
Towards a characterization of the symmetries of the

Nisan-Wigderson polynomial family

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Science (Engineering)

IN THE

Faculty of Engineering

BY

Nikhil Gupta

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

August, 2017



Declaration of Originality

I, Nikhil Gupta, with SR No. 04-04-00-10-21-15-1-12618 hereby declare that the material

presented in the thesis titled

Towards a characterization of the symmetries of the Nisan-Wigderson polynomial

family

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2015-2017.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1





c© Nikhil Gupta

August, 2017

All rights reserved





DEDICATED TO

My parents, Mukund and Chaitanya

who love and support me unconditionally.



Acknowledgements

First of all I want to thank my adviser Chandan Saha for his support in the past two years.

Working with Chandan has been a great learning experience for me. His way of solving prob-

lems, command on the literature and excellent presentation skills have always been a source of

inspiration for me. I am indebted for everything I learnt from him. I thank him for tolerating

my silly mistakes and motivating me to be on the right track always. I am very fortunate to

have a guide like him.

My interest in algebraic complexity theory emanated from the training in algebra provided by

professor Dilip Patil. Dilip is like a father to me, who always motivates me to learn. His knowl-

edge and way of teaching has influenced me to a great extent. I thank Dilip for all the formal

and informal discussions on algebra, which helped me a lot in my research. I am also grateful

to Arnab Bhattacharya and Pandurangan Chandrashekharan (IIT Madras) for teaching me

algorithms, Chandan Saha for teaching computational complexity and algebraic geometry, and

Dilip Patil and R. Vittal Rao for teaching linear algebra. I am also thankful to the staff of

CSA department for their help. I am grateful to Neeraj Kayal (Microsoft Research India) for

providing some insights on the discrete symmetries of Nisan-Wigderson polynomial mentioned

in Chapter 5. I also want to acknowledge the organisers of Mysore park workshop for giving

me an opportunity to attend the four days workshop on ‘recent trends in complexity and algo-

rithms’ at Infosys Mysore.

My stay at IISc became more enjoyable because of my friends. Heartfelt thanks to Ishan Ras-

togi, Parth Verma, Lokesh Mohan and Anubhav Guleria for their wonderful company. I am

grateful to Vineet Nair, for all the help. I also thank Sumant Hedge and Abhijat Sharma

for wonderful discussions in the lab. I also want to thank Shweta Makhija for her help and

support. I am thankful to Hemang Chaitanya Das for his love and care during the last two

years and Srila Prabhupada for his value able teachings, that helped me a lot in the tough times.

i



Acknowledgements

Finally, I am extremely thankful to my family and relatives for having a firm belief on me. I

am indebted to the unconditional and uninterrupted love and support from them. I thank my

grandmother for her love, care and blessings, my mother for every thing she did for me and my

father for inspiring me to follow my dreams. I also want to express my gratitude to Mukund

and Chaitanya for constantly accompanying me and helping me in every difficulty. Without

your support I would not have been here.

ii



Abstract

Understanding the structure and complexity of a polynomial family is a fundamental problem

of arithmetic circuit complexity. There are various approaches like studying the lower bounds,

which deals with finding the smallest circuit required to compute a polynomial, studying the

orbit and stabilizer of a polynomial with respect to an invertible transformation etc to do this.

We have a rich understanding of some of the well known polynomial families like determinant,

permanent, IMM etc. In this thesis we study some of the structural properties of the polyno-

mial family called the Nisan-Wigderson polynomial family. This polynomial family is inspired

from a well known combinatorial design called Nisan-Wigderson design and is recently used to

prove strong lower bounds on some restricted classes of arithmetic circuits ([KSS14],[KLSS14],

[KST16]). But unlike determinant, permanent, IMM etc, our understanding of the Nisan-

Wigderson polynomial family is inadequate. For example we do not know if this polynomial

family is in VP or VNP complete or VNP-intermediate assuming VP 6= VNP, nor do we have

an understanding of the complexity of its equivalence test. We hope that the knowledge of

some of the inherent properties of Nisan-Wigderson polynomial like group of symmetries and

Lie algebra would provide us some insights in this regard.

A matrix A ∈ GLn(F) is called a symmetry of an n-variate polynomial f if f(A ·x) = f(x). The

set of symmetries of f forms a subgroup of GLn(F), which is also known as group of symmetries

of f , denoted Gf . A vector space is attached to Gf to get the complete understanding of the

symmetries of f . This vector space is known as Lie algebra of group of symmetries of f (or

Lie algebra of f), represented as gf . Lie algebra of f contributes some elements of Gf , known

as continuous symmetries of f . Lie algebra has also been instrumental in designing efficient

randomized equivalence tests for some polynomial families like determinant, permanent, IMM

etc ([Kay11], [KNST17]).

In this work we completely characterize the Lie algebra of Nisan-Wigderson polynomial family.

We show that gNW contains diagonal matrices of a specific type. The knowledge of gNW
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Abstract

not only helps us to completely figure out the continuous symmetries of the Nisan-Wigderson

polynomial family, but also gives some crucial insights into the other symmetries of Nisan-

Wigderson polynomial (i.e. the discrete symmetries). Thereafter using Hessian matrix of

Nisan-Wigderson polynomial and the concept of evaluation dimension, we are able to almost

completely identify the structure of GNW . In particular we prove that any A ∈ GNW is a product

of diagonal and permutation matrices of certain kind that we call block-permuted permutation

matrix. Finally, we give explicit examples of nontrivial block-permuted permutation matrices

using the Frobenius automorphisms that establishes the richness of the discrete symmetries of

the Nisan-Wigderson polynomial family.
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Chapter 1

Introduction

Algebraic complexity theory (ACT) is a branch of computational complexity theory that seeks

to understand the power and limitation of algebraic/arithmetic computation. The main ob-

jective of this area is to either give efficient algorithms for tractable problems using algebraic

techniques, or show the limitation of solving a problem by algebraic means. Based on this, ACT

is classified into two subareas namely computational algebra and arithmetic circuit complexity.

Computational algebra deals with designing of fast algorithms using a number of tools from

algebra, number theory, geometry, combinatorics etc, whereas arithmetic circuit complexity

aims to give tight lower bounds for hard problems. Some of the important problems in compu-

tational algebra literature are polynomial factorization, matrix multiplication, computation of

inverse and determinant of a matrix, primality testing, large integer multiplication and factor-

ization. There has been a lot of development in this area in the last few decades and some of

the well known results are matrix multiplication algorithm by Strassen[Str69], Discrete Fourier

Transform by Cooley and Tukey [CT65], RSA algorithm used for encryption and decryption

of messages [RSA78], parallel computation of determinant by Cshanky [Csa79], polynomial

factorization ([Kal89], [LLL82]), deterministic primality testing ([AKS04]), graph isomorphism

([Bab16]) etc. These algorithms rely on various mathematical concepts, tools and techniques

like Euler’s totient function, Euclidean algorithm, elliptic curves, Chinese remaindering, Hensel

lifting, group theory and many more. The utilization of such algorithms can be seen in the

diverse areas of mathematics and computer science like cryptography, combinatorial geometry,

coding theory, quantum computing etc.

Arithmetic circuit complexity is concerned with computation of polynomials1. Polynomials are

1primarily multivariate polynomials
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very widely used in many branches of mathematics and theoretical computer science and they

can be computed/represented using a succinct model known as arithmetic circuit. An arith-

metic circuit accepts variables as input and outputs a polynomial using the operations +, ×
and field constants. An example is shown in 1.1. The number of operations required for com-

puting a polynomial is captured by the size of arithmetic circuit. Size of the circuit is a vital

measure of complexity of computation and computing a polynomial using smallest size circuit

is an important question. Based on this, Leslie Valiant classified polynomials in two classes

namely VP and VNP in his seminal work [Val79a] 1. VP is an algebraic analog of (nonuniform)

P and consists of all those families of polynomials of low degree which can be computed by

circuits of small size 2. An example of VP polynomial family (in short VP polynomial) is the

symbolic determinant. On the other hand, VNP is an algebraic analog of (nonuniform) NP and

contains a family of polynomial {fn}n≥1, if there is a polynomial time algorithm to compute

coefficient of a given monomial in fn
3. Like NP complete problems, there are VNP complete

polynomials families (simply, VNP complete polynomials). It was shown by Valiant that the

symbolic permanent family is VNP complete [Val79b]. He further conjectured that permanent

can not be computed by a circuit of small size. This is popularly known as Valiant’s hypoth-

esis. Apart from this, there is also an evidence of existence of polynomial families which are

neither in VP nor VNP complete. These are called VNP intermediate polynomials. However

the existence of such polynomial families is based on the assumption that Valiant’s hypothesis

is true (Corollary 5.19 of [B9̈8]). Cut enumerator polynomial is one such polynomial [B9̈8].

In the spirit of proving Valiant’s conjecture, researchers started studying lower bounds for the

arithmetic circuits with an objective to come up with an explicit polynomial f that requires a

circuit of super polynomial size in the number of variables. Unfortunately we are still far from

the desired goal as the best known lower bound for general arithmetic circuit is Ω(n log n) given

by Baur and Strassen in [BS83]. To get more insights, people started studying lower bounds for

restricted circuits like constant depth 4 circuits. In a breakthrough result [AV08], Agrawal and

Vinay showed that to prove exponential lower bound on general circuits it is enough to give

exponential lower bound on depth 4 circuit. Thereafter Gupta, Kamath, Kayal and Saptharishi

showed in [GKKS13] that if a degree d polynomial over the field of characteristic zero is com-

puted by a general arithmetic circuit of size s then the same polynomial can also be computed

by a depth three circuit of size sO(
√
d). This means proving strong lower bounds on depth three

1Leslie Valiant used the terms p-bounded and p-definable for VP and VNP respectively.
2By low degree and small size, we mean degree and size are polynomial in the number of variables.
3In fact, for membership in VNP, it is sufficient that the coefficient computation problem in in #P.
4depth of the circuit is the largest path from input to output node of the circuit.
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Figure 1.1: Arithmetic circuit computing polynomial x+ y + 10wy

circuit will imply strong lower bound on general circuit also.

Apart from lower bounds there are a variety of interesting problems in arithmetic circuit com-

plexity theory like Polynomial identity testing (PIT), Circuit reconstruction and Polynomial

equivalence test. In PIT we check if a given circuit computes formally zero polynomial 1. There

is a randomized algorithm for PIT due to Schwartz-Zippel lemma ( [Zip79] and [Sch80]) but to

give a polynomial time deterministic algorithm for this is a long standing open problem. How-

ever for some restricted arithmetic circuits PIT is solved in deterministic polynomial time, for

example depth-3 circuit of bounded top fan-in ([DS06],[KS07], [KS08], [SS13]), diagonal circuits

[Sax08], depth-4 multilinear circuits with bounded top fan-in ([SKMV10],[ASSS12]), read-once

oblivious algebraic branching programs ([AGKS14]). PIT is strongly connected to arithmetic

circuit lower bounds. Kabanets and Impaliazzo showed that if PIT admits a polynomial time

deterministic algorithm then either Permanent is not computed by polynomial size arithmetic

circuit or NEXP not in P/poly [KI04].

In circuit reconstruction we are given black box access to a circuit C and the main objective

is to come up with a circuit D of size polynomial in the size of C such that the polynomials

computed by C and D are same. The aim is to design a reconstruction algorithm (even ran-

domized) whose running time is polynomial in the size of C. It is analogous to the learning

problem of boolean functions.

