ M(|y|, F) (such
that Ps2+1Ss2+1 ◦ u0 = u0) and a bs2+1 ∈ F|y| such that

s

∑
k=s2+1

T̂k (Ax) =
s

∑
k=s2+1

T′k(P0 (Ps2+1Ss2+1y + bs2+1, z)).

Let P ∈ M(|z|, F) be a permutation matrix that maps every z ∈ zk to Pk ◦ z for all k ∈ [s2]

and every y ∈ y to Ps2+1 ◦ y. Similarly, let S ∈ M(|z|, F) be a scaling matrix that maps every
z ∈ zk to Sk ◦ z for all k ∈ [s2] and and every y ∈ y to Ss2+1 ◦ y. Also, let b ∈ Fn be such that
for all k ∈ [s2], its coordinates corresponding to zk are bk and those corresponding to y are
bs2+1. As A′0 maps every z ∈ zk to Ak ◦ z , ∀k ∈ [s2] and maps every y ∈ y to itself, after A
is set to AA′ we have that T̂k(Ax) = T′(P0(PSx + b)) yielding f (Ax) = C′(P0 (PSx + b)) ∈
PS-orb

(
C′
)
.
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If C′ = C, then we are done. Otherwise, in Step 38 f (Ax) is reconstructed. From
Lemma 5.7, we have that the terms of the reconstructed ROF f ′ are constant multiples
of T′1(P0 (PSx + b)), . . . , T′s(P0 (PSx + b)). In fact, as T′1(P0 (PSx + b)), . . . , T′s(P0 (PSx + b))
are variable disjoint and hence linearly independent, the terms are exactly

T′1(P0 (PSx + b)), . . . , T′s(P0 (PSx + b)).

Fix any k such that Tk ̸= T′k. Recall that in this case, Tk = zQk,2 · · ·Qk,mk
and

T′k = z
(
Qk,2 · · ·Qk,mk

+ ck
)

.

From Lemma 5.7, the corresponding term of f ′ is

(cα′1x + cα′0)
(

c−1 (Qk,2 · · ·Qk,mk

)
(P0 (PSx + b)) + c−1ck

)
,

where α′1x = P0PS ◦ z, α′0 is the z-th entry of P0b, and c ̸= 0. Hence in Step 38, α1 = cα′1
and β = c−1ck. Notice that P0PS ◦ u0 = u0. So after A is updated to map u0 to u0 − α1βx,
T̂k(Ax) = Tk(P0(PSx + b)) yielding f (Ax) ∈ PS-orb (C).

5.5.3.6 Running time of Algorithm 3

Notice that whenever a recursive call is made to Find-Equivalence(), it is for a polynomial
in the orbit of a distinct +-rooted sub-ROF or variable of the original ROF C. As there are
at most n many +-rooted sub-ROFs and n variables, there are at most 2n many recursive
calls. Thus to prove that Find-Equivalence() runs poly(n) time we only need to argue that
the time required by each recursive call (not counting the time spent in any sub-calls) is
poly(n). We divide this time into three parts: the time required to query the black-box of the
input polynomial, time required to prepare black-boxes for sub-calls, and the time required
to do everything else. The last of these is poly(n) because the Algorithms 4, 5, 8, 7, and
Algorithm 9 run in time poly(n). This is so as all the operations that they perform like sparse
polynomial interpolation, computing partial derivatives of order at most two, computing
determinants of symbolic matrices, and factoring polynomials can be done efficiently in
black-box fashion.

We now analyze how much time is required to query the black-box of the input polyno-
mial and prepare black-boxes for sub-calls. To do this, let us understand how the black-boxes
for the factors of the terms T̂1(Ax), . . . , T̂s2(Ax) are prepared in the for loop of lines 21-34 in
first call to Find-Equivalence(), i.e., the call for f . Observe that for any k ∈ [s2], Compute-
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Term-Black-Box() obtains black-box access to T̂k(Ax) by setting all variables other than those
in zk to 0 in f (Ax) and subtracting a known constant β from the resulting polynomial. Thus
black-box access to T̂k(Ax) is obtained by evaluating f at known affine forms ℓ1, . . . , ℓn (ob-
tained from A by setting variables not in zk to 0) and subtracting a known constant β from
f (ℓ1, . . . , ℓn).

For any l ∈ [mk], to obtain black-box access to the factors of T̂k(Ax), we first compute a
matrix Ak,0 ∈ GL(|zk|, F) such that the factors Q̂1, . . . , Q̂mk of T̂k(A(Ak,0zk, x \ zk)) are vari-
able disjoint. To obtain black-box access to Q̂l for some l ∈ [mk], we first set the variables
in zk \ zk,l to random field elements a′ and compute the constant βl from the (possibly in-
efficient) black-boxes of Q̂1, . . . , Q̂mk obtained from T̂k(A(Ak,0z, x \ z)) using the black-box
factorisation algorithm in [KT90]. We then compute β−1

l · T̂ (Ak,0 (zk,l, zk \ zk,l = a′)). Notice
that this is the same as evaluating f at known affine forms ℓ′1, . . . , ℓ′n (obtained from ℓ1, . . . , ℓn

by setting zk \ zk,l = a′), multiplying it by a known constant β−1
l and subtracting a known

constant β−1
l β from it.

In any recursive call to Find-Equivalence(), the black-boxes for sub-calls are prepared
in the same way. Thus the discussion in the above paragraph implies that no matter the
recursive depth for a recursive call for a polynomial f ′, the black-box for f ′ would look
like α f (ℓ1, . . . , ℓn)− β, where α, β are known constants and ℓ1, . . . , ℓn known affine forms in
var( f ′). Thus the time to query the black-box of f ′ is poly(n); not poly(|var( f ′)|), but still
independent of the recursive depth. Similarly the time required to prepare black-boxes for
sub-calls is also poly(n) and independent of the recursion depth as all that needs to be done
is to compute appropriate affine forms ℓ′1, . . . , ℓ′n and constants α′ and β′. Thus the algorithm
runs in time poly(n).

5.6 ROF reconstruction
We present an algorithm that reconstructs an ROF in the PS-orb of a canonical ROF.1 In
this section, we slightly abuse the terminology and call an ROF that satisfies Properties 1-
5 of Definition 2.23, but does not necessarily satisfy Property 6, a canonical ROF. We also
give an accompanying algorithm to recover a translation vector and a scaling matrix that
convert the reconstructed ROF to a canonical ROF. While randomized [HH91, BHH95] and
deterministic [SV14, MV18] polynomial-time ROF reconstruction algorithms are known, we
provide a randomized algorithm here as we need some special properties of this algorithm

1The algorithm can be easily adapted to work for a general ROF. However, since we only need to recon-
struct ROFs in the PS-orb of a canonical ROF, we present the algorithm and its analysis just for ROFs in this
form.
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in Chapter 6.

5.6.1 The algorithm

Before formally describing the algorithm, let us see a high-level description of it.

The idea. Suppose that we have black-box access to an ROF C = T1 + · · · + Ts + γ in the
PS-orb of a canonical ROF, where Tk = Qk,1 · · ·Qk,sk

for all k ∈ [s], Qk,l is either a variable
or a +-rooted sub-ROF of C for every l ∈ [sk], and γ ∈ F. We first use the second-order
derivatives of C to learn var(T1), . . . , var(Ts). Then, we obtain black-box access to T1, . . . , Ts

as follows: As C is in the PS-orb of a canonical ROF, at most one of the Tk, say Ts, is a scalar
multiple of a variable xi. As ∂C

∂xixj
= 0 for all j ̸= i ∈ [n], we can find out xi. On the other

hand, for k ∈ [s− 1] and for a xi ∈ var(Qk,l),

∂C
∂xi

= r1 · · · rm · ∏
l′∈[sk]\{l}

Qk,l′ ,

where r1, · · · , rm are pairwise variable disjoint, and every ri is either a variable or a +-rooted
sub-ROF of Qk,l. As sk ≥ 2 and Qk,1, . . . , Qk,sk

are non-constant polynomials, for every Qk,l,

there exists xj ∈ var(Tk) such that Qk,l is an irreducible factor of ∂C
∂xj

(because of Fact 2.1).
Thus, by obtaining black-box access to the derivatives of C with respect to the variables in
var(Tk), factoring them, collecting all the factors and then discarding a factor r if there exists
another factor r′ such that var(r) ⊂ var(r′), we get black-box access to Qk,1, . . . , Qk,sk

up to
constant multiples. However, notice that if we want to query the black-box of a Qk,l at one
point, we need to query the black-box of C at poly(n) points. So, if we try to recursively
learn Qk,1, . . . , Qk,sk

, the running time of the algorithm would be exponential in the depth of
C.

We need to be able to get black-box access to Qk,1, . . . , Qk,sk
in such a way that to obtain the

value of Qk,l at one point, we only need to query the black-box of C at one point. We do this
by first learning var(Qk,1), . . . , var(Qk,sk

) and some roots of Qk,1, . . . , Qk,sk
using the black-

boxes of Qk,1, . . . , Qk,sk
that we obtained above. Then we set all variables in x \ var(Qk,l) to

random field elements. This gives us black-box access to ck,lQk,l + c′k,l, for some unknown
ck,l ̸= 0, c′k,l ∈ F. Plugging in the root of Qk,l into this black-box we learn c′k,l. Subtracting
this from ck,lQk,l + c′k,l gives us black-box access to ck,lQk,l, where ck,l is unknown. Notice
that now we only need to make one query to the black-box of C to learn the value of ck,lQk,l.

We learn γ by finding a common root a = (a1, . . . , an) of Qk,l for all k ∈ [s], l ∈ [sk] and
setting γ = C(a). Then, we find out c1 . . . , cs ∈ F such that ∑s

k=1 ck ·∏
sk
l=1 ck,l · Qk,l = C− γ
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and multiply Q1,1, . . . , Qs,1 by c1, . . . , cs, respectively. After that, we learn Tk by recursively
learning ckck,1Qk,1, ck,2Qk,2, . . . , ck,sk

Qk,sk
and multiplying them. We now describe the algo-

rithm formally.

Algorithm 9 Reconstruct-ROF( f (x))
Input: Black-box access to an n-variate ROF f (x) in the PS-orb of a canonical ROF.
Output: An ROF C in the PS-orb of a canonical ROF computing f .

1: /* Learning var(T1), . . . , var(Ts). */
2: Let E← ∅, and G ← (x, E) be an undirected graph.
3: for i, j ∈ [|x|] do
4: If ∂2 f

∂xi∂xj
̸= 0, add edge

{
xi, xj

}
to E.

5: end for
6: Let C ← {x1, . . . , xs} be the set of connected components of G, where s← |C|.
7:

8: /* Discovering factors of T1, . . . , Ts. */
9: if ∃k ∈ [s] such that |xk| = 1 then

10: If xk = {xi} , Tk ← xi, Nk ← {xi}.
11: end if
12: for k ∈ [s] such that |xk| ≥ 2 do
13: Nk ← ∅.
14: for i such that xi ∈ xk do
15: Compute black-box access to ∂ f

∂xi
and then obtain black-box access to all its irre-

ducible factors. Add all the irreducible factors to Nk.
16: end for
17: for r1, r2 ∈ Nk do
18: If var(r1) ⊆ var(r2), Nk ← Nk \ {r1}. Else, if var(r2) ⊆ var(r1), Nk ← Nk \ {r2}.
19: end for
20: end for

21: /* Obtaining efficient black-box access to the factors of T1, . . . , Ts. */
22: for k ∈ [s] such that |xk| ≥ 1 do
23: for r ∈ Nk do
24: ar ← a vector of size |var(r)| which is a root of r. a′r ← a random vector of size

n− |var(r)|.
25: βr ← f (var(r) = ar, x \ var(r) = a′r). r ← f (var(r), x \ var(r) = a′r)− βr.
26: end for
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27: end for
28: /* Learning γ and c1, . . . , cs. */

29: Construct a = (a1, . . . , an), a common root of ∏r∈N1
r, . . . , ∏r∈Ns r. γ← f (a).

30: Solve for c1, . . . , cs such that f − γ = c1 ·∏r∈N1
r + · · ·+ cs ·∏r∈Ns r.

31: For all k ∈ [s], replace an arbitrary r ∈ Nk by ck · r. If ∃k ∈ [s] such that |xk| = 1,
Tk ← ckTk.

32: /* Reconstructing T1, . . . , Ts. */
33: for k ∈ [s] such that |xk| ≥ 2 do
34: Tk ← 1.
35: for r ∈ Nk do
36: y← var(r). Tk ← Tk×Reconstruct-ROF(r(y)).
37: end for
38: end for
39: C← T1 + · · ·+ Ts + γ. Return C.

5.6.2 Analysis of the algorithm

We will assume, without loss of generality, that an ROF has no edge labels and every leaf
node is either a constant or a constant multiple of a variable.

Lemma 5.7 If f (x) computed by an ROF C′ in the PS-orb of a canonical ROF, then the ROF C

returned by the algorithm is equal to C′ up to scaling of the leaves with high probability. Moreover,
there is a one-to-one correspondence between the gates of C and the gates of C′ with a gate of C
computing a non-zero constant multiple of the polynomial computed by the corresponding gate of C′.

Proof: We induct on the product-depth ∆ of C′. If ∆ = 0, then as C′ is in the PS-orb of a
canonical ROF, C′ = cixi + γ, where ci ̸= 0, γ ∈ F. In this case C has only one connected
component x1 = {xi}. In Step 10, T1 = xi. Step 29 can be implemented by simply setting
a to be the all zero vector and Step 30 by computing ∂ f

∂xi
. Thus, C = C′ and for ∆ = 0, the

lemma is true.
Now, suppose that the lemma is true for all ROFs of product-depth at most ∆ ≥ 0 and

let C′ be a product-depth ∆ + 1 ROF. Let C′ = T′1 + · · ·+ T′s + γ′. There exists at most one
k′ ∈ [s], such that |var(T′k′)| = 1 and for every k ∈ [s] \ {k′}, let T′k = Q′k,1 · · ·Q′k,sk

, where
sk ≥ 2 and for every l ∈ [sk], Q′k,l is either a variable or a +-rooted sub-ROF of C′.
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Claim 5.29 There is a bijection π : [s] → [s] s.t. the connected component xπ(k) = var(T′k) for all
k ∈ [s].

Proof: Fix any k ∈ [s]. If |var(T′k)| = 1, say T′k = c · xi for some c ∈ F×, then ∂2 f
∂xi∂xj

= 0

for all j ∈ [s] \ {i}, and so, {xi} is a connected component in C. If |var(T′k)| ≥ 2, then as C′

is in the PS-orb of a canonical ROF, T′k = Q′k,1 · · ·Q′k,sk
, where sk ≥ 2. If xi, xj ∈ var(T′k) are

such that xi ∈ var(Q′k,l) and xj ∈ var(Q′k,l′), for l ̸= l′, then as ∂2 f
∂xi∂xj

̸= 0,
{

xi, xj
}
∈ E. On

the other hand, if l = l′, then as sk ≥ 2 and Q′k,1, . . . , Q′k,sk
are non-constant, there exists a

xm ∈ var(Q′k,l′′), l′′ ̸= l such that ∂2 f
∂xi∂xm

̸= 0 and ∂2 f
∂xj∂xm

̸= 0. Thus, {xi, xm} ,
{

xj, xm
}
∈ E

and so xi and xj are in the same connected component. Moreover, as for any xi ∈ var(T′k)

and xj ∈ var(T′1) ⊎ · · · ⊎ var(T′k−1) ⊎ var(T′k+1) ⊎ · · · ⊎ var(T′s),
∂2 f

∂xi∂xj
= 0, this connected

component is exactly var(T′k), proving the claim. 2

Claim 5.30 After Steps 9-11 and the for loop of lines 22-27 have been executed, for all k ∈ [s], with
high probability, Nπ(k) =

{
Qk,1, ..., Qk,sk

}
where Qk,l is a non-zero constant multiple of Q′k,l for all

l ∈ [sk] and π is the bijection given in Claim 5.29.

Proof: Fix any k ∈ [s]. If |var(T′k)| = 1, say var(T′k) = {xi}, then Claim 5.29 immedi-
ately implies that after Steps 9-11 have been executed, Nπ(k) = {xi}. On the other hand if
|var(T′k)| ≥ 2, then observe that for any xi ∈ var(Q′k,l),

∂C′

∂xi
= r1 · · · rm · ∏

l′∈[sk]\{l}
Q′k,l′ ,

where r1, · · · , rm are pairwise variable disjoint and every ri is a variable or a +-rooted sub-
ROF of Q′k,l. Hence, after the for loop 14-16 has been executed, Nπ(k) will contain two types
of factors:

• constant multiples of Q′k,1, . . . , Q′k,sk
and

• constant multiples of +-rooted sub-ROFs of Q′k,1, ..., Q′k,sk
.

The first kind of factors are present because sk ≥ 2, Q′k,1, ..., Q′k,sk
are non-constant polynomi-

als and being +-rooted sub-ROFs are irreducible (see Fact 2.1). As all variables appearing
in any +-rooted sub-ROF of Q′k,l are also variables of Q′k,l , the second kind of factors are
removed from Nπ(k) by the for loop of lines 17-19. Moreover, as Q′k,l and Q′k,l′ are variable
disjoint for l ̸= l′, the first kind of factors are not removed. This means that after the for
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loop of lines 12-20 has been executed, for all k ∈ [s], Nπ(k) =
{

Qk,1, ..., Qk,sk

}
where Qk,l is a

non-zero constant multiple of Q′k,l for all l ∈ [sk]. Thus, a root of Qk,l is also a root of Q′k,l.
Now, inside the loop of lines 22-27, for r = Qk,l, f (var(r), x \ var(r) = a′r) = ck,lQ′k,l + c′k,l

for some ck,l, c′k,l ∈ F. As every coordinate of a′r is chosen randomly (say, from a subset of F

of size n4), with high probability ck,l ̸= 0. As ar is a root of Q′k,l ,

βr = f
(
var(r) = ar, x \ var(r) = a′r

)
= c′k,l.

Hence, after this loop has been executed r = ck,lQ′k,l , proving the claim. 2

Thus, for all k ∈ [s], T′k is a non-zero constant multiple of the product of the polynomials
in Nπ(k). So, for some c1, . . . , cs ∈ F×, C′ = T′1 + · · · T′s + γ′ = ∑k∈[s] ck ·∏l∈[sk]

Qk,l + γ. Since
in Step 29, a is a common root of Qk,l, for all k ∈ [s] and l ∈ [sk], γ′ = f (a) = γ. As the
polynomials in

{
∏l∈[sk]

Qk,l : k ∈ [s]
}

are linearly independent, c1, . . . , cs are unique. Once
c1, . . . , cs have been learnt in Step 30 and N1, . . . , Ns updated in Step 31, we have for all k ∈
[s], T′k is equal to the product of the polynomials in Nπ(k). For all k ∈ [s] and l ∈ [sk], as Qk,l

is a product-depth ∆ ROF in the PS-orb of a canonical ROF, from the induction hypothesis,
the output of Reconstruct-ROF(Qk,l) is a ROF in the PS-orb of a canonical ROF and is equal
to Qk,l up to scaling of the leaves. After the loop 33-38 has been executed, for all k ∈ [s], Tπ(k)

is an ROF in the PS-orb of a canonical ROF and is equal to T′k up to scaling of the leaves.
Hence, C′ = T′1 + · · ·+ T′s + γ′ = T1 + · · ·+ Ts + γ = C.

For the “moreover” part of the lemma, notice that from the induction hypothesis, we
have the desired one-to-one correspondence between gates of the ROF output by Reconstruct-
ROF(Qk,l) and the gates of Qk,l for all k ∈ [s] and l ∈ [sk]. Then, as Tπ(k) = T′k , this yields
the desired one-to-one correspondence between the gates of C′ and C. 2

Running time of the algorithm

We will show that the algorithm runs in time poly(n). From black-box access to f , a black-
box access to ∂2 f

∂xi∂xj
, for any i, j ∈ [n], can be computed in poly(n) time (Fact 5.1). Whether

∂2 f
∂xi∂xj

is zero or not can be determined in poly(n) time using the Schwartz-Zippel test. Hence
G can be constructed in time poly(n). The connected components of G can also be computed
in poly(n) time. Clearly, lines 9-11 run in poly(n) time. Now we analyse the runtime of the
loop of lines 12-20.

A black-box access to ∂ f
∂xi

can be obtained in poly(n) time from black-box access to f . Once

we have black-box access to ∂ f
∂xi

, black-box access to its irreducible factors can be computed
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in poly(n) time using the algorithm in [KT90]. Hence, the for loop of lines 14-16 executes
in poly(n) time. For Step 18, var(r1) and var(r2) can be determined by obtaining black-box
access to the derivatives of r1 and r2 with respect to all x variables and checking using the
Schwartz-Zippel lemma which of them are non-zero. Thus this step, and hence, the for loop
of lines 17-19 executes in poly(n) time.

Once we have black-box access to all polynomials in N1, . . . , Ns, for all k ∈ [s] and all
r ∈ Nk, a′r and ar can be computed in poly(n) time. To construct ar, first set all but one
variable appearing in r to random values. After doing this, r becomes an affine form whose
root can be computed easily. Notice that on line 25, we obtain black-box access to Qk,l using
only one query to f .

The vector a can be constructed in poly(n) time by just combining all ar’s constructed
in the loop of lines 22-27. To compute c1, . . . , cs in Step 30, we can simply evaluate f and

∏l∈sk
Qk,l for all k ∈ [s] at s many random points b1, . . . bs and solve the linear system of

equations  f (bi)− γ = ∑
k∈[s]

ck ·∏
l∈sk

Qk,l(bi) : k ∈ [s]


for c1, . . . , cs. As

{
∏l∈[sk]

Qk,l : k ∈ [s]
}

are linearly independent, with high probability, the
coefficient matrix of this system will be invertible.

So far we have shown that for each call to the algorithm, the time spent outside the
recursive calls on line 36 is poly(n). Now, given input f , the total number of recursive calls
is at most poly(n). This is because each leaf of the recursion tree corresponds to a distinct
variable in x and whenever Reconstruct-ROF(r) is called from inside Reconstruct-ROF(r′),
var(r) ⊊ var(r′). Thus, the runtime of the algorithm is poly(n), as a black-box query to r
amounts to only one query to f .

5.6.3 Canonization: Recovering scaling and translation

We shall slightly abuse the terminology in this section and say that a leaf of an ROF is a
variable if it is a constant multiple of a variable. This is consistent with our assumption in
the previous section that any leaf of an ROF is either a constant multiple of a variable or
a constant. To recover the scaling matrix and the translation vector, we use the following
algorithm.

Algorithm 10 Canonize(C)
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Input: An ROF C in the PS-orb of a canonical ROF.
Output: A scaling matrix S ∈ GL(|x|, F) and a vector b such that C (Sx + b) is a canonical
ROF.

1: N1 ← set of all +-gates in C directly connected to a variable. N2 ← set of all variable
leaves connected to ×-gates. Initialize S← In×n and b = (b1, . . . , bn) = 0.

2: for v ∈ N1 ⊎ N2 do
3: If v ∈ N1 and the variable and constant children of v are αixi and βi respectively, where

αi ∈ F×, then bi ← −βi
αi

and S← diag
(

0, . . . , 0, α−1
i , 0, . . . , 0

)
· S.

4: Else, if v ∈ N2 and v = αixi, αi ∈ F×, S← diag
(

0, . . . , 0, α−1
i , 0, . . . , 0

)
· S and bi ← 0.

5: end for
6: Return S, b.

Clearly, the algorithm runs in poly(n) time; its correctness follows from the next observation.

Observation 5.25 Let S, b = Canonize(C). Then, C(Sx + b) is a canonical ROF.

Proof: Let v ∈ N1 and let the variable and constant children of v be αixi and βi, respec-
tively. As bi =

−βi
αi

and S is updated as diag
(

0, . . . , 0, α−1
i , 0, . . . , 0

)
· S, after the execution

of the loop of lines 2-5, αixi + βi from C becomes xi in C(Sx + b). Similarly, if v ∈ N2 and
v = αixi, because S is updated as diag

(
0, . . . , 0, α−1

i , 0, . . . , 0
)
· S, after the execution of the

loop of lines 2-5, αixi becomes xi in C(Sx + b). Since the only difference between a canonical
ROF and an ROF in its PS-orb is that in the latter a variable can be scaled and translated, this
proves the observation. 2

We now show that not only does Algorithm 10 recover the translation vector but also
that this vector is recovered uniquely. The following claim comes in handy in Section 6.3.

Claim 5.31 Let C′ be an ROF in the PS-orb of a canonical ROF, S′ be a scaling matrix and b′ a
translation vector such that C′(S′x+ b′) is a canonical ROF. Also, let C = Reconstruct-ROF(C′(x))
and S, b = Canonize(C). Then, b = b′.

Proof: Let v ∈ N1 ⊎ N2. From Lemma 5.7, the corresponding gate v′ in C′ is such that
v = c · v′ for some c ̸= 0. So, if v ∈ N1, then v′ must be a + gate with variable and constant
children. If the variable and constant children of v′ are α′ixi and β′i, respectively, then the

variable and the constant children of v are cα′ixi and cβ′i, respectively. Observe that b′i =
−β′i
α′i

.
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Thus, bi =
−cβ′i
cα′i

=
−β′i
α′i

= b′i . Similarly, if v ∈ N2, then v′ is also a variable leaf. Thus,
bi = b′i = 0. 2

5.7 A pictorial overview of Algorithm 3
We consider the following simple example to show the working of Phase 1 of the algorithm
mentioned in Section 5.5.1.

+

× × × x4

x13 x14 x15 x8 + x5 x6

× × x7

x10 x11 x12 x9 +

× x1

x3 x2

The original ROF C

7→

+

× × × −x4 + x5 + 2x8 + 3x14 − 1

x13 + x14 x14 − 1 x15 − 2 x8 + x10 + 4x5 + x8 − 6 3x6 + x14 − 4

× × 7x7 + x9 + x15

x10 + x15 x11 − 3 x12 − 5 x9 + 3x14 +

× 5x1 + x2 + x7 + 4x12 − 3x15 + 1

6x3 + 3x13 + 5x14 2x2 + x3 + 6x7 + 2x13

f ∈ orb(C)

In the following figures, ℓi, ℓi,j, ℓ′i,j, hi, h′i, hi,j, h′i,j etc. denote affine forms.

