
On symmetries of and equivalence tests for two polynomial

families and a circuit class

A THESIS

SUBMITTED FOR THE DEGREE OF

Doctor of Philosophy

IN THE

Faculty of Engineering

BY

Nikhil Gupta

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

August, 2022

Declaration of Originality

I, Nikhil Gupta, with SR No. 04-04-00-14-12-17-1-15373 hereby declare that the material

presented in the thesis titled

On symmetries of and equivalence tests for two polynomial families and a circuit

class

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2017-2022.

With my signature, I certify that:

� I have not manipulated any of the data or results.

� I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

� I have explicitly acknowledged all collaborative research and discussions.

� I have understood that any false claim will result in severe disciplinary action.

� I have understood that the work may be screened for any form of academic misconduct.

Date: 29-08-2022 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Chandan Saha Advisor Signature

a

© Nikhil Gupta

August, 2022

All rights reserved

DEDICATED TO

My parents

for their love and support

Acknowledgements

First and foremost, I thank my advisor, Prof. Chandan Saha, for everything he has done for

me in the last seven years at IISc. His continuous encouragement to think independently and

ask relevant questions while doing the research, and his advice on improving my writing and

presentation skills have helped me a lot during my Ph.D. journey. I am thankful for all the

lessons I have learned while working with him. I admire his way of doing research, writing

and presenting technical content, collaborating with others, curiosity for learning new things,

helpful nature, tolerance, and patience. I also thank him for all the help and guidance I have

received from him in various non-academic matters. I am indebted for all the valuable advice

I got from him, which helped me improve my personal and professional fronts.

I thank Prof. Dilip Patil for teaching me various subjects in mathematics like linear algebra,

abstract algebra, commutative algebra, and algebraic geometry. Whatever little I know in these

areas of mathematics is mainly because of Prof. Patil. The topics I learned from him in several

formal and informal sessions have helped me tremendously in my research. I am grateful for

everything I have received from Prof. Patil. I also want to thank all the outstanding teachers

of IISc whose courses I have attended in the last seven years.

I thank my collaborators Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey.

I have learned a lot from each one of them about how to ask relevant questions when solving a

research problem, collaborate, and present the technical content in the simplest possible way.

I also thank Anuj Tawari for sitting through my presentations on a special case of equivalence

test for the Nisan-Wigderson polynomial and providing valuable feedback and suggestions.

I am thankful to the organizers of the ‘workshop in algebraic complexity theory (WACT)

2019’, the ‘inter-research-institute student seminar (IRISS) 2020’, and the ‘IISc EECS research

students symposium 2021’ for inviting me to present our work. I also thank the organizers of

the workshop on ‘sensitivity, query complexity, communication complexity and Fourier analysis

of Boolean function 2020’ for inviting me to attend the workshop.

I thank my lab mates - Vineet Nair, Sumant Hedge, Abhijat Sharma, Janaky Murthy,

Bhargav Thankey, Anuj Tawari, Arpita Korwar, and Agrim Dewan - for several insightful

i

Acknowledgements

discussions on various academic and non-academic matters. My special thanks to Vineet and

Bhargav. Vineet has always been there for me in the last seven years and has helped me

in various situations. I have always cherished his company and have had several memorable

moments with him. I thank him for everything. I also thank Bhargav for being a wonderful

friend. I adore his way of solving a research problem, and his ability to come up with simple

proofs is worth admiring. I have learned many things while working with him. I also thank

Vishakha Patil for being a fantastic friend. It is rare to get friends like her. I would also like

to thank my friends Anand Krishna and Shravani Patil. I will always relish the beautiful time

spent with Vineet, Vishakha, Anand, and Shravani. I thank Vipul Arora, Protik Paul, Philips

George John, Shuprovat Ghoshal, Saravanan Kandasamy and my other friends from the CSA

department for their amazing company. I also thank the CSA office for providing all the help

during my stay at IISc. I thank the housekeeping staff, mess workers, medical staff, security

guards and the administration of IISc for working tirelessly to make our stay at IISc safe during

the spread of COVID-19 pandemic.

I thank my music teacher Smt. Geeta Ananth for teaching me Hindustani classical music.

I am grateful for all the valuable lessons I learned about music and life from her. I also thank

her, Prof. Ananth Ramaswamy, and the coordinators of the SPICMACAY Bangalore chapter

for providing an opportunity to be a part of SPICMACAY. Because of them, I had the privilege

to meet eminent musicians like Pandit Rajan and Sajan Mishra, Pandit Vikku Vinayakram,

Ustad Wasifuddin Dagar, and Pandit Vishwa Mohan Bhatt, to name a few.

I am thankful to all my friends who made my stay at IISc enjoyable. I thank Ishan Ras-

togi, Parth Verma, Lokesh Mohan, Anubhav Guleria, Ashutosh Mohanty, Jagabandhu Sahoo,

Somnath Arjun, Ashish Tolambia, Anupam Bhim, Preetam Kumar, Bhardwaj Pandit, Santosh

Wupadrshta, for their company. I have learned a lot from each one of them. I thank Srila

Prabhupada for his valuable teachings on spirituality, which were immensely helpful during

the tough phases of my Ph.D. journey. I am thankful to Shweta Makhija for trusting and

supporting me in every situation. Her constant motivation to always do better has helped me

substantially during my Ph.D. Finally, I thank my family for their love and constant support.

I thank my parents for always being there for me and for always encouraging me to be a good

human being. Whatever I am today is because of them. I dedicate this piece of work to them.

ii

Abstract

Two polynomials f, g ∈ F[x1, . . . , xn] over a field F are said to be equivalent if there exists an

n×n invertible matrix A over F such that g = f(Ax), where x = (x1 · · ·xn)
T . The equivalence

test (in short, ET) for a polynomial family {fm}m∈N (similarly, a circuit class C) is the following

algorithmic problem: Given input black-box access to g ∈ F[x1, . . . , xn], determine whether

there exists an f ∈ {fm}m∈N (respectively, a circuit C ∈ C) such that g = f(Ax) (respectively,

g = C(Ax)) for some n × n invertible matrix A over F. If the answer is yes, it also outputs

an f ∈ {fm}m∈N (respectively, a circuit C ∈ C) and an n × n invertible certificate matrix A

over F such that g = f(Ax) (respectively, g = C(Ax)). In this thesis, we study equivalence

tests for two polynomial families, namely the families of Nisan-Wigderson design polynomials

(in short, NW) and determinant, and a circuit class, namely the class of regular read-once

arithmetic formulas. In the process of designing ET for NW, we prove some fundamental

structural and algorithmic results related to the symmetries of NW, namely characterization by

symmetries, characterization by circuit identities, a circuit testing algorithm and a flip theorem.

An invertible matrix A is called a symmetry of NW if NW = NW(Ax).

In the first work, we study some useful properties of the symmetries of NW. NW is an

important polynomial in algebraic complexity theory (ACT) as it has been used to prove lower

bounds for various classes of arithmetic circuits. Similar to NW, other polynomials like the

determinant, the permanent, the IMM, etc. have also been used in many lower bound proofs

in ACT. Unlike these polynomials, which are well-studied, not much is known about NW. The

family of NW is in VNP but it is not known whether it is in VP and or is VNP-complete. In

this work, we fill in some gaps in our understanding of NW by answering certain interesting

questions related to the symmetries of NW. These questions are quite relevant from the context

of geometric complexity theory and have been studied for the permanent. We show that NW

is characterized by its symmetries over C but not over R and Q. Using the symmetries of NW,

we show that NW is characterized by circuit identities over any field. By exploiting the second

property, we give a randomized polynomial time circuit testing algorithm and a flip theorem

for NW. A circuit testing algorithm checks whether a given circuit computes NW and hence

iii

Abstract

is a natural special case of ET for NW. A circuit testing algorithm is also required for the

ET for NW. We give a randomized polynomial time reduction from general ET for NW to the

block-permuted ET for NW. Further, we also give a randomized polynomial time algorithm for

a special case of block-permuted ET for NW, which we call block-diagonal permutation scaling

ET for NW. These structural and algorithmic results crucially use some special symmetries of

NW as well as the structure of the group of symmetries of NW, denoted GNW. The structure of

GNW was studied in the author’s master’s thesis [Gup17] and is not included in this thesis.

In the second work, we study ET for the family of determinant (in short, DET) over finite

fields and over Q. A randomized polynomial time DET over C was given in [Kay12]. A ran-

domized polynomial time DET over a finite field Fq was given in [KNS19], which outputs a

certificate matrix over a degree n extension field of Fq, provided the input polynomial is equiv-

alent to the n× n determinant, denoted Detn. In this work, we give a randomized polynomial

time DET over Fq, which outputs a certificate matrix over the base field. We also give the first

randomized DET over Q, which takes oracle access to an integer factoring algorithm (IntFact),

and outputs a certificate matrix over Q. This DET runs in polynomial time in the Turing

machine model if n is bounded. If we remove oracle access to IntFact from DET over Q, then

we get a polynomial time randomized DET for every n, but it outputs a certificate matrix over

an extension field L of Q, where [L : Q] ≤ n. The heart of these algorithms is a randomized

polynomial time reduction from DET to the full matrix algebra isomorphism (FMAI) problem.

This reduction exploits the rich structure of the Lie algebra of the determinant and works over

almost every field. FMAI is a well-studied problem in computer algebra and FMAI algorithms

are known over finite fields and Q. We prove that assuming the Generalized Riemann Hypoth-

esis, there exists a randomized polynomial time reduction from integer factoring to DET for

quadratic forms over Q (i.e., n = 2 case). This shows that it is unlikely to get rid of the IntFact

oracle from DET over Q. We also give a reduction from FMAI to DET over almost every field,

which is efficient if n is bounded. This shows that FMAI and DET are randomized polynomial

time reducible to each other whenever n is bounded.

In the third work, we give the first randomized polynomial time equivalence test with

oracle access to quadratic form equivalence (QFE) for the class of regular read-once arithmetic

formulas (in short, regular ROFs). An arithmetic formula C over a field F is said to be read-once

if every leaf node of C is labelled by either a distinct variable or a constant from F. ROFs are

well-studied in the literature. An ROF C is called regular if every variable in C is a child of a ×
gate. Thus, the class of regular ROFs is a natural subclass of ROFs. An ET for regular ROFs

significantly generalizes QFE over C and ET algorithms for two previously studied sub-classes of

regular ROFs, namely the classes of sum-product polynomials and ROANFs. Equivalence tests

iv

Abstract

for these two classes were given recently in [MS21]. Our ET algorithm is based on some useful

properties of the Hessian determinant of a regular ROF like its non-zeroness, knowledge of its

factors and its essential variables. The arbitrary nature of the underlying tree of a regular ROF

makes the analysis of the above mentioned properties of its Hessian determinant technically

challenging. We overcome this challenge by studying the structures and coefficients of some

nice monomials in the Hessian determinant of a regular ROF.

v

Publications based on this Thesis

1. On the symmetries of and equivalence test for design polynomials,

Joint work with Chandan Saha,

Proceedings of 44th International Symposium on Mathematical Foundations of Computer

Science (MFCS), 2019.

2. Determinant equivalence test over finite fields and over Q,

Joint work with Ankit Garg, Neeraj Kayal and Chandan Saha,

Proceedings of 46th International Colloquium on Automata, Languages and Programming

(ICALP), 2019.

3. Equivalence test for read-once arithmetic formulas,

Joint work with Chandan Saha and Bhargav Thankey,

Under submission. Available from Electronic Colloquium on Computational Complexity

(ECCC), report number TR22-099.

vi

Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis vi

Contents vii

1 Introduction 1

1.1 Background . 2

1.2 Polynomial equivalence and equivalence testing 13

1.3 Motivation and our results . 18

1.4 Proof ideas . 30

1.5 Organization . 41

2 Preliminaries 42

2.1 Structural preliminaries . 42

2.2 Algorithmic preliminaries . 60

3 Structural and algorithmic results on the NW polynomial 72

3.1 Structural results . 73

3.1.1 Characterization by symmetries . 73

3.1.2 Characterization by circuit identities . 79

3.2 Algorithmic results . 80

3.2.1 Circuit testability . 80

3.2.2 A flip theorem . 81

3.2.3 Equivalence test for NW . 83

vii

CONTENTS

4 Determinant equivalence test over finite fields and over Q 94

4.1 The Lie algebra of the determinant . 95

4.2 Reduction from DET to FMAI: The algorithm 96

4.3 Analysis of the algorithm . 99

4.3.1 Decomposition of the Lie algebra of f in the orbit of Detn 99

4.3.2 Invoking FMAI . 114

4.4 Reduction from integer factoring to DET over Q 116

4.5 Reduction from FMAI to DET . 118

4.5.1 Deteminant characterized by its Lie algebra 119

5 Equivalence test for regular ROFs 123

5.1 The Hessian determinant of an ROF . 124

5.2 Equivalence test . 126

5.2.1 An overview of the algorithm . 127

5.2.2 The algorithm . 128

5.3 Analysis of the algorithm . 130

5.3.1 Making terms variable disjoint . 131

5.3.2 Handling the top quadratic term . 132

5.3.3 Computing efficient black-box access to a term 134

6 Hessian determinant of an ROF 141

6.1 Notations . 144

6.2 The structure of the Hessian of an ROF . 145

6.3 The Laplace expansion . 151

6.4 The Hessian determinant of a product-depth 2 ROF 155

6.5 The Hessian determinant of a general ROF . 164

7 Conclusion 197

7.1 Structural and algorithmic results on NW . 197

7.2 DET over finite fields and Q . 201

7.3 An ET for regular ROFs . 202

Bibliography 206

Appendix A A survey of results on lower bounds, PIT and reconstruction 230

viii

Chapter 1

Introduction

Isomorphism plays an important role in mathematics. Two mathematical objects A and B of

the “same type” are said to be isomorphic if there exists a structure preserving bijective map

between A and B. Isomorphisms of various algebraic objects like groups, rings, fields, vector

spaces, modules, algebras etc. are well-studied. Let us see an example of an isomorphism

between two groups. Let Z be the set of integers, a be a fixed non-zero integer, and aZ be

the set of integer multiples of a. Then, (Z,+) and (aZ,+) are groups (Definition 2.1) under

integer addition and hence have the same type. Further, φ : Z → aZ ; b 7→ ab is a group

isomorphism, i.e., φ is bijective and for every b, c ∈ Z, φ(b + c) = φ(b) + φ(c). Now, we

give an example of a vector space isomorphism. Let F be a field (Definition 2.3). Then, Fn

is an F-vector space (Definition 2.5). Let A be an n × n invertible matrix over F. Then,

φ : Fn → Fn; a 7→ Aa is a vector space isomorphism from Fn to Fn, i.e., φ is bijective and for

every a,b ∈ Fn, α, β ∈ F, φ(αa+ βb) = αφ(a) + βφ(b).

Computational problems related to isomorphism of two similar objects have been studied.

For example, the graph isomorphism problem (in short, GI), which determines whether two

graphs are same up to permutation of vertices or not, is one of the most important and well-

studied algorithmic problem in theoretical computer science. An extensive research spanning

several decades on getting an efficient algorithm for GI culminated in a quasi-polynomial time

algorithm given by Babai [Bab16], which is one of the breakthroughs of the last decade. Sim-

ilarly, one can ask if given two objects of the same type, can we determine algorithmically if

these are isomorphic? This thesis studies a similar question pertaining to polynomials.

We say that f, g ∈ F[x1, . . . , xn] are isomorphic (or equivalent) if there exist n linearly

independent linear forms ℓ1, . . . , ℓn ∈ F[x1, . . . , xn] such that f = g(ℓ1, . . . , ℓn). In other words,

there exists an n×n invertible matrix A over F such that f = g(Ax), where x = (x1 · · ·xn)
T is

a column vector. The problem of testing whether two polynomials given as lists of coefficients

1

are isomorphic is known as the polynomial equivalence problem (in short, PE) and is the central

theme of this thesis. To set up the context for PE, we briefly talk about polynomials in Section

1.1.1, about algebraic complexity theory (ACT) in Section 1.1.2, and about the four main

problems in ACT and their relationships with PE in Sections 1.1.3 - 1.1.6.

1.1 Background

1.1.1 Polynomials

Polynomials are extensively used in mathematics. Apart from having numerous applications

in various branches of mathematics, polynomials are also widely used in theoretical computer

science. For example, the Fourier expansion of a Boolean function f , which is a multilinear

polynomial that agrees with f on the Boolean hypercube, plays an important role in the analysis

of f (see [O’D14]). Polynomials have been used in the proof of IP = PSPACE given in [Sha92].

Polynomials have also been instrumental in answering some of the long standing open questions

in combinatorics. For example, a beautiful proof of a near optimal lower bound on the size

of Kakeya sets in finite fields given by Dvir (see [Dvi08]) is based on the polynomial method.

We direct interested readers to [Gut16, Dvi12, Tao13] for more applications of the polynomial

method in various other problems.

Polynomials also appear in algorithms for algebraic and number theoretic problems. Al-

gorithms for such problems have a rich history. These algorithms can be classified into three

categories. The first category contains the algorithms whose outputs are polynomial functions

in their inputs, the algorithms in the second category use polynomial functions in the inter-

mediate stages but their outputs are not polynomial functions in their inputs, and the third

category consists of algorithms whose inputs and outputs are polynomials.

An interesting example from the first category is a matrix multiplication algorithm. The

output of such an algorithm is the product of two input matrices A and B, where every entry

of A ·B is a quadratic polynomial in the entries of A and B. A long line of research on matrix

multiplication algorithms given in [Str69, CW90, LG12, Wil12, DS13, CU13, LG14, AW21]

aims to understand the exact complexity of this problem. Another example in this category is

an algorithm for computing the determinant of a square matrix A. Using the Leibniz formula,

the determinant of A can be expressed as a polynomial function in the entries of A. Efficient

parallel algorithms are known for determinant computation [Csa76, Ber84, Pip22].

The second category contains many interesting number theoretic algorithms. For example,

[SS71] gave an integer multiplication algorithm, which encodes integers as univariate polyno-

mials and uses an algorithm to multiply two univariate polynomials. This polynomial mul-

2

tiplication algorithm uses Fast Fourier Transform (FFT), for which an efficient algorithm is

known [CT65]. Algorithms for integer multiplication problems have been extensively studied

[SS71, Fü09, DKSS08] and a recent result by [HvdH21] led to an O(n log n) time algorithm to

multiply two n bit numbers. Another example in this category is primality testing. A determin-

istic polynomial time algorithm [AKS02] and several randomized polynomial time algorithms

[SS77, Rab80, GK86, AB03] for this problem are known. The algorithms of [AB03, AKS02]

are based on testing some polynomial identities. Polynomials also appear in solving special

instances of the sum of square roots problem (see [KS12]).

An important example in the last category is a polynomial factorization algorithm. A poly-

nomial time randomized algorithm for factoring univariate polynomials over finite fields [CZ81],

a polynomial time deterministic univariate polynomial factorization algorithm over rational

numbers [LLL82a], and randomized polynomial time reduction from factorization of multivari-

ate polynomials to univariate polynomial factorization [Kal87, Kal89, KT90] are known.

These algorithms have many applications in complexity theory (see [Sha92, GG13, Aar16]),

cryptography (see [GG13, Koe21]), coding theory (see [GG13]) etc. We direct the interested

reader to [GG13, Coh03, Sho05, Koe21] for an exhaustive exposition to algebraic and number

theoretic algorithms. Designing efficient algorithms involving polynomials is one of the main

objectives of computer algebra and algebraic complexity theory (ACT). PE is one such important

problems in ACT. Now, we briefly review some important problems in ACT.

1.1.2 Algebraic complexity theory (ACT)

ACT is a branch of computational complexity theory, that deals with understanding the

strengths and weaknesses of algebraic computation. A natural model for performing alge-

braic computation is given by arithmetic circuits. An arithmetic circuit takes input a set of

variables x = {x1, . . . , xn} and computes a polynomial function in x (or simply a polynomial

in x-variables). An arithmetic circuit is represented as a directed acyclic graph, where the leaf

nodes are labelled by x and elements from F and other nodes are labelled by basic arithmetic

operations such as +,−,× and ÷. See Definition 2.35 for a formal description of an arithmetic

circuit and Figure 1.1.2 for an example. In an arithmetic circuit, every arithmetic operation

on field elements is done in a unit time. If the underlying graph of an arithmetic circuit is a

tree then it is called an arithmetic formula. The following complexity measures are associated

with an arithmetic circuit C: The size of C, which is the number of edges in C and the depth

of C, which is the length of the longest path from an input node to the output node in C. In

a certain sense, size and depth capture the serial and the parallel complexities of computing a

polynomial by an arithmetic circuit respectively.

3

x1 x2 x3 6

× +

+

15

15x1x2x3 + x3 + 6

Figure 1.1: An arithmetic circuit computing 15x1x2x3 + x3 + 6

1.1.2.1 Valiant’s complexity classes

Valiant categorised families of polynomials into two classes, namely p-computable and p-definable

[Val79], which are now popularly known as Valiant’s P and Valiant’s NP, denoted VP and VNP

respectively. A polynomial family {fn}n∈N ∈ VP if and only if for every n ∈ N, fn is an n-

variate polynomial, the total degree of fn, denoted deg(fn), is nO(1) and fn is computed by

an arithmetic circuit of size poly(n), where poly(n) = nO(1). Examples of interesting polyno-

mial families in VP are the families of power symmetric polynomials, elementary symmetric

polynomials, determinant polynomials, iterated matrix multiplication (IMM) polynomials.

A polynomial family {fn}n∈N ∈ VNP if and only if there exist {hn}n∈N ∈ VP and a polyno-

mial function t : N→ N such that for every n ∈ N, fn is an n-variate polynomial and

fn(x1, . . . , xn) =
∑

(e1,...,et(n))∈{0,1}t(n)

hn+t(n)(x1, . . . , xn, e1, . . . , et(n)).