Another problem called Affine projection of polynomials was studied in [Kay11]. We say a

1A polynomial f is called formally zero polynomial if f does not contain a monomial with non zero coefficient.
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polynomial g is an affine projection of f if there exists a matrix A and a vector b such that

g(x) = f(A · x + b). Many interesting problems like VP vs VNP, matrix multiplication etc are

related to this problem. [Kay11] showed that the problem of checking if a given polynomial

f is an affine projection of another given polynomial g is NP-hard. Then he considered the

restricted version of this problem called polynomial equivalence, where matrix A is invertible

and b is a zero vector. Even this problem is also not easy. In [AS06], Agrawal and Saxena

showed that this problem is at least as hard as Graph Isomorphism. They also showed in the

same paper that the complexity of polynomial equivalence test depends on the base field. If

the base field is algebraically closed field or R or finite field then polynomial equivalence is

decidable and has different complexities, but if the base field is Q then it is not clear if this

problem is even decidable. However there are some instances of polynomial equivalence that

can be solved using randomized polynomial time algorithms. If we fix the polynomial f as some

of the well known polynomials like permanent, IMM 1 then the equivalence test can be done in

randomized polynomial time ([Kay11], [KNST17]) over Q and the same for determinant over C.

Equivalence test is interesting as (besides being a natural problem) it provides us a different

view of the complexity of a polynomial family. The algorithms of equivalence test of perma-

nent, determinant (over C) and IMM used a tool called Lie algebra. It is an important concept

used in representation theory. We discuss Lie algebra in Chapter 2. Designing equivalence test

for a polynomial family has some connections to understand the group of symmetries of the

polynomials in the family. Symmetries of polynomial families also play an important role in

Geometric complexity theory.

Geometric Complexity Theory. A matrix A ∈ GLn(F) is a symmetry of an n-variate

polynomial f if f(x) = f(A · x). The set of symmetries of f forms a group with respect to

matrix multiplication and it provides a lot of information about f . Inspired by this, Mulmu-

ley and Sohoni introduced a new approach namely Geometric Complexity Theory (GCT) in

2001 to tackle the VP vs VNP problem [MS01]. The starting point of GCT was a famous

result from representation theory, which says that permanent and determinant can be uniquely

characterized by their group of symmetries. It means that if the symmetries of any degree n

homogeneous polynomial f is same as the symmetries of Permanent (or Determinant) then f

is a constant multiple of Permanent (or Determinant). GCT attempts to resolve VP vs VNP

using tools from algebraic geometry and representation theory.

1IMM stands for iterated matrix multiplication. It is the polynomial defined as the first entry of product of
variable matrices.
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An initial task in GCT is to study the symmetries and orbit closure of a given polynomial,

which can perhaps be helpful to give lower bounds on circuit computing that polynomial. The

property of symmetry characterization for determinant and permanent has helped in identifying

their orbit closures. Mulmuley and Sohoni conjectured 1 that the permanent is not contained

in the orbit closure of polynomial size determinant. In other words it says that if there exist

an n × n matrix X and an m ×m matrix Y with entries as affine forms in n2 variables such

that permanent(X)= determinant(Y ) then m is a super polynomial in n.

1.1 Previous works

The group of symmetries of the permanent was studied by Marcus and May ([MM62]),which

provided many insights to understand the Lie algebra of permanent and design an efficient

randomized equivalence test for it over Q ([Kay11]). For determinant polynomial, the efficient

equivalence test is known only when the underlined field is C ([Kay11]). This algorithm was

inspired from the Lie algebra of determinant, which was identified using its group of symmetries.

The group symmetries of the determinant was given by Frobenius ([Fro97]). In [Ges16], the

group of symmetries of a variant of IMM was given. Later Kayal, Nair, Saha and Tavenas

figured out the group of symmetries of IMM, using which they identified the Lie algebra of

IMM and gave an efficient randomized equivalence test for it ([KNST17]).

1.2 Motivation

In [KSS14] a polynomial named Nisan-Wigderson polynomial was introduced, which was used

to prove strong lower bounds on a special class of arithmetic circuits called regular arithmetic

formula. A variant of the same polynomial was used in the recent work by Kayal, Saha and

Tavenas [KST16] to give an almost cubic lower bound for general depth three circuit. This poly-

nomial family is inspired from a well known combinatorial design known as Nisan-Wigderson

design. This design was introduced by Nisan and Wigderson in [NW94] and they called it (k,m)

design. It is defined as a collection of subsets of a universe set such that each subset is of size

m and any two subsets can have intersection of at most k (value of k is small as compared to

m). Nisan-Wigderson design is one of the fundamental concept used in pseudo random number

generation and randomness extraction. Apart from this, in arithmetic circuit complexity also

this design is used to show the connections between circuit lower bounds and PIT [KI04]. In a

Nisan-Wigderson polynomial (defined formally in the next section) the monomials are treated

1This is the restatement of Valiant’s hypothesis.
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as the subsets of (k,m) design.

It was shown in [KSS14] that Nisan-Wigderson polynomial is in VNP, but its exact computa-

tional complexity is not known. Like other well known polynomials (Permanent, Determinant,

IMM) we are interested to know if this polynomial is in VP, or VP-intermediate (under some

plausible assumptions) or VNP complete. This motivates us to study some of the structural

properties of Nisan-Wigderson polynomial like group of symmetries and Lie algebra. In the

spirit of GCT, we hope that the knowledge of group of symmetries of Nisan-Wigderson poly-

nomial (and equivalence test for this family) will provide us some insights about the hardness

of this polynomial. We also want to know if Nisan-Wigderson polynomial can also be uniquely

characterized by its group of symmetries.

Another question that motivates us is the equivalence test of Nisan-Wigderson polynomial. We

want to know if Nisan-Wigderson polynomial also admits a randomized equivalence test or is it

that the test can not be done efficiently even with the help of randomness. Even a no answer

will give us an explicit polynomial which is “harder” than permanent, determinant and IMM

from the perspective of equivalence test. The Lie algebra of Nisan-Wigderson polynomial may

provide us with some useful information that help us in doing an equivalence test for this family

efficiently as it did in the case of permanent, determinant (over C) and IMM.

1.3 Our Results

In this thesis we completely characterize the Lie algebra of Nisan-Wigderson polynomial and

give the structure and some nontrivial elements of its group of symmetries. Before stating these

results as theorems, we define Nisan-Wigderson polynomial.

Definition 1.1 (Nisan-Wigderson polynomial)

Let k, q ∈ N∗, where q is a power of a prime number, then Nisan-Wigderson polynomial (denoted

NWq,k(x)) is defined as

NWq,k(x) =
∑

h∈Fq [t]k

x0h(0) · x1h(1) · · ·xq−1h(q−1),

where Fq[t]k := {f ∈ Fq[t] | deg(f) ≤ k}. Nisan-Wigderson polynomial is a set-multilinear

(Definition 2.10) and homogeneous polynomial (Definition 2.9) of degree q. For brevity we

drop the subscripts of NWq,k(x).

Theorem 1.1 (Lie algebra of Nisan-Wigderson polynomial)

6



The Lie algebra of Nisan-Wigderson polynomial has dimension (q − 1) over the field F1 for

every k ≥ 1.

We give the proof of this theorem in Chapter 3. We show that its Lie algebra consists of diago-

nal matrices of a special type and give an explicit F-basis of the Lie algebra. The next theorem

gives the structure of group of symmetries of Nisan-Wigderson polynomial.

Theorem 1.2 (Structure of group of symmetries of Nisan-Wigderson polynomial)

Every element A of group of symmetries of Nisan-Wigderson polynomial is a product of a

diagonal matrix and a permutation q2 × q2 matrix.

The proof of this theorem is given in Chapter 4. There we show that the permutation matrices

in the above theorem have got to be block-permuted matrices (Definition 2.8). In the next

theorem we show that this group contains discrete symmetries, that are elements other than the

continuous symmetries of Nisan-Wigderson polynomial family. It would follow from Theorem

1.1 that the continuous symmetries of NW (x) consist of diagonal matrices. Whereas we show

in the proof of the following theorem that there are block-permuted permutation matrices2

with non-trivial block permutation 3 in the group of symmetries of NW (x). We will explain

continuous and discrete symmetries of a polynomial in Chapter 2.

Theorem 1.3 (Discrete symmetries of Nisan-Wigderson polynomial)

The group of symmetries of Nisan-Wigderson polynomial has discrete symmetries. Moreover,

there are discrete symmetries where the matrices are block-permuted permutation matrices with

non trivial block permutation.

The proof of this theorem is in Chapter 5. In this chapter we give some explicit discrete

symmetries of NW (x). We show that there are symmetries A of NW (x) such that A is a non

trivial block permutation matrix and A is a product of a diagonal and a permutation matrices.

1.4 Organization of the thesis

We present here the road map of our thesis. We state all the required definitions and preliminary

results in Chapter 2. In Chapter 3 we give the proof of Theorem 1.1 and give an F-basis of

Lie algebra of the Nisan-Wigderson polynomial. The proof is obtained by a careful analysis of

1Characteristic of F is either zero or large enough.
2 It is a permutation matrix, which is block permuted.
3the permutation σ in Definition 2.10 is not identity.
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certain system of linear equations. Chapter 4 contains the proof of Theorem 1.2. The proof

uses concepts of the Hessian of a polynomial and evaluation dimension. Thereafter in Chapter

5 we explicitly give some of the nontrivial discrete symmetries of NW (x). Finally in Chapter

6 we discuss the future directions.
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Chapter 2

Preliminaries

In this chapter we note the basic results that have been used in our work. Along with this we

also touch on the required concepts of algebra very succinctly. In the first section, we specify

the notations that are used in the thesis. The second section is devoted to the introduction of

basic algebraic structure and in the third section we introduce some tools required to prove our

results.

2.1 Notations and Terminology

Throughout the thesis, [n] represents the set {0, . . . , n − 1}. However, at many places in the

literature, [n] is defined as {1, . . . , n} but here we are using this definition for our convenience.

N = {0, 1, 2, . . .} and N∗ = N \ {0}. Unless specified, F denotes a field of characteristic zero or

sufficiently large and Fq is the finite field of size q. The set of variables x is

x =
⊎
i∈[q]

xi,

where xi := {xi 0, . . . , xi q−1}, i.e. the variables xi get precedence over the variables xj if i < j

and within a set xi the variable xir gets precedence over xil if r < l. We impose the ordering

x0 0 ≺ · · · ≺ x0 q−1 ≺ · · · ≺ xq−1 q−1 on x . The set F[x] is the ring of multivariate polynomials

with coefficients from F and the set Fq[t]k comprises of all the univariate polynomials of degree

at most k with coefficients from Fq. Let f ∈ Fq[t]k and vf be its coefficient vector defined as

vf = (a0, a1, . . . , ak), where ai is the coefficient of ti in f . We order the polynomials of Fq[t]k
using the lexicographic ordering on their coefficient vectors. We denote this ordered set as

(Fq[t]k,�). Further GLn(F) is the group of all n× n size invertible matrices over F.

9



A polynomial family is a set of ‘related’ polynomials indexed by n ∈ N. For example {Detn}
contains the determinant of an n× n size variable matrix for all n ∈ N.

2.2 Algebraic Preliminaries

In this section we give very concise introduction of basic algebraic structures and some of their

properties. We refer the interested readers to [Her75], [Art91] for more details.

Definition 2.1 (Permutation)

Let S be any set. A bijective map on S is called a permutation on S.

If S is a finite set with cardinality n then there are n! permutations on S.

Fact 2.1 (Pigeonhole principle)

Let S be a finite set and σ : S → S be a function. Then the following statements are equivalent

1. σ is injective.

2. σ is surjective.

3. σ is bijective.

Pigeonhole principle is stated in different forms and is one of the most widely used counting

tool in mathematics.