+

× × × −y0 + y2,3 + ℓ0(z1, z2)

z1,1 z1,2 z1,3 z2,1 + 4y3,1 + ℓ3,1(z1, z2) 3y3,2 + ℓ3,2(z1, z2)

× × 7y2,4 + ℓ2,4(z1, z2)

z2,3 z2,4 z2,5 z2,2 +

× 5y2,3 + y2,2 + y2,4 + ℓ2,3(z1, z2)

6y2,1 + ℓ2,1(z1, z2) 2y2,2 + y2,1 + ℓ2,2(z1, z2)

Step 1

In Step 1, all the good terms of f are made variable disjoint. Furthermore, every “good”
linear factor - affine form connected to a × gate computing a polynomial of degree at least 3
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in f - gets mapped to (a constant multiple) of a distinct variable. In our example, the good
term has three good linear factors, which have been mapped to z1,1, z1,2, z1,3. Also, there are
five good linear factors in the bad term; these have been mapped to z2,1, . . . , z2,5. Let z1 :=
{z1,1, z1,2, z1,3}, z2 := {z2,1, . . . , z2,5}, z := z1 ⊎ z2, and y := x \ z. Step 2 extensively uses
skewed paths. In the above figure, there are two skewed paths identified by the “marker
monomials” z2,1 and z2,1z2,2.

× ×

z2,1 + y3,1 + h3,1(z1, z2) y3,2 + h3,2(z1, z2)

× × 7y2,4 + ℓ′2,4(z1, z2, y \ {y2,3, y2,4})

z2,3 z2,4 z2,5 z2,2 +

× 5y2,3 + y2,4 + ℓ′2,4(z1, z2, y \ {y2,3, y2,4})

y2,1 + h2,1(z1, z2) y2,2 + h2,2(z1, z2)

Step 2.1

In Step 2.1, every affine form corresponding to a variable in the top quadratic form or a
quadratic form along a skewed path which is redundant for det(HC) is mapped to an affine
form of the type yi,j + hi,j(z). In the above figure, the y-variables corresponding to affine
forms in the top quadratic form and in the quadratic form along the skewed path z2,1z2,2

are y3,1, y3,2 and y2,1, y2,2, respectively. We shall refer to all the remaining y-variables, i.e.,
y0, y2,3, y2,4 as u-variables.

×

z2,1 +

× × u2 + h2(z1, z2, y \ u)

z2,3 z2,4 z2,5 z2,2 +

× u1 + h1(z1, z2, y \ u)

y2,1 + h2,1(z1, z2) y2,2 + h2,2(z1, z2)

Step 2.2

In Step 2.2, every affine form corresponding to a dangling variable along a skewed path
which is redundant for det(HC) is mapped to an affine form of the type ui + hi(z, y \ u).
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There might be dangling variables along skewed paths that are present in a set of essential
variables of det(HC). In our simple example, such variables are not present. In the general
case, such variables can be handled by picking a basis of an appropriate vector space. This
space is spanned by the u-parts of the affine forms corresponding to the dangling variables
along skewed paths and the top dangling variable (see Section 5.5.1 for more details). A
word of caution: the affine form corresponding to the top dangling variable has not been
handled; it will be fixed in Step 3. Let y2 = {u1, u2, y2,1, y2,2}. In the above figure, the
variables in z1 and y \ y2 are external for the bad term and all variables in x \ {y3,1, y3,2} are
external for the top quadratic form. These will be removed in Step 2.3.

× ×

z2,1 + y3,1 + α3,1 y3,2 + α3,2

× × u2 + h′2(z2, y2,1, y2,2)

z2,3 z2,4 z2,5 z2,2 +

× u1 + h′1(z2, y2,1, y2,2)

y2,1 + h′2,1(z2) y2,2 + h′2,2(z2)

Step 2.3

In Step 2.3, external variables are removed from the affine forms in the top quadratic form,
quadratic forms along skewed paths and corresponding to dangling variables along skewed
paths. In the above figure, h′i,j and h′i are obtained after removing external variables from hi,j

and hi, respectively.
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+

× × × u0 + α0

z1,1 z1,2 z1,3 z2,1 + y3,1 + α3,1 y3,2 + α3,2

× × u2 + h′2(z2, y2,1, y2,2)

z2,3 z2,4 z2,5 z2,2 +

× u1 + h′1(z2, y2,1, y2,2)

y2,1 + h′2,1(z2) y2,2 + h′2,2(z2)

Step 3

In Step 3, the affine form corresponding to the top-most dangling variable is mapped to
u0 + α0, α0 ∈ F. Now, all the terms of f are variable disjoint. After this, we recursively call
Algorithm 3 on the factors of the good and the bad terms to map them to variable disjoint
ROFs.
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Chapter 6

Polynomial equivalence for orbits of
read-once arithmetic formulas

This chapter gives polynomial equivalence algorithms for orbits of read-once
arithmetic formulas in various special cases. The contents of this chapter are
from a joint work with Nikhil Gupta and Chandan Saha [GST23].

6.1 Introduction
The polynomial equivalence problem for a circuit class C is as follows: given f , g ∈ F[x]
computable by circuits in C, check if g ∼ f . If yes, find A ∈ GL(|x|, F) and b ∈ F|x|

such that g(x) = f (Ax + b). This section is devoted to designing and analysing randomised
polynomial time algorithms for various special cases of the polynomial equivalence problem
for the orbit of ROFs (see Definition 2.4). In particular, we prove the following theorems.

Theorem 1.7 (PE for orbits of additive-constant-free ROFs) Let n ∈ N, char (F) = 0 or ≥
n2, and |F| ≥ n13. There is a poly(n) time randomized algorithm (with oracle access to QFE over F)
that takes input black-box access to two n-variate polynomials f1, f2 ∈ F[x], which are in the orbits
of two unknown additive-constant-free canonical ROFs, and checks if f1 ∈ orb ( f2). Furthermore, if
f1 ∈ orb ( f2), then the algorithm outputs (with high probability) an A ∈ GL (n, F) and a b ∈ Fn

such that f1 = f2 (Ax + b).

Theorem 1.8 (PE for orbits of product-depth 2 ROFs) Let n ∈ N, char (F) = 0 or ≥ n2, and
|F| ≥ n13. There is a poly(n) time randomized algorithm (with oracle access to QFE over F) that
takes input black-box access to two n-variate polynomials f1, f2 ∈ F[x], which are in the orbits of
two unknown canonical ROFs with product-depth 2, and checks if f1 ∈ orb ( f2). Furthermore, if
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f1 ∈ orb ( f2), then the algorithm outputs (with high probability) an A ∈ GL (n, F) and a b ∈ Fn

such that f1 = f2 (Ax + b).

Recall that Quadratic Form Equivalence can be solved efficiently over C, R, Fq and also
over Q with oracle access to integer factoring (see Fact 5.3). Hence, PE for the orbits of
additive constant free ROFs as well as for the orbit of depth 5 ROFs can also be solved
efficiently over these fields.

Theorem 1.7 is proved in the following section and Theorem 1.8 is proved in Section 6.3.

6.2 Polynomial Equivalence for orbits of additive constant

free ROFs
In this section, we shall prove Theorem 1.7. Let ROF0 be the class of all additive-constant-
free canonical ROFs. We make use of an efficient algorithm for rooted tree isomorphism in
our proof, so we first define rooted tree isomorphism.

6.2.1 Rooted tree isomorphism

Definition 6.1 (Tree isomorphism) Two rooted trees G1 = (V1, E1, v1) and G2 = (V2, E2, v2)

are isomorphic, if there is a bijection π : V1 → V2 s.t. (v, v′) ∈ E1 ⇔ (π(v), π(v′)) ∈ E2 and
π(v1) = v2.

Fact 6.1 (Efficient tree isomorphism [AHU83]) There is an algorithm that takes input two rooted
trees G1 = (V1, E1, v1) and G2 = (V2, E2, v2) and decides if G1 and G2 are isomorphic. If the answer
is yes, it also outputs an isomorphism. The running time of the algorithm is poly(|V1|, |V2|).

The following observation is easy to show.

Observation 6.1 Let G1 = (V1, E1, v1) and G2 = (V2, E2, v2) be rooted trees and π an isomor-
phism from G1 to G2 s.t. π(v1) = v2. Then, π is completely determined by its restriction to the
leaves of G1.

6.2.2 The algorithm

The following algorithm decides whether f1(x), f2(x) ∈ orb (ROF0) are equivalent or not.

Algorithm 11 Equivalence-Test( f1(x), f2(x))
Input: Black-box access to f1(x), f2(x) ∈ orb(ROF0).
Output: Whether or not f1 and f2 are equivalent. If they are equivalent, then A ∈ GL(n, F)

and b ∈ Fn such that f1(x) = f2(Ax + b).
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1: /* Reconstructing canonical ROFs equivalent to f1 and f2. */
2: for i ∈ [2] do
3: Ai ← Find-Equivalence( fi(x)) (Algorithm 3).
4: C′i ← Reconstruct-ROF( fi(Aix)) (Algorithm 9).
5: Si, bi ← Canonize(C′i) (Algorithm 10), where Si ∈ GL(n, F) is a scaling matrix, bi ∈

Fn.
6: Ci ← C′i(Six + bi), Gi ← the underlying tree of Ci wherein all internal nodes are unla-

belled and the leaves are labelled by variables.
7: end for
8:

9: /* Checking if C1 and C2 are equivalent */
10: if G1 and G2 are isomorphic as rooted trees then
11: If σ is the permutation such that σ(G2) = G1, construct a permutation matrix P

that maps xi to σ(xi) ∀i ∈ [n] using Fact 6.1. A ← A2S2PS−1
1 A−1

1 , b ← A2b2 −
A2S2PS−1

1 b1.
12: Use the Schwartz-Zippel Lemma to check if f1(x) = f2(Ax + b). If yes, return EQUIV-

ALENT, A and b. Else, return NOT EQUIVALENT.
13: else
14: Return NOT EQUIVALENT.
15: end if

6.2.3 Analysis of the algorithm

We establish the correctness of the above algorithm by proving the following lemma.

Lemma 6.1 (Correctness of Algorithm 11) Given black-box access to two n-variate polynomials
f1(x), f2(x) ∈ orb(ROF0), Algorithm 11 correctly determines with high probability whether they
are equivalent or not provided that char(F) = 0 or ≥ n2 and |F| ≥ n13. Moreover, if they are
equivalent, it returns an A ∈ GL(n, F) and a b ∈ Fn such that f1(x) = f2(Ax + b).

Proof: If f1 /∈ orb( f2), then Step 12 ensures that the algorithm returns NOT EQUIVALENT

with high probability. So suppose that f1 ∈ orb( f2). In this case, there exists a C ∈ ROF0

such that f1, f2 ∈ orb (C). Then, f1 (A1x) , f2 (A2x) ∈ PS-orb(C) (from Lemma 5.2), and so
the only non-zero additive-constants in them are translations, i.e. constants attached to +

gates which have a variable as a child. As, from Lemma 5.7, C′1 and f1 (A1x), C′2 and f2 (A2x)
are equal up to scaling of the leaves, the only non-zero additive-constants in C′1 and C′2 are
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also translations. We now use this fact to show that C1 and C2 are the same as C up to a
permutation of variables.

As mentioned above, f1(A1x), f2(A2x) ∈ PS-orb(C) and C′1,C′2 are same as f1(A1x), f2(A2x)
up to scaling of leaves. This means that C′1,C′2 can be obtained from C by permuting, scal-
ing, and translating the variables and scaling the additive-constants (as they are also leaves
of C′1,C′2). However as the only non-zero additive constants in C′1 and C′2 are translations,
these two ROFs differ from C by just permutation, scaling and translation of the variables.
From Observation 5.25, C1 and C2 are constant-free regular ROFs obtained from C′1 and C′2
by recovering the scaling and translation of variables. Hence, they must be equal to C up to
a permutation of variables.

As C1 and C2 are the same up to a permutation of variables, their underlying trees G1 and
G2 are isomorphic as rooted trees. So, a permutation σ such that σ(G2) = G1 exists. As σ is
completely determined by its restriction to the leaves of G2, if P is as defined in Step 11, then
C1(x) = C2(Px). A simple calculation shows that this implies f1(x) = f2(Ax + b) for A and
b defined in Step 11. 2

Running time of the algorithm. Find-Equivalence(), Reconstruct-ROF(), and Canonize()
run in time polynomial in n. Also as mentioned in Fact 6.1, a polynomial time algorithm
exists for the rooted tree isomorphism problem. Moreover, the Schwartz-Zippel lemma also
yields a polynomial time algorithm for checking if f1(x) = f2(Ax + b) in Step 12. Thus,
Algorithm 11 runs in time poly(n). This along with Lemma 6.1 proves Theorem 1.7.

6.3 Polynomial equivalence for orbits of product depth-2 ROFs
In this section, we gave an algorithm for PE for orbits of additive-constant-free canonical
ROFs. Here we show how to solve PE for product-depth 2 canonical ROFs with additive-
constants.

6.3.1 Overview of the algorithm

The issue with additive-constants. Let f1 and f2 be two n-variate polynomials in the or-
bits of ROFs and suppose that they are equivalent. Then there exists a canonical ROF C

such that f1, f2 ∈ orb(C). If A1, A2 ∈ GL(n, F) are matrices obtained by invoking the Find-
Equivalence() algorithm (Algorithm 3) on f1 and f2, respectively, then f1(A1x), f2(A2x) ∈
PS-orb(C). In particular, the additive-constants other than translations in f1(A1x) and f2(A2x)
are the same. However, when we reconstruct f1(A1x) and f2(A2x) using the Reconstruct-
ROF() algorithm (Algorithm 9) and recover the translation of variables using the Canonize()
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algorithm (Algorithm 10), the outputs C′1 and C′2 are equal to f1(A1x) and f2(A2x) up to scal-
ing of the leaves. This means that the additive-constants in C′1 and C′2 might not be the same.
Thus, if we were to construct a permutation matrix P from the isomorphism that maps the
underlying tree of C′1 to that of C′2, C′1 need not be equal to C′2(Px). So the strategy used in
the previous section does not work in a straightforward manner. In this section, we show
how to overcome this issue for the case of orbits of product-depth 2 ROFs.

The idea. Suppose f1 ∈ orb( f2); then C1 = C2 = C, where C is a product-depth 2 canonical
ROF and thus, from Theorem 1.6 f1(A1x) ∈ PS-orb( f2(A2x)). We reconstruct f1(A1x) and
f2(A2x) to obtain C′1 and C′2, recover, and remove the translations of variables in both C′1
and C′2. We then show that there is a way to transform C′1 and C′2 such that all the non-zero
additive-constants in them are 1 and that as ROFs, they only differ by permutation and scal-
ing of variables; we exploit this to give an equivalence test. We then recover the scaling of
variables in C′1 and C′2. After that we check if for every term T1 in C′1 there exists a term T2

in C′2 such that the number of factors of both having 1 as additive-constant and having 0 as
additive-constant is the same. Furthermore, we check that for every factor of T1 having 1
(respectively, 0) as additive-constant, there exists a factor of T2 also having 1 (respectively,
0) as additive-constant such that their underlying trees are isomorphic. If f1 ∈ orb( f2), this
must be true for all terms of C′1 and C′2 and we are thus able to check for equivalence. Note
that here we do not need to worry about their additive-constants as they are the same.

Transforming C′1 and C′2. Let f (x) = f1(x), A = A1,C′(x) = C′1(x) (or f (x) = f2(x), A =

A2,C′(x) = C′2(x)). Suppose that f (Ax) = T1 + · · ·+ Ts + γ. Then from Lemma 5.7 as C′

and f (Ax) are equal up to scaling of leaves and each gate in C′ computes a non-zero constant
multiple of the corresponding gate in f (Ax), if C′(x) = T′1 + · · ·+ T′s + γ′, then T′i = ciTi for
all i ∈ [s] and γ′ = c0γ, where c0, . . . , cs are non-zero constants.

Observation 6.2 c0, . . . , cs = 1.

Proof: Since f (Ax) and C′(x) are the same polynomials, we get 0 = C′(x) − f (Ax) =

(c1− 1)T1 + · · ·+(cs− 1)Ts +(c0− 1)γ. Now each of the terms T1, . . . , Ts contains a variable
not contained in any other term or in γ. This means T1, . . . , Ts, γ are linearly independent
forcing c0 = · · · = cs = 1. 2

Let b be the translation vector output by Canonize(C′). Then, from Claim 5.31, b is
also the translation vector of f (Ax). So, f (Ax + b) is free of translations and is the same
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as C′(x + b) up to scaling of the leaves. We shall transform the terms of C′(x + b). Let
T = Q1 · · ·Qm be a term of f (Ax + b). Then, from Lemma 5.7 the corresponding term of C′,
T′ = Q′1 · · ·Q′m will be such that Q′i = βi · Qi, βi ̸= 0 for all i ∈ [m]. There are two kinds of
T′:

• Kind 1: The additive-constant of at least one of the factors Q′1, . . . , Q′m is 0.

• Kind 2: The additive-constant of all the factors Q′1, . . . , Q′m are non-zero.

In the following claims we see how to transform each of the above two kinds of terms.

Claim 6.1 Let T′ be a term of kind 1 such that for some k < m, the additive-constants of Q′k+1, . . . , Q′m
are zero, while the additive-constants α′1, . . . , α′k of Q′1, . . . , Q′k are non-zero. Also, let α1, . . . , αm be
the additive-constants in T. Then, if we transform T′ by bringing out α′1, . . . , α′k and absorb the
product α′ = ∏i∈[k] α′i in Q′m, we recover T′ as Q1

α1
· · · Qk

αk
· (βk+1Qk+1) · · · (βm−1Qm−1) · (β · α ·

βmQm), where β = ∏i∈[k] βi and α = ∏i∈[k] αi. Also, the only non-zero additive-constants in T′

are all 1.

Proof: As Q′i = βiQi, α′i = βiαi for all i ∈ [m]. Thus, when we bring out α′1, . . . , α′k from
Q′1, . . . , Q′k we recover T′ as T′ = (β1α1) · · · (βkαk) ·

β1Q1
β1α1
· · · βkQk

βkαk
· (βk+1Qk+1) · · · (βmQm),

which implies T′ = (β1α1) · · · (βkαk) · Q1
α1
· · · Qk

αk
· (βk+1Qk+1) · · · (βmQm).

So, after absorbing α′1 · · · α′k = (β1α1) · · · (βkαk) in Qm, we get T′ in the desired form.
Also, the only non-zero additive-constants are those in Q1

α1
, . . . , Qk

αk
and they are 1 by the

definition of α1, . . . , αk. 2

Claim 6.2 Let T′ be a term of kind 2 and the additive-constants of Q′1, . . . , Q′m be α′1, . . . , α′m. Also,
let α1, . . . , αm be the additive-constants of T. Then, if we transform T′ by bringing out α′1, . . . , α′m,
we recover T′ as α · Q1

α1
· · · Qm

αm
, where α = ∏i∈[m] αi. Also, all additive-constants in T′ are 1.

Proof: As Q′i = βiQi, α′i = βiαi for all i ∈ [m]. Thus, when we bring out α′1, . . . , α′m from
Q′1, . . . , Q′m we recover T′ as T′ = (β1α1) · · · (βmαm) · β1Q1

β1α1
· · · βmQm

βmαm
. Observation 6.2 implies

β1 · · · βm = 1 and we get T′ = α · Q1
α1
· · · Qm

αm
. By the definition of α1, . . . , αm all additive-

constants in T′ are 1. 2

Now, suppose that f1 ∈ orb( f2) and b1, b2 are translation vectors of C′1 and C′2 recovered
using the Canonise algorithm. Then from Claim 5.31, as they are also translation vectors
of f1(A1x) and f2(A2x), f1(A1x + b1) and f2(A2x + b2) are free of translations. Moreover,

176



as ROFs they only differ by permutation and scaling of variables. Notice that, in this case,
the above two claims imply that the same relationship also holds between C′1(x + b1) and
C′2(x + b2). As we exploit this property to give an equivalence test for f1 and f2, we record
it as an observation.

Observation 6.3 If f1 ∈ orb( f2), then after modifying C′1(x + b1) and C′2(x + b2) according to
Claims 6.1 and 6.2, C′1(x + b1) and C′2(x + b2) as ROFs only differ by permutation and scaling of
variables.

6.3.2 The Algorithm

Algorithm 12 Product-Depth-2-Equivalence-Test( f1(x), f2(x))
Input: Black-box access to f1(x), f2(x) in the orbits of product-depth 2 canonical ROFs.
Output: Whether or not f1 and f2 are equivalent. If they are equivalent, then A ∈ GL(n, F)

and b ∈ Fn such that f1(x) = f2(Ax + b).

1: /* Reconstructing canonical ROFs equivalent to f1 and f2 and transforming their terms.
*/

2: for i ∈ [2] do
3: Ai ← Find-Equivalence( fi(x)) (Algorithm 3).
4: C′i ← Reconstruct-ROF( fi(Aix)) (Algorithm 9).
5: bi ← translation vector returned by Canonize(C′i) (Algorithm 10). C′i ← C′i(x + bi).
6: Transform all terms in C′i according to Claims 6.1 and 6.2. C′i ← the ROF obtained after

the transformation and recovering scaling of variables, Si ← the scaling matrix.
7: end for
8:

9: /* Checking if C′1 and C′2 are equivalent. */
10: if the additive-constants of C′1 and C′2 attached to the top + gate are not equal then
11: Return NOT EQUIVALENT.
12: end if
13: N1 ← set of terms of C′1, N2 ← set of terms of C′2, P ← In×n, the permutation matrix

mapping the variables of C′1 to the variables of C′2.
14: for T′1 ∈ N1 do
15: If T′1 is a term of kind 1 and ∃ T′2 ∈ N2 also of kind 1 such that Check-Kind-1(T′1, T′2)

returns SUCCESS, then N2 ← N2 \ {T′2}. Update P so that it maps var(T′1) to var(T′2)
appropriately.
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16: If T′1 is a term of kind 2 and ∃ T′2 ∈ N2 also of kind 2 such that Check-Kind-2(T′1, T′2)
returns SUCCESS, then N2 ← N2 \ {T′2}. Update P so that it maps var(T′1) to var(T′2)
appropriately.

17: end for
18: if N2 = ∅ then
19: A← A2S2PS−1

1 A−1
1 , b← A2b2 − A2S2PS−1

1 b1.
20: Use the Schwartz-Zippel Lemma to check if f1(x) = f2(Ax + b). If yes, return EQUIV-

ALENT, A and b. Else, return NOT EQUIVALENT.
21: else
22: Return NOT EQUIVALENT.
23: end if

The checks on lines 15 and 16 are performed using the following algorithms.

Algorithm 13 Check-Kind-1(T′1, T′2)

Input: Terms T′1 of C′1 and T′2 of C′2 of Kind 1.
Output: SUCCESS if they are equivalent, FAILURE otherwise.

1: Suppose T′1 = Q′1,1 · · ·Q′1,k1
· Q′1,k1+1 · · ·Q′1,m1

and T′2 = Q′2,1 · · ·Q′2,k2
· Q′2,k2+1 · · ·Q′2,m2

,
where Q′1,1, · · · , Q′1,k1

and Q′2,1, · · · , Q′2,k2
are the only factors with additive-constants.

2: if k1 ̸= k2 or m1 ̸= m2 then
3: Return FAILURE

4: end if
5: if there exists a bijection σ : [m1] → [m1] such that σ ([k1]) = [k1] and ∀i ∈ [m1], the

rooted trees of Q′1,i and Q′2,σ(i) are isomorphic then
6: Return SUCCESS.
7: else
8: Return FAILURE.
9: end if

Algorithm 14 Check-Kind-2(T′1, T′2)

Input: Terms T′1 of C′1 and T′2 of C′2 of kind 2.
Output: SUCCESS if they are equivalent, FAILURE otherwise.
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1: Suppose T′1 = α′1 ·Q′1,1 · · ·Q′1,m1
and T′2 = α′2 ·Q′2,1 · · ·Q′2,m2

.
2: if α′1 ̸= α′2 or m1 ̸= m2 then
3: Return FAILURE

4: end if
5: if there exists a bijection σ : [m1]→ [m1] such that ∀i ∈ [m1], the rooted trees of Q′1,i and

Q′2,σ(i) are isomorphic then
6: Return SUCCESS.
7: else
8: Return FAILURE.
9: end if

6.3.3 Analysis of the algorithm

We establish the correctness of the above algorithm by proving the following lemma.

Lemma 6.2 (Correctness of Algorithm 12) Given black-box access to two n-variate polynomials
f1(x), f2(x) in the orbits of two unknown product-depth 2 canonical ROFs, Algorithm 12 correctly
determines whether they are equivalent or not provided that char(F) = 0 or ≥ n2 and |F| ≥ n13.
Moreover, if they are equivalent, it returns an A ∈ GL(n, F) and a b ∈ Fn such that f1(x) =

f2(Ax + b).

Proof: If f1 /∈ orb( f2), then Step 20 ensures that the algorithm returns NOT EQUIVALENT

with high probability. So suppose that f1 ∈ orb( f2). Then, from Observation 6.3, we have
that after Step 6 of the algorithm, C′1 and C′2 as ROFs only differ by permutation of variables
(because the scaling of variables has already been recovered). Thus, if the additive-constants
attached to the top-most gates in C′1 and C′2 are not equal, f1 /∈ orb( f2) and so Step 11 is
correct.

Now for every term T1 of f1, there must exist a term T2 of f2 such that T1 ∈ PS-orb(T2).
Then, Observation 6.3 also implies that the corresponding terms T′1 and T′2 of f ′1 and f ′2 as
ROFs must be same up to permutation of variables. It is easy to see that this is true if and
only if, depending on the kind of these terms, either Check-Kind-1(T′1, T′2) or Check-Kind-
2(T′1, T′2) succeeds. Hence the algorithm correctly determines whether f1 and f2 are equiva-
lent or not. A simple calculation then shows that f1(x) = f2(Ax + b) for A and b as defined
in Step 20. 2
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Running time of the algorithm. Find-Equivalence(), Reconstruct-ROF(), and Canonize()
run in time polynomial in n. Also as mentioned in Fact 6.1, a polynomial time algorithm ex-
ists for the rooted tree isomorphism problem. This implies that Check-Kind-1() and Check-
Kind-2() run in time poly(n). As |N1|, |N2| ≤ n, this means that the for loop of lines 14-17
also runs in poly(n) time. Moreover, the Schwartz-Zippel lemma also yields a polynomial
time algorithm for checking if f1(x) = f2(Ax + b) in Step 20. Thus, Algorithm 12 runs in
time poly(n). This along with Lemma 6.2 proves Theorem 1.8.
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Chapter 7

Lower bounds for constant depth
arithmetic circuits

In a breakthrough paper [LST21], Limaye, Srinivasan, and Tavenas proved super-polynomial

lower bounds against low depth arithmetic circuits. This chapter provides an alternate

and a more direct proof of their result. The contents of this chapter are from a joint work

with Prashanth Amireddy, Ankit Garg, Neeraj Kayal, and Chandan Saha [AGK+23].