Observe that VP ⊆ VNP. We might sometime abuse the notation and say that a polynomial

f is in VP (or VNP), which would mean that there exists a polynomial family {fn}n∈N in VP

(respectively, in VNP) such that f = fn for some n ∈ N. It is known that a family {fn}n∈N is in

VNP if there exists an algorithm that takes input (e1, . . . , en) ∈ Nn and outputs the coefficient

of xe1
1 · · ·xen

n in fn in poly(n) time [Val82, Bür00] 1. This is popularly known as Valiant’s

criterion. It follows immediately from this criterion that the permanent of an n × n symbolic

matrix is in VNP. It was shown in [Str73c, HY11] that over any field F, if a degree d polynomial

f ∈ F[x] is computed by an arithmetic circuit C of size s then there exists an arithmetic circuit

C′ for f such that the size of C′ is poly(s, d) and C′ does not contain nodes labelled with ÷
1In fact, if the coefficient of xe1

1 · · ·xen
n in fn can be computed in #P/poly then also {fn}n∈N is in VNP (see

Proposition 2.20 of [Bür00]).

4

operations1. Note that a node labelled with − operation in C′ can be replaced by a + gate and

the labels of the edges going out of this + gate are multiplied with -1. Henceforth, we will only

be interested in the polynomial families in VP and VNP, where the degree of the n-th member

in a polynomial family is poly(n). Further, we will assume from now on that non-leaf nodes in

an arithmetic circuit are labelled by + and ×.
Similar to the concept of reductions in Boolean complexity theory, we have a notion of

projections in ACT. A polynomial family {fn}n∈N over a field F is said to be a p-projection

of {gn}n∈N over F if there exists a polynomial function t : N → N such that for every n ∈ N,
fn and gn are n-variate polynomials and there exists m ≤ t(n) such that fn(x1, . . . , xn) =

gm(a1, . . . , am), where every ai ∈ F∪ {x1, . . . , xn}. This notion of p-projection is used to define

the concept of completeness in ACT. A family {fn}n∈N ∈ VNP is said to be VNP-complete if

every {gn}n∈N ∈ VNP is a p-projection of {fn}n∈N. Valiant showed in [Val79] that the family

of permanent is VNP-complete over every field not having characteristic equal to two.2 Some

natural VNP-complete polynomial families corresponding to graphs are given in [Bür00].

Observe that the permanent family is one of the ‘hardest’ polynomial families in VNP as

showing that this family is in VP would immediately imply VP = VNP. Valiant conjectured that

the permanent can not be computed by an arithmetic circuit of polynomial size over any field

having characteristic other than two. Proving this would immediately imply that VP is a strict

subset of VNP. The VP versus VNP question has been a long standing open problem from more

than four decades. It is not only the holy grail of ACT but is also one of the most important

open questions in theoretical computer science. Apart from being a natural and important

problem, it is also related to the non-uniform version of the P versus NP problem. It was shown

in [B0̈0, Bür00] that if VP = VNP over finite fields then P/poly = NP/poly. The same result

holds over infinite fields assuming the Generalised Riemann Hypothesis [B0̈0, Bür00]. However,

the converse of this is not known. Thus, VP versus VNP can be considered as a stepping stone

for the P/poly versus NP/poly and it is hoped that the complete understanding of the exact

relationship between VP and VNP might shed some light on the P/poly versus NP/poly problem.

One of the promising approaches to understand VP versus VNP is geometric complexity theory.

1.1.2.2 Geometric complexity theory (GCT)

GCT is an approach that aims to resolve the VP versus VNP conjecture with the help of

advanced tools and techniques from algebraic geometry and representation theory. It was

proposed by Mulmuley and Sohoni [MS01]. Its one of the main objectives is to separate the

1Strassen’s argument works over fields having sufficiently large size. This constraint was removed in [HY11].
2Over the fields of characteristic equal to two, the permanent and the determinant of an n × n symbolic

matrix are the same. Hence, over such fields, the permanent is in VP.

5

complexities of the determinant and the permanent. GCT aims to show this by proving that

(padded) permanent of an n × n matrix, denoted Perm∗
n

1, is not an affine projection of the

determinant of an m×m matrix, denoted Detm, where m = poly(n) 2. To understand whether

Perm∗
n is an affine projection (Definition 2.33) of a poly(n) size determinant, GCT considers the

orbit closures3 of Perm∗
n and Detm. If one can show that Perm∗

n is not present in the orbit closure

of Detm, for m = poly(n) then Permn
∗ is not an affine projection of Detm. This is because it

is a well-known fact that over fields of characteristic zero, affine projections of a polynomial is

contained in its orbit closure (see Appendix F of [ST21] for a proof of this fact). Since orbit

closures are algebraic varieties, tools from algebraic geometry are potentially useful here. GCT

hopes to show that Perm∗
n is not contained in the orbit closure of Detm for m = poly(n), by

exploiting the characterisation by symmetries property (Definition 2.24) possessed by these two

polynomials. This property lies at the heart of GCT and it also avoids the natural proof barriers.

We talk about this property in Section 1.3.1. We direct the interested reader to Chapter 3 of

[Gro12] and Section 6.6 of [Aar16] for introductory level exposition to GCT.

GCT suggests to study some algorithmic problems to gain more structural insights on orbit

closures of the permanent and the determinant. A natural algorithmic problem in the context

of understanding whether the permanent is in the orbit closure of a polynomial size determinant

is to test whether a polynomial f is in the orbit (Definition 2.34) of the determinant. Such

a question is called equivalence test for the determinant. Kayal gave an equivalence test (in

short, ET) for the determinant over C [Kay12]. In this thesis, we give ET for the determinant

over Q and finite fields (see Section 1.3.2 and Chapter 4).

1.1.2.3 Equivalence test

In this section, we give some useful definitions related to the equivalence test for the sake of

discussion on connections of ET to other important problems in ACT given in the subsequent

sections. A detailed description of equivalence test is given in Section 1.2.2.

Let {fn}n∈N be a polynomial family and C be a circuit class. An equivalence test for {fn}n∈N
(similarly, for C) is the following algorithmic task: Given two polynomials f(x) and g(x) as

black-boxes 4 where f ∈ {fn}n∈N (respectively, f is computed by a circuit in C), determine if

1Let Permn denote the permanent of an n× n symbolic matrix X. Then, Perm∗
n = zm−nPermn, where z is

a fresh variable not appearing in X.
2The non-padded version of the permanent versus the determinant problem is as follows: Is Permn(x) =

det(B), where B is an m×m matrix, where m = poly(n) and the entries of B are affine forms in x-variables?
As it is more convenient to deal with homogeneous polynomials, the padded version of the permanent versus
determinant problem is studied.

3The orbit closure of an n-variate degree d polynomial f ∈ C[x] is the Zariski closure of the orbit of f

(Definition 2.34), where polynomials in the orbit of f are identified with their coefficient vectors in C(
n+d
d).

4A black-box of a polynomial f ∈ F[x] takes input an a ∈ F|x| and outputs f(a).

6

there exists an invertible matrix A such that g = f(Ax). If yes, output an invertible matrix A

such that g = f(Ax). Hence, ET is a special case of PE, where one of the two input polynomials

comes from either a specific polynomial family or a fixed circuit class. In many cases of ET

for a polynomial family, for example the families of the determinant and the permanent, there

exists a unique f ∈ {fn}n∈N such that the number of variables in f is equal to the number

of variables in g. Thus, in this case, the polynomial f is implicit and we can only give g as

an input to ET for {fn}n∈N. But this is not the case with ET for a circuit class C because

there can be many circuits in C having the same number of variables as in g. Thus, if we only

give g as the input to ET for C , the problem becomes ‘harder’ than the usual ET for C . This

is so because now along with finding an invertible matrix A, the algorithm also has to find a

circuit C ∈ C such that g = C(Ax). Thus, this version of ET generalizes the reconstruction

problem for C (see Section 1.1.5). Henceforth, we only consider the ‘harder version’ of ET for

C . In this thesis, we study equivalence tests for two polynomial families, namely the families

of determinant and Nisan-Wigderson design polynomial, and a circuit class, namely the class

of regular read-once arithmetic formulas (ROFs). The details are given in Section 1.3.

In Sections 1.1.3, 1.1.4 and 1.1.5, we touch upon the three most important problems in ACT,

namely lower bounds, PIT and arithmetic circuit reconstruction, and highlight their connections

to ET. We give a brief survey of the progress made in these problems in Appendix A. We

briefly talk about an important problem in computer algebra called functional decomposition

of polynomials and its connection to ET in Section 1.1.6.

1.1.3 Lower bounds

Proving a super-polynomial lower bound on the size of arithmetic circuit computing a VNP-

complete polynomial is the main objective of ACT. In last four decades, a lot of research has

happened on lower bounds for various classes of arithmetic circuits. Although, the best known

lower bound on the size of an arithmetic circuit is merely super-linear [Str73a, BS83], several

strong lower bounds are known for many sub-classes of arithmetic circuits. We direct the in-

terested reader to Section A.1 for a brief survey of the progress made in lower bounds. In this

part, we present some connections of lower bounds to the equivalence testing problem.

1. ET and other algorithmic questions for polynomials used in lower bounds. Many

polynomials like the permanent, the determinant, the iterated matrix multiplication polynomial

(in short, IMM), the elementary symmetric polynomial, the power symmetric polynomial etc.

have been used as hard polynomials in several lower bound results. Apart from these, the

7

Nisan-Wigderson design polynomial, denoted NW, has also been used extensively in many

lower bound results. The definition of NW and a list of lower bounds results which use NW as

a hard polynomial is given in Section 1.3.1. It is natural to develop a good understanding of all

the polynomial families used in the lower bound proofs by studying various useful properties of

these families. In this thesis, we study some interesting properties of NW.

All the families mentioned above except the family of NW are well-studied. The family

of NW is in VNP (see Section 1.3.1) but it is neither known to be in VP, nor known to be

VNP-complete. The family of permanent is VNP-complete over the fields of characteristic not

equal to two. In the absence of a proof that VP = VNP, we have the following natural and

interesting algorithmic problem: Let {fn}n∈N be a family in VNP, which is not known to be

in VP and f ∈ {fn}n∈N. Given a circuit C determine whether C computes f . Such a problem

is called as the circuit testing problem for f . Two randomized polynomial time algorithms for

circuit testing are known for the permanent [Lip89, Mul10]. In this thesis, we give a randomized

polynomial time circuit testing algorithm for NW (see Theorem 1.3).

We can also ask the circuit testing question for the orbit (Definition 2.34) of a polynomial

family 1. Observe that circuit testing for the orbit of {fn}n∈N is essentially the equivalence

testing problem for {fn}n∈N. Randomized polynomial time equivalence testing algorithms are

known for the families of permanent, determinant, IMM, power symmetric polynomial and

elementary symmetric polynomial (see the subsection on known results on ET in Section 1.2.2).

In this thesis, we give an interesting special case of ET for the family of NW (see Theorem 1.5).

Another interesting problem for a family {fn}n∈N ∈ VNP not known to be in VP is a flip

theorem defined as follows: Suppose f ∈ {fn}n∈N is such that it is not computable by an

arithmetic circuit of size s. Can we generate a list of certificate points {a1, . . . , am} efficiently

over the underlying field, where m = poly(s), such that the for every arithmetic circuit C of

size s, there exists an i ∈ [m] such that f(ai) ̸= C(ai)? Flip theorem is important from the

viewpoint of GCT (see [Mul10, Gro12, Aar16]). A flip theorem is known for the permanent

[Mul10, Mul11a], and in this thesis we give a flip theorem for NW (see Theorem 1.4).

2. ET for the determinant important from the perspective of GCT. As seen in Section

1.1.2.2, that understanding whether the permanent is in the orbit closure of a polynomial size

determinant is enough to separate the complexities of the permanent and the determinant. An

ET for the family of determinant is natural first question in this direction as it tests whether a

polynomial is in the orbit of the determinant or not. In this thesis, we study ET for the family

of determinant (see Section 1.3.2).

1The orbit of a polynomial family is the union of the orbits of every member in the family.

8

3. ET implies lower bounds for orbits of circuit classes. Let C be a circuit class. It

follows from the discussion given in the previous section on the equivalence testing problem that

ET for C is reconstruction of polynomials in the orbit of C . It was shown in [FK09] that an

randomized polynomial time reconstruction algorithm for a circuit class implies a lower bound

for the same class. This result was derandomized in [Vol16]. Thus, an ET for C implies lower

bounds for the orbit of C . Proving an explicit lower bound for the orbit of read-once algebraic

branching programs (ROABPs) is mentioned as an open question in [ST21] (see Section 7 of

[ST21]). Following [FK09, Vol16] A randomized polynomial time equivalence test for the class

of ROABPs would imply a lower bound for the orbit of ROABPs. The class of ROABPs is

interesting because the affine projection of ROABPs captures algebraic branching programs.

1.1.4 Polynomial Identity Testing (PIT)

Polynomial identity testing is an algorithmic question that determines whether a given arith-

metic circuit computes the identically zero polynomial. If the input is given as a list of coef-

ficients then this is a trivial problem. The input of a PIT algorithm is of two types: either

an arithmetic circuit C, in which case the algorithm has access to the whole circuit, or an

oracle access (also called black-box access) to C, which outputs evaluations of C at points from

the underlying field. The PIT problem in the former and the latter cases are called white-box

PIT and the black-box PIT respectively. A simple polynomial time randomized algorithm is

known for black-box PIT due to the Schwartz-Zippel lemma [DL78, Zip79, Sch80] (Fact 2.13)

but a sub-exponential time deterministic algorithm for the same has remained elusive. PIT has

been used to design many interesting algorithms like algorithms for perfect matchings in graphs

[Lá79, KUW85, MVV87, FGT16, ST17], algorithms for primality testing [AB03, AKS02], an

algorithm for linear matroid intersection [GT20], etc. PIT has also been used in the proof of

IP=PSPACE [Sha92]. See Section A.2 of Appendix A for a brief survey of results in PIT.

Let {fn}n∈N be a polynomial family. Suppose we have a deterministic ET for {fn}n∈N.
In order to determine whether the input polynomial g is equivalent to some f in {fn}n∈N,
any reasonable ET algorithm would query black-box of g at points from the underlying field,

which are not roots of g. Otherwise, it would get no information about g. We can obtain a

deterministic PIT algorithm for the orbit of {fn}n∈N using a deterministic ET for {fn}n∈N as

follows: Suppose g is the input of the PIT algorithm. Simulate ET on g. Suppose at some

time, black-box of g returns a non-zero field element. Then, output ‘g is not zero’. Otherwise,

output ‘g is zero’. As a reasonable ET for {fn}n∈N would query black-box of g at non-roots of g,

provided g is non-zero, the output of the PIT algorithm is correct. In this way, a deterministic

9

ET for {fn}n∈N yields a deterministic black-box PIT for the orbit of {fn}n∈N.
Now, lets see how an ET of a circuit class C implies PIT for C . Any reasonable ET for C

would output an invertible matrix and the trivial zero circuit 1, i.e., a circuit having only one

node labelled with zero, provided the input polynomial g is the identically zero polynomial.

Suppose we have a deterministic ET for C , then we get a deterministic PIT for the orbit of

C as follows: Suppose the input of the PIT algorithm is g. We run the ET for C on g. If

the algorithm outputs a trivial zero circuit, we output ‘g is zero’, otherwise we output ‘g is

non-zero’. In this way, a deterministic ET for C implies a deterministic black-box PIT for the

orbit of C . However, it is possible that a randomized ET exists for {fn}n∈N but a deterministic

PIT for the orbit of {fn}n∈N is not known. For instance, we know efficient randomized ET

for the family of determinant over different fields but a deterministic PIT for the orbit of the

family of determinant is not known (see Section 7 of [ST21]).

Recently, PIT for orbits of various classes of arithmetic circuits have been studied. Quasi-

polynomial time PIT algorithms for orbits of sparse polynomials, read-once arithmetic formulas,

bounded-width read-once algebraic branching programs (ROABPs) etc. were given in [MS21,

ST21, BG21]. After having these black-box PIT algorithms, a natural next question to ask

is whether we can also reconstruct polynomials in the orbits of the circuit classes mentioned

above, which is basically ET for these circuit classes. In this thesis, we give a randomized

polynomial time ET for the class of mildly restricted read-once arithmetic formulas (in short,

ROFs), called regular ROFs .

1.1.5 Arithmetic circuit reconstruction

Reconstruction (or learning) of arithmetic circuits is the following algorithmic problem: Given

black-box access to an arithmetic circuit C of size s computing an n-variate degree d polynomial

f , output some arithmetic circuit C′, which computes f and has size poly(n, d, s). If C and

C′ belong to the same circuit class then the corresponding reconstruction algorithm is said

to be proper, otherwise it is called an improper reconstruction algorithm. Arithmetic circuit

reconstruction is an algebraic analog of the exact learning of Boolean functions given in [Ang88]

and has been widely studied in the past two decades. We give some connections between the

equivalence testing problem and the reconstruction problem below and give a survey of known

results on arithmetic circuit reconstruction in Section A.3 of Appendix A.

Recall that an ET for a circuit class C takes black-box access to a polynomial g(x), de-

termines if g is equivalent to some circuit in C and if yes, computes an invertible matrix A

and constructs a circuit C ∈ C such that g = C(Ax). An ET for C is more general than the

1Usually, the trivial zero circuit is present in every circuit class.

10

reconstruction problem for C . This is so because given black-box access to a C ∈ C , an ET

for C outputs an invertible matrix A and a C′ ∈ C such that C = C′(Ax). Thus, C′(Ax) ∈ C .

An ET for a polynomial family {fn}n∈N can also be considered as an algorithm to reconstruct

polynomials in the orbits of {fn}n∈N. In the following paragraph, we show how equivalence

test algorithms imply average-case reconstruction algorithm. An average-case reconstruction

algorithm for a circuit class C reconstructs circuits chosen randomly from C according to some

input distribution. See Section A.3 of Appendix A for more details.

Reconstruction algorithms from equivalence tests. We note here three instances where

we obtain average-case reconstruction algorithms from equivalence tests. All these algorithms

reconstruct random circuits satisfying high number of variables property. We will make this

notion precise in the three cases discussed below.

1. Depth 3 powering circuits. A depth 3 powering circuit computes a polynomial of the

type g = ℓd1 + · · · + ℓds, where d ∈ N and every ℓi ∈ F[x1, . . . , xn] is a linear polynomial.

If ℓ1, . . . , ℓs are F-linearly independent linear forms then observe that g is in the orbit of

the power symmetric polynomial f = xd
1 + · · ·+ xd

s. Let C be a random depth 3 powering

circuit - C is obtained by choosing s ∈ N and picking the coefficients of x1, . . . , xn in

ℓ1, . . . , ℓs independently and uniformly at random from a large enough finite subset of

F - satisfying n ≥ s. As C is in the orbit of f with high probability, an ET for power

symmetric polynomials also serves as a reconstruction algorithm for C.

A polynomial time ET algorithm for degree three power symmetric polynomials [Har70,

LRA93], popularly known as Jennrich’s algorithm. Later, [Kay11, GKP18] gave random-

ized polynomial time equivalence test for power symmetric polynomials. These algorithms

reconstruct random depth 3 powering circuits in the high number of variables regime.

2. Arithmetic formulas. Recall that an arithmetic formula is an arithmetic circuit, where

the underlying graph is a tree. Let C be an arithmetic formula having an arbitrary

tree structure, where the layers of C are labelled alternatively with + and × gates, the

leaves of C are labelled with random linear forms, and the number of leaf nodes in C

is upper bounded by the number of variables in C. Then, C is in the orbit of an ROF

(Definition 2.38) with high probability. Thus, an ET for ROFs would imply an average-

case reconstruction algorithm for arithmetic formula in high number of variables setting.

In this thesis, we give a randomized polynomial time ET for the class of regular ROF (see

Theorem 1.11) and in a follow-up work [GST22], we give a randomized polynomial time

ET for the class of general ROFs. Both these ET algorithms work over almost all fields

11

and take oracle access to PE for quadratic forms over the underlying field.

3. Algebraic branching programs (ABPs). An ABP is described in Definition 2.36.

Let C be an ABP where the underlying graph is arbitrary, the edges of C are labelled

by random linear forms and the number of edges in C is upper bounded by the number

of variables in C. Then, C is in the orbit of an iterated matrix multiplication polynomial

(IMM) 1 with high probability. Thus, an ET for IMM reconstructs random ABPs satisfy-

ing the high number of variables condition. A randomized polynomial time ET algorithm

was given in [KNST19]. This algorithm works over almost all fields.

1.1.6 Functional decomposition of polynomials

Let F be a field and x = {x1, . . . , xn} be the set of variables. The functional decomposition

problem (FDP) is as follows: Given a polynomial f ∈ F[x], determine if there exists a functional

decomposition of f , i.e., there exists a g ∈ F[y1, . . . , ym] and h1, . . . , hm ∈ F[x] such that

f = g(h1(x), . . . , hm(x)).

If the answer is yes, output a functional decomposition of f . FDP is a well-studied problem

in computer algebra having applications in many interesting problems like root finding (see

[BZ85]), the N-partition problem (see Page 10 of [Dic89]), the endomorphism invertibility prob-

lem (see Page 11 of [Dic89]), design of asymmetric cryptosystem (see [PG97]) etc. It is easy

to see that ET is a special case of FDP: Recall that in case of ET for {fn}n∈N (similarly, a

circuit class C), we are given a polynomial g ∈ F[x1, . . . , xn] over a field F and we want to

algorithmically determine whether there exists an f ∈ {fn}n∈N (respectively, a circuit C ∈ C)

such that g = f(ℓ1, . . . , ℓn) (g = C(ℓ1, . . . , ℓn)), where ℓ1, . . . , ℓn ∈ F[x1, . . . , xn] are F-linearly
independent linear forms. If the answer is yes, we have to output an f ∈ {fn}n∈N (respectively,

a circuit C ∈ C) and F-linearly independent linear forms ℓ1, . . . , ℓn ∈ F[x1, . . . , xn] such that

g = f(ℓ1, . . . , ℓn). Thus, f, ℓ1, . . . , ℓn (respectively, C, ℓ1, . . . , ℓn) is a functional decomposition

of g. Hence, ET for a polynomial family or a circuit class is a special case of the FDP problem.