Definition 2.2 (Group)

A set G with the binary operation · is called a group if it satisfies the following properties

1. (Closure) For all x, y ∈ G, x · y is also in G.

2. (Associativity) For all x, y, z ∈ G, x · (y · z) = (x · y) · z.

3. (Identity) There exists 1 ∈ G such that for all x ∈ G, x · 1 = 1 · x = x.

4. (Inverse) For every x ∈ G there exists x−1 ∈ G such that x · x−1 = x−1 · x = 1.

G is called an abelian group or commutative group if for all x, y ∈ G, x · y = y · x. Examples of

groups are (Z,+), (R, ·) etc.

Definition 2.3 (Field) A set F with the binary operations + and · is called a field if

1. (F,+) is an abelian group.

10



2. (F, ·) is an abelian group.

3. (Distributivity) For x, y, z ∈ F, x · (y + z) = x · y + x · z.

Examples of fields are Q,R,C and finite fields1.

Characteristic of F is defined as the smallest natural number n such that n · 1 = 0. If no such n

exists then we say that F has characteristic zero. It is easy to show that the characteristic of a

field is either 0 or a prime number.

Fact 2.2 The cardinality of a finite field Fq is q, where q is equal to pn for some prime number

p and natural number n.

The characteristic of Fq is p.

Definition 2.4 (Field homomorphism)

Let F and K be fields. The map ψ : F→ K is called a field homomorphism if for all a, b ∈ F,

1. ψ(a+ b) = ψ(a) + ψ(b),

2. ψ(a · b) = ψ(a) · ψ(b).

In addition if ψ is bijective then it is called field isomorphism. Further, if K = F then field

isomorphism is also known as field automorphism.

Claim 2.2.1 Let Fq be a finite field of characteristic p and q = pn. Then the following map is

a field automorphism.

σ : Fq → Fq
a 7→ ap

i

for i = 0, . . . , n− 1.

Proof: Let a, b ∈ Fp. Then

σ(a+ b) = (a+ b)p
i

= ap
i

+ (pi · 1) · api−1b+ · · ·+ bp
i

(using Binomial theorem)

= ap
i

+ bp
i

(Characteristic of Fq is p)

= σ(a) + σ(b).

1 It is a field having finite number of elements.
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Also, σ(ab) = σ(a) · σ(b). Thus σ is a field homomorphism. Now we argue that σ is a bijective

map. Since Fq is finite, it is enough to show that σ is injective. We prove this by showing that

Ker(σ) = {0}. Let a ∈ Ker(σ), σ(a) = 0, which means ap
i

= 0 thus a = 0. 2

The automorphisms in the above claim are known as Frobenius automorphisms.

Fact 2.3 Let Fpn be a field of size pn. Then the number of distinct Frobenius automorphisms

of Fpn are n.

Fact 2.4 Let Aut(Fpn) denote the group of all automorphisms of Fpn. Then the cardinality of

Aut(Fpn) is n.

In other words, Fact 2.4 says that the only automorphisms on finite fields are Frobenius auto-

morphisms. The proof of these facts can be found in any elementary book on Galois theory or

finite fields. Now we give a very brief introduction to vector spaces.

Definition 2.5 (Vector Space)

A set V with a binary operation + is called a vector space over a field F if (V,+) is an abelian

group and there exists a map 1 · : F× V → V such that for every c ∈ F and v ∈ V , c · v ∈ V .

In addition for every x, y ∈ V and a, b ∈ F the following properties hold

1. a · (x+ y) = a · x+ a · y.

2. (a+ b) · x = a · x+ b · x.

3. a · (b · x) = (a · b) · x.

4. 1 · x = x.

Remarks 2.1 In property 3 on the right hand side · is the multiplication operation of F.

An example of vector space is the set of n× n matrices with entries from F, denoted by Mn(F)

or Fn×n. The elements of a vector space are called vectors and the elements of the base field

F are called scalars. The set of vectors S = {v1, . . . , vn} is called a generating set of V if for

any x ∈ V there exist a1, . . . , an ∈ F such that x = a1 · v1 + · · · + an · vn. S is called linearly

independent over F if b1 · v1 + · · ·+ bn · vn = 0 with b1, . . . , bn ∈ F implies b1 = · · · = bn = 0. The

set S is called an F-basis of V if S is linearly independent over F and generating system of V .

1This is called scalar multiplication
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Fact 2.5 Every vector space over the field F has an F-basis.

Fact 2.6 Any two basis of an F-vector space V have same cardinalities. This cardinality is

known as dimension of V .

The proofs of these facts can be found in any basic book on linear algebra.

Definition 2.6 (Block matrix)

A matrix A is called a block matrix if A can be written using same size sub matrices or blocks.

For example let

A =


1 0 3 9

0 2 4 8

4 6 7 5

8 3 9 2

 .
Then A can be written as a block matrix like

A =

[
A11 A12

A21 A22

]
,

where

A11 =

[
1 0

0 2

]
, A12 =

[
3 9

4 8

]
, A21 =

[
4 6

8 3

]
A22 =

[
7 5

9 2

]

We can view every matrix as a block matrix by viewing every element as a block. Let T be

a matrix of size q2 × q2 and the rows and columns be divided into q sets, each of size q. The

(i, j)-th block of T , denoted Tij is indexed by i-th row block and j-th column block as shown

in Figure 4.1. The blocks Tii for i ∈ q are known as diagonal blocks of T .

Definition 2.7 (Block diagonal matrix)

A block matrix A ∈Mn2(F) with block size n× n is called a block diagonal matrix if all the off

diagonal blocks of A are zero.

For example the following matrix A is a block diagonal matrix.

A =


1 4 0 0

2 3 0 0

0 0 4 8

0 0 0 2
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Definition 2.8 (Block permuted matrix)

Let A ∈ Mn2(F) be a block matrix with block size n × n. Then A is called a block permuted

matrix if there exists a permutation σ on [n] such that the blocks other than Ai,σ(i) are zero for

i ∈ [n]. Aiσ(i) is the block of A indexed by i-th block of rows and σ(i)-th block of columns.

For example the following matrix A is a block permuted matrix .

A =


0 0 1 4

0 0 2 3

4 8 0 0

0 2 0 0


2.3 Some tools and concepts

In this section we list some of the tools and concepts used in our results. We have divided this

section into a number of subsections for clarity.

2.3.1 Nisan-Wigderson polynomial

In this section we first define homogeneous and set-multilinear polynomial and then state low

intersection property of Nisan-Wigderson polynomial (Definition 1.1).

Definition 2.9 (Homogeneous polynomial) Let f ∈ F[x] be an n-variate polynomial. f is called

a homogeneous polynomial of degree d if degree of every monomial of f is d.

Definition 2.10 (Set-multilinear polynomial)

Let the set of variables x be partitioned into subsets as mentioned in Section 2.1. A polynomial

f is called set-multilinear with respect to the partition on x if every monomial of f contains

exactly one variable from each set of the partition of x.

For example let x = {x00, x01} ∪ {x10, x11}. Then f = x00x10 + x01x11 is a set-multilinear

polynomial.

Nisan-Wigderson polynomial is a set-multilinear homogenous polynomial. It has a very in-

teresting property called low intersection property. This property is stated as the following

claim.

Claim 2.3.1 Let m1,m2 be distinct monomials of NW (x). Then m1 and m2 can have at most

k variables in common.
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Proof: From the definition of NW (x) we know that there exist distinct polynomials h1, h2 ∈
Fq[t]k such that m1 = x0h1(0) · · ·xq−1h1(q−1) and m2 = x0h2(0) · · ·xq−1h2(q−1). Since h1 6= h2 and

their degrees are bounded by k, h1 − h2 can have at most k roots in Fq, which implies that m1

and m2 can have at most k common variables. 2

2.3.2 Partial derivatives

Let g ∈ F[y0, . . . , yn−1] be a degree d polynomial. Then g can be written as follows

g = fi 0 + fi 1 · yi + fi 2 · y2i · · ·+ fi dy
d
i ,

where fi 0, . . . , fi d ∈ F[y0, · · · , yi−1, yi+1, . . . yn−1]. Partial derivative of f with respect to yi

denoted ∂f
∂yi

is defined as

∂f

∂yi
:= fi 1 + 2 · fi 2 · yi + · · ·+ (d− 1) · fi dyd−1i .

Let f, g ∈ F[y] and a, b ∈ F. Then partial derivatives satisfy the following properties.

1. Linearity of derivatives:

∂

∂yi
(a · f + b · g) = a · ∂(f)

∂yi
+ b · ∂(g)

∂yi
.

2. Derivative of product:
∂

∂yi
(f · g) =

∂(f)

∂yi
· g +

∂(g)

∂yi
· f.

3. Chain Rule of partial derivatives: Let f ∈ F[y0, . . . , yr−1] and g= (g0, . . . , gr−1), such

that every j ∈ [r], gj ∈ F[z], where z= {z0, . . . , zn−1}. The composition f◦g, which is a

polynomial in F[z] defined as

f ◦ g := f(g0(z), . . . , gr−1(z)).

Then chain rule is stated as follows. For every j ∈ [n],

∂

∂zj
(f ◦ g) =

r−1∑
i=0

∂f

∂gi
· ∂gi
∂zj

,

where ∂f
∂gi

denotes ( ∂f
∂yi
◦ g) ∈ F[z] for all i ∈ [r].
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For more details on the applications of partial derivatives in arithmetic circuit complexity, the

reader can refer to [CKW11].

2.3.3 Hessian of a polynomial

Definition 2.11 (Hessian of a polynomial)

Let y= (y0, . . . , yn−1) be a set of n variables and f ∈ F[y]. Hessian of f , denoted Hf (y) is an

n× n matrix with entries from F[y] defined as

Hf (y) :=

(
∂2f

∂yi∂yj

)
i,j∈[n]

.

The rows and columns of Hf (y) are indexed by y. We here note an important property of

Hf (y), which will be used in the proof of Theorem 1.2.

Lemma 2.1 (Lemma 2.6 of [CKW11])

Let f ∈ F[y] be an n-variate polynomial and A ∈ Fn×n be a linear transformation. Let g(y) :=

f(A · y). Then

Hg(y) = AT ·Hf (A · y) · A.

Proof: Let A = (aij)i,j∈[n]. Then

g(y) = f

(
n−1∑
j=0

a0 j · yj, . . . ,
n−1∑
j=0

an−1 j · yj

)
.

Using chain rule of partial derivatives, we can write

∂g

∂yj
=

n−1∑
i=0

ai j ·
∂f

∂yi
(A · y),

for j ∈ [n]. Now for all j, l ∈ [n],

∂2g

∂yj · ∂yl
=

n−1∑
i=0

aij ·

(
n−1∑
r=0

arl ·
∂2f

∂yi · ∂yr
(A · y)

)

=
∑
i,r∈[n]

aij ·
∂2f

∂yi · ∂yr
(A · y) · arl .

The above equation leads to the desired result. 2
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2.3.4 Evaluation dimension of a polynomial

Definition 2.12 (Evaluation dimension)

Let f ∈ F[y] be an n-variate polynomial and z ⊆ y. Let V be the vector space defined as

V := F-span {f(a , y \ z) |a ∈ F |z|}.

Evaluation dimension of f , denoted evalDimz(f) is the dimension of V .

Remarks 2.2 In the above definition f(a , y \ z) denotes polynomial f after substituting the

variables of set z with a in f .

For example let f = y1y
2
2 + y3y4 and z= {y1, y3}. Then after setting z to different values from

field F, f = αy22 + βy4, where α, β ∈ F and evalDimz(f) = 2.

Claim 2.3.2 evalDimz(f) is always finite for any z ⊆ y and is upper bounded by the number

of monomials in f .

