
Equivalence test for the trace iterated matrix

multiplication polynomial

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE

Faculty Of Engineering

BY

Janaky Murthy

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

December, 2019

Declaration of Originality
I, Janaky Murthy, with SR No. 04-04-00-10-22-17-1-14923 hereby declare that the material pre-

sented in the thesis titled

Equivalence test for the trace iterated matrix multiplication polynomial

represents original work carried out by me in the Department of Computer Science and Au-

tomation at Indian Institute of Science during the years 2017-19.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements are

true to the best of my knowledge, and I have carried out due diligence to ensure the originality of

the report.

Advisor Name: Advisor Signature

1

© Janaky Murthy

December, 2019

All rights reserved

DEDICATED TO

amma, appa, sankar and meenu

for showering me with so much love...

Acknowledgements

First of all, I would like to thank the universe for whatever I have experienced till now. I am very

grateful to my advisor Chandan Saha for his support, guidance and patience. This thesis would not

have been possible without him. I really admire his clear, structured way of thinking. I am also

inspired by his excellent teaching and presentation skills. I also want to thank Vineet Nair for being

a helpful and patient mentor. He guided me in picking up the required background subjects and also

suggested valuable improvements to the thesis. I would also like to thank him for his contribution to

Chapter 6 of the thesis. I want to thank all my lab mates - Vineet, Nikhil, Arpita, Anuj and Bhargav

for their wonderful company. I thank all the faculty members at IISc who taught me various courses.

The courses helped in strengthening my basics in the relevant areas.

I want to thank my Amma and Appa for everything I have. They have always encouraged me, right

from my childhood to follow my heart and be responsible. I also want to thank my brother Sankar

and my sister Meenu for being a bundle of joy in my life (sarcasm intended). Without naming any-

one, I am also thankful to all my friends at IISc and elsewhere who have always stood by me. I

apologize to all those friends who expected a special mention of their name :P I have you all in my

heart!

My M.Tech Research Program at IISc was a great learning experience for me - both academically

and about my own self. I made many mistakes on the way and I have tried to learn from them. Our

campus is extremely beautiful and is the �rst place where I had to be on my own away from my

family. Hence I have a special love for this place. I am sure that the memories and the experience

will stay with me forever :)

i

Abstract

An m-variate polynomial f is a�ne equivalent to an n-variate polynomial g if m ≥ n and there is

a rank n matrix A ∈ F
n×m and b ∈ F

n such that f (x) = g(Ax + b). Given blackbox access to f

and g (i.e membership query access) the a�ne equivalence test problem is to determine whether f

is a�ne equivalent to g , and if yes then output a rank n matrix A ∈ F n×m and b ∈ F n such that

f (x) = g(Ax+b). This problem is at least as hard as graph isomorphism and algebra isomorphism

even when the coe�cients of f and g are given explicitly (Agarwal and Saxena, STACS 2006), and

has been studied in literature by �xing g to be some interesting family of polynomials. In this work,

we �x g to be the trace of the product of d, w ×w symbolic matrices X1, . . . ,Xd . We call this poly-

nomial Tr-IMMw,d . Kayal, Nair, Saha and Tavenas (CCC 2017) gave an e�cient (i.e (mwd)O(1) time)

randomized algorithm for the a�ne equivalence test of the iterated matrix multiplication polyno-

mial IMMw,d , which is the (1,1)-th entry of the product of d w×w symbolic matrices. Although the

de�nitions of Tr-IMMw,d and IMMw,d are closely related and their circuit complexities are very simi-

lar, it is not clear whether an e�cient a�ne equivalence test algorithm for IMMw,d implies the same

for Tr-IMMw,d . In this thesis, we take a step towards showing that equivalence test for Tr-IMMw,d

and IMMw,d have di�erent complexity. We show that equivalence test for Tr-IMMw,d reduces in

randomized polynomial time to equivalence test for the determinant (DET), under mild conditions

on the underlying �eld. If the converse is also true then equivalence tests for Tr-IMMw,d and DET

are randomized polynomial time equivalent. It would then follow from the work of Gupta, Garg,

Kayal and Saha (ICALP 2019) that equivalence test for Tr-IMMw,d over Q is at least as hard as Integer

Factoring. This would then be in sharp contrast with the complexity of equivalence test for IMMw,d

over Q which can be solved e�ciently in randomized polynomial time (by Kayal, Nair, Saha and

Tavenas (CCC 2017)).

ii

Abstract

Recent Update: Soon after the thesis is written, we (together with Vineet Nair) have succeeded

in showing the converse direction. So, the above conclusion is indeed true!

iii

Contents

Acknowledgements i

Abstract ii

Contents iv

List of Figures vi

1 Introduction 1

1.1 Motivation . 5

1.2 Related Work . 7

1.3 Problem Statement . 7

1.4 Results . 9

1.4.1 Comparison with [18] . 12

1.5 Organization of the thesis . 12

2 Preliminaries 14

2.1 Linear Algebra . 14

2.2 The Tr-IMMw,d polynomial . 16

2.3 Algebraic Models of Computation . 18

2.3.1 Algebraic Branching Programs . 19

2.4 Lie Algebra . 20

2.5 Technical Lemmas and Facts . 22

iv

CONTENTS

2.6 Algorthmic Preliminaries . 27

3 The Lie Algebra of Tr-IMM polynomial 29

3.1 The structure of Wb . 33

3.2 The structure of Wd . 37

3.3 Characteristic polynomial of a random element in gTr-IMM 39

4 Irreducible Invariant Subspaces of gf 41

4.1 Irreducible invariant subspaces of gTr-IMM . 41

4.2 Irreducible Invariant Subspaces of gf . 44

4.2.1 Computing a basis for the irreducible invariant subspaces of gf 45

5 Computing the layer spaces of f and reduction to Block Equivalence testing 50

5.1 Reordering the layer spaces . 53

5.2 Reduction to Block Equivalence testing . 56

6 Block Equivalence Testing 58

6.1 An e�cient algorithm for Block Equivalence testing 60

6.2 Additional Claims and Observations . 68

7 Characterization by Symmetry 71

7.1 Generating subgroups of GTr-IMM . 71

7.2 Tr-IMMw,d is characterized by its group of symmetries 75

Bibliography 78

v

List of Figures

1.1 Arithmetic Circuit computing x21 +5x2 . 2

1.2 High level approach of Algorithm 1 . 10

2.1 The Graph GTr-IMM . 17

2.2 Block-Diagonal Matrix . 22

3.1 The Graph G′Tr-IMM
. 32

3.2 Rolling GTr-IMM into a cylinder . 33

3.3 Monomial broken at k-th interface. 34

4.1 Structure of Lk 1 . 43

4.2 A random matrix R ∈ gTr-IMM . 46

4.3 A random matrix R ∈ gTr-IMM . 48

5.1 The matrices Ek .E,E−1 . 51

5.2 The matrix V −1 = E−1A . 52

vi

Chapter 1

Introduction

Finding e�cient algorithms for problems with an algebraic �avour arises often in a wide variety of

theoretical and practical problems. Examples of such algorithms includes the randomized algorithm

for perfect matching [22, 28, 9], Discrete Fourier Transforms [7], matrix multiplication [27] etc. De-

veloping such algorithms is the central objective of computational algebra which is a subarea of

Algebraic Complexity Theory (ACT). These algorithms mostly involve arithmetic operations like
′+′,′×′ and ′÷′ . This motivates us to look at Arithmetic Circuit Complexity which is the other

subarea of ACT. Arithmetic Circuit Complexity seeks to understand the complexity of computing

polynomials using various circuit models like arithmetic circuits, algebraic branching programs or

arithmetic formulas. There are many natural and fundamental structural as well as algorithmic ques-

tions related to polynomials being computed by these circuit models which we elaborate upon below.

A natural model to compute polynomials are Arithmetic Circuits which are algebraic analogues

of boolean circuits. An arithmetic circuit (see De�nition 2.15) takes formal variables as input and

computes a polynomial in these variables using addition and multiplication operations. The size

of the circuit is the total number of operations required by the circuit to compute the polynomial.

Figure 1 depicts an arithmetic circuit computing the polynomial x21 + 5x2. Analogous to analyzing

the size and depth complexity of boolean circuit families computing boolean function families, in

arithmetic circuit complexity we analyze the size and depth complexity of arithmetic circuit fam-

1

x1 5 x2

× ×

+

Figure 1.1: Arithmetic Circuit computing x21 +5x2

ilies computing polynomial families1. In an e�ort to categorize the polynomial families based on

the size of the circuit needed to compute them, Valiant [31] de�ned the classes VP and VNP simi-

lar to the non-uniform P and NP respectively. VP is the class of (low degree) polynomial families

(see De�nition 2.16) that can be computed by polynomial sized arithmetic circuits. The symbolic

determinant polynomial family2 (DETn) and the trace of iterated matrix multiplication polynomial3

(Tr-IMMw,d) is in VP. Loosely speaking, VNP is the class of polynomial families where coe�cient of

any monomial of a given polynomial f in the family is e�ciently computable (see De�nition 2.17

for a rigorous de�nition of VNP). The symbolic permanent polynomial family denoted as PERMm

is in VNP. Although, it is clear that VP is contained in VNP, whether VP ?= VNP is the central open

question of ACT. Valiant conjectured that this is not the case (Valiant’s Conjecture) [32].

An Arithmetic Formula is an arithmetic circuit whose underlying directed acyclic graph is a tree.

The complexity class VF is equal to the set of (low degree) polynomial families that can be computed

by polynomial sized arithmetic formulas. Clearly the class VF is contained in VP. Another important

complexity class is VBP which consists of polynomial families that can be computed by Arithmetic

Branching Programs (ABP) of polynomially bounded size. An Arithmetic Branching Program of

width w and depth d (i.e. of size wd) computes a polynomial that can be written as the (1,1)-th
1A polynomial family {fi}i∈N is a sequence of polynomials
2DETn is the determinant of a n×n symbolic matrix.
3see De�nition 1.3

2

entry of the product of d matrices
∏d
i=1Xi where each Xi is a w×w matrix. The entries of the Xi ’s

are linear polynomials in the variables. The polynomial families DETn,Tr-IMMw,d are in VBP. In

fact these polynomial families are complete for the class VBP. In this regard we de�ne the notion of

projections which are the algebraic counterparts of reductions in the boolean world. A polynomial

f (x) is a projection of a polynomial g(x) if f can be obtained by substituting each variable of g by

a variable of f or a �eld constant. A family of polynomials (fn)n≥1 is a p-projection of (gn)n≥1 if

each fn is a projection of gp(n) and p(n) is polynomially bounded. The PERMm polynomial family

is complete for VNP under p-projections. With this notion of complete polynomials, we can ask the

following question: Is a complete polynomial of one complexity class a p-projection of a complete

polynomial of another complexity class and vice-versa. This helps us to compare two complexity

classes. To separate VP and VNP we need to show that permanent polynomial does not have small

sized arithmetic circuits. In this regard, the following containment is well known: VF ⊆ VBP ⊆ VP ⊆

VNP; separating any two of these classes requires establishing strong lower bounds [32]. As we do

not know whether VBP = VP, we also do not know if DETn is complete for VP under p-projections.

However it can be shown that the DETn polynomial is complete for VP under quasi-polynomial pro-

jections [31].

Given an arbitrary n-variate, degree d polynomial f , Baur and Strassen [4] showed an Ω(n log(d))

lower bound for general circuits and it is an open problem to improve this bound. Lower bound for

restricted circuit classes has also been looked into. [15] showed an Ω(n2) lower bound on formula

size involving n variables. Agarwal and Vinay [3] show that a su�ciently strong exponential lower

bound on depth 4 circuit imply an exponential lower bound on general circuits. Koiran [20] and

Tavenas [29] improved this result and showed that if f can be computed by a general circuit of size

s then there is a depth-4 circuit of size exp(O(
√
d log(s))) that computes f .

Polynomial Identity Testing (PIT) is another interesting problem which asks if all the coe�cients

of a given polynomial f is 0. PIT has applications in various interesting problems such as e�cient

parallel algorithms for perfect matching [22]. If the polynomial f is given explicitly as list of coef-

�cients then the problem is trivial. However, when f is given in some compact representation, say

3

arithmetic circuit or as a blackbox, then it is not clear if one can e�ciently perform identity testing.

Although an e�cient randomized algorithm via Schwartz-Zippel Lemma (see Claim 2.1) is known,

an e�cient deterministic algorithm for both blackbox and whitebox PIT is still open. In an attempt

to understand the hardness of derandomizing PIT, Kabanets and Impagliazzo [14] showed that de-

randomizing blackbox PIT implies certain lower bounds in arithmetic or boolean world (PERMm

has small sized circuits or NEXP * P/Poly). They also showed that a super-polynomial lower bound

for permanent implies an e�cient blackbox PIT for polynomial sized circuits. Hence PIT is closely

related to the lower bound problem. Agrawal and Vinay [3] showed that an e�cient blackbox PIT

for depth 4 circuits implies an e�cient blackbox PIT for general circuits. However we do not know

how to derandomize PIT even for depth 3 circuits.

The Circuit Reconstruction problem asks to e�ciently learn a circuit from a complexity class C

computing a polynomial f , given blackbox access to f . It is the algebraic analogue of learning

boolean circuits using membership queries and is closely related to PIT. In fact it is not always

straightforward to devise an e�cient reconstruction algorithm for a circuit class C even when we

are given an e�cient blackbox PIT for C because of the following reason: A blackbox PIT algorithm

for a circuit class C gives a set of points H known as the hitting set such that for any n variate,

degree d polynomial f ∈ C, there exists a point h ∈H such that f (h) , 0. So assuming C is closed

under subtractions, any two circuits in C will compute the same polynomial f if and only if they

agree on all points in the hitting set. Thus the hitting set gives us a way of distinguishing between

two circuits evaluating di�erent polynomials. However it is a non-trivial problem to reconstruct a

circuit computing f even when we are given its values on hitting set.

In this thesis, we look at another important problem called Polynomial Equivalence Testing. Two

n-variate degree d polynomials f ,g are said to be equivalent if there is an invertible n×n matrix A

such that f (x) = g(Ax). Given blackbox access to f and g we wish to e�ciently compute an A (if

exists) such that f (x) = g(Ax). Consider the simpler case when the polynomials f and g are given

as list of coe�cients of monomials. Then, a straight forward approach to the equivalence testing

problem is to treat the entries of the matrix A as variables. Then f (x) = g(Ax) gives us a system of

4

polynomial equations in the variables of A. However solving a system of polynomial equations is

known to be NP-hard over C, �nite �elds and is not even known to be decidable over Q. Can we

hope equivalence testing to be easier than solving system of polynomial equations? It turns out that

when f and g are given as list of coe�cients, equivalence testing can not be NP-hard unless PH col-

lapses [30, 25]. While this is a strong evidence that equivalence testing is not NP-hard, we also have

evidences which suggests that it is not in P either. For instance, [2] shows that equivalence testing of

degree 3 homogeneous polynomial is as hard as Graph Isomorphism and F -algebra isomorphism.

In particular, the graph isomorphism problem reduces to testing algebra isomorphism which fur-

ther reduces to equivalence testing of cubic polynomials. A natural way to attack this problem is by

looking at some special cases. For example, let us consider the case when both the polynomials f ,g

have some constant degree d. For d = 2, we have e�cient equivalence testing algorithms over C ,

�nite �elds and it is randomized polynomial time equivalent to integer factoring over Q. However

equivalence testing of f ,g when d = 3 is not even known to be decidable over Q. There is even a

cryptographic encryption scheme that assumes "non-easiness" of equivalence testing of constant de-

gree polynomials [24]. Another special case of this problem is to �x one of the polynomial to belong

to some interersting polynomial family. Many results are known for some well known polynomial

families (like the PERMm,DETn etc...) in this direction which we have elaborated in Section 1.2. In

this thesis, we �x g to be a polynomial coming from Tr-IMMw,d polynomial family (see De�niton 1.3)

and f to be an n-variate, degree d polynomial given as a blackbox. In the upcoming sections, we

will motivate and formally state this problem and present our results.

1.1 Motivation
In this section we explain why the problem of polynomial equivalence for the Tr-IMMw,d polynomial

is interesting to us.

Why Equivalence Testing for a �xed family of polynomials? The polynomial equivalence

problem is a very natural algebraic problem. [17] motivates a more general problem, namely the

a�ne projection problem. An m-variate polynomial f is said to be an a�ne projection of an n-

variate polynomial g if there exists an A ∈ F n×m and b ∈ F n such that f (x) = g(Ax+b). They show

that this problem is NP-hard in general. Infact, the central question of ACT - the PERMm vs DETn

5

problem (aka whether the permanent polynomial has small sized arithmetic circuits) is a special

case of the a�ne projection problem. A natural relaxation of this problem is to impose conditions

on the matrix A. When we require A to be full rank, the a�ne projection problem is known as the

a�ne equivalence problem. In [17], they show that the a�ne equivalence problem reduces to the

equivalence problem and also give an e�cient a�ne equivalence test for some special polynomial

families like Permm, Detn (over C) etc. A motivation for equivalence testing for special polynomial

families naturally arises from Geometric Complexity Theory. GCT is a program introduced by

Ketan Mulmuley and Milind Sohoni [23] to resolve the VP vs VNP problem (more ambitiously P vs

NP) using tools from algebraic geometry and representation theory. We refer the reader to Chapter

4 of Joschua Grochow’s PhD thesis [13] for a better insight. The survey by [1] also provides a con-

cise introduction to GCT. To begin, a problem in arithmetic complexity is translated to a problem in

algebraic geometry, which is then attacked using the tools representation theory. When translated

to algebraic geometry the VP vs VNP problem can be stated as follows: Is the padded permanent

PERMm,n
1 polynomial in the orbit closure of the n×n determinant polynomial where n = 2m

o(1)? For

any n-variate polynomial f , the orbit of f consists of those polynomials g such that g(x) = f (Ax)

whereA is invertible. In other words, the orbit of f consists of all polynomials that are equivalent to

f . The orbit closure is obtained by taking the Zariski closure of the orbit. A natural algorithmic ques-

tion arising at this point is the following: Given a polynomial f can we e�ciently check if f is in the

orbit-closure of the determinant. A starting point would be to understand if we can e�ciently check

if f is in the orbit of determinant, which is exactly the equivalence testing problem for determinant.

Why Tr-IMMw,d polynomial? The Tr-IMMw,d polynomial is a complete polynomial family for the

class VBP just like the DET and IMMw,d
2. In the same spirit as above, it is natural to ask if equivalence

testing of Tr-IMM, IMMw,d , DET can be solved e�ciently. For instance, IMMw,d equivalence test over

Q can be solved e�ciently [18] whereas DET equivalence testing over Q is at least INTFACT hard.

In this sense, the complexity of equivalence tests for IMMw,d and DET are di�erent and dependent

on the underlying �eld. Could it be the case that the complexity of equivalence test for Tr-IMMw,d

1PERMm,n = zn−mPERMm where z is a fresh variable.
2IMMw,d polynomial is obtained by considering only the (1,1)-th entry of the product of the matrices Q1 . . .Qd .

6

and DET are more closely tied to each other (independent of the underlying �eld)? In this thesis,

we take a step towards answering this question. We show that the equivalence test for Tr-IMMw,d

reduces to equivalence test for DET (see also the "Recent Update" at the end of this chapter). It is

worth noting that an e�cient equivalence testing algorithm for one complete polynomial family

need not imply an e�cient equivalence test for another complete polynomial family.