7.1 Introduction
In a remarkable work, [LST21], Limaye, Srinivasan, and Tavenas solved the long-standing
open problem of proving super-polynomial lower bounds for constant depth arithmetic
circuits. They showed that any circuit with product-depth ∆ (see Definition 2.1) comput-
ing the n variate, degree d IMM polynomial (see Definition 2.15) must have size at least

dO(d)nΩ(d21−2∆
); this yields a super-polynomial lower bound as long as d = O(log n) and

∆ =
log n

log log n . They do this by showing that if IMM is computed by a size s, product-depth ∆
circuit C, then it must also be computed by a homogeneous circuit C′ with product-depth 2∆
and size s · dO(d). They further show that C′ can be converted into a set-multilinear circuit C′′

of product-depth 2∆ and size s · dO(d) and finally prove a lower bound for this C′′ using the
relative rank measure, which is a variant of the partial derivatives measure. In this section,
we give a more direct proof of their result: we prove a lower bound for C′ directly using the
shifted partials (SP) and theAPP measures (see Definition 2.17). Specifically, we prove the
following theorem.

Theorem 1.9 (Lower bound for low-depth homogeneous formulas via shifted partials) Let
C be a homogeneous formula of size s and product-depth ∆ that computes a polynomial of degree d in
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n variables. Then for appropriate values of k and ℓ,

SP k,ℓ(C) ≤
s 2O(d)

nΩ(d21−∆ )
min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)}.

At the same time, there are homogeneous polynomials f of degree d in n variables (e.g., an appropriate
projection of iterated matrix multiplication polynomial, Nisan-Wigderson design polynomial, etc.)
such that

SP k,ℓ( f ) ≥ 2−O(d) min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)}.

This gives a lower bound of nΩ(d21−∆
)

2O(d) on the size of homogeneous product-depth ∆ formulas for f .

In Section 7.2, we describe some notations and definitions specific to this chapter. In Sec-
tion 7.3, we give a high-level overview of the techniques. Section 7.4 analyses the structure
of a certain space of partial derivatives; the results proved in this section play a vital role in
giving us a more direct proof in Section 7.5.

7.2 Preliminaries
Let a, b, c be real numbers. Then we define the sets [a..b] := {x ∈ Z : x ∈ [a, b]} and [a] :=
[1..a]. For a constant c ≥ 1 and b ≥ 0, we say a ≈c b if a ∈ [b/c, b]. We write a ≈ b
if a ≈c b for some (unspecified) constant c. All logarithms have base 2 unless specified
otherwise. We denote the fractional part of a by {a} := a− ⌊a⌋ and the nearest integer of
a by ⌊a⌉. The following quantity will be crucially used in the proofs of our lower bounds.
Here, we think of d1, . . . , dt as degrees of certain homogeneous polynomials, d as the degree
of the product of those polynomials, and k is the order of partial derivatives used for the
complexity measures.

Definition 7.1 (residue) For non-negative integers d1, . . . , dt such that d :=
t

∑
i=1

di ≥ 1 and k ∈

[0..(d− 1)], we define residuek(d1, . . . , dt) := 1
2 · min

k1,...,kt∈Z

t
∑

i=1

∣∣∣ki − k
d · di

∣∣∣ .

The factor of half has been included in the definition just to make the statements of some
of the lemmas in our analysis simple. It is easy to show that residuek(d1, . . . , dt) ≤ k

2 . The
minimum is attained when for all i ∈ [t], ki =

⌊
k
d · di

⌉
. When we use residue in the analysis of

complexity measures, we would also have the following additional constraints that ki ≥ 0
and ki ≤ di, k1 + · · · + kn = k, where k shall be the order of derivatives. As the value of
residue cannot decrease when we impose these constraints, we omit them.
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Sets and functions. When some sets S1, . . . , St are pair-wise disjoint, we write their union
as S1 ⊔ · · · ⊔ St. For a function µ : S → T and a subset A ⊆ S, we define the multiset
µ(A) := {µ(x) : x ∈ A}. Clearly |µ(A)| = |A|1. We denote the power set of a set S by 2S.
We say that a function µ : S→ T extends κ : A→ T if A ⊆ S and for all x ∈ A, µ(x) = κ(x).
Let µ : S → T and κ : A → T be functions such that S ∩ A = ∅. Then µ ⊔ κ : S ⊔ A → T is
defined by setting (µ ⊔ κ)(x) = µ(x) for all x ∈ S and (µ ⊔ κ)(x) = κ(x) for all x ∈ A.

Binomial coefficients. For non-negative integers a, b, we shall denote the quantity (a+b−1
b )

by M(a, b). Note that M(a, b) is the number of (monic) monomials of degree b over a many
variables.

The following lemma is useful when dealing with binomial coefficients.

Lemma 7.1 (Approximations for M(a, b)) For positive integers a ≥ b ≥ c and d, we have

1. (a/b)b ≤ M(a, b) ≤ (6a/b)b,

2. (a/2b)c ≤ M(a,b+c)
M(a,b) ≤ (2a/b)c,

3. M(c,d)
M(b,d) ≥ (c/b)d.

Proof:

1.

M(a, b) =
(a + b− 1) · · · (a)

b!
≥ ab

bb , and

M(a, b) ≤ (a + b− 1)b(
b
e

)b (using b! ≥ (b/e)b)

≤ (2a)b ·eb

bb ≤
(

6a
b

)b
.

2.

M(a, b + c)
M(a, b)

=

(
a + b + c− 1

b + c

)
· · ·
(

a + b
b + 1

)
.

1For a multiset B, |B| denotes its size, i.e. the number of elements in B counted with their respective
multiplicities.
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The bounds follow from the fact that each of the above c many fractions lies between
a

2b and 2a
b .

3.

M(c, d)
M(b, d)

=

(
c + d− 1
b + d− 1

)
· · ·
( c

b

)
.

The lower bound follows from the fact that each of the above d many fractions is at
least c

b .

2

7.3 Proof techniques
In this section, we explain the proof idea and compare it with that in [LST21]. A lot of lower
bounds in arithmetic complexity follow the following outline.

Step 1: Depth reduction. One first shows that if f (x) is computed by a small circuit from
some restricted subclass of circuits, then there is a corresponding subclass of depth-4 circuits
such that f (x) is also computed by a relatively small circuit from this subclass1. The resulting
subclass is of the form: f (x) = ∑s

i=1 ∏ti
j=1 Qi,j. Usually there are simple restrictions on the

degrees of Qi,j’s. For example, they could be upper bounded by some number.

Step 2: Employing a suitable set of linear maps. Let F[x]=d be the space of homogeneous
polynomials of degree d, W be a suitable vector space, and Lin(F[x]=d, W) be the space of
linear maps from F[x]=d to W. We choose a suitable set of linear maps L ⊆ Lin(F[x]=d, W)

that define a complexity measure µL( f ) := dim(L( f )), where L( f ) := ⟨{L( f ) : L ∈ L}⟩.
We would like to choose L so that it identifies some weakness of the terms ∏t

j=1 Qj in

the depth-4 circuit. That is, µL
(

∏t
j=1 Qj

)
should be much smaller than µL( f ) for a generic

f . For e.g., if Qj’s are all linear polynomials, we can choose L to be the partial derivatives

of order k, ∂k. Then, µL
(

∏t
j=1 Qj

)
≤ (t

k) ≪ (n+k−1
k ) which is the value for a generic f (for

k ≤ t/2). This is the basis of the homogeneous depth-3 formula lower bound in [NW97].
For proving lower bounds for bounded bottom fan-in depth-4 circuits (i.e., when degree

of Qj’s is upper bounded by some number), [GKKS14, Kay12b] introduced the SP measure

1Some major results in the area such as [Raz03, LST21] did not originally proceed via a depth reduction
but instead analysed formulas directly. These results can however be restated as first doing a depth reduction
and then applying the appropriate measure.

184



and used the linear maps L = xℓ · ∂k. The main insight in their proof was that if we apply
a partial derivative of order k on ∏t

j=1 Qj and use the product rule, then at least t − k of
the Qj’s remain untouched. This structure can then be exploited by the shifts to get a lower
bound. This intuition however completely breaks down for k ≥ t. Due to this, progress
remain stalled for higher depth arithmetic circuit lower bounds via SP .

In a major breakthrough, [LST21] gets around the above obstacle by working with set-
multilinear circuits which entails working with polynomials over d sets of variables (x1, . . . , xd),
|xi| = n. Let us use the shorthand xS = (xi)i∈S. The products they deal with are of the
form ∏t

j=1 Qj(xSj), where S1, S2, . . . , St form a partition of [d]. The set of linear maps they
use are L = Π ◦ ∂xA for a subset A ⊆ [d]. Here, Π is a map that sets n − n0 variables in
each of the variable sets in x[d]\A to 0. They observe (for the appropriate choice of n0) that

µL
(

∏t
j=1 Qj(xSj)

)
≤ n|A|

2
1
2 ∑t

j=1 imbalancej
.

Here, imbalancej = ||A ∩ Sj| log(n)− |Sj\A| log(n0)|. For the appropriate choice of n0,
a generic set-multilinear f satisfies µL( f ) = n|A|, so that lower bound (on the number of
summands) obtained is exponential in the total imbalance ∑t

j=1 imbalancej. [LST21] observe
that this quantity is somewhat large for the depth-4 circuits that they consider.

The core of the above derivatives-based argument allows us to unravel some structure
in partial derivatives of order k applied on ∏t

j=1 Qj for values of k ≫ t. We use this to
derive a structure for the partial derivative space of a product ∏t

j=1 Qj(x). Consider a partial
derivative operator of order k indexed by a multiset α of size k. Using the chain rule,

∂α

t

∏
j=1

Qj = ∑
α1,...,αt : ∑t

i=1 αi=α

cα
α1,...,αt

t

∏
j=1

∂αj Qj

for appropriate constants cα
α1,...,αt

’s. In the product ∏t
j=1 ∂αj Qj, we can try to club terms into

two groups depending on if the size of |αj| is small or large. It turns out that the right
threshold for |αj| is k deg(Qj)/d (i.e., if we divide the order of the derivatives proportional
to the degrees of the terms). Let S := {j : |αj| ≤ k deg(Qj)/d}. Define k0 := ∑j∈S |αj| and
ℓ0 := ∑j∈S(deg(Qj)− |αj|). Notice that we can write the product ∏t

j=1 ∂αj Qj as P ∏j∈S ∂αj Qj,
for a degree ℓ0 polynomial P. Hence, ∂α ∏t

j=1 Qj is a sum of terms of this form. While it is
not immediate (due to the condition on αj’s in S), with a bit more work, one can combine the
product of partials into a single partial.

What can we say about k0 and ℓ0? It turns out that the quantity that comes up in the
calculations is k0 +

k
d−kℓ0 and it satisfies k0 +

k
d−kℓ0 ≤ k. Note that k0 is between 0 and k, and

ℓ0 between 0 and d− k. So the normalization brings ℓ0 to the right ’scale’.
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It turns out we can give a better bound in terms of a quantity we call residue defined as

residuek(d1, . . . , dt) :=
1
2
· min

k1,...,kt∈Z

t

∑
j=1

∣∣∣∣k j −
k
d
· dj

∣∣∣∣ .

and having the property that:

Proposition 7.1 Let k0 and ℓ0 be defined as above. Then, k0 +
k

d−kℓ0 ≤ k − residuek(d1, . . . , dt),
where dj = deg(Qj).

We want to spread the derivatives equally among all terms but cannot due to integrality is-
sues. The residue captures this quantitatively and as described below, is what gives us our
lower bounds. While the proof in [LST21] also relies on an integrality issue, there it origi-
nates from an imbalance between the sizes of the variable sets involved in a set-multilinear
partition (as the map Π sets some variables in certain sets to 0). In contrast, we show that
the integrality issue arising directly from the derivatives can be leveraged without involving
set-multilinearity. In this sense, our approach is conceptually direct and simpler. Combined
with the above discussion, we get the following structural lemma about the derivative space
of ∏t

j=1 Qj.

Lemma 7.2

〈
∂k (Q1 · · ·Qt)

〉
⊆ ∑

S⊆[t], k0∈[0..k], ℓ0∈[0..(d−k)],
k0+

k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

〈
xℓ0 · ∂k0

(
∏
j∈S

Qj

)〉
.

Now we have the choice to utilize the above structure using an additional set of linear
maps. Both shifts and projections give similar lower bounds, so let us explain shifts here.
Note that there is an intriguing possibility of getting even better lower bounds (in terms of
dependence on d) using other sets of linear maps! From the above structural result, we have

〈
xℓ · ∂k (Q1 · · ·Qt)

〉
⊆ ∑

S⊆[t], k0∈[0..k], ℓ0∈[0..(d−k)],
k0+

k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

〈
xℓ+ℓ0 · ∂k0

(
∏
j∈S

Qj

)〉
.
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Thus we can upper bound,

SP k,ℓ((Q1 · · ·Qt)) ≤ 2t · d2 · max
k0,ℓ0≥0

k0+
k

d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n, ℓ0 + ℓ)

≤ 2t · d2 2O(d)

nresiduek(d1,...,dt)
min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)},

where the second inequality follows from elementary calculations.
Now to upper bound the shifted partial dimension of polynomials computed by low-

depth formulas, we give a decomposition for such formulas into sums of products of polyno-
mials (Lemma 7.5) where the degree sequences are carefully chosen so that that the residues
can be simultaneously lower bounded for all the terms (Lemma 7.6). While in a different
context, these calculations do bear similarity with related calculations in [LST21].

Step 3: Lower bounding dim(L( f )) for an explicit f . As a last step, one shows that for some
explicit candidate hard polynomial dim(L( f )) is large and thereby obtains a lower bound.
This is another step where bypassing set-multilinearity helps as one is not constrained to
pick a set-multilinear hard polynomial. Indeed, using a straightforward analysis we show
that the APP measure is high for an explicit non-set-multilinear polynomial (see Remark
7.2). We also show that the measures are high for more standard polynomial families such
as the iterated matrix multiplication polynomials and the Nisan-Wigderson design polyno-
mials.

7.4 Structure of the space of partial derivatives of a product
In this section, we bound the partial derivative space of a product of homogeneous polyno-
mials. In the following lemma, we show that the space of k-th order partial derivatives of
a product of polynomials is contained in a sum of shifted partial spaces with shift ℓ0 and
order of derivatives k0 such that k0 +

k
d−k · ℓ0 is ‘small’. Using this lemma, we upper bound

the SP and APP measures of a product of homogeneous polynomials. These bounds are
then used in Section 7.5 for proving lower bounds for low-depth homogeneous formulas.

Lemma 7.3 (Upper bounding the partials of a product) Let n and t be positive integers and
Q1, . . . , Qt be non-constant, homogeneous polynomials in F[x] with degrees d1, . . . , dt respectively.
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Let d := deg(Q1 · · ·Qt) =
t

∑
i=1

di and k < d be a non-negative integer. Then,

〈
∂k (Q1 · · ·Qt)

〉
⊆ ∑

S⊆[t], k0∈[0..k], ℓ0∈[0..(d−k)],
k0+

k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

〈
xℓ0 · ∂k0

(
∏
i∈S

Qi

)〉
.

Proof: We first give some intuition about the proof. Let m be any multilinear monomial
(i.e., no variable appears more than once) of degree k, and X be the corresponding set of
variables. Then, by the product rule ∂X(Q1 · · ·Qt) can be expressed as the sum

∑
(X1,...,Xt):

X1⊔···⊔Xt=X

∂X1 Q1 · · · ∂Xt Qt. (7.1)

Note that since the sizes of Xi’s should sum to k and the degrees of Qi’s should sum to
d in each term of the above summation, some factors are differentiated ‘a lot’ while the
others are differentiated only ‘a little’. More specifically, if |Xi| > k

d ·di, we use the fact that

∂Xi Qi ∈
〈

xdi−|Xi|
〉

and otherwise we use ∂Xi Qi ∈
〈

∂|Xi|Qi

〉
to conclude that

∂X1 Q1 · · · ∂Xt Qt ∈
〈

x∑i∈S ℓ0,i ·∏
i∈S

∂k0,i Qi

〉
,

where S :=
{

i ∈ [t] : |Xi| ≤ k
d ·di

}
, S = [t] \ S, ℓ0,i = di − |Xi| for all i ∈ S, and k0,i =

|Xi| for all i ∈ S. By the nature of our construction, we can show that k0 +
k

d−k ·ℓ0 ≤ k −
residuek(d1, . . . , dt), where k0 := ∑i∈S k0,i and ℓ0 := ∑i∈S ℓ0,i (see the calculations at the end
of the proof). Now suppose it holds that ∏i∈S ∂k0,i Qi = ∂k0 ∏i∈S Qi. In such a case, we
would get the space required in the R.H.S. of the lemma statement, and we would be done.
However, this assumption need not be true if |S| ≥ 1. To get around this issue, we employ
an inductive argument on the size of S (see Claim 7.2). For this argument, it will be helpful to
combine certain terms in the sum (7.1) depending on the set of factors that are differentiated
a ‘lot’ (see Claim 7.1). We now present the proof in full detail. Since, in general, the variables
in m need not be distinct, it will be convenient to think of degree k monomials over x as
maps from [k] to x.

For a function µ : P→ x and any P′ ⊆ P, recall that µ(P′) refers to the multiset of images
of the elements of P′ under µ. Thus |µ(P′)| = |P′|. Let V be the set of polynomials on the
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R.H.S., i.e.,

V := ∑
S⊆[t], k0+

k
d−k ·ℓ0

≤ k−residuek(d1,...,dt)

〈
xℓ0 · ∂k0

(
∏
i∈S

Qi

)〉
.

We now argue that for an arbitrary total function µ : [k] → x, ∂µ([k])

(
∏

i∈[t]
Qi

)
∈ V ; the

lemma then follows immediately. We use the following identity which is a direct conse-
quence of the product rule for derivatives:

∂µ([k])

∏
i∈[t]

Qi

 = ∑
κ:[t]→2[k] s.t.
⊔i∈[t]κi=[k]

∏
i∈[t]

∂µ(κi)
Qi.

In fact, the product rule yields something general: for any P ⊆ [k], function µ : P → x, and
S ⊆ [t],

∂µ(P)

(
∏
i∈S

Qi

)
= ∑

κ:S→2P s.t.
⊔i∈Sκi=P

∏
i∈S

∂µ(κi)
Qi. (7.2)

In the above identities we have used κi as a shorthand for κ(i); we shall also do so for the
rest of this section.

For an arbitrary S ⊆ [t], recall that we denote S = [t] \ S. Let κ̃ : S → 2[k] be such that
|κ̃i| > k

d ·di for all i ∈ S. Then we define a polynomial RS,κ̃ as

RS,κ̃ := ∑
κ:[t]→2[k] s.t.

κ extends κ̃
⊔i∈[t]κi=[k]
∀i∈S, |κi|≤ k

d ·di

∏
i∈[t]

∂µ(κi)
Qi. (7.3)

The idea is to express any k-th order partial derivative of the product Q1 · · ·Qt in terms of
RS,κ̃. Indeed we have the following claim.
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Claim 7.1

∂µ([k])

∏
i∈[t]

Qi

 = ∑
S⊆[t]

∑
κ̃:S→2[k] s.t.
∀i∈S,|κ̃i|> k

d ·di

RS,κ̃.

Proof:

∂µ([k])

∏
i∈[t]

Qi

 = ∑
κ:[t]→2[k] s.t.
⊔i∈[t]κi=[k]

∏
i∈[t]

∂µ(κi)
Qi

= ∑
S⊆[t]

∑
κ:[t]→2[k] s.t.
⊔i∈[t]κi=[k]

{i∈[t]:|κi|≤ k
d .di}=S

∏
i∈[t]

∂µ(κi)
Qi

= ∑
S⊆[t]

∑
κ̃:S→2[k] s.t.
∀i∈S,|κ̃i|> k

d .di

∑
κ′ :S→2[k] s.t.

κ=κ′⊔κ̃
⊔i∈[t]κi=[k]
∀i∈S,|κ′i |≤

k
d .di

∏
i∈[t]

∂µ(κi)
Qi

= ∑
S⊆[t]

∑
κ̃:S→2[k] s.t.
∀i∈S,|κ̃i|> k

d .di

∑
κ:[t]→2[k] s.t.

κ extends κ̃
⊔i∈[t]κi=[k]
∀i∈S,|κi|≤ k

d .di

∏
i∈[t]

∂µ(κi)
Qi

= ∑
S⊆[t]

∑
κ̃:S→2[k] s.t.
∀i∈S,|κ̃i|> k

d .di

RS,κ̃. (by the definition of RS,κ̃ in (7.3))

2

Hence, to show that ∂µ([k]) (Q1 · · ·Qt) ∈ V , it suffices to argue that the polynomials RS,κ̃ are
in V . We show this by induction on the size of S. In the base case of |S| = 0, there does
not exist any function κ : [t] → 2[k] that extends κ̃ such that

{
i ∈ [t] : |κi| ≤ k

d · di

}
= S and

⊔i∈[t]κi = [k]. This is so because |κi| = |κ̃i| > k
d · di for all i ∈ [t] implies that ∑

i∈[t]
|κi| >

∑
i∈[t]

k
d · di = k, and hence ⊔i∈[t]κi ̸= [k]. So by definition, RS,κ̃ = 0 ∈ V .

Suppose that RT,κ′ ∈ V for all T ⊆ [n] such that |T| < |S|. Let κ̃ : S→ 2[k] be any function
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such that |κ̃i| > k
d ·di for all i ∈ S, and let κ : [t]→ 2[k] be a function that extends κ̃ such that

⊔i∈[t]κi = [k] and
{

i ∈ [t] : |κi| ≤
k
d
· di

}
= S. (7.4)

Denoting ⊔i∈Sκi by PS and ⊔i∈Sκi by PS,

∂µ(⊔i∈Sκi) ∏
i∈S

Qi = ∂µ(PS) ∏
i∈S

Qi

= ∑
κ′ :S→2PS s.t.
⊔i∈Sκ′i=PS

∏
i∈S

∂µ(κ′i)
Qi. (from Equation (7.2))

For US,κ ∈ F[x] defined as US,κ :=
(

∂µ(PS) ∏
i∈S

Qi

)
· ∏

i∈S
∂µ(κi)

Qi, we have the following claim.

Claim 7.2

RS,κ̃ = US,κ − ∑
T⊊S and κ′′ :S\T→2PS s.t.
∀i∈S\T,|κ′′i |>

k
d ·di

RT,κ′′⊔κ̃.

Proof:

US,κ =

(
∂µ(PS) ∏

i∈S
Qi

)
·∏

i∈S

∂µ(κi)
Qi

= ∑
κ′ :S→2PS s.t.
⊔i∈Sκ′i=PS

∏
i∈S

∂µ(κ′i)
Qi ·∏

i∈S

∂µ(κi)
Qi

= ∑
T⊆S

∑
κ′ :S→2PS s.t.
⊔i∈Sκ′ i=PS

{i∈S:|κ′i |≤
k
d .di}=T

∏
i∈S

∂µ(κ′ i)Qi ·∏
i∈S

∂µ(κi)
Qi (reordering based on T)

= ∑
T⊆S

∑
κ′′ :S\T→2PS and κ′′′ :T→2PS s.t.

κ′=κ′′⊔κ′′′
⊔i∈Sκ′ i=PS

∀i∈S\T,|κ′′i |>
k
d ·di

∀i∈T,|κ′′′i |≤
k
d ·di

∏
i∈S

∂µ(κ′i)
Qi ·∏

i∈S

∂µ(κi)
Qi

= ∑
T⊆S

∑
κ′′ :S\T→2PS s.t.
∀i∈S\T,|κ′′i |>

k
d ·di

∑
κ′′′ :T→2PS s.t.
κ∗=κ′′⊔κ′′′⊔κ̃
∀i∈T,|κ∗i |≤

k
d ·di

⊔i∈Tκ′′′i ⊔⊔i∈S\Tκ′′i =PS

∏
i∈[t]

∂µ(κ∗i )
Qi
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(as κ∗ extends κ′ = κ′′ ⊔ κ′′′ and κ extends κ̃ )

= ∑
T⊆S

∑
κ′′ :S\T→2PS s.t.
∀i∈S\T,|κ′′i |>

k
d ·di

∑
κ∗ :[t]→2[k] s.t.
κ∗=κ′′⊔κ′′′⊔κ̃
∀i∈T,|κ∗i |≤

k
d ·di

⊔i∈[t]κ
∗
i =[k]

∏
i∈[t]

∂µ(κ∗i )
Qi

(because ⊔i∈[t]κ
∗
i =

(
⊔i∈S\Tκ′′i ⊔ ⊔i∈Tκ′′′i

)
⊔ ⊔i∈Sκ̃i = PS ⊔ ⊔i∈Sκi = ⊔i∈[t]κi = [k] from (7.4))

= ∑
T⊆S

∑
κ′′ :S\T→2PS s.t.
∀i∈S\T,|κ′′i |>

k
d ·di

RT,κ′′⊔κ̃

(RT,κ′′⊔κ̃ is well-defined because κ∗ extends κ′′ ⊔ κ̃ and (7.4))

= RS,κ̃ + ∑
T⊊S and κ′′ :S\T→2PS s.t.
∀i∈S\T,|κ′′i |>

k
d .di

RT,κ′′⊔κ̃. (separating out the case T = S)

2

When T ⊊ S, by the induction hypothesis, all the terms RT,κ′′⊔κ̃ in the above expression
are in V . Therefore, to conclude that RS,κ̃ ∈ V , it suffices to show that US,κ ∈ V . From its

definition, note that US,κ ∈
〈

∂k0

(
∏
i∈S

Qi

)
· xℓ0

〉
where k0 := |µ(PS)| = |PS| = ∑

i∈S
|κi| and

ℓ0 := ∑
i∈S

deg(∂µ(κi)
Qi) = ∑

i∈S
(di − |κi|). Also,

k− k0 −
k

d− k
· ℓ0 = k−∑

i∈S
|κi| −

k
d− k

·∑
i∈S

(di − |κi|)

= ∑
i∈S

|κi| −
k

d− k
·∑

i∈S

(di − |κi|)

(as from (7.4), κ1, . . . , κt form a partition of [k])

= ∑
i∈S

|κi| −
k

d− k
· (di − |κi|)
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= ∑
i∈S

d
d− k

·
(
|κi| −

k
d
· di

)
≥ ∑

i∈S

|κi| −
k
d

.di (using d ≥ d− k and |κi| > k
d · di iff i ∈ S)

=
1
2

(
∑
i∈S

|κi| −
k
d
· di

)
+

1
2

(
∑
i∈S
|κi| −

k
d
· di

)

+
1
2

(
∑
i∈S

|κi| −
k
d
· di

)
− 1

2

(
∑
i∈S
|κi| −

k
d
· di

)

=
1
2

∑
i∈[t]
|κi| −

k
d
· di

+
1
2

(
∑
i∈S

|κi| −
k
d
· di

)
− 1

2

(
∑
i∈S
|κi| −

k
d
· di

)

=
1
2

(
k− k

d
· d
)
+

1
2

(
∑
i∈S

|κi| −
k
d
· di

)
− 1

2

(
∑
i∈S
|κi| −

k
d
· di

)
(since |κi|’s sum to k and di’s sum to d)

=
1
2
· ∑

i∈[t]

∣∣∣∣|κi| −
k
d
· di

∣∣∣∣ (from (7.4))

≥ residuek(d1, . . . , dt). (from definition of residue)

Hence, US,κ ∈
〈

xℓ0 · ∂k0

(
∏
i∈S

Qi

)〉
⊆ V as k0 +

k
d−k · ℓ0 ≤ k− residuek(d1, . . . , dt). 2

We now use the above lemma to upper bound the shifted partials and affine projections
of partials measures of a product of polynomials.