The univariate version of FDP determines whether for an f ∈ F[x], there exist g, h ∈
F[x], deg(g) > 1 such that f = g(h(x)) 2. This version of FDP is well-studied. See Chapter

5 of [Coh03] for a detailed overview of the univariate FDP. The univariate FDP is used to

solve univariate polynomial equations in many computer algebra systems (see Section 5.1 of

1Let w, d ∈ N and for i ∈ [d], Xi = (xi,j)i,j∈[w] be a formal matrix. Then, the iterated matrix multiplication
polynomial, denoted IMMw,d, is defined as the (1, 1)-th entry of X1 ·X2 · · ·Xd.

2In this case, it is important that deg(g) > 1. Otherwise, every f ∈ F[x] admits a functional decomposition.
For example, let g = ax+ b and h = 1

af(x)−
b
a , where a, b ∈ F, a ̸= 0. Then, f = g(h(x)).

12

[Coh03]). Let us understand with an example how univariate FDP can be helpful in solving a

polynomial equation. Let f = x4 − 3x2 + 2, h = x2 and g = x2 − 3x + 2. Then, f = g(h(x)).

Thus, solving f = 0 is same as solving g(h(x)) = 0. As h(x) = x2, from g(h(x)) = 0, we get

x2 = 1 and x2 = 2. On solving this, we obtain the solutions x = 1,−1,
√
2,−
√
2, which are

also solutions of f . The univariate version of FDP is efficiently solvable and several algorithms

are known for the univariate FDP problem [AT85, BZ85, KL89, KLZ96]. In general, FDP is

known to be NP-hard [Dic93]. However, efficient algorithms are known for some special cases

of multivariate FDP (see [vzG90, von90, FP09b, FP09a, FvzGP10]).

1.2 Polynomial equivalence and equivalence testing

1.2.1 The polynomial equivalence problem

Let n ∈ N,x = {x1, . . . , xn}, F be a field and f, g ∈ F[x]. Recall that the polynomial equivalence

problem (PE) is as follows: given f and g as lists of coefficients, determine if f is equivalent

to g or not. Further, if the answer is yes then output an n × n invertible matrix A over

F such that g = f(Ax). Polynomial equivalence is a natural and an important problem in

ACT. It is a special case of testing whether out of the two given polynomials, one is an affine

projection (Definition 2.33) of the other. Many important problems in ACT like the permanent

versus determinant problem, the matrix multiplication etc. are instances of the affine projection

problem (see [Kay12]). It was shown by Kayal in [Kay12] that the task of determining whether

one polynomial is an affine projection of the other is NP-hard. Since PE is a special case of

testing whether one polynomial is an affine projection of the other, it is natural to ask if PE is

efficiently solvable over the underlying field F.
An immediate solution for PE over F is obtained from an algorithm for polynomial solvabil-

ity over F - treat the entries of A as formal variables and then solve the system of polynomial

equations in the entries of A originating from f = g(Ax). The polynomial solvability has time

complexity exponential in the input parameters over finite fields [HW99], over R [GV88] and

over C [Ier89], and it is not even known to be decidable over Q. However, PE could be an easier

problem than polynomial solvability. It was shown in [Thi98, Sax06] that over finite fields, PE

is in NP ∩ coAM and is unlikely to be NP-complete unless the polynomial hierarchy collapses.

But over C and R, the best known time complexity of PE is same as that of polynomial solv-

ability over these fields, and PE is not even known to be decidable over Q. PE is also related

to the graph isomorphism problem. It was shown in [AS05] that graph isomorphism reduces in

polynomial time to PE for cubic forms (i.e., homogeneous degree 3 polynomials) over any field.

13

PE for quadratic and cubic forms. Efficient PE algorithms for quadratic forms (i.e., ho-

mogeneous degree 2 polynomials) over C,R, finite fields having characteristic other than 2

and over Q with oracle access to integer factoring are known (see Section 2.2.3). These algo-

rithms are based on the well-known classification results of quadratic forms over these fields

(see [Ser73, Ara11]). On the contrary, it was shown in [AS05] that over any field, graph isomor-

phism reduces in polynomial time to PE for cubic forms. Thereafter, [AS06] showed that over

any F, commutative F-algebra isomorphism reduces in polynomial time to PE for cubic forms

over F. In [AS05, Sax06], the converse of this was shown over the fields containing third roots

of every element of F 1. Recently, [GQ21] improved this result by showing that over F having

char(F) = 0 or ≥ 3, PE for cubic forms reduces to the F-algebra isomorphism problem. They

proved this by showing that many isomorphism problems like group isomorphisms for p-groups,

matrix space isometry, matrix space conjugacy, algebra isomorphism, trilinear form equivalence,

and PE for cubic forms (over fields having characteristic other than 2 or 3) are equivalent under

polynomial time reduction. [GQT21] gave an average-case algorithm having running time qO(n)

for deciding if two n-variate cubic forms f(x), g(x) are equivalent over the finite field Fq. If

f and g are equivalent, they also output an A ∈ GL(n,Fq) such that f = g(Ax). Since their

algorithm is average-case, it works for a large fraction of cubic forms in Fq[x]. Over Q, it is not

even known if PE for cubic forms is decidable.

PE in cryptography. Consider the following problem, known as isomorphism of polynomials

with 1 secret (IP1S): Given tuples of polynomials f = (f1, . . . , fm),g = (g1, . . . , gm), where

every fi, gj ∈ F[x], determine if there exists an invertible matrix A over F such that fi = gi(Ax)

for every i ∈ [m]. Note that when m = 1, IP1S is same as PE. IP1S was first introduced and

used in an authentication scheme by Patrin [Pat96]. This authentication scheme relies on the

hardness of PE for cubic polynomials. After that, IP1S has been extensively studied in cryp-

tography (see [BFP15] and the references therein). Recently, efficient algorithms were given

in [BFP15, IQ19] for the variant of IP1S over finite fields where m > 1 and every polynomial

in f ,g is a quadratic form2. For m = 1, this variant of IP1S is same as the PE for quadratic

forms, for which efficient algorithms are known over different fields.

1A more general result was shown in [Sax06], which is as follows: For d ∈ N, if F contains d-th roots of every
element in F then PE for homogeneous degree d polynomials over F reduces to F-algebra isomorphism problem.

2The algorithm in [BFP15] works when the quadratic forms satisfy some “regularity conditions” and the
characteristic of the underlying field is not equal to 2. [IQ19] improved this result and gave an efficient algorithm
over finite fields of odd size for any tuples of quadratic forms f and g.

14

1.2.2 Equivalence testing

As PE is hard even for cubic forms, one can ask if there are interesting instances of this

problem other than PE for quadratic forms, which can be solved efficiently. In this direction,

Kayal initiated a new line of work in [Kay11], where one of the two input polynomials given to

a PE algorithm comes from an important polynomial family {fn}n∈N and other polynomial is

given as black-box. This problem is known as equivalence test (or ET) for {fn}n∈N. We first

recall the formal definition of ET from Section 1.1.2.3, then recall some of the motivations for

ET discussed before, then compare PE and ET, and finally give a brief overview of the progress

made in the equivalence testing problems.

ET comes in two flavours - ET for a polynomial family {fn}n∈N and ET for a circuit class

C . An ET for {fn}n∈N (similarly, C) takes inputs as black-box access to g(x) and f(x), where

f ∈ {fn}n∈N (respectively, f is computed by a circuit in C) and determines if g is equivalent to

f . If the answer is yes, then it outputs an invertible matrix A such that g = f(Ax). Thus, ET

is a special case of PE. We consider the version of this problem where only black-box access

to g is given as input to the ET algorithm and it has to decide if there exists an f ∈ {fn}n∈N
(respectively, an f computed by a circuit C ∈ C) such that f is equivalent to g. In the case

of ET for many important polynomial families, like the families of the permanent and the de-

terminant, this version of ET is same as the original one because there is a unique f in the

family which has the same number of variables as in g. So, even if f is not given as an input,

the algorithm implicitly knows f . But this is not the case with ET for C as there can be many

circuits in C having the same number of variables as in g. So, in this sense this version of ET

for C is harder than the original ET for C and here the difficulty is twofold as the algorithm

has to output an invertible matrix A and a circuit C ∈ C satisfying g = C(Ax). In this thesis,

we consider the harder version of ET for a circuit class.

Motivation. An ET for {fn}n∈N (similarly, C) reconstructs orbits (Definition 2.34) of poly-

nomials in {fn}n∈N (respectively, circuits in C). The orbit of a polynomial f , denoted orb(f),

is contained in the set of affine projections of f . As mentioned above, affine projections of

polynomials play an important role in ACT. Affine projections of some polynomial families

or apparently weak circuit classes contain some powerful classes of circuits. For example, the

class of arithmetic formulas is contained in the set of affine projections of ROFs (Definition

2.38). The set of affine projection of the iterated matrix multiplication polynomial captures the

class of ABPs. One of the reasons for studying the orbit of a polynomial f is that the affine

15

projections of f are contained in the orbit closure1 of f . Thus, the study of various properties

of orbits of polynomials can possibly give us crucial insights about their orbit closures.

In this thesis, we study equivalence testing problem for a hard polynomial family, i.e., a

polynomial family not known to be in VP; an easy polynomial family, i.e., the family in VP;

and a circuit class, namely the class of regular ROFs. Here we recall the motivations discussed

at multiple places before to study ET for such polynomial families and circuit classes. As

discussed in Section 1.1.3, ET for a hard polynomial family generalizes the circuit testing algo-

rithm for this family. In the absence of a proof that VP = VNP, a circuit testing algorithm for

a hard polynomial family is an interesting question. In this thesis, we study ET for the family

of Nisan-Wigderson polynomial. We saw in Section 1.1.2.2 that an ET for easy polynomial

families like the determinant are important from the standpoint of GCT. Also, we saw in Sec-

tion 1.1.5 that ET algorithms for the families of power symmetric polynomial and IMM imply

average-case reconstruction algorithm in the high number of variables setting for the classes of

depth 3 powering circuits and ABPs. In this thesis, we study ET for the family of determinant.

We saw in Section 1.1.5 that an ET for ROFs gives an average-case reconstruction algorithm for

arithmetic formulas in the high number of variables setting. Sub-exponential time black-box

PIT algorithms for orbits of ROFs were given in simultaneous works of [MS21] and [ST21].

Apart from this, sub-exponential time black-box PIT algorithms for orbits of sparse polynomi-

als and bounded-width ROABPs have also been studied recently [MS21, ST21, BG21]. Since

the equivalence testing problem is about reconstruction of orbits, it becomes natural to ask if

there exist efficient equivalence tests for the circuit classes considered in [MS21, ST21, BG21].

In this thesis, we give an equivalence test for the class of regular ROFs.

PE and ET. As noted above that the original versions of ET for a polynomial family or a

circuit class are special instances of PE. Also, the other version of ET for a polynomial family,

where only one polynomial is given as input is also a special case of PE. But the other version

of ET for a circuit class is not exactly similar to PE as now the ET has to also reconstruct a

circuit along with finding a certificate matrix. However, ET for C can be helpful in designing

PE for orbits of circuits in C . Let us first try to understand this with an example of PE for

quadratic forms over C and then we formally define this problem.

Suppose f is a quadratic form over C such that f has no redundant variables (Definition

2.32) and the number of variables in f is even. Then, f is equivalent to x1x2 + · · · + xn−1xn

over C, where n is an even number. If f has odd number of variables, then it is equivalent to

x1x2 + · · ·+ xn−2xn−1 + x2
n over C. With the help of Witt’s cancellation theorem [Wit37], this

1Recall from Section 1.1.2.2 that the orbit closure of f is the closure of orb(f) in the Zariski topology.

16

case can be reduced to the case when n is even 1. A PE for quadratic forms over C takes black-

box access to two quadratic forms f, g and check one by one whether f and g are equivalent

to h := x1x2 + · · ·+ xn−1xn and if these are equivalent to h then computes invertible matrices

A1, A2 such that f(A1x) = h and g(A2x) = h. This implies f = g(A2A
−1
1 x). Thus, PE for

quadratic forms is based on ET for quadratic forms. Now, we formally define the polynomial

equivalence problem for orbits of circuits in C .

Let C be a circuit class. Given black-box access to two polynomials f(x), g(x), which are

in the orbits of two unknown circuits, say C1,C2 ∈ C respectively, decide if f is equivalent

to g. One of the promising approaches to solve this problem is to first solve ET for C on

inputs f, g, which return invertible matrices A1, A2 and C′
1,C

′
2 ∈ C such that f = C′

1(A1x)

and g = C′
2(A2x). Now the problem reduces to determining whether there exists an invertible

matrix A such that C′
1 = C′

2(Ax) and the structures of C′
1 and C

′
2 can be helpful in finding such

an A. In [GST22], we give PE for the orbits of additive-constant-free ROFs, which is based on

the equivalence test for general ROFs given in the same work. This ET for general ROFs is

the generalization of ET for regular ROFs (Theorem 1.11) studied in this thesis. The ET for

general ROFs given in [GST22] is not a part of this thesis.

Known results on ET

ET for important polynomial families. In [Kay12], a randomized polynomial time equiv-

alence test for the family of permanent was given. In this work, we give a special case of ET

for the family of Nisan-Wigderson design polynomial (see Section 1.3.1 and Chapter 3).

In [Kay12], Kayal gave a randomized polynomial time equivalence test for the family of

determinant over C. [KNST19] gave a randomized polynomial time equivalence test for the

family of IMM, which holds over C,Q and finite fields. A polynomial time randomized equiv-

alence test for the family of determinant over finite fields was given in [KNS19], where if the

given n2-variate polynomial f is equivalent to the n× n determinant over a finite field Fq then

the algorithm outputs a certificate matrix A over a degree n extension field of Fq. In this

work, we give equivalence tests for the determinant over Q and finite fields (see Section 1.3.2

and Chapter 4). Our algorithm over Fq outputs a certificate matrix over the base field and

not over an extension field. [MNS20] studied the equivalence test for the family of trace-IMM

1Witt’s cancellation theorem says that over any F with char(F) ̸= 2, if α1x
2
1+α2x

2
2+ · · ·+αnx

2
n and α1x

2
1+

β2x
2
2 + · · ·+ βnx

2
n are equivalent over F, where n > 1 and α1, αi, βi ∈ F×, i ∈ {2, · · · , n} then α2x

2
2 + · · ·+αnx

2
n

and β2x
2
2 + · · ·+ βnx

2
n are also equivalent over F (a proof is given in Section 2 of [CMM17]). Thus, over C, it is

enough to test whether f + x2
n+1 and g + x2

n+1 are equivalent to q := x1x2 + · · ·+ xn−2xn−1 + x2
n + x2

n+1. It is
easy to see that q is equivalent to x1x2 + · · ·+ xnxn+1 over C.

17

polynomial and building on our work, they showed that the equivalence tests for the families

of determinant and trace-IMM are reducible to each other in randomized polynomial time over

C,Q and finite fields.

In [Kay11], Kayal gave polynomial time randomized equivalence tests for the families of

power symmetric polynomial and elementary symmetric polynomials. In [GKP18], a ran-

domized polynomial time equivalence test was given for the sum of univariates polynomials.

This problem generalizes the equivalence test for the power symmetric polynomial. Recently,

[KS21a, KS21b] gave a polynomial time randomized equivalence test for the power symmetric

polynomial, which only performs basic arithmetic operations and equality tests. On the other

hand, the ET for the same polynomial given in [Kay11] requires that roots of univariate poly-

nomials can be extracted in a unit time over the underlying field.

ET for circuit classes. In [MS21], randomized polynomial time equivalence tests were given

for the class of sum-product polynomials, i.e., polynomials of the type
∑

i∈[s] xi,1 · · ·xi,d, which

is contained in the class of depth 2 read-once arithmetic formulas (Definition 2.38) and the

class of ROANFs (Definition 2.41). The sum-product polynomials and ROANFS are examples

of regular read-once arithmetic formulas (Definition 2.40). In this thesis, we give a randomized

polynomial time ET for the class of regular ROFs. This result was generalized in a follow-up

work [GST22], where we give a randomized polynomial time ET for the class of general ROFs.

1.3 Motivation and our results

Now, we describe our main contributions. We will follow the notations given in the beginning

of Chapter 2. The content of this section is divided into three parts - the first one contains

some structural and algorithmic results for the Nisan-Wigderson design polynomial, the second

one is about ET for the determinant, and the last part contains an ET for the class of regular

read-once arithmetic formulas. In each part, we first motivate the problems, then state the

main theorems and then give a summary of our main technical contributions. We elaborate

these summaries by giving detailed proof ideas in Section 1.4. Based on these proof ideas, the

complete proofs are given in Chapters 3, 4 and 5.

1.3.1 Some structural and algorithmic results for NW

In this section, we consider the family of the Nisan-Wigderson design polynomial (in short,

N W), which was introduced in [KSS14]. The results present here about the Nisan-Wigderson

polynomial are from [GS19], which is a joint work with Chandan Saha. We first define the

Nisan-Wigderson design polynomial. Let d be a prime number, k ∈ N, k << d, Fd be the finite

18

field of size d, x = {xi,j : i, j ∈ Fd}, and Fd[z]k = {h ∈ Fd[z] : deg(h) ≤ k}. Then,

NWd,k(x) =
∑

h∈Fd[z]k

∏
i∈Fd

xi,h(i). (1.1)

The Nisan-Wigderson design polynomial was inspired by the set-system given by Nisan and

Wigderson (see Section 2.3 of [NW94]), where every pair of sets in the set-system has low

intersection. A variant of the Nisan-Wigderson polynomial was also used in [Raz10]. NWd,k has

been used as a hard polynomial in many lower bound proofs (see below). In these works, the

value of k is taken as dϵ for some ϵ ∈ (0, 1). Although our results hold for k ∈ {1, . . . , d
4
− 5},

it is best to think of k = dϵ, where ϵ ∈ (0, 1) is an arbitrary constant. Then, N W = {NWd,k :

d is a prime}. When the value of d is clear from the context, we drop the subscripts from NWd,k

for notational simplicity. We first record some important properties of this polynomial.

1. Set-multilinearity and homogeneity: Consider the partition x =
⊎

i∈Fd
xi, where for

every i ∈ Fd,xi = {xi,j : j ∈ Fd}. Then, NWd,k(x) is set-multilinear with respect to the

partition x =
⊎

i∈Fd
xi, i.e., every monomial of NWd,k contains exactly one variable from

every xi
1. Thus, NWd,k is a homogeneous degree d polynomial in d2 variables.

2. N W is in VNP: Suppose we are given a monomial m in x variables, where x = ⊎i∈Fd
xi

and d is a prime number. If m is not set-multilinear then the coefficient of m in NWd,k

is zero. Oherwise m = x0,l0 · · ·xd−1,ld−1
. Let h ∈ F[z] be obtained by interpolating

{(i, li) : i ∈ Fd}. If deg(h) ≤ k then the coefficient of m in NWd,k(x) is 1, otherwise it is

zero. Since these checks can be done in poly(d) time and number of variables in NWd,k is

d2, it follows from the Valiant’s criterion given in Section 1.1.2.1 that N W ∈ VNP.

3. Low-intersection property: Let m1 and m2 be two arbitrary monomials of NWd,k.

Then, the number of common variables between m1 and m2 is at most k. This follows

from the fact that distinct h1, h2 ∈ Fd[z]k agree on at most k elements of Fd.

NW as a hard polynomial in lower bounds. The low-intersection property of NW has been

exploited many times to give strong lower bounds for various classes of arithmetic circuits.

Different variants of the Nisan-Wigderson polynomials have been used as hard polynomials in

several lower bound proofs given in [Raz10, KSS14, CM14, KS14a, KLSS17, KS16a, KS16b,

KST16, KS17a, GST20, KS22]. Thus, from the perspective of proving lower bounds in ACT,

N W is an important family. Similar to the family of permanent, we know that N W ∈ VNP.

1Whenever we talk about set-multilinearity in this section, Section 1.4.1 or Chapter 3, it is always with
respect to the partition x =

⊎
i∈Fd

xi.

19

But apart from this, we do not know much about other interesting structural and algorithmic

properties of NW, which have been studied for the permanent and other polynomials like the

determinant, IMM, the power symmetric polynomial, the elementary symmetric polynomial,

etc. These polynomials also have been crucially used in many lower bound results.

In this thesis, we study some structural properties related to the symmetries (Definition

2.23) of NW like characterization by symmetries (Definition 2.24). We also give some useful

algorithmic results for NW like a circuit testing algorithm, a flip theorem and a special case of

ET for the family of NW. These results crucially use the symmetries of NW. Such results have

been studied for the permanent. We first motivate the problems we study about NW and then

state them formally. The study of most of these problems originate from GCT (Section 1.1.2.2).

Characterization by symmetries. Our first result is related to the characterisation by

symmetries property (Definition 2.24) of NW over different fields. We mentioned in Section

1.1.2.2 that this property plays an important role in GCT. Let us first see why it is so. There

are some barrier type results in complexity theory, which say that certain approaches can

never yield strong enough lower bounds for a specific model of computation, provided some

widely believed assumptions hold. An example of such a result is the concept of natural proofs

introduced by Razborov and Rudich in [RR97]. At a high level, this result says that assuming

the existence of pseudo-random functions, if any lower bound technique for general Boolean

circuits is based on a property that satisfies the constructivity and largeness criteria (see Section

2.1 of [RR97] for their definitions) then we can not get super-polynomial lower bounds for

general Boolean circuits using this technique. Algebraic variants of natural proofs have also

been studied (see [FSV17, GKSS17, CKSV20]). Thus, if a lower bound technique is based on a

property that does not satisfy either of these two criteria and if there exists an explicit function

that satisfies this property then it may be possible to obtain super-polynomial lower bounds

using this technique. Characterization by symmetries is one such property for polynomials,

which violates the largeness criterion, i.e., this property is not satisfied by a large fraction of

polynomials. This is so because it is known that a random polynomial is not characterised

by its symmetries (see Proposition 3.4.9 in [Gro12]). GCT aims to show a super-polynomial

lower bound on the size of arithmetic circuits computing the permanent by exploiting the

characterization by symmetries properties of the permanent and the determinant.