1.2 Related Work
E�cient equivalence testing algorithms for other interesting polynomial families have also been

looked into. [17] gave an e�cient randomized equivalence testing algorithm for the PERMm poly-

nomial, Power Symmetric polynomial, Sum of Products polynomial, Elementary symmetric poly-

nomial over any �eld (Q, C, �nite �elds). In [17], they also gave an e�cient equivalence testing

algorithm for the DETn polynomial over C. Recently, [11] gives an e�cient randomized algorithm

for determinant equivalence testing over �nite �elds1. They also give an e�cient randomized re-

duction from integer factoring to determinant equivalence testing over Q. [18] gives an e�cient

randomized equivalence test for the IMMw,d polynomial over Q,C and �nite �elds. Recall that the

IMMw,d polynomial is the (1,1)-th entry of the matrix product given in De�nition 1.3.

We would like to acknowledge that the question whether or not it is possible to extend [18]’s algo-

rithm to Tr-IMMw,d was asked by Avi Wigderson to Vineet Nair at CCC’17 after the presentation of

[18]’s work. Christian Ikenymeyer also pointed out at the same venue that the Tr-IMMw,d polyno-

mial is more interesting to mathematicians compared to the IMMw,d . Keeping the "Recent Update"

in mind, we answer Avi’s query by showing that such an extension from equivalence test of IMMw,d

to equivalence test of Tr-IMMw,d is not possible irrespective of the underlying �eld (unless INTFACT

is easy).

1.3 Problem Statement
We use GL(n,F) to denote the set of n× n invertible matrices over F . We �rst de�ne the notion of

equivalence of two polynomials which is the general question of our interest.
1with some conditions on the characteristic of the �eld

7

De�nition 1.1 (A�ne equivalence) Given anm-variate polynomial f and ann-variate polynomial

g (where m ≤ n), f is said to be an a�ne equivalent to g if there exists a full rank matrix A ∈ F n×m

and b ∈ F n such that f (x) = g(Ax+b).

[17] showed that the problem of testing a�ne equivalence of two polynomial reduces to the problem

of testing the equivalence of two polynomials which is de�ned as follows.

De�nition 1.2 (Equivalent Polynomials) Two n-variate polynomials f and g are said to be equiv-

alent if there exists an A ∈ GL(n,F) such that f (x) = g(Ax).

Example 1.1 Let f (x1,x2) = x1 + x
2
2 and g(x1,x2) = x1 + x2 + x

2
2.Then f (x1,x2) = g(A · (x1,x2))

where A =

1 1

0 1

.
The problem of testing the equivalence of two polynomials f and g is known to be at least as hard

as graph isomorphism and algebra isomorphism [2]. However, the converse is not known.

De�nition 1.3 (Tr-IMMw,d polynomial) TheTr-IMMw,d polynomial is the trace of thematrix product

Q1 . . .Qd where for all i ∈ [d], Qi is a symbolic matrix whose entries are distinct formal variables.

Tr-IMMw,d = Trace(Q1 . . .Qd) .

Example 1.2

Tr-IMM2,3 = Trace(Q1 ·Q2 ·Q3)

where

Q1 =

x
(1)
11 x

(1)
12

x
(1)
21 x

(1)
22

 ;Q2 =

x
(2)
11 x

(2)
12

x
(2)
21 x

(2)
22

 ;Q3 =

x
(3)
11 x

(3)
12

x
(3)
21 x

(3)
22


The total number of variables in Tr-IMMw,d is n = w2d. We now precisely state our problem.

8

Problem Statement: Given an n-variate, degree-d polynomial f as a blackbox, �nd an ef-

�cient algorithm that outputs an A ∈ GL(n,F) such that f (x) = Tr-IMMw,d(Ax) if such an A

exists; otherwise it outputs “No such A exists”.

As mentioned earlier, an e�cient equivalence test for the Tr-IMMw,d polynomial implies an e�cient

a�ne equivalence test as well.

1.4 Results
Let DETEQ denote an algorithm that takes as input blackbox access to a n2-variate, degree n poly-

nomial f and outputs an n2 × n2 invertible matrix A such that f = DETn(Ax) if such an A exists;

else it outputs ‘No such A exists’. We now state our main result which says that we have an e�-

cient randomized algorithm for checking a�ne equivalence for Tr-IMMw,d where w > 1,d > 2, given

oracle access to DETEQ.

Theorem 1.1 Given an n-variate, degree-d polynomial f as a blackbox, and oracle access to DETEQ,

there is a randomized algorithm with running time poly(n,β) (where β is the bit length of coe�cients

of f) that outputs with probability 1 − o(1) a full rank matrix A ∈ F
n×m and b ∈ F

m such that

f (x) = Tr-IMMw,d(Ax + b) (where w > 1,d > 2) if such an A,b exists; otherwise it outputs “No such

A,b exists”.

As a�ne equivalence testing reduces to equivalence testing [17], it is su�cient to give an e�cient

randomized algorithm for equivalence testing for Tr-IMMw,d (Theorem 1.2).

Theorem 1.2 Given an n-variate, degree-d polynomial f as a blackbox, and oracle access to DETEQ,

there is a randomized algorithm (Algorithm 1) with running time poly(n,β) (where β is the bit length of

coe�cients of f) that outputs with probability 1−o(1) anA ∈ GL(n,F) such that f (x) = Tr-IMMw,d(Ax)

(where w > 1,d > 2) if such an A exists; otherwise it outputs “No such A exists”.

Remark: In the remainder of this thesis we will only consider the problem of equivalence testing

for Tr-IMMw,d when w > 1 and d > 2. When w = 1, the problem can be solved using the blackbox

9

Input: Blackbox access to f

Reduction to Block Equivalence Testing for Tr-IMM (Steps 1-5)

Solve for Block Equivalence Testing for Tr-IMM to compute A (Step 6)

Check if f (x) = Tr-IMM(Ax) using Schwartz-Zippel lemma (Steps 7-9)

Figure 1.2: High level approach of Algorithm 1

factorization algorithm of Kaltofen-Trager[16]. For reasons elaborated in Chapter 3, our reduction

to DETEQ does not hold when d = 2.

Algorithm and Proof Strategy: Algorithm 1 follows and extends the approach in the algorithm

for equivalence test for the IMMw,d polynomial given in [18]. The high level idea of the algo-

rithm is as follows: We assume that f and Tr-IMMw,d are equivalent, i.e ∃ A ∈ GL(n,F) such that

f (x) = Tr-IMMw,d(Ax). We want to devise an algorithm that �nds such an A. Our assumption is

valid because if f and Tr-IMMw,d were not equivalent to begin with, then for any A returned by

the algorithm, f (x) , Tr-IMMw,d(Ax) which can be checked in randomized polynomial time using

Schwartz-Zippel lemma. Figure 1.2 shows the high level approach of our algorithm. In Steps 1-5,

we reduce our problem to a simpler problem called Block Equivalence Test for Tr-IMM (explained in

Chapter 6). We then solve for Block Equivalence in Step 6 to retrieve A. Each step of this algo-

rithm is elaborated in the subsequent chapters. However, we give a brief description of each step of

Algorithm 1 below.

Step 1: Associated with every n-variate polynomial f , there is the Lie algebra gf of f (Chap-

ter 2), which is a vector space consisting of n × n matrices satisfying certain constraints. If f (x) =

Tr-IMMw,d(Ax) then their corresponding Lie algebra are conjugates of each other, i.e gf = A−1 ·

gTr-IMM ·A (Fact 2.2). It turns out that the elements of gTr-IMM are block-diagonal (Chapter 3). The key

10

idea is to simultaneously block-diagonalize the basis elements of gf in order to reconstruct A. For

this purpose we compute a basis of the lie algebra of f .

Step 2: Block diagonalizing the basis elements of gf is equivalent to computing the irreducible

invariant subspaces of the space gf (See Section 2.4) which we accomplish using Algorithm 3.

Steps 3, 4: We exploit the relation between the irreducible invariant subspaces of gf and the layer

spaces of f to compute a basis for the later (Algorithm 4) and re-order them appropriately.

Step 5: By using a suitable linear map on the basis of the layer spaces of gf , the problem is reduced

to Block Equivalence testing for Tr-IMM.

Step 6: In Chapter 6, we give an e�cient algorithm (Algorithm 6) for Block Equivalence testing

for Tr-IMM given oracle access to DETEQ. We use this algorithm to �nally compute A.

Steps 7-11: We apply Schwartz-Zippel Lemma to check if f is indeed equivalent to Tr-IMMw,d to

begin with.

Algorithm 1 Equivalence testing for Tr-IMMw,d

INPUT: Blackbox access to n variate, degree d polynomial f
OUTPUT: An A ∈ GL(n,F) such that f (x) = Tr-IMMw,d(Ax) if such an A exists.

1: Compute a basis B of the Lie algebra gf of the polynomial f (refer to Algorithmic Preliminary
1).

2: Using Algorithm 3 and the basis B compute a basis B′ for the irreducible invariant subspaces of
gf .

3: Using Algorithm 4 and the basis B′ compute a permutation of the layer spaces corresponding
to X1, . . . ,Xd .

4: Reorder the layer spaces in order using Claim 5.1.
5: Given the layer spaces in correct order, reduce the problem to Block Equivalence Testing using

Claim 5.2.
6: Solve for Block Equivalence testing using Algorithm 6 and DETEQ orcale to compute A.
7: Pick a random point a ∈ Sn where S ⊆ F and |S | ≥ poly(n).
8: if f (a) = Tr-IMMw,d(Aa) then
9: Output A.

10: else
11: Output ‘No such A exists’.

11

Symmetry Characterization: In Chapter 7, we give a proof of the well known fact that the Tr-IMM

polynomial is characterized by its symmetries (see De�nition 7.1).

1.4.1 Comparison with [18]

We point out some important di�erences of our work from [18]. The major di�erences arise due

to the di�erence in the structure of the Lie algebras of Tr-IMMw,d and IMMw,d . The Lie algebra of

Tr-IMMw,d is block diagonal, whereas the IMMw,d has corner spaces in addition to the block diag-

onal structure (Chapter 3). Consequently the irreducible invariant subspaces of the corresponding

Lie algebras are slightly di�erent (Chapter 4). In step 3 our algorithm outputs a permutation of the

layer spaces corresponding to X1, . . . ,Xd whereas the algorithm in [18] outputs a permutation of

X2, . . . ,Xd−1. In step 4, the reordering procedure uses the notion of evaluation dimension (see Chap-

ter 5). The evaluation dimension parameters in our algorithm also turns out to be di�erent from [18]

(Chapter 5). It will be clear from the respective chapters that these di�erences are due to the block

diagonal structure of gTr-IMM.

However, the main di�erence is the following: Block Equivalence testing for IMMw,d reduces to

set-multilinear ABP reconstruction which can be performed e�ciently over any �eld. But, Block-

Equivalence testing Tr-IMMw,d polynomial does not reduce to set-multilinear ABP reconstruction.

Instead, we reduce to DETEQ which has an e�cient algorithm over C ([17]) and �nite �elds ([11]).

Also, Block Equivalence testing of Tr-IMMw,d cannot reduce to set-multilinear ABP reconstruction

over Q unless INTFACT is easy (see "Recent Update" at the end of this chapter).

1.5 Organization of the thesis
In Chapter 2 we set up notations and state important de�nitions and other preliminaries. Then, in

Chapter 3 we discuss the structure of Lie Algebra of gTr-IMM which will be used in our algorithm.

Chapter 4 elaborates on step 2 of Algorithm 1 in which we compute a basis of the irreducible invari-

ant subspaces of gf . In Chapter 5 we extract the matrixA from the irreducible invariant subspaces of

gf by exploiting the relation between these spaces and the layer spaces of f and reduce the problem

to Block Equivalence testing for Tr-IMM. In Chapter 6, we give an e�cient randomized algorithm for

12

Block Equivalence testing for Tr-IMM polynomial given oracle access to DETEQ. Finally in Chapter 7

we provide an alternate proof for symmetry characterization of the Tr-IMMw,d polynomial.

Recent Update: In [11], they show that DETEQ is randomized polynomial time Turing reducible

to another well known problem known as Full-Matrix Algebra Isomorphism (FMAI) and vice-versa.

In our work we show that equivalence testing for Tr-IMM is randomized polynomial time Turing

reducible to DETEQ. Improving on both these results, Vineet Nair and us have shown that these

three problems are randomized Turing reducible to each other.

13

Chapter 2

Preliminaries

In this chapter we develop the notations used in the thesis and cover some background concepts

to understand the work done as part of the thesis.

We begin with some common de�nitions from linear algebra.

2.1 Linear Algebra
De�nition 2.1 (Vector Space) A Vector Space V over a �eld F is a set with two operations: vector

addition ′+′ : V×V→ V and scalar multiplication ′·′ : F ×V→ V satisfying the following properties:

1. (V,+) is an abelian group.

2. 1
F
.v = v for all v ∈ V.

3. a · (b · v) = (a · b) · v for all a,b ∈ F and v ∈ V.

4. (a+ b) · v = a · v+ b · v for all a,b ∈ F and v ∈ V.

5. a · (u+ v) = a ·u+ a · v for all a ∈ F and u,v ∈ V.

The elements of V are called vectors and the elements of the underlying �eld F are called scalars.

De�nition 2.2 (Subspace) Let V be a vector space and U ⊆ V. Then U is called a subspace of V i� it

satis�es the following properties:

14

1. 0 ∈ U.

2. Closed under vector addition: u+ v ∈ U for all u,v ∈ U.

3. Closed under scalar multiplication: a ·u ∈ U for all a ∈ F and u ∈ U.

It can be easily veri�ed that a subspace of a vector space is also a vector space where the vector addi-

tion and scalar multiplication in U is the vector addition and scalar multiplication of V respectively

restricted to U.

De�nition 2.3 (Span) The span U of the vectors v1, . . . ,vn ∈ V is denoted as span
F
({v1, . . . , vn}) :=

{a1v1 + . . .+ anvn|a1, . . . , an ∈ F }. It is easy to check that span({v1, . . . ,vn}) is a subspace of V.

De�nition 2.4 (Linear Independence) Let v1, . . . ,vn ∈ V. The set of vectors {v1, . . . ,vn} is said to

be linearly independent over F if there exists no non-zero tuple (a1, . . . , an) ∈ F n satisfying a1v1+ . . .+

anvn = 0. Otherwise they are said to be linearly dependent.

De�nition 2.5 (Basis) A basis of a vector space V is a set of linearly independent vectors that spans

V.

It can be veri�ed that there exists a bijection between any two basis of V. Thus the cardinality of a

basis of V is independent of the choice of the basis.

De�nition 2.6 (Dimension) If the cardinality of a basis of V is n for some n ∈N, then V is a called

a �nite dimensional vector space with dimension denoted as dim(V) := n.

Now we de�ne the notion of a coordinate subspace which will be used in Chapter 4.

De�nition 2.7 (Coordinate Subspace) Let ei be a unit vector in F
n whose i-th coordinate is 1 and

the other coordinates are 0. A coordinate subspace of F n is a space spanned by a subset of the unit

vectors {e1, . . . , en}.

In Chapter 4 we compute the irreducible invariant subspaces of the Lie Algebra of the group of sym-

metries of a polynomial f (See Section 2.4 for the de�nition of Lie Algebra). The related de�nitions

are given below. For a matrix M ∈ F n×n and a subspace U ⊆ F
n, MU

def= {M ·v | v ∈ U}. It is easy to

observe that MU is a subspace of F n.

15

De�nition 2.8 (Invariant Subspace) LetM ∈ F n×n be an n×nmatrix. Then a subspace U ⊆ F
n is

an invariant subspace ofM ifMU ⊆ U. Further, let L def= span
F
{M1,M2, . . . ,Mk}, whereMi ∈ F n×n

for all i ∈ k. Then U is an invariant subspace of L ifMi U ⊆ U for all i ∈ [k].

De�nition 2.9 (Irreducible Invariant Subspace) An invariant subspace U ⊆ F
n of a vector space

L over F spanned by matrices in F
n×n is said to be irreducible if there are no invariant subspaces U1

and U2 of L such that U = U1 ⊕U2 and U1,U2 are not equal to either {0} or F n.

De�nition 2.10 (Null Space) LetM ∈ F n×n be an n × n matrix. Then the null space ofM denoted

as null(M) := {v ∈ F n :Mv = 0} .

It can be easily veri�ed that the null space is a subspace of F n.

De�nition 2.11 (Characteristic polynomial of a matrix) LetM be an n×nmatrix. The charac-

teristic polynomial ofM denoted as hA(x) := det(xIn−M). Here det(xIn−M) denotes the determinant

of the matrix xIn −M .

Algorithm 2 in Section 2.6 gives an e�cient method to compute the closure of a vector v under the

action of a vector space L spanned by matrices in F
n×n which is de�ned as follows.

De�nition 2.12 (Closure of a vector) The closure of a vector v ∈ F n under the action of a vector

space L over F spanned by matrices in F
n×n is the smallest invariant subspace of L containing v.

2.2 The Tr-IMMw,d polynomial
This section contains the de�nitions related to the Tr-IMMw,d polynomial. Recall that the Tr-IMMw,d

polynomial is de�ned as the trace of the product ofQ1·Q2 . . .Qd , whereQ1, . . .Qd arew×w symbolic

matrices whose entries are distinct variables. We denote the set of variables inQk as xk and assume

the following ordering on variables: x1 > x2 > . . . > xd . Within a given xi , the variables are ordered

in column major fashion. We either index the variables as {x(1)11 ,x
(1)
12 , . . . ,x

(1)
ww, . . . ,x

(d)
1w,x

(d)
2w, . . . ,x

(d)
ww}

or {x1,x2, . . . ,xn} which should be clear from the context. We drop the subscripts and use Tr-IMM to

mean Tr-IMMw,d when w and d are clear from the context. De�nition 2.13 gives an alternate graph

theoretic de�nition of the Tr-IMM polynomial.

16

De�nition 2.13 Consider the directed acyclic graph GTr-IMM given in Figure 2.1. It has d +1 layers of

vertices with w vertices in each layer. There is an outgoing edge from every vertex in layer k to every

vertex in layer k +1. The edge from vertex i of layer k to vertex j of layer k +1 is labelled as x(k)ij . Call

the i-th vertex in layer 1 and d+1 as si and ti respectively and let γ : si → ti denote a path from vertex

si to vertex ti . The weight of such a path γ denoted wt(γ) is equal to the product of edge labels on that

path. The polynomial Tr-IMM is de�ned as:

∑
γ1:s1→t1

wt(γ1) +
∑

γ2:s2→t2

wt(γ2) + . . .+
∑

γw:sw→tw

wt(γw) .

Identifying the label of the edge from vertex i of layer k to vertex j of layer k + 1 with the (i, j)-th

entry of Qk , it can be easily shown that the Tr-IMMw,d as de�ned above is equal to Trace(Q1 . . .Qd).

Figure 2.1: The Graph GTr-IMM

Each monomial in Tr-IMMw,d corresponds to a path in GTr-IMM. This inspires the de�nition of a path

monomial which will turn out to be a useful terminology.

De�nition 2.14 (Path Monomial) A pathmonomial is a monomial that appears in the Tr-IMM poly-

nomial. Every path monomial corresponds to a si - ti path in the GTr-IMM graph.

17

2.3 Algebraic Models of Computation
In Chapter 1, we gave a brief overview of the various algebraic models of computation. In this

section, we formally de�ne some of these models and the related complexity classes. Arithmetic

circuits are the most natural models to compute polynomials.

De�nition 2.15 (Arithmetic Circuits) An arithmetic circuit is a directed acyclic graph. The nodes

having out degree 0 are called the output nodes. The nodes of in degree 0 (input nodes) are labelled

with either formal variables or �eld constants. All other nodes are labelled with either + or ×. Each

node of the circuit computes a polynomial in a natural way which is illustrated in Figure 1.1. The set

of polynomials computed by the circuit are the polynomials computed by the output nodes. The size of

the arithmetic circuit is the total number of node it contains.