Lemma 7.4 (Upper bounding SP and APP of a product) Let Q = Q1 · · ·Qt be a homoge-
neous polynomial in F[x1, . . . , xn] of degree d = d1 + · · ·+ dt ≥ 1, where Qi is homogeneous and
di := deg(Qi) for i ∈ [t]. Then, for any non-negative integers k < d, ℓ ≥ 0, and n0 ≤ n,

1.
SP k,ℓ(Q) ≤ 2t · d2 · max

k0,ℓ0≥0
k0+

k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n, ℓ0 + ℓ),

2.
APP k,n0(Q) ≤ 2t · d2 · max

k0,ℓ0≥0
k0+

k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n0, ℓ0).
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Proof: We will first upper bound the shifted partials measure. From Lemma 7.3, we know
that

〈
∂k (Q1 · · ·Qt)

〉
⊆ ∑

S⊆[t]; k0,ℓ0≥0
k0+

k
d−k ·ℓ0≤k−residuek(d1,...,dt)

〈
xℓ0 · ∂k0

(
∏
i∈S

Qi

)〉
.

Hence,

〈
xℓ · ∂k (Q1 · · ·Qt)

〉
⊆ ∑

S⊆[t]; k0,ℓ0≥0
k0+

k
d−k ·ℓ0≤k−residuek(d1,...,dt)

〈
xℓ0+ℓ · ∂k0

(
∏
i∈S

Qi

)〉
. (7.5)

For a fixed S ⊆ [t] and k0, ℓ0, since
〈

xℓ0+ℓ · ∂k0

(
∏
i∈S

Qi

)〉
⊆
〈
xℓ0+ℓ

〉
·
〈

∂k0 ·
(

∏
i∈S

Qi

)〉
, and

dim
〈
xℓ0+ℓ

〉
≤
∣∣xℓ0+ℓ

∣∣ = M(n, ℓ0 + ℓ) and dim
〈

∂k0

(
∏
i∈S

Qi

)〉
≤
∣∣∣∣∂k0

(
∏
i∈S

Qi

)∣∣∣∣ ≤ ∣∣xk0
∣∣ =

M(n, k0), we have,

dim

〈
xℓ0+ℓ · ∂k0

(
∏
i∈S

Qi

)〉
≤ dim

〈
xℓ0+ℓ

〉
· dim

〈
∂k0

(
∏
i∈S

Qi

)〉
≤ M(n, ℓ0 + ℓ) ·M(n, k0).

Adding up the above upper bound over all the 2t ·d2 possible combinations of S ⊆ [t],
k0 ∈ [0..k], and ℓ0 ∈ [0..(d− k)] in (7.5), we get,

SP k,ℓ(Q) = dim
〈

xℓ · ∂k (Q1 · · ·Qt)
〉
≤ 2t · d2 · max

k0,ℓ0≥0
k0+

k
d−k ·ℓ0≤k−residuek(d1,...,dt)

M(n, k0) ·M(n, ℓ0 + ℓ).

The details for an upper bound on APP are similar.

APP k,n0(Q) = max
L:x→⟨z⟩

dim
〈

πL

(
∂k(Q1 · · ·Qt)

)〉
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≤ max
L:x→⟨z⟩

dim

〈
πL

 ∑
S⊆[t]; k0,ℓ0≥0

k0+
k

d−k ·ℓ0≤k−residuek(d1,...,dt)

〈
xℓ0 · ∂k0

(
∏
i∈S

Qi

)〉
〉

(from Lemma 7.3)

≤ max
L:x→⟨z⟩

dim

〈
∑

S⊆[t]; k0,ℓ0≥0
k0+

k
d−k ·ℓ0≤k−residuek(d1,...,dt)

〈
πL

(
xℓ0 · ∂k0

(
∏
i∈S

Qi

))〉〉

(as πL distributes over addition)

≤ max
L:x→⟨z⟩

∑
S⊆[t]; k0,ℓ0≥0

k0+
k

d−k ·ℓ0≤k−residuek(d1,...,dt)

dim

〈
πL

(
xℓ0
)
· πL

(
∂k0

(
∏
i∈S

Qi

))〉

(Using πL distributes over multiplication)

≤ max
L:x→⟨z⟩

∑
S⊆[t]; k0,ℓ0≥0

k0+
k

d−k ·ℓ0≤k−residuek(d1,...,dt)

dim
〈

πL

(
xℓ0
)〉
· dim

〈
πL

(
∂k0

(
∏
i∈S

Qi

))〉

≤ max
L:x→⟨z⟩

∑
S⊆[t]; k0,ℓ0≥0

k0+
k

d−k ·ℓ0≤k−residuek(d1,...,dt)

∣∣∣πL

(
xℓ0
)∣∣∣ · ∣∣∣∣∣πL

(
∂k0

(
∏
i∈S

Qi

))∣∣∣∣∣
≤ max

L:x→⟨z⟩
∑

S⊆[t]; k0,ℓ0≥0
k0+

k
d−k ·ℓ0≤k−residuek(d1,...,dt)

∣∣∣zℓ0
∣∣∣ · ∣∣∣∣∣πL

(
∂k0

(
∏
i∈S

Qi

))∣∣∣∣∣
(as L is a map from x to ⟨z⟩, πL(m) ∈ zℓ0 for any monomial m over x of degree ℓ0)

≤ 2t ·d2· max
k0,ℓ0≥0

k0+
k

d−k ·ℓ0≤k−residuek(d1,...,dt)

M(n0, ℓ0)·M(n, k0).

2

7.5 Lower bound for low-depth homogeneous formulas
In this section, we present a superpolynomial lower bound for “low-depth” homogeneous
formulas computing the IMM and NW polynomials. We begin by proving a structural result
for homogeneous formulas.

195



7.5.1 Decomposition of low-depth formulas

We show that any homogeneous formula can be decomposed as a sum of products of homo-
geneous polynomials of lower degrees, where the number of summands is bounded by the
number of gates in the original formula. The decomposition lemma given below bears some
resemblance to a decomposition of homogeneous formulas in [HY11]. In the decomposition
in [HY11], the degrees of the factors of every summand roughly form a geometric sequence,
and hence each summand is a product of a ‘large’ number of factors. Here we show that
each summand has ‘many’ low-degree factors. While the lower bound argument in [LST21]
does not explicitly make use of such a decomposition, their inductive argument can be for-
mulated as a depth-reduction or decomposition lemma (with slightly different thresholds
for the degrees).

Lemma 7.5 (Decomposition of low-depth formulas) Suppose C is a homogeneous formula of
product-depth ∆ ≥ 1 computing a homogeneous polynomial in F[x1, . . . , xn] of degree at least d > 0.
Then, there exist homogeneous polynomials

{
Qi,j
}

i,j in F[x1, . . . , xn] such that

1. C =
s
∑

i=1
Qi,1 · · ·Qi,ti , for some s ≤ size(C), and

2. for all i ∈ [s], either ∣∣{j ∈ [ti] : deg(Qi,j) = 1
}∣∣ ≥ d21−∆

, or∣∣∣{j ∈ [ti] : deg(Qi,j) ≈2 d21−δ
}∣∣∣ ≥ d21−δ − 1 , for some δ ∈ [2..∆].

Proof: The decomposition is constructed inductively – at addition gates, we simply add
the decompositions of the smaller sub-formulas, whereas the multiplication gates need to
be handled more carefully. Consider a multiplication gate Q1 × · · · × Qt. If all the factors
(Qi’s) have ‘low’ degrees, we use this expression directly to construct the decomposition.
Otherwise, we go deeper into a factor which has a ‘large’ degree, but do not expand the other
factors. The thresholds to decide whether a factor is of ‘low’ degree may appear arbitrary
(and are indeed so) for this lemma, but we fix them to be d21−δ

for δ ∈ [2..∆] as these give us
the desired lower bounds.

Without loss of generality, we may assume that C has alternate layers of addition and
multiplication gates. Further, we can assume that the degrees of the polynomials computed
by all the multiplication gates that feed into an addition gate are the same as the degree of
the polynomial computed by that addition gate. This is so because disconnecting all the
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multiplication gates that compute polynomials of other degrees does not affect the polyno-
mial computed by the addition gate. Also, for brevity, we will ignore the edge weights in
C, i.e., we assume that all the field constants on the edges are equal to 1. As scaling with
constant factors does not affect the homogeneity of polynomials, this is a valid assumption.
Let

C =
u

∑
i=1

Ci , and for i ∈ [u], Ci =
ui

∏
j=1

Ci,j,

where u and {ui}i are integers and
{

Ci,j
}

i,j are (homogeneous) sub-formulas of C of product-
depth ∆− 1. The proof of this lemma is by induction on the product-depth. For ∆ = 1, for
all i ∈ [u], we have ui ≥ d and for all j ∈ [d], deg(Ci,j) = 1 , so both the conditions in the
lemma statement are met for Qi,j := Ci,j.

Suppose that the lemma is true for all homogeneous formulas of product-depth at most
∆− 1, ∆ ≥ 2. For a formula C with product-depth ∆, we consider the term Ci,1 · · ·Ci,ui for
an arbitrary i ∈ [u] and analyze the following two cases.

Case 1: There exists some j∗ ∈ [ui] such that deg(Ci,j∗) ≥
√

d. As the product-depth of Ci,j∗ is
at most ∆− 1, we have the following expression for the polynomial computed by Ci,j∗ from
the induction hypothesis:

Ci,j∗ =
s̃i

∑̃
i=1

Q̃i,ĩ,1 · · · Q̃i,ĩ,t̃ĩ
, (7.6)

where
s̃i ≤ size(Ci,j∗) ≤ size(Ci), (7.7)

and
{

Q̃i,ĩ, j̃

}
i,ĩ, j̃

are homogeneous polynomials such that for all ĩ ∈ s̃i, either

∣∣∣{ j̃ ∈ [t̃ĩ] : deg(Q̃i,ĩ, j̃) = 1
}∣∣∣ ≥ √d

21−(∆−1)

= d21−∆
, or (7.8)∣∣∣∣{ j̃ ∈ [t̃ĩ] : deg(Q̃i,ĩ, j̃) ≈2

√
d

21−δ
}∣∣∣∣ ≥ √d

21−δ

− 1 , for some δ ∈ [2..(∆− 1)]. (7.9)

Note that since
√

d
21−δ

= d21−(δ+1)
, (7.9) is equivalent to∣∣∣{ j̃ ∈ [t̃ĩ] : deg(Q̃i,ĩ, j̃) ≈2 d21−δ

}∣∣∣ ≥ d21−δ − 1 , for some δ ∈ [3..∆]. (7.10)

Indeed, when ∆ = 2, the above scenario never arises and the number of linear factors is
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‘large’, i.e., (7.8) holds. Denoting ∏
j∈[ui]\{j∗}

Ci,j by Di,j∗ and using (7.6), we have

Ci = Ci,1 · · ·Ci,ui = Ci,j∗ .Di,j∗ =
s̃i

∑̃
i=1

Q̃i,ĩ,1 · · · Q̃i,ĩ,t̃ĩ
· Di,j∗ . (7.11)

Thus, we are able to decompose the sub-formula Ci as a sum of at most size(Ci) many prod-
ucts.

Case 2: For all j ∈ [ui], deg(Ci,j) <
√

d. Consider the polynomials computed by Ci,1, . . . , Ci,ui .

Suppose there exists j1 ̸= j2 ∈ [ui] such that deg(Ci,j1) <
√

d
2 and deg(Ci,j2) <

√
d

2 . Then
deg(Ci,j1 · Ci,j2) <

√
d. By repeatedly combining such low degree factors, we can express

Ci = Ci,1 · · ·Ci,ui as
Ci = Di,1 · · ·Di,vi , (7.12)

where
{

Di,j
}

i,j are homogeneous polynomials such that for all j ∈ [vi], we have deg(Di,j) <
√

d and there exists at most one index j∗ ∈ [vi] such that deg(Di,j∗) <
√

d
2 . In other words,

for at least vi − 1 indices j ∈ [vi], deg(Di,j) ≈2
√

d. Using the fact that C is a homogeneous
formula,

d ≤ deg(C) = deg(Ci) =
vi

∑
j=1

deg(Di,j) ≤ vi ·
√

d.

Therefore, the number of indices j ∈ [vi] such that deg(Di,j) ≈2
√

d is at least vi − 1 ≥√
d− 1. In other words,∣∣∣{j ∈ [vi] : deg(Di,j) ≈2 d21−δ

}∣∣∣ ≥ d21−δ − 1 , for δ = 2. (7.13)

Now, expressing Ci for each i ∈ [u] using (7.11) if i falls under Case 1, and using (7.12) if i
falls under Case 2, we get

C =
u

∑
i=1

Ci =
s

∑
i=1

Qi,1 · · ·Qi,ti ,

for polynomials
{

Qi,j
}

i,j that are defined appropriately based on
{

Q̃i,ĩ, j̃

}
i,ĩ, j̃

and
{

Di,j
}

i,j.

Using (7.7) and (7.12), we get that the number of terms is s ≤
u
∑

i=1
size(Ci) ≤ size(C). Item 2

in the lemma statement directly follows from (7.8), (7.13), or (7.10). 2
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7.5.2 Low-depth formulas have high residue

The following lemma gives us a value for the order of derivatives k with respect to which
low-depth formulas yield high residue. Its proof uses Lemma 7.5.

Lemma 7.6 (Low-depth formulas have high residue) Suppose C is a homogeneous formula of
product-depth ∆ ≥ 1 computing a polynomial in F[x1, . . . , xn] of degree d, where d21−∆

= ω(1).

Then, there exist homogeneous polynomials
{

Qi,j
}

i,j in F[x1, . . . , xn] such that C =
s
∑

i=1
Qi,1 · · ·Qi,ti ,

for some s ≤ size(C). Fixing an arbitrary i ∈ [s], let t := ti and define dj := deg(Qi,j) for j ∈ [t].

Then, residuek(d1, . . . , dt) ≥ Ω
(

d21−∆
)

, where k :=
⌊

α·d
1+α

⌋
, α :=

∆−1
∑

ν=0

(−1)ν

τ2ν−1 , and τ :=
⌊

d21−∆
⌋

.

Proof: We will show that the decomposition proven in Lemma 7.5 itself satisfies the re-
quired property. We first establish a range for the value of k (and α) given in the lemma
statement. We have α ≤ 1 and

α ≥
1

∑
ν=0

(−1)ν

τ2ν−1 = 1− 1
τ
= 1− 1⌊

d21−∆
⌋ ≥ 1

2
.

Hence, k ∈
[⌊

d
3

⌋
, d

2

]
⊆
[

d
4 , d

2

]
because d = ω(1). As C computes a polynomial of degree

d ≥ τ2∆−1
, we can apply Item 2 of Lemma 7.5 to C using τ2∆−1

(rather than d) as the threshold.
Thus, we have that at least one of the following two cases will hold.

Case 1:
∣∣{j ∈ [t] : dj = 1

}∣∣ ≥ (τ2∆−1
)21−∆

= τ. Then,

residuek(d1, . . . , dt) =
1
2
· min

k1,...,kt∈Z
∑

j∈[t]

∣∣∣∣k j −
k
d
· dj

∣∣∣∣
≥ 1

2
· ∑

j∈[t]
min

{{
k
d
· dj

}
, 1−

{
k
d
· dj

}}
≥ 1

2
· ∑

j∈[t]:dj=1
min

{{
k
d
· dj

}
, 1−

{
k
d
· dj

}}

≥ 1
2
·
∣∣{j ∈ [t] : dj = 1

}∣∣ ·min
{{

k
d

}
, 1−

{
k
d

}}
≥ τ/8. (as k/d ∈ [1/4, 1/2])

Case 2:
∣∣∣∣{j ∈ [t] : dj ≈2

(
τ2∆−1

)21−δ}∣∣∣∣ ≥ (τ2∆−1
)21−δ

− 1 for some δ ∈ [2..∆] (this case cannot
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occur when ∆ < 2). Equivalently, there exists a δ ∈ [0..(∆− 2)] such that∣∣∣{j ∈ [t] : dj ≈2 τ2δ
}∣∣∣ ≥ τ2δ − 1.

Let k1, . . . , kt be arbitrary non-negative integers such that k j ≤ dj for all j ∈ [t]. Then for any
j ∈ [t] such that dj ≈2 τ2δ

, we have

τ2δ−1 ·
∣∣∣∣k j −

k · dj

d

∣∣∣∣ = τ2δ−1 ·
∣∣∣∣k j −

dj

d
·
⌊

α · d
1 + α

⌋∣∣∣∣
≥ τ2δ−1 ·

(∣∣∣∣k j −
dj

d
· α · d

1 + α

∣∣∣∣− dj

d
·
{

α · d
1 + α

})
≥ τ2δ−1 ·

∣∣∣∣k j −
α · dj

1 + α

∣∣∣∣− τ2δ−1 ·
dj

d

≥ τ2δ−1 ·
∣∣∣∣k j −

α · dj

1 + α

∣∣∣∣− τ2δ−1 · τ2δ

d
(since dj ≈2 τ2δ

)

≥ τ2δ−1 ·
∣∣∣∣k j −

α · dj

1 + α

∣∣∣∣−
(

d21−∆
)2δ+1−1

d

≥ τ2δ−1 ·
∣∣∣∣k j −

α · dj

1 + α

∣∣∣∣− 1
d21−∆ (as δ ≤ ∆− 2)

= τ2δ−1 ·
∣∣∣∣k j −

α · dj

1 + α

∣∣∣∣− o(1)

(if d21−∆
= O(1), then the lemma is not interesting)

≥ 1
2
· τ2δ−1 ·

∣∣k j − α · (dj − k j)
∣∣− o(1) (as α ≤ 1) (7.14)

We use the following claim. For j ∈ [t], let mj := dj − k j, note that mj is a non-negative
integer.

Claim 7.3 η := τ2δ−1 ·
∣∣k j − α ·mj

∣∣ ≥ Ω(1).

Proof: We prove the claim by analysing the following three sub-cases.

Case (i): mj < k j. Then, η ≥
∣∣k j − α·mj

∣∣ = k j − α·mj ≥ k j −mj ≥ 1.

Now, let α1 :=
δ

∑
ν=0

(−1)ν

τ2ν−1 , α2 := (−1)δ+1

τ2δ+1−1
and α3 :=

∆−1
∑

ν=δ+2

(−1)ν

τ2ν−1 . Then, let α4 := τ2δ−1 ·(
k j −mj ·α1

)
. Noting that α = α1 + α2 + α3 we have,
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η = τ2δ−1·
∣∣k j − α·mj

∣∣ = ∣∣∣τ2δ−1·k j − τ2δ−1·mj ·(α1 + α2 + α3)
∣∣∣

(as α = α1 + α2 + α3 by definition)

≥
∣∣∣∣α4 − τ2δ−1·mj ·

(−1)δ+1

τ2δ+1−1
− τ2δ−1·mj ·α3

∣∣∣∣
≥
∣∣∣∣α4 − τ2δ−1·mj ·

(−1)δ+1

τ2δ+1−1

∣∣∣∣− ∣∣∣τ2δ−1·mj ·α3

∣∣∣
≥
∣∣∣∣|α4| −

mj

τ2δ

∣∣∣∣− ∣∣∣τ2δ−1·mj ·α3

∣∣∣
=

∣∣∣∣|α4| −
mj

τ2δ

∣∣∣∣−
∣∣∣∣∣ ∆−1

∑
ν=δ+2

·
(−1)ν ·τ2δ−1·mj

τ2ν−1

∣∣∣∣∣
≥
∣∣∣∣|α4| −

mj

τ2δ

∣∣∣∣−
∣∣∣∣∣τ2δ−1·mj

τ2δ+2−1

∣∣∣∣∣
(taking only the leading term of the summation)

≥
∣∣∣∣|α4| −

mj

τ2δ

∣∣∣∣−
∣∣∣∣∣τ2δ−1·τ2δ

τ2δ+2−1

∣∣∣∣∣ (since mj ≤ dj ≈2 τ2δ
)

≥
∣∣∣∣|α4| −

mj

τ2δ

∣∣∣∣− 1
τ2

=

∣∣∣∣|α4| −
mj

τ2δ

∣∣∣∣− o(1).

Notice that, as mj ≤ dj ≈2 τ2δ
,

mj

τ2δ ≤ 1.

Case (ii): k j ≤ mj ≤ 6·k j. Note that

mj =
6·mj + mj

7
≤

6·mj + 6·k j

7
=

6
7
·dj ≤

6
7
·τ2δ

, and

mj ≥
mj + k j

2
=

dj

2
≥ 1

4
·τ2δ

.

Thus
mj

τ2δ ∈
[

1
4 , 6

7

]
. On the other hand, α4 = τ2δ−1·k j − τ2δ−1·mj ·α1 is an integer since the de-

nominators of all the terms in α1 divide τ2δ−1. Therefore
mj

τ2δ is at least min {1/4, 3/4, 6/7, 1/7} =

1/7 distance from any integer, and from |α4| in particular. That is,
∣∣∣|α4| −

mj

τ2δ

∣∣∣ ≥ 1/7 and
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η ≥
∣∣∣|α4| −

mj

τ2δ

∣∣∣− o(1) ≥ Ω(1).

Case (iii): mj > 6·k j. Then,

−k j + mj ·α1 = −k j + mj ·
(

δ

∑
ν=0

(−1)ν

τ2ν−1

)

= −k j + mj −mj ·
(

δ

∑
ν=1

(−1)ν−1

τ2ν−1

)
≥ −k j + mj −

mj

τ

≥
mj

2
− k j (as τ = ω(1))

≥
mj

2
−

mj

6
=

mj

3
≥ 2

7
·
(
mj + k j

)
=

2 · dj

7
≥ τ

7
≥ 2.

Hence,
∣∣∣|α4| −

mj

τ2δ

∣∣∣ = ∣∣∣τ2δ−1·
(
−k j + mj ·α1

)
− mj

τ2δ

∣∣∣ ≥ 2− 1 = 1 and η ≥ Ω(1). 2

Let k1, . . . , kt ∈ Z be the such that
t

∑
i=1

∣∣∣ki − k
d · di

∣∣∣ is minimised. Hence,

residuek(d1, . . . , dt) ≥
1
2 ∑

j∈[t]:dj≈2τ2δ

∣∣∣∣k j −
k
d
· dj

∣∣∣∣
≥ 1

2
·
∣∣∣{j ∈ [t] : dj ≈2 τ2δ

}∣∣∣ · min
j∈[t]:dj≈2τ2δ

∣∣∣∣k j −
k
d
· dj

∣∣∣∣
≥ Ω

(
τ2δ
)
· min
j∈[t]:dj≈2τ2δ

∣∣∣∣k j −
k
d

.dj

∣∣∣∣
= Ω (τ)· min

j∈[t]:dj≈2τ2δ
τ2δ−1 ·

∣∣∣∣k j −
k
d
· dj

∣∣∣∣
≥ Ω(τ)·

(η

2
− o(1)

)
(using (7.14))

≥ Ω (τ) .

Therefore, residuek(d1, . . . , dt) ≥ Ω(τ) ≥ Ω
(

τ+1
2

)
≥ Ω (τ + 1) ≥ Ω

(
d21−∆

)
. 2

7.5.3 High residue implies lower bounds

For a ‘random’ homogeneous degree-d polynomial in F[x1, . . . , xn], if the shift ℓ is not too
large, we expect the SP measure to be close to the maximum number of operators used to
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construct the shifted partials space, i.e., M(n, k)·M(n, ℓ). In the lemma below, we derive a
bound for such polynomials. Explicit examples of such polynomials are given in Section
7.5.4.

Lemma 7.7 (High residue implies lower bounds) Let P =
s
∑

i=1
Qi,1 · · ·Qi,ti be a homogeneous

n-variate polynomial of degree d where
{

Qi,j
}

i,j are homogeneous and SP k,ℓ(P) ≥ 2−O(d)·M(n, k)·

M(n, ℓ) for some 1 ≤ k < d
2 , n0 ≤ n and ℓ =

⌊
n·d
n0

⌋
such that d ≤ n0 ≈ 2(d− k)·

(n
k
) k

d−k . If there is

a γ > 0 such that for all i ∈ [s], residuek(deg(Qi,1), . . . , deg(Qi,ti)) ≥ γ, then s ≥ 2−O(d) (n
d
)Ω(γ).