Characterization of the permanent and the determinant by their symmetries are classical

results in mathematics shown in [MM62] and [Fro97] respectively. Simpler proofs of these facts

are given in Chapter 3 of [Gro12]. It is also known that IMM is characterized by its symmetries

[Ges16, KNST19]. This property also holds for the power symmetric polynomial (see Section

20

2 in [CKW11]) but is not possessed by the elementary symmetric polynomial [Hüt16]. As

the family of NW has also been used in lower bound proofs, it is natural to ask whether NW

is characterized by its symmetries over the underlying field. The following two theorems are

devoted to the characterization by symmetries property for NW. This property says that if a

polynomial f is characterized by its symmetries then f is uniquely identified (up to a constant

multiple) by its symmetries. For these theorems, we need the notion of the group of symmetries

of a polynomial f , denoted as Gf (see Definition 2.23).

Theorem 1.1 (NW characterized by its symmetries over C) Let d be a prime number, F
be a field containing a d-th primitive root of unity1, and f be a homogeneous degree d polynomial

in d2 variables over F. If GNWd,k
⊆ Gf then f = α · NWd,k for some α ∈ F.

Theorem 1.1 holds over C and a finite field F having a d-th root ζ ̸= 1 and |F| ̸= d + 1. One

can ask if we can get the same result over R and Q. We answer it in the following theorem.

Theorem 1.2 (NW not characterized by its symmetries over R) Let d be a prime num-

ber and F be either R,Q or a finite field satisfying d ∤ |F|− 1. Then, NWd,k is not characterized

by its symmetries over F.

Thus, NW is characterized by its symmetries over C but not over R and Q. On the other hand,

the permanent of an n× n symbolic matrix is characterized by its symmetries over fields hav-

ing more than n elements (see Proposition 3.4.5 in [Gro12]). In the proof of Theorem 1.2, the

structures of symmetries of NW play a very important role. We showed in the author’s master’s

thesis [Gup17] that every element of GNW is a product of a permutation matrix and a diagonal

matrix (see Theorem 3.3). A similar result also holds for the group of symmetries of the per-

manent. Certain symmetries of NW used in the proofs of Theorems 1.1 and 1.2 (see Section

1.4.1) also come in handy to show some important algorithmic results for NW mentioned below.

Algorithmic results for NW. As seen before, we do not know whether N W ∈ VP, i.e., NWd,k

is computable by an arithmetic circuit of size poly(d). In the absence of a proof that VP = VNP,

the algorithmic problem of testing whether a given circuit computes NW is an interesting and

non-trivial problem. This problem is known as the circuit testing problem and makes sense for

every polynomial family not known to be in VP. Two efficient algorithms for circuit testing

are known for the permanent - one based on the self-reducibility of the permanent [Lip89] and

other based on its symmetries [Mul10]. In this thesis, we give a circuit testing algorithm for NW

1An α ∈ F is called a d-th primitive root of unity if αd = 1 and for every 1 ≤ r < d, αr ̸= 1.

21

using its symmetries. In particular, this algorithm uses the property that NW is characterized

by circuit identities (see Definition 2.25 and Lemma 3.2). Before stating the result, we give a

useful notation. In the following two theorems, whenever we say a size-s arithmetic circuit, we

would mean an arithmetic circuit C of size s, where the degree of the polynomial computed by

C (also called the degree of C) is bounded by δ(s), where δ : N → N is a polynomial function.

We state these two theorems over a finite field F satisfying a mild condition on its size. Suitable

versions of these theorems also hold over Q,R and C. In these theorems, d is a prime number

and we assume without loss of generality that δ(s) ≥ d.

Theorem 1.3 (Circuit testability) There is a randomized algorithm that takes input black-

box access to a size-s arithmetic circuit C over a finite field F, where |F| ≥ 4·δ(s), and determines

whether or not C = NWd,k with probability 1− exp(−s), using poly(s) field operations.

The next theorem addresses the question of the following type: Assuming a polynomial (or

a Boolean function) f is not computable by a size-s arithmetic circuit (respectively, a size-s

Boolean circuit), is it easy to “certify” this hardness algorithmically? A result of this kind

is called a flip theorem for f . Flip theorems are known for 3SAT [FPS08, Ats06] and the

permanent [Mul10, Mul11b]. Flip theorem is important from the perspective of GCT (see

[Mul07, Mul10]). We give a flip theorem for NW below, which is also based on the property

that NW is characterized by circuit identities (Lemma 3.2).

Theorem 1.4 (Flip theorem) Suppose NWd,k is not computable by size-s arithmetic circuits

over F, where |F| ≥ 4 ·δ(s). Then, there exist a1, . . . , am ∈ Fn, where m = poly(s) such that for

every arithmetic circuit C of size at most s, there is an ℓ ∈ [m] satisfying C(aℓ) ̸= NWd,k(aℓ). A

set of randomly generated points a1, . . . , am ∈r Fn has this property with probability 1−exp(−s).
Moreover, black-box derandomization of PIT for size-(10s) circuits over F using poly(s) field

operations implies a1, . . . , am can be computed deterministically using poly(s) field operations.

In the above theorem, a1, . . . , am is a short list of certificate points against all arithmetic

circuits of size at most s. At the end, we give a special case of ET for NW, called the BD-PS

equivalence test. This checks whether the given polynomial f is BD-PS equivalent to NW, i.e.,

whether there exist a block-diagonal permutation matrix1 A ∈ GL(d2,F) and a diagonal (also

called scaling) matrix B ∈ GL(d2,F) such that f = NW(ABx). We call such a matrix AB a

block-diagonal permutation scaling (BD-PS) matrix.

1An A ∈ Md2(F) is called a block-diagonal permutation matrix if it looks like A = diag(Aσ0
, . . . , Aσd−1

),
where every σi is a permutation on Fd and Aσi is the d×d matrix, where for every l ∈ Fd, the (l, σi(l))-th entry
of Aσi is 1 and every other entry is 0. We say Aσi is the permutation matrix corresponding to σi.

22

The motivation for looking into the BD-PS equivalence test for is that it is a special case

of the block-permuted equivalence test (in short, BP ET) for NW. A BP ET for NW does

the following: Given black-box access to an f ∈ F[x], it determines whether there exists an

invertible block-permuted matrix 1 A over F, such that f = NW(Ax). The reason BP ET

for NW is interesting is that we show that the general ET for NW reduces to its BP ET

in randomized polynomial time over almost any field (see Lemma 3.3 of Chapter 3). Thus, a

randomized polynomial time BP ET for NW would immediately imply a randomized polynomial

time equivalence test for NW. We hope that a BD-PS equivalence test for NW can give us crucial

insights on the BP ET for NW. Another motivation for looking into the BD-PS ET for NW

is that it is a special case of the permutation scaling (PS) equivalence test for NW, i.e., the

underlying matrix is a product of a permutation matrix and an invertible scaling matrix. PS

equivalence test played a very crucial role for the permanent over any field and the determinant

over C. In particular, Kayal in [Kay12] gave randomized polynomial time reduction from general

ET for permanent over any field (similarly, determinant over C) to PS equivalence test for the

permanent (respectively, PS equivalence test for the determinant over C).
Now, we state the theorem on BD-PS equivalence test for NW.

Theorem 1.5 (Block-diagonal permutation scaling ET for NW) Let d be a prime num-

ber, F be a finite field such that d ∤ (|F|−1) and |F| ≥ 4d. There is a randomized poly(d, log |F|)
time algorithm that takes input black-box access to a degree d polynomial f ∈ F[x] and correctly

decides if f is BD-PS equivalent to NW with high probability. If the answer is yes then it outputs

a BD-PS matrix C ∈ GL(d2,F) such that f = NW(Cx).

An appropriate version of the above theorem holds over R. The proof ideas of Theorems

1.1-1.5 are given in Section 1.4.1 and their proofs are given in Chapter 3.

Summary of our main technical contributions. We give a high level overview of the key

technical results here. A detailed overview of the proofs of the above mentioned theorems are

given in Section 1.4.1. In this work, we build on the structural results related to the symmetries

and the Lie algebra of NW given in the author’s master’s thesis [Gup17]. There we obtained

a complete understanding of the Lie algebra of NW. Using this, the Hessian of NW, and

the evaluation dimension measure, we showed that every symmetry of NW is a product of a

permutation and an invertible scaling matrix. In this thesis, we gave some explicit symmetries

of NW over C (see Claim 3.1.1), which imply the characterization by symmetries result for NW

1A d2 × d2 matrix A is said to be block-permuted with block size d if there exists a d2 × d2 block-diagonal
matrix B with block size d and a d× d permutation matrix P such that A = B · (P ⊗ Id).

23

over C. We also show that some specific symmetries of NW present over C are not present

over R and Q, and using this along with the structure of symmetries of NW mentioned above,

we show that NW is not characterized over R and Q. We also prove that NW is characterized

by circuit identities over any field (see Lemma 3.2). This result uses some symmetries of NW.

By exploiting the fact that NW is characterized by circuit identities, we obtain two algorithmic

results for NW: A randomized polynomial time circuit testing algorithm and a flip theorem. We

also give the block-diagonal permutation scaling ET for NW. This ET uses some symmetries of

NW along with a structural insight obtained from the analysis of the Lie algebra of NW given

Chapter 3 of [Gup17] (see Claim 3.1.2 in this regard).

1.3.2 ET for the determinant over finite fields and over Q
In this section, we present our results on the determinant equivalence test (in short, DET).

These results are taken from [GGKS19], which is a joint work with Ankit Garg, Neeraj Kayal

and Chandan Saha.

Let n ∈ N,X = (xi,j)i,j∈[n], where xi,j is a variable for every i, j ∈ [n] and x = {x1,1, . . . , xn,n}.
Let Detn(x) := det(X). Then, Detn is a degree n polynomial. Apart from being a well-studied

object in linear algebra, the determinant also plays an important role in ACT. Detn has been

used as a hard polynomial in many lower bound proofs [Kal85, SW01, Raz09, RY09, GKKS14a]

and it is also crucial from the perspective of GCT. The family of determinant is complete for

the class of ABPs (Definition 2.36) under p-projections (see [MV97] for a proof). Another poly-

nomial family, which is also complete for the class of ABPs is the family of IMM. A polynomial

time randomized equivalence test for IMM over almost any field was given in [KNST19]. One

might ask whether the family of determinant also possesses an efficient equivalence test over

most fields. As mentioned before in Section 1.1.2, DET is also interesting from the viewpoint

of GCT as it allows us to test whether a given polynomial is in the orbit of the determinant.

We noted in Section 1.2.2 that a randomized polynomial time DET over C was given in

[Kay12]. We also saw that [KNS19] gave a randomized polynomial time DET over a finite field

Fq. But one shortcoming of this result is that if the polynomial f given as input to DET is

equivalent to Detn over Fq then the algorithm outputs a “certificate matrix” A over a degree n

extension field of Fq such that f = Detn(Ax). In this work, we give a randomized polynomial

time DET algorithm over finite fields, where the output certificate matrix is also over the

base field Fq and not over an extension of Fq. It was not known before this work if DET is

decidable over Q. We give the first DET algorithm over Q, which takes oracle access to an

integer factoring algorithm IntFact and outputs a certificate matrix over Q. This algorithm is

randomized and runs in polynomial time if n is bounded. If we remove oracle access to IntFact

24

from the DET algorithm then it outputs a certificate matrix over an extension field L of Q
satisfying [L : Q] ≤ n, where [L : Q] is the degree of field extension (see Definition 2.12). This

variant of the DET is also randomized but runs in polynomial time for every value of n. Now,

we state the main theorems related to DET over finite fields and Q.

Theorem 1.6 (DET over finite fields) Let n ∈ N,x = {x1,1, . . . , xn,n}, F be a finite field

such that |F| ≥ 10n4 and char(F) ∤ n(n−1), and f ∈ F[x] be a degree n polynomial. Then, there

exists a randomized algorithm that takes black-box access to f and decides if f is equivalent to

Detn or not with high probability. If yes, it outputs an A ∈ GL(n2,F) such that f = Detn(Ax),

otherwise it outputs ‘Fail’. The running time of this algorithm is poly(n, log |F|).

Theorem 1.7 (DET over Q) Let n ∈ N,x = {x1,1, . . . , xn,n}, f ∈ Q[x] be a degree n polyno-

mial, and β be the bit length of coefficients of f . Suppose we have black-box access to f .

1. There exists a randomized algorithm, which takes oracle access to an integer factoring

algorithm IntFact and decides if f is equivalent to Detn over Q with high probability. If

yes, it outputs an A ∈ GL(n2,Q) such that f = Detn(Ax), otherwise outputs ‘Fail’. If n

is bounded, the algorithm runs in poly(n, β) time.

2. There exists a randomized poly(n, β) time algorithm, which decides if f is equivalent

to Detn over Q with high probability. If yes, it outputs an A ∈ GL(n2,L) such that

f = Detn(Ax), where L is an extension field of Q satisfying [L : Q] ≤ n.

The DET algorithms in Theorems 1.6 and 1.7 have two main steps - The first step is to

reduce DET to the full matrix algebra isomorphism (FMAI) problem in randomized polynomial

time. FMAI is an algorithmic problem that determines whether an F-algebra (Definition 2.18)

A ⊆Mn2(F) is isomorphic to Mn(F) and if yes, it returns an F-algebra isomorphism (Definition

2.19) φ : A → Mn(F). In the second step, we invoke the FMAI algorithm, which are known

over finite fields and Q (see Section 2.2.4). Reduction of DET to FMAI is the main technical

contribution of our work and this reduction works over almost every field. We formally state

this result as the following theorem.

Theorem 1.8 (Reduction of DET to FMAI) Let n ≥ 2, |F| > 10n4 and char(F) ∤ n(n −
1). Then, there exists a polynomial time randomized algorithm, with oracle access to FMAI,

that takes input black-box access to an f ∈ F[x] of degree n and solves DET for f over F with

high probability.

One might wonder if we can get rid of IntFact oracle from the DET algorithm over Q given

in the first part of Theorem 1.7. In the following theorem, we show that it is unlikely.

25

Theorem 1.9 (IntFact reduces to DET for quadratic forms over Q) Assuming the Gen-

eralized Riemann Hypothesis (GRH), there exists a randomized polynomial time reduction from

the problem of factoring square-free integers to computing an A ∈ GL(4,Q) such that f =

Det2(Ax), provided f is equivalent to Det2.

In the following theorem, we give a reduction from FMAI to DET, which is polynomial time

if n is bounded.

Theorem 1.10 (FMAI reduces to DET) Let n ∈ N and F be a field that satisfies char(F) ∤
n. There exists an algorithm, which takes input a basis of an F-algebra A , has oracle access to

DET over F and decides if A is isomorphic as an F-algebra to Mn(F) or not using nO(n) many

field operations. If the answer is yes, it outputs an F-algebra isomorphism from A to Mn(F).

Remark 1.1 In a follow up work, Theorem 1.10 was improved significantly in [MNS20]. The

authors showed that FMAI reduces in randomized polynomial time to DET.

The proof ideas of these theorems are given in Section 1.4.2 and their proofs are given in

Chapter 4. Now, we give a brief overview of the main technical contribution of this work.

Summary of our main technical contributions. The main result of this work is Theorem

1.8, which gives a randomized polynomial time reduction from DET to FMAI over almost

any field. We give a high level idea of this reduction here and a detailed overview in Section

1.4.2. This reduction is based on the rich structure of the Lie algebra of the determinant,

denoted gDet (see Section 1.4.2 for the description of gDet). If the input polynomial f to the

DET algorithm satisfies f = Det(Ax) for some invertible matrix A then gf = A−1 · gDet · A
(Fact 2.10). The algorithm computes a basis of gf using Fact 2.16, then decomposes gf into

two sub-spaces and picks one of these subspace, which we call Fcol. This decomposition of

gf is at the core of the reduction from DET to FMAI and works over almost any field. To

obtain this decomposition, we analyse irreducible invariant spaces (Definition 2.16) of a set

of carefully chosen linear operators on gf . After obtaining Fcol, the algorithm computes the

algebra A generated by Fcol and invokes FMAI algorithm to obtain an F-algebra isomorphism

φ : A → Mn(F). Using φ and the Skolem-Noether theorem (see Theorem 2.1), the algorithm

computes an invertible matrix B such that f = Det(Bx). We also give a reduction from FMAI

to DET, which is efficient if n is bounded. This reduction exploits the fact that the determinant

is characterized by its Lie algebra (see Lemma 4.5).

26

1.3.3 Equivalence test for regular ROFs

An arithmetic formula C over a field F is said to be a read-once arithmetic formula (in short,

an ROF) if every leaf node of C is labelled by either a distinct variable or a constant from F
(Definition 2.38). The class of ROFs is well-studied in the literature. Efficient black-box PIT

algorithms are known for ROFs [SV15, SV14, AFS+18, MV18] and this class also has efficient

randomized and deterministic reconstruction algorithms [HH91, BHH95, SV14, MV18]. It is

one of the few classes of arithmetic circuits for which we have a deterministic polynomial time

black-box PIT algorithm and a deterministic polynomial time reconstruction algorithm. In this

section, we talk about ET for the class of ROFs. Recall that an ET for ROFs reconstructs

polynomials in the orbits of ROFs. In this thesis, we give a randomized polynomial time ET

for the class of restricted (yet quite expressive) ROFs, which we call regular ROFs (Definition

2.40). The class of regular ROFs contains some interesting circuit classes like the classes of

sum-product polynomials and ROANFs considered in [MS21]. The ET for regular ROFs takes

oracle access to PE for quadratic forms (in short, QFE) over the underlying field F. This is a

joint work with Chandan Saha and Bhargav Thankey. Before presenting the main theorem, we

motivate why ET for the class of ROFs is an interesting problem in ACT.

1. Relationship with PE for quadratic forms. Efficient QFE algorithms over C,R,
and finite fields having characteristic not equal to 2 and over Q with oracle access to an

integer factoring algorithm are known (see Fact 2.19). These algorithms are based on

well-known results on the classification of quadratic forms (see [Ser73, Ara11]). Suppose

f is a quadratic form over C such that f has no redundant variables (Definition 2.32) and

the number of variables in f is even. Then, f is equivalent to x1x2 + · · · + xn−1xn over

C, where n is an even number. If f has odd number of variables, then it is equivalent

to x1x2 + · · · + xn−2xn−1 + x2
n over C. Recall from Section 1.2.2 that with the help of

Witt’s cancellation theorem [Wit37], this case can be reduced to the case when n is even.

A PE for quadratic forms over C takes black-box access to two quadratic forms f, g and

check one by one whether f and g are equivalent to h := x1x2 + · · ·+ xn−1xn and if these

are equivalent to h then computes invertible matrices A1, A2 such that f(A1x) = h and

g(A2x) = h. This implies f = g(A2A
−1
1 x). Thus, internally a QFE algorithm is solving

ET for quadratic forms, which is a special case of ET for ROFs as h is a depth-2 ROF.

Thus, an ET for the class of ROFs would clearly generalize QFE over C.

2. Reconstructing orbits of well-studied circuit classes. As mentioned in Section

1.2.2, recently [MS21], [ST21] and [BG21] gave deterministic quasi-polynomial time PIT

27

algorithms for the orbits of many interesting circuit classes including sparse polynomi-

als, ROFs and bounded-width ROABPs. So, it is natural to ask if we can also recon-

struct/learn orbits of these circuit classes efficiently or in other words, design efficient ET

algorithms for these circuit classes.

3. Relationship with non-degenerate formula reconstruction. Let C be an n-variate

random arithmetic formula, i.e., the C has an arbitrary tree structure, alternate layers

of + and × gates and the leaves of C are labelled by s many random linear forms in n

variables over F. If n ≥ s then with high probability, C is in the orbit of an ROF over a

sufficiently large field F. Thus, an efficient ET for ROFs leads to an efficient algorithm

to reconstruct an n-variate random arithmetic formula in the high number of variables

regime. A randomized polynomial time algorithm for reconstruction of random arithmetic

formulas in the alternating normal form (ANF) was given in [GKQ13]. This algorithm

reconstructs random arithmetic formulas whose underlying tree is a complete binary tree.

Such formulas need not satisfy n ≥ s whereas an ET for ROFs gives an algorithm to

reconstruct random formulas satisfying n ≥ s and having an arbitrary tree structure.

4. Generalizes reconstruction algorithm for ROFs. As mentioned above, a polynomial

time deterministic reconstruction algorithm is known for ROFs. ET for ROFs is clearly

a strict generalization of the ROF reconstruction problem as here we aim to find an

invertible matrix A and an ROF C such that the given polynomial f satisfies f = C(Ax).

5. Generalization of ET for two sub-classes of ROFs. As mentioned in Section 1.2.2,

[MS21] gave efficient ETs for the classes of sum-product polynomials and ROANFs. It is

easy to see that these are sub-classes of the class of regular ROFs. Thus, an efficient ET

for regular ROFs would generalize these two results.

We now state our main result. In the following theorem, we consider a slightly general

definition of the orbit of a polynomial g, which is orb(g) = {g(Bx+d) : B ∈ GL(n,F),d ∈ Fn}.

Theorem 1.11 (ET for regular ROFs) Let n ∈ N,x = {x1, . . . , xn}, F be a field satisfying

char(F) = 0 or char(F) ≥ n2 and |F| ≥ n13, and f ∈ F[x] be in the orbit of an unknown regular

ROF C. Then, there exists a randomized poly(n) time algorithm that takes input black-box access

to f , has oracle access to QFE over F and does the following with high probability: It outputs

an A ∈ GL(n,F) such that f(Ax) = C(PSx + b), where P, S ∈ GL(n,F) are permutation and

scaling matrices respectively and b ∈ Fn.

28

Remark 1.2 1. Note that f(Ax) is an ROF. So, we can find an ROF C′ using any of

the polynomial time ROF reconstruction algorithm [HH91, BHH95, MV18] such that C′

computes f(Ax).

2. There are efficient algorithms for QFE over C,R, finite fields not having characteristic

two and over Q with oracle access to an integer factoring algorithm. As ET for regular

ROFs takes oracle access to QFE, our ET algorithm is efficient over these fields.

3. Our ET algorithm extensively uses the black-box polynomial factorization by [KT90] (see

Fact 2.17). This is one of the main reasons for constraints on the size and characteristic

of the underlying field in the above theorem.