Proof: Let f has r monomials. Once the set z is fixed, every monomial in f(a , y \ z) is

either fixed to a constant or remains a monomial in the variables of y \z after the substitution

of z with a. Thus the evalDimz(f) is upper bounded by r.

2

2.3.5 Lie group and Group of symmetries of a polynomial

In this subsection we give a brief overview of the matrix Lie group and symmetries of a poly-

nomial. We state here the important lemmas and refer the reader to [Hal03] for proofs. In this

subsection, we assume that the underlying field F is C.

Definition 2.13 (Convergence of a sequence of matrices)

Let (Am)m∈N be a sequence of n × n matrices over the field F. This sequence converges to

a matrix A if the sequence defined by the (i, j)-th entries of Am for m ∈ N converges to the

(i, j)-th entry of A for i, j ∈ [n].

In the above definition, A can be written as A = limm→∞Am.

Definition 2.14 (Matrix Lie group)

A subgroup G of GLn(F) is called matrix Lie group if G satisfies the following property: If Am

is a sequence of matrices in G and it converges to A then either A ∈ G or A 6∈GLn(F).
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Matrix Lie group is also known as continuous group or Lie group. An example of matrix Lie

group is special linear group, denoted SLn(F). It is the group of all invertible matrices over F
with determinant equal to one.

Definition 2.15 (Matrix Exponential)

Let M ∈ Fn×n. Exponential of M , denoted eM is defined as the following power series

eM =
∞∑
i=0

M i

i!
,

where M0 is n × n identity matrix and M i is the product of M with itself i times. The above

power series converges for every M .

Claim 2.3.3 Let X = diag(a0, . . . , an−1)
1 be a diagonal matrix with ai ∈ F, i ∈ [n]. Then

eX = diag(ea0 , . . . , ean−1).

Definition 2.16 (Symmetry of a polynomial)

Let f ∈ F[y] be an n-variate polynomial and A ∈ GLn(F). A is called a symmetry of f if

f(y) = f(A · y).

Claim 2.3.4 Let f ∈ F[y] be an n-variate polynomial. The set of all symmetries of f forms a

group under matrix multiplication.

Proof: Let A,B,C be the symmetries of f .

1. (Closure): f(A · (B · y)) = f(B · y) = f(y). This shows that A ·B is also a symmetry of

f .

2. (Associativity): f((A · (B · C)) · y) = f(((A ·B) · C) · y).

3. (Identity): The identity matrix In is the identity of this group.

4. (Inverse): f(A−1 · y) = f(y), which means A−1 is also a symmetry of f .

2

This is called group of symmetries of f and is denoted by Gf .

Remarks 2.3 The group of symmetry of a polynomial f is also called the isotropy subgroup of

f , group of automorphism of f or stabilizer of f .

1diag(. . . ) is used to denote a diagonal matrix.
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Now we show that the group of symmetries of a polynomial is a Lie group.

Lemma 2.2 (Theorem 4.1 of [Wel16])

Let f ∈ F[y] be an n-variate polynomial. Then Gf is a Lie group.

Proof: Let the sequence (Am)m of matrices in Gf converges to a matrixA i.e. A = limm→∞Am.

To show that Gf is a Lie group, we have to either show that A ∈ Gf or A is not invertible. The

fact that polynomials are continuous function implies the following

f(A · y) = f( lim
m→∞

Am · y)

= lim
m→∞

f(Am · y)

= lim
m→∞

f(y)

= f(y).

This shows that A ∈ Gf and Gf is a Lie group. 2

Definition 2.17 (Continuous and discrete symmetries)

Let f be an n-variate polynomial. The symmetries obtained from the Lie algebra of f are known

as the continuous symmetries of f and the other symmetries are called discrete symmetries of

f .

2.3.6 Lie algebra of a polynomial

We can study some of the properties of a Lie group by attaching a vector space to it and

using the tools of linear algebra. This vector space is known as Lie algebra. Since the group

of symmetries of a polynomial is a Lie group, we can talk about the Lie algebra of the group

of symmetries of a polynomial (we call it Lie algebra of polynomial). Lie algebras of some

of the well known polynomial families in arithmetic complexity like determinant, permanent,

IMM have been completely characterized ([Kay11], [KNST17]). The definition we present here

is taken from [Kay11] and is not the abstract definition of Lie algebra. The abstract definition

of Lie algebra is given in [Hal03] and Theorem 2.27 in the same book shows the equivalence of

two definitions.

Definition 2.18 (Lie algebra of a polynomial)

Let f ∈ F[y] be an n-variate polynomial and ε be a variable such that ε2 = 0. Then a matrix
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A ∈ Fn×n is in the Lie algebra of the group of symmetries of f 1, denoted gf , if the following

condition is satisfied

f((In + εA) · y) = f(y),

where In is n× n size identity matrix.

Now we state a result about the computation of Lie algebra of a polynomial in the following

lemma. We omit the proof here and the reader can refer Lemma 26 of [Kay11].

Lemma 2.3 There exists a randomized polynomial time algorithm that computes a basis of gf

from black box access to f , where f is an n-variate polynomial.

The proof of Lemma 2.3 includes an important component which we state explicitly in the

following claim. This gives us an alternate definition of Lie algebra of a polynomial.

Claim 2.3.5 (Claim 58 of [Kay11])

Let f ∈ F[y] be an n-variate polynomial. Then A = (aij)i,j∈[q] is in gf if the following relation

holds. ∑
i,j∈[n]

aij yj ·
∂f

∂yi
= 0.

Proof: Suppose for simplicity f is a monomial. Then we can write

f((In + εA) · y)− f(y) = ε ·

∑
i,j∈[n]

aij yj ·
∂f

∂yi


Now because of linearity of partial derivatives, the same result holds for any polynomial f .

Since A ∈ gf , we get

f((In + εA) · y)− f(y) = 0,

which implies

ε ·

∑
i,j∈[n]

aij yj ·
∂f

∂yi

 = 0.

Since ε 6= 0, we get ∑
i,j∈[n]

aij yj ·
∂f

∂yi
= 0.

2

1For brevity, we call it Lie algebra of f
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This gives a nice characterization of Lie algebra of f that also helps in computing its basis in

Lemma 2.3. Since Claim 2.3.5 captures the essence of gf , we take this as the working definition

of Lie algebra of a polynomial throughout this thesis.

Definition 2.19 (Working definition of Lie algebra of a polynomial)

The set of matrices A = (aij)i,j∈[q] ∈ Fn×n is called the Lie algebra of an n-variate polynomial

f ∈ F[y] if ∑
i,j∈[n]

aij yj ·
∂f

∂yi
= 0.

Now we show the relation between the Lie algebras of equivalent polynomials. We say an n-

variate polynomial h ∈ F[y] is equivalent to f ∈ F[y] if there exists A ∈ GLn(F) such that

h(y) = f(A · y).

Claim 2.3.6 (Proposition 58 of [Kay11])

If h(y) = f(A · y) then

gh = A−1 · gf · A.

Proof: Let B ∈ gf . Then

f(y) = f((In + εB) · y).

Since f(y) = h(A−1 · y), we get

h(A−1 · y) = h(A−1 · (In + εB) · y),

which implies

h(y) = h(A−1 · (In + εB) · A · y)

= h((In + ε(A−1 ·B · A)) · y).

This means A−1 ·B · A ∈ gh, which means A−1 · gf · A ⊆ gh. Now Suppose C ∈ gh. Then

h(y) = h((In + εC) · y).

We know that f(A · y) = h(y), which implies

f(A · y) = f(A · (In + εC) · y).
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This gives us the following relation

f(y) = f(A · (In + εC) · A−1 · y)

= f((In + ε(A · C · A−1)) · y).

This implies A · C · A−1 ∈ gf , meaning gh ⊆ A−1 · gf · A. 2

The relationship between gf and gh is called conjugacy relation. In other words, Lie algebra

of g is called conjugate of Lie algebra of f via A. Now we define Lie algebra of a matrix Lie

group. Here our underlying field F is C.

Definition 2.20 (Lie algebra of a matrix Lie group)

Let G be a matrix Lie group. The set of matrices A ∈ Fn×n such that etA is in G for all real

number t is called the Lie algebra of G .

The above definition shows how can we get a Lie algebra from a Lie group. The following defi-

nition immediately shows how to get element of Lie group from Lie algebra through exponential

map.

Definition 2.21 (Exponential map)

Let G ⊆ GLn(F) be a Lie group and g be the Lie algebra associated with it. We define the

exponential map exp t for any real number t as follows

exp t : g→ G,

where A ∈ g is mapped to etA in G.

All the concepts mentioned in this chapter would be directly or indirectly used in the following

chapters.
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Chapter 3

Lie algebra of Nisan-Wigderson

polynomial

In this chapter we present the proof of Theorem 1.1. Along with this we also give an F-basis of

the Lie algebra of Nisan-Wigderson polynomial. Using this information, we give the continuous

symmetries of NW (x) and show how it helps in tracking the discrete symmetries in Chapter

4. We also hope that it will be helpful in designing an equivalence test for NW (x).

3.1 Proof of Theorem 1.1

In this section, we give the structure of proof of Theorem 1.1, pushing several details to the

subsequent sections. We present the proof idea in the form of a flowchart in Figure 3.1. The

different blocks are formally stated here and proved in the subsequent sections. Let A ∈ gNW ,

then A is q2 × q2 matrix, where q is the parameter used in the definition of Nisan-Wigderson

polynomial. In the following lemma, we identify the structure of A.

Lemma 3.1 Every A ∈ gNW is a diagonal matrix with entries from F.

The proof of this lemma uses the crucial low intersection property of NW (x). We defer the

proof to Section 3.2 and discuss the rest of proof structure of Theorem 1.1 assuming Lemma 3.1.

Since A is a diagonal matrix, it can be identified with a vector in Fq2 containing the diagonal

entries of A. Therefore, from now onwards we treat every element of gNW as a vector in Fq2

instead of a matrix. After this we construct a matrix D ∈ Fqk+1×q2 using the monomials of

NW (x) such that gNW (viewed as a space of vectors in Fq2) is contained as an F-subspace in

the Kernel of D, denoted KerF(D) 1. The rows and columns of D are indexed by monomials of

1KerF(D) = {v ∈ Fq2 | D · v = 0}.
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NW (x) and variable set x respectively.

Proof Begins

gNW contains only diagonal ma-
trices (Lemma 3.1)

Construct matrix D s.t. gNW
is an F-subspace of Kernel of D
(Section 3.3)

Showing Dim(KerF(D)) and so
Dim(gNW ) is at most (q − 1)

gNW has q− 1 F-linearly indepen-
dent matrices, so Dim(gNW ) ≥
(q − 1) (Lemma 3.3)

gNW has an F-basis of size q − 1

Proof ends

Figure 3.1: Proof idea of Theorem 1.1

Description of matrix D. From the construction, D turns out to be a 0, 1 matrix, with

the (i, j)-th entry dij = 1 if the monomial indexing the i-th row contains the variable indexing

the j-th column of D otherwise dij = 0. Since rows of D are identified with the monomials of

NW (x), every row of D contains exactly q many 1s. We present the other details about the

construction of D in Section 3.3.

Thereafter we divide the rows and columns of D into blocks of size q × q and do some prepro-

cessing on D. Then we choose special q2− q rows of D. The matrix shown in Figure 3.2 gives a

glimpse of these rows. The sub matrices indexed by the rows blocks and column blocks indexed

by the sets x1,. . ., xq−1 are permutation matrices of size q× q. As shown in the figure, in these

rows the column indexed by x0 q−1 does not have a 1, the other columns of x0 have exactly q

many 1s and every other column of D has exactly q − 1 many 1s. We give full detail of this

restructuring of D in Section 3.4. Along with these q2 − q rows, we take in one row from D,
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whose entry in the column indexed by x0 q−1 is 1, the entries in the columns indexed by xr ir are

1 for some ir ∈ [q] and r ∈ {1, . . . , q − 1} and the entries in the other columns are 0, thereby

getting a total of q2 − q + 1 rows.