Proof: Using Lemma 7.4 (Item 1) and the fact that SP is sub-additive), we get

SP k,ℓ(P) ≤
s

∑
i=1
SP k,ℓ(Qi,1 · · ·Qi,ti) ≤ s · 2t · d2 · max

k0,ℓ0≥0
k0+

k
d−k ·ℓ0 ≤ k−γ

M(n, k0) ·M(n, ℓ+ ℓ0),

where t := maxi ti is at most d. On the other hand, by our assumption we have SP k,ℓ(P) ≥
2−O(d) ·M(n, k) ·M(n, ℓ). Putting these two together, we get for some integers k0 ∈ [0..k], ℓ0 ∈
[0..(d− k)] satisfying

k0 +
k

d− k
· ℓ0 ≤ k− γ, (7.15)

that,

s ≥ 2−O(d) ·2−t ·d−2· M(n, k)·M(n, ℓ)
M(n, k0)·M(n, ℓ+ ℓ0)

(7.16)

≥ 2−O(d) · M(n, k)

M(n, k0)·(2n/ℓ)ℓ0

(Lemma 7.1 (Item 2) is applicable as n0 ≥ d implies that n ≥
⌊

n·d
n0

⌋
= ℓ; also n0 ≤ n implies

ℓ =
⌊

nd
n0

⌋
≥ d ≥ ℓ0)

≥ 2−O(d) · M(n, k)

M(n, k0)·(n0/ℓ0)
ℓ0

(7.17)
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(because 2n/ℓ ≤ 4n0/ℓ0 as ℓ0 ≤ d and absorbing 4ℓ0 in 2−O(d))

≥ 2−O(d) · (n/k)k

(6n/k0)k0 ·(n0/ℓ0)ℓ0

(assuming k0, ℓ0 ̸= 0 and using Lemma 7.1 (Item 1) as n ≥ n0 ≥ d ≥ max {k0, ℓ0}; the
analysis is easier if any of k0, ℓ0 is 0)

≥ 2−O(d) · (n/k)k

(n/k0)k0 ·(n0/ℓ0)ℓ0
(since k0 = O(d))

≥ 2−O(d) · (n/k)k

(n/k0)k0 ·
(

2(d−k)
ℓ0
·(n/k)

k
d−k

)ℓ0
(substituting n0)

= 2−O(d) · (n/k)k

(n/k0)k0 ·( d−k
ℓ0

)ℓ0 ·(n/k)
k·ℓ0
d−k

(as ℓ0 = O(d))

= 2−O(d) · (n/k)k

(n/k)k0 .(k/k0)k0 · ( d−k
ℓ0

)ℓ0 ·(n/k)
k·ℓ0
d−k

(as n/k0 = (n/k) · (k/k0))

= 2−O(d) · (n/k)k−k0− k
d−k .ℓ0

(k/k0)k0 ·( d−k
ℓ0

)ℓ0

≥ 2−O(d).
(n/d)γ

(d/k0)k0 .( d
ℓ0
)ℓ0

(using k < d and (7.15))

= 2−O(d) ·
(n

d

)γ
·
(

k0

d

)k0

·
(
ℓ0

d

)ℓ0

≥ 2−O(d) ·
(n

d

)γ
· (e−1/e)d · (e−1/e)d (using xx ≥ e−1/e for x > 0)

≥ 2−O(d) ·
(n

d

)Ω(γ)
.

2

We state an analogous lemma with APP instead of SP .

Lemma 7.8 (High residue implies lower bounds, using APP) Let P =
s
∑

i=1
Qi,1 · · ·Qi,ti be a

homogeneous n-variate polynomial of degree d where
{

Qi,j
}

i,j are homogeneous andAPP k,n0(P) ≥

2−O(d) ·M(n, k) for some 1 ≤ k < d
2 , n0 ≤ n such that d ≤ n0 ≈ 2(d− k).

(n
k
) k

d−k . If there is a

γ > 0 such that for all i ∈ [s], residuek(deg(Qi,1), . . . , deg(Qi,ti)) ≥ γ, then s ≥ 2−O(d) ·
(n

d
)Ω(γ).
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Proof: Using Lemma 7.4 (Item 2) and the fact that APP is sub-additive, we get

APP k,n0(P) ≤
s

∑
i=1
APP k,n0(Qi,1 · · ·Qi,ti) ≤ s · 2t · d2 · max

k0,ℓ0≥0
k0+

k
d−k ·ℓ0 ≤ k−γ

M(n, k0)·M(n0, ℓ0).

On the other hand, we have APP k,n0(P) ≥ 2−O(d) ·M(n, k). Putting these two together, we
get for some integers k0, ℓ0 ≥ 0 satisfying

k0 +
k

d− k
· ℓ0 ≤ k− γ,

that,

s ≥ 2−O(d) ·2−t ·d−2· M(n, k)
M(n, k0)·M(n0, ℓ0)

≥ 2−O(d) ·
(n

d

)Ω(γ)
.

(Using Lemma 7.1, absorbing 6ℓ0 in 2−O(d), and borrowing calculations beginning from (7.17))

2

Remark 7.1 In the above lemmas, although our lower bound appears as 2−O(d) ·nΩ(γ), similar cal-
culations actually give a lower bound of 2−O(k) ·nΩ(γ) for any choice of k and an appropriate choice
of ℓ (or n0 in the case of APP). We do not differentiate between the two, as for our applications (i.e.,
low-depth circuits), the value of k we choose is Θ(d).

7.5.4 The hard polynomials

We shall prove our lower bound for the word polynomial Pw introduced in [LST21] as well
as for the Nisan-Wigderson design polynomial. In order to do this, we show that the SP
and APP measures of Pw and the SP measure of NW are large for suitable choices of k, ℓ
and n0.

Lemma 7.9 (Pw as a hard polynomial) For integers h, d such that h > 100 and any k ∈
[

d
30 , d

2

]
,

there exists an h-unbiased word w ∈ [−h..h]d, integers n0 ≤ n, ℓ =
⌊

n·d
n0

⌋
such that n0 ≈

2(d − k) ·
(n

k
) k

d−k and the following bounds hold: SP k,ℓ(Pw) ≥ 2−O(d) ·M(n, k) ·M(n, ℓ) and
APP k,n0(Pw) ≥ 2−O(d) ·M(n, k). Here n refers to the number of variables in Pw, i.e., n =

∑i∈[d] 2|wi|.

Proof: We construct the word w as follows. Let h′ = h·k
d−k ∈

[
h

29 , h
]
. The word w shall

consist of the following elements (the ordering of these elements shall be fixed shortly):
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h, . . . , h (k times), − ⌊h′⌋ , . . . ,− ⌊h′⌋ (k1 times), − ⌈h′⌉ , . . . ,− ⌈h′⌉ (k2 times), where k1 :=
(d − k) ⌈h′⌉ − kh and k2 := d − k − k1. We note that k1, k2 ∈ Z≥0 and k + k1 + k2 = d.
Assuming ⌊h′⌋ = ⌈h′⌉ − 1 (even if h′ ∈ Z, the calculations are similar), the total sum of the
weights is

∑
i∈[d]

wi = kh− k1
⌊

h′
⌋
− k2

⌈
h′
⌉
= kh− k1(

⌈
h′
⌉
− 1)− k2

⌈
h′
⌉
= kh− k1

⌈
h′
⌉
+ k1 − k2

⌈
h′
⌉

= kh− k1
⌈

h′
⌉
+ (d− k)

⌈
h′
⌉
− kh− k2

⌈
h′
⌉
= 0. (7.18)

Now we fix the ordering of the above weights. For i = 1 to d in this order, if the sum

∑j∈[i−1] wj is non-negative (for example, this happens for i = 1), set wi to be an arbitrary
negative weight that is available, otherwise set it to be the positive weight h (if available).

If the above procedure never runs out of positive or negative weights at any step i ∈ [d],
then for all i ∈ [d], |w1 + · · ·+ wi| ≤ h. In other words, w is h-unbiased. Now suppose
the procedure runs out of negative weights at an index i ∈ [d]. This means that the sum

∑j∈[i−1] wj is non-negative but there are no negative weights available among the unused
weights. But then, the total sum of the weights would be equal to ∑j∈[i−1] wj plus the sum of
unused weights, which is greater than 0, contradicting (7.18). We get a similar contradiction
if there are insufficient positive weights at any point. For the rest of the proof, we fix w to be
the above word. Then,

k·2h ≤ n ≤ d·2h, so 2h ≈30

(n
k

)
. (7.19)

Denoting the variables of Pw by x = y ⊔ z, where y are the positive variables and z are
the negative variables, we take

n0 := |z| ≈2 (d− k)·2⌈h′⌉.

Note that n0 ≈2 (d − k)·2⌈h′⌉ ≈ 2(d − k)·2h′ = 2(d − k)·2
hk

d−k ≤ 2k·2h = 2(n − n0) where
the last inequality follows from the fact that d−k

k · 2
hk

d−k is an increasing function of k when

k ∈
[

d
30 , d

2

]
and h > 100. That is, n0 ≤ 2n/3 and n0 ≈ 2(d− k)·

(n
k
) k

d−k by (7.19) and k ≤ d
2 .

Also, n0 ≥ d−k
2 · 2⌈h

′⌉ ≥ d−k
2 · 2h′ ≥ d−k

2 · 2
h

29 ≥ d−k
2 · 23 ≥ 2d as h > 100 and k ≤ d

2 . Define a
map L : x→ ⟨z⟩ as follows:

L(x) =

0, if x ∈ y,

x, if x ∈ z.
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We can lower bound the APP measure by using L and considering only the derivatives
with respect to the set-multilinear monomials over all the positive sets, i.e.,M+(w). By the
definition of the polynomial Pw and because ∑i∈[d] wi = 0, for every m+ ∈ M+, there exists
a unique m− ∈ M− such that m+ ·m− is a monomial in Pw and vice versa.1 Hence the set
of all derivatives of Pw with respect to monomials inM+ is exactlyM−, yielding

∂k (Pw) ⊇M−(w). (7.20)

Using the fact that ∑i∈[d] wi = 0 and (7.19), the size ofM−(w) is

|M−(w)| = 2∑i∈[d]:wi<0|wi| = 2hk ≥ 2−O(k) ·
(n

k

)k
≥ 2−O(d) ·M(n, k). (7.21)

The last bound follows from Lemma 7.1 (Item 1), as n ≥ n0 ≥ d ≥ k. As the substitution πL

does not affect negative variables, thus,

APP k,n0(Pw) ≥ dim
〈

πL

(
∂k (Pw)

)〉
≥ dim ⟨πL(M−(w))⟩ = dim ⟨M−(w)⟩ ≥ 2−O(d)·M(n, k).

We now analyze the shifted partials of the same polynomial with ℓ :=
⌊

n·d
n0

⌋
. Recall that

n0 ≤ 2n/3.

SP k,ℓ(Pw) ≥ dim
〈

xℓ · ∂k (Pw)
〉

≥ dim
〈

yℓ ·M−(w)
〉

(as x ⊇ y and (7.20))

≥
∣∣∣yℓ ·M−(w)

∣∣∣
=
∣∣∣yℓ
∣∣∣ · |M−(w)| (sinceM−(w) ⊆ zd−k and y ∩ z = Φ)

= M(n− n0, ℓ)·2−O(d) ·M(n, k) (using |y| = |x| − |z| and (7.21))

≥ M(n, ℓ)·
(

1− n0

n

)ℓ
·2−O(d) ·M(n, k) (using Lemma 7.1 (Item 3))

≥ M(n, ℓ)·
(

1− n0

n

) n
n0
·d
·2−O(d) ·M(n, k)

≥ 2−O(d) ·M(n, k)·M(n, ℓ). (since (1− x)1/x ≥ 1/3
√

3 for x := n0/n ≤ 2/3)

2

The following lemma shows that the SP measure of the Nisan-Wigderson design poly-

1Recall the definition of Pw from Section 2.3. Because |M+| = |M−|, the bit representations of m+ and m−
are the same. However, they can have different degrees.
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nomial is ‘large’ for k as high as Θ(d), if ℓ is chosen suitably.

Lemma 7.10 (NW as a hard polynomial) For n, d ∈ N such that 120 ≤ d ≤ 1
150

(
log n

log log n

)2
,

let q be the largest prime number between
⌊ n

2d
⌋

and
⌊n

d
⌋
. For parameters k ∈

[
d
30 , d

2 −
√

d
8

]
and

ℓ =
⌊

qd2

n0

⌋
, where n0 = 2(d− k)·

(
qd
k

) k
d−k ,SP k,ℓ(NWq,d,k) ≥ 2−O(d) ·M(qd, k) ·M(qd, ℓ).

Proof: We begin by obtaining bounds on the value of ℓ.

Claim 7.4 n0 = o(qd), d2 = o(ℓ) and ℓ = o(qd).

Proof:

n0 = 2(d− k)
(

qd
k

) k
d−k

≤ 2(d− k)
(

qd
k

) d/2−
√

d/8
d/2+

√
d/8

(
because k = o(qd) and k ≤ d

2
−
√

d
8

)

= 2(d− k) · qd
k
·
(

k
qd

) 2
4
√

d+1

≤ 2d · qd · 1

(qd)
1

2.5
√

d

≤ 2d · qd · 1

2
log qd
2.5
√

d

.

As d ≤ 1
150

(
log n

log log n

)2
and qd ≥ n

4 , log qd
2.5
√

d
≥ 12 log log n

3 = 4 log log n. As log d2 ≤ 4 log log n−

ω(1), log qd
2.5
√

d
= log d2 + ω(1) and 2

log qd
2.5
√

d = ω(d2). Thus, n0 = o(q) = o(qd).1 Now, ℓ ≥
qd2

n0
− 1 ≥ qd2

o(q) − 1 = ω(d2). Thus, d2 = o(ℓ). Also,

1In this proof, we need n0 = o(q). However, we require n0 = o(n), in Section 7.5.6 and so we have
mentioned n0 = o(qd) in the statement of the claim.
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ℓ ≤ qd2

n0

=
qd2

2(d− k)

(
k

qd

) k
d−k

≤ qd2

2(d− k)

(
k

qd

) 1
29

(
because k = o(qd) and

d
30
≤ k

)
≤ k · (qd)

28
29

(
as k ≤ d

2

)
= o(n)

(
because k ≤ log2 n and qd ≤ n

)
.

2

Let

S =

 ∏
i∈[k+1...d]

xi,h(i) : h ∈ Fq[z], deg(h) < k


and

T = {m : ∃monomials m1, m2, deg(m1) = ℓ, m2 ∈ S and m = m1m2} .

Observe that T ⊆
〈

xℓ∂kNWq,d,k

〉
and so, SP k,ℓ(NWq,d,k) ≥ |T|. We obtain a lower bound on

|T|. For h ∈ Fq[z] such that deg(h) < k, let

Th =

m1 ∏
i∈[k+1...d]

xi,h(i) : deg(m1) = ℓ

 .

Then, T = ∪h(z)∈Fq[z]:
deg(h)<k

Th. Thus, from the inclusion-exclusion principle,

|T| ≥ ∑
h∈Fq[z]:

deg(h)<k

|Th| − ∑
h1 ̸=h2∈Fq[z]:

deg(h1),deg(h2)<k

∣∣Th1 ∩ Th2

∣∣ . (7.22)

Lower bound on ∑h |Th|. Fix an h ∈ Fq[z] such that deg(h) < k. Then, since for monomials

209



m1 ̸= m2, m1 · ∏
i∈[k+1...d]

xi,h(i) ̸= m2 · ∏
i∈[k+1...d]

xi,h(i), |Th| = (qd+ℓ−1
qd−1 ). Hence,

∑
h∈Fq[z]:

deg(h)<k

|Th| = |S|k ·
(

qd + ℓ− 1
qd− 1

)
= qk ·

(
qd + ℓ− 1

qd− 1

)
. (7.23)

Upper bound on ∑h1 ̸=h2
|Th1 ∩ Th2 |. For h1, h2 ∈ F[z] such that deg(h1), deg(h2) < k, we say

that |h1 ∩ h2| = r if | {h1(k + 1), . . . , h1(d)} ∩ {h2(k + 1), . . . , h2(d)} | = r. Now

∑
h1 ̸=h2

|Th1 ∩ Th2 | =
k−1

∑
r=0

∑
h1 ̸=h2:
|h1∩h2|=r

|Th1 ∩ Th2 |. (7.24)

Fix h1 and h2 such that |h1 ∩ h2| = r. Let m1 = ∏i∈[k+1..d] xi,h1(i) and m2 = ∏i∈[k+1..d] xi,h2(i).
A monomial m ∈ Th1 ∩ Th2 if and only if there exist degree ℓ monomials m′1 and m′2 such
that m = m′1m1 = m′2m2. Thus m2

gcd(m1,m2)
must divide m′1. As |h1 ∩ h2| = r, gcd(m1, m2) has

degree r, and so m2
gcd(m1,m2)

has degree d− k− r. Hence the number of possible monomials m′1,

and thus the number of possible monomials m is at most (qd+ℓ−d+k+r−1
qd−1 ). Now, the number

of possible polynomials h1 and h2 such that |h1∩ h2| = r is at most (d−k
r )qk−rqk = q2k−r(d−k

r ).1

Hence,

∑
h1 ̸=h2:
|h1∩h2|=r

|Th1 ∩ Th2 | ≤ q2k−r ·
(

d− k
r

)(
qd + ℓ− d + k + r− 1

qd− 1

)
. (7.25)

Claim 7.5 For r ∈ [0..k− 1], let χ(r) = q2k−r · (d−k
r )(qd+ℓ−d+k+r−1

qd−1 ). Then χ(0) ≥ χ(r) for all
r ∈ [k− 1].

Proof: We shall show that for all r ∈ [0..k− 2], χ(r+1)
χ(r) < 1; this will prove the claim. Fix any

r ∈ [0..k− 2].

χ(r + 1)
χ(r)

=
q2k−r−1 · (d−k

r+1)(
qd+ℓ−d+k+r

qd−1 )

q2k−r · (d−k
r )(qd+ℓ−d+k+r−1

qd−1 )

=
1
q
·

(d−k)!
(r+1)!(d−k−r−1)!

(d−k)!
r!(d−k−r)!

·
(qd+ℓ−d+k+r)!

(qd−1)!(ℓ−d+k+r+1)!
(qd+ℓ−d+k+r−1)!
(qd−1)!(ℓ−d+k+r)!

1This is so because |h1 ∩ h2| = r implies that h1 − h2 = (z − α1) · · · (z − αr) · g(z), where α1, . . . , αr are
distinct elements in [k + 1..d] and g(z) is a polynomial of degree at most d− k.
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=
1
q
· d− k− r

r + 1
· qd + ℓ− d + k + r
ℓ− d + k + r + 1

≤ d
q
· (1 + o(1))qd
(1− o(1))ℓ

(by Claim 7.4)

= (1 + o(1))
d2

ℓ

= o(1), (by Claim 7.4)

where the second to last inequality follows from k, r ≥ 0, ℓ, d, k, r = o(n) and d, k, r = o(ℓ)
(Claim 7.4), and the last equality from the fact that d2 = o(ℓ) (Claim 7.4). 2

From Equations (7.24), (7.25), and the above claim, we get

∑
h1 ̸=h2

|Th1 ∩ Th2 | ≤ k · q2k ·
(

qd + ℓ− d + k− 1
qd− 1

)
. (7.26)

Thus from Equations (7.22), (7.23), and (7.26),

|T| ≥ qk ·
(

qd + ℓ− 1
qd− 1

)
− k · q2k ·

(
qd + ℓ− d + k− 1

qd− 1

)

= qk ·
(

qd + ℓ− 1
qd− 1

)1−
k · q2k · (qd+ℓ−d+k−1

qd−1 )

qk · (qd+ℓ−1
qd−1 )

 . (7.27)

Claim 7.6
k·q2k·(qd+ℓ−d+k−1

qd−1 )

qk·(qd+ℓ−1
qd−1 )

≤ 1
2 .

Proof:

k · q2k · (qd+ℓ−d+k−1
qd−1 )

qk · (qd+ℓ−1
qd−1 )

= k · qk ·
(qd+ℓ−d+k−1)!
(qd−1)!(ℓ−d+k)!

(qd+ℓ−1)!
(qd−1)!ℓ!

= k · qk · ℓ · (ℓ− 1) · (ℓ− 2) · · · (ℓ− d + k + 1)
(qd + ℓ− 1) · (qd + ℓ− 2) · (qd + ℓ− 3) · · · (qd + ℓ− d + k)

= k · qk · 1(
qd−1
ℓ + 1

)
·
(

qd−1
ℓ−1 + 1

)
·
(

qd−1
ℓ−2 + 1

)
· · ·
(

qd−1
ℓ−d+k+1 + 1

)
≤ k · qk · 1(

qd−1
ℓ

)d−k

≤ k · qk ·
(

ℓ

qd

)d−k
e

2(d−k)
qd (as 1− x ≥ e−2x for x ∈ [0, 1/2])
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= (1 + o(1)) · k · qk ·
(

d
n0

)d−k
(as d− k = o(qd) and ℓ ≤ qd2

n0
)

= (1 + o(1)) · k · qk ·
(

d
2(d− k)

)d−k
·
(

k
qd

)k

≤ (1 + o(1)) · k ·
(

1
2

)k
(as k ≤ d

2
)

≤ 1
2

,

when d ≥ 120. 2

Thus, from Equation (7.27) and k = Θ(d), we get

|T| ≥ 1
2
· qk ·

(
qd + ℓ− 1

qd− 1

)
≥ 2−O(d) ·

(
qd
k

)k
·
(

qd + ℓ− 1
qd− 1

)
≥ 2−O(d) ·

(
qd + k− 1

qd− 1

)
·
(

qd + ℓ− 1
qd− 1

)
,

where the last inequality follows from Lemma 7.1. Recall that SP k,ℓ(NWq,d,k) ≥ |T|. Hence,
SP k,ℓ(NWq,d,k) ≥ 2−O(d) ·M(qd, k) ·M(qd, ℓ). 2

Remark 7.2 An advantage of directly analysing the complexity measures for homogeneous formulas
instead of for set-multilinear formulas is that our hard polynomial need not be set multilinear. In
Section 7.5.6, we describe an explicit non set-multilinear polynomial P (in VNP) with a large APP
measure; the construction is similar to a polynomial in [GKS20]. The proof that APP of P is large
is considerably simpler than the proofs of the above lemmas.

7.5.5 Putting everything together: the low-depth lower bound

Theorem 7.1 (Low-depth homogeneous formula lower bound for IMM) For any d, n, ∆ such
that n = ω(d), any homogeneous formula of product-depth at most ∆ computing IMMn,d over any

field F has size at least 2−O(d) ·nΩ
(

d21−∆)
. In particular, when d = O(log n), we get a lower bound

of nΩ
(

d21−∆)
.

Proof: We can assume that d21−∆
= ω(1) and h := ⌊log n⌋ > 100, as otherwise the

lower bound is trivial. Suppose IMMn,d has a homogeneous formula C of product-depth
at most ∆. Consider the polynomial Pw, given by Lemma 7.9, by setting k :=

⌊
α·d

1+α

⌋
, where

α :=
∆−1
∑

ν=0

(−1)ν

τ2ν−1 and τ :=
⌊

d21−∆
⌋

; these parameters are the same as those in Lemma 7.6.
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It is easy to show that k ∈
[

d
4 , d

2

]
. As w is h-unbiased, by Lemma 2.1 there exists a ho-

mogeneous formula C′ of product-depth at most ∆ computing Pw such that size(C′) ≤
size(C). Hence, by Lemma 7.6, there exist homogeneous polynomials

{
Qi,j
}

i,j such that

Pw = ∑i∈[s] Qi,1 · · ·Qi,ti , s ≤ size(C′) and residuek
(
deg(Qi,1), . . . , deg(Qi,ti)

)
≥ Ω

(
d21−∆

)
for i ∈ [s]. Denoting the number of variables in Pw by ñ, Lemma 7.9 guarantees that

n0 ≤ 2(d− k)·
(

ñ
k

) k
d−k , ℓ =

⌊
ñ·d
n0

⌋
and SP k,ℓ(Pw) ≥ 2−O(d) ·M(ñ, k)·M(ñ, ℓ). Therefore, we

can apply Lemma 7.7 to the same polynomial Pw which gives that s ≥ 2−O(d) ·
(

ñ
d

)Ω
(

d21−∆)
.

Hence, size(C) ≥ size(C′) ≥ s ≥ 2−O(d) ·nΩ
(

d21−∆)
, since ñ ≥ 2h ≥ n/2 = ω(d). 2

Theorem 7.2 (Low-depth homogeneous formula lower bound for NW) Let n, d, ∆ be positive
integers. If ∆ = 1, let d = n1−ϵ for any constant ϵ > 0 and k =

⌊
d−1

2

⌋
. Otherwise, let

d ≤ 1
150

(
log n

log log n

)2
, let τ =

⌊
d21−∆

⌋
, α =

∆−1
∑

ν=0

(−1)ν

τ2ν−1 , and k =
⌊

α·d
1+α

⌋
. In both cases, let q

be the largest prime between
⌊ n

2d
⌋

and
⌊n

d
⌋
. Then, any homogeneous formula of product-depth at

most ∆ computing NWq,d,k over any field F has size at least 2−O(d) ·nΩ
(

d21−∆)
. In particular, when

d = O(log n), we get a lower bound of nΩ
(

d21−∆)
.

Proof: We analyse the cases ∆ = 1 and ∆ ≥ 2 separately.

∆ = 1. Let C be a homogeneous formula of product-depth 1 computing NWq,d,k. Then, C =

∑i∈[s] ∏j∈[d] Qi,j, where Qi,j are linear forms. Observe that for any i ∈ [k], ∂k
(

∏j∈[d] Qi,j

)
⊆〈

∏j∈[d]\S Ci,j : |S| = k
〉

. Thus, dim
〈

∂k
(

∏j∈[d] Qi,j

)〉
≤ (d

k). As ∂kC ⊆ ∑i∈[s]

〈
∂k
(

∏j∈[d] Qi,j

)〉
,

dim
〈

∂kC
〉
≤ s · (d

k).

On the other hand, dim
〈

∂k(NWq,d,k)
〉
= (d

k) · qk: For every S ⊆ [d], |S| = k,

TS :=

 ∏
i∈[d]\S

xi,h(i) : h ∈ F[z], deg(h) < k

 ⊆ ∂k(NWq,d,k).