Valiant [31] de�ned the complexity classes VP and VNP which are arithmetic analogues of non-

uniform P and NP respectively.

De�nition 2.16 (The Class VP) A family of polynomials {fn}n≥1 over a �eld F is called p-bounded

if for each polynomial fn in the family, the following conditions are satis�ed:

• the number of variables in fn is poly(n).

• the degree of fn is poly(n).

• there exists a poly(n) sized arithmetic circuit Cn that computes fn.

The class VP
F
consists of all p-bounded polynomial families over F .

The symbolic determinant polynomial family, denoted as DETn, the iterated matrix multiplication

polynomial IMMw,d and the trace of matrix product polynomial Tr-IMMw,d are in VP.

De�nition 2.17 (The Class VNP) A polynomial family (fn) is said to be p-de�nable if there exists

a polynomial family {gn}n≥1 in VP and a polynomially bounded function p such that

fn(x) =
∑

y∈{0,1}p(n)
gp(n)(x,y) .

The class VNPF consists of all p-de�nable polynomial families over F .

18

The symbolic permanent polynomial family denoted as PERMm.

While VP is contained in VNP, it is a longstanding open problem to show the separation between

these classes (Conjecture 2.1)

Conjecture 2.1 (Valiant’s Conjecture [32]) VP
F
, VNP

F
whenever F , F2

2.3.1 Algebraic Branching Programs

Algebraic Branching Programs (ABPs) are another well studied model for computing polynomial

which are de�ned as follows.

De�nition 2.18 (Algebraic Branching Program) An Algebraic Branching Program (ABP) is a lay-

ered directed acyclic graph with a unique source vertex s and a sink vertex t. All edges from layer i to

layer i +1 are labelled by a linear polynomial. Let wt(γ) denote the product of edge labels on a path γ

from s t. Then the polynomial f computed by the ABP is given by:

f =
∑
γ :s t

wt(γ)

The size of the ABP is the number of edges it contains.

Now we present an alternate equivalent de�nition of ABPs which we will use often in our thesis.

De�nition 2.19 (Algebraic Branching Programs (ABP)) Let X1, . . . ,Xd be w ×w symbolic ma-

trices whose entries are a�ne forms in the x ∈ F n variables. An Algebraic Branching Program A is the

(1,1)-th entry of the product X1 ·X2 . . .Xd .

De�nition 2.20 (The Class VBP) The class VBP
F
consists of all polynomial families that can be

computed by ABPs of polynomially bounded size.

[18] de�ned the notion of layer spaces of an ABP A. Observing that the Tr-IMMw,d polynomial

can be written as sum of w ABPs, we state a natural extension of their de�nition better suited for

the purposes of our problem in De�niton 2.21. Our Algorithm crucially uses the relation between

the irreducible invariant subspaces of gf and the layer spaces of f which is explained in detail in

Chapter 5.

19

De�nition 2.21 (Layer spaces) Let f be the polynomial computed by the Trace(
∏d
i=1Xi) where Xi

is a symbolic matrix whose entries are linear forms in the x variables. Let Xi ⊆ F
n denote the space

spanned by the linear forms in Xi 1. Then X1, . . . ,Xd are called the layer spaces corresponding to

X1, . . . ,Xd respectively.

In Step 1 of Algorithm 6, we will reconstruct a set-multilinear ABP computing a polynomial f . We

state the related de�nitions below.

De�nition 2.22 (Set-Multilinear ABP) Let A be an ABP computed by the (1,1)-th entry of the ma-

trix product X1 ·X2 . . .Xd and let xi denote the variables appearing in Xi for all i ∈ [d]. The ABP A is

said to set-multilinear whenever i , j implies xi ∩ xj = ∅ for all i, j ∈ [d].

The notion of a set-multilinear polynomial will be used at various places in this thesis. We say

that a polynomial f is set-multilinear in the variable sets x1, . . . ,xd if each monomial of f contains

at most one variable from each of the xi for i ∈ [d].

2.4 Lie Algebra
In Chapter 3, we analyze the structure of the Lie Algebra of the group of symmetries of the Tr-IMMw,d

polynomial. We state some useful de�nitions related to this.

De�nition 2.23 (Group of symmetries of a polynomial f) Let f (x) be an n-variate, degree d

polynomial over F . The group of symmetries of f denoted as Gf is the set of all invertible n×nmatrices

A ∈ GL(n,F) such that f (Ax) = f (x).

Observe that Gf with the usual matrix multiplication as the group operation forms a group. The

group of symmetries of the determinant polynomial plays an important role in Algorithm 6. We

state the following well known fact without proof.

Fact 2.1 (Group of Symmetries of the determinant polynomial) Let X be an n × n symbolic

matrix and det(X) be the determinant polynomial of X. If Y is an n×n matrix with det(Y) = det(X),

then exactly one of the following holds:

1We can associate every linear form
∑n
i=1 aixi with a vector (a1, . . . , an) ∈ F n.

20

1. Y = A ·X ·B where A and B are n×n matrices with AB = In.

2. Y = A ·XT ·B where A and B are n×n matrices with AB = In.

The Lie Algebra of the group of symmetries of a polynomial f is de�ned in De�nition 2.24. We

abuse terminology and say Lie Algebra of a polynomial f to mean the Lie Algebra of the group of

symmetries of a polynomial f . We work with the following de�nition of Lie Algebra which was also

used in [17].

De�nition 2.24 (Lie Algebra gf of a polynomial f) Let f be a n-variate polynomial. Then the

Lie Algebra of f denoted as gf of the polynomial f is the set of n× n matrices E = (eij)i,j∈[n] ∈ F n×n

such that the following holds:

∑
i,j∈[n]

eij · xj ·
∂f

∂xi
= 0 .

Recall the ordering x1, . . . ,xn on the variables of Tr-IMMw,d that was de�ned in Section 2.2. The i-

th row and the j-th column of a matrix E = (eij)n×n in gTr-IMM is indexed by the variable xi ,xj ∈ x

respectively. The following fact says that the Lie Algebra of two equivalent polynomials f and g are

conjugates of each other (see [17, 18] for proof). As discussed in Section 1.4, exploiting this relation

is the starting point of our algorithm.

Fact 2.2 Let f and g be n-variate polynomial such that f (x) = g(Ax) where A ∈ GL(n). Then the Lie

Algebra of f is a conjugate of the Lie Algebra of g via A, i.e.

gf = A
−1ggA := {A−1MA :M ∈ gg} .

In Chapter 3, we will see that the elements of gTr-IMM have a block-diagonal structure. The following

de�nition explains the structure of a block-diagonal matrix.

De�nition 2.25 (Block-diagonal matrix) Figure 2.2 depicts a block-diagonal matrix. The (i, j)-th

entry of a block-diagonal matrix is 0 whenever xi ∈ xk , xj ∈ xl and k , l.

21

In Section 1.4, we mentioned that block diagonalizing a matrix M is equivalent to computing the

basis of the invariant subspaces of M which we elaborate below.

Block diagonalizing a matrix M: Let M ∈ F
n×n. We wish to block-diagonalize M . In other

words, we want to compute a basis β = β1] . . .] βd such that M is block-diagonal with respect

to the basis β, i.e. [M]β is block-diagonal. Let Ui be the space spanned by βi . As [M]β is block-

diagonal, M ·Ui ⊆ Ui implying that Ui is an invariant subspace of M . Hence computing the basis

β that block-diagonalizes M is equivalent to computing the basis of the invariant subspaces Ui for

i ∈ [d], such that F n = U1 ⊕ . . .⊕Ud .

Figure 2.2: Block-Diagonal Matrix

2.5 Technical Lemmas and Facts
In this section, we state some technical lemmas and facts that we will refer to at various places in

our thesis.

Lemma 2.1 (Schwartz-Zippel Lemma [33],[26]) Let f be an n-variate, degree d polynomial over

F . Let S ⊆ F. Let a1, . . . , an be chosen from S independently and uniformly at random. Then,

P r[f (a1, . . . , an) = 0] ≤ d
|S |

.

22

Proof: The proof is by induction on the number of variables.

• Base case: n = 1 If f is a univariate polynomial of degree d, it has at most d roots. So for an

a ∈ S chosen uniformly at random ,P r[f (a) = 0] ≤ d
|S | .

• Let the lemma be true for all polynomials with atmost n − 1 variables. An n variate, degree

d polynomial f (x1, . . . ,xn) can be written as
∑d
j=0x

j
1fj(x2, . . . ,xn). Let k ≤ d be the largest

power of x1 in any term of f implying fk , 0. Choose a1, a2, . . . , an independently and uni-

formly at random from S . Let A denote the event f (a1, a2, . . . , an) = 0 and B denote the event

fk(a2, . . . , an) = 0. Since fk is a polynomial on n − 1 variables with degree at most d − k, by

induction hypothesis we have,

P r[B] ≤ d − k
|S |

.

Suppose A did not occur. Then the univariate polynomial g(x1) =
∑n
j=0x

j
1fj(a2, . . . , an) of

degree at most k is not identically 0. So we have,

P r[B|Ac] ≤ k
|S |

.

We now compute P r[A] using the law of total probability:

P r[A] = P r[A∧B] + P r[A∧Bc]

= P r[A∧B] + P r[A]P r[Bc|A]

≤ P r[A] + P r[Bc|A]

≤ d − k
|S |

+
k
|S |

=
d
|S |

.

�

We now de�ne the Sylvester matrix and the resultant of two uni-variate polynomials f and g . In

Lemma 2.2 we show that f and g are co-prime if and only if their resultant is 0.

De�nition 2.26 (Sylvester matrix of polynomials f and g) Let f (x) = fmxm+. . .+f0 and g(x) =

23

gnx
n + . . .+ g0 be degree m and degree n polynomials respectively. The Sylvester matrix of f and g is

denoted by Sylx(f ,g) and is de�ned as follows:

Sylx(f ,g) =



fn gm

fn−1 fn gm−1 gm
...

...
. . .

...
...

. . .
...

... fn g1
...

. . .
...

... fn−1 g0
...

. . .

f1
...

... g0 gm

f0
...

...
. . .

...

f0
...

. . .
...

.

f0 g0


(m+n)×(m+n)

De�nition 2.27 (Resultant of polynomials f and g) Let f and g be univariate polynomials of de-

gree m and n respectively. Then the resultant of f and g denoted by Resx(f ,g) is de�ned as the deter-

minant of the Sylvester matrix of f and g , Sylx(f ,g), i.e. Resx(f ,g) = det(Sylx(f ,g)).

Claim 2.1 Let f and g be two non-zero univariate polynomials of degree n and m respectively. Then

f (x) and g(x) share a non constant factor if and only if there are non-zero univariate polynomials s(x)

and t(x) of degrees at most m− 1 and n− 1 respectively such that f (x)s(x) + g(x)t(x) = 0.

Proof: Let f and g share a non constant common factor h(x). Then f (x) = f ′(x)h(x) and g(x) =

g ′(x)h(x) and deg(f ′) ≤ n−1 and deg(g ′) ≤m−1 as deg(h(x)) ≥ 1. Hence f (x)g ′(x)+g(x)(−f ′(x)) =

0. To show the other direction let us assume that f (x)s(x) + g(x)t(x) = 0 with deg(s) ≤ m − 1 and

deg(t) ≤ n−1, and f and g are co-prime. Since f and g are co-prime there exists polynomial p and

q such that f (x)p(x) + g(x)q(x) = 1. Then

s(x) = 1 · s(x)

= (f (x)p(x) + g(x)q(x)) · s(x)

24

= f (x)p(x)s(x) + g(x)q(x)s(x)

= p(x)(−g(x)t(x)) + g(x)q(x)s(x)

= g(x)(−p(x)t(x) + q(x)s(x)) .

Since s(x) is a non-zero polynomial deg(s) ≥ deg(g) =m which is a contradiction. �

Lemma 2.2 Two univariate polynomials f and g of degrees n andm respectively have a non constant

common factor if and only if Res(f ,g) = 0.

Proof: Let f and g have a non constant common factor. Then by Claim 2.1 there are polynomials

s and t of degree m − 1 and n − 1 respectively satisfying f s + gt = 0. Let f (x) =
∑n
i=0 fix

i ; g(x) =∑m
i=0 gix

i ; s(x) =
∑m−1
i=0 six

i ; t(x) =
∑n−1
i=0 tix

i . Then we have

f (x)s(x) + g(x)t(x) = 0

=⇒
m+n−1∑
i=0

(i∑
k=0

(
fi−ksk + gi−ktk

))
xi = 0 .

Treat the coe�cients of s and t to be formal variables. Equating the coe�cients of each xi in f s+gt

to zero we get a system of (m + n) homogeneous linear equations in the si and tj variables. The

coe�cient matrix of such a system of linear equations is the same as the sylvester matrix of f and

g and hence the system has a non-trivial solution if and only if det(Sylx(f ,g)) = 0. �

Fact 2.3 and Claim 2.2 will turn out to be useful in Chapter 5.

Fact 2.3 Let {pi(x) : i ∈ [m]} and {qj(y) : j ∈ [n]} be two sets of linearly independent polynomials over

F and let x and y be disjoint. Then the set of polynomials {piqj(xy) : i ∈ [m], j ∈ [n]} is also linearly

independent over F .

Proof: Suppose {pi(x) : i ∈ [m]}, {qj(y) : j ∈ [n]} are linearly independent sets of polynomials but

25

{piqj(xy) : i ∈ [m], j ∈ [n]} is a linearly dependent set of polynomial.

∑
i∈[m]
j∈[n]

aijpi(x)qj(y) = 0

=⇒
(∑
j∈[n]

a1j · qj
)
p1 + . . .+

(∑
j∈[n]

amj · qj
)
pm = 0.

=⇒
∑
j∈[n]

aij · qj = 0 ;∀i ∈ [m] (∵ p1, . . . ,pm are linearly independent)

=⇒ aij = 0 ;∀i ∈ [m], j ∈ [n] (∵ q1, . . . ,qn are linearly independent)

Hence the set of polynomials {piqj(xy) : i ∈ [m], j ∈ [n]} are also linearly independent. �

Claim 2.2 Let f1(x), . . . , fm(x) be n-variate, degree d polynomials and U = span
F
(f1(x), . . . , fm(x))

where dim(U) =m− r for some r ∈ [0,m− 1]. Further, let

M := (fj(bi))i,j∈[m] =


f1(b1) . . . fm(b1)
...

...
...

f1(bm) . . . fm(bm)


m×m

where b1, . . . ,bm are chosen independently and uniformly at random from Sn ⊂ F
n where |S | = d ·m ·

poly(n). Then with probability at least 1− 1
poly(n) , rank(M) =m− r .

Proof: Without loss of generality, let f1, . . . , fm−r be a basis of U. Hence rank(M) is at most m− r .

Now we show that, with high probability rank(M) is at least m− r . De�ne Mm−r as follows:

Mm−r :=


f1(b1) . . . fm−r(b1)
...

...
...

f1(bm−r) . . . fm−r(bm−r)


m−r×m−r

To show that rank of M is at least m − r it is su�cient to show that det(Mm−r) , 0 with high

26

probability. Let Y be the symbolic matrix

Y :=


f1(y1) . . . fm−r(y1)
...

...
...

f1(ym−r) . . . fm−r(ym−r)


m−r×m−r

where yi is a fresh set of n variables for each i ∈ [m − r] and the y1, . . . ,ym−1 are pairwise dis-

joint sets of variables. Since {f1, . . . , fm−r} are linearly independent, det(Y) is a non-zero polyno-

mial in y1, . . . ,ym−r variables. Further deg(det(Y)) ≤ dm. Assign b1, . . . ,bm−r for the variable sets

y1, . . . ,ym−r respectively independently and uniformly at random from Sn. Then by Schwartz-Zippel

Lemma (Lemma 2.1) the probability that det(Mm−r) , 0 is at least 1− dm
d·m·poly(n) = 1− 1

poly(n) . �

2.6 Algorthmic Preliminaries
In this section, we state some well known algorithms without proof.

1. Given blackbox access to an n variate, degree d polynomial f , a basis for the Lie Al-

gebra of a polynomial f can be computed. This has been elaborated in [17] where they

give an e�cient randomized algorithm to compute a basis for the Lie Algebra of an n variate,

degree d polynomial f that has running time poly(n,d,β) where β is the bit length of the

coe�cients.

2. Univariate Polynomial Factorization: [21] gave an e�cient deterministic algorithm

(O(poly(n,β)) time), where β is bound on the bit length of the polynomial) to factorize

a univariate polynomial of degree n over Q. There are e�cient randomized algorithms

(O(poly(n, logq)) time) such as [5],[6] to factorize a degree n univariate polynomial over

some �nite �eld Fq. .

3. Basis of the null spaces: We can e�ciently compute a basis for the null space of any matrix

A ∈ F n×n. Let A′ be the row reduced echeolon form of A. Then null(A) = null(A′). A basis for

null(A′) can be found by analyzing the equations A′x = 0. It is easy to see that solving this

system of equations by gaussian elimination will take O(n3) time.

27

4. Computing the closure of a vector: Let v ∈ F n and L be the vector space over F spanned

by matrices {M1, . . . , Mk} ∈ F n×n. By de�nition span(v) ∈ closure(v). If u ∈ closure(v) then

Mi ·u ∈ closure(v) for each i ∈ [k]. Algorithm 2 computes the closure of a vector v under the

action of L using this idea. In the while loop (steps 4-6), the algorithm executes steps 5 and 6

only if V(i−1) is a strict subspace of V(i). Since dim(closure(v) ≤ n, the algorithm terminates

after at most n iterations of the while loop.

Algorithm 2 Computing the closure of a vector v under the action of a space L

INPUT: v ∈ F n and a basis {M1, . . . ,Mk} of L.
OUTPUT: Basis of the closure(v) under the action of L.

1: V(0) = {v}. Then T0 = {v} is a basis of V(0).
2: V(1) = span

F
(T0 ∪L · T0) and T1 be a basis of V(1).

3: i = 1
4: while V(i) , V(i−1) do
5: i = i+1
6: V(i) = span

F
(Ti−1 ∪L · Ti−1) and Ti be a basis of V(i).

7: Output Ti .

5. Checking if two n dimensional vector spaces V1 and V2 are equal: Let V1 be the matrix

whose columns are the basis vectors of V1. For V1 to be equal to V2 we require that for each

basis vector v of V2, the system of linear equation V1x = v has a solution. Solving a system of

linear equations can be done e�ciently (O(dim(V1)3) time).

6. Set Multilinear ABP Reconstruction: Recall from Chapter 1 that an ABP is the (1,1)-th

entry ofw×wmatricesX1, . . . ,Xd whose entries are linear forms in the variables. Let xi denote

the variables appearing inXi . An ABP is said to set-multilinear whenever i , j implies xi∩xj =

∅ for all i, j ∈ [d]. The set-multilinear ABP reconstruction problem is the following: Given

a polynomial f , (re)construct a set-multilinear ABP that computes it. [19] give an e�cient

algorithm for the same.

28

Chapter 3

The Lie Algebra of Tr-IMM polynomial

In this chapter we discuss the structure of the Lie Algebra of the group of symmetries of the

Tr-IMM polynomial. The equivalence test algorithm in Theorem 1.2 crucially exploits this struc-

ture.

The Lie Algebra of Tr-IMMw,d denoted as gTr-IMM has already been analysed in [12]. However, in this

chapter we present an alternate analysis of the structure of matrices of gTr-IMM, which would be used

by the equivalence test algorithm of Theorem 1.2. Recall that the rows and columns of matrices

in gTr-IMM are indexed by variables of Tr-IMM, and that they are ordered using the variable ordering

among these x variables (see Section 2.2).