We prove that these q2 − q + 1 rows are F-linearly independent in the following lemma which

is proved in Section 3.5.

Lemma 3.2 There are at least q2 − q + 1 F-linearly independent rows in D.

1
1
·
·
·
1

1
1
·
·
·
1

1
1
·
·
·
1 1

1

1
·
·
·

1

1
1

·
·
·

1

1
1

···

1
1

1

···

1

1

1
·
·
·

1

1
1

·
·
·

•
•
•

•
•
•

•
•
•

• • •

• • •

• • •

•

•

•

q − 1 Row blocks

q rows

q Column blocks

q cols

x0 x1 xq−1• • •

xi={xi 0, . . . , xi q−1},
for i ∈ [q].

:Permutation
matrices

Figure 3.2: q2 − q rows of D
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Lemma 3.2 is the heart of the proof of Theorem 1.1. This immediately implies that dimension

of KerF(D), denoted Dim(KerF(D)), and DimF(gNW ) is upper bounded by q−1. The following

lemma shows that there are at least q − 1 F-linear independent matrices in gNW , proving that

Dim(gNW ) ≥ q−1. In the lemma, Rl is a q2×q2 matrix in gNW with rows and columns indexed

by q2 variables. Thus, (Rl)ij,pr refers to the entry of Rl with row indexed by xij and column by

xpr.

Lemma 3.3 The following q − 1 matrices R1, . . . , Rq−1 are F-linearly independent in gNW .

For l = 1, . . . , q − 1

(Rl)ij,ij =


1, if i = 0, j ∈ [q]

−1, if i = l, j ∈ [q]

0, otherwise

Section 3.6 is devoted for the proof of Lemma 3.3. Together with Lemma 3.1 and 3.2, this

immediately shows dimF(gNW ) = q − 1 and gives us an F-basis of gNw.

3.2 Proof of Lemma 3.1

Our goal here is to show if A ∈ gNW then A is a diagonal matrix.

Proof: Recall A ∈ gNW is a q2×q2 matrix with rows and columns indexed by the q2 variables.

Let ai1j1,i2j2 be the ((i1, j1), (i2, j2))-th entry of A for i1, i2, j1, j2 ∈ [q]. Since A ∈ gNW , we have

the following equation from Definition 2.19.

∑
i1,i2,j1,j2∈[q]

ai1j1,i2j2 · xi2j2 ·
∂NW (x)

∂xi1j1
= 0.

We prove that ai1j1,i2j2 6= 0 if and only if (i1, j1) = (i2, j2). We do this by showing that if

(i1, j1) 6= (i2, j2)
1 then the monomials in xi2j2 ·

∂NW (x)
∂xi1j1

are not present in xi4j4 ·
∂NW (x)
∂xi3j3

for

(i1, j1) 6= (i3, j3) or (i2, j2) 6= (i4, j4). This immediately implies ai1j1,i2j2 = 0, as there is no way

to cancel out the monomial in the term xi2j2 ·
∂NW (x)
∂xi1j1

.

Suppose for contradiction there exists a monomial m such that

m = xi2,j2 ·
∂m1

∂xi1,j1
= xi4,j4 ·

∂m2

∂xi3,j3
, (3.1)

1(i1, j1) 6= (i2, j2) means either i1 6= i2 or j1 6= j2.
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where m1,m2 are monomials of NW (x). We show using the following claim that this is only

possible if m1 = m2.

Claim 3.2.1 Let m1,m2 be two distinct monomials of NW (x) used to define the monomials

m′1 and m′2 respectively as follow

m′1 = xi2,j2 ·
∂m1

∂xi1,j1
and m′2 = xi4,j4 ·

∂m2

∂xi3,j3
,

where i1, i2, j1, j2, i3, j3, i4, j4 ∈ [q]. Then m′1 and m′2 can have at most k+ 2 common variables.

Proof: From the low intersection property of NW (x), m1 and m2 can have at most k variables

in common. This implies that the number of common variables in ∂m1

∂xi1,j1
and ∂m2

∂xi3,j3
is also upper

bounded by k. Now the following can happen

xi4,j4 ∈
∂m1

∂xi1,j1

1 and xi2,j2 ∈
∂m1

∂xi3,j3
,

which proves that the number of common variables in m′1 and m′2 is at most k + 2. 2

Thus in Equation (3.1), m1 = m2. Now we multiply both sides of Equation (3.1) by xi1j1 and

xi3j3 . This implies the following

xi1,j1 · xi4,j4 = xi3,j3 · xi2,j2

But we know that (i1, j1) 6= (i2, j2), hence xi1,j1 = xi3,j3 and xi2,j2 = xi4,j4 . This contradicts our

assumption (i1, j1) 6= (i3, j3) or (i2, j2) 6= (i4j4). 2

3.3 Construction of matrix D

As promised in Section 3.1, we show in this section how to construct matrix D using the

monomials of NW (x) such that gNW (viewed as a space of vectors in Fq2) is an F-subspace

of KerF(D). We noted in the same section that any A ∈ gNW can be identified with a vector

vA ∈ Fq2 such that for i, j ∈ [q], the (i, j)-th entry of vA, denoted aij, is the ((i, j), (i, j))-th

diagonal entry of A and the entries of vA are ordered as a00 ≺ a01 ≺ · · · ≺ aq−1 q−1. For a

moment, pretend that aij, i, j ∈ [q] are formal variables. Since A is diagonal (Lemma 3.1), we

have ∑
i,j∈[q]

aij xij ·
∂NW (x)

∂xij
= 0. (3.2)

1It means xi4j4 is in the monomial ∂m1

∂xi1,j1
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By focusing on the coefficient of a monomial, we arrive at the following observation, which will

be helpful later.

Observation 3.1 Let h ∈ Fq[t]k and mh = x0h(0) · · ·xq−1h(q−1) a monomial of NW (x). Then

we can attach the following equation with mh.

a0h(0) + · · ·+ aq−1h(q−1) = 0 (3.3)

This equation is called ‘equation of mh obtained from gNW ’ and denoted eh. Since mh occurs

only in xi h(i)·∂NW (x)
∂xi h(i)

for i ∈ [q], the coefficient ofmh in Equation (3.2) is (a0h(0) + · · ·+ aq−1h(q−1))

and Equation (3.3) follows from Equation(3.2). Now using these equations, matrix D is formed.

For l ∈ [qk+1], the l-th row of D is the coefficient vector of ehl in the variables aij, i, j ∈ [q], where

the variables are ordered as a00 ≺ a01 ≺ · · · ≺ aq−1 q−1. Here hl is the l-th polynomial of the

ordered set (Fq[t]k,�).1 A snippet of l-th row of D is given in Figure 3.3. Every row of D is a 0,1

vector. The rows of D are indexed by monomials of NW (x) following the ordering on (Fq[t]k,�)

and columns of D are indexed by aij, i, j ∈ [q] with the ordering a0 0 ≺ a0 1 · · · ≺ aq−1 q−1.

• • •row w.r.t ehl

a0hl(0) a1hl(1) aq−1hl(q−1)

1 1 1

Figure 3.3: l-th row of D

It clearly follows from the construction of D that D· vA = 0. Thus vA ∈ kerF(D) implying gNW

is an F-subspace of kerF(D). We note one more observation about D as follows.

Observation 3.2 The columns of D can be indexed by the variable set x with the variable

ordering x0 0 ≺ · · · ≺ xq−1 q−1.

As stated in the observation above, from now we consider the columns of D being indexed by

x. Now the l-th row of D like the following structure.

• • •row w.r.t ehl

x0hl(0) x1hl(1) xq−1hl(q−1)

1 1 1

Figure 3.4: l-th row of D

1 The ordering was defined in Section 2.1.
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3.4 Restructuring matrix D

In this section we note some properties of the rows of D and choose the special q2 − q rows

of D as mentioned in Section 3.1. Since a row of D is indexed by a monomial of NW (x)

(equivalently indexed by a univariate polynomial from Fq[t]k), every row of D contains exactly

q 1s with exactly one column from the set xi containing a 1 for i ∈ [q]. We now restrict D

to the first q2 rows and represent this sub matrix as D|q2 . The rows of D|q2 correspond to the

degree 0 and degree 1 polynomials of Fq[t]k and for a, b ∈ [q] the (a, b)-th row of D|q2 is indexed

with monomial mat+b. Now we do the following preprocessing in the matrix D|q2 .

1. Swap the rows such that the column indexed by x00 contains 1 in the first q rows of D|q2 .

Similarly, the column indexed by x01 contains 1 in the next q rows of D|q2 and so on. After

swapping, we name these q2 rows as R00 to Rq−1 q−1. Further, let Rl:= {Rl0, . . . , Rl q−1} for

l ∈ [q]. It means in every Rl, the rows correspond to the polynomials of type at+l, a ∈ Fq.

2. Perform the row exchange operation in each Rl for l ∈ [q], such that for j ∈ [q], the row

Rlj corresponds to the polynomial jt + l, i.e. it is indexed by ejt+l. It is easy to observe

that for any fixed j ∈ [q], the j-th rows of the blocks Rl, l ∈ [q] corresponds to the set

{jt+ l | l ∈ [q]}. We now note a property of this set in Claim 3.4.1.

Let subset S ⊆ Fq[t]k and f, g ∈ S. Then f, g are called evaluation disjoint polynomials over

Fq if for every c ∈ Fq, f(c) 6= g(c). For example f = t, g = t+ 1 are evaluation disjoint over Fq.

Claim 3.4.1 Let S := {at + b | a, b ∈ Fq} and g = at + b and f = a′t + b′ be two distinct

elements in S. Then f and g are evaluation disjoint over Fq if and only if a = a′.

Proof: Let f, g be evaluation disjoint over Fq. Then (f − g)(c) 6= 0, c ∈ [q]. If a 6= a′ then for

c = b−b′
a′−a we get (f − g)(c) = 0 and f, g are not evaluation disjoint over Fq. Let a = a′. Then

clearly f, g are evaluation disjoint over Fq. 2

Let f, g ∈ {jt+ l | l ∈ [q]} for any fixed j ∈ [q]. Since f, g are evaluation disjoint polynomials,

the rows of D|q2 indexed by f, g can not have 1 in the same column. Now we select first

q2 − q + 1 rows of D|q2 and show in Section 3.5 that these are F-linear independent. In fact,

as (q2 − q + 1)-th row is the only row in this set of rows having 1 in the column indexed by

x0 q−1, it is enough to show that first q2 − q rows are linear independent over F. A snapshot of

these rows is already given in Figure 3.2. We record a property of these rows in the following

observation.
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Observation 3.3 Restricted to the first q2 − q rows of D|q2 , each of the columns indexed by

x1 0, . . . , xq−1 q−1 have exactly q−1 ones, with exactly one 1 among the rows in Rl for l ∈ [q−1].

Proof: Suppose there exist a block Rl and a variable xij with i 6= 0 such that Rl has two

rows Rlr and Rls having 1 in the column indexed by xi j. We know that Rlr, Rls correspond to

the univariate polynomials rt + l and st + l respectively for r 6= s. Thus, ri + l = si + l = j.

But this can not happen as r 6= s and i 6= 0. Thus the column indexed by xi j can not have 1

in both Rlr and Rls. 2

This observation will help us in proving that these q2 − q rows are linearly independent over

F. This also explains why the blocks in Figure 3.2 (excluding the columns indexed by x0) are

permutation matrices.