Now, for h1 ̸= h2 ∈ F[z], deg(h1), deg(h2) < k, there exists an i ∈ [d] \ S such that h1(i) ̸=
h2(i) because |[d] \ S| = d− k ≥ k + 1. Thus, ∏i∈[d]\S xi,h1(i) ̸= ∏i∈[d]\S xi,h2(i), and |TS| = qk.

Also, for S ̸= S′ ⊆ [d], |S| = |S′| = k, TS and TS′ are disjoint. Hence, dim
〈

∂k(NWq,d,k)
〉
≥
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(d
k) · qk.1 Thus, s ≥ qk =

(n
d
)O(d) as k = Θ(d) and qd = Θ(n). Because d ≤ n1−ϵ, this means

that s ≥ nO(d).

∆ ≥ 2. We can assume that d21−∆
= ω(1), as otherwise the given bound is trivial. Let

C be a homogeneous formula of product-depth at most ∆ computing NWq,d,k; C is a for-
mula in qd variables. By Lemma 7.6, there exist homogeneous polynomials

{
Qi,j
}

i,j such
that NWq,d,k = ∑i∈[s] Qi,1 · · ·Qi,ti , s ≤ size(C), and residuek

(
deg(Qi,1), . . . , deg(Qi,ti)

)
≥

Ω
(

d21−∆
)

for i ∈ [s]. From the proof of Lemma 7.6, k ∈
[

d
4 , d

2

]
. In fact, as k

d−k ≤ α ≤

1− 1
2τ ≤ 1− 1

2
√

d
, k ≤ d

2 −
√

d
8 . Thus, Lemma 7.10 guarantees that for n0 = 2(d− k)·

(
qd
k

) k
d−k

and ℓ =
⌊

qd2

n0

⌋
, SP k,ℓ

(
NWq,k,d

)
≥ 2−O(d) ·M(qd, k)·M(qd, ℓ). Also, it follows from the proof

of Lemma 7.10 (see Claim 7.4) that for n0 ≤ qd. So, applying Lemma 7.7 to NWk,d,q we

get that s ≥ 2−O(d) ·
(

qd
d

)Ω
(

d21−∆)
= 2−O(d) ·nΩ

(
d21−∆)

as qd ≥ n
4 and d = o(n). Hence,

size(C) ≥ 2−O(d) ·nΩ
(

d21−∆)
. 2

Remark 7.3 Notice that in the above theorem, as k depends on the product-depth ∆, the polynomial
NWq,d,k may be different for different values of ∆. However, much like in [KSS14], there is a way to
‘stitch’ all the different NW polynomials for different values of ∆ into a single polynomial P such that

any homogeneous formula of product-depth ∆ computing P has size at least 2−O(d)nΩ
(

d21−∆)
.

In [LST21], the authors showed how to convert a circuit of product-depth ∆ computing
a homogeneous polynomial to a homogeneous formula of product-depth 2∆ without much
increase in the size. Combining Lemma 11 from [LST21] with Theorems 7.1 and 7.2, we get:

Corollary 7.1 (Low-depth circuit lower bound for IMM) For any positive integers d, n, ∆ such
that n = ω(d), any circuit of product-depth at most ∆ computing IMMn,d over any field F with

characteristic 0 or more than d has size at least 2−O(d) ·n
Ω
(

d21−2∆

∆

)
.

In particular, when d = O(log n), we get a lower bound of n
Ω
(

d21−2∆

∆

)
.

Corollary 7.2 (Low-depth circuit lower bound for NW) Let n, d, ∆ be positive integers. If ∆ =

1, let d = n1−ϵ for any constant ϵ > 0 and k =
⌊

d−1
2

⌋
. Otherwise, let d ≤ 1

150

(
log n

log log n

)2
, let

τ =
⌊

d21−∆
⌋

, α =
∆−1
∑

ν=0

(−1)ν

τ2ν−1 , and k =
⌊

α·d
1+α

⌋
. In both cases, let q be the largest prime number

1In fact, it can be shown that this is an equality.
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between
⌊ n

2d
⌋

and
⌊n

d
⌋
. Then, any circuit of product-depth at most ∆ computing NWq,d,k over any

field F of characteristic 0 or more than d has size at least 2−O(d) ·n
Ω
(

d21−2∆

∆

)
.

In particular, when d = O(log n), we get a lower bound of n
Ω
(

d21−2∆

∆

)
.

We note that our lower bounds quantitatively improve on the original homogeneous for-
mula lower bound of [LST21] in terms of the dependence on the degree. While [LST21] gives

a lower bound of dO(−d)·nΩ
(

d1/2∆−1
)

(as the conversion from homogeneous to set-multilinear

formulas increases the size by a factor of dO(d)), our lower bound is 2−O(d) ·nΩ
(

d21−∆)
. Thus,

we get slight improvement both in the multiplicative factor (from dO(d) to 2O(d)) and in the

exponent of n (from d
1

2∆−1 to d
1

2(∆−1) ). We point out what these improvements mean for
smaller depths: For ∆ = 2, our lower bound for homogeneous formulas computing IMM
is superpolynomial as long as d ≤ ϵ · log2 n for a small enough positive constant ϵ, whereas

the lower bound in [LST21] does not work beyond d = O
((

log n
log log n

)2
)

. In particular, we

obtain a lower bound of nΩ(log n) for the size of homogeneous depth-5 formulas computing
IMMn,d when d = Θ(log2 n).

Finally, for ∆ = 3 and d ≤ ϵ · log4/3 n, we get a lower bound of nΩ(d1/4), as compared to
nΩ(d1/7) from [LST21].

7.5.6 A non-set-multilinear hard polynomial

For any n, d, ∆ ∈ N such that 120 ≤ d ≤ 1
150

(
log n

log log n

)2
, define k =

⌊
α·d

1+α

⌋
, where α :=

∆−1
∑

ν=0

(−1)ν

τ2ν−1 and τ :=
⌊

d21−∆
⌋

. Then, let n0 =

⌊
2(d− k) ·

(n
k
) k

d−k

⌋
(n0 ≤ n, see Section 7.5.6),

n1 = n − n0, y = {x1, . . . , xn1} and z =
{

xn1+1, . . . , xn
}

. Let My be the set of all (monic)
monomials of degree k in y variables andMz be the set of all (monic) monomials in z vari-
ables of degree d− k; it can be verified that |My| ≤ |Mz|. Fix any one-to-one function σ :
My →Mz. Then, it is easy to see that for Pσ := ∑m∈My m · σ(m), APP k,n0(P) = M(n1, k).
While Pσ defined above might have a non-trivial set-multilinear component, it can be mod-
ified to ensure that there are no multilinear monomials in it. Notice that to prove a lower
bound for such a polynomial, we must analyse the measure of a homogeneous formula com-
puting it directly; we cannot hope to get a lower bound by going via set-multilinearity as is
done in [LST21].

Lemma 7.11 (Non-set-multilinear hard polynomial) APP(Pσ) ≥ 2−O(k)M(n, k).
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Proof: Using an analysis similar to the one in the proof of Claim 7.4, it can be shown that
n0 = o(n). Also, from the proof of Lemma 7.6, k ∈

[
d
4 , d

2

]
. Let us assume that ∆ ≥ 2; the case

of ∆ = 1 is simple and can be handled separately. Then, as k
d−k ≤ α ≤ 1− 1

2τ ≤ 1− 1
2
√

d
,

k ≤ d−
√

d
2 − k + k

2
√

d
, and hence k ≤ d

2 −
√

d
4 + k

4
√

d
≤ d

2 −
√

d
4 + d

8
√

d
= d

2 −
√

d
8 .

Claim 7.7 |My| ≤ |Mz|.

Proof: |My| = (n1+k−1
n1−1 ) andMz = (n0+d−k−1

n0−1 ). Thus,

|Mz|
|My|

=
(n0 + d− k− 1)(n0 + d− k− 2) · · · n0

(n1 + k− 1)(n1 + k− 2) · · · n1
· k!
(d− k)!

≥ k!
(d− k)!

·
nd−k

0

nk
1
· 1(

1 + k−1
n1

)k

≥ (1− o(1)) · k!
(d− k)!

· ((2− o(1))(d− k))d−k
(n

k

)k
· 1

nk

(replacing n0 by its value and as n0 = o(n), n1 = Θ(n) = ω(k2))

≥ (1.9)d−k
(1− o(1))

√
2πk

(
k
e

)k

(1 + o(1))
√

2π(d− k)
(

d−k
e

)d−k ·
(d− k)d−k

kk

(using Sterling’s approximation)

≥ (1.8)d−k · ed−2k ·
√

k
d− k

≥ 1,

for d ≥ 120. 2

Claim 7.8 M(n1, k) ≥ 2−O(k)M(n, k).

Proof: As n1 = Θ(n) ≥ k, from Lemma 7.1, we get

M(n1, k) ≥
(n1

k

)k
=
(n

k

)k (
1− n0

n

)k
≥
(n

k

)k
· e−

2kn0
n ≥ 2−O(k) ·

(
6n
k

)k
≥ 2−O(k) ·M(n, k),
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where the third to last inequality follows from n0 = o(n) and the last inequality follows from
n ≥ k and Lemma 7.1. 2

2
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Chapter 8

Border of sums of constantly many
read-once arithmetic formulas

This chapter studies the border of a sum of read-once arithmetic formulas. The
contents of this chapter are part of a joint work with Pranjal Dutta.

8.1 Introduction
Recall that for an f ∈ F[x] and a fresh variable ϵ /∈ x, we say that f is approximated by a
g ∈ F[ϵ, x] if there exists an h ∈ F[ϵ, x] such that f + ϵ · h = g. We abbreviate f + ϵ · h = g as
f +O(ϵ) = g. The border of a circuit C over F(ϵ) is the set of all polynomials approximated
by C; the border of a circuit class C is just the union of the border of all circuits in it (See
Section 2.10 for more details). In this chapter, we prove some results about the border of
sums of ROFs. We prove the following three theorems in this chapter.

Theorem 1.10 (Sum of ROFs not closed under border) For any n ∈ N, n ≥ 10 and 2 ≤ k ≤
n
5 , ∑k ROF(n) ⊊ ∑k ROF(n) over any field.

Recall that ROF0(n) is the class of additive constant free ROFs in n-variables. (see Defi-
nition 2.25

Theorem 1.11 (De-bordering the border of sum of 2 ROFs) Over fields of characteristic other
than 2 and for any n ∈N, ∑2 ROF0(n) ⊆ ∑O(n) ROF0(n).

In the following theorem, by a depth ∆ ROF we mean a depth ∆ ROF with a + gate at
the top.
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Theorem 1.12 (Hitting set for the border of sum of 2 homogeneous depth-5 ROFs) If F is a
field of size poly(n) and characteristic other than 2, then there is an nO(log n) time computable hitting
set for the border of sums of two homogeneous depth-5 ROFs computing n-variate polynomials over
F.

Theorems 1.10 and 1.11 are proved in Sections 8.2 and 8.3, respectively. The proof of
Theorem 1.12 is given in Sections 8.4 and 8.5; in the former we prove a special case of the
theorem for the border of sum of two depth-4 ROFs and in the latter we extend this proof
to the depth-5 case. Throughout this section, we shall identify a circuit with a polynomial
computed by it.

8.2 Lower bounds for sums of ROFs against their border
The proof of Theorem 1.10 follows from the two lemmas proved below.

Lemma 8.1 For all n ∈N and 1 ≤ d ≤ n, ESymn,d ∈ ∑n−d+1 ROF(n)

Proof: We shall show that for all 1 ≤ d ≤ n, there exist fi(ϵ), gi(ϵ) with val( fi) = val(gi) = 0
for all i ∈ [n− d] such that

ESymn,d + O(ϵ) = ϵd ∏
j∈[n]

(
xj

ϵ
+ 1
)

+
n−d

∑
i=1

1
ϵ2i−1

· fi(ϵ)

gi(ϵ)
· ϵ(d+i)2i

∏
j∈[n]

(
xj

ϵ2i + 1
)

. (8.1)

Since the right hand side above equation has n− d + 1 summands and each is an ROF over
F(ϵ), proving the above equation will establish the lemma.

Observe that for all d ∈ [n],

ϵd ∏
j∈[n]

(
xj

ϵ
+ 1
)
=

d−1

∑
i=0

ϵd−i · ESymn,i + ESymn,d +
n−d

∑
i=1

1
ϵi · ESymn,d+i

Thus,

ESymn,d + O(ϵ) = ϵd ∏
j∈[n]

(
xj

ϵ
+ 1
)
−

n−d

∑
i=1

1
ϵi · ESymn,d+i. (8.2)

Assume by the way of induction that for some 0 ≤ m < n− d, there exist f ′i (ϵ), g′i(ϵ) for all
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m + 1 ≤ i ≤ n− d with val( f ′i ) = val(g′i) = 0 such that

ESymn,d + O(ϵ) = ϵd ∏
j∈[n]

(
xj

ϵ
+ 1
)

+
m

∑
i=1

1
ϵ2i−1

· fi(ϵ)

gi(ϵ)
· ϵ(d+i)2i

∏
j∈[n]

(
xj

ϵ2i + 1
)

−
n−d

∑
i=m+1

1
ϵ(i−m+1)2m−1

·
f ′i (ϵ)
g′i(ϵ)

· ESymn,d+i. (8.3)

Note that the base case of m = 0 is just Equation (8.2) (with f ′i (ϵ) = g′i(ϵ) = 1). As

(
ϵ2m+1

)d+m+1
∏

j∈[n]

(
xj

ϵ2m+1 + 1
)
=

d+m

∑
i=0

(
ϵ2m+1

)d+m+1−i
· ESymn,i

+ ESymn,d+m+1

+
n−d

∑
i=m+2

1
ϵ(i−m−1)2m+1 · ESymn,d+i,

1
ϵ(m+1−m+1)2m−1

·
f ′m+1(ϵ)

g′m+1(ϵ)
·ESymn,d+m+1

=
1

ϵ2m+1−1
·

f ′m+1(ϵ)

g′m+1(ϵ)
· ESymn,d+m+1

=
1

ϵ2m+1−1
·

f ′m+1(ϵ)

g′m+1(ϵ)
·
(

ϵ2m+1
)d+m+1

· ∏
j∈[n]

(
xj

ϵ2m+1 + 1
)

−
d+m

∑
i=0

1
ϵ2m+1−1

·
f ′m+1(ϵ)

g′m+1(ϵ)
·
(

ϵ2m+1
)d+m+1−i

· ESymn,i

−
n−d

∑
i=m+2

1
ϵ2m+1−1

·
f ′m+1(ϵ)

g′m+1(ϵ)
· 1

ϵ(i−m−1)2m+1 · ESymn,d+i

=
1

ϵ2m+1−1
·

f ′m+1(ϵ)

g′m+1(ϵ)
· ϵ(d+m+1)2m+1 · ∏

j∈[n]

(
xj

ϵ2m+1 + 1
)

−
n−d

∑
i=m+2

1
ϵ(i−m)2m+1−1

·
f ′m+1(ϵ)

g′m+1(ϵ)
· ESymn,d+i

+ O(ϵ).
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Putting this in (8.3), we get

ESymn,d + O(ϵ) = ϵd ∏
j∈[n]

(
xj

ϵ
+ 1
)

+
m

∑
i=1

1
ϵ2i−1

· fi(ϵ)

gi(ϵ)
· ϵ(d+i)2i

∏
j∈[n]

(
xj

ϵ2i + 1
)

− 1
ϵ2m+1−1

·
f ′m+1(ϵ)

g′m+1(ϵ)
· ϵ(d+m+1)2m+1 · ∏

j∈[n]

(
xj

ϵ2m+1 + 1
)

+
n−d

∑
i=m+2

1
ϵ(i−m)2m+1−1

·
f ′m+1(ϵ)

g′m+1(ϵ)
· ESymn,d+i

−
n−d

∑
i=m+2

1
ϵ(i−m+1)2m−1

·
f ′i (ϵ)
g′i(ϵ)

· ESymn,d+i.

Defining fm+1 = − f ′m+1 and gm+1 = −g′m+1 we get

ESymn,d + O(ϵ) = ϵd ∏
j∈[n]

(
xj

ϵ
+ 1
)

+
m+1

∑
i=1

1
ϵ2i−1

· fi(ϵ)

gi(ϵ)
· ϵ(d+i)2i

∏
j∈[n]

(
xj

ϵ2i + 1
)

−
n−d

∑
i=m+2

(
1

ϵ(i−m+1)2m−1
·

f ′i (ϵ)
g′i(ϵ)

− 1
ϵ(i−m)2m+1−1

·
f ′m+1(ϵ)

g′m+1(ϵ)

)
· ESymn,d+i.

Now (i−m)2m+1 − 1 > (i−m + 1)2m − 1 for all m + 2 ≤ i ≤ n− d. Thus,

1
ϵ(i−m+1)2m−1

·
f ′i (ϵ)
g′i(ϵ)

− 1
ϵ(i−m)2m+1−1

·
f ′m+1(ϵ)

g′m+1(ϵ)

=
1

ϵ(i−m)2m+1−1
·

ϵ(i−m−1)2m · f ′i (ϵ) · g′m+1(ϵ) − f ′m+1(ϵ) · g′i(ϵ)
g′i(ϵ) · g′m+1(ϵ)

.

For all m + 2 ≤ i ≤ n− d, define f ′′i (ϵ) = ϵ(i−m−1)2m · f ′i (ϵ) · g′m+1(ϵ) − f ′m+1(ϵ) · g′i(ϵ) and
g′′i (ϵ) = g′i(ϵ) · g′m+1(ϵ). Since val( f ′m+1) = val(g′i) = 0, val( f ′′i ) = 0. Similarly, val(g′m+1) =

val(g′i) = 0 imply val(g′′i ) = 0. Hence,

ESymn,d + O(ϵ) = ϵd ∏
j∈[n]

(
xj

ϵ
+ 1
)
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+
m+1

∑
i=1

1
ϵ2i−1

· fi(ϵ)

gi(ϵ)
· ϵ(d+i)2i

∏
j∈[n]

(
xj

ϵ2i + 1
)

−
n−d

∑
i=m+2

1
ϵ(i−(m+1)+1)2m+1−1

·
f ′′i (ϵ)
g′′i (ϵ)

· ESymn,d+i;

this concludes the induction step. To complete the proof of the lemma, we observe that for
m = n− d, Equation (8.3) is the same as Equation (8.1). 2

The following lemma strengthens Theorem 2.2 which was proved in [MT18].

Lemma 8.2 For all n ≥ 10 and 2 ≤ k ≤ n
5 , ESymn,n−k+1 /∈ ∑k ROF(n).

Proof: Fix an n ≥ 3. We first prove the following special case of the lemma and then show
how to reduce the general case to this special case. Recall the definition of the gate graph of
an ROF (Definition 2.26). Also, recall that fca(x, y) denotes the first common ancestor of x
and y in an ROF.

Claim 8.1 Let f = C1 + · · ·+ Ck for any 2 ≤ k ≤ n
3 . If C1, . . . ,Ck have the same gate graph, then

C ̸= ESymn,n−k+1.

Proof: Since C1, . . . ,Ck have the same gate graph, we may assume that their gate graphs
must be complete graphs. If not, then there will exist x, y ∈ x such that fca(x, y) = + in all
of C1, . . . ,Ck. Then from Observation 5.10, ∂2C1

∂x∂y = . . . = ∂2Ck
∂x∂y = 0 and no monomial in C can

contain xy. Because n ≥ 3 and 2 ≤ k ≤ n
3 , n− k + 1 ≥ 2. Thus, there exists a monomial in

ESymn,k containing xy. The claim follows.
Define D1 := C and D1,i = Ci for all i ∈ [k]. Let T1 be a product gate in D1,1 with

the largest depth. Then, T1 must be a product of at least two affine forms, each in just
one variable. Without loss of generality, let α1,1x1 − α1,0 and y1 − β1 be two of its factors.
Define D2 = ∂D1

∂x1
(y1 = β1). Then D2 = D2,2 + · · · + D2,k, where for all j ∈ {2, . . . , k},

D2,j =
∂D1,j
∂x1

(y1 = β1); this is so because ∂D1,1
∂x1

(y1 = β1) = 0 (follows from Observation
5.11). Also, D2,2, · · · ,D2,k have the same gate graph. Thus, we can repeat the above process
with D2. Proceeding in this manner, we obtain Di = Di,i + · · · + Di,k, and xi, yi, βi for all

i ∈ {2, . . . , k} such that Di =
∂Di−1
∂xi−1

(yi−1 = βi−1) and ∂Di,i
∂xi

(yi = βi) = 0. Now there are two
cases:
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Case 1: Not all of β1, . . . , βk are 0. Note that ∂Dk
∂xk

(yk = βk) =
∂Dk,k
∂xk

(yk = βk) = 0. Since
∂kC

∂x1···∂xk
(y1 = β1, . . . , yk = βk) = ∂Dk

∂xk
(yk = βk), it is also 0. Now, as k ≤ n

3 , ∂kC
∂x1···∂xk

=

ESymm,m−k+1(x′), where x′ = x \ {x1, . . . , xk} and m = n− k. It is not difficult to see that

ESymm,m−k+1(y1 = β1, . . . , yk = βk)

=
k

∑
i=1

ESymm−k,m−k+1−i
(
x′ \ {y1, . . . , yk}

)
· ESymk,i(β1, . . . , βk).

Here we use the fact that k ≤ n
3 , for otherwise m− 2k + 1 ≤ 0. Thus,

ESymm,m−k+1(y1 = β1, . . . , yk = βk) = 0

only if for all i ∈ [k], ESymk,i(β1, . . . , βk) = 0; this follows from the fact that

{
ESymm−k,m−k+1−i

(
x′ \ {y1, . . . , yk}

)
: i ∈ [k]

}
is linearly independent. This only happens when β1, . . . , βk = 0. As at least one of them is
non-zero, ESymm,m−k+1(y1 = β1, . . . , yk = βk) ̸= 0. If C computes ESymn,n−k+1, then

0 =
∂kC

∂x1 · · · ∂xk
(y1 = β1, . . . , yk = βk) = ESymm,m−k+1(y1 = β1, . . . , yk = βk) ̸= 0.

Hence C cannot compute ESymn,n−k+1.

Case 2: β1 = · · · = βk = 0. In this case C computes ESymn,n−k+1 only if ∂Dk−1
∂xk−1

=
∂Dk−1,k−1

∂xk−1
+

∂Dk−1,k
∂xk−1

computes

∂k−1C
∂x1 · · · ∂xk−1

(y1 = 0, . . . , yk−2 = 0) = ESymm,m−1(x
′),

where m = n− (k− 1)− (k− 2) and x′ = x \ {x1, . . . , xk−1, y1, . . . , yk−2}. The claim follows
from Theorem 2.2. 2

We now show how to reduce the general case to the above claim. Let C = C1 + · · ·+ Ck

and C1, . . . ,Ck do not have the same gate graph. There are two cases:

Case 1: Not all of the C1, . . . ,Ck contain all variables in x. Without loss of generality Ck does
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not contain x. Then we define C′ = ∂C
∂x and C′i =

∂Ci
∂x for all i ∈ [k]; note that C′k = 0. Now C

computes ESymn,n−k+1 only if C′ = C′1 + · · ·+ C′k−1 computes ESymn−1,(n−1)−k+1.

Case 2: Each of the C1, . . . ,Ck contain all variables in x. Then there must exist an i ∈ [k]
and x, y ∈ x such that fca(x, y) in Ci is a + gate; without loss of generality i = k. Define
C′ = ∂2C

∂x∂y , C′i =
∂2Ci
∂x∂y for all i ∈ [k− 1]. Notice that C computes ESymn,n−k+1 only if C′ com-

putes ESymn−2,(n−2)+k−1(x \ {x, y}).

Now, if C′1, . . . ,C′k−1 have the same gate graph, then we have successfully reduced to the
case of Claim 8.1. Otherwise, we repeat the process described in Cases 1 and 2 until we
get a C′′ = C′′1 + · · · + C′′ℓ such that C′′1 , . . . ,C′′ℓ have the same gate graph and C computes
ESymn,n−k+1 only if C′′ computes ESymn−m,(n−m)−k+1(x′), where 0 ≤ m ≤ 2(k− ℓ) ≤ 2(k− 1)
and |x′| = n − m. This is so because the process needs to be repeated at most k − 1 times
and every time the above process reduces the number of summands by 1, the number of
variables as well as the degree of ESym both decrease by either 1 or 2.

If ℓ = 1, then we need to show that C′′which is an ROF cannot compute ESymn−m,(n−m)−k+1.
As 2 ≤ k ≤ n

5 , (n − m) − k + 1 ≥ 3. Now the gate graph of C′′ must be a complete

graph, for otherwise there would be a pair of variables x, y ∈ x′ such that ∂2C′′
∂x∂y = 0 while

∂2ESymn−m,(n−m)−k+1
∂x∂y ̸= 0. But if the gate graph of C′′ is a complete graph, then it must compute

∏x∈x′ x which is not present in ESymn−m,(n−m)−k+1. So C′′ cannot compute ESymn−m,(n−m)−k+1.
If ℓ ≥ 2, then a simple calculation shows that as 2 ≤ k ≤ n

5 , implies 2 ≤ k ≤ n−m
3 . So we can

use Claim 8.1 for a C′′′ obtained from C′′ by adding an k− ℓ ROFs with the same gate graphs
as C′′1 , . . . ,C′′ℓ whose sum equals 0. 2

8.3 De-bordering the border of sum of 2 ROFs
In this section, we show that the border of sum of two additive constant free ROFs comput-
ing an n- variate polynomial is contained in the sum of O(n) many ROFs. Recall that we
say that an ROF is additive constant free if all children of every + gate in it are non-constant
polynomials. Also recall that we denote the class of additive constant free ROFs by ROF0.

Proof of Theorem 1.11

The proof is by induction on n. For n = 1, and any f ∈ ∑2 ROF0(n), f + O(ϵ) = αx1 + βx1

for some α, β ∈ F(ϵ) such that α + β ∈ F[ϵ]. Putting ϵ = 0 in f + O(ϵ) = (α + β)x1, we get
f ∈ ROF0.
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Assume by the way of induction that the theorem is true for 1 ≤ n′ < n. Fix an
f ∈ ∑2 ROF0(n). Then f + O(ϵ) = R1 + R2 where R1 and R2 are additive constant free
ROFs over F(ϵ). We divide the proof into two cases depending on whether (one of) the
deepest gate in R1, say G, is a + gate or a × gate.