Recall De�nition 2.24 of Lie Algebra from Chapter 2. We are interested in understanding the Lie

Algebra gTr-IMM of Tr-IMM polynomial. The space gTr-IMM consists of matrices E = (eij)n×n that satis�es

the following condition.

∑
i,j∈[n]

eij · xj ·
∂Tr-IMM
∂xi

= 0 . (3.1)

Recall the notion of block-diagonal matrices from De�nition 2.25. Consider the following catego-

rization of the entries of E:

• Diagonal Entries: These are the entries of E that appear in the diagonal of E. The rows and

columns of each diagonal entry is indexed by the variable xi for some i ∈ [n]. Hence diagonal

29

entries are of the form eii where i ∈ [n].

• Block-Diagonal Entries: These are entries of E that lie on some block of E but are not on

the diagonal. More precisely, these are entries of the form eij where the row and column of

eij is indexed by the variables xi ∈ xl and xj ∈ xl respectively with xi , xj and l ∈ [d].

• Corner Entries: These are entries of E that do not lie on any block of E. The row and column

of a corner entry eij is indexed by variables xi ∈ xl and xj ∈ xk respectively with l , k and

l,k ∈ [d].

We now re-write Equation 3.1 as follows:

∑
i∈[n]

eii · xi ·
∂Tr-IMM
∂xi︸ ︷︷ ︸

(a)

+
∑
xi,xj
xi ,xj∈xl

eij · xj ·
∂Tr-IMM
∂xi

︸ ︷︷ ︸
(b)

+
∑
l,k

xi∈xl xj∈xk ;

eij · xj ·
∂Tr-IMM
∂xi︸ ︷︷ ︸

(c)

= 0. (3.2)

Note that the terms (a),(b) and (c) correspond to the Diagonal, Block-Diagonal and Corner entries of

E respectively. We now show that these terms do not share any monomials in common.

Observation 3.1 The terms (a), (b) and (c) in Equation 3.2 are pairwise monomial disjoint.

Proof: A monomial in (a) or (b) has exactly one variable from each of the xk for some k ∈ [d]. But

any monomial in (c) has two variables from xl and none from xk where l , k and l,k ∈ [d]. Hence (c)

is monomial disjoint from (a) and (c). Recall from De�nition 2.14 that a path monomial is a monomial

that appears in the Tr-IMM polynomial. Clearly, any monomial in (a) is a path monomial. Whereas,

no monomial in (b) can be a path monomial due to the fact that any two path monomial must di�er

by at least two variables. Hence the terms in (a) and (b) are also monomial disjoint. �

We will use the monomial disjointness of (a), (b) and (c) to decompose gTr-IMM into simpler subspaces.

We begin by showing that the matrices in gTr-IMM are block-diagonal.

Lemma 3.1 Let E ∈ gTr-IMM. Then, E is block-diagonal. Further gTr-IMM =Wb ⊕Wd where:

30

• Wb (Block Diagonal Space) is the subspace that consists of n × n block-diagonal matrices E =

(eij)i,j∈[n] whose diagonal entries are 0 and

∑
i,j∈[n]

eij · xj ·
∂Tr-IMM
∂xi

= 0 .

• Wd (Diagonal Space) is the subspace that consists of n×n diagonal matrices D = (eii)i∈[n] and

∑
i∈[n]

eii · xi ·
∂Tr-IMM
∂xi

= 0 .

Proof: Let E = (eij)n×n ∈ gTr-IMM and hence satis�es Equation 3.1. Using Observation 3.1, Equa-

tion 3.1 can be split into the following three monomial disjoint equations.

∑
i∈[n]

eii · xi ·
∂Tr-IMM
∂xi

= 0; eij , 0 =⇒ xi = xj (3.3)

∑
i,j∈[n]

eij · xj ·
∂Tr-IMM
∂xi

= 0; eij , 0 =⇒ xi ,xj ∈ xl ,xi , xj (3.4)

∑
i,j∈[n]

eij · xj ·
∂Tr-IMM
∂xi

= 0; eij , 0 =⇒ xi ∈ xl ,xj ∈ xk , l , k. (3.5)

Let Wd ,Wb,Wc denote the spaces containing n×nmatrices satisfying Equations 3.3, 3.4, 3.5 respec-

tively. Clearly gTr-IMM =Wd +Wb +Wc. Further as Wd ∩Wb =Wc ∩ (Wb +Wd) = 0n we infer that,

gTr-IMM =Wd ⊕Wb ⊕Wc. Claim 3.1 shows that Wc = {0} implying gTr-IMM =Wd ⊕Wb.

�

Claim 3.1 Let Wc denote the space spanned by matrices satisfying Equation 3.5. ThenWc = {0}.

Proof: Let E = (eij)n×n ∈Wc and hence satis�es Equation 3.5. Every monomial in xj ∂Tr-IMM
∂xi

con-

tains two variables from xk and none from xl . So, the terms xj ∂Tr-IMM
∂xi

and xj ′ ∂Tr-IMM
∂xi′

are monomial

disjoint whenever (l,k) , (l′, k′). Hence, we can write separate equations corresponding to each

31

such pair (l,k). Fix some (l,k) where l , k. Then we have:

∑
xi∈xl ,xj∈xk

eij · xj
∂Tr-IMM
∂xi

= 0

Collecting terms of the variable xi together we have,

∑
xi∈xl

L
(k,l)
xi (xk)

∂Tr-IMM
∂xi

= 0 (3.6)

where L(k,l)xi (xk) is a linear form in the xk variables. We now show that this linear form is identically

0 which concludes the proof.

Figure 3.1: The Graph G′Tr-IMM

Consider the graph GTr-IMM. Modify this graph as follows: for every xi ∈ xl replace the label of xi by

L
(k,l)
xi (xk). We denote this graph as G′Tr-IMM

(Figure 3.1). The polynomial computed by G′Tr-IMM
is the

LHS of Equation 3.6 (which is 0). Suppose for contradiction L(k,l)xi (xk) , 0. Then there must exist at

least one xj ∈ xk such that the corresponding coe�cient eij , 0. Consider some (sa− ta) path P that

it includes xi and excludes xj . Such a path always exists. Now, set all the variables to 0 except the

variables appearing in path P and xj . Under this assignment the polynomial computed by G′Tr-IMM

is non-zero as the linear form L
(k,l)
xi (xk) , 0. But, G′Tr-IMM

computes a zero polynomial which is a

contradiction. �

Remark: Observe that Lemma 3.1 is not true for Tr-IMMw,d where w = 1 or d = 2. In particular

32

when d = 2, the elements of the Lie Algebra of Tr-IMMw,2 are not block diagonal. Algorithm 1

crucially exploits the block diagonal structure of the Lie Algebra of Tr-IMMw,d and hence it does not

extend to the case when d = 2.

We elaborate on the spaces Wb and Wd in Lemma 3.2 and Lemma 3.3 respectively. These lemmas

in particular show that these spaces contain matrices of certain kind which help us to mirror the

approach in [18] to give an equivalence test for Tr-IMM.

3.1 The structure ofWb

We introduce few terminologies before explaining the structure of Wb. Recall from De�nition 2.13

that we can associate a graph GTr-IMM with the Tr-IMM polynomial. The edges from layer i to layer

i +1 forms the i-th interface of the graph. The graph GTr-IMM has d interfaces. Roll it into a cylinder

such that the vertex si coincides with the vertex ti for each i ∈ [w] (Figure 3.2). This cylinder also

has d interfaces. Any path monomial is a closed path 1 in the cylinder and vice-versa.

Figure 3.2: Rolling GTr-IMM into a cylinder

Consider B = (bij)n×n ∈Wb. It satis�es Equation 3.4 (the eij ’s in the equation are replaced by the

corresponding bij ’s). We will now see which terms in this equation have non-zero coe�cients.

Consider a term xj · ∂Tr-IMM
xi

in Equation 3.4. Let xi ,xj ∈ xk for some k ∈ [d]. We say that xi and xj
are parallel if and xi and xj do not share any common end point in the graph GTr-IMM, i.e. xi = x

(k)
pq ,

xj = x
(k)
rs and r , p;s , q. We now make the following observation which can be easily veri�ed.

1a closed path is a sequence of vertices v1,v2, . . . , vn,v1 such that (vi ,vi+1) is an edge.

33

Observation 3.2 The term xj · ∂Tr-IMM
∂xi

where xi ,xj ∈ xk are parallel edges does not share a monomial

with any other term in Equation 3.4.

Observation 3.2 implies that Equation 3.4 does not contain terms of the form xj · ∂Tr-IMM
∂xi

where xi
and xj are parallel. We now look at other terms where xi and xj are not parallel.

Monomials broken at k-th interface: A monomial broken at the k-th interface is of the form

xi1i2 · xi2i3 . . .xikik+1 · xi′k+1ik+2 . . .xid i1 ∀k ∈ [d − 1] where ik+1 , i
′

k+1. A monomial broken at the d-th

interface has the form xi1i2 · xi2i3 . . .xid i′1 where i1 , i′1. Any monomial in the term x
(k)
ps · ∂Tr-IMM

∂x
(k)
pq

or

x
(k+1)
qt · ∂Tr-IMM

∂x
(k+1)
st

is a monomial broken at k-th interface (Figure 3.3). Infact it can be veri�ed that any

monomial broken at the k-th interface is contained in one of the terms x(k)ps · ∂Tr-IMM
∂x

(k)
pq

or x(k+1)qt · ∂Tr-IMM
∂x

(k+1)
st

where p,q, s, t ∈ [w]. From the above discussion, we make the following observation.

Figure 3.3: Monomial broken at k-th interface.

Observation 3.3 LetMk denote the set of all monomials broken at k-th interface, where k ∈ [d]. Then

i , j implies,Mi andMj are disjoint.

The following lemma gives a partial characterization of the space Wb. It is interesting to note that a

similar lemma gave a complete characterization of the block diagonal space in case of IMMw,d ([18]).

Lemma 3.2 Let Zw be the space of w×w matrices with diagonal entries 0. Let S be the space spanned

by t × t matrices of the form −ZT ⊗ Iw 0

0 Iw ⊗Z


t×t

34

where t = 2w2 and Z ∈ Zw. Then, B′1 ⊕ . . .⊕B
′
d ⊂Wb where B′k � S for k ∈ [d].

Proof: Consider B = (bij)n×n ∈ Wb satisfying Equation 3.4. From Observation 3.2 and Observa-

tion 3.3 it is clear that Equation 3.4 consists only of terms corresponding to the monomials broken

at each of the d interfaces and we can split Equation 3.4 into d equations corresponding to the

monomials broken at each of the interface. For some k ∈ [d], the equation for the k-th interface is:

∑
p,q,r∈[w]
q,r

b
(k)
(pq,pr) · x

(k)
pr ·

∂Tr-IMM

∂x
(k)
pq

+
∑

p,q,r∈[w]
p,r

b
(k+1)
(pq,rq) · x

(k+1)
rq · ∂Tr-IMM

∂x
(k+1)
pq

= 0 . (3.7)

We now associate subspaces B1, . . . ,Bd with each of these d equations and show that Wb = B1 ⊕

. . .⊕Bd . Let Bk denote the space of n×n matrices Bk whose

• (x(k)pq ,x
(k)
pr)-th entry is b(k)(pq,pr).

• (x(k+1)pq ,x
(k+1)
rq)-th entry is b(k+1)(pq,rq).

• the remaining entries are 0.

Further, Bk satis�es Equation 3.7. For any B ∈Wb,∃ B1 ∈B1,Bd ∈Bd such that B = B1+. . .+Bd .

So Wb = B1 + . . . +Bd . Further, each Bi for i ∈ [d], controls di�erent entries of B. Hence Wb =

B1 ⊕ . . .⊕Bd .

Consider the spacesB′1, . . . ,B
′
d as de�ned in the statement of this lemma. To show thatB′1⊕. . .⊕B

′
d ⊆

Wb, it is su�cient to show that B′k ⊆Bk for each k ∈ [d]. Equation 3.7 can be re-written as:

∑
p,q∈[w]

l
(k)
pq
∂Tr-IMM

∂x
(k)
pq

+
∑
p,q∈[w]

l
(k+1)
pq

∂Tr-IMM

∂x
(k+1)
pq

= 0

where l(k)pq =
∑
r∈[w]
r,q

b
(k)
(pq,pr) · x

(k)
pr and l(k+1)pq =

∑
r∈[w]
r,p

b
(k+1)
(pq,rq) · x

(k+1)
rq . (3.8)

Let Qk = (x(k)ij)i,j∈[w], Q
′
k = (l(k)ij)i,j∈[w] and Qk+1 = (x(k+1)ij)i,j∈[w], Q′k+1 = (l(k+1)ij)i,j∈[w]. Equation 3.8

35

is equivalent to:

Trace(Q1 . . .Qk−1 ·Q′k ·Qk+1 . . .Qd +Q1 . . .Qk ·Q′k+1 ·Qk+2 . . .Qd) = 0 . (3.9)

A su�cient condition for Equation 3.9 to hold is

Q1 . . .Qk−1 ·Q′k ·Qk+1 . . .Qd +Q1 . . .Qk ·Q′k+1 ·Qk+2 . . .Qd = 0

⇐⇒ Q′k ·Qk+1 +Qk ·Q
′
k+1 = 0 . (3.10)

The (i, j)-th entry of Q′k is a linear combination of the i-th row of Qk . Similarly, the (i, j)-th entry

of Q′k+1 is a linear combination of the j-th column of Qk+1. So, ∃ Z1,Z2 ∈ F w×w such that

Q′k+1 = Z1 ·Qk+1 and Q′k =Qk ·Z2.

Since, the coe�cient of x(k)ij in the linear form l
(k)
ij is 0, the diagonal entries of Z2 must be 0. By

similar argument, the diagonal entries of Z1 must be 0. So, Z1,Z2 ∈ Zw. Substituting Q′k+1 =

Z1 ·Qk+1 and Q′k =Qk ·Z2 in Equation 3.10, we have Z1 = −Z2 = Z .

Similarly, given a Z ∈ Zw we can construct B′k that satis�es Equation 3.10 as follows. Let Z =

(zij)i,j∈[w]. Then

l
(k)
pq =

∑
r∈[w]

zrqx
(k)
pr and l(k+1)pq =

∑
r∈[w]

zprx
(k+1)
rq .

But

l
(k)
pq =

∑
r∈[w]
r,q

b
(k)
pq,pr · x

(k)
pr and l(k+1)pq =

∑
r∈[w]
r,p

b
(k+1)
pq,rq · x

(k+1)
rq .

Comparing the coe�cients, we get b(k)(pq,pr) = zrq and b(k+1)(pq,rq) = zpr . All other entries of B′k is 0. The

36

sub matrix of B′k indexed by the variables in xk] xk+1 is:

−ZT ⊗ Iw 0

0 Iw ⊗Z


t×t

where t = 2w2 and Z ∈ Zw. For each k ∈ [d], de�ne B′k to be the space containing n×nmatrices B′k
as discussed above. Clearly, B′k � S. Any B′k ∈B

′
k satis�es Equation 3.10 and hence Equation 3.9. So

B′k ⊂Bk . Hence, B′1 ⊕ . . .⊕B
′
d ⊂Wb. �

3.2 The structure ofWd

Lemma 3.3 gives a partial characterization of the space Wd which will in turn aid us in the proof of

Lemma 3.4.

Lemma 3.3 Let Yw be the space of w ×w diagonal matrices. Let Dk be the space of n × n diagonal

matrices which is isomorphic to

span
F


−Y ⊗ Iw 0

0 Iw ⊗Y


t×t


where t = 2w2,Y ∈ Yw. Then, D1 ⊕D2 ⊕ . . .⊕Dw ⊆Wd

Proof: Let D = (dij)n×n ∈Wd . By de�nition, it satis�es the following equation:

d∑
k=1

∑
i,j∈[w]

d
(k)
ij x

(k)
ij
∂Tr-IMM

∂x
(k)
ij

= 0 . (3.11)

Let, Qk = (x(k)ij)i,j∈[w] and Q′k = (d(k)ij x
(k)
ij)i,j∈[w], ∀k ∈ [d]. Then, Equation 3.11 can be re-written as

follows:

d∑
k=1

Trace(Q1 . . .Qk−1 ·Q′k ·Qk+1 . . .Qd) = 0 . (3.12)

37

A su�cient condition for Equation 3.12 to hold is:

d∑
k=1

Q1 . . .Qk−1 ·Q′k ·Qk+1 . . .Qd = 0 . (3.13)

De�ne d + 1 := 1 and 1− 1 := d. Let Dk ∈Wd be a matrix such that Q′1, . . . ,Q
′
k−1,Q

′
k+2, . . . ,Q

′
d are

all 0 in Equation 3.13. Then, it will satisfy the following equation:

Q1 . . .Qk−1 ·Q′k ·Qk+1 . . .Qd +Q1 . . .Qk ·Q′k+1 ·Qk+2 . . .Qd = 0

=⇒ Q′k ·Qk+1 +Qk ·Q
′
k+1 = 0 . (3.14)

By comparing the coe�cients of the (i, j)th entry of Q′k ·Qk+1 and Qk ·Q′k+1, we observe that the

ith row of Q′k must be equal to the negative of the jth column of Q′k+1 for any i, j ∈ [w]. So, Q′k and

Q′k+1 must have the following structure:

Q′k =


−α1x

(k)
11 . . . −αwx

(k)
1w

...
. . .

...

−α1x
(k)
w1 . . . −αwx

(k)
ww



Q′k+1 =


α1x

(k+1)
11 . . . α1x

(k+1)
1w

...
. . .

...

αwx
(k+1)
w1 . . . αwx

(k+1)
ww


Clearly Q′k and Q′k+1 can be written as Q′k = −QkY , Q′k+1 = YQk+1 where Y ∈ Yw is a diagonal

matrix with diagonal entries α1, . . . ,αw. The sub matrix of the corresponding Dk which is indexed

by the variables in xk] xk+1 is:

−Y ⊗ Iw 0

0 Iw ⊗Y


t×t

; t = 2w2 .

38

All the other entries of Dk will be 0. Conversely, given Y ∈ Yw we can construct a Dk ∈ Dk that

satis�es Equation 3.13. This implies

Dk � span


−Y ⊗ Iw 0

0 Iw ⊗Y


t×t

 t = 2w2;Y ∈ Yw .

�

3.3 Characteristic polynomial of a random element in gTr-IMM

Lemma 3.5 says that the characteristic polynomial of a random element L ∈ gTr-IMM is square free with

high probability. This is crucially used in the block-diagonalization of an element gf . Lemma 3.4 is

used in the proof of Lemma 3.5 .

Lemma 3.4 There is a diagonal matrix D ∈ gTr-IMM with distinct entries.

Proof: The argument is same as in [18]. We present the proof here for completeness. From Lemma

3.3, we know that ∀k ∈ [d], ∃Dk ∈Dk where

Dk �

−Yk ⊗ Iw 0

0 Iw ⊗Yk


and Yk ∈ Yw. Treat the entries of the Yk as distinct formal variables yk = (y(k)i)i∈[w]. Let D =

D1 + . . .+Dd . By Lemma 3.3, D ∈Wd . The (x(k)ij ,x
(k)
ij)-th entry of D is −y(k)j + y(k−1)i . Each entry of

D is a distinct linear form in y variables. There are n such linear forms l1(y), . . . , ln(y). Suppose we

assign values to these ys uniformly at random from a set S ⊂ F . (All the probabilities given below

is over the randomness of y values).

For i , j and i, j ∈ [n]

P r[li(y) = lj(y)] = P r[li(y)− lj(y) = 0] ≤ 1
|S |
.

Let A denote the event that all the n linear forms have distinct values after assigning values to the

39

y variables.