3.5 Proof of Lemma 3.2

As argued in the previous section, proving first q2 − q rows of D|q2 are F-linearly independent

implies linear independence of first q2 − q + 1 rows. We multiply first q2 − q rows of D|q2 with

the formal variables αlj with l ∈ [q − 1] and j ∈ [q] and show that if the following equation

holds then all αlj are 0. ∑
l∈[q−1],j∈[q]

αlj ·Rlj = 0. (3.4)

In Equation (3.4) the addition is column wise and we get q2 equations in total, one for every

column of D|q2 . In this set of equations, there are q equations containing the variable αlj. The

following observation is immediate from Claim 3.4.1.

Observation 3.4 No two variables of the set {α0 j, . . . , αq−1 j} can be together in any equation

obtained from Equation (3.4), for a fixed j ∈ [q].

Now we select a variable αlj (arbitrarily) and show that αlj = 0 by manipulating the q equations

obtained from Equation (3.4) containing αlj. This will imply that all these rows are F-linearly

independent. In the following observation we note when can the variables αlj and αl′j′ be in

the same equation obtained from Equation (3.4).

Observation 3.5 An equation obtained from Equation (3.4) contains the variables αlj and αl′j′

if the polynomials jt+ l and j′t+ l′ are equal on some value of t ∈ [q].

We can identify the q equations obtained from Equation (3.4) containing the variable αlj with

q values of t as follows.
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For t = 0, we get

αl 0 + · · ·+ αl j + · · ·+ αl q−1 = 0. (3.5)

For the remaining q − 1 values of t, we have the following relation between j and j′

j′ = j +
l − l′

t
,

and the equations containing αlj obtained for each of t ∈ {1, . . . , q − 1} look like∑
l′∈[q−1],l 6=l′

αl′j′ + αlj = 0, (3.6)

where j′ = j + l−l′
t

. Observe that j′ can not be j as l 6= l′ and t 6= 0. We note again that

Equation (3.6) is actually a system of q − 1 equations for t ∈ {1, . . . , q − 1}. It follows from

Observation 3.3 that every equation of the type Equation (3.6) has q−1 variables. Also, observe

that other than αlj, there are (q − 1) · (q − 2) different variables in these q − 1 equations.

Observation 3.6 There are q2 − 2q + 2 distinct variables (including αlj) in the q equations

stated in Equation (3.6) and (3.5) containing αlj. In other words, all the q2− q variables other

than αl′j for l ∈ [q − 1], l′ 6= l are present in these q equations. Moreover, the (q − 1)(q − 2)

variables in the system defined by Equation (3.6) are exactly the variables αl′j′ for j′ 6= j and

l′ ∈ [q − 1] \ {l}.

A legitimate substitution in Equation (3.5). Now we select all the variable αl r, r 6= j

from Equation (3.5) and replace it with some linear expressions such that after substitution

Equation (3.5) becomes

αlj +
∑

l′∈[q],l′ 6=l

(−αl′,j′) = 0, (3.7)

where j′ = j + l−l′
t

as t runs over {1, . . . , q − 1}. Observe that the above equation contains all

the variables in Equation (3.6) for t = 1, . . . , q− 1 with negative sign. Thereafter if we add the

above equation with Equations (3.6) for all t = 1, . . . , q − 1 then get q · αlj = 0, which implies

αlj = 0, if characteristic of F is equal to zero or greater than q.

Now we show that such a legitimate substitution is indeed possible. Let r ∈ [q], r 6= j. Choose

the q equations containing the variable αlr. As mentioned in Observation 3.5, we can identify

these equations with t = 0, . . . , q − 1. For t = 0, we get Equation (3.5). Now out of remaining
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q − 1 equations we choose ‘the’ equation that does not contain αl′j, l
′ ∈ [q − 1], l 6= l′. This is

so because from Observation 3.6, we know that for l′ 6= l, the equations containing αlj contain

all the α variables except αl′j for l′ 6= l. The following claim shows that there exists such an

equation and it is ‘unique’.

Claim 3.5.1 Let r ∈ [q] and r 6= j. Then in the following q− 1 equations containing αlr, there

exists exactly one equation that does not contain any of the variable αl′j for l′ ∈ [q − 1], l′ 6= l.

This one unique equation corresponds to t = (q−1)−l
r−j .

∑
l′∈[q−1],l′ 6=l

αl′r′ + αlr = 0, for t ∈ {1, . . . , q − 1},

where r′ = r + l−l′
t

.

Proof: We want an equation that is free from al′j for l′ 6= l. It is clear from Claim 3.4.1 that

the polynomials rt + l and jt + l′ are not evaluation disjoint for j 6= r. Suppose in the above

set of equations, the equation corresponding to t = τ contains αl′j. Then l′ = l − τ · (j − r).
As l′ 6= l can take (q − 2) values and t can take (q − 1) values, there is one t (say, tr) for which

the equation above will be free from any αl′j. Observe that as t takes different values in the set

{1, . . . , q− 1} so does l′ ∈ {0, . . . , q− 1} \ {l}. Since l′ is disallowed to take value q− 1, tr must

be

tr =
(q − 1)− l
r − j

.

2

We choose the equation corresponding to t = (q−1)−l
r−j = tr (say, as in the above claim) for the

following legitimate substitution

αlr =
∑

l′∈[q−1],l 6=l′
−αl′r′ ,

where r′ = r+ l−l′
tr

. In this manner, we substitute all the variables except αlj in Equation (3.5)

to obtain,

αlj +
∑

r∈[q],r 6=j

(−αl′r′) = 0, (3.8)

where r′ = r+ l−l′
tr

. By construction every r′ 6= j and every l′ ∈ [q−1]\{l} in the above equation.

Now the following claim implies that if a variable αl′j′ is in some equation containing αlj in
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the system defined by Equation (3.8) then αl′j′ appears exactly once in Equation (3.5) with a

negative sign.

Claim 3.5.2 Let r, p be two distinct elements in the set [q], such that p 6= j, r 6= j and following

are the substitutions for αlr and αlp in Equation (3.5) respectively:

αlr =
∑

l1∈[q−1],l 6=l1

−αl1 r′ ,

αlp =
∑

l2∈[q−1],l 6=l2

−αl2 p′ ,

where r′ = r+ l−l1
tr
, p′ = p+ l−l2

tp
. Then there is no common variable in the above two equations.

Proof: We know

tr =
(q − 1)− l
r − j

,

tp =
(q − 1)− l
p− j

Suppose for the contradiction a variable al′j′ is present in both the equations. Then l′ = l1 = l2

and

j′ = r +
l − l1
tr

= p+
l − l1
tp

, as l1 = l2

This implies

(r − p) =
l − l1

q − 1− l
· (p− r)

(l − l1) = l − q + 1, as r 6= p

l1 = q − 1.

But this is a contradiction because l1 can only take values in [q − 1]. 2

For any l ∈ [q − 1], j ∈ [q] the variable αlj = 0. Thus the first q2 − q rows of matrix D are

F-linearly independent. This implies that Rank(D) ≥ q2 − q + 1 and dimensions of KerF(D)

and of gNW is at most q − 1.
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3.6 Proof of Lemma 3.3

In the last section we show that the following q− 1 matrices are elements of gNW and they are

F-linearly independent. For l = 1, . . . , q − 1

(Rl)ij,ij =


1, if i = 0, j ∈ [q]

−1, if i = l, j ∈ [q]

0, otherwise

Proof: Let (Rl)ij,ij = rlij for fixed i, j ∈ [q]. We want to show that the following equation is

satisfied ∑
i,j∈[q]

rlij xij ·
∂NW (x)

∂xij
= 0, (3.9)

implying Rl ∈ gNW . Let m = x0 i0 · · ·xq−1 iq−1 be a monomial of NW (x). The coefficient of m in

Equation (3.9) is (rl0 i0 + · · ·+rll il + · · ·+rlq−1 iq−1
), which is equal to 0 because rl0 i0 = 1, rll il = −1

and other entries are zero. This show Rl ∈ gNW for l ∈ {1, . . . , q − 1}. Now it is also easy to

show that these matrices are F-linearly independent. 2

This shows Dim(gNW ) ≥ q− 1 and in Section 3.5 we noted Dimension(gNW ) ≤ q− 1. Thus the

dimension of Lie algebra of NW (x) is q − 1 and Rl, l ∈ {1, . . . , q − 1} is an F-basis of gNW .
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Chapter 4

Structure of group of symmetries of

Nisan-Wigderson polynomial

In this chapter we first give an elaborate statement of Theorem 1.2 and then prove it.

Theorem 4.1 (Restatement of Theorem 1.2)

Let A ∈ GNW . There exist a diagonal matrix S ∈ Fq2×q2 and a permutation matrix P ∈ Fq2×q2

such that P is a block permuted matrix and

A = P · S.

Observe that if A = P · S then A = S ′ · P , where S ′ is another diagonal matrix. We begin the

proof of the theorem by first showing (in Lemma 4.1) that every A ∈ GNW is a block diagonal

matrix.

Before presenting the proof, we state a terminology here. Let T ∈ Fq2×q2 . By the term ‘viewing

T as a block matrix of size q × q’ we mean T is a block matrix with block size q × q (see

Definition 2.6) and the (i, j)-th block of T , denoted Tij, is identified by the i-th block of rows

and j-th block of columns as shown in Figure 4.1.

Lemma 4.1 Let A ∈ GNW . Then A is a block permuted matrix.

The proof of lemma uses the property of conjugacy of Lie algebras of equivalent polynomials.

Then using the concepts of Hessian matrix and evaluation dimension of polynomials, we prove

Theorem 1.2 in the next sections.
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Figure 4.1: Block matrix

4.1 Proof of Lemma 4.1

Proof: As A ∈ GNW , from Claim 2.3.6, we have

gNW = {A−1 ·B · A | B ∈ gNW}. (4.1)

We know that the following matrices form an F-basis of gNW (Theorem 1.1 and Lemma 3.3).

For l = 1, . . . , q − 1

(Rl)ij,ij =


1, if i = 0, j ∈ [q]

−1, if i = l, j ∈ [q]

0, otherwise

It is easy to observe that every R ∈ gNW looks like

R = diag(r0, . . . , r0, . . . , rq−1, . . . , rq−1),
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where r1, . . . , rq−1 are arbitrary elements of F and r0 = −(r1 + · · · + rq−1). Each ri for i ∈ [q]

appears exactly q times. From Equation (4.1) we know that there exists a matrix C ∈ gNW ,

such that

C = A−1 ·B · A

or

A · C = B · A, for every B ∈ gNW . (4.2)

We view the matrices A,B,C as block matrices with block size q × q. Let there exist cj, bj ∈
F for j = 1, . . . , q − 1, such that matrices C = diag(c0, . . . , c0, . . . , cq−1, · · · , cq−1) and B=

diag(b0, . . . , b0, . . . , bq−1, . . . , bq−1), where c0 = −(c1 + · · · + cq−1) and b0 = −(b1 + · · · + bq−1).

One can observe that Equation (4.2) can be written as

(cj · Aij)i,j∈[q] = (bi · Aij)i,j∈[q], (4.3)

where Aij is the (i, j)-th block of A, indexed by i-th block of rows and j-th block of columns

of A. We assume for the contradiction that matrix A is not block permuted i.e. there are two

non zero blocks Ai1j and Ai2j for i1 6= i2 in A (as A is invertible). Then from Equation (4.3)

we have

cj · Ai1j = bi1 · Ai1j

and

cj · Ai2j = bi2 · Ai2j ,

which implies

cj = bi1 = bi2 .

This should hold true for every B ∈ gNW . Now, if we select matrix B as mentioned in the

following Claim then that leads to a contradiction and so A is a block permuted matrix.