Case 1. G is a × gate. Notice that since G is (one of) the deepest gate in R1, it can only
compute a product of variables in x. Moreover, it must have degree at least 2. Then without
loss of generality G = x1x2 · · · xm. We further divide this case into sub-cases depending on
what fca(x1, x2) in R2 is.

Case 1.1. fca(x1, x2) in R2 is a + gate. Note that ∂ f
∂x1

+ O(ϵ) = ∂R1
∂x1

+ ∂R2
∂x1

and thus ∂ f
∂x1
∈

∑2 ROF0(n− 1).1 Also, as polynomials over F(ϵ), every monomial in ∂R1
∂x1

contains x2 (see

Observation 5.11)2 while no monomial in ∂R2
∂x1

has x2. Thus, there can be no cancellations

between ∂R1
∂x1

and ∂R2
∂x1

. Hence ∂R2
∂x1
∈ F[ϵ][x] and Claim 2.3 implies that ∂R2

∂x1
(ϵ = 0) ∈ ROF0.

Because R2 is a multilinear polynomial, R2 = x1
∂R2
∂x1

+ R2(x1 = 0). Hence, f + O(ϵ) =

(R1 + R2(x1 = 0)) + R3, where R3 = x1 · ∂R2
∂x1

(ϵ = 0) is an ROF (over F).
We can repeat the argument made above for f ′ := (R1 + R2(x1 = 0))(ϵ = 0), to get that

f + O(ϵ) = (R1 + R2(x1, x2 = 0)) + R3 + R4, where R4 is also an ROF (over F). Observe
that a monomial in R1 + R2(x1, x2 = 0) contains x1 if and only if it contains x2. Consider
f ′′ := (R′1 + R2(x1, x2 = 0))(ϵ = 0), where R′1 is obtained from R1 by replacing G with
yx3 · · · xm where y /∈ x is a fresh variable. As f ′′ ∈ ∑2 ROF0(n− 1), by the induction hypoth-
esis, f ′′ ∈ ∑O(n−1) ROF0(n− 1), say f ′′ = P1 + · · ·+ Pm, where m = O(n− 1). For all i ∈ [m],
let P′i = Pi(y = x1x2). Observe that P′1 + · · ·+ P′m = (R1 + R2(x1, x2 = 0))(ϵ = 0). Further
P′1, . . . , P′m ∈ ROF0. Hence, f +O(ϵ) = P′1 + · · ·+ P′m +O(ϵ) + R3 + R4 and f ∈ ∑O(n) ROF0.

Case 1.2. fca(x1, x2) in R2 is a× gate; suppose this gate is at product-depth δ− 1. We assume
that the top gate of R2 is a + gate, if it is not, we add a dummy + gate. Then, we can
write R2 as Q1,1 + · · · + Q1,s1 where each of the Q1,i are × gates (or 0 if the top + gate
is a dummy gate) and x1, x2 ∈ var(Q1,1). Let Q1,1 = T1,1 · · · T1,m1 and x1, x2 ∈ var(T1,1).
Having inductively defined Qi,j and Ti,j′ for all i ∈ [ℓ], ℓ < δ− 1, j ∈ [si], and j′ ∈ [mi], let,
Tℓ,1 = Qℓ+1,1 + · · ·+ Qℓ+1,sℓ+1

, with x1, x2 ∈ var(Qℓ+1,1), and Qℓ+1,1 = Tℓ+1,1 · · · Tℓ+1,mℓ+1
,

with x1, x2 ∈ var(Tℓ+1,1). Finally, Tδ−1 = Qδ,1 + · · · + Qδ,sδ
with x1, x2 ∈ var(Qδ,1) and

1This is so, becasue the derivative of an additive constant free ROF is also an additive constant free ROF.
2Even though we have only proved Observation 5.11 for canonical ROFs, it actually holds for any ROF

with alternating layers of + and × gates. Recall that all ROFs considered in this work have this structure.
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Qδ,1 = Tδ,1 · Tδ,2 · · · Tδ,mδ
, where x1 ∈ var(Tδ,1) and x2 ∈ var(Tδ,2). That is fca(x1, x2) = Qδ,1.

Observe that as ∂R1
∂x1

(x2 = 0) = ∂R1
∂x2

(x1 = 0) = 0, ∂R2
∂x1

(x2 = 0) and ∂R2
∂x2

(x1 = 0) ∈ F[ϵ][x].

Thus
(

∂R2
∂x1

(x2 = 0)
)
(ϵ = 0) and

(
∂R2
∂x2

(x1 = 0)
)
(ϵ = 0) are both in ROF0 = ROF0. Now,

∂R2

∂x1
(x2 = 0) =

∂Tδ,1

∂x1
· Tδ,2(x2 = 0) · Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · · · Ti,mi

∂R2

∂x2
(x1 = 0) =

∂Tδ,2

∂x2
· Tδ,1(x1 = 0) · Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · · · Ti,mi .

Let val
(

Tδ,3 · · · Tδ,mδ
·∏δ−1

i=1 Ti,2 · · · Ti,mi

)
= γ and val

(
∂Tδ,1
∂x1

)
= α1, val (Tδ,2(x2 = 0)) = β2,

val
(

∂Tδ,2
∂x2

)
= α2, val (Tδ,1(x1 = 0)) = β1. Since ∂R2

∂x1
(x2 = 0), ∂R2

∂x2
(x1 = 0) ∈ F[ϵ][x], α1 + β2 +

γ ≥ 0 and α2 + β1 + γ ≥ 0. A simple calculation shows that this implies that α1 + α2 + γ ≥ 0
or β1 + β2 + γ ≥ 0. We now analyse these two cases.

Let R3 =
(

x1
∂R2
∂x1

(x2 = 0)
)
(ϵ = 0) and R4 =

(
x2

∂R2
∂x2

(x1 = 0)
)
(ϵ = 0). If α1 + α2 + γ ≥ 0,

then

∂2R2

∂x1∂x2
(ϵ = 0) =

(
∂Tδ,1

∂x1
· ∂Tδ,2

∂x2
· Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · · · Ti,mi

)
(ϵ = 0)

∈ ROF0 = ROF0.

Thus we can write

f + O(ϵ) = (R1 + R′2) + R3 + R4 + R5

where R5 := x1x2
∂2R2

∂x1∂x2
(ϵ = 0) ∈ ROF0, and R′2 = R2(x1, x2 = 0). Then we can argue as

in Case 1.1: obtain R′1 by replacing x1x2 in R1 by y and define f ′ := (R′1 + R′2)(ϵ = 0). By
induction hypothesis f ′ ∈ ∑O(n−1) ROF0(n− 1) from which we can obtain a circuit for f in

∑O(n) ROF0(n) by replacing y with x1x2 and adding R3 + R4 + R5.
Similarly, if β1 + β2 + γ ≥ 0 then we can write

f + O(ϵ) = (R1 + R′2) + R3 + R4 + R5

where R5 = (R2(x1, x2 = 0)) (ϵ = 0) ∈ ROF0 = ROF0 and R′2 = x1x2
∂2R2

∂x1∂x2
. Note that a

monomial in R1 or R′2 contains x1 if and only if contains x2. Let R′1 and R′′2 be obtained from
R1 and R′2 by replacing x1x2 with a fresh variable y and define f ′ := (R′1 + R′′2 )(ϵ = 0). As
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before, by the induction hypothesis, f ′ ∈ ∑O(n−1) ROF0(n− 1). We can obtain a circuit for f
in ∑O(n) ROF0(n) from that of f ′ by replacing y with x1x2 and adding R3 + R4 + R5.

Case 2. G is a + gate. Since G is the deepest gate in R1, it must compute a linear form. With-
out loss of generality G = α1x1 + · · ·+ αmxm, where val(α1) ≤ val(α2); in fact we can also
assume that α1 = 1. Consider f ′ := f (x1 = x1 − α2(ϵ = 0)x2) = f (x1 = x1 − α2x2) + O(ϵ).
Then f ′ + O(ϵ) = R′1 + R′2, where R′1 = R1(x1 = x1 − α2x2) and R′2 = R2(x1 = x1 − α2x2).
Note that R′1 does not contain x2, but R′2 need not be an ROF over F(ϵ); it may contain x2 at
two places. x2

∂R′2
∂x2

cannot cancel out and is in F[ϵ][x]. We now analyse x2
∂R′2
∂x2

. There are two
cases: fca(x1, x2) in R2 is a + gate and fca(x1, x2) in R2 is a × gate.

Case 2.1: fca(x1, x2) in R2 is a + gate. If there is a + gate in R2 such that x1 and x2 are directly
connected to it, then the same is true in R′2. Let us call this gate in R′2 as G′. Then R′2 is an ROF
over F(ϵ). Hence x2

∂R′2
∂x2

(ϵ = 0) ∈ ROF0 = ROF0. Then, f ′+O(ϵ) = (R′1 + R′2(x2 = 0)) + R3,

where R3 = x2
∂R′2
∂x2

(ϵ = 0). Now f ′′ := (R′1 + R′2(x2 = 0)) (ϵ = 0) ∈ ∑2 ROF0(n− 1) and
thus from the induction hypothesis, f ′′ ∈ ∑O(n−1) ROF0(n− 1). Hence, f ′ ∈ ∑O(n) ROF0(n).
We can obtain a circuit for f from that for f ′ by replacing x1 with x1 + α2(ϵ = 0)x2. Since
f ′′ does not contain x2 and R3 does not contain x1, the circuit so obtained will still be in

∑O(n) ROF0(n). Now we look at the case in which such a G′ does not exist.
As in Case 1.2 we assume without loss of generality that the top gate of R2 is a + gate.

Suppose that fca(x1, x2) is at product-depth δ. Write R2 as Q1,1 + · · ·+ Q1,s1 where each of
the Q1,i are × gates (or 0 if the top gate of R2 is a × gate) and x1, x2 ∈ var(Q1,1). Q1,1 =

T1,1 · · · T1,m1 and x1, x2 ∈ var(T1,1). Having inductively defined Qi,j and Ti,j′ for all i ∈ [ℓ],
ℓ < δ, j ∈ [si], and j′ ∈ [mi], let Tℓ,1 = Qℓ+1,1 + · · ·+ Qℓ+1,sℓ+1

, with x1, x2 ∈ var(Qℓ+1,1), and
Qℓ+1,1 = Tℓ+1,1 · · · Tℓ+1,mℓ+1

, with x1, x2 ∈ var(Tℓ+1,1). Finally, Tδ,1 = Qδ+1,1 + · · ·+Qδ+1,sδ+1

with x1,∈ var(Qδ+1,1) and x2 ∈ var(Qδ+1,2). Since G′ does not exist, it must be that at
least one of Qδ+1,1, Qδ+1,2 has fan-in at least 2. Because R′1 does not contain x2, ∂R′2

∂x2
∈

F[ϵ](x \ {x2}) . Now,

∂R′2
∂x2

=
∂Tδ,1(x1 = x1 − α2x2)

∂x2
· Tδ,2 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · · · Ti,mi

=

(
∂Qδ+1,1(x1 = x1 − α2x2)

∂x2
+

∂Qδ+1,2

∂x2

)
· Tδ,2 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · · · Ti,mi .
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Suppose that Qδ+1,1 has fan-in at least 2, the case when Qδ+1,2 has fan-in at least 2 is similar.
Let Qδ+1,1 = Tδ+1,1 · · · Tδ+1,mδ+1 with x1 ∈ var(Tδ+1,1) and mδ+1 ≥ 2. Then as R2 and thus
R′2 is additive constant free, every monomial in Qδ+1,1(x1 = x1 − α2x2) containing x2 also
contains a variable in var(Tδ+1,2). Because R2 is an ROF, var(Qδ+1,1) and var(Qδ+1,2) are
disjoint. Thus var(Qδ+1,1)(x1 = x1 − α2x2) ∩ var(Qδ+1,2) = x2. Hence, every monomial in
∂Qδ+1,1

∂x2
(x1− α2x2) contains a variable in var(Tδ+1,2) which is not in ∂Qδ+1,2

∂x2
. So no cancellations

are possible between R′3 := x2
∂Qδ+1,1(x1=x1−α2x2)

∂x2
· Tδ,2 · · · Tδ,mδ

·∏δ−1
i=1 Ti,2 · · · Ti,mi and R′4 :=

x2
∂Qδ+1,1

∂x2
· Tδ,2 · · · Tδ,mδ

·∏δ−1
i=1 Ti,2 · · · Ti,mi . Thus both of them are in F[ϵ](x \ {x2}). Also note

that both are ROFs over F(ϵ). Thus R3 := R′3(ϵ = 0) and R4 := R′4(ϵ = 0) both are ROFs
over F.

Notice that R′2 computes a multilinear polynomial. So,

f ′ + O(ϵ) = (R′1 + R′2(x2 = 0)) + R3 + R4. (8.4)

f ′′ := (R′1 + R′2(x2 = 0)) (ϵ = 0) ∈ ∑2 ROF0(n− 1); so by induction hypothesis, f ′′ ∈
∑O(n−1) ROF0(n− 1). So, f ′ ∈ ∑O(n) ROF0(n). We can obtain a circuit for f from f ′ by re-
placing x1 with x1 + α2(ϵ = 0)x2. Now R3, R4 do not contain x1; this is because R′2 does not
contain any monomial containing both x1 and x2. Hence f continues to be in ∑O(n) ROF0(n).

Case 2.2 fca(x1, x2) in R2 is a× gate. As in Case 1.2, we assume without loss of generality that
the top gate of R2 is a + gate. Suppose that fca(x1, x2) is at product-depth δ− 1. Write R2 as
Q1,1 + · · ·+ Q1,s1 where each of the Q1,i are× gates (or 0 if the top gate of R2 is a× gate) and
x1, x2 ∈ var(Q1,1). Q1,1 = T1,1 · · · T1,m1 and x1, x2 ∈ var(T1,1). Having inductively defined
Qi,j and Ti,j′ for all i ∈ [ℓ], ℓ < δ− 1, j ∈ [si], and j′ ∈ [mi], let Tℓ,1 = Qℓ+1,1 + · · ·+ Qℓ+1,sℓ+1

,
with x1, x2 ∈ var(Qℓ+1,1), and Qℓ+1,1 = Tℓ+1,1 · · · Tℓ+1,mℓ+1

, with x1, x2 ∈ var(Tℓ+1,1). Finally,
Tδ−1 = Qδ,1 + · · ·+ Qδ,sδ

with x1, x2 ∈ var(Qδ,1) and Qδ,1 = Tδ,1 · Tδ,2 · · · Tδ,mδ
, where x1 ∈

var(Tδ,1) and x2 ∈ var(Tδ,2). That is fca(x1, x2) = Qδ,1.
Observe that R′2 has individual degree at most 1 in x \ {x2} and individual degree at most

2 in x2. Hence, as char(F) ̸= 2,

R′2 = R′2(x2 = 0) + x2
∂R′2
∂x2

(x2 = 0) +
1
2

x2
2

∂2R′2
∂x2

2
.

As in f ′, R′2 is the only sub-circuit containing x2, x2
∂R′2
∂x2

(x2 = 0) + 1
2 x2

2
∂2R′2
∂x2

2
∈ F[ϵ][x]. This

also means that both the summands are also in F[ϵ][x].
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In R′2 the only sub-circuits with x2 are Tδ,1(x1 = x1 − α2x2) and Tδ,2. So,

∂2R′2
∂x2

2
= 2

(
−α2 ·

∂Tδ,1

∂x1
· ∂Tδ,2

∂x2
· Tδ,3 · · · Tδ,mδ

)
·

δ−1

∏
i=1

Ti,2 · Ti,mi

Thus, ∂2R′2
∂x2

2
(ϵ = 0) ∈ ROF0 = ROF0. Call this ROF R3.

∂R′2
∂x2

(x2 = 0)

=

(
−α2 ·

∂Tδ,1

∂x1
· Tδ,2(x2 = 0) + Tδ,1 ·

∂Tδ,2

∂x2

)
· Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · Ti,mi

=

(
−α2 ·

∂Tδ,1

∂x1
· Tδ,2(x2 = 0) +

(
x1

∂Tδ,1

∂x1
+ Tδ,1(x1 = 0)

)
· ∂Tδ,2

∂x2

)
· Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · Ti,mi .

Unless Tδ,2(x2 = 0) = 0, every monomial in Tδ,2(x2 = 0) must contain a variable y such that
fca(y, x2) in R2 is a + gate. Such a variable cannot be present in Tδ,1 ·

∂Tδ,2
∂x2

. Thus,

−α2 ·
∂Tδ,1

∂x2
· Tδ,2(x2 = 0) · ·Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · Ti,mi ∈ F[ϵ][x].

Also, it is an ROF over F(ϵ), so(
−α2 ·

∂Tδ,1

∂x2
· Tδ,2(x2 = 0) · ·Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · Ti,mi

)
(ϵ = 0) ∈ ROF0.

Call this ROF R4. F[ϵ][x] also contains

Tδ,1 ·
∂Tδ,2

∂x2
· Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · Ti,mi

=

(
x1

∂Tδ,1

∂x1
+ Tδ,1(x1 = 0)

)
· ∂Tδ,2

∂x2
· Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · Ti,mi .

Thus, (
x1

∂Tδ,1

∂x1
· ∂Tδ,2

∂x2
· Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · Ti,mi

)
(ϵ = 0)
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and (
Tδ,1(x1 = 0) · ∂Tδ,2

∂x2
· Tδ,3 · · · Tδ,mδ

·
δ−1

∏
i=1

Ti,2 · Ti,mi

)
(ϵ = 0)

are both in ROF0 = ROF0. Call these two first ROFs R5 and R6. Then,

f ′ + O(ϵ) = (R′1 + R′2(x2 = 0)) + x2(R4 + R5 + R6) +
1
2

x2
2R3.

Note that f ′′ := (R′1 + R′2(x2 = 0))(ϵ = 0) ∈ ∑2 ROF0(n− 1). So by the induction hypothe-
sis, f ′′ ∈ ∑O(n−1) ROF0(n− 1). Let α2 = α2,0 + O(ϵ). Then,

f = f ′(x1 = x1 + α2,0x2)

= f ′′(x1 = x1 + α2,0x2) + x2(R4 + R6) + x2(R5(x1 = x1 + α2,0x2)) +
1
2

x2
2R3

Note that R4 and R6 do not contain x2. So x2R4 and x2R6 are both ROFs. Then, from
the proof of Claim 2.3, R3 and R5 look like −2α2,0R′ and x1R′ respectively for some ROF R′.
So, x2(R5(x1 = x1 + α2,0x2)) +

1
2 x2

2R6 = x1x2R′. As R5 does not contain x2, x2R′ is an ROF
giving f ∈ ∑O(n) ROF0(n).

8.4 PIT for the border of sum of 2 depth-4 ROFs
For ease of exposition, we first prove Theorem 1.12 for the special case of the border of sum
of 2 depth-4 ROFs. The proof of the theorem follows in a straightforward way from the
following lemma.

Lemma 8.3 Let G : Fm → Fn be a hitting set generator for n-variate multilinear ROABPs as well
as ∑2 ROF. Then G + GSV

3 is a hitting set generator for the border of sums of 2 additive constant
free, depth-4 ROFs provided that |F| > n2d, where d is the degree of G + GSV

3 .1

Proof: Let f + O(ϵ) = R1 + R2, where R1, R2 are additive constant free depth-4 ROFs over
F(ϵ) and f ̸≡ 0 ∈ F[x]. From Observation 2.2 it is sufficient to show that G + GSV

2 is a hitting
set generator for ∂ f

∂xi
for some i ∈ [n]. If f ∈ F, there is nothing to prove. Else, there exists

an i ∈ [n] such that ∂ f
∂xi
̸≡ 0. Observe that ∂R1

∂xi
and ∂R2

∂xi
are in ROF0 over F(ϵ) with depth 3

and a product gate at top. So by re-defining f = ∂ f
∂xi

, R1 = ∂R1
∂xi

, R2 = ∂R2
∂xi

, we can reduce the
lemma to the following: Let R1 = p1 · · · pk and R2 = q1 · · · qℓ, then G + GSV

2 is a hitting set
generator for f . For all i ∈ [k], let pi = αi,1mi,1 + · · ·+ αi,ki mi,ki where mi,j are monomials.

1For a polynomial map G = (g1, . . . , gn), deg(G) := max {deg(gi) : i ∈ [n]}.
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Similarly, for all i ∈ [ℓ], let qi = βi,1µi,1 + · · ·+ βi,ℓi µi,ℓi where µi,j are monomials. We want
to show that f (G + GSV

2 ) ≡ 0 implies that f ≡ 0. We first show that f (G + GSV
2 ) ≡ 0, then{

mi,j
}

i,j =
{

µi,j
}

i,j.

Claim 8.2 If f (G + GSV
2 ) ≡ 0, then

{
mi,j : i ∈ [k], j ∈ ki

}
=
{

µi,j : i ∈ [ℓ], j ∈ ℓi
}

.

Proof: The proof is by induction on the number of variables n in f . If n = 1, then R1 = αx1

and R2 = βx1 and the claim is clearly true. So assume, by the way of induction, that the
claim is true for all f ′ in the border of sum of 2 additive constant free depth-4 ROFs with at
most n− 1 variables. If

{
mi,j : i ∈ [k], j ∈ ki

}
̸=
{

µi,j : i ∈ [ℓ], j ∈ ℓi
}

, then either there exists
x such that x is present in only one of the R1 or R2, or there exist x, y such that x, y ∈ mi,j

but x ∈ µi′,j′ and µi′,j′′ , where j′ ̸= j′′ or there exist x, y such that x, y ∈ mi,j but x ∈ µi′,j′ and
µi′′,j′′ , where i′ ̸= i′′. We now analyse these three cases in detail.

Case 1. There exists x such that x is present in only one of the R1 and R2; without loss of
generality, x ∈ m1,1. Then,

∂ f
∂x

+ O(ϵ) = α1,1
m1,1

x
p2 · · · pk.

The right hand side must be in F[ϵ][x]. Thus ∂ f
∂x ∈ ROF0; from Claim 2.3 it is in ROF0.

Observation 2.2 and f (G + GSV
2 ) ≡ 0 imply that ∂ f

∂x (G) ≡ 0. As G is a hitting set generator
for Σ2ROF, this means that ∂ f

∂x ≡ 0 and

α1,1m1,1p2 · · · pk = O(ϵ),

So f + O(ϵ) = p′1 · p2 · · · pk + q1 · · · qℓ, where p′1 = αi,2mi,2 + · · ·+ αi,ki mi,ki . This has fewer
than n variables. So the claim follows from the induction hypothesis.1

Case 2. There exist x, y such that x, y ∈ mi,j but x ∈ µi′,j′ and µi′,j′′ , where j′ ̸= j′′. Without
loss of generality i = 1, j = 1, i′ = 1, j′ = 1, j′′ = 2. Then,

∂ f
∂x

(y = 0) + O(ϵ) = β1,1
µ1,1

x
· q2 · · · qℓ

∂ f
∂y

(x = 0) + O(ϵ) = β1,2
µ1,2

y
· q2 · · · qℓ

1By removing m1,1 from
{

mi,j
}

i,j since f has an expression that does not contain m1,1.
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∂2 f
∂x∂y

+ O(ϵ) = α1,1
m1,1

xy
· p2 · · · pk.

The right hand sides of all the three expressions are in F[ϵ][x]. So ∂ f
∂x (y = 0), ∂ f

∂y (x =

0), ∂2 f
∂x∂y ∈ ROF0. Thus from Claim 2.3, they are in ROF0. Also, from Observations 2.2 and

2.3, f (G + GSV
2 ) ≡ 0 implies that

(
∂ f
∂x (y = 0)

)
(G) ≡

(
∂ f
∂y (x = 0)

)
(G) ≡

(
∂2 f

∂x∂y

)
(G) ≡ 0.

However, as G is a hitting set generator for Σ2ROF, this means that

β1,1µ1,1 · q2 · · · qℓ = O(ϵ)

β1,2µ1,2 · q2 · · · qℓ = O(ϵ)

α1,1m1,1 · p2 · · · pk = O(ϵ).

Hence, f + O(ϵ) = p′1p2 · · · pk + q′1q2 · · · qℓ, where p′1 = αi,2mi,2 + · · · + αi,ki mi,ki and q′1 =

βi,3µi,3 + · · · + αi,ℓi µi,ℓi . Thus f has fewer than n variables and the claim follows from the
induction hypothesis.

Case 3. There exist x, y such that x, y ∈ mi,j but x ∈ µi′,j′ and y ∈ µi′′,j′′ , where i′ ̸= i′′. Without
loss of generality, i = 1, j = 1, i′ = 1, j′ = 1, and i′′ = 2, j′′ = 1. Then, for q′1 := q1 − β1,1µ1,1

and q′2 := q2 − β2,1µ2,1,

∂ f
∂x

(y = 0) + O(ϵ) = β1,1 ·
µ1,1

x
· q′2 · q3 · · · qℓ

∂ f
∂y

(x = 0) + O(ϵ) = q′1 · β2,1 ·
µ2,1

y
· q3 · · · qℓ.

The right hand sides of both of the above expressions are in F[ϵ][x]. Hence ∂ f
∂x (y = 0), ∂ f

∂y (x =

0) ∈ ROF0. Thus from Claim 2.3 they are in ROF0. Observations 2.2 and 2.3 give that
f (G + GSV

2 ) ≡ 0 implies that
(

∂ f
∂x (y = 0)

)
(G) ≡

(
∂ f
∂y (x = 0)

)
(G) ≡ 0. As G is a hitting set

generator for Σ2ROF, this means that

β1,1 · µ1,1 · q′2 · q3 · · · qℓ = O(ϵ)

q′1 · β2,1 · µ2,1 · q3 · · · qℓ = O(ϵ).

It is not difficult to see that this means that at least one of β1,1µ1,1 · β2,1µ2,1 · q3 · · · qℓ and
q′1 · q′2 · q3 · · · qℓ is also O(ϵ).
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Case 3.1. β1,1µ1,1 · β2,1µ2,1 · q3 · · · qℓ = O(ϵ). Then

∂2 f
∂x∂y

+ O(ϵ) = α1,1
m1,1

x, y
p2 · · · pk.

The right hand side is in F[ϵ][x]. Thus ∂2 f
∂x∂y ∈ ROF0 and from Claim 2.3 it is in ROF0.