P r[A] =
∧

i,j;i,j∈[n]
P r[li(y) , lj(y)]

= 1−
∨

i,j;i,j∈[n]
P r[li(y) = lj(y)]

≥ 1− n
2

|S |

If we take |S | > n2, then P r[A] > 0. So, there exists a D ∈Wd with all entries distinct.

�

Lemma 3.5 Let L1, . . . ,Lt be a basis of gTr-IMM and L =
∑t
i=1 riLi where ri ∈R S;S ⊂ F ; |S | = 2n3.

Then the characteristic polynomial of L is square free with probability at least 1− 1
poly(n) .

Proof: Let hr(x) be the characteristic polynomial of L. If hr(x) is not square free, then hr(x) and
∂hr
∂x would share a common factor. Hence to show that hr(x) is square free, it is su�cient to show

that hr(x) and ∂hr
∂x are co-prime. hr(x) and ∂hr

∂x are co-prime if and only if Resx(hr(x), ∂hr∂x) , 0. Treat

the r’s as formal variables. Then hr(x) is a polynomial in x and the r variables.

Observation 3.4 The Resx(hr(x),
∂hr
∂x) is not an identically zero polynomial in the r variables with

degree at most 2n2.

Proof: Sylx(hr(x),
∂hr
∂x) is a (2n−1)×(2n−1) matrix whose entries are polynomials in the r variables

of degree at most n. Hence,Resx(hr(x), ∂hr∂x) is a polynomial in r variables with degree at most n ×

(2n− 1) ≤ 2n2. If Resx(hr(x), ∂hr∂x) is a identically zero polynomial then hr(x) is not square free for

every setting of the r variables. Set r such that L is a diagonal matrix with distinct diagonal entries

(Such an L exists by Lemma 3.4). For such an L, hr(x) is square free, which is a contradiction. �

Since Resx(hr(x), ∂hr∂x) is a not an identically zero polynomial in r, we can apply Schwartz-Zippel

lemma. The probability that Resx(hr(x), ∂hr∂x) = 0 where each ri is chosen independently and uni-

formly at random from S is at least 1− 2n2
2n3 = 1− 1

poly(n) . �

40

Chapter 4

Irreducible Invariant Subspaces of gf

In this chapter we characterize the irreducible invariant subspaces of gTr-IMM and use this to com-

pute a basis for the irreducible invariant subspaces of a polynomial f equivalent to Tr-IMMw,d .

4.1 Irreducible invariant subspaces of gTr-IMM

Recall that U is an invariant subspace of gTr-IMM if for all M ∈ gTr-IMM, MU ⊆ U. We can associate

an unit vector ei ∈ F
n to each variable xi ∈ x based on the ordering of the x variables de�ned

in Section 2.2. Let Uk be the coordinate subspace (See De�niton 2.7) spanned by the unit vectors

corresponding to the variables in xk for all k ∈ [d]. In Lemma 4.1 we show that U1, . . . ,Ud are the

only irreducible invariant subspaces of gTr-IMM.

Claim 4.1 Let U be an invariant subspace of gTr-IMM. Then U is a coordinate subspace.

Proof: For a vector u = (u1, . . . ,un) ∈ U. Let Su be the set of all non zero coordinates of u, i.e.

Su := {j : uj , 0 and j ∈ [n]} and Eu := {ej : j ∈ Su} be the corresponding unit vectors. Further

suppose E := ∪u∈UEu. To show that U is a coordinate subspace,it is su�cient to show that span(E)

= U. Clearly, U ⊆ span(E). To complete the proof we show that ej ∈ U whenever j ∈ Su for some

u ∈ U.

By Lemma 3.4, there exists a diagonal matrix D ∈ gTr-IMM with distinct entries λ1, . . . ,λn. Hence,

D iu = ui = (λi1u1, . . . ,λ
i
nun) ∈ U for all i ∈ [n] and D0u = u0 = u. Denote |Su| asm. We use the fact

that since λ1, . . . ,λn are distinct to argue that the vectors u0, . . . ,um−1 are linearly independent as

41

follows: Let c0, . . . , cm−1 ∈ F be such that c0u0 + . . .+ cm−1um−1 = 0 and not all c0, . . . , cm−1 are 0. In

particular for each coordinate j ∈ [1,n− 1]

uj(c0 + c1λj + . . .+ cm−1λ
m−1
j) = 0

Notice that each λj , j ∈ Su, is a solution of the equation c0 + c1λ + . . . + cm−1λm−1 = 0. But a

non zero degree m − 1 univariate polynomial in λ can have at most m − 1 roots, implying that

c0 = c1 = . . . = cm−1 = 0.

Since u0, . . . ,um−1 ∈ span(Eu) and dim(span({u0, . . . ,um−1})) = dim(span(Eu)) = m, we infer that

span({u0, . . . ,um−1}) = span(Eu)). Hence ej ∈ U where j ∈ Su for some u ∈ U. �

Lemma 4.1 The only irreducible invariant subspaces of gTr-IMM are U1, . . . ,Ud .

Proof: Let M ∈ gTr-IMM. Since M is block-diagonal, M ·Uk ⊆ Uk for k ∈ [d]. Hence U1, . . . ,Ud are

invariant subspaces. We will now show that Uk is irreducible for k ∈ [d]. Let U ⊂ Uk for some

k ∈ [d]. We want to show that U = Uk , i.e. ∀ y ∈ xk , ey ∈ U. Let 1w be the all 1 w ×w matrix and

1̃w = 1w − Iw. Consider L ∈ gTr-IMM such that

L = Bk−1 +Dk−1 +Bk

where Bk ,Bk−1,Dk−1 are de�ned as follows:

• Bk ∈B′k and whose sub-matrix indexed by variables xk] xk+1 looks like :

1̃w ⊗ Iw 0

0 Iw ⊗−1̃w

 .

• Bk−1 ∈B′k−1 and whose sub-matrix indexed by variables xk−1] xk looks like :

−1̃w ⊗ Iw 0

0 Iw ⊗ 1̃w

 .

42

• Dk−1 ∈D′k−1 and whose sub-matrix indexed by variables xk−1] xk looks like :

−Iw ⊗ Iw 0

0 Iw ⊗ Iw

 .

The sub matrix of L indexed by the variables from xk is the w2 ×w2 matrix

Lk = 1̃w ⊗ Iw + Iw ⊗ 1̃w + Iw ⊗ Iw .

Figure 4.1 depicts the structure of Lk . Superscripts of the variables are dropped from Figure 4.1 for

Figure 4.1: Structure of Lk 1

clarity. It has w2 blocks each of size w ×w. The diagonal blocks are 1w and the remaining blocks

are Iw.

1Image taken from [18].

43

Let u ∈ U and y = x(k)ij be such that the row indexed by y is non-zero in u. Then from the proof of

Claim 4.1 it follows that ey ∈ U. Since U is invariant Ley ∈ U. In Figure 4.1, Ley is the column of

Lk indexed by the variable x(k)ij . Looking at the structure of Lk in Figure 4.1, we make the following

observation.

Observation 4.1 Let C := {x(k)1j ,x
(k)
2j , . . . ,x

(k)
wj } and R := {x(k)i1 ,x

(k)
i2 , . . . ,x

(k)
iw }. The entries of Ley corre-

sponding to the variable indexed by y′ ∈ C∪R are 1 (due to the presence of 1w matrices and Iw matrices

respectively), implying ey′ ∈ U for all y′ ∈ C ∪R.

We apply Observation 4.1 repeatedly to imply that ey ∈ U for all y ∈ xk . Hence U = Uk . We now

show that U1, . . . ,Ud are the only irreducible invariant subspaces of gTr-IMM. Let V be an irreducible

invariant subspace of gTr-IMM and hence an coordinate space (follows from Claim 4.1). Let ex ∈ V

where x ∈ xk for some k ∈ [d]. Observation 4.1 implies that closure(ex) = Uk . So Uk ⊆ V . Hence V

is a direct sum of the Uk’s such that ex ∈ V for some x ∈ xk . But V is irreducible, implying that it is

equal to one of these irreducible invariant subspaces. �

4.2 Irreducible Invariant Subspaces of gf
Let f be equivalent to Tr-IMM, i.e. f (x) = Tr-IMMw,d(Ax) where A ∈ GL(n,F). The irreducible

invariant subspaces of gf are related to the irreducible invariant subspaces of gTr-IMM as given by

Corollary 4.1.

Observation 4.2 U is an irreducible invariant subspace of gTr-IMM if and only if A−1U is an irreducible

invariant subspace of gf .

Proof: If f (x) = Tr-IMM(Ax) then gf = A−1gTr-IMMA (from Fact 2.2). LetU be an irreducible invariant

subspace of gTr-IMM. Then, for any u ∈ U and M ∈ gTr-IMM, Mu ∈ U. Let u′ ∈ A−1U, i.e. u′ = A−1u for

some u ∈ U. Let M ′ = A−1MA ∈ gf where M ∈ gTr-IMM. Then

M ′u′ = (A−1MA)(A−1u)

=⇒ M ′u′ = A−1(Mu) ∈ A−1U .

44

Hence A−1U is an invariant subspace of gf . Now we show that A−1U is irreducible. Suppose A−1U

is not irreducible. Then A−1U = V1 ⊕V2 where V1 and V2 are invariant subspaces of gf . But this

would imply U = A ·V1⊕A ·V2 which is a contradiction. The other direction can proved in a similar

fashion. �

Corollary 4.1 follows from Observation 4.2 and Lemma 4.1.

Corollary 4.1 The only irreducible invariant subspaces of gf are A−1U1, . . . ,A
−1Ud .

We exploit the relation between the invariant subspaces of gTr-IMM and gf to give an e�cient ran-

domized algorithm that computes a bases of the irreducible invariant subspaces of gf when given a

basis of gf .

4.2.1 Computing a basis for the irreducible invariant subspaces of gf
Algorithm 3 outputs the irreducible invariant subspaces of gf given a basisM1, . . . ,Mt of gf . This is

the same algorithm used in [18] to compute the irreducible invariant subspaces of the Lie Algebra of

a polynomial equivalent to IMMw,d polynomial. After stating the algorithm, we analyze it by tracing

its steps.

Algorithm 3 Computing the irreducible invariant subspaces of gf
INPUT: A basis {M1, . . . ,Mt} of gf .
OUTPUT: A basis of the irreducible invariant subspaces of gf .

1: Pick a random element R′ ∈ gf as follows: for each i ∈ [t], pick ri ∈R S independently and
uniformly at random, where S ⊆ F and |S | = 2n3. De�ne R′ :=

∑
i∈[t] ri ·Mi .

2: Compute h(x)− the characteristic polynomial of R′ .
3: if h(x) is not square-free then
4: Output ‘Fail ’.
5: Factor h(x) into irreducible factors g1(x), . . . , gs(x) over the �eld F .
6: Find a basis of the null spaces N′1, . . . ,N′s of g1(R′), . . . , gs(R′) respectively.
7: For every i ∈ [s], pick an arbitary vector v ∈N′i and compute the closure(v) under the action of
gf using Algorithm 2.

8: Let V1, . . . ,Vs be the list of the closure spaces. Remove duplicates from this list by comparing all
possible pairs of spaces from the list and get the pruned list V1, . . . ,Vd .

9: Output the list {V1, . . . ,Vd}.

45

Steps 1-4: Let R′ be a random element of gf as chosen in step 1 and R = A · R′ · A−1 be the

corresponding random element in gTr-IMM. Since the elements of gTr-IMM is block-diagonal (Lemma 3.1),

R is a block-diagonal matrix with individual blocks R1, . . . ,Rd (Figure 4.2). Further, since R and R′

are similar matrices, they have the same characteristic polynomial denoted as h(x) in step 2. By

Lemma 3.5, h(x) is square free with high probability. This ensures that the check at step 3 succeeds

with high probability.

Figure 4.2: A random matrix R ∈ gTr-IMM

Step 5 Since R is block-diagonal, its characteristic polynomial h(x) can be written as product of

the characteristic polynomial of R1, . . . ,Rd . Let hk(x) be the characteristic polynomial of Rk where

k ∈ [d]. Then h(x) =
∏
k∈[d]hk(x). Let g1(x), . . . , gs(x) be the distinct irreducible factors of h(x),

i.e. h(x) =
∏s
i=1 gi(x). Note that each gi(x) is a factor of some hk(x) where k ∈ [d]. Factoring the

univariate polynomial h(x) into irreducible factors can be performed e�ciently (See Algorithmic

Preliminary 2)

Step 6 Let Ni be the null space of gi(R) and N′i be the null space of gi(R′). In step 6 we compute

a basis of the null spaces N′1, . . . ,N′s by solving the system of linear equations gi(R′) · x = 0 which

can be done e�ciently (See Algorithmic Preliminary 3). It can be easily veri�ed that Ni = AN′i .

46

Claim 4.2 explains the relation between these null spaces and the irreducible invariant subspaces of

gf . The algorithm exploits this relation in step 7 to compute these irreducible invariant subspaces.

The proof of Claim 4.2 is provided at the end of the chapter.

Claim 4.2 Let Ni be the null space of gi(R) and N′i be the null space of gi(R′) where gi(x) is an

irreducible factor of the characteristic polynomial hk(x) of some Rk , k ∈ [d]. Then Ni ⊆ Uk and N′i ⊆

A−1Uk .

Step 7 In step 7, we compute the closure of an arbitrary vector v ∈ N′i for all i ∈ [s]. This can be

computed e�ciently. (See Algorithmic Preliminary 4). In Lemma 4.2 which is proved at the end of

the chapter, we show that the closure of such a vector is an irreducible invariant subspace of gf .

Lemma 4.2 Let N′i be the null space of gi(R
′) where gi(x) is an irreducible factor of the characteristic

polynomial hk(x) of some Rk , k ∈ [d] and v ∈N′i . Then the irreducible invariant subspace A
−1Uk of gf

is equal to the closure(v) under the action of gf .

Steps 8-9: In step 8, we remove the duplicate spaces from the list and output the pruned list in

step 9.

Remark: If f is not equivalent to Tr-IMM, then there does not exist an A ∈ GL(n) such that

f (x) = Tr-IMMw,d(Ax). We perform a few additional checks after step 8 to handle this case. If the

length of the pruned list is not d then output ‘Fail’. If F n , V1 ⊕ . . .⊕Vd then output ‘Fail’.

Proofs of some Lemmas and Claims
Claim 4.2 (Restated) LetNi be the null space of gi(R) andN′i be the null space of gi(R

′) where gi(x)

is an irreducible factor of the characteristic polynomial hk(x) of some Rk , k ∈ [d]. Then Ni ⊆ Uk and

N′i ⊆ A
−1Uk .

Proof:

Observe that Ni ⊆ Uk implies that N′i ⊆ A
−1Uk . So, it is su�cient to show that Ni ⊆ Uk . Let v ∈Ni .

We need to show that v ∈ Uk . Let vi be the rows of v restricted to the variables indexed by xi .

47

Figure 4.3: A random matrix R ∈ gTr-IMM

Consider the matrix hk(R) (Figure 4.3). It is a block-diagonal matrix with blocks hk(R1), . . . ,hk(Rd).

Since v ∈Ni and gi(x) is a factor of hk(x),

gi(R) · v = 0

=⇒ hk(R) · v = 0

=⇒ hk(Ri) · vi = 0; ∀i ∈ [d] .

Further hj(Rj).vj = 0 for all j ∈ [d] as hj(x) is the characteristic polynomial of Rj . Since hk(x) and

hj(x) are co-prime for k , j , by Bezout’s lemma there exists polynomial p(x) and q(x) ∈ F [x] such

that

p(x)hk(x) + q(x)hj(x) = 1

=⇒ p(Rj)hk(Rj) + q(Rj)hj(Rj) = In

=⇒ p(Rj)hk(Rj) · vj︸ ︷︷ ︸
0

+q(Rj)hj(Rj) · vj︸ ︷︷ ︸
0

= vj

48

=⇒ vj = 0

vj = 0 for j , k implies v ∈ Uk . Hence, Ni ⊆ Uk . �

Lemma 4.2 (Restated) Let N′i be the null space of gi(R
′) where gi(x) is an irreducible factor of the

characteristic polynomial hk(x) of someRk , k ∈ [d] and v ∈N′i . Then the irreducible invariant subspace

A−1Uk of gf is equal to the closure(v) under the action of gf .

Proof: From Claim 4.2 N′i ⊆ A
−1Uk . Since A−1Uk is irreducible, A−1Uk is the smallest invariant

subspace of gf containing N′i . Hence for any vector v ∈N′i , A
−1Uk = closure(b) under the action of

gf . �

49

Chapter 5

Computing the layer spaces of f and

reduction to Block Equivalence testing

In this chapter we exploit the relation between the irreducible invariant subspaces of a poly-

nomial equivalent to f (computed in Chapter 4) and the layer spaces of f to compute a basis

for the later. We will also see that the matrix A such that f (x) = Tr-IMM(Ax) can be computed

from these layer spaces (reordered appropriately) by reducing the problem to Block Equivalence

testing for Tr-IMM polynomial.

Let f = Tr-IMMw,d(Ax). Then there existsw×wmatricesX1, . . . ,Xd whose entries are linear forms in

the x variables such that f (x) = Trace(
∏d
i=1Xi). SinceA is invertible, the entries ofX1, . . . ,Xd are F -

linearly independent. Recall the de�nition of Layer Spaces from De�nition 2.21. LetX1, . . . ,Xd be the

layer spaces corresponding toX1, . . . ,Xd respectively. Algorithm 3 outputs the irreducible invariable

subspaces V1, . . . ,Vd of gf where Vi = A−1Uσ (i) for all i ∈ [d] and σ is a permutation on [d]. Recall

that dim(Vi) = w2 for i ∈ [d]. The invariant subspace Vi can be represented by a n×w2 matrix Vi
where the k-th column of Vi is the k-th basis vector of Vi . De�ne V := V1|V2| . . . |Vd−1|Vd to be the

matrix obtained by concatenating the matrices V1, . . . ,Vd in that order. We have already checked if

F
n = V1 ⊕ . . .⊕Vd in Algorithm 3. Since F

n = V1 ⊕ . . .⊕Vd , the basis vectors of the V1, . . . ,Vd are

linearly independent. Hence V −1 exists. In this chapter we present an algorithm (Algorithm 4) to

compute a basis for the layer spaces of f given any basis of the irreducible invariant subspaces of

gf (as computed in Algorithm 3). We will also see that these layer spaces are unique.

50

Algorithm 4 Computing the layer spaces of f
INPUT: n×n matrix V as described previously.
OUTPUT: Y1, . . . ,Yd− the layer spaces of f .

1: Compute V −1.
2: Yi := space spanned by the rows (i − 1)w2 to iw2 for all i ∈ [d].
3: Output Y1, . . . ,Yd in that order.

The following lemma establishes the correctness of Algorithm 4.

Lemma 5.1 If f = Trace(X1 . . .Xd) and Y1, . . . ,Yd is the output of Algorithm 4 then there exists a

permutation σ on [d] such that Yi = Xσ (i), ∀ i ∈ [d].