Claim 4.1.1 There exists B ∈ gNW such that

B = diag(b0, . . . , b0, . . . , bq−1, . . . , bq−1),

where b0, b1, . . . , bq−1 are distinct elements of the field F and b0 = −(b1 + · · · , bq−1), if size of F
is larger than

(
q
2

)
.

Proof: Think of b1, . . . , bq−1 as formal variables. Consider

B = −b1 ·R1 + · · ·+ (−bq−1) ·Rq−1,
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where R1, . . . , Rq−1 form an F-basis of gNW as mentioned in Section 3.6. Observe that matrix

B = diag(b0, . . . , b0, . . . , bq−1, . . . , bq−1), where b0 = −(b1 + · · · , bq−1). As b0, . . . , bq−1 are dis-

tinct linear forms in the variables b1, . . . , bq−1, a random substitution of field elements in place

of b1, . . . , bq−1 (basically an application of Schwartz-Zippel lemma) ensures that B is the kind

of matrix we want. 2

If A is not a block permuted matrix then we get bi1 = bi2 for i1 6= i2, which is a contradiction,

for the above B. Hence every element of GNW is a block permuted matrix. 2

4.2 Proof of Theorem 1.2

Let A = (aiu,jv)i,u,j,v∈[q] ∈ GNW , where the entry in row indexed by xiu and column indexed by

xjv is aiu,jv. Now we show that A can be written as

A = P · S,

where S ∈ Fq2×q2 is a diagonal matrix and P ∈ Fq2×q2 is a permutation matrix that is also

block permuted. As A ∈ GNW ,

NW (x) = NW (A · x).

From Lemma 4.1 we know that A is a block permuted matrix. First we show the result when A

is a block diagonal matrix and then in the next section we point out the necessary alterations

in the argument to handle arbitrary block permuted matrix. All the essential ingredients of the

proof can be found in the case when A is block diagonal.

Assume that A is a block diagonal matrix

From Lemma 2.1, we know

HNW (x) = AT ·HNW (A · x) · A. (4.4)

We view the matrices HNW (x) and HNW (A ·x) as block matrices with the block size q× q. For

i, j ∈ [q], the i-th block of rows and j-th block of columns of these matrices are indexed by the

sets xi and xj respectively. Let the (i, j)-th blocks of HNW (x) and HNW (A · x) be denoted as

Cij and Bij respectively, which are

Cij =

(
∂2NW (x)

∂xil∂xjp

)
l,p∈[q]

(4.5)
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and

Bij =

(
∂2NW

∂xil∂xjp

)
l,p∈[q]

(A · x). (4.6)

Each entry of Cij is the Nisan-Wigderson polynomial derived by a couple of variables, so we

can view an entry as a sum of monomials. On the other hand, every entry of Bij is the Nisan-

Wigderson polynomial derived by a couple of variables and then the variables are replaced by

linear forms from the column vector A ·x. So we can view an entry of Bij as a sum of products

of linear forms.1 Observe that the diagonal blocks of HNW (x) and HNW (A ·x) are equal to zero

because Nisan-Wigderson polynomial is a set-multilinear polynomial. The following relation is

immediate from Equation 4.4.

Cij = ATi ·Bij · Aj, for every i 6= j

or

(ATi )−1 · Cij · A−1j = Bij. (4.7)

We record some observations about an entry of Cij.

Observation 4.1 Let l, p, l′, p′ ∈ [q]. If (l, p) 6= (l′, p′) then the polynomials in the (l, p)-th and

(l′, p′)-th entries of Cij (i 6= j) do not have any common monomial.

Proof: The (l, p)-th and (l′, p′)-th entries of Cij are ∂2NW (x)
∂xil∂xjp

and ∂2NW (x)
∂xil′∂xjp′

respectively, which

can be written as
∂2NW (x)

∂xil∂xjp
=

∑
h∈Fq [t]k,
h(i)=l,
h(j)=p

∏
r∈[q]\{i,j}

xr h(r),

∂2NW (x)

∂xil′∂xjp′
=

∑
h∈Fq [t]k,
h(i)=l′,
h(j)=p′

∏
r∈[q]\{i,j}

xr h(r).

Suppose there exists a common monomial m in both ∂2NW (x)
∂xil∂xjp

and ∂2NW (x)
∂xil′∂xjp′

. This means there

exist polynomials h1, h2 ∈ Fq[t]k such that h1(i) = l, h1(j) = p, h2(i) = l′, h2(j) = p′ and

m =
∏

r∈[q]\{i,j}

xr h1(r) =
∏

r∈[q]\{i,j}

xr h2(r).

Since h1 and h2 are same on more than k+1 evaluations (assuming q−2 > k+1), h1(i) = h2(i)

1 It is a depth 3 set-multilinear circuit, as A is a block permuted matrix.
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(i.e. l = l′) and h1(j) = h2(j) (i.e. p = p′), which is a contradiction. 2

Observation 4.2 There are qk−1 monomials in every entry of Cij for i 6= j.

Proof: For l, p ∈ [q], we know that each monomial of the (l, p)-th entry of Cij is obtained

from a polynomial h ∈ Fq[t]k such that

h(i) = l and h(j) = p.

We claim that there are qk−1 such polynomials in Fq[t]k. We know that by interpolating k + 1

input points we get a unique polynomial of degree at most k. Let h ∈ Fq[t]k. Now interpolating

all the possible evaluations for k + 1 distinct input points of h, we get qk+1 choices for h. On

fixing h(i) = l and h(j) = p in these evaluations we have qk−1 such polynomials. 2

We know that each entry of Bij is a sum of product of linear forms. Using an argument similar

to that of Observation 4.2, one can observe that there are qk−1 products of linear forms in every

entry of Bij. We do not care about the actual number of monomials in an entry of Bij.

Suppose A is not a product of a permutation and a diagonal matrix. Then there exists a column

in A having at least two non zero entries (as A is invertible). It is easy to see that A−1 also has

a column with more than one non zero entry. If A is a block diagonal matrix with Ai as the i-th

block then A−1 is a block diagonal matrix with A−1i as the i-th block on the diagonal. There is

some j ∈ [q] for which the p-th column of matrix A−1j has more than one non zero entries. Fix

such a j and consider Equation (4.7). For l ∈ [q], let glp and flp be the (l, p)-th entries of the

left and right sides of Equation (4.7) respectively. Then glp should be equal to flp.

Claim 4.2.1 glp is an F-linear combination of at least two entries of Cij, for every l ∈ [q].

Proof: glp is the (l, p)-th of (ATi )−1 ·Cij ·A−1j . We know the p-th column of A−1j has more than

one non zero entries. Since all the entries of Cij are non zero (Observation 4.2) and monomial

disjoint (Observation 4.1), the (l′, p)-th entry of Cij ·A−1j is an F-linear combination of at least

two entries from the l′-th row of Cij for every l′ ∈ [q]. Moreover, the polynomials in the (l′, p)-th

entries of Cij · A−1j for l′ ∈ [q] are mutually monomial disjoint. Hence, the (l, p)-th entry of

(ATi )−1·Cij ·A−1j i.e. glp is an F-linear combination of at least two entries of Cij for every l ∈ [q]. 2

It immediately follows from the above claim that there are at least 2 · qk−1 monomials in glp

because the entries of Cij are monomial disjoint. Since glp = flp, the evaluation dimensions of

these polynomials must be the same with respect to every subset of variables.
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We now show (in the next two claims) that evalDimz(glp) > evalDimz(flp) for every l ∈ [q]

and for a particular z ⊆ x, implying glp 6= flp thereby proving Theorem 1.2 when A is block

diagonal. Let T ⊆ [q] \ {i, j} such that |T | = k + 1. Then set z is defined as

z :=
⊎
r∈T

xr (4.8)

Claim 4.2.2 evalDimz(flp) ≤ qk−1.

Proof: Let `iu be the linear form corresponding to the variable xiu, obtained from A·x i.e.

`iu =
∑

j,v∈[q] aiu,jv · xjv, where (aiu,00 . . . aiu,q−1 q−1) is the (i, u)-th row of A. Since flp is the

(l, p)-th entry of Bij,

flp =
∑

h∈Fq [t]k,
h(i)=l,
h(j)=p

∏
r∈[q]\{i,j}

`r h(r),

where `r h(r) is the linear form corresponding to xr h(r). Since A is a block diagonal matrix, the

linear form `r h(r) contains the variables only from the set xr. Now if r ∈ T then xr ⊆ z and

`r h(r) is set to a constant after any evaluation of the z variables. Thus, flp (after any evaluation

of the z variables) is an F-linear combination of
∏

r∈[q]\({i,j}]T ) `r,h(r) for h ∈ Fq[t]k satisfying

h(i) = l and h(j) = p is qk+1 (as in Observation 4.2.2), we conclude that evalDimz(flp) ≤ qk−1.

2

Claim 4.2.3 evalDimz(glp) ≥ 2 · qk−1 if k < q
2
− 2.

Proof: We know that glp is an F-linear combination of at least two entries of Cij and so contains

at least 2 · qk−1 monomials. It means there exists a set P ⊆ Fq[t]k such that |P | ≥ 2 · qk−1,
h ∈ P satisfies h(i) = l and h(j) = p, and

glp =
∑
h∈P

∏
r∈[q]\{i,j}

`r,h(r).

Fix a summand, i.e. an h ∈ P , in the RHS of the above equation. For this h ∈ P and every

r ∈ T we set the variables xr,h(r) = 1 and the remaining variables of z to 0.This substitution

reduces the above sum to a single monomial, namely
∏

r∈[q]\({i,j}]T ) xr,h(r). As 2 · (k+ 1) < q−2

(by assumption), the monomial
∏

r∈[q]\({i,j}]T ) xr,h(r) is uniquely determined by h ∈ P . Hence,

under various similar substitutions of the z-variables, we can arrive at |P | > 2 · qk+1 distinct
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monomials implying evalDimz(glp) ≥ 2 · qk−1. 2

Thus evalDimz(flp) is less than evalDimz(glp), which contradicts flp = glp. Thus flp and glp are

different polynomials, which is a contradiction. This means every columns of Aj have exactly

one non zero entry. This holds true for every j ∈ [q], which implies A is a product of a block

permuted permutation matrix and a diagonal matrix.

4.3 Proof of Theorem 1.2 for arbitrary block permuted

matrix

We point out the adjustments in the above proof of Theorem 1.2 for an arbitrary block permuted

matrix A, which may not be block diagonal. Let σ be a permutation on the set [q] and A be

a block permuted matrix such that other than the (r, σ(r))-th block of A, denoted Ar σ(r), all

other blocks are zero. Recall that Ar σ(r) is the sub matrix defined by r-th block of rows and

σ(r)-th block of columns of A. Let A ∈ GNW , then

HNW (x) = AT ·HNW (A · x) · A.

These matrices are viewed as block matrices of size q×q and Cij and Bij are the (i, j)-th blocks

of HNW (x) and HNW (A · x), defined in Equations (4.5) and (4.6) respectively. The details

are already given in Section 4.2. As stated earlier, the entries of Cij and Bij are the sum of

monomials and sum of product of F-linear forms respectively. Now we claim the following

Claim 4.3.1 From Equation (4.4), we get the following

Cij = ATr σ(r) ·Brs · As σ(s), (4.9)

for some r, s ∈ [q] such that σ(r) = i and σ(s) = j.

Proof: Let there exists r ∈ [q] such that Arσ(r) is the only non zero block in the block of

columns indexed by xi in A. Then ATr σ(r) is the non zero block in the block of rows indexed by

xi in AT . Then the i-th block of rows of AT ·HNW (A · x) is (ATr σ(r) · Br 1, . . . , A
T
r σ(r) · Br q−1).