Observation 2.2 gives that f (G + GSV
2 ) ≡ 0 implies that

(
∂2 f

∂x∂y

)
(G) ≡ 0. As G is a hitting set

generator for Σ2ROF, this means that

α1,1m1,1p2 · · · pk = O(ϵ),

So f + O(ϵ) = p′1 · p2 · · · pk + q′1 · q′2 · q3 · · · qℓ, where p′1,1 = p1,1 − α1,1m1,1. This has fewer
than n variables. So the claim follows from the induction hypothesis.

Case 3.2. q′1q′2 · q3 · · · qℓ = O(ϵ). Then for p′1 = p1 − α1,1m1,1

f (x = 0, y = 0) + O(ϵ) = p′1p2 · · · pk.

The right hand side is in F[ϵ][x]. So f (x = 0, y = 0) ∈ ROF0 and from Claim 2.3 it is in
ROF0. Observation 2.3 gives that f (G + GSV

2 ) ≡ 0 implies that f (x = 0, y = 0) ≡ 0. As G is
a hitting set generator for Σ2ROF, this means that

p′1p2 · · · pk = O(ϵ).

So f + O(ϵ) = α1,1m1,1 · p2 · · · pk + β1,1µ1,1 · β1,2µ2,1 · q3 · · · qℓ. Note that variables in var(q′1)
and var(q′2) (both of which cannot be empty simultaneously) are not present in the second
summand. Thus, f is in Case 1 and the claim follows because it holds in Case 1. 2

We now need to show that when
{

mi,j : i ∈ [k], j ∈ ki
}

=
{

µi,j : i ∈ [ℓ], j ∈ ℓi
}

, f (G +

GSV
2 ) ≡ 0 implies f ≡ 0. We start by proving the following claim.

Claim 8.3 k = ℓ and pi = γiqi, where γi ̸= 0 ∈ F[ϵ] for all i ∈ [k].

Proof: By induction on n the number of variables in f . If n = 1, then f +O(ϵ) = αx1 + βx2

and the claim is true. So suppose that it is true for all f ′ in the border of sum of 2 additive
constant free depth-4 ROFs with at most n− 1 variables.

Without loss of generality for all i ∈ [k], val(αi,1) ≤ val(αi,j) for all j ∈ [ki] and for all i ∈
[m], val(βi,1) ≤ val(βi,j) for all j ∈ [ℓi]. Also, without loss of generality, m1,1 = µ1,j for some
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j ∈ [ℓ1]. Suppose that some µ1,j′ is not in p1; without loss of generality µ1,j′ = m2,j′′ . Then
observe that α1,1m1,1 · α2,j′′m2,j′′ · p3 · · · pk ∈ F[ϵ][x]. But this means that val(α1,1)+ val(α2,j′′)+

val(p3 · · · pk) ≥ 0. As val(α1,1) ≤ val(α1,j) for all j ∈ [k1], this means val(p1) + val(α2,j′′) +

val(p3 · · · pk) ≥ 0. So, α2,j′′m2,j′′ p1 · p3 · · · pk ∈ F[ϵ][x]. But then so is β1,j′µ1,j′q2 · · · qℓ. Thus(
α2,j′′m2,j′′ p1 · p3 · · · pk + β1,j′µ1,j′q2 · · · qℓ

)
(ϵ = 0)

is in ∑2 ROF0. Thus for all x ∈ µ1,j′ = m2,j′′ ,
∂ f
∂x + O(ϵ) ∈ ∑2 ROF. From Observation 2.2,

f (G + GSV
2 ) ≡ 0 implies that

α2,j′′m2,j′′ p1 · p3 · · · pk + β1,j′µ1,j′q2 · · · qℓ = O(ϵ)

Thus, f + O(ϵ) = p1 · p′2 · p3 · · · pk + q′1 · q2 · · · qℓ, where p′2 = p2 − α2,j′′m2,j′′ and q′2 =

q2 − β1,j′µ1,j′ . So f has fewer than n variables and the claim follows from the induction
hypothesis. 2

Now for all i ∈ [k], it is easy to see that pi and qi have multilinear ROABPs with the
same variable order over F(ϵ). Multiplying all of these ROABPs together we get multilinear
ROABPs for R1 and R2 with the same variable order. Hence f ∈ ROABP. Claim 2.2 implies
that f ∈ ROABP. As G is a hitting set generator for ROABPs, f (G + GSV

2 ) ≡ 0 along with
the fact that GSV

2 contains 0 in its image implies that f ≡ 0. 2

Proof of Theorem 1.12, the depth-4 case

Let f ̸≡ 0 be in the border of sums of 2 additive constant free, depth-4 ROFs. Then from
Lemma 8.3, we have f (G + GSV

3 ) ̸≡ 0. From Theorem 2.1 G is a polynomial map in O(log n)
variables and of degree poly(n). GSV

3 is a polynomial in 6 variables and of degree O(n).
Hence, G + GSV

3 is a polynomial map in O(log n) variables and of degree poly(n). Thus,
there is a hitting set for f that can be computed in time nO(log n).

8.5 PIT for the border of sum of 2 depth-5 ROFs
In this section, we prove Theorem 1.12. The proof of the theorem follows in a straightforward
manner from the following lemma.

Lemma 8.4 Let G : Fm → Fn be a hitting set generator for n-variate multilinear ROABPs as well
as ∑2 ROF. Then G + GSV

5 is a hitting set generator for the border of sums of 2 homogeneous depth-5
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ROFs provided that |F| > n2d.

Proof: Let f + O(ϵ) = R1 + R2, where R1, R2 are homogeneous depth-5 ROFs over F(ϵ)

and f ̸≡ 0 ∈ F[x]. Similarly to the proof of Lemma 8.3, it suffices to show that G + GSV
4

is a hitting set generator when R1 and R2 are depth 4 ROFs with × gate at the top. Let
R1 = p1 · · · pr and R2 = q1 · · · qs, where for all i ∈ [r], pi = ∑j∈[ri]

ℓi,j,1 · · · ℓi,j,di and for all
i ∈ [s], qi = ∑j∈[si]

ℓ′i,j,1 · · · ℓ′i,j,ei
.

Claim 8.4 If f (G + GSV
4 ) ≡ 0, then for all i, j, k, there exist i′, j′, k′ such that ℓi,j,k = αi,j,kℓ

′
i′,j′,k′ for

some αi,j,k ̸= 0 ∈ F(ϵ).

Proof: Let R1, R2 be as above. We first argue that if x is present in R1, then it must also
be present in R2 and vice versa. Suppose not; without loss of generality x is in R1 but not
in R2. Then ∂ f

∂x + O(ϵ) = ∂R1
∂x . Thus f ∈ ROF0

1 = ROF0. ∂ f
∂x (G + GSV

3 ) ≡ 0, for otherwise
Observation 2.2 would imply that f (G+GSV

4 ) ̸≡ 0. As G is a hitting set generator for ∑2 ROF
and GSV

3 has 0 in its image, this means that ∂ f
∂x ≡ 0 and thus x can be removed from R1.

We now show how to ensure that for all i, j, k a multiple of ℓi,j,k appears in some linear
form in R2. Then repeating this same argument but for showing that a multiple of ℓ′i′,j′,k′ ap-
pears in some linear form of R1 for all i′, j′, k′ would prove the claim. For ease of exposition,
fix i = j = k = 1. Let x be the variable in ℓ1,1,1 whose coefficient has the smallest valuation
among all the coefficients in ℓ1,1,1 and without loss of generality x is in ℓ′1,1,1. Let the coef-
ficients of x in both these linear forms be α and α′ respectively. Let y be any other variable
in ℓ1,1,1 and its coefficient be β. We will now show how to ensure that α′x + α′

α · βy occurs in
ℓ′1,1,1. Repeating this argument for all variables in ℓ1,1,1 would ensure that a multiple of ℓ1,1,1

is present in ℓ′1,1,1. There are two cases.

Case 2. fca(x, y) in R2 is a + gate. Define f ′ := f
(

x = x− β
α (ϵ = 0)y

)
. This case has two

sub-cases.

Case 2.1. y ∈ ℓ′1,1,1. Let α′x + β′y be present in ℓ′1,1,1. Observe that f ′ + O(ϵ) = R′1 + R′2,
where R′1 is obtained from R1 by replacing αx + βy in ℓ1,1,1 by αx and replacing α′x + β′y
in R′2 by α′x + γy, where γ = β′ − α′ · β

α . This is so because f ′ = f
(

x = x− β
α y + O(ϵ)

)
=

f
(

x = x− β
α y
)
+ O(ϵ) = R′1 + R′2. From Observation 2.3, f ′(G + GSV

3 ) ≡ 0. Now, as only
R′2 contains y,

∂ f ′

∂y
+ O(ϵ) = γ ·

e1

∏
k=2

ℓ′1,1,k · q2 · · · qℓ.

1Note that every homogeneous ROF is also an additive constant free ROF.
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Thus ∂ f ′
∂y ∈ ROF0 = ROF0. Observation 2.2 implies that ∂ f ′

∂y (G + G
SV
2 ) ≡ 0. As G is a hitting

set generator for ROF, this means that ∂ f ′
∂y ≡ 0. Thus γ ·∏e1

k=2 ℓ
′
1,1,k · q2 · · · qℓ = O(ϵ) and

f ′ + O(ϵ) = R′1 + R′′2 , where R′′2 is obtained from R2 by replacing α′x + β′y by just α′x. As
f = f ′

(
x = x + β

α y
)
+ O(ϵ) this means that f + O(ϵ) = R1 + R′′′2 where R′′′2 is obtained

from R2 by replacing β′y with α′
α · β.

Case 2.2. y /∈ ℓ′1,1,1. Without loss of generality y ∈ ℓ′1,2,1. Observe that f ′ + O(ϵ) = R′1 + R′2,
where R′i := Ri(x = x− β

α y). Now, if the coefficient of y in ℓ′1,2,1 is β′, then

∂ f ′

∂y
+ O(ϵ) = −α′ · β

α

e1

∏
k=2

ℓ′1,1,k · q2 · · · qs + β′
e1

∏
k=2

ℓ′1,2,k · q2 · · · qs.

Observe that there can be no cancellation between the two summands. This is so because
e1 ≥ 2. Thus, every monomial of the first summand contains a variable in var(ℓ′1,2,k) which
cannot be present in the other summand (and vice versa). So, both summands are in F[ϵ]

and ∂ f ′
∂y ∈ ∑2 ROF0. As in Case 2.1, f ′(G + GSV

3 ) ≡ 0 and thus from Observation 2.2,
∂ f ′
∂y
(
G + GSV

2
)
≡ 0. Since G is a hitting set generator for ∑2 ROF, this means that ∂ f ′

∂y ≡ 0.
Hence f ′ does not have y and f ′ + O(ϵ) = R′1 + R′′2 where R′′2 = R′2(y = 0) = R2(y = 0).
Hence f +O(ϵ) = R1 + R′′′2 , where R′′′2 = R′′2 (x = x + β

α′ y) is an ROF which can be obtained
by first setting y = 0 in R2 and then replacing α′x by α′x + α′

α · βy.

Case 3. fca(x, y) in R2 is a × gate. Define f ′ := f
(

x = x− β
α (ϵ = 0)y

)
. There are two sub-

cases.

Case 3.1. There exists k ∈ [e1] such that y ∈ ℓ′1,1,k. Without loss of generality, k = 2. Observe

that f ′ + O(ϵ) = R′1 + R′2, where R′i = Ri(x = x− β
α y). Now, if the coefficient of y in ℓ′1,1,2 is

β′, then

∂2 f ′

∂y2 + O(ϵ) = −2 · α′ · β

α
· β′

e1

∏
k=3

ℓ′1,1,k · q2 · · · qs

∂ f ′

∂y
(y = 0) + O(ϵ) = −α′ · β

α
· ℓ′1,1,2(y = 0) ·

e1

∏
k=3

ℓ′1,1,k · q2 · · · qs + ℓ′1,1,1 · β′
e1

∏
k=2

ℓ′1,2,k · q2 · · · qs.

Thus, ∂2 f ′

∂y2 ∈ ROF0 = ROF0. As in Case 2.1, f ′(G + GSV
3 ) ≡ 0 and thus from Observation

2.2, ∂2 f ′

∂y2 (G + G2) ≡ 0. Since G is a hitting set generator for ∑2 ROF, this means that ∂2 f ′

∂y2 ≡ 0.
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Also, unless ℓ′1,1,2(y = 0) ≡ 0, every monomial in −α′ · β
α · ℓ′1,1,2(y = 0) ·∏e1

k=3 ℓ
′
1,1,k · q2 · · · qs

must contain a variable in var
(
ℓ′1,1,2

)
\ {y} which cannot be present in the other sum-

mand. Hence there can be no cancellations between the two summands that make up
∂ f ′
∂y (y = 0) + O(ϵ) and both of them must be in F[ϵ]. Thus ∂ f ′

∂y (y = 0) ∈ ∑2 ROF0. Ob-

servations 2.2 and 2.3 imply that
(

∂ f ′
∂y (y = 0)

)
(G + GSV

1 ) ≡ 0. Since G is a hitting set gen-

erator for ∑2 ROF, this means that ∂ f ′
∂y (y = 0) ≡ 0. As ∂2 f ′

∂y2 is also 0 and char(F) ̸= 2, f ′

does not contain y and f ′ + O(ϵ) = R′1 + R′′2 where R′′2 = R′2(y = 0) = R2(y = 0). Hence
f +O(ϵ) = R1 + R′′′2 , where R′′′2 = R′′2 (x = x + β

α′ y) is an ROF which can be obtained by first
setting y = 0 in R2 and then replacing α′x by α′x + α′

α · βy.

Case 3.2. There exists i ∈ [s], j ∈ [si], k ∈ [ei] such that y ∈ ℓ′i,j,k. Without loss of generality,

i = 2, j = 1, k = 1. Observe that f ′ + O(ϵ) = R′1 + R′2, where R′i = Ri(x = x− β
α y). Now, if

the coefficient of y in ℓ′2,1,1 is β′, then

∂2 f ′

∂y2 + O(ϵ) = 2 ·
(
−α′ · β

α

e1

∏
k=2

ℓ′1,1,k

)
·
(

β′
e2

∏
k=2

ℓ′2,1,k

)
· q3 · · · qs

∂ f ′

∂y
(y = 0) + O(ϵ) =

(
−α′ · β

α

e1

∏
k=2

ℓ′1,1,k

)
· q2(y = 0) · q3 · · · qs + q1 ·

(
β′

e2

∏
k=2

ℓ′2,1,k

)
· q3 · · · qs.

Just like in Case 3.1, ∂2 f ′

∂y2 ≡ 0. Also, unless q2(y = 0) ≡ 0, every monomial in
(
−α′ · β

α ∏e1
k=2 ℓ

′
1,1,k

)
·

q2(y = 0) · q3 · · · qs must contain a variable in var (q2) \ {y} which cannot be present in the
other summand. Hence there can be no cancellations between the two summands that make
up ∂ f ′

∂y (y = 0) + O(ϵ) and both of them must be in F[ϵ]. Thus ∂ f ′
∂y (y = 0) ∈ ∑2 ROF0. Obser-

vations 2.2 and 2.3 imply that
(

∂ f ′
∂y (y = 0)

)
(G + GSV

1 ) ≡ 0. Since G is a hitting set generator

for ∑2 ROF, this means that ∂ f ′
∂y (y = 0) ≡ 0. As ∂2 f ′

∂y2 is also 0 and char(F) ̸= 2, f ′ does not
contain y and we can again argue as in Cases 2.2 and 3.1 that f + O(ϵ) = R1 + R′′′2 , where
R′′′2 = R′′2 (x = x + β

α′ y) is an ROF which can be obtained by first setting y = 0 in R2 and then
replacing α′x by α′x + α′

α · βy. 2

Notice that because of the above claim, if f (G + GSV
4 ) ≡ 0, then f is in the orbit of the

border of a sum of two homogeneous ROFs of depth 4. So we can expect a claim analogous
to Claim 8.2 to hold for f . We now prove that this is indeed the case.

Claim 8.5 If f (G+GSV
4 ) ≡ 0, then

{
∏k∈[di]

ℓi,j,k : i ∈ [r], j ∈ ri

}
=
{

αi,j ∏k∈[ei]
ℓ′i,j,k : i ∈ [s], j ∈ si

}
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for some αi,j ̸= 0 ∈ F(ϵ).

Proof: The proof is similar to that of Claim 8.2. In the proof of that claim, we analyse
various cases involving two variables x, y. In our case, we shall have to analyse the same
cases, but with x and y replaced by ℓi,j,k and ℓ′i′,j′,k′ . Let ℓi,j,k = αx + h and ℓ′i′,j′,k′ = βy + h′,
where h, h′ are linear forms and x, y are chosen such that val(α) ≤ val(h) and val(β) ≤
val(h′). Define f ′ := f

(
x = x− h

α (ϵ = 0), y = y− h′
β (ϵ = 0)

)
. Notice that f ′ + O(ϵ) :=

f
(

x = x− h
α , y = y− h′

β

)
. This can be obtained from f by replacing ℓi,j,k by αx and ℓ′i′,j′,k′

by βy. Due to Claim 8.4, f ′ is also in the border of sum of two homogeneous ROFs of depth
5. Observation 2.3 implies that f (G + GSV

2 ) ≡ 0. It can be verified that the argument in the
proof of Claim 8.2 would go through even if mi,ji,j and µi,ji,j are products of linear forms in-
stead of being monomials; it only requires that we take derivatives with respect to variables
and set variables to 0. So, the claim can be proved by arguing analogously. 2

We now prove a claim analogous to Claim 8.3.

Claim 8.6 s = r and pi = qi for all i ∈ [k].

Proof: Again the proof is same as the proof of Claim 8.3; all we need to do is observe that
that proof does not use the fact that

{
mi,j
}

i,j and
{

µi,j
}

i,j are monomials. 2

Much like in the proof of Lemma 8.3, pi and qi have multilinear ROABPs with the same
variable order. Multiplying all of these ROABPs together we get multilinear ROABPs for
R1 and R2 with the same variable order. Hence f ∈ ROABP. Claim 2.2 implies that
f ∈ ROABP. As G is a hitting set generator for ROABPs, f (G + GSV

5 ) ≡ 0 along with
the fact that GSV

5 contains 0 in its image implies that f ≡ 0. 2

Proof of Theorem 1.12

Let f ̸≡ 0 be in the border of sums of 2 homogeneous depth-5 ROFs. Then from Lemma 8.4,
we have f (G + GSV

5 ) ̸≡ 0. From Theorem 2.1, G is a polynomial map in O(log n) variables
and of degree poly(n). GSV

5 is a polynomial in 10 variables and of degree poly(n). Hence,
G + GSV

5 is a polynomial map in O(log n) variables and of degree O(n). Thus, there is a
hitting set for f that can be computed in time nO(log n).

238



Chapter 9

Directions for future work

In this thesis, we described some results about hitting sets for orbits of various circuit classes,
gave an equivalence test for ROFs, de-bordered the border of sums of two ROFs, and gave
an alternative, and in our opinion, a more direct proof of a super-polynomial lower bound
for constant depth arithmetic circuits. We now mention some directions of future work to
extend these results.

Hitting sets for orbits of circuit classes

In Chapters 3 and 4, we have studied the hitting set problem for the orbits of several impor-
tant polynomial families and circuit classes that are not closed under affine projections. This
line of research is both natural and interesting as affine projections of some of these circuit
classes and polynomial families capture much larger circuit classes (in some cases, almost
the entire class of VP circuits). The orbit of a polynomial f is a natural and “dense” subset
of affine projections of f that, in turn, resides in the orbit closure of f . We have shown ef-
ficient hitting set constructions for the orbits of several well-studied circuit classes. Despite
the progress made here, there are several natural questions that, if resolved, will strengthen
and complete the set of results presented in this work. We leave these for future work:

1. Removing the low individual degree restriction. Theorems 1.1 and 1.3 give hitting
sets for orbits of low-individual degree commutative ROABPs and constant width
multilinear ROABPs. While the low individual degree restriction is natural as it sub-
sumes the multilinear case, it would be ideal if we get rid of this limitation of our
results. A subsequent work by Bhargava and Ghosh [BG21] has made progress in this
direction in the small width setting. However, the problem of constructing efficient
hitting-sets for the orbits of general commutative ROABPs remains open.
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2. Lower bound and hitting set for the orbits of ROABPs. We would also like to remove
the requirements of commutativity and constant-width from Theorems 1.1 and 1.3 on
hitting sets for the orbits of ROABPs. It is worth noting that an explicit hitting set
for the orbits of ROABPs implies a lower bound for the same model computing some
explicit polynomial due to a result by Agrawal [Agr05]. To our knowledge, no explicit
lower bound is known for the orbits of ROABPs. Can we prove such a lower bound
first?

3. Hitting sets for the orbits of Det and IMM. The determinant (Det) and the iterated
matrix multiplication (IMM) polynomial families are complete for the class of algebraic
branching programs under p-projections. Can we design efficiently constructible hit-
ting sets for the orbits of Det and IMM? Observe that a hitting set for the orbits of
multilinear ROABPs is a hitting set for orb(IMM). Also, a hitting set for the orbits of the
polynomials computable by the Edmonds’ model is a hitting set for the orbits of both
Det and IMM.

Equivalence test for ROFs

In Chapter 5, we gave the first randomized polynomial-time equivalence test for ROFs (The-
orem 1.6) and use this result to solve PE for orbits of (slightly restricted) ROFs (Theorem
1.7). These results are substantial generalizations of two well-studied problems in algebraic
complexity, namely quadratic form equivalence and reconstruction of ROFs. As PE is graph
isomorphism hard for even cubic forms, it is indeed satisfying to know that PE can be solved
efficiently for an unbounded-depth, unbounded-degree, and unbounded-fanin circuit class
such as orbits of ROFs. Theorem 1.6 also implies efficient learning of random arithmetic
formulas (without any restriction on the underlying tree structure) in the high number of
variables setting. We now note a few future directions that can be pursued:

1. Generalizing our results. An interesting generalization of Theorem 1.6 would be
an equivalence test for power-substituted ROFs and, more generally, for univariate-
substituted ROFs 1. An equivalence test for univariate-substituted ROFs would greatly
generalize the equivalence test for the sums of univariates model studied in [GKP18]
and the reconstruction algorithm for preprocessed ROFs in [SV14]. We believe that our
equivalence test and its analysis can be extended to work for univariate-substituted

1A univariate-substituted ROF is obtained from an ROF by substituting every variable xi by an arbitrary
(and unknown) univariate polynomial gi(xi). Such ROFs were called preprocessed ROFs in [SV14].
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ROFs. To support this belief, let us consider the power-substituted sum-product poly-
nomial SPP := ∑i∈[s] ∏j∈[d] x

ei,j
i,j , where ei,j ∈ N. It turns out that det(HSPP) factorizes

as:

det(HSPP) = (−1)s(d−1) · ∏
i∈[s],j∈[d]

ei,j · ∏
i∈[s]

(ei,1 + . . . + ei,d − 1) · ∏
i∈[s],j∈[d]

x
ei,j·d−2
i,j .

So the equivalence test for SP, described in Section 5.2.1, works (almost as it is) for SPP.

2. Learning orbits of sparse polynomials and ROABPs. Studying the orbit of a circuit
class is a natural first step towards understanding affine projections of the class. Ef-
ficient proper learning algorithms are long known for sparse polynomials [KS01] and
ROABPs [BBB+00, KS06]. Recall that affine projections of these classes capture im-
mensely powerful circuit classes such as depth-3 circuits and ABPs. Like ROFs, can
we design efficient learning algorithms for orbits of sparse polynomials and ROABPs?
[BDS24] have shown that ET for sparse polynomials is NP-hard. Very recently, [BDGT24]
show that the isomorphism testing problem of ROABPs is also NP-hard. In the isomor-
phism testing problem A is a permutation matrix.

3. Learning random formulas. Theorem 1.6 solves the learning problem for random
formulas when the number of variables n is larger than the size s of the underlying
tree of the formula. A more interesting setting of parameters is s = poly(n). Can we
design an efficient learning algorithm for random formulas (of even constant depth) if
s≫ n?

Lower bounds for constant depth arithmetic circuits

Recently, [LST21] made remarkable progress on arithmetic circuit lower bounds by giving
the first super-polynomial lower bound for low-depth formulas. In Chapter 7, we give an
alternative and in our opinion a more direct proof of their result. Unlike [LST21] however,
we are able to bypass the set-multilinearisation step. Since this step incurs a loss of a factor
of dO(d), it is not clear if proving exponential lower bounds for low-depth set-multilinear
formulas would yield exponential lower bounds for low-depth homogeneous formulas. A
direct approach does not seem to incur an inherent exponential loss. So, it might be possi-
ble to prove stronger lower bounds for low-depth homogeneous formulas or other related
models using this approach or an adaptation of it. We list some open problems below:

1. Exponential lower bounds. Prove exponential lower bounds for low-depth homoge-
neous arithmetic formulas. Prove exponential lower bounds for low-depth, multi-r-ic
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formulas. A formula is said to be multi-r-ic, if the formal degree of every gate with
respect to every variable is at most r [KS17a, KST16b].

2. Learning low depth circuits. Our work also raises the prospect of learning low-depth
homogeneous formulas given black-box access using the ‘learning from lower bounds’
paradigm proposed in [GKS20, KS19a]. Obtain learning algorithms for random low-
depth homogeneous formulas.

3. Exploiting the structure of the space of partials using an ideal. To upper bound SP
or APP of a homogeneous formula C, we first show in Section 7.4 that the space of
partial derivatives of C has some structure and then exploit this structure using shifts
or affine projections. There might be a better way to exploit this structure, say by going
modulo an appropriately chosen ideal or using random restrictions along with shifts
as done in [KLSS17, KS17b]. Exploring this possibility is also an interesting direction
for future work.

Border of sums of ROFs

In Chapter 8, we showed that the border of the sum of two additive constant free n-variate
ROFs is contained in the sum of O(n) ROFs. We also gave a quasi-polynomial PIT for the
border of the sum of two homogeneous depth 5 ROFs. A few natural directions to extend
the results presented in Chapter 8 are as follows:

1. Removing the additive constant free restriction. Can we remove the requirement
that the ROFs be additive constant free from Theorem 1.11 and de-border the border
of sums of two ROFs?

2. De-bordering the border of sums of constantly many ROFs. Can we extend Theorem
1.11 to the sum of constantly many ROFs?

3. PIT for the border of sums of two ROFs. We are only able to give a PIT algorithm for
the border of sums of two homogeneous, depth 5 ROFs. Can we extend Theorem 1.12
to the border of sums of two ROFs?
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