Figure 5.1: The matrices Ek .E,E−1

Proof: Recall that Uσ (k) is the space spanned by coordinate vectors corresponding to the variables

in xσ (k). Since Vk = A−1Uσ (k), Vk can be written as Vk = A−1Ek where Ek is the following n ×w2

matrix (see Figure 5.1): its rows are indexed by the x variables and the columns are indexed by xσ (k)

variables. Further, the only non-zero entries of Ek corresponds to the entries whose rows are indexed

by xσ (k) variables. De�ne E := E1| . . . |Ed as the concatenation of the matrices E1, . . . ,Ed . Figure 5.1

depicts the structure of E and E−1. The rows of E are indexed by the variables from x1, . . . ,xd in

the usual order while the columns are indexed by the variables xσ (1), . . . ,xσ (d) in that order.The only

51

non-zero entries of E are con�ned to the blocks Bσ (1), . . . ,Bσ (d) where Bσ (k) is the block whose rows

and columns are indexed by the variables in xσ (k). The columns of E−1 are indexed by the variables

from x1, . . . ,xd in the usual order while the rows are indexed by the variables xσ (1), . . . ,xσ (d) in that

order. The non-zero entries of E−1 are con�ned to the blocks B−1σ (1), . . . ,B
−1
σ (d) where B−1σ (k) is the block

whose rows and columns are indexed by the variables in xσ (k). As V = A−1E, we have V −1 = E−1A

(See Figure 5.2). Looking at the structure of V −1 from Figure 5.2 we infer that the span of rows

(i − 1)w2 to iw2 is equal to Xσ (i) for each i ∈ [d].

Figure 5.2: The matrix V −1 = E−1A

�

Remark: (Uniqueness of the layer spaces) Recall from Chapter 4 that for a polynomial f equiv-

alent to Tr-IMM, the irreducible invariant subspaces of V1, . . . ,Vd of gf are unique. Correctness

of Algorithm 4 implies that the layer spaces of f is also unique in the following sense: Suppose

f (x) = Trace(X1 ·X2 . . .Xd) = Trace(X ′1 ·X
′
2 . . .X

′
d) where the entries of Xi and X ′i are linearly in-

dependent linear forms in the x variables. Let Xi and X′i denote the layer spaces of Xi and X ′i
respectively for each i ∈ [d]. Then {X1, . . . ,Xd} = {X′1, . . . ,X

′
d}

52

5.1 Reordering the layer spaces
Given some permutation of the layer spaces Xσ (1), . . . ,Xσ (d), we wish to recover σ . Claim 5.1 says

that this can be done in randomized polynomial time. Before stating the claim, we de�ne the notion

of evaluation dimension which will turn out to be very useful in our proof. This de�nition is given

in [10] and was also used in [18] to reorder the layer spaces of a polynomial equivalent to IMMw,d .

De�nition 5.1 (Evaluation Dimension) Let f (x) be ann-variate polynomial and x′ ⊆ x. Let f (x)x′=α

denote the partial evaluation of f when x′ is substituted with α ∈ F |x′ |. The evaluation dimension of f

with respect to x′ is de�ned as:

Evaldimx′ (f) := dim(span
F
({f (x)x′=α : α ∈ F |x

′ |})) .

The following example illustrates the above de�nition.

Example 5.1 Let f (x1,x2) = x1+2x1x2 be a polynomial overQ. Substituting x2 = a for some a ∈Q,

we have f (x){x2}={a} = (2a+1)x1. Then Evaldim{x2}(f) = dim(span
Q
({(2a+1)x1 : a ∈Q})) = 1.

Claim 5.1 There is a randomized polynomial time algorithm that takes as input the bases of the layer

spaces Xσ (1), . . . ,Xσ (d) and outputs σ ′ which is a rotation of the permutation σ with probability atleast

1− 1
poly(n) .

Proof: We �rst present the high level idea of the proof. We de�ne a linear map µ that maps the

x variables to a fresh set of z variables and hence maps the polynomial f (x) to a polynomial h(z)

which can be represented as:

h(z) = Trace(Z1 ·Z2 . . .Zd)

such that h(z) is a set-multilinear polynomial in the variable sets z1, . . . ,zd where zi denotes the

set of variables appearing in the matrix Zi for each i ∈ [d]. Further the entries of Z1, . . . ,Zd are

F -linearly independent linear forms in the z variables. We now work with this new polynomial h

to compute σ .

53

Step 1 Compute the linear map µ: Let zk be a fresh set of dim(X)σ (k)(= w2) variables and z :=

z1] . . .]zd . Let µ be a map that take each variable in x to a linear form in the z variables satisfying

the following condition: The i-th basis vector of Xσ (k) maps to the i-th variable of zk . Replacing the

variables in f (x) by their image under the linear map µ, we obtain a new polynomial h(z) which

can be written as follows:

h(z) = Trace(Z1 ·Z2 . . .Zd)

where Zi is a w×w matrix for i ∈ [d]. The entries of each Zi for i ∈ [d] are F -linearly independent

linear forms in Z . Further the linear forms in Zk contains variables only from zσ−1(k).

Step 2 Compute σ−1 incrementally: Let yj = zσ−1(1)] . . .] zσ−1(j) for j ∈ [d]. The following obser-

vation (proved later) helps in computing σ−1 incrementally.

Observation 5.1 Let j ∈ [1,d−1], k ∈ [2,d] and zk 1 yj . If k = σ−1(j+1) then Evaldimyj]zk (h) = w
2;

elseEvaldimyj]zk (h) > w
2. Further, there is an e�cient randomized procedure to computeEvaldimyj]zk (h).

We can construct σ−1 incrementally using Observation 5.1 once we correctly identify y1. If we

choose y = zσ−1(1), Observation 5.1 yields σ−1. Since Trace(Z1 · Z2 . . .Zn−1 · Zn) = Trace(Zn ·

Z1 . . .Zn−2 ·Zn−1), Observation 5.1 can still be applied in the case when y1 is chosen to be zσ−1(k) for

some k ∈ [2,d]. However, the resulting permutation σ ′ will be some rotation of the permutation σ .

�

We now need to establish that Evaldimyj]zk (h) can be computed e�ciently (Observation 5.1). Fact 2.3

and Claim 2.2 from Chapter 2 will be used in the proof of Observation 5.1.

Proof of Observation 5.1 Recall that h(z) = Trace(Z1 . . .Zd) and |zk | = w2 for all k ∈ [d]. Let V :=

span
F
(h(z)|yj]zk=α : α ∈ F |yj]zk |) denote the space spanned by polynomials obtained by the partial

evaluation of h when yj] zk is substituted by some α ∈ F |yj]zk |. Then Evaldimyj]zk (h) = dim(V).

We now compute dim(V) in both cases (k = σ−1(j +1) and k , σ−1(j +1)).

Case 1: k = σ−1(j+ 1)

54

Let G = (gij)w×w = Zj+2Zj+3 . . .Zd and G′ = (g
′
ij)w×w = Z1Z2 . . .Zj+1. Then

h(z) = Trace(G′G)

=
w∑
i=1

w∑
k=1

g
′

ikgki

h(z) will evaluate to gij when the following system of equations is satis�ed:

g
′
pq = 0 for all p , j and p ∈ [w]

g
′
ji = 1

g
′
jq = 0 for all q , i and q ∈ [w]

Since the linear forms in Z1, . . . ,Zd are linearly independent, there exists an assignment to the vari-

ables in yj] zj+1 such that the above system is consistent. Further every partial evaluation of h

at yj] zj+1 can be expressed as F -linear combination of {gij : i, j ∈ [w]}. Hence {gij : i, j ∈ [w]}

spans the space V. From Fact 2.3 it follows that {gij |i, j ∈ [w]} are linearly independent. Hence

Evaldimyj]zk (h) = w
2 = |zk |.

Case 2: k , σ−1(j+ 1)

We rewrite h(z) in the following form:

h(z) = Trace(Z1 . . .Zj︸ ︷︷ ︸
G′=(g ′ij)w×w

·Zj+1 . . .Zσ (k−1)︸ ︷︷ ︸
P=(pij)w×w

· Zσ (k)︸︷︷︸
Z=(zij)w×w

·Zσ (k+1) . . .Zd︸ ︷︷ ︸
G=(gij)w×w

)

=
∑
i∈[w]

∑
k,l.m∈[w]

g ′ikpkmzmlgli

Similar to the reasoning in Case 1, there exists an assignment to yj] zk such that h(z) evaluates

to pijgmn for all i, j,m,n ∈ [w] and every partial evaluation of h at yj] zk can be expressed as F -

linear combination of {pijgmn : i, j,m,n ∈ [w]}. Hence {pijgmn : i, j,m,n ∈ [w]} spans the space V.

From Fact 2.3 it follows that {pij |i, j ∈ [w]}, {gmn|m,n ∈ [w]} and hence {pijgmn : i, j,m,n ∈ [w]} are

linearly independent. Therefore, Evaldimyj]zk (h) = w
4 > |zk |.

55

An e�cient randomized procedure to compute Evaldimyj]zk (h) Let S |yj]zk | ⊂ F
|yj]zk | and

|S | = poly(n). Choose points a1, . . . ,an2 from S |yj]zk | independently and uniformly at random and

output the dimension of the space spanned by h(a1), . . . ,h(an2). Let Evaldimyj]zk (h) = e. Observe

that h(z) can be expressed as follows:

h(z) =
∑
i∈[e]

fi(yj] zk) · qi (5.1)

where fi and qi are variable disjoint and the q1, . . . , qe form a basis of the space V (which was de�ned

in the proof of Observation 5.1). Further {fi |i ∈ [e]} , {qi |i ∈ [e]} are linearly independent sets of

polynomials. Hence, to show that h(a1), . . . ,h(ae) is linearly independent, it is su�cient to show

that the following matrix is full rank:

M :=


f1(a1) . . . fe(a1)
...

...
...

f1(ae) . . . fe(ae)


e×e

Claim 2.2 implies that the matrix M is full rank with high probability. h(a1), . . . ,h(ae) is linearly in-

dependent implies that the dimension of the space spanned by the polynomials h(a1), . . . ,h(an2)

is at least e. Equation 5.1 implies that the dimension of the space spanned by the polynomials

h(a1), . . . ,h(an2) is at most e. Hence, with high probability dim(span
F
(h(a1), . . . ,h(an2))) = e.

5.2 Reduction to Block Equivalence testing
Now that we have the basis of the layer spaces in correct order, we show that computing the matrix

A for which f (x) = Tr-IMMw,d(Ax) reduces to Block Equivalence testing (de�ned in Chapter 6.

Claim 5.2 Given the basis of the spaces X1, . . . ,Xd in order , the width w and an e�cient algorithm

for Block Equivalence testing for Tr-IMMw,d , we can �nd an invertible n × n matrix A in polynomial

time such that Tr-IMMw,d(x) = f (Ax)

Proof: Compute a linear map x 7→ Âx such that the basis vectors of Xk maps to distinct variable

in xk . This can be computed e�ciently. Let h(x) = f (Âx). Then h(x) = Trace(X1 ·X2 . . .Xd), and the

56

entries of Xi are linear forms de�ned by the linear map x 7→ Âx. Since we mapped each basis vector

of Xk to distinct variables, xi and xj are disjoint whenever i , j and i, j ∈ [d], i.e. h(x) is a sum of set-

multilinear ABPs. As f (x) = Tr-IMMw,d(Ax), we infer that h(x) = Tr-IMMw,d(V x) where V = A · Â

is a block-diagonal matrix. We compute V using Algorithm 6 and obtain A using A = V Â−1. �

In the proof of Claim 5.2, we saw that it is su�cient to compute a V such that h(x) = Tr-IMMw,d(V x)

where V is a block-diagonal matrix. We call this problem as Block Equivalence Testing. In the next

chapter, we will discuss about Block Equivalence Testing in more detail.

57

Chapter 6

Block Equivalence Testing

In this chapter we formally de�ne the Block Equivalence Testing problem for the Tr-IMMw,d

polynomial and show that it reduces to Equivalence Testing for the DETn polynomial.

In Chapter 5 we saw that the Equivalence testing problem for Tr-IMMw,d polynomial 1 reduces to

the Block Equivalence testing problem which we precisely state below.

Block Equivalence testing for Tr-IMMw,d polynomial: Given black-box access to an n variate,

degree d polynomial f check if there is an invertible block-diagonal matrix V ∈ F
n×n such that

f (x) = Tr-IMMw,d(V x). If such a V exists, then output V ; else output “no such V exists”.

An alternate equivalent restatement of the above problem is as follows :

Block Equivalence testing for Tr-IMMw,d polynomial: (Alternate version) Given black-box

access to an n variate, degree d polynomial f , check if there are matrices X1, . . . ,Xd such that

f (x) = Trace(X1 ·X2 . . .Xd) whereXi is aw×wmatrix whose entries are linearly independent linear

forms in the variable set xi for each i ∈ [d]. Further the variable sets are disjoint, i.e. xi ∩ xj = ∅

whenever i , j . Output X1, . . . ,Xd if such matrices exists; else output “no such matrices exist”.

Recall the de�nition of set-multilinear ABP 2 from De�nition 2.22. The following claim, which we
1where w ≥ 2 and d > 2
2The size of the ABP is the sum of widths of each layer. In our work, we consider ABPs having the same width w′

at each layer.

58

state without proof (see [19]) gives us the width of smallest set-multilinear ABP computing any

polynomial.

Claim 6.1 (Smallest width set-multilinear ABP computing f) Let f (x) be an n-variate, degree

d polynomial which is set-multilinear in the variable sets x1, . . . ,xd . Further, let w′ be the width of

the smallest size uniform width set-multilinear ABP with the variable ordering x1, . . . ,xd computing f .

Then Evaldimyi (f) = w
′ where yi = x1] . . .] xi for each i ∈ [d].

Recall from the proof of Claim 5.1 that if f is equivalent to Tr-IMMw,d then Evaldimyi(f (x)) = w
2

where yi = x1] . . .]xi for all i ∈ [d]. Hence the smallest width uniform width set-multilinear ABP

computing f has widthw2. The following observation which can be easily veri�ed speci�es a width

w2 set-multilinear ABP that computes f .

Observation 6.1 (A width w2 ABP computing f) Let X1, . . . ,Xd be w×w be full rank linear ma-

trices in the variable sets x1, . . . ,xd respectively. Consider a a set-multilinear polynomial f = Trace(X1 ·

X2 . . .Xd). Then there exists a set-multilinear ABP A of width w2 computing f which is given by

A = Y1 ·Y2 . . .Yd with Y1 = [X11, . . . ,X1w], Yi = Iw⊗Xi for all i ∈ [2,d−1] and Xd = [XTd1, . . . ,X
T
dw]

T

where X1i ,Xdj denotes the i-th row and j-th column of X1 and Xd respectively, i.e.

Y1 = [X11, . . . ,X1w]1×w2 ; Yd =


Xd1
...

Xdw


w2×1

and for i ∈ [2,d − 1],

Xi =


x
(i)
11 . . . x

(i)
1w

...
...

x
(i)
w1 . . . x

(i)
ww


w×w

;Yi =


Xi

. . .

Xi


w2×w2

59

In the remainder of this chapter we will useXi and Yi for all i ∈ [d] to denote the matrices as de�ned

in Observation 6.1.

6.1 An e�cient algorithm for Block Equivalence testing
In [13], they give an e�cient algorithm for Block Equivalence testing for Tr-IMM over the �eld of

complex numbers C (an algebraically closed �eld). We now present an e�cient randomized algo-

rithm (Algorithm 6) for Block Equivalence testing for Tr-IMM which uses oracle access to DETEQ.

Recall from Chapter 1 that DETEQ is an algorithm for determinant equivalence test.

Theorem 6.1 Let f be an n-variate, degree d polynomial which is set-multilinear in the variable sets

x1, . . . ,xd . Given blackbox access to f , the variable sets x1, . . . ,xd and an oracle access to DETEQ, there

is a randomized algorithm (Algorithm 6) with running time poly(n,β) (where β is the bit length of

coe�cients of f) that outputs with probability at least 1− 1
poly(n) a block-diagonal matrix V ∈ GL(n,F)

such that f (x) = Tr-IMMw,d(V x) if such an V exists; otherwise it outputs “No such V exists”.

We now elaborate each step of Algorithm 6 and argue its correctness.

Step 1: Set Multilinear ABP computing f : Without loss of generality, assume that f is block-

equivalent to Tr-IMMw,d polynomial (If it were not, we could test this at the end by evaluating at

random points using Schwartz-Zippel lemma). Hence, f is computable by the ABP Y1 · Y2 . . .Yd as

given by Observation 6.1. Further this is the smallest width ABP computing f . Hence, using the

set-multilinear ABP reconstruction algorithm (See Algorithmic Preliminary 6), we can compute an

ABP A = Ŷ1 · Ŷ2 . . . Ŷd−1 · Ŷd where,

Ŷ1 = Y1 · T1

Ŷi = T
−1
i−1 ·Yi · Ti ,∀i ∈ [2,d − 1]

Ŷd = T
−1
d−1 ·Yd

(6.1)

and T1, . . . ,Td−1 are w2 × w2 invertible matrices. Observe that if the ABP computed in Step 1 is

exactly Y1 · Y2 . . .Yd−1 · Yd then we can recover X1, . . . ,Xd trivially and we are done. However we

have Ŷi instead of Yi at the end of Step 1. In the next step, we exploit this relation between Xi and

Ŷi for all i ∈ [2,d − 1].

60

Algorithm 5 Block Equivalence testing for Tr-IMMw,d

INPUT: Blackbox access to an n variate, degree d polynomial f and the variable sets x1, . . . ,xd such
that f is a set-multilinear polynomial in these variable sets.
OUTPUT: A block-diagonal matrix V ∈ GL(n,F) such that f (x) = Tr-IMMw,d(V x) (if such a V
exists).

1: . Step 1 - Set Multilinear ABP reconstruction of f
2: Compute a width w2 set-multilinear ABP A = Ŷ1 · Ŷ2 . . . Ŷd−1Ŷd computing f .
3:
4: . Step 2 - Computing blackbox access to ci · det(Xi)
5: for all i ∈ [2,d − 1] do
6: Compute det(Ŷi).
7: Factorize det(Ŷi) to obtain access to ci · det(Xi) where ci ∈ F .
8:
9: . Step 3 - Try to obtain Xi from ci · det(Xi) using Determinant Equivalence test

10: for all i ∈ [2,d − 1] do
11: Using Determinant Equivalence Test, compute a w ×w matrix X̂i such that ci · det(Xi) =

det(X̂i).
12:
13: . Step 4 - Construct Zi
14: for all i ∈ [2,d − 1] do
15: Compute the w ×w matrix Zi = Iw ⊗ X̂k .
16:
17: . Distinguish between the matrix and its transpose
18: for all i ∈ [2,d − 1] do
19: if there are w2 ×w2 matrices T̂i−1 and Ŝi such that T̂i−1 · Ŷi = Zi · Ŝi then
20: Compute such T̂i−1 and Ŝi .
21: else
22: Compute T̂i−1 and Ŝi such that T̂i−1 · Ŷi = ZTi · Ŝi .
23:
24: . Step 6 - Block Diagonalize Ŷd−1
25: Compute w2 ×w2 matrices Y ′1, . . . ,Y

′
d where

Y ′1 := Ŷ1 · T̂
−1
1

Y ′i := T̂i−1 · Ŷi · T̂
−1
i ;∀i ∈ [2,d − 2]

Y ′d−1 := T̂d−2 · Ŷd−1 · Ŝ
−1
d−1

Y ′d := Ŝ
−1
d−1 · Ŷd .

61

Algorithm 6 Block Equivalence testing for Tr-IMMw,d (continued. . .)
26:
27: . Step 7 - Compute X ′2, . . . ,X

′
d−1

28: Compute X ′d−1 := �rst w ×w block of the block-diagonal matrix Y ′d−1
29: for all i ∈ [2,d − 2] do
30: Let αi be some non-zero entry (say (p,q)-th entry) of DiD−1i+1 where Di and Di+1 are w ×w

matrices as de�ned in Claim 6.3. Then compute X ′i := (p,q)-th block of Y ′i .
31:
32: . Step 8 - Compute X ′1 and X

′
d

33: Compute X ′d using the proof of Claim 6.4.
34: Compute X ′1 using the proof of Claim 6.5.
35:
36: . at this point Trace(X ′1 ·X

′
2 . . .X

′
d) = f and

37: . the matrices X ′1, . . . ,X
′
d are variable disjoint.