4. In a follow-up work [GST22], we have removed the regularity condition from Theorem

1.11 and have given a randomized polynomial time ET with oracle access to QFE for the

class of general ROFs. This algorithm uses several new ideas along with the ones used

in the ET for the class regular ROFs. This improvement is mainly due to my other two

co-authors of this work and hence is not a part of my thesis.

The proof idea and a proof of Theorem 1.11 are given in Section 1.4.3 and Chapter 5 respectively.

Summary of the main technical contributions. We give a high-level overview of the main

technical parts of our work. The equivalence test for the class of regular ROFs extensively uses

some important properties related to the Hessian determinant of a regular ROF - non-zeroness,

knowledge of the essential variables and knowlegde of the factors of the Hessian determinant of

a regular ROF. We study these properties in this thesis. Let C be a regular ROF. We show that

det(HC) is non-zero over a field F satisfying either char(F) = 0 or char(F) ≥ |var(C)|. This is
not true over a field F having char(F) < |var(C)|. For example, if C = x1x2x3 then det(HC) = 0

over fields having characteristic equal to two. We also study the factors of det(HC) and this

allows us to show that all the variables present in C except the variables present in the ‘top-

quadratic term’ of C are essential for det(HC). Using this knowledge along with QFE over the

underlying field F, we compute an invertible matrix A such that f(Ax) is the sum of variable

disjoint polynomials, where f is the input of the ET algorithm. After this, we obtain black-box

access to the sub-formulas of f 1 from black-box of f and solve the problem recursively. It is

important that at every step of recursion, black-box access to a sub-formula of f , say f1, is

computed using just one black-box query to the parent of f1, otherwise the running time of our

1By this, we mean sub-formulas of the formula of f obtained from C by replacing leaves labelled with
variables by linearly independent affine forms.

29

ET algorithm may be exponential. This is so because the height of the formula of f can be

as large as n. We show how to compute black-box access efficiently at every step of recursion

by using some factors of det(Hf), which are also +-rooted sub-formulas of f . Elaborating on

these key ideas, we give a detailed overview of the proof of Theorem 1.11 in Section 1.4.3.

1.4 Proof ideas

In this section, we give high level proof overviews of the theorems stated in Section 1.3. The

detailed proofs of these theorems are given in subsequent chapters (Chapters 3 - 5). Like Section

1.3, this section also has three main subsections - the first one devoted to the results on NW,

the second one is on ET for the determinant and the last one is on ET for regular ROFs.

1.4.1 Some structural and algorithmic results for NW

We saw five theorems in Section 1.3.1 - the first two were about the characterization by sym-

metries property of NW over different fields, the next two were about the circuit testability and

a flip theorem for NW and the last one was about a special case of ET for NW. We present

the proof overviews of these theorems below. The detailed proofs based on these overviews are

given in Chapter 3. Recall that d is a prime number, k = dϵ for some ϵ ∈ (0, 1). For simplicity

of notations, we drop the subscripts from NWd,k whenever the value of d is clear. Also, recall

that whenever we mention a set-multilinear polynomial in F[x], it is always with respect to the

partition x =
⊎

i∈Fd
xi, where for every i ∈ Fd,xi = {xi,j : j ∈ Fd}.

Characterization by symmetries: Proof ideas of Theorems 1.1 and 1.2

We first show how NW is characterized by its symmetries over fields containing a d-th primitive

root of unity. Recall that GNW denotes the group of symmetries (Definition 2.23) of NW. The

rows and columns of matrices in GNW are labelled by the ordered set ((0, 0), . . . , (d− 1, d− 1)).

Suppose F contains a d-th primitive root of unity ζ. We show that the following symmetries

are present in GNW. This helps in proving that NW is characterized by its symmetries over F.

1. A set of diagonal matrices of the type A = diag(β0, . . . , β0, . . . , βd−1, . . . , βd−1), where βi ∈
F×, for every i ∈ Fd, every βi appears exactly d times on the diagonal and

∏
i∈Fd

βi = 1.

2. A set of special permutation matrices corresponding to the polynomials in Fd[z]k.

3. A set of special invertible diagonal matrices corresponding to ζ.

The exact descriptions of these symmetries are given in Claim 3.1.1. Suppose f ∈ F[x] is a

degree d homogeneous polynomial such that GNW ⊆ Gf . Then, the three types of matrices

30

mentioned above are also symmetries of f . The first type ensures that f is a set-multilinear

polynomial. Thus, naturally every monomial of f looks like x0,l0 · · ·xd−1,ld−1
and if h is obtained

by interpolating {(i, li) : i ∈ Fd} then deg(h) ≤ d−1. The symmetries of the second type ensure

that if a monomial x0,l0 · · ·xd−1,ld−1
is present in f then f contains x0,l0+h(0) · · ·xd−1,ld−1+h(d−1)

for every h ∈ Fd[z]k and the coefficients of all these monomials in f are same. The symmetries

of the last type show that f does not contain a monomial x0,h(0) · · ·xd−1,h(d−1), where h ∈ Fd[z]

and deg(h) > k. Hence, f = α · NW(x) for some α ∈ F.
Now suppose F is either R,Q or a finite field satisfying d ∤ |F|− 1. In this case, the matrices

of first two types are still symmetries of NW but the matrices of the last type are not. We

prove that in the absence of matrices of the third type from GNW, NW is not characterized by

its symmetries over F. This proof is based on two results: One is the structure of GNW given

in Chapter 4 of [Gup17], where we showed that GNW is generated by certain permutation and

diagonal matrices (see Theorem 3.3), and the other is a structural insight about NW (see Claim

3.1.2) obtained from the analysis of the Lie algebra of NW given in Chapter 3 of [Gup17]. We

exploit these properties to show that there exists a set-multilinear polynomial f ∈ F[x] (the
definition of f is given in Equation (3.2)), which is not a scalar multiple of NW but GNW ⊆ Gf .

The proofs of Theorems 1.1 and 1.2 are given in Section 3.1.1 of Chapter 3.

Circuit testing and flip theorem for NW: Proof ideas of Theorems 1.3 and 1.4

Theorem 1.3 gives a randomized polynomial time circuit testing algorithm for NW and Theorem

1.4 proves a flip theorem for NW. These two algorithmic results hinge on a neat structural

property possessed by NW, known as the characterization by circuit identities (see Definition

2.25). This property says that there exists poly(d) many polynomial identities satisfied by

NW, where every polynomial involved in these identities can be computed by a poly(d) size

arithmetic circuit, and an f ∈ F[x] satisfies these identities if and only if f is a scalar multiple

of NW. We show in Lemma 3.2 of Chapter 3 that NW is characterized by circuit identities over

any field. Some symmetries of NW play a crucial role in showing this characterization result.

The input of a circuit testing algorithm is black-box access to an arithmetic circuit C and

the task is to determine whether C = NW. Suppose NW is computable by C. Since NW is

characterized by circuit identities, there exist poly(d) many polynomial identities, which are

also satisfied by C. In the algorithm, we check if C satisfies these identities by evaluating them

on random points from Fd2 . If it fails in any of these checks, we output ‘Fail’, and if all of these

tests go through, f = α · NW for some α ∈ F. If it does not fail, we check the coefficient of an

arbitrary monomial in f and if it is not 1, we again output ‘Fail’, else we output that C computes

NW. The Schwartz-Zippel lemma (Fact 2.13) ensures that the algorithm works correctly with

31

high probability. The source of randomness in this algorithm is the Schwartz-Zippel lemma.

In case of a flip theorem, we are given that NW is not computed by any arithmetic circuit

of size at most s. We pick poly(d) many points, called witness points, uniformly at random

from Fd2 and using the Schwartz-Zippel lemma we show that if C is an arithmetic circuit of

size s then there exists a point a in the above collection, such that C(a) ̸= NW(a) with high

probability. Further, to show that a polynomial time black-box PIT for size-10s arithmetic

circuits implies that such witness points can be computed in deterministic polynomial time,

we again use the fact that NW is characterized by circuit identities. As no size-s arithmetic

circuit C computes NW, clearly α · NW is also not computed by a size-s arithmetic circuit for

any α ∈ F×. Thus there exists a circuit identity, which is satisfied by NW, but not by C. On

exploiting this and using a black-box PIT algorithm for size-10s arithmetic circuits, we get a

deterministic algorithm that computes a set of poly(d) many witness points in polynomial time.

The proofs of Theorems 1.3 and 1.4 are given in Section 3.2 of Chapter 3.

Equivalence test for NW: Proof idea of Theorem 1.5

In this theorem, we give a randomized polynomial time block-diagonal permutation scaling

equivalence test (in short, BD-PS equivalence test) for NW over finite fields satisfying d ∤ (|F|−1)
and over R. This test determines if there exists a BD-PS matrix (recall the definition of a BD-PS

matrix from Section 1.3.1) C such that the input polynomial f satisfies f = NW(Cx).

Now, we give a high level overview of the BD-PS equivalence test for NW given in Section 3.2

of Chapter 3. We assume that the input polynomial f is BD-PS equivalent to NW. Otherwise,

we can detect with high probability that f is not equivalent to NW using the circuit testing

algorithm for NW given in Theorem 1.3. The BD-PS ET for NW has two main steps: In the

first step, it recovers a block-diagonal permutation matrix A (recall the definition of a block-

diagonal permutation matrix from Section 1.3.1) such that f(A−1x) is scaling equivalent to NW,

i.e., there exists an invertible scaling (or diagonal) matrix B such that f(A−1B−1x) = NW. This

step works over any field. In the next step, we recover an invertible scaling matrix B such that

f(A−1B−1x) = NW. This step works either over finite fields satisfying d ∤ (|F| − 1) or over R.
The objective of Step 1 of the BD-PS ET is to construct d permutations σ0, . . . , σd−1 on

Fd such that if Aσi
is the d × d permutation matrix corresponding to σi for every i ∈ Fd and

A = diag(Aσ0 , . . . , Aσd−1
), then f(A−1x) is scaling equivalent to NW. The algorithm starts by

considering a canonical form of σ0, . . . , σd−1 (see Claim 3.2.3) and efficiently constructs a set of

“nice polynomials” in Fd[z]k (see Definition 3.1 and Claim 3.2.4). Using these, we first compute

d−k entries of every σi
1 efficiently (see Claim 3.2.5). Then, we compute the remaining entries

1We can treat a permutation on Fd by a size-d tuple.

32

of these permutations (see Claims 3.2.6 and 3.2.7). This is how we compute σ0, . . . , σd−1. This

step of the BD-PS ET crucially uses symmetries and the low-intersection property of NW.

In the second step of the BD-PS ET, we again pick a useful subset of Fd[z]k (see Step 2

of Algorithm 8), using which we compute a scaling matrix B such that f(B−1A−1x) = NW.

Using this set, we compute a 0-1 matrix, which helps us obtaining an important system of

linear equations corresponding to NW. We get this system either over finite fields satisfying

d ∤ (|F| − 1) (see Equation (3.10)) or F = R (see Equation (3.11)) and solve it to compute

the required invertible scaling matrix B. It is due to this reason that the BD-PS ET holds

over these fields. A similar system of linear equation was immensely helpful in obtaining the

complete understanding of the Lie algebra of NW given in [Gup17] (see Claim 3.1.2).

1.4.2 ET for the determinant over finite fields and over Q
We give proof overviews of the theorems stated in Section 1.3.2. The proofs of these theorems

are given in Chapter 4. Recall that Detn(x) = det(X), where X = (xi,j)i,j∈[n], xi,j is a variable

for every i, j ∈ [n], x = {x1,1, . . . , xn,n}, and Mn(F) is the set of n× n matrices over F.

Determinant equivalence test: Proof ideas of Theorems 1.6, 1.7 and 1.8

The input of DET is black-box access to f ∈ F[x], deg(f) = n, where F is either a finite field

satisfying the conditions given in Theorem 1.6 or F = Q. We can assume without loss of

generality that f is equivalent to Detn. Otherwise, it would be detected with high probability

that f is not equivalent to Detn using the Schwartz-Zippel lemma. Let A ∈ GL(n2,F) such

that f = Detn(Ax). The main component of our DET algorithms is Theorem 1.8, which gives

a randomized polynomial time reduction from DET to the FMAI problem (recall FMAI from

Section 1.3.2). This reduction works over almost any field. We first give a proof idea of this re-

duction and then complete the DET algorithm by invoking FMAI algorithm. FMAI algorithms

are known over finite fields and Q (see Section 2.2.4). For discussing the reduction of DET to

FMAI, let F be a field satisfying mild conditions given in Theorem 1.8.

Reducing DET to FMAI. The reduction of DET to FMAI is obtained by exploiting the

Lie algebra (Definition 2.30) of the input polynomial f , denoted gf . The Lie algebra of a

polynomial is a useful tool for ET as the Lie algebras of equivalent polynomials are conjugates

of each other, i.e., gf = A−1 · gDetn · A (see Fact 2.10). gDetn is well-studied and has a nice

structure (see the following paragraph). The same structure gets induced to gf via the above

mentioned conjugacy relation. We start with talking about the structure of gDetn .

It is known that over a field F satisfying char(F) ∤ n, gDetn = Lrow ⊕Lcol, where Lrow :=

33

{A ⊗ In : A ∈ Zn} and Lcol := {In ⊗ A : A ∈ Zn} (see Definition 2.20), where Zn = {A ∈
Mn(F) : trace(A) = 0}. A proof of this fact can be found in Section 3.2 of Chapter 3 in [Nai19].

Then, gf = Frow ⊕ Fcol, where Frow = A−1 · Lrow · A and Fcol = A−1 · Lcol · A. Clearly,

dimFrow = dimFcol = n2 − 1. Let r := n2 − 1. In the algorithm, we exploit this structural

richness of gf by decomposing it and getting hold of Frow and Fcol. An important property of

the Lie algebra of a polynomial that is useful here is that given black-box access to a polynomial

f , we can compute a basis of gf in randomized polynomial time (see Fact 2.16). Now, we give

an overview of the reduction algorithm, which works over almost every field.

We first compute a basis {B1, . . . , B2r} of gf using Fact 2.16 from black-box of f . Now,

using {B1, . . . , B2r}, we compute a “special set” of matrices P = {P1, . . . , P2r} ⊆M2r(F), which
correspond to some specific linear operators on gf (the description of these linear operators are

given in Section 4.3.1 of Chapter 4). Such an operator looks as follows: For E ∈ gf , ρE : gf → gf

maps an F ∈ gf to EF − FE. Then, P contains the matrices of ρE, E ∈ gf , where the rows

and columns of these matrices are labelled by the basis (B1, . . . , B2r). The set P is intimately

related to gf as follows - we prove that Fcol and Frow are the only irreducible invariant subspaces

(Definition 2.16) of P (see Lemma 4.1 in this regard). Thus, the objective now is to get hold

of the irreducible invariant subspaces of P. This is done as follows: We pick a random matrix

Q from P and compute its characteristic polynomial, which is denoted h(z). After that, we

factorize h(z) and let h1, . . . , hk be irreducible factors of h(z) such that none of the hi is a

variable. For every i ∈ [k], we compute a basis of the null space of hi(Q), denoted Ni. Then,

we compute the P-closure (Definition 2.17) of bases vectors of Ni, i ∈ [k]. The set of these

closures only contains the spaces Frow and Fcol (see Lemma 4.1).

The reason Fcol is interesting at this point because the F-algebra A generated by an F-basis
of Fcol is isomorphic to Mn(F). Let L1, . . . , Ln2 be an F-basis of A computed from a basis of

Fcol. Hence we invoke FMAI algorithm on L1, . . . , Ln2 . As A is isomorphic as an F-algebra to

Mn(F), the FMAI algorithm returns an F-algebra isomorphism φ : A → Mn(F). The Skolem-

Noether theorem (Theorem 2.1) gives us useful information about the structure of φ (see Claim

4.3.8), using which we compute an A ∈ GL(n2,F) such that f = Detn(Ax). This is how the

reduction from FMAI to DET works and this completes the proof overview of Theorem 1.8.

After reducing DET to FMAI, we invoke known FMAI algorithms over finite fields and Q and

this is how we get DET over finite fields and Q.

The detailed proof of Theorems 1.6, 1.7 and 1.8 are given in Section 4.2 of Chapter 4.

34

Reduction of Intfact to DET over Q: Proof idea of Theorem 1.9

In this theorem, assuming GRH, we give a randomized polynomial time reduction from the

problem of factoring square-free integers to DET for quadratic forms over Q. The proof of

this theorem is based on a result from [Ron87], which assuming GRH gives a randomized

polynomial time reduction from the problem of factoring square-free integers to the following

problem: Given a, b ∈ Q×, find x, y, z ∈ Q (not all zero) such that x2− ay2− bz2 = 0, if such a

solution exists. Let a, b ∈ Q× and f(x) := x2
1,1− ax2

1,2− bx2
2,1+ abx2

2,2. We show that f satisfies

f = Det2(Ax) for some A ∈ GL(4,Q) if and only if x2 − ay2 − bz2 = 0 has a non-zero solution

over Q. This gives a randomized polynomial time reduction from factoring square-free integers

to ET for Det2 over Q. The proof of Theorem 1.9 is given in Section 4.4 of Chapter 4.

Reduction of FMAI to DET: Proof idea of Theorem 1.10

Let n ∈ N and F be a field satisfying char(F) ∤ n. We are given a basis of an F-algebra
A ⊆Mn2(F), oracle access to DET over F and we want to decide whether A is isomorphic as an

F-algebra to Mn(F). If yes, we also want to output an F-algebra isomorphism φ : A →Mn(F).
The algorithm first compute a “special set” {Li,j ∈ Mn2(F) : i, j ∈ [n]}, where the entries

of every Li,j correspond to the structural constants of A 1. The details of matrices in this

set are given in Step 2 of Algorithm 11. Using the Skolem-Noether theorem, we show in

Claim 4.5.1 that if A is isomorphic to Mn(F) then there exists a K ∈ GL(n2,F) such that

for every i, j ∈ [n], Li,j = K−1 · (In ⊗ Ci,j) · K, where C1,1, . . . , Cn,n is an F-basis of Mn(F).
Let L̃ = {L̃i,j : i, j ∈ [n]}, where for every i, j ∈ [n], L̃i,j is the traceless part of Li,j, i.e.

L̃i,j := Li,j − trace(Li,j)

n2 In2 . Then, it follows from above that if A is isomorphic to Mn(F) then
⟨L̃⟩ = K−1 ·Lcol ·K. Another important result we show is that if f ∈ F[x] is such that Lcol ⊆ gf

then f = α · Detn, where α ∈ F× (see Lemma 4.5), i.e., the determinant is characterized by its

Lie algebra. We now show how these two results imply a reduction from FMAI to DET.

Compute Li,j, i, j ∈ [n] using a basis of A and then using these, compute a basis of ⟨L̃⟩.
Then, we construct a polynomial f ∈ F[x] such that ⟨L̃⟩ is an F-subspace of gf . This step takes

nO(n) many field operations as we compute f in a brute force manner. Using the facts that

determinant is characterized by its Lie algebra and if f ′ = Detn(Bx) for some B ∈ GL(n2,F)
then gf ′ = (B−1 ·Lrow · B)⊕ (B−1 ·Lcol · B), we get that A is isomorphic as an F-algebra to

Mn(F) if and only if f = α ·Detn. Thus, by running DET on f , we get either an A ∈ GL(n2,F)
such that f = Detn(Ax) or ‘Fail’ depending on whether f is isomorphic to Detn or not. In

the former case, we use A to compute an F-algebra isomorphism from A to Mn(F), and in the

1Let {u1, . . . ,um} be an F-basis of an F-algebra A . Then, for every i, j ∈ [m] there exist αi,j,k, k ∈ [m]
such that ui · uj =

∑
k∈[m] αi,j,kuk. Then, αi,j,k, i, j, k ∈ [m] are called as the structure constants of A .

35

latter case, we output ‘A is not isomorphic to Mn(F)’.
A complete proof of Theorem 1.10 is given in Section 4.5 of Chapter 4.

1.4.3 ET for regular ROFs: Proof idea of Theorem 1.11

We are given black-box access to an n-variate polynomial f(x), which is in the orbit of a regular

ROF C, i.e., f = C(Bx + d), where B ∈ GL(n,F) and d ∈ Fn. The objective is to compute

an A ∈ GL(n,F) such that f(Ax) = C(PSx+ b), where P, S ∈ GL(n,F) are permutation and

scaling matrices respectively and b ∈ Fn.

The most important ingredient of the ET for regular ROFs is the Hessian determinant

(Definition 2.27) of a regular ROF. Let us first try to understand with an example how the

Hessian determinant can be used in an ET for regular ROFs. Suppose C = x1x2x3 + x4x5x6.

Then, it is easy to show that over fields not having characteristic equal to 2, det(HC) ̸= 0

and every xi is a factor of det(HC). Let f = C(Bx + d), where B ∈ GL(n,F) and d ∈ Fn.

Suppose Bx+d = (ℓ1 · · · ℓ6)T . Then, f = ℓ1ℓ2ℓ3+ℓ4ℓ5ℓ6. An important property of the Hessian

determinants of equivalent polynomials given in Corollary 2.1 implies that

det(Hf) = (det(B))2 det(HC)(Bx+ d).

Then it follows that over fields not having characteristic equal to 2, det(Hf) ̸= 0 and for every

i ∈ [6], ℓi is a factor of det(Hf). This information is good enough for designing an ET for C.

From black-box of f , we compute black-box access to det(Hf), which can be done efficiently

due to Fact 2.14 and then factorize det(Hf) using the algorithm in [KT90] (see Fact 2.17).

This algorithm gives us black-box access to αiℓi, i ∈ [6], where αi ∈ F× and α1 · · ·α6 = 1. We

reconstruct αiℓi for every i ∈ [6] and then compute an A ∈ GL(6,F), which maps every αiℓi to

a distinct variable. Then, f(Ax) = C(PSx + d), where P, S ∈ GL(6,F) are permutation and

scaling matrices and d ∈ F6.