There is an s ∈ [q] such that As σ(s) is the only nonzero block in the block of columns indexed

by xj in A. Thus, from Equation (4.4), we get

Cij = ATr σ(r) ·Brs · As σ(s),

2
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From Equation(4.9), we have

(ATr σ(r))
−1 · Cij · A−1s σ(s) = Brs. (4.10)

We know from Observation 4.1 that any two entries of Cij are monomial disjoint and every entry

of Cij contains exactly qk−1 monomials (Observation 4.2). Now we assume for contradiction

that A is not a product of a permutation and a diagonal matrices i.e. A has a column with more

than one non zero entry. Similarly, A−1 also has a column with at least two non zero entries. Let

the p-th column of A−1s σ(s) be such a column. Also for l ∈ [q], let glp and flp be the (l, p)-th entries

of the left and right sides of Equation (4.10). It is easy to verify that after replacing (ATi )−1 and

A−1j with (ATr σ(r))
−1 and A−1s σ(s) in the proof of Claim 4.2.1, we get the result that glp is an F-

linear combination of at least two entries of Cij. From Claim 4.2.2, we know that evalDimz(flp)

for z mentioned in Equation (4.8) is at most qk−1. Since glp is an F-linear combination of at

least two entries of Cij, we know from Claim 4.2.3 that evalDimz(glp) ≥ 2 · qk−1. This shows

that flp and glp are different polynomials, which contradicts our assumption that A is not a

product of a diagonal and a permutation matrices. This completes the proof.
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Chapter 5

Continuous and discrete symmetries of

Nisan-Wigderson polynomial family

In this chapter we show the richness of GNW (especially the discrete symmetries of GNW ) by

giving explicitly some interesting discrete symmetries of NW (x). Recall that the symmetries

which are obtained from the Lie algebra of a polynomial f are called continuous symmetries

of f and the other kinds of symmetries are called the discrete symmetries of f . In the first

section we derive the continuous symmetries of NW (x) using the Lie algebra gNW and show

that these are diagonal matrices of a specific kind. In the second section we give non trivial

discrete symmetries of NW (x). We know from Chapter 4 that any symmetry of NW (x) is a

product of a diagonal matrix S and a permutation matrix P that is also block permuted 1, i.e.

A = S · P . It can also be easily derived that both S and P are in GNW . The block permuted

permutation matrix P is in essence the source of the discrete part in a symmetry of NW (x).

5.1 Continuous symmetries

In this section we assume that F = C and then use the exponential map (Definition 2.21) to

obtain the continuous symmetries. In particular, we prove the following lemma.

Lemma 5.1 Let A be a continuous symmetry of NW (x). Then A looks as follows

A = diag(a0, . . . , a0, . . . , aq−1, . . . , aq−1),

where a0, . . . , aq−1 ∈ F and each ai for i ∈ [q] appears exactly q times and a0 · a1 · · · · aq−1 = 1.

We show the continuous symmetry A in Figure 5.1.

1We call these matrices as block permuted permutation matrices
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a0

a1

aq−1

q Row blocks

q rows

q Column blocks

q cols

•

•

•

Figure 5.1: Continuous symmetry A
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Proof: We know from Definition 2.21 that for any B in the Lie algebra, et·B is in the

corresponding matrix Lie group for any real number t. As mentioned in Lemma 2.2, GNW is a

matrix Lie group and we have the following exponential map.

expt : gNW → GNW

B 7→ et·B.

We know from Chapter 3 that any element B ∈ gNW looks as follows

B = α1 ·R1 + · · ·+ αq−1 ·Rq−1,

where αi ∈ F and Ri is an F-basis of gNW for i ∈ {1, . . . , q − 1} as mentioned in Section 3.6.

Thus B can be written as

B = diag(α0, . . . , α0, . . . , αq−1, . . . , αq−1),

where α0 = −(α1 + · · ·+ αq−1). Since B is a diagonal matrix, we know from Claim 2.3.3 that

et·B = diag(et·α0 , . . . , et·α0 , . . . , et·αq−1 , . . . , et·αq−1).

As αi ∈ F, et·αi is also in F for i ∈ [q]. Thus the matrix A is et·B with ai = et·αi for i ∈ [q]. 2

5.2 Discrete symmetries

Recall that the block permuted permutation matrix P in Theorem 1.2 is the source of the

discrete part in a symmetry of NW (x). In this section, we will call such block permuted

permutation matrices the discrete symmetries of NW (x). Any such discrete symmetry P

naturally defines a permutation µ on Fq (as P is block permuted) and a permutation ψ on

Fq[t]k (as P is a symmetry that permutes the monomials of NW (x) and every monomial

can be identified with an element of Fq[t]k). In the following claim, we make an attempt to

understand the reverse direction i.e. what kinds of µ and ψ together can define a P in GNW .

Claim 5.2.1 Let ψ be a permutation on Fq[t]k and µ a permutation on Fq. Then we can

get a discrete symmetry of NW (x) from ψ and µ if the following relation is satisfied for all

h1, h2 ∈ Fq[t]k and l ∈ Fq.

h1(l) = h2(l) if and only if ψ(h1)(µ(l)) = ψ(h2)(µ(l)). (5.1)
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Proof: Let xlr be a variable and Slr be a set defined as Slr := {h ∈ Fq[t]k |h(l) = r}. Then

xlr can be identified via any polynomial h ∈ Slr with xl h(l). Let σψ,µ be a map defined on x as

σψ,µ : x → x

xl h(l) 7→ xµ(l)ψ(h)(µ(l)).

Since xlr can be identified with xl h1(l) and xl h2(l) for two polynomials h1, h2 in Slr, we need to

show that that σψ,µ is well defined, i.e. xl h1(l) = xl h2(l) implies xµ(l)h1(µ(l)) = xµ(l)h2(µ(l)). This

implication is clearly true form Equation (5.1). Now σψ,µ would readily define a block permuted

permutation matrix P ∈ GNW if σψ,µ is also an injective map, which from pigeonhole principle

implies that σψ,µ is a permutation on x. Observe that Equation (5.1) implies that σψ,µ is indeed

an injective map. Since ψ is a permutation on Fq[t]k, a monomial mh of NW (x) obtained from

the univariate polynomial h ∈ Fq[t]k is mapped to the monomial mψ(h) of NW (x) obtained

from ψ(h) ∈ Fq[t]k. This shows that on applying σψ,µ to x the polynomial NW (x) does not

change and thus the corresponding block permuted permutation matrix Pσψ,µ ∈ GNW . 2

Now we present some interesting discrete symmetries of Nisan-Wigderson polynomial family.

Lemma 5.2 Let c, d be arbitrarily fixed non zero elements of Fq and g be any fixed polynomial

in Fq[t]k and φ be a Frobenius automorphism on Fq. Let h ∈ Fq[t]k be a polynomial defined as

h := ak · tk + · · ·+ a0, with a0, . . . , ak ∈ Fq and ψ be the following map on Fq[t]k

ψ : Fq[t]k → Fq[t]k
h 7→ ψ(h),

where ψ(h) is defined as

ψ(h) = d · (φ(
ak
ck

) · tk + · · ·+ φ(
a1
c

) · t+ φ(a0)) + g.

Then ψ induces a permutation σ on x such that the corresponding permutation matrix Pσ is in

GNW .

Proof: We will show that ψ is a permutation and there exists a permutation µ on Fq such

that Equation (5.1) is satisfied for h1, h2 ∈ Fq[t]k and l ∈ Fq. Since Fq[t]k is finite, ψ is

injective or surjective would imply ψ is bijective. We show that the map is injective. Let

h = ak · tk + · · ·+ a1 · t+ a0 and f = bk · tk + · · ·+ b1 · t+ b0 be two polynomials in Fq[t]k. We
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want to show ψ(f) = ψ(h) implies f = h. Let

ψ(f) = ψ(h),

which means

d · (φ(
ak
ck

) · tk + · · ·+ φ(
a1
c

) · t+ φ(a0)) + g = d · (φ(
bk
ck

) · tk + · · ·+ φ(
b1
c

) · t+ φ(b0)) + g,

which implies

φ(
ak
ck

) · tk + · · ·+ φ(
a1
c

) · t+ φ(a0) = φ(
bk
ck

) · tk + · · ·+ φ(
b1
c

) · t+ φ(b0).

Thus

φ(
ar
cr

) = φ(
br
cr

), r ∈ [k + 1],

which means ar = br for r ∈ [k + 1] (as φ is a Frobenius automorphism), implying f = h.

This shows that ψ is a permutation. Now we define µ(i) := φ(c · i) for i ∈ Fq. Clearly µ is a

permutation on Fq as φ is a Frobenius automorphism. Let h1 = αk · tk + · · · + α1 · t + α0 and

h2 = βk · tk + · · · + β1 · t + β0, where α0, . . . , αk, β0, . . . , βk ∈ Fq and i ∈ Fq. We use the fact

that φ is a field automorphism in the following derivation:

h1(i) = h2(i)

⇐⇒ αk · ik + · · ·+ α0 = βk · ik + · · ·+ β0

⇐⇒ φ(αk) · φ(ik) + · · ·+ φ(α0) = φ(βk) · φ(ik) + · · ·+ φ(β0)

⇐⇒ φ(
αk
ck

) · φ((c · i)k) + · · ·+ φ(α0) = φ(
βk
ck

) · φ((c · i)k) + · · ·+ φ(β0)

⇐⇒ φ(
αk
ck

) · (φ(c · i))k + · · ·+ φ(α0) = φ(
βk
ck

) · (φ(c · i))k + · · ·+ φ(β0)

⇐⇒ φ(
αk
ck

) · (µ(i))k + · · ·+ φ(α0) = φ(
βk
ck

) · (µ(i))k + · · ·+ φ(β0)

⇐⇒ d · (φ(
αk
ck

) · (µ(i))k + · · ·+ φ(α0) + g = d · (φ(
βk
ck

) · (µ(i))k + · · ·+ φ(β0)) + g

⇐⇒ ψ(h1)(µ(i)) = ψ(h2)(µ(i)).

This implies the desired result and thus we get a discrete symmetry of NW (x) for every such

ψ.

2
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Chapter 6

Future Works

From here, we have some open questions to pursue on the Nisan-Wigderson polynomial family.

At first we would like to figure out all the discrete symmetries of NW (x), which will complete

our investigation of the group of symmetries of the Nisan-Wigderson polynomial family. In

other words, we want to know if there are discrete symmetries of NW (x) other than those,

which are mentioned in Chapter 5. After this we would like to understand the complexity

the equivalence test for the Nisan-Wigderson polynomial family. Following the footsteps of

the equivalence test of permanent ([Kay11]), we are interested to know if in this case also the

Lie algebra gNW plays a crucial role in designing an efficient equivalence test. As mentioned

in [Kay11], the last step of equivalence test is polynomial identity testing. This step can be

accomplished for polynomials in VP using the randomized algorithm based on DeMillo-Lipton-

Schwarz-Zippel lemma ([Zip79],[Sch80]). But we do not have a generalized procedure to do it

for the polynomials outside VP. However, the last step can be carried out for the permanent

by using the downwards self reducibility property of permanent given by Impagliazzo and Ka-

banets in [KI04]; see also [Kay11].

As mentioned in Chapter 1, the exact computational complexity of Nisan-Wigderson polynomial

family is not known, we would like to know if Nisan-Wigderson polynomial family is in VP or is

VNP intermediate or VNP complete. We hope that our work here on the symmetries of Nisan-

Wigderson polynomial family would provide us with some insights on this problem (keeping in

mind the area of geometric complexity theory).
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