38: . Step 9 - Compute V
39: Compute the matrix V by looking at the coe�cients of the linear forms in the entries of X ′i for

all i ∈ [d].
40:
41: . Step 10 - Output the result
42: Pick a random point a ∈ Sn where S ⊆ F and |S | ≥ poly(n).
43: if f (a) = Tr-IMMw,d(V a) then
44: Output V .
45: else
46: Output ‘No such V exists’.

62

Step 2 - Computing blackbox access to ci ·det(Xi) : In this step, we compute blackbox access to

ci · det(Xi) from Ŷi for all i ∈ [2,d − 1] as follows: First we compute det(Ŷi). This can be computed

e�ciently [8]. Since Yi = Iw ⊗ Xi and Ŷi = T −1i−1 · Yi · Ti , we have det(Ŷi) = di · det(Xi)w where

di = det(T −1i−1) · det(Ti). By applying am e�cient polynomial factorization algorithm [16] we can

obtain blackbox access to ci · det(Xi) for some ci ∈ F .

Step 3 - Try to obtain Xi from ci ·det(Xi) using Determinant Equivalence Test: From Step 2,

we have blackbox access to a polynomial computing ci ·det(Xi) for all i ∈ [2,d−1]. Let X̂i be aw×w

matrix such that det(X̂i) = ci · det(Xi). Then exactly one of the following holds (due to Fact 2.1).

∃Ai ,Bi such that Xi = Ai · X̂i ·Bi (Case 3-1)

∃Ãi , B̃i such that Xi = Ãi · X̂Ti · B̃i (Case 3-2) .

where Ai ,Bi , Ãi , B̃i are w × w invertible numeric matrices with det(AiBi) = ci (for Case 3-1) or

det(ÃiB̃i) = ci (for Case 3-2). Using equivalence test for the determinant polynomial ([17, 11]) we

can compute X̂i satisfying exactly one of the above cases for each i ∈ [2,d − 1].

Step 4 - Construct Zi : In Step 4 we compute the w2×w2 block-diagonal matrix Zi with X̂i along

its diagonal blocks.

Step 5 - Find out which case in Step 3 succeeded: For some i ∈ [2,d − 1], suppose Case 3-1 is

true at Step 3, i.e Xi = Ai · X̂i ·Bi for some invertible w ×w numeric matrices. Then,

Ŷi = T
−1
i−1 ·Yi · Ti

= T −1i−1 · (Iw ⊗Xi) · Ti

= T −1i−1 ·
(
Iw ⊗ (Ai · X̂i ·Bi)

)
· Ti

= T −1i−1 · ((Iw ⊗Ai) · (Iw ⊗ X̂i) · (Iw ⊗Bi)) · Ti

= T −1i−1 · (Iw ⊗Ai)︸ ︷︷ ︸
T̂ −1i−1

·Zi ·(Iw ⊗Bi) · Ti︸ ︷︷ ︸
Ŝi

.

63

Similarly if Case 3-2 succeeds then Ŷi = T̂ −1i−1 · Z
T
i · Ŝi . Claim 6.2 says that exactly one of these

equations is satis�ed. To compute these matrices, treat the entries of T̂i−1 and Ŝi as formal variables

and compare the entries of Ŷi ·T̂i−1 withZi ·Ŝi orZTi ·Ŝi . This will give us a system of linear equations

in the variables of T̂i−1 and Ŝi which can be solved using guassian elimination in poly(w2) time.

Claim 6.2 In Step 5 of Algorithm 6 exactly one of the cases succeeds.

Proof: Recall that ∀i ∈ [2,d − 1]:

Zi = Iw ⊗ X̂i

Ŷi = T
−1
i−1 ·Yi · Ti

Yi = Iw ⊗Xi

where Xi is a w×w symbolic matrix whose entries are linearly independent linear forms. In Step 3,

we computedw×wmatrix X̂i which satis�es exactly one of the following equations: Xi = Ai ·X̂i ·Bi
or Xi = Ãi · X̂Ti · B̃i for some invertible w ×w numeric matrices Ai ,Bi , Ãi , B̃i . Accordingly we have

the following two cases:

Yi = Iw ⊗AiX̂iBi

Ŷi = T
−1
i−1 · (Iw ⊗AiX̂iBi) · Ti

Ŷi = T
−1
i−1 · (Iw ⊗Ai)Zi(Iw ⊗Bi) · Ti︸ ︷︷ ︸

(a)

(or)

Yi = Iw ⊗ ÃiX̂Ti B̃i

Ŷi = T
−1
i−1 · (Iw ⊗ ÃiX̂

T
i B̃i) · Ti

Ŷi = T
−1
i−1 · (Iw ⊗ Ãi)Z

T
i (Iw ⊗ B̃i) · Ti︸ ︷︷ ︸

(b)

We claim that both (a) and (b) can not hold simultaneously. Suppose for contradiction let (a) and

(b) be true simultaneously, which implies there exists w2 ×w2 invertible matrices P ,Q such that

P ZiQ = ZTi . But this contradicts Claim 6.6 (given at the end of the chapter). Hence exactly one of

the cases in Step 5 of Algorithm 6 succeeds. �

Remark: From this point in the algorithm, for the sake of brevity we assume that X̂i was computed

according to Case 3-1. A similar analysis holds if Case 3-2 was true.

64

The following claim says that T̂i−1, Ŝi computed in Step 5 are unique up to multiplication by certain

matrices. The proof uses Claim 6.7 which is proved at the end of the chapter.

Claim 6.3 (Uniqueness of T̂i−1 and Ŝi) For any i ∈ [2,d − 1], the T̂i−1, Ŝi computed in Step 5 of

Algorithm 6 is of the following form:

T̂ −1i−1 = T
−1
i−1 · (Iw ⊗Ai) · (D

−1
i ⊗ Iw)

Ŝi = (Di ⊗ Iw) · (Iw ⊗Bi) · Ti .

where Di is a w ×w invertible matrix.

Proof: The T̂i , Ŝi computed in Step 5 satis�es

T̂i · Ŷi = Zi · Ŝi

Substituting Ŷi = T −1i−1 · (Iw ⊗Ai) ·Zi · (Iw ⊗Bi) · Ti in the above equation, we get

T̂i−1 · T −1i−1 · (Iw ⊗Ai) ·Zi = Zi · Ŝi · T̂
−1
i · (Iw ⊗B

−1
i)

By Claim 6.7, there exists w ×w invertible matrix Di such that

T̂i−1 · T −1i−1 · (Iw ⊗Ai) = Ŝi · T̂i · (Iw ⊗B
−1
i) =Di ⊗ Iw

implying,

T̂ −1i−1 = T
−1
i−1 · (Iw ⊗Ai) · (D

−1
i ⊗ Iw)

Ŝi = (Di ⊗ Iw) · (Iw ⊗Bi) · Ti .

�

Step 6 - Block Diagonalize Ŷd−1 : We compute the matrices Y ′1, . . . ,Y
′
d from Ŷ1, . . . , Ŷd in step 6.

Note that the ABP Y ′1 ·Y
′
2 . . .Y

′
d still computes the original polynomial f as the intermediate matrix

multiplications cancels out. We also observe that the matrix Y ′d−1 is a block-diagonal matrix.

65

Observation 6.2 Y ′d−1 computed in Step 6 of Algorithm 6 is a block-diagonal matrix.

Proof: The Y ′d−1 computed in Step 6 is given by:

Y ′d−1 = T̂d−2 · Ŷd−1 · Ŝ
−1
d−1

Substituting Ŷd−1 = T −1d−2 · (Iw ⊗Xd−1) · Td−1, T̂d−2 = (Dd−1 ⊗ Iw) · (Iw ⊗A−1d−1) · (Td−2) and Ŝ−1d−1 =

(T −1d−1) · (Iw ⊗B
−1
d−1) · (D

−1
d−1 ⊗ Iw) in the above equation, we have:

Y ′d−1 = (Dd−1 ⊗ Iw) ·
(
Iw ⊗ (A−1d−1Xd−1B

−1
d−1)

)
· (D−1d−1 ⊗ Iw)

= (Dd−1D
−1
d−1 ⊗ Iw)(Iw ⊗A

−1
d−1 ·Xd−1 ·B

−1
d−1)

= Iw ⊗ (A−1d−1 ·Xd−1 ·B
−1
d−1) .

Clearly Y ′d−1 is a block-diagonal matrix whose diagonal blocks are A−1d−1 ·Xd−1 ·B
−1
d−1. �

Now, we describe the structure of the matrices Y ′2, . . . ,Y
′
d−2.

Observation 6.3 The matrices Y ′i computed in Step 6 of Algorithm 6 can be written as Y ′i = (DiD
−1
i+1⊗

Iw) · (Iw ⊗A−1i XiAi+1) where i ∈ [2,d − 2] and Di is a w ×w matrix as de�ned in Claim 6.1.

Proof: For any i ∈ [2,d − 2],

Y ′i = T̂i−1 · Ŷi · T̂
−1
i

Substituting the appropriate expansions of T̂i−1, Ŷi and T̂ −1i in the above equation, we have:

Y ′i =
(
(Di ⊗ Iw)(Iw ⊗A−1i)Ti−1

)
·
(
T −1i−1(Iw ⊗Xi)Ti

)
·
(
T −1i (Iw ⊗Ai+1)(D−1i+1 ⊗ Iw)

)
= (DiD

−1
i+1 ⊗ Iw) · (Iw ⊗A

−1
i XiAi+1)

�

In Steps 7-8, we compute w ×w matrices X ′1, . . . ,X
′
d such that f = Trace(X ′1 . . .X

′
d).

66

Step 7 - Computing X ′2, . . . ,X
′
d−1: In Step 7, we compute the w × w matrices X ′2, . . . ,X

′
d−1 by

de�ning them to be suitable sub-matrices of the w2 ×w2 matrices Y ′1, . . . ,Y
′
d−1. Let αi be some non-

zero entry of DiD−1i+1. Then the corresponding w ×w block in Y ′i is αk ·A−1i XiAi+1. In Step 7, we

de�ne X ′i to be the block αi ·A−1i XiAi+1 of Y ′i for all i ∈ [2,d − 2] and X ′d−1 to be the �rst w ×w

block of Y ′d−1. Hence the product X ′2 ·X
′
3 . . .X

′
d−1 is given by:

X ′2 ·X
′
3 . . .X

′
d−1 = α ·A

−1
2 X2 ·X3 . . .Xd−1 ·B−1d−1

where α = α2 ·α3 . . .αd−2.

Step 8 - Computing X ′1 and X
′
d :

Claim 6.4 (Computing X ′d) Given the matrices X ′2, . . . ,X
′
d−1 computed at Step 7 of Algorithm 6, we

can e�ciently compute the w×w matrix X ′d = Bd−1XdA where A is a w×w numeric matrix which is

full rank with high probability.

Proof: De�ne X1 := α−1X1A2 and Xd := Bd−1Xd . We �rst make the following observation.

Observation 6.4 For any i ∈ [w], the (i,1)-th entry of the productXd ·X1 can be computed e�ciently.

Proof: Fix some i ∈ [w]. Choose an assignment of the variables x2, . . . ,xd−1 that sets the (1, i)-

th entry of the product X ′2X
′
3 . . .X

′
d−1 to 1 and the remaining entries to 0. It can be easily veri�ed

that, under this assignment the function f (if it was block-equivalent to Tr-IMM to begin with) will

compute the (i,1)-th entry of Xd ·X1. The assignment discussed above exists and can be computed

as follows: Similar to the graph GTr-IMM we de�ned for the Tr-IMM polynomial, we associate a lay-

ered graph G corresponding to the matrices X ′2, . . . ,X
′
d−1. Then the (1, i)-th entry of the product

X ′2X
′
3 . . .X

′
d−1 is the sum of all path weights from the 1st vertex u of �rst layer of G (corresponding

to the matrix X ′2) to the i-th vertex v of last layer (corresponding to the matrix X ′d−1). The (1, i)-th

entry of the product is 1 only if all the edge labels that lie on any path from u to v is non-zero.

Since the linear forms in X ′i is linear independent for each i ∈ [w], we can apply an invertible linear

transformation that maps the entries of X ′i to distinct formal variables. We can now trivially com-

pute an assignment that sets the (1, i)-th entry of the product to a suitable non-zero number and the

remaining entries to 0. �

67

Denote the �rst column of X1 by c1 = [g1(x1), . . . , gw(x1)]T and the �rst column of Xd ·X1 by cd =

[f1(x1,xd), . . . , fw(x1,xd)]T . Clearly cd = Xdc1. Choose w points a1, . . . ,aw ∈r Sw
2 uniformly at ran-

dom where S ⊂ F and |S | ≥ poly(w2). For each i ∈ [w], compute cdi := [f1(ai ,xd), . . . , fw(ai ,xd)]T =

Xdc1(ai) where c1(ai) denotes the evaluation of column vector c1 at point ai . De�ne X ′d to be

the w ×w matrix obtained by stacking these column vectors, i.e. X ′d = [cd1,cd2, . . . ,cdw]. Clearly,

X ′d = XdA = Bd−1XdA where A is the w ×w matrix [c1(a1),c1(a2), . . . ,c1(aw)]. As the linear forms

in X1 are linearly independent, by Claim 2.2 the matrix A is full-rank with high probability. �

Claim 6.5 (Computing X ′1) Given the matrices X ′2, . . . ,X
′
d−1 computed in Step 7 of Algorithm 6 and

the matrix X ′d computed according to Claim 6.4, we can e�ciently compute the w ×w matrix X ′1 =

α−1A−1X1A2.

Proof: Fix i, j ∈ [w]. To compute the (i, j)-th entry of X ′1 choose an assignment of the x2, . . . ,xd

variables that sets the (j, i)-th entry of X ′2X
′
3 . . .X

′
d to 1 and the remaining entries to 0. Such an

assignment exists and can be e�ciently computed by an argument similar to Observation 6.4. It can

be easily veri�ed that f computes the (i, j)-th entry of X ′1 where X ′1 = α−1A−1X1A2. �

The following corollary easily follows from Claim 6.4 and Claim 6.5.

Corollary 6.1 At the end of Step 8 of Algorithm 6, the following holds: Trace(X ′1·X
′
2 . . .X

′
d) = Trace(X1·

X2 . . .Xd) = f .

Step 9,10 - Computing V and output the result: Since Trace(X ′1 ·X
′
2 . . .X

′
d) = f and the Xi ’s

are variable disjoint we can compute V by looking at the coe�cients of the entries of X ′i . Then in

Step 10, we use Schwartz-Zippel Lemma to check if f was indeed block-equivalent to Tr-IMMw,d to

begin with and output the result accordingly.

6.2 Additional Claims and Observations
In this section we establish few helpful claims and observations that has been used in the proofs of

Claim 6.2 and Claim 6.3.

68

Claim 6.6 Let X = (xij)w×w be a symbolic matrix and Y = X⊗Iw. Then there does not exist invertible

matrices P ,Q ∈ GL(w2,F) such that P Y = Y TQ. In fact, the claim still holds even when X is a w ×w

symbolic matrix whose entries are linearly independent linear forms.

Proof: For contradiction, suppose there exists w2×w2 invertible matrices P andQ such that P Y =

Y TQ. The matrices P ,Q looks as shown below.

P =


P11 P12 . . . P1w
...

...
...

...

Pw1 Pw2 . . . Pww


w2×w2

,Q =


Q11 Q12 . . . Q1w
...

...
...

...

Qw1 Qw2 . . . Qww


w2×w2

where each Pij and Qij is a w ×w matrix for all i, j ∈ [w]. So P Y = Y TQ implies


P11X P12X . . . P1wX
...

...
...

...

Pw1X Pw2X . . . PwwX


w2×w2

=


XTQ11 XTQ12 . . . XTQ1w

...
...

...
...

XTQw1 XTQw2 . . . XtQww


w2×w2

In particular, for each i, j ∈ [w] PijX = XTQij . Due to Observation 6.5, the �rst row of Pij is 0 for any

arbitrary i, j ∈ [w] implying the �rst row of P is 0. So P is not invertible which is a contradiction.

This claim still holds even whenX is aw×w symbolic matrix whose entries are linearly independent

linear form because we can apply a invertible linear transformation that maps each entry of X to a

distinct formal variable. �

Observation 6.5 Let X = (xij)w×w be a symbolic matrix with distinct entries. Let P = (pij)w×w and

Q = (qij)w×w be w ×w numeric matrices such that PX = XTQ, then the �rst row of the matrix P has

all entries 0.

Proof: The (1,2)-th entry of PX is :
∑w
j=1p1jxj2. The (1,2)-th entry of XT P is:

∑w
j=1 qj1xj1.

Clearly the (1,2)-th entry of PX is variable disjoint from the (1,2)-th entry of XT P which means

their corresponding coe�cients must be 0. So the �rst row of P has all entries 0. �

69

Claim 6.7 Let X = (xij)w×w be a symbolic matrix and Y = Iw ⊗X. Let P ,Q ∈ GL(w2,F) such that

P Y = YQ. Then P =Q =D ⊗ Iw for some D ∈ GL(w,F).

Proof: Taking Y = Iw ⊗ Iw = Iw2 , we get P =Q.

Let P =


P11 P12 . . . P1w
...

...
...

...

Pw1 Pw2 . . . Pww


w2×w2

where each Pij is a w ×w matrix for all i, j ∈ [w]. Since P Y = Y P , we have PijX = XPij for each

i, j ∈ [w]. By Observation 6.6, we infer that each Pij is a scalar matrix whose diagonal entries we

refer to as dij , i.e. Pij = dijIw for each i, j ∈ [w]. De�ne D = (dij)w×w where dij is the diagonal

entry of the matrix Pij . Clearly P = D ⊗ Iw. Further D is an invertible matrix. If it was not so, then

there exists c1, . . . , cw ∈ F not all 0 such that c1D1 + . . . + cwDw = 0, where Di refers to the i-th

row of the matrix D . It is easy to verify that the matrix P ′ = (ci .Pij)w2×w2 is not invertible implying

P = (Pij)w2×w2 is not invertible which is a contradiction. Hence D is an invertible matrix. �

Observation 6.6 Let X = (xij)w×w be a symbolic matrix whose entries are distinct formal variables

and let P = (pij)w×w be a w ×w matrix such that PX = XP . Then P = dIw for some d ∈ F .

Proof: Comparing the (i, i)-th entry of PX and XP , we can infer that the non-diagonal entries of

P are 0. Hence P is a diagonal matrix with diagonal entries pii for i ∈ [w]. Now we show that all

the diagonal entries are equal. The (i, j)-th entry of PX is piixij whereas the (i, j)-th entry of XP is

pjjxjj which implies pii = pjj for all i, j ∈ [w]. �

70

Chapter 7

Characterization by Symmetry

In this chapter we discuss the group of symmetries of the Tr-IMMw,d polynomial and show that

the Tr-IMMw,d polynomial is characterized by its group of symmetries.

Recall from De�nition 2.23 that the group of symmetries of an n variate polynomial f is the set of

all invertible n×n matrices A such that f (x) = f (Ax). We start by de�ning the characterization by

symmetry property below.

De�nition 7.1 (Characterization by symmetry) An n variate, degree d homogeneous polynomial

f is said to be characterized by its group of symmetries Gf if for every n variate, degree d homogeneous

polynomial g , the following holds: Gf = Gg ⇐⇒ f = α · g, for some non-zero α ∈ F .

One direction of the above equivalence is trivial as noted in Observation 7.1.

Observation 7.1 Let f = α · g for some non-zero α ∈ F . Then Gf = Gg .

Proof: Let A ∈ Gf , i.e f (x) = f (Ax). Now f (Ax) = α · g(Ax) = α · g(x) = f (x). Hence, A ∈ Gg .