One can ask how to use this idea to design an equivalence test for arbitrary regular ROFs,

where it may no longer be true that every variable appearing in a regular ROF C is a factor of

det(HC). In [Kay11], Kayal gave a promising approach in this direction. We first mention this

approach, and then show how to adapt it in our setting.

A basic approach: Let h = h1(x1) + h2(x2), where x1 ∩ x2 = ∅. Kayal gave a randomized

polynomial time algorithm (see Theorem 7.2 in [Kay11]) that takes black-box access to g :=

h(Bx), where B ∈ GL(|x|,F) and computes an A ∈ GL(|x|,F) such that g(Ax) is the sum of

two variable disjoint polynomials, provided the number of essential variables (Definition 2.31)

36

in det(Hh) is equal to |x|. We denote the number of essential variables of a p ∈ F[x] by Ness(p).

Let C = T1+· · ·+Ts+γ 1 where for every k ∈ [s], Tk is a ×-rooted regular ROF, i.e., the root

of Tk is a× gate, and γ ∈ F. Then, f = T̂1+· · ·+T̂s+γ, where for every k ∈ [s], T̂k = Tk(Bx+d).

We call T1, . . . , Ts and T̂1, . . . , T̂s as the terms of C and f respectively. Without loss of general-

ity, assume that there exists an s1 ∈ [s] such that for every k ∈ [s1], deg(T̂k) ≥ 3 and for every

l ∈ {s1+1, . . . , s}, deg(T̂l) = 2. Let q = Ts1+1+ · · ·+Ts and q̂ = T̂s1+1+ · · ·+ T̂s. We call q and q̂

as the quadratic terms of C and f respectively, and T1, . . . , Ts1 and T̂1, . . . , T̂s1 as non-quadratic

terms of C and f respectively. As C is the sum of variable disjoint polynomials and we are given

black-box access to f in the orbit of C, the basic approach mentioned above seems useful. This

is so because if we are able to make the terms of f variable disjoint, then after that we can

get hold of its terms one by one, factorize the terms and solve the problem for each of these

factors recursively, as each of these factors is an input instance having product-depth2 less than

the product-depth of f . However, there is a challenge in obtaining efficient black-box access to

these factors even after making the terms of f variable disjoint. We talk about this challenge

later and show how we handle it. Let us first see how to make the terms of f variable disjoint.

Making terms variable disjoint. The first phase of our ET algorithm computes an invertible

matrix A such that the terms of f(Ax) are variable disjoint. However, there are some technical

challenges in implementing the basic approach, which we list below.

1. det(HC) can be equal to 0 : It might happen that the Hessian determinant of an arbitrary

regular ROF is zero over the underlying field. For example, if C = x1x2x3 then det(HC) =

0 over the fields having characteristic equal to two.

2. Ness(det(HC)) < |var(C)|: Let C = x1x2x3 + x4x5. Then, Ness(det(HC)) = 3.

In the presence of these two hurdles, we can not implement the basic approach directly.

We now show how we handle these challenges. We overcome the first challenge by proving

in Lemma 5.1 of Chapter 5 that if C is a regular ROF and F satisfies either char(F) = 0 or

char(F) ≥ |var(C)| then det(HC) ̸= 0. We argue this by studying the structures and coefficients

of some “nice monomials” in det(HC). We address the second challenge as follows: We prove

in Claim 5.1.3 of Chapter 5 that if T is a ×-rooted regular ROF having at least three variables

1For the equivalence testing problem, we assume without loss of generality that C is +-rooted. Otherwise,
using the polynomial factorization algorithm in [KT90], we can reduce an ET for a ×-rooted regular ROF to
an ET for a +-rooted regular ROF.

2The product-depth of an ROF C having alternate layers of + and × gates is the maximum number of
× gates in any root to leaf path in C. The product-depth of a polynomial in the orbit of C is same as the
product-depth of C.

37

then every variable appearing in T is essential for det(HT). This result also follows from the

structure of nice monomials and uses the regularity of T crucially. Our analysis of det(HC) is

quite long due to the study of the structures and the coefficients of some explicit monomials in

it. Soon after this analysis, Bhargav Thankey independently came up with a shorter analysis

of the above mentioned properties of det(HC). This analysis is given in [GST22]. The proof

approach of Thankey is totally different from ours. The main difference between our proof and

Thankey’s proof is that we study the structures and coefficients of some explicit monomials of

det(HC) whereas Thankey showed that det(HC) contains non-zero monomials without giving

the details of the structures and coefficients of such monomials. However, this information

is good enough for obtaining all the properties of the Hessian determinant of a regular ROF

required for designing an ET for regular ROFs. See Remark 5.1 in this regard.

Having the above two results in hand, and using the basic approach mentioned before, we

first compute an A0 ∈ GL(|x|,F) such that the non-quadratic terms of f(A0x) are variable

disjoint. Let the variables in non-quadratic terms of f(A0x) be z and y := x \ z. Let |y| = 2m.

We compute black-box access to the homogeneous degree two part q′ of f(A0x) in y-variables.

Then, we invoke a QFE algorithm over the underlying field on q′ and q′′ := y1,1y1,2+· · ·+ym,1ym,2.

It returns an A′
1 ∈ GL(|y|,F) such that q′(A1y) = q′′. We extend A′

1 to A1 ∈ GL(|x|,F) such
that A1 and A′

1 maps every y-variable to the same linear form in y-variables and A1 maps

every z-variable to itself. It turns out that q̂(A1A0x) = (y1,1 + h1,1)(y1,2 + h1,2) + · · ·+ (ym,1 +

hm,1)(ym,2+hm,2), where for every i ∈ [m], j ∈ [2], hi,j ∈ F[z] is a linear polynomial. Thereafter,

for every i ∈ [m], j ∈ [2], we compute first order partial derivative of f(A1A0x) with respect to

yi,j and get access to yi,j′ + hi,j′ , where j′ ∈ [2] \ {j}. For i ∈ [m], j ∈ [2], let hi,j = h′
i,j + βi,j,

where h′
i,j ∈ F[z] is a linear form and βi,j ∈ F. We compute an A2 ∈ GL(|x|,F), which maps

every yi,j + h′
i,j to yi,j and every z-variable to itself. Let A = A2A1A0. Thus, at the end of this

phase, f(Ax) is the sum of variable disjoint terms.

Now, we give an overview of the other steps of our ET algorithm.

Computing black-box access to the terms of f(Ax). The matrix A computed in the

previous step ensures that for every l ̸= k ∈ [s], T̂l(Ax) and T̂k(Ax) are variable disjoint and

q̂(Ax) = (y1,1 + β1,1)(y1,2 + β1,2) + · · · + (ym,1 + βm,1)(ym,2 + βm,2), where βi,j ∈ F for every

i ∈ [m], j ∈ [2]. At this point, we want to get black-box access to T̂1(Ax), . . . , T̂s1(Ax) from

black-box of f . We only need black-box access to the non-quadratic terms of f as the quadratic

term of f has already been handled. We have the following third technical challenge in this

context (the other two challenges have been mentioned above).

3. How to compute black-box access to T̂k(Ax) efficiently for every k ∈ [s1]?

38

Let us first explain the meaning of efficient computation of black-box access to T̂k(Ax). We want

to compute black-box access to T̂k(Ax) using only one black-box query to f . Our algorithm

recurses on the product-depth of C. Due to this, if we make more that one black-box query to

f , the algorithm might have exponential running time in n as the product-depth of C can be as

large as n. We now show how to obtain black-box access to T̂k(Ax) using only one query to f .

First, the algorithm learns the variable sets z1, . . . , zs1 of T̂1(Ax), . . . , T̂s1(Ax) using double

derivatives (see Observation 5.4). Then, it picks a k ∈ [s1] arbitrarily and substitutes every

variable present in x \ zk with 0. Let T ′
k = T̂k(Ax). Thus, we get black-box access to

g := T ′
k + γ′,

where γ′ ∈ F is unknown. Now, the goal is to learn γ′ because after learning γ′ we can subtract

it from black-box of g and get black-box access to T ′
k. The following useful observation comes

in handy here: Since g is a +-rooted ROF, Observation 2.7 implies that g is irreducible. Hence,

g − β′ is reducible for some β′ ∈ F if and only if β′ = γ′. This uniqueness of γ′ will play a

key role in the discovery of γ′. Now, we show how to compute γ′ efficiently. At this point, the

Hessian determinant becomes useful again.

Now, lets see how the algorithm gets hold of γ′. First it computes det(Hg) using Fact 2.14,

then factorizes det(Hg) using the algorithm in [KT90]. We classify the factors of det(Hg) into

two categories, which we call “good factors” and “bad factors”. We will describe these two one

by one. First we talk about good factors. Note that det(Hg) = det(HT ′
k
). As deg(T ′

k) ≥ 3,

Corollary 5.1 of Chapter 5 implies that there exists a child Q′
k,j of the topmost × gate of T ′

k
1

such that αk,jQ
′
k,j is an irreducible factor of det(Hg) for some αk,j ∈ F×. Such factors of det(Hg)

as good factors. All the remaining non-constant factors of det(Hg) are called bad factors.

After factorizing det(Hf), the algorithm picks a non-constant factor q of det(Hg). We first

set up a useful notation. Let t be a fresh variable. For every i ∈ [|zk|], let ci be chosen randomly

from a large enough finite set of F. Let zk = {zk,i : i ∈ [|zk|]}. Define π : F[zk]→ F[t] as follows:
For every p(zk,1, . . . , zk,|zk|) ∈ F[zk], π(p) := p(c1t, . . . , c|zk|t). It follows from the Schwartz-

Zippel lemma that π(g) and π(q) are non-constant polynomials with high probability, provided

F is large enough. Now, the algorithm applies π to black-boxes of g and q and interpolates

π(g) and π(q). This can be done efficiently as π(g) and π(q) are univariate polynomials. Now,

1As T ′
k is in the orbit of the ×-rooted regular ROF Tk, we can view T ′

k as a ×-rooted formula, which is
obtained from Tk be replacing the leaf nodes labelled with variables with the nodes labelled with corresponding
affine forms obtained from BAx+ d.

39

consider the following equation, where the coefficients of pand a0 are formal variables.

π(g) = p · π(q) + a0. (1.2)

Suppose a is the set containing the coefficients of p and a0. The algorithm solves the system

of linear equations in a-variables formed by comparing the coefficients of monomials in t in the

L.H.S. and the R.H.S. of Equation (1.2). Now, let us see how the algorithm gets access to γ′.

We analyse the behaviour of the algorithm in the following two steps.

Case 1: q is a good factor. Suppose q = αk,jQ
′
k,j. In this case, the system of linear systems

mentioned above has a solution: One of the solutions is obtained by setting p = π
(
α−1
k,j

T ′
k

Q′
k,j

)
and a0 = γ′. Using the fact that deg(p) > 1 with high probability, it is not a difficult task to

show that this system of linear equations in a-variables has a unique solution. Hence, when the

algorithm picks a good factor of det(Hg), it always gets hold of γ′.

Case 2: q is a bad factor. If the algorithm picks a bad factor then it solves the above system of

linear equations in a-variables, computes some p and a0, and checks whether g−a0 is reducible

or not using the algorithm in [KT90]. If yes, it returns black-box access to g − a0. The fact

that g − a0 is reducible if and only if a0 = γ′ ensures that the algorithm works correctly.

The presence of a good factor in the list of factors of det(Hg) ensures that the algorithm

computes γ′ at some point of time. Once the algorithm has γ′, it subtracts γ′ from black-box

of g to get black-box-access to T ′
k.

Recursively solving factors of T ′
k: Suppose T ′

k = Q′
k,1 · · ·Q′

k,mk
. After getting black-box

access to T ′
k, the algorithm factorizes it using the algorithm in [KT90] and obtains black-box ac-

cess to α′
k,1Q

′
k,1, . . . , α

′
k,mk

Q′
k,mk

, where α′
k,1, . . . , α

′
k,mk
∈ F× and α′

k,1 · · ·α′
k,mk

= 1. Using Claim

2.2.2, the algorithm computes anA′ ∈ GL(|zk|,F) such that α′
k,1Q

′
k,1(A

′zk), . . . , α
′
k,mk

Q′
k,mk

(A′zk)

are variable disjoint. Let j ∈ [mk] be picked arbitrarily and φ be the map on zk, which substi-

tutes variables of α′
k,iQ

′
k,i(A

′zk) for every i ∈ [mk]\{j} uniformly at random from a large enough

finite subset of F. For i ∈ [mk] \ {j}, let φ(α′
k,iQ

′
k,i(A

′zk)) = βk,i. The Schwartz-Zippel lemma

ensures that with high probability, βk,i ̸= 0 for every i ∈ [mk] \ {j}. Note that we know βk,i for

every i ∈ [mk] \{j}. The algorithm first computes black-box access to T ′
k(A

′zk) from black-box

of T ′
k. Since α′

k,jQ
′
k,j(A

′zk) = φ(T ′
k(A

′zk))
∏

i∈[mk]\{j} β
−1
k,i , by applying φ to T ′

k(A
′zk) and then

multiplying it with
∏

i∈[mk]\{j} β
−1
k,i , the algorithm gets black-box access to α′

k,jQ
′
k,j(A

′zk). After

this, the algorithm recurses on α′
k,jQ

′
k,j(A

′zk).

40

The detailed proof of Theorem 1.11 is given in Chapter 5.

1.5 Organization

The remaining part of this thesis is organized as follows: In Chapter 2, we state the notations

and give some preliminary results. These include some useful definitions, results from linear

algebra and algebra, results related to partial derivatives, Hessian, symmetries, Lie algebra,

essential and redundant variables of a polynomial and some important algorithmic facts. In

Chapter 3, we prove the theorems about the Nisan-Wigderson polynomial stated in Section

1.3.1. Chapter 4 contains the proofs of the theorems on equivalence test for the family of

determinant stated in Section 1.3.2. In Chapter 5, we give a randomized polynomial time

ET for the class of regular ROFs. This ET uses some important properties of the Hessian

determinant of a regular ROF like its non-zeroness, knowledge of its essential variables and

factors. Chapter 6 is devoted to the study of these properties of the Hessian determinant of a

canonical ROF (Definition 2.39) and as a regular ROF is canonical, all these properties hold

for the Hessian determinant of a regular ROF. We give a conclusion of the main contributions

of this thesis and mention some open questions in Chapter 7.

41

Chapter 2

Preliminaries

In this chapter, we present some notations and recall some basic mathematical and al-

gorithmic results, which would be required for the later chapters. This chapter has two

sections - the first one contains useful structural results and the next one is devoted to

some important algorithmic results.

Notations. The sets of natural numbers, integers, rational numbers, real numbers and complex

numbers are denoted by N,Z,Q,R and C respectively. Let N× = N \ {0}. Unless otherwise

specified, for n ∈ N×, [n] := {1, . . . , n} and for m,n ∈ N,m < n, [m,n] = {m, . . . , n}. For a field
F, F× = F\{0}, elements of F are represented by lower case Greek letters like α, β, γ, and vectors

over F are denoted by boldface letters like a,b,d. For n ∈ N,Mn(F) and GL(n,F) denote the

set of n×n matrices and the set of n×n invertible matrices over F respectively, and In denotes

the n×n identity matrix. The elements of Mn(F) are denoted by upper case Roman alphabets

like A,B,C. Vector spaces over F are represented by U,W and EndF(U) := {φ : U → U} is the
set of F-linear maps (Definition 2.10). Given a set S, ⟨S⟩ denotes the vector space generated

by S over the underlying field. The sets of variables are represented by x,y, z, F[x] is the

set of polynomials in x variables over F, and polynomials in F[x] are denoted by f, g, h. For

f ∈ F[x], var(f) denotes the set of variables appearing in f , deg(f) denotes the total degree of

f and for x ∈ x, degx(f) denotes the highest degree of x in f . A set of variables x would often

be treated as a column vector and for A ∈ GL(n,F), Ax means that A is left multiplied to x.

For n ∈ N, poly(n) means nO(1).

2.1 Structural preliminaries

This section is devoted to some useful definition and structural results. We have classified these

into eight parts.

42

2.1.1 Algebraic and linear algebraic preliminaries

Definition 2.1 (Group) Let G be a set and ◦ : G × G → G be a binary operation on G.

Then, (G, ◦) is called a group if it satisfies the following properties.

1. (Associativity): For every g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

2. (Identity): There exists e ∈ G, such that for every g ∈ G, e ◦ g = g ◦ e = g.

3. (Inverse): For every g ∈ G, there exists a g′ ∈ G such that g ◦ g′ = g′ ◦ g = e.

Further, for every g1, g2 ∈ G, if g1 ◦ g2 = g2 ◦ g1 then (G, ◦) is called a commutative group.

For example, (Z,+) and (R,×) are commutative groups but (GL(n,R), ∗) is a non-commutative

group, where ∗ denotes the matrix multiplication operation.

Definition 2.2 (Ring) Let R be a set and +, · be binary operations on R. Then, (R,+, ·) is

called a ring if (R,+) is a commutative group and the following properties are satisfied.

1. (Associativity of ·): For every r1, r2, r3 ∈ R, (r1 · r2) · r3 = r1 · (r2 · r3).

2. (Multiplicative identity): There exists an e′ ∈ R such that for every r ∈ R, r ·e′ = e′ ·r = r.

3. (Distributive property): For every r1, r2, r3 ∈ R, (r1 + r2) · r3 = (r1 · r3) + (r2 · r3) and

r1 · (r2 + r3) = (r1 · r2) + (r1 · r3).

Further, (R,+, ·) is called a commutative ring if for every r1, r2 ∈ R, r1 · r2 = r2 · r1.

For example, (Z,+,×) is a commutative ring, where as (Mn(R),+, ∗) is a non-commutative

ring, where ∗ the denotes matrix multiplication operation.

Definition 2.3 (Field) A ring (F,+, ·) is called a field if (F, ·) is a commutative group. The

identities of (F,+) and (F, ·) are called additive and multiplicative identities of F respectively.

For examples, (Q,+,×), (R,+,×), (C,+,×) and (Zn,+n,×n) are fields, where n is a prime

number, Zn = {0, . . . , n−1} and +n,×n are addition and multiplication modulo n respectively.

Remark 2.1 For simplicity of notations, we would often denote an other algebraic object like

a group or a ring with the underlying set without mentioning the associated operations.

43

Definition 2.4 (Characteristic of a field) Let F be a field having 0 and 1 as the additive

and multiplicative identities respectively. We say that F has characteristic n for some n ∈ N×

if it is the smallest number such that n · 1 = 0. If such an n does not exist, we say F has

characteristic zero. The characteristic of F is denoted as char(F).

It is an easy exercise to prove the following fact.

Fact 2.1 (Value of the characteristic of a field) Let F be a field. Then, char(F) is either

0 or a prime number.

Definition 2.5 (Vector space and subspace) Let (F,+, ·) be a field and (U,+) be a com-

mutative group. Then, U is said to be a vector space over F (or an F-vector space), if there

exists ◦ : F× U → U such that the following properties are satisfied.

1. For every α ∈ F, u, v ∈ U, α ◦ (u+ v) = (α ◦ u) + (α ◦ v).

2. For every α, β ∈ F, u ∈ U, (α · β) ◦ u = α ◦ (β ◦ u).

3. For every α, β ∈ F, u ∈ U, (α + β) ◦ u = (α ◦ u) + (β ◦ u), where + on the L.H.S. and on

the R.H.S. are operations of F and U respectively.

4. For every u ∈ U, 1 ◦ u = u, where 1 is the multiplicative identity of F.

Elements of a vector space are called vectors. A subset W ⊆ U is said to be an F-subspace of

U if (W,+) is an F-vector space, where + is the binary operation of U .

For example, (Mn(F),+) is a F-vector space. Let U = {f ∈ R[x1, . . . , xn] : deg(f) ≤ d},
where deg(f) denotes the total degree of f . Then, (U,+) is an R-vector space.

In Definitions 2.6 - 2.8, F is a field, U is an F-vector space, and W ⊆ U .

Definition 2.6 (Linearly dependent and independent sets) W is said to be F-linearly

dependent if there exist w1, . . . , wn ∈ W and α1, . . . , αn ∈ F such that for some i ∈ [n], αi ̸= 0

and α1w1 + · · ·+ αnwn = 0. Otherwise, W is said to be F-linearly independent.

Definition 2.7 (Generating system of a vector space) W is said to be a generating sys-

tem (or a spanning set) of U if for every u ∈ U , there exist w1, . . . , wn ∈ W , and α1, . . . , αn ∈ F
such that α1w1 + · · ·+ αnwn = u.

44

Definition 2.8 (Basis and the dimension of a vector space) W is said to be an F-basis

of U (or simply a basis of U) if it is F-linearly independent and also a generating system of U .

The dimension of U , denoted dimU , is defined as the cardinality of a basis of U1.

For example, for i, j ∈ [n], let Ei,j ∈ Mn(F) such that the (i, j)-th entry of Ei,j is 1

and every other entry is 0. Then, {Ei,j : i, j ∈ [n]} is an F-basis of (Mn(F),+) and thus

dim(Mn(F)) = n2. Let U = {f ∈ F[x] : deg(f) ≤ d}. Then, {1, x, . . . , xd} is an F-basis of U

and hence dim(U) = d+ 1.

It is easy to prove the following.

Observation 2.1 (Linearly independent set extends to a basis) Let F be a field and U

be an F-vector space such that dimU = n. Let W ⊆ U be an F-linearly independent set. Then,

there exists a basis of U , which contains W . Thus, if |W | = n then W is a basis of U .

Definition 2.9 (Sum and direct sum of subspaces) Let F be a field, U be an F-vector

space, and W1,W2 be subspaces of U . Then, the sum of W1 and W2 is defined as W1 +W2 :=

{w1 +w2 : w1 ∈ W1, w2 ∈ W2}. Further, W1 +W2 is said to be a direct sum, denoted W1⊕W2,

if W1 ∩W2 = {0}, where 0 ∈ U is the zero vector.

It is a simple exercise to prove the following.

Observation 2.2 (Dimension of the direct sum of subspaces) Let F be a field, U be an

F-vector space, and W1,W2 be subspaces of U such that W1+W2 is a direct sum. Then, W1⊕W2

is a subspace of U and dimW1 ⊕W2 = dimW1 + dimW2.