Similarly it can be shown that A ∈ Gg =⇒ A ∈ Gf . This implies Gf = Gg . �

7.1 Generating subgroups of GTr-IMM

We brie�y explain the generating subgroups of the group of symmetries GTr-IMM polynomial which

has been described in [12]. In the reminder of this chapter, we only consider those Tr-IMMw,d poly-

71

nomials with w > 1 and d > 2. Recall that Tr-IMMw,d can be written as

Tr-IMMw,d(x) = Trace(Q1 ·Q2 . . .Qd)

where eachQi is a w×w symbolic matrix whose entries are distinct variables. The three generating

subgroups of GTr-IMM are:

1. The Transposition Subgroup T: T is the subgroup consisting of two matrices, T = {In,N }

where N is the n×n matrix such that Tr-IMMw,d(Nx) = Trace(QTd ·Q
T
d−1 . . .Q

T
1) and N 2 = In.

2. The left-right multiplication subgroup Mw,d : Consider the following linear transforma-

tion M on the x variables given by:

Q1 7→ X1 := C0 ·Q1 ·C1

Q2 7→ X2 := C
−1
1 ·Q2 ·C2

Q3 7→ X3 := C
−1
2 ·Q3 ·C3

...

Qd 7→ Xd := C
−1
d−1 ·Qd ·C

−1
0

where C0, . . . ,Cd−1 are invertible matrices in F
w×w. Clearly,

Tr-IMMw,d(Mx) = Trace(X1 ·X2 . . .Xd)

= Trace((C0 ·Q1 ·C1) · (C−11 ·Q2 ·C2) . . . (C
−1
d−1 ·Qd ·C

−1
0))

= Trace(C0 ·Q1 ·Q2 . . . ·Qd ·C−10) = Trace(Q1 ·Q2 . . . ·Qd ·C−10 ·C0)

= Tr-IMMw,d(x) .

The equality in the penultimate line of the above equations follows from the commutativity

of the trace of the matrix product of Q1 ·Q2 . . .Qd ·C−10 and C0. The linear map M is de�ned

by the d matrices C0,C1, . . . ,Cd−1. All such M which can be described as above by some d

invertible matricesC0,C1, . . . ,Cd−1 are said to be in the left-right multiplication subgroupMw,d

72

of GTr-IMMw,d
.

3. TheCircular Transformations SubgroupC: This group consists ofn×nmatrices inGTr-IMMw,d

that cyclically rotates the order of the matrices in the product expressionQ1 ·Q2 . . .Qd . A lin-

ear transformation C ∈ C has the following e�ect on the variables of Tr-IMMw,d : for each

i ∈ [d], Qi 7→Q(r−i+1) mod d for some r ∈ [d]. This does not change the trace of the product as

Trace(Q1 ·Q2 . . .Qr . . .Qd) = Trace(Qr ·Qr+1 . . .Qd ·Q1 . . .Qr−1).

Theorem 7.1 expresses GTr-IMM in terms of its generating subgroups and has been proved in [12].

Before stating the theorem, we recall some useful de�nitions from group theory.

De�nition 7.2 (Normal Subgroup) A subgroup U of a group G is said to be a normal subgroup of

G (denoted by U E G) if for all g ∈ g , gUg−1 ⊆U .

De�nition 7.3 (Semidirect Product) Let G be a group and N,H be its subgroups. G is said to be a

semidirect product of U and H (denoted by G =U oH) if G =UH , U E G and U ∩H = {e}.

For brevity, we denote Mw,d by M in the following theorem.

Theorem 7.1 (Symmetries of Tr-IMM) GTr-IMM =Mo (CoT). 1

Let Q1i denote the i-th row of Q1 and Qdj denote the j-th column of Qd for i, j ∈ [w]. Recall that

IMMw,d is de�ned as the (1,1)-th entry of the productQ1 ·Q2 . . .Qd . So IMMw,d =Q11 ·Q2 . . .Qd−1 ·

Qd1. Analogous to the subgroup Mw,d of GTr-IMMw,d
,the left right multiplication subgroup for the

IMMw,d polynomial is de�ned below.

The left-right multiplication subgroupM′w,d of IMMw,d polynomial The subgroup M′w,d con-

1Observe that C is a normal subgroup of CoT and M is a normal subgroup of GTr-IMM.

73

sists of linear maps M ′ that have the following e�ect on the variables of IMMw,d .

Q11 7→ X11 :=Q11 ·C1

Q2 7→ X2 := C
−1
1 ·Q2 ·C2

...

Qd−1 7→ Xd−1 := C
−1
d−2 ·Qd−1 ·Cd−1

Qd1 7→ Xd1 := C
−1
d−1 ·Qd1

where C1, . . . ,Cd−1 are invertible matrices in F
w×w. De�ne IMM(i)

w,d := Q1i · · ·Q2 . . .Qd−1 · Qdi .

Hence, Tr-IMMw,d = IMM(1)
w,d + . . .+ IMM(w)

w,d . We now make the following observation.

Observation 7.2 There is an injective map φ : M
′

w,d 7→ Mw,d de�ned as follows: If M ′ ∈ M
′

w,d

is de�ned by the matrices C1, . . . ,Cd−1 then M := φ(M ′) is the linear map de�ned by the matrices

Iw,C1, . . . ,Cd−1. In particular, for allM ′ ∈M
′

w,d , Tr-IMMw,d(Mx) = IMM(1)
w,d(M

′x)+. . .+IMM(d)
w,d(M

′x).

Proof: Consider a linear map M ′ ∈ M′w,d de�ned by the matrices C1, . . . ,Cd−1. For each i ∈ [d],

applying M ′ on the variables of IMM(i)
w,d has the following e�ect:

Q1i 7→ X1i :=Q1i ·C1

Q2 7→ X2 := C
−1
1 ·Q2 ·C2

...

Qd−1 7→ Xd−1 := C
−1
d−2 ·Cd−1 ·Cd−1

Qdi 7→ Xdi := C
−1
d−1 ·Cdi

The matrix M corresponds to applying M ′ simultaneously to the variables of IMM(1)
w,d , . . . , IMM(1)

w,d

is the following linear map which we denote by M .

Q1 7→Q1 ·C1 =Q11 ·C1| . . . |Q1w ·C1

Q2 7→ C−11 ·Q2 ·C2

...

74

Qd−1 7→ C−1d−2 ·Qd−1 ·Cd−1

Qd 7→ Cd−1 ·Qd = C−1d−1 ·Qd1| . . . |C
−1
d−1 ·Qdw

Since IMM(i)
w,d(M

′x) = IMM(i)
w,d(x) for all i ∈ [d], Tr-IMMw,d(Mx) = Tr-IMMw,d(x) implying M ∈

GTr-IMM. It is also easy to see that M ∈Mw,d and is de�ned by the matrices Iw,C1, . . . ,Cd−1. �

We will see in the next section that Tr-IMMw,d is characterized by symmetry just due to the presence

of the left-right multiplication subgroup.

7.2 Tr-IMMw,d is characterized by its group of symmetries
In [18], it has been shown that the IMMw,d polynomial is characterized by it’s group of symmetries

which we state in Lemma 7.1.

Lemma 7.1 Let f be a homogeneous n variate, degree d polynomial over F with M′w,d ⊆ Gf and

|F| > d +1. Then f = α · IMMw,d for some non-zero α ∈ F .

We use Lemma 7.1 and the following claim to establish characterization by symmetry for the Tr-IMMw,d

polynomial.

Claim 7.1 Let f be a homogeneous n variate, degree d polynomial over F with Mw,d ⊆ Gf and

|F| > d+1. Then f is a set-multilinear polynomial in the variable sets x1, . . . ,xd , i.e every monomial in

f has at most one variable from each xi , i ∈ [d].

Proof: Since |F| > d +1, there exists ρ , 0 ∈ F which is not an e-th root of unity for all e ≤ d. Fix a

k ∈ [d − 1]. Consider M ∈Mw,d which scales the variables in Qk by ρ and the variables in Qk+1 by

ρ−1. Since f (x) = f (Mx) and ρe , 1 for any e ≤ d,the number of variables from xk must be equal

to the number of variables from xk+1 in any monomial of f . This is true for any k ∈ [d − 1] and f

being a homogeneous degree d polynomial implies f is a set-multilinear polynomial in the variable

sets x1, . . . ,xd . �

Lemma 7.2 (Characterization by Symmetry) Let f be a homogeneous n variate, degree d polyno-

mial over F withMw,d ⊆ Gf and |F| > d +1. Then f = α ·Tr-IMMw,d for some non-zero α ∈ F .

75

Proof: From Claim 7.1, it follows that f is a set-multilinear polynomial in the variable sets x1, . . . ,xd .

Hence f can be written as follows:

f =
∑
i,j∈[w]

x
(1)
ij gij =

∑
j∈[w]

x
(1)
1j g1j + . . .+

∑
j∈[w]

x
(1)
wj gwj

where the gij for i, j ∈ [w] are set-multilinear polynomials in the variable sets x2, . . . ,xd . For i ∈ [w],

let fi :=
∑
j∈[w]x

(1)
ij gij . Thus f = f1 + . . .+ fw. Let x1i denote the variables in the i-th row of Q1 and

xdj denote the variables in the j-th column of Qd . Clearly fi is s set-multilinear polynomial in the

variable sets x1i ,x2, . . . ,xd . Infact we show that fi is a set-multilinear polynomial in the variable sets

x1i ,x2, . . . ,xdi . Consider a linear map M ∈Mw,d de�ned by the matrices C0, . . . ,Cd−1 where C0 is

a w ×w diagonal matrix whose (i, i)-th entry is ρ and the remaining entries are 1, and C1, . . . ,Cd−1

are w ×w identity matrices. It is easy to infer that M replaces the x variables by the following lin-

ear forms: x1i 7→ ρ · x1i , xdi 7→ ρ−1 · xdi , and all other variables are mapped to themselves. Since

each monomial in fi contains exactly one variable from x1i , to cancel the e�ect of scaling by ρ each

monomial in fi must contain exactly one variable from xdi . Hence fi is a set-multilinear polyno-

mial in the variable sets x1i ,x2, . . . ,xdi . In the next part of the proof, �rst we show that for each

i ∈ [w], fi = αi · IMM(i)
w,d for some non-zero αi ∈ F and then �nally prove that α1 = . . . = αw = α

implying f = α · (IMM(1)
w,d + . . .+ IMM(w)

w,d) = α ·Tr-IMMw,d .

From Lemma 7.1, to show that fi = αi · IMM(i)
w,d for some non-zero α ∈ F , it is su�cient to show

that M′w,d ⊂ Gfi . Recall the injective map φ : M′w,d 7→ Mw,d de�ned in Observation 7.2. Let

M ′ ∈ M′w,d be de�ned by the w ×w invertible matrices C1, . . .Cd−1 and M := φ(M ′) ∈ Mw,d be

de�ned by the matrices Iw,C1, . . . ,Cd−1. Since fi is a set-multilinear polynomial in x1i ,x2, . . . ,xdi

for all i ∈ [w], applying M on the variables of f is equivalent to simultaneously applying M ′ on

f1, . . . , fw. But as M ∈ Mw,d ⊆ Gf , f (x) = f (Mx) = f1(M ′x) + . . . + fw(M ′x). Since f1, . . . , fw are

pairwise monomial disjoint we infer that fi(M ′x) = fi(x) for i ∈ [w]. Thus M ′ ∈ Gfi implying

M′w,d ⊂ Gfi for each i ∈ [w]. We now show that α1 = α2 = . . . = αw. Let i , j and i, j ∈ [w]. Let

Iij be the matrix obtained by swapping i-th and j-th rows of the identity matrix Iw. Consider the

linear map M ∈Mw,d de�ned by the w ×w matrices C0 = Iij ,C1 = Iw, . . . ,Cd−1 = Iw. M replaces

76

the x variables as follows: It exchanges the i-th and j-th rows of Q1, the i-th and j-th columns of

Qd , i.e Q1i ↔Q1j and Qdi ↔Qdj . The remaining variables are mapped to themselves.

f (x) = α1IMM(1)
w,d + . . .+αiIMM(i)

w,d + . . .+αj IMM(j)
w,d + . . .+αwIMM(w)

w,d

f (Mx) = α1IMM(1)
w,d + . . .+αiIMM(j)

w,d + . . .+αj IMM(i)
w,d + . . .+αwIMM(w)

w,d .

As f (x) = f (Mx) and IMM(i)
w,d and IMM(j)

w,d are monomial disjoint, we infer that αi = αj . Since this

is true for arbitrary i , j , α1 = . . . = αw = α. �

77

Bibliography

[1] Scott Aaronson. P vs np. Electronic Colloquium on Computational Complexity (ECCC), 24:4,

2017. URL https://eccc.weizmann.ac.il/report/2017/004. 6

[2] Manindra Agrawal and Nitin Saxena. Equivalence of f-algebras and cubic forms. In STACS 2006,

23rd Annual Symposium on Theoretical Aspects of Computer Science, Marseille, France, February

23-25, 2006, Proceedings, pages 115–126, 2006. doi: 10.1007/11672142_8. URL https://doi.

org/10.1007/11672142_8. 5, 8

[3] Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four. In 2008 49th

Annual IEEE Symposium on Foundations of Computer Science, pages 67–75. IEEE, 2008. 3, 4

[4] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical computer

science, 22(3):317–330, 1983. 3

[5] Elwyn R Berlekamp. Factoring polynomials over �nite �elds. Bell System Technical Journal, 46

(8):1853–1859, 1967. 27

[6] David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over �nite

�elds. Mathematics of Computation, pages 587–592, 1981. 27

[7] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex

fourier series. Mathematics of computation, 19(90):297–301, 1965. 1

[8] Laszlo Csanky. Fast parallel matrix inversion algorithms. In 16th Annual Symposium on Foun-

dations of Computer Science (sfcs 1975), pages 11–12. IEEE, 1975. 63

78

https://eccc.weizmann.ac.il/report/2017/004
https://doi.org/10.1007/11672142_8
https://doi.org/10.1007/11672142_8

BIBLIOGRAPHY

[9] Stephen A Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in quasi-

nc. arXiv preprint arXiv:1601.06319, 2016. 1

[10] Michael A Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-

commutative and read-once oblivious algebraic branching programs. In Foundations of Com-

puter Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 243–252. IEEE, 2013. 53

[11] Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determinant equivalence test

over �nite �elds and over q. In Electronic Colloquium on Computational Complexity (ECCC),

volume 26, page 42, 2019. 7, 12, 13, 63

[12] Fulvio Gesmundo. Geometric aspects of iterated matrix multiplication. Journal of Algebra, 461:

42–64, 2016. 29, 71, 73

[13] Joshua Abraham Grochow. Symmetry and equivalence relations in classical and geometric com-

plexity theory, PhD Thesis. The University of Chicago, 2012. 6, 60

[14] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means

proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. 4

[15] KA Kalorkoti. A lower bound for the formula size of rational functions. SIAM Journal on

Computing, 14(3):678–687, 1985. 3

[16] Erich Kaltofen and Barry M Trager. Computing with polynomials given byblack boxes for their

evaluations: Greatest common divisors, factorization, separation of numerators and denomi-

nators. Journal of Symbolic Computation, 9(3):301–320, 1990. 10, 63

[17] Neeraj Kayal. A�ne projections of polynomials: extended abstract. In Proceedings of the 44th

Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22,

2012, pages 643–662, 2012. doi: 10.1145/2213977.2214036. URL https://doi.org/10.1145/

2213977.2214036. 5, 6, 7, 8, 9, 12, 21, 27, 63

[18] Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of full rank

algebraic branching programs. ACM Transactions on Computation Theory (TOCT), 11(1):2, 2018.

iv, 6, 7, 10, 12, 19, 21, 33, 34, 39, 43, 45, 53, 75

79

https://doi.org/10.1145/2213977.2214036
https://doi.org/10.1145/2213977.2214036

BIBLIOGRAPHY

[19] Adam R. Klivans and Amir Shpilka. Learning arithmetic circuits via partial derivatives. In

Computational Learning Theory and Kernel Machines, 16th Annual Conference on Computational

Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-

27, 2003, Proceedings, pages 463–476, 2003. doi: 10.1007/978-3-540-45167-9_34. URL https:

//doi.org/10.1007/978-3-540-45167-9_34. 28, 59

[20] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theoretical Computer

Science, 448:56–65, 2012. 3

[21] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with

rational coe�cients. Mathematische Annalen, 261(4):515–534, 1982. 27

[22] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix

inversion. Combinatorica, 7(1):105–113, 1987. 1, 3

[23] Ketan D Mulmuley and Milind Sohoni. Geometric complexity theory i: An approach to the p

vs. np and related problems. SIAM Journal on Computing, 31(2):496–526, 2001. 6

[24] Jacques Patarin. Hidden �elds equations (hfe) and isomorphisms of polynomials (ip): Two new

families of asymmetric algorithms. In International Conference on the Theory and Applications

of Cryptographic Techniques, pages 33–48. Springer, 1996. 5

[25] Nitin Saxena. Morphisms of rings and applications to complexity. Indian Institute of Technology

Kanpur, 2006. 5

[26] Jacob T Schwartz. Probabilistic algorithms for veri�cation of polynomial identities. In Symbolic

and Algebraic Computation, pages 200–215. Springer, 1979. 22

[27] Volker Strassen. Die berechnungskomplexität von elementarsymmetrischen funktionen und

von interpolationskoe�zienten. Numerische Mathematik, 20(3):238–251, 1973. 1

[28] Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-nc. In

2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 696–707.

Ieee, 2017. 1

80

https://doi.org/10.1007/978-3-540-45167-9_34
https://doi.org/10.1007/978-3-540-45167-9_34

BIBLIOGRAPHY

[29] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Information and

Computation, 240:2–11, 2015. 3

[30] Thomas Thierauf. The isomorphism problem for read-once branching programs and arithmetic

circuits. In Chicago Journal of Theoretical Computer Science. Citeseer, 1998. 5

[31] Leslie G Valiant. Completeness classes in algebra. In Proceedings of the eleventh annual ACM

symposium on Theory of computing, pages 249–261. ACM, 1979. 2, 3, 18

[32] Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science, 8

(2):189–201, 1979. 2, 3, 19

[33] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and algebraic

computation, pages 216–226. Springer, 1979. 22

81

	Acknowledgements
	Abstract
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Problem Statement
	1.4 Results
	1.4.1 Comparison with kayal2018reconstruction

	1.5 Organization of the thesis

	2 Preliminaries
	2.1 Linear Algebra
	2.2 The Tr-IMMw,d polynomial
	2.3 Algebraic Models of Computation
	2.3.1 Algebraic Branching Programs

	2.4 Lie Algebra
	2.5 Technical Lemmas and Facts
	2.6 Algorthmic Preliminaries

	3 The Lie Algebra of Tr-IMM polynomial
	3.1 The structure of Wb
	3.2 The structure of Wd
	3.3 Characteristic polynomial of a random element in gTr-IMM

	4 Irreducible Invariant Subspaces of gf
	4.1 Irreducible invariant subspaces of gTr-IMM
	4.2 Irreducible Invariant Subspaces of gf
	4.2.1 Computing a basis for the irreducible invariant subspaces of gf

	5 Computing the layer spaces of f and reduction to Block Equivalence testing
	5.1 Reordering the layer spaces
	5.2 Reduction to Block Equivalence testing

	6 Block Equivalence Testing
	6.1 An efficient algorithm for Block Equivalence testing
	6.2 Additional Claims and Observations

	7 Characterization by Symmetry
	7.1 Generating subgroups of GTr-IMM
	7.2 Tr-IMMw,d is characterized by its group of symmetries

	Bibliography