Definition 2.10 (Linear map) Let F be a field and U,W be F-vector spaces. A map φ : U →
W is said to be F-linear if for every u1, u2 ∈ U, α, β ∈ F, φ(αu1 + βu2) = αφ(u1) + βφ(u2). If

φ is bijective then it is called an isomorphism of F-vector spaces.

For example, let U = {f ∈ F[x] : deg(f) ≤ d}. Then, φ : U → Fd+1, α0+α1x+ · · ·+αdx
d 7→

(α0, . . . , αd) is an isomorphism of F-vector spaces.

Definition 2.11 (Matrix associated with a linear map) Let n,m, r, s ∈ N,F be a field

and U1 and U2 be F-subspaces of Fn and Fm respectively such that dimU1 = r and dimU2 = s.

1It is a well-known fact in linear algebra that every vector space over any field F has a basis and any two
bases of an F-vector space have same cardinalities.

45

Let φ : U1 → U2 be an F-linear map and u1 := (u1,1, . . . ,u1,r) and u2 := (u2,1, . . . ,u2,s) be

F-bases of U1 and U2 respectively. For every i ∈ [r], let ai,1, . . . , ai,s ∈ F such that

φ(u1,i) =
s∑

j=1

ai,ju2,j.

Then, A = (ai,j)i∈[r],j∈[s] is said to be the matrix associated with φ with respect to the ordered

bases u1 and u2 of U1 and U2 respectively.

Definition 2.12 (Extension field and its degree) Let F,L be fields such that F ⊆ L and

the operations of F and same as operation of L restricted to F. Then, L is called an extension

field of F. Note that L is also an F-vector space and the degree of the field extension, denoted

[L : F], is the dimension of L over F.

For example, C is a field extension of R of degree 2 as {1, i} is an R-basis of C.

Definition 2.13 (Algebraically closed field) A field F is said to be algebraically closed if

for every non-constant polynomial f ∈ F[x], there exists an α ∈ F such that f(α) = 0.

It is a well-known fact in mathematics that C is an algebraically closed field.

Definition 2.14 (Algebraic closure of a field) Let F be a field. Then, the algebraic closure

of F, denoted F, is an extension field of F such that for every non-constant f ∈ F[x], there exists

an α ∈ F such that f(α) = 0.

For example, C is the algebraic closure of R. The following is a well-known fact in algebra,

whose proof can be found in any standard textbook on field theory or abstract algebra.

Fact 2.2 Every field F has an algebraic closure F.

Definition 2.15 (Invariant space) Let U be an F-vector space, T ⊆ EndF(U), and W ⊆ U

be an F-subspace. Then, U is said to be T -invariant if for every φ ∈ T , w ∈ W,φ(w) ∈ W . If

T ⊆Mn(F) then the ‘invariant space of T ’ means a T -invariant subspace of Fn.

Definition 2.16 (Irreducible invariant space) Let U be an F-vector space, T ⊆ EndF(U),

and W ⊆ U be a T -invariant space. Then, W is called an irreducible T -invariant space if

there do not exist T -invariant subspaces W1,W2 ⊆ W such that W = W1 ⊕W2.

46

Definition 2.17 (Closure of a vector) Let U be an F-vector space, T ⊆ EndF(U), and

u ∈ U . Then, the closure of u with respect to T , denoted closureT (u), is the smallest T -

invariant subspace of U containing u.

Definition 2.18 (Algebra over a field) Let F be a field and (A ,+) be an F-vector space.

Then, (A ,+) is called an algebra over F (or an F-algebra) if there exists ◦ : A ×A → A such

that the following properties are satisfied:

1. For every u1, u2, u3 ∈ A , (u1+u2)◦u3 = u1◦u3+u2◦u3 and u1◦(u2+u3) = u1◦u2+u1◦u3.

2. For every α, β ∈ F, u1, u2 ∈ A , (αu1) ◦ (βu2) = (αβ)(u1 ◦ u2).

Further, if A also contains the identity with respect to ◦ (called the multiplicative identity) then

A is called as a unital algebra.

For example, (Mn(F),+, ∗) is an F-algebra and popularly known as matrix algebra. Another

example of an F-algebra is (F[x],+, ∗).

Remark 2.2 Let F be a field, U be an F-vector space, and u1, . . . ,ur ∈ U . Then, the F-

algebra generated by u1, . . . ,ur, is the set containing finite F-linear combinations of powers of

u1, . . . ,ur.

Remark 2.3 Whenever we say a basis of an F-algebra A , we mean an F-basis of the F-vector

space A .

Definition 2.19 (Algebra homomorphism and isomorphism) Let A ,B be F-algebras and

φ : A → B. Then, φ is said to be an F-algebra homomorphism if for every u1, u2 ∈ A , α, β ∈
F, φ(αu1 + βu2) = αφ(u1) + βφ(u2) and φ(u1 ◦ u2) = φ(u1) ◦ φ(u2). If A ,B are unital with

multiplicative identities 1A and 1B then φ(1A) = 1B. Further, φ is said to be an F-algebra

isomorphism if it is an F-algebra homomorphism and bijective.

For example, (Mn(F),+, ∗) and (In ⊗ Mn(F),+, ∗) are F-algebras, where In ⊗ Mn(F) =

{In ⊗A : A ∈Mn(F)} (see Definition 2.20 below). Then, φ : Mn → In ⊗Mn, A 7→ In ⊗A is an

F-algebra isomorphism.

Definition 2.20 (Tensor product of matrices) Let n ∈ N×, F be a field, A = (ai,j)i,j∈[n], B =

(bi,j)i,j∈[n] ∈ Mn(F). Then, the tensor product of A and B, denoted A ⊗ B, is the following

n2 × n2 matrix over F

A⊗B =

a1,1B · · · a1,nB

...
. . .

...

an,1B · · · an,nB

 ,

47

where for i, j ∈ [n], ai,jB = (ai,j · bk,l)k,l∈[n].

Now, we present an important result, which will be used in the equivalence test for the

determinant given in Chapter 4. This result is a special case of the Skolem-Noether theorem

(see page 173 of [Lor08] for the general statement of the Skolem-Noether theorem).

Theorem 2.1 (Skolem-Noether) Let n, s ∈ N× such that n | s, and A ⊆ Ms be an F-

algebra (containing Is) that is isomorphic to Mn via a map ϕ : Mn → A . Then, there exists a

K ∈ GL(s,F) such that for every C ∈Mn,

ϕ(C) = K−1 · (Is/n ⊗ C) ·K.

Definition 2.21 (Characteristic polynomial and eigenvalues) Let n ∈ N,F be a field

and A ∈ Mn(F). Then, the characteristic polynomial of A is defined as the determinant of

(xIn − A), where x is a formal variable. The roots of the characteristic polynomial of A are

called as the eigenvalues of A.

It is easy to prove the following.

Fact 2.3 (Similar matrices have same characteristic polynomials) Let n ∈ N,F be a

field, A ∈Mn(F) and B ∈ GL(n,F). Then, the characteristic polynomials of A and B ·A ·B−1

are the same.

The proofs of the following fact can be found in any standard textbook of linear algebra.

Fact 2.4 (Cayley-Hamilton theorem) Let n ∈ N,F be a field, A ∈ Mn(F) and p(x) be the

characteristic polynomial of A. Then, p(A) = 0.

Fact 2.5 (Jordan normal form) Let n ∈ N, F be a field and F be the algebraic closure of F.

Let A ∈ Mn(F), α1, . . . , αr ∈ F be distinct eigenvalues of A and αi appears ni times for every

i ∈ [r]. Then, n1 + · · · + nr = n. For i ∈ [r], let Ji ∈ Mni
(F) be an upper triangular matrix1,

where every diagonal entry is αi, for l ∈ [ni − 1], the (l, l + 1)-th entry is 1 and every other

entry is 0. Then, there exists a B ∈ GL(n,F) such that

A = B−1 · J ·B,

where J = diag(J1, . . . , Jr) is a block-diagonal matrix having J1, . . . , Jr as the diagonal block.

1The matrix Ji is called as the Jordan block corresponding to αi.

48

Definition 2.22 (Sylvester matrix) Let F be a field, f = αmx
m + · · · + α1x + α0 and g =

βdx
d + · · · + β1x + β0, where for every i ∈ [m], j ∈ [d], αi, βj ∈ F, αm ̸= 0, βd ̸= 0. Then, the

Sylvester matrix of f and g, denoted Sf,g, is a (m+ d)× (m+ d) matrix, that looks as follows

Sf,g =

αm αm−1 · · · α1 α0 0 0 · · · 0 0

0 αm · · · α2 α1 α0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 αm αm−1 · · · α1 α0

βd βd−1 · · · β0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 βd · · · β1 β0

,

The following important well-known property associated with Sf,g gives us a way to test if

the gcd(f, d) is non-constant or not.

Fact 2.6 (Determinant of the Sylvester matrix) Let F be a field and f, g ∈ F[x]. Then,

gcd(f, g) is non-constant if and only if det(Sf,g) = 0.

2.1.2 Symmetries of a polynomial

Definition 2.23 (Symmetries of a polynomial) Let n ∈ N,F be a field, x = {x1, . . . , xn}
and f ∈ F[x]. Then, A ∈ GL(n,F) is called a symmetry of f if f = f(Ax). The set of

symmetries of f is called as the group of symmetries of f , denoted Gf , as it forms a group with

respect to matrix multiplication.

The following two definitions would be used in Chapter 3.

Definition 2.24 (Characterisation by symmetries) Let F be a field, x be a set of variables

and g ∈ F[x] be a homogeneous polynomial of degree d, i.e., every monomial of g has degree

d. Then, g is said to be characterised by its symmetries if for every degree d homogeneous

polynomial f ∈ F[x], Gg ⊆ Gf implies that f(x) = α · g(x) for some α ∈ F.

Definition 2.25 (Characterization by circuit identities) Let g ∈ F[x] be an n-variate

polynomial, and z,u be two sets of constantly many variables and |z| = c. Suppose that there

exist m = poly(n) polynomials q1(z,u), . . . , qm(z,u) over F such that for every i ∈ [m], qi is

computable by a constant size arithmetic circuit and there are matrices Ai1, . . . , Aic ∈ F[u]n×n

computable by poly(n) size circuits, and the following condition is satisfied: For f ∈ F[x],
qi(f(Ai1x), . . . , f(Aicx),u) = 0 for every i ∈ [m] if and only if f = α · g for some α ∈ F. Then,

g is characterized by circuit identities over F.

49

Definition 2.25 has been taken after slightly modifying Definition 3.4.7 in [Gro12], to suit

our purpose.

2.1.3 Partial derivatives of a polynomial

Definition 2.26 (Partial derivative) Let n, d ∈ N,x = {x1, . . . , xn},F be a field and f ∈
F[x] be a degree d polynomial, where f =

∑
e∈Nn αex

e1
1 · · · xen

n and e = (e1, . . . , en). Then, the

first-order partial derivative of f with respect to xi for some i ∈ [n] is defined as

∂f

∂xi

=
∑
e∈Nn

αeei
∏

j∈[n]\{i}

x
ej
j x

ei−1
i .

Note that if f is not a constant and char(F) > d then ∂f
∂xi
̸= 0 for every i ∈ [n]. Now we

record some useful properties of partial derivatives. We direct interested reader to [CKW11]

for many interesting applications of partial derivatives in ACT.

Important properties of partial derivatives. Let f, g ∈ F[x], α, β ∈ F, and x ∈ x be an

arbitrary variable.

1. (Linearity). ∂
∂x
(αf + βg) = α∂f

∂x
+ β ∂g

∂x
.

2. (Derivative of the product). ∂
∂x
fg = f ∂g

∂x
+ g ∂f

∂x
.

3. (Chain rule). Let h ∈ F[y1, . . . , yr] and g = (g1, . . . , gr), where gi ∈ F[x] for every i ∈ [r].

Let h ◦ g := h(g1(x), . . . , gr(x)). Then,

∂

∂x
(h ◦ g) =

∑
i∈[r]

∂h

∂gi

∂gi
∂x

,

where ∂h
∂gi

means ∂h
∂yi

(g). Clearly, ∂h
∂gi
∈ F[x] for every i ∈ [r].

The chain rule of partial derivatives implies the following observation.

Observation 2.3 Let n ∈ N,F be a field, x = {x1, . . . , xn}, f ∈ F[x], A ∈ GL(n,F) and

∇f =
(
∂f
∂x

)T
x∈x. Then,

∇f(Ax) = AT [∇f](Ax).

50

2.1.4 Hessian of a polynomial

Definition 2.27 (Hessian and the Hessian determinant) Let n ∈ N,x = {x1, . . . , xn},F
be a field and f ∈ F[x]. Then, the Hessian of f , denoted Hf , is the following matrix

Hf :=

(
∂2f

∂xi∂xj

)
i,j∈[n]

,

where ∂2f
∂xi∂xj

:= ∂
∂xi

(
∂f
∂xj

)
for every i, j ∈ [n]. The determinant of Hf is called as the Hessian

determinant of f . Clearly, det(Hf) ∈ F[x].

The following properties are very useful in the equivalence test for regular ROFs given in

Chapter 5.

Fact 2.7 (Lemma 2.6 of [CKW11]) Let n ∈ N,x = {x1, . . . , xn},F be a field, f ∈ F[x], A ∈
Mn(F), and g = f(Ax). Then,

Hg = AT ·Hf (Ax) · A.

It is easy to prove the following.

Fact 2.8 Let n ∈ N,x = {x1, . . . , xn},F be a field, b ∈ Fn, and f ∈ F[x]. Then,

Hf(x+b) = Hf .

These two facts immediately imply the following.

Corollary 2.1 Let n ∈ N,x = {x1, . . . , xn},F be a field, g ∈ F[x], A ∈ GL(n,F),b ∈ Fn and

f = g(Ax+ b). Then,

det(Hf) = (det(A))2 det(Hg)(Ax+ b).

2.1.5 Lie algebra of a polynomial

We start this section with the following definition, which would be crucially used in Chapter 4.

Definition 2.28 (Lie bracket) Let n ∈ N,F be a field and A,B ∈ Mn(F). Then, the Lie

bracket of A,B, denoted [A,B], is defined as [A,B] = AB −BA.

Consider the following definition of the Lie algebra of a polynomial. For a more abstract

definition of the Lie algebra, that is based on the Lie brackets, we direct the reader to Chapter

2 of [Hal03]. The equivalence of this following definition of the Lie algebra of a polynomial and

the definition given in [Hal03] follows from Theorem 2.27 of [Hal03].

51

Definition 2.29 (Lie algebra) Let n ∈ N,x = {x1, . . . , xn},F be a field, f ∈ F[x] and ϵ be a

formal variable satisfying ϵ2 = 0. Then, the Lie algebra of f , denoted gf , is a subset of Mn(F)
such that every A ∈ gf satisfies the following

f((In + ϵA)x)− f(x) = 0.

It follows from the definition that gf is an F-vector space. The following fact is important

and is easy to prove.

Fact 2.9 (Lie algebra closed under Lie bracket) Let f ∈ F[x] and A,B ∈ gf . Then,

[A,B] ∈ gf .

The following definition, which we call the working definition of the Lie algebra of a polyno-

mial, uses first order partial derivatives of a polynomial. This definition is taken from [Kay12].

Claim 58 in [Kay12] shown the equivalence of Definitions 2.29 and 2.30.

Definition 2.30 (The working definition of gf) Let n ∈ N,x = {x1, . . . , xn},F be a field,

and f ∈ F[x]. Then, gf is the set of matrices in Mn(F), such that every A = (ai,j)i,j∈[n] ∈ gf

satisfies the following equation. ∑
i,j∈[n]

ai,jxj ·
∂f

∂xi

= 0. (2.1)

The following fact relates Lie algebras of two equivalent polynomials. This fact is Proposition

58 in [Kay12]. This fact will be extensively useful for a special case of the equivalence test of

NW given in Chapter 3 and the equivalence test for the determinant given in Chapter 4.

Fact 2.10 (Conjugacy relation of Lie algebras) Let n ∈ N,x = {x1, . . . , xn},F be a field,

f ∈ F[x], A ∈ GL(n,F) and h = f(Ax). Then,

gh = A−1 · gf · A.

2.1.6 Essential and redundant variables of a polynomial

Definition 2.31 (Number of essential variables) Let n, s ∈ N,x = {x1, . . . , xn},F be a

field and f ∈ F[x]. We say that f has s essential variables if there exists an A ∈ GL(n,F) such

that |var(f(Ax))| = s and there does not exist an A′ ∈ GL(n,F) such that |var(f(A′x))| < s.

In this case, the number of redundant variables in f is (n− s).

52

We borrow the notation Ness(f) from [Car06] to denote the number of essential variables in

f . The following fact relates Ness(f) with the dimension of
〈
∂f
∂x

: x ∈ x
〉
. The proof of this fact

follows from the proof of Claim 2.3 in [KNST19].

Fact 2.11 (Relation between essential variables and partials) Let n, d ∈ N,F be a field

such that char(F) = 0 or > d, x = {x1, . . . , xn}, and f ∈ F[x] be a polynomial having individual

degree at most d. Let U :=
〈
∂f
∂x

: x ∈ x
〉
. Then, Ness(f) = dimU . Further, there exists z ⊆ x

such that
{

∂f
∂z

: z ∈ z
}

is a basis of U if and only if there exists an A ∈ GL(n,F) which maps

every variable in x \ z to itself, var(f(Ax)) = z, and Ness(f) = |z|.

By exploiting the relationship given in the above fact, [Car06] gave a polynomial time algorithm

to remove redundant variables from f , when the input is the coefficient vector of f . [Kay11]

gave a randomized algorithm for the same when f is given as a black-box. We talk more about

algorithms to remove redundant variables from a polynomial in Section 2.2.2.

Definition 2.32 (Essential and redundant variables) Let n, d ∈ N,x = {x1, . . . , xn}, and

F be a field. Then, z ⊆ x is called a set of essential variables of f if Ness(f) = |z| and there

exists an A ∈ GL(n,F) such that f(Ax) ∈ F[z]. Once we fix such a z, every other variable in

x is said to be redundant for f .

Observe that a set of essential variables of a polynomial need not be unique. The following

three observations would be required for the ET for regular ROFs given in Chapter 5.

Observation 2.4 Let n, d ∈ N, x and y be disjoint sets of variables such that |x|+|y| = n, and

F be a field satisfying either char(F) = 0 or char(F) > d. Let h ∈ F[x] be such that deg(h) ≤ d

and Ness(h) = |x|. Let z ⊆ x ⊎ y and A ∈ GL(n,F) such that |z| = |x| and h(A(x,y)) ∈ F[z].
Then, A maps every x-variable to a linear form in z-variables.

Proof: First, we assume that x = z. Suppose the rows and columns of A are labelled by the

ordered tuple (x,y) and A looks like

A =

[
Ax A1

A2 Ay

]
,

where the rows and columns of Ax, Ay are labelled by x and y respectively. Note that it is

sufficient to show that A1 is the zero matrix. Let g(x,y) = h(A(x,y)). Then, it follows from

Observation 2.3 that

∇g(x,y) = AT [∇h](A(x,y)), (2.2)

53

Let ∇g = ([∇g]x, [∇g]y)T , where [∇g]x =
(
∂g
∂x

)
x∈x and [∇g]y =

(
∂g
∂y

)T
y∈y

. Similarly, let

∇h = ([∇h]x, [∇h]y)T . As g, h ∈ F[x], for every y ∈ y, ∂g
∂y

= ∂h
∂y

= 0. This implies [∇g]y =

[∇h]y = 0. Since x is the set of essential variables of h, all the entries in [∇h]x are F-linearly
independent and thus all the entries in [∇h]x(A(x,y)) are also F-linearly independent. Now,

it is easy to see from Equation (2.2) and the structure of A that every entry of AT
1 should be

equal to 0. Otherwise, we get a non-zero linear combination of ∂h
∂x
(A(x,y)), x ∈ x, which is

equal to 0 and this is a contradiction.

Now, suppose x ̸= z. Let P ∈ GL(n,F) be a permutation matrix, that maps x to z, z to x

and every other variable to itself. We know h(A(x,y)) ∈ F[z]. Then, note that h(AP (x,y)) ∈
F[x]. Now, it follows from the above argument that AP maps every variable in x to a linear

form in x-variables. It is not difficult to see that this implies that A maps every variable in x

to a linear form in z-variables. 2

Observation 2.5 Let d ∈ N, x and y be disjoint sets of variables and F be a field satisfying

char(F) = 0 or char(F) > d. Let h(x,y) = g(x)e · p(x,y), where deg(h) ≤ d, g(x), p(x,y) are

co-prime and e ≥ 1. Suppose every variable in x is essential for g and

∑
x∈x

αx
∂h

∂x
+
∑
y∈y

βy
∂h

∂y
= 0,

where αx, βy ∈ F for every x ∈ x, y ∈ y. Then, αx = 0 for every x ∈ x.

Proof: Since h = g(x)e · p(x,y) and e ≥ 1, we get

∑
x∈x

αx

(
ge

∂p

∂x
+ e · ge−1 · p∂g

∂x

)
+
∑
y∈y

βyg
e∂p

∂y
= 0.

On dividing the above equation by ge−1 and rearranging the terms we get

g

(∑
x∈x

αx
∂p

∂x
+
∑
y∈y

βy
∂p

∂y

)
+ e · p

(∑
x∈x

αx
∂g

∂x

)
= 0.

As char(F) = 0 or char(F) > d, ∂g
∂x
̸= 0, ∂p

∂x
̸= 0, ∂p

∂y
̸= 0 for every x ∈ x, y ∈ y. Let g′ =(∑

x∈x αx
∂p
∂x

+
∑

y∈y βy
∂p
∂y

)
and p′ =

(∑
x∈x αx

∂g
∂x

)
. If g′ = 0, then we get p′ = 0 . Otherwise,

g divides e · p · p′. Since g and p are co-prime polynomials, g divides p′, which is not possible

54

unless p′ = 0 as deg(p′) < deg(g). Thus, in both the cases we get

∑
x∈x

αx
∂g

∂x
= 0.

As every variable in x is essential for g, Fact 2.11 we get αx = 0 for every x ∈ x. 2

Observation 2.6 Let d ∈ N, {x1, x2} and y be disjoint sets of variables and F be a field

satisfying char(F) = 0 or char(F) > d. Let h(x1, x2,y) =
∑

i≥0 pi(y) · (x1x2)
i be a polynomial

of degree at most d such that pi(y) ̸= 0 for some i ≥ 1. Suppose

α1
∂h

∂x1

+ α2
∂h

∂x2

+
∑
y∈y

βy
∂h

∂y
= 0,

where α1, α2, βy ∈ F for every y ∈ y. Then, α1 = α2 = 0.

Proof: As char(F) = 0 or char(F) > d, ∂h
∂x1
̸= 0, ∂h

∂x2
̸= 0, and ∂h

∂y
̸= 0 for every y ∈ y. Since

h(x,y) =
∑

i≥0 pi(y)(x1x2)
i, the above equation can be written as

α1

(∑
i≥1

i · pi · xi−1
1 xi

2

)
+ α2

(∑
i≥1

i · pi · xi
1x

i−1
2

)
+
∑
y∈y

βy

(∑
i≥0

(x1x2)
i∂pi
∂y

)
= 0.

Note that in this equation, the polynomials α1

(∑
i≥1 i · pi · x

i−1
1 xi

2

)
, α2

(∑
i≥1 i · pi · xi

1x
i−1
2

)
,

and
∑

y∈y βy

(∑
i≥0

(x1x2)
i ∂pi
∂y

)
do not have common monomials in x1, x2 variables. Thus, each

of these three polynomials should be equal to zero. Suppose α1 ̸= 0. Then,∑
i≥1

i · pi · xi−1
1 xi

2 = 0.

As char(F) = 0 or char(F) > d and for every i ≥ 1, pi ∈ F[y], we get from the above equation

that pi = 0 for every i ≥ 1, which is a contradiction. Thus, α1 = 0. Similarly, α2 = 0. 2

2.1.7 Orbit of a polynomial

First consider the following definition.

Definition 2.33 (Affine projection) An n-variate polynomial f(x) is said to be an affine

projection of an m-variate polynomial g if there exist an A ∈ Fm×n and a b ∈ Fm such that

f = g(Ax+ b).

55

Definition 2.34 (Orbit) Let n ∈ N,x = {x1, . . . , xn, },F be a field and f ∈ F[x]. Then, the

orbit of f , denoted orb(f), is the set {f(Ax) : A ∈ GL(n,F)}.

It is easy to prove the following fact.

Fact 2.12 Let n ∈ N,x = {x1, . . . , xn}, f ∈ F[x] and g = f(Ax+b), where A ∈ GL(n,F) and

b ∈ Fn. Then, Ness(f) = Ness(g).

2.1.8 Algebraic models of computation

Definition 2.35 (Arithmetic circuit) Let n ∈ N,F be a field and x = {x1, . . . , xn}. An

arithmetic circuit C over F is a directed acyclic graph, where leaf nodes are labelled by x and

constants from F, other nodes are labelled by +,×,−,÷ and edges are labelled by constants

from F. A node labelled by + or × has arbitrary fan-in and labelled by − or ÷ has fan-in two.

Computation in C happens as follows: Nodes having in-degree zero compute their labels; if v

is a + node (respectively, a × node) having children v1, . . . , vr such that for every i ∈ [r], the

edge connecting vi to v is labelled by αi then v computes
∑

i∈[r] αivi (respectively,
∏

i∈[r] αivi); if

v is a − node (respectively, a ÷ node) having children v1, v2 such that edge connecting vi to v

has label αi then v computes α1v1 − α2v2 (respectively, α1v1
α2v2

, provided α2v2 ̸= 0). The rational

function computed by the node having out-degree 0 is said to be the output of C.

An example of an arithmetic circuit is given in Figure 1.1.2. We restrict our attention to

arithmetic circuits computing polynomials. As argued in Section 1.1.2, we will assume that the

non-leaf nodes in an arithmetic circuit are labelled by + and × operations.

Definition 2.36 (ABP) Let d ∈ N, F be a field and x be a set of variables. An algebraic

branching program (ABP for short) is a directed acyclic graph having d + 1 layers labelled by

0, . . . , d, where the first and the last layer have exactly one node each, called the source (denoted

s), and the sink (denoted t) respectively and for i ∈ [d− 1], the i-th layer has wi many vertices.

The edges are present only between vertices of adjacent layers and every edge is labelled by a

linear form in F[x]. Suppose p = (e1, . . . , ed) is an s-t path, where ei is an edge from layer

(i− 1) to layer i and the label of ei is the linear form ℓi. Let gp := ℓ1 · · · ℓd. Then
∑

p:s-t path

gp is

the polynomial computed by this ABP.

Definition 2.37 (Arithmetic formula) An arithmetic circuit C is called an arithmetic for-

mula if the underlying graph of C is a tree.

56

Remark 2.4 Let C be an arithmetic formula. Without loss of generality, we assume from now

on that C has alternate layers of + and × nodes, every non-leaf node in C has fan-in at least

two and every child of a × gate in C computes a non-constant polynomial.

The product-depth of C is the number of × gate in a longest path in C from a leaf node to the

root node of C.

Remark 2.5 Let C be an arithmetic circuit. For convenience, we would also use C to denote

the polynomial computed by C. Similarly, if v is a node of C then v would also denote the

polynomial it computes.

Definition 2.38 (ROF) An arithmetic formula C over a field F is said to be a read-once

arithmetic formula (in short, an ROF) if every leaf of C is labelled by either a distinct variable

or a constant from F. If the root node of C is a + node then we call it a +-rooted ROF, otherwise

it is called a ×-rooted ROF.

It follows immediately from the above definition that every ROF computes a mutlilinear

polynomial. The following useful property of ROF would be frequently used in Chapter 5.

Observation 2.7 (Irreducibility of a +-rooted ROF) Let F be a field and C be a +-rooted

ROF over F. Then, C is irreducible over F.

Proof: Let C = T1+ · · ·+Ts + γ , where for every l ∈ [s], Tl is either a variable or a ×-rooted
sub-ROF of C and γ ∈ F. Suppose var(C) = x. We know that C is a multilinear polynomial in

F[x]. We prove the result in two cases.

Case 1: s ≥ 2. Suppose C is reducible. Then, there exist non-constant polynomials g1, g2 ∈ F[x]
such that C = g1g2. Since C is multilinear, var(g1)∩ var(g2) = ∅. As g1 is non-constant, var(g1)
contains a variable from var(Tl) for some l ∈ [s]. Then, for every k ∈ [s]\{l}, var(Tk) ⊆ var(g1),

otherwise we get a monomial in C containing variables from var(Tk) and var(Tl), which is not

possible. As g2 is non-constant and var(g1) ∩ var(g2) = ∅, var(g2) must contain some variable

in var(Tl) \ var(g1). Thus, we get a monomial in C, which contains variables from var(Tl) and

var(Tk) for some k ∈ [s] \ {l}. This is a contradiction.

Case 2: s = 1. If γ = 0 then C is not a +-rooted ROF, so γ ̸= 0. Then, T1 is either a variable

or T1 = Q1 · · ·Qm, where m ≥ 2 and for every i ∈ [m], Qi is either a +-rooted sub-ROF of

C or a variable. If T1 is a variable then C is clearly irreducible. Otherwise, let p1 = Q1 and

57

p2 = Q2 · · ·Qm. Then, C = p1p2+γ and var(p1)∩var(p2) = ∅. Suppose there exist non-constant
polynomials g1, g2 ∈ F[x] such that C = g1g2. As C is multilinear, g1, g2 are also multilinear and

var(g1) ∩ var(g2) = ∅. Then,
p1p2 + γ = g1g2. (2.3)

Assume without loss of generality that there exists x1 ∈ var(p1) ∩ var(g1). Suppose there

exists y1 ∈ var(p2) ∩ var(g2). In this case, we substitute every variable in var(p1) \ {x1} and

var(p2) \ {y1} with random F-constants.1 After this, Equation (2.3) looks like

(α1x1 + α0)(α3y1 + α2) + γ = (β1x1 + β0)(β3y1 + β2),

where α0, α1, α2, α3, β0, β1, β2, β3 ∈ F and it follows from the Schwartz-Zippel lemma (Fact 2.13)

that α1, β3 ̸= 0 with high probability. Now, on substituting x1 = −α0

α1
in the above equation,

we get γ =
(

−β1·α0

α1
+ β0

)
(β3y1 + β2). This can never happen as

(
−β1·α0

α1
+ β0

)
(β3y1 + β2)

is either zero or it contains y1, whereas γ ∈ F \ {0}. Thus we get a contradiction. Now,

suppose var(g2) ∩ var(p2) = ∅. Thus, var(p2) ⊆ var(g1). As g2 is non-constant, there exists

x′
1 ∈ var(g2)∩var(p1). Pick a y′1 ∈ var(p2) arbitrarily. We substitute all variables of var(p1)\{x′

1}
and var(p2) \ {y′1} with random F-constants. Now, using the same argument as before, we get

a contradiction. Hence, C is irreducible over F. 2

Definition 2.39 (Canonical ROF) Let F be a field and C be an ROF over F. Then, C is

said to be a canonical ROF if the label associated with every edge in C is one and every + gate

C has at most 1 variable child or at most one constant child but not both.

It is not difficult to show that every ROF is in the orbit of a canonical ROF. Thus, from

the viewpoint of equivalence testing, canonical ROFs capture general ROFs.

Definition 2.40 (Regular ROF) A canonical ROF C over a field is said to be regular if the

parent of every variable in C is a × gate.

As mentioned in Sections 1.2 and 1.3.3, a useful example of a regular ROF is an arithmetic

circuit in a read-once alternating normal form (ROANF), which is defined below.

Definition 2.41 (ROANF) A canonical ROF C over a field F is said to be in the read-once

alternating normal form (in short, ROANF) if the underlying tree of C is a complete binary tree,

the bottom-most layer contains × nodes, and every leaf node is labelled by a distinct variable.

Thus, if C is an ROANF and has product-depth ∆ then |var(C)| = 4∆.

1For this, we need |F| > n. If it is not the case, we work with a large enough extension field L of F and give
the argument over L. Clearly, if C is irreducible over L, it has to be irreducible over F.

58

The following property of canonical ROFs is useful for Chapters 5 and 6.

Observation 2.8 (Canonical ROFs are free from redundant variables) Let C be a canon-

ical ROF over a field F and x = var(C). Then, every variable in x is essential for C.

Proof: Fact 2.11 implies that it is sufficient to show that
{

∂C
∂x

: x ∈ x
}
is F-linearly indepen-

dent. As C is multilinear, for every x ∈ x, ∂C
∂x
̸= 0. Consider the following equation

∑
x∈x

αx
∂C
∂x

= 0, (2.4)

where for every x ∈ x, αx ∈ F. Let x ∈ x be an arbitrary variable. Then, path(x) denotes

the path starting from the root of C to x and the product-depth of x, denoted ∆x, is defined

as the number of product gates appearing on path(x). For i ∈ [∆x], let Ix,i denote the set of

indices of those children of the i-th product gate on path(x), which do not lie on this path.

Let Nx = {Qx,i,j : i ∈ [∆x], j ∈ Ix,i}. Then, for every i ∈ [∆x], j ∈ Ix,i, Qx,i,j is a sibling of a

+-rooted ROF, which lies on path(x) and is a child of the i-th product gate on path(x). Thus,

Qx,i,j is either a variable or a +-rooted sub-ROF of C. Observe that

∂C
∂x

=
∏

i∈[∆x]

∏
j∈Ix,i

Qx,i,j.

Let x ∈ x be arbitrary. Then, we claim that there does not exist x′ ∈ x \ {x} satisfying

∆x′ ≤ ∆x such that Nx ⊆ Nx′ . Suppose this is not true. Then, note that ∆x = ∆x′ . As

Nx ⊆ Nx′ and ∆x = ∆x′ , observe that this means that x and x′ are children of the same + gate

in C. But this contradicts the fact that C is a canonical ROF. Hence, such an x′ does not exist.

Now, we show that there exists a monomial px in ∂C
∂x

such that for every x′ ∈ x, where

∆x′ ≤ ∆x, px is not a monomial of ∂C
∂x′ . Let i ∈ [∆x], j ∈ Ix,i be arbitrary, px,i,j be the largest

monomial of Qx,i,j under a degree lexicographic order on F[x] and px =
∏

i∈[∆x],j∈Ix,i px,i,j. Let

x′ ∈ x \ {x} be an arbitrary variable such that ∆x′ ≤ ∆x. Suppose the first common ancestor

gate of x and x′ in C is a + gate. As C is canonical, it is not difficult to see that there exists

a Qx,i,j ∈ Nx \ Nx′ . Otherwise, there exists a Qx,i,j ∈ Nx \ Nx′ such that Nx′ contains the

factors of
∂Qx,i,j

∂x′ but not Qx,i,j. As px,i,j is the largest monomial of Qx,i,j according to the degree

lexicographic order, it is not difficult to see that in both the cases, we can not get a monomial

in ∂C
∂x′ , which is divisible by px,i,j and hence px can not be a monomial of ∂C

∂x′ . We repeat this for

every variable in x in the non-increasing order of their product-depths. Then, it is not difficult

to see that since C is canonical, for every x ∈ x, αx = 0 in Equation (2.4). 2

59

Corollary 2.2 (Regular ROFs do not have redundant variables) Let C be a regular ROF

over a field F and x = var(C). Then, every variable in x is essential for C.

2.2 Algorithmic preliminaries

We first give some basic algorithmic results, then give some algorithms related to removal of

redundant variables from a polynomial, then give known PE algorithms for quadratic forms

over different fields, and finally state known algorithmic results on full matrix isomorphism

problem over finite fields and Q.

2.2.1 Basic algorithmic facts

Let F be a field, x be a set of n variables and f ∈ F[x]. Then, black-box of f takes a ∈ Fn and

outputs f(a). We first record an important result, which implies a polynomial time randomized

black-box PIT algorithm.

Fact 2.13 (Schwartz-Zippel lemma) [DL78, Zip79, Sch80] Let n, d ∈ N,F be a field such

that |F| > d, S ⊆ F be a finite subset satisfying |S| > d, x = {x1, . . . , xn} and f ∈ F[x] be a

non-zero polynomial. Then,

Pr
a1,...,an∈rS

(f(a1, . . . , an) = 0) ≤ d

|S|
,

where a1, . . . , an ∈r S means that a1, . . . , an are chosen independently and uniformly at random

from S.

Now, suppose we are given input n, d and a black-box of f and we want to decide whether

f is identically zero or not. We pick a finite set S ⊆ F satisfying |S| > d (provided |F| > d)

and pick a1, . . . , an ∈r S. If f(a1, . . . , an) = 0 we output f = 0 otherwise output C ̸= 0. The

Schwartz-Zippel lemma implies that our result is correct with high probability. Now, we state

other useful results about a polynomial given as black-box.

Fact 2.14 (Computing black-box access to derivatives) Let n, d ∈ N,x = {x1, . . . , xn},F
be a field satisfying char(F) = 0 or greater than d and f ∈ F[x] be a degree d polynomial. Given

an x ∈ x and black-box access to f , we can compute black-box access to ∂f
∂x

in poly(n, d) time.

A proof of the above well-known fact is given in Section 2.2 of [KNST19]. The following

fact follows from Clam 2.2 of [KNST19], whose proof is based on the Schwartz-Zippel lemma.

60

Fact 2.15 (Computing black-box access to a basis) Let n, d,m ∈ N,x = {x1, . . . , xn},
and F be a field satisfying |F| > (dm)2. Suppose we are given black-box access to f1, . . . , fm ∈
F[x]. Then, there exists a randomized algorithm which computes black-box access to an F-basis

of ⟨f1, . . . , fm⟩ in time poly(n,m, d).

The following fact allows us to compute black-box access to an F-basis of the Lie algebra of

a polynomial given as black-box. It was proven in [Kay12] and the proof is based on Equation

(2.1) and Facts 2.14 and 2.15.

Fact 2.16 (Computing a basis of gf) Let n, d ∈ N,F be a field satisfying char(F) = 0 or

char(F) > d and f ∈ F[x] be a degree d polynomial. Then, there exists a randomized algorithm

that takes black-box access to f and outputs a basis of gf with high probability in poly(n, d)

time.

The following fact is extensively used in the equivalence test given in Chapter 5.

Fact 2.17 (Black-box polynomial factorization algorithm [KT90]) Let n, d ∈ N,F be a

field satisfying char(F) = 0 or char(F) > d and |F| ≥ d6, x = {x1, . . . , xn}, and f ∈ F[x] be a

degree d polynomial. Then, there exists a randomized algorithm that takes black-box access to f ,

oracle access to a univariate polynomial factorization algorithm over F and outputs black-boxes

of non-zero scalar multiples of irreducible factors of f with high probability in poly(n, d) time.

Remark 2.6 In Chapter 5, we assume that univariate polynomials can be factorized efficiently

over the underlying field F. This implies that the factorization algorithm given in Fact 2.17

is also efficient over F. This assumption holds over finite fields and Q as efficient univariate

polynomial factorization algorithms are known over these fields (see [Ber70, LLL82b]).

Fact 2.18 (Computing closure of a vector) Let m,n ∈ N,F be a field and T ⊆Mn be an

F-vector space of dimension m. Then, there exists a polynomial time algorithm, that takes a

v ∈ Fn and a basis {M1, . . . ,Mm} of T and outputs a basis of closureT (v).

See Section 4.2 of [KNST19] for a proof of the above fact.

2.2.2 Removal of redundant variables

In this section, we talk about algorithms to get rid of redundant variables from a polynomial.

These algorithms would be used in the equivalence test given in Chapter 5. As mentioned in

Section 2.1.6, algorithms to remove redundant variables are known in two settings - when input

61

is a list of coefficients [Car06] and when the input is a black-box [Kay11] (see also Claim 2.3

of [KNST19]). In this section, whenever we say that a set of variables z is redundant for an

n-variate polynomial f ∈ F[x], we would mean that there exists A ∈ GL(n,F) such that f(Ax)

does not contain any z-variable. In Claim 2.2.1, we present a slightly general version of the

algorithm [Kay11].

Observation 2.9 Let n, d ∈ N,x be a set of n variables and F be a field satisfying either

char(F) = 0 or char(F) > d and |F| ≥ 2n2d. Suppose we are given y′ ⊆ x,x′ ⊆ x and black-box

access to g ∈ F[x] such that deg(g) ≤ d,
{

∂g
∂y

: y ∈ y′
}

is F-linearly independent, there exists

y ⊆ x′ such that y′ ⊆ y and y is a set of essential variables of g. Then, such a y can be

computed in randomized poly(n, d) time.

Proof:

Procedure 1 Compute-Essential-Vars(g,y′,x′)

Input: Black-box access to g ∈ F[x],y′ ⊆ x,x′ ⊆ x, s.t.
{

∂g
∂y

: y ∈ y′
}

is F-linearly indepen-

dent and ∃y ⊆ x′, s.t. y′ ⊆ y and y is a set of essential variables of g.

Output: y ⊆ x′, s.t. y′ ⊆ y and y is a set of essential variables of g.

1. F ← a subset of F of size at least 2n2d. y← y′ and z← x′ \ y.
2. for z ∈ z do

3. Compute black-box access to ∂g
∂z

and ∂g
∂y

for every y ∈ y.

4. For x ∈ y ∪ {z}, let ax be chosen uniformly at random from F n. C ←(
∂g
∂x2

(ax1)
)
x1,x2∈y∪{z}

. If det(C) ̸= 0, then y← y ∪ {z} and z← z \ {z}.
5. end for

6. Return y.

It follows from Fact 2.14 that this algorithm runs in poly(n, d) time. Now, we argue its

correctness. Consider a specific iteration of the loop of lines 2 - 5. For x ∈ y ∪ {z}, let

ax = (ax,i)i∈[n]. For every i ∈ [n], treat ax,i as a variable. Note that det(C) ̸= 0 if and only

if N :=
{

∂g
∂x

: x ∈ y ∪ {z}
}
is F-linearly independent. Since deg(det(C)) < nd, the Schwartz-

Zippel implies that after substituting ax,is with random values, the probability that N is linearly

independent but det(C) = 0 is at most nd
2n2d

. Now, by using the union bound on the error prob-

ability, we get that y computed at the end of the algorithm satisfies the desired property with

probability at least 1
2
. 2

62

Claim 2.2.1 (Eliminating redundant variables) Let n, d ∈ N,F be a field satisfying char(F) =
0 or char(F) > d and |F| ≥ 2nd2, x = {x1, . . . , xn}, g ∈ F[x] a degree d polynomial and z ⊆ x

be a set of redundant variables of g. Then there exists a randomized poly(n, d) time algorithm

that takes input z and black-box access to g and outputs an A ∈ GL(n,F) that maps every

z-variable to itself such that g(Ax) ∩ z = ∅ and every variable in var(g(Ax)) is essential.

Proof: The following algorithm is obtained from algorithms given in [Kay11, KNST19] for

removing redundant variables from a polynomial given as black-box.

Algorithm 2 Remove-Redundant-Vars(g, z)

Input: Black-box access to g ∈ F[x] and z ⊆ x such that all variables in z are redundant for g.

Output: A ∈ GL(n,F) such that A maps every variable in z to itself and g(Ax) does not

contain a redundant variable, including the z-variables.

1. y← Compute-Essential-Vars(g, ∅,x \ z) (Procedure 1), z′ ← x \ y.
2. F ← a subset of F of size at least 2n2d.

3. for z ∈ z′ do

4. Compute the values of αy,z, y ∈ y by solving a system of linear equations obtained by

evaluating Equation (2.5) at {ay ∈ F n : y ∈ y}, where ay is chosen independently and

uniformly at random from F n for every y ∈ y.

∑
y∈y

αy,z
∂g

∂y
+

∂g

∂z
= 0. (2.5)

5. end for

6. Let A ∈ Fn×n such that ∀y ∈ y, z ∈ z′, the (y, z)-th entry of A, is αy,z, the (y, y)-th and

(z, z)-th entry of A is 1 and every other entry is 0. Return A.

It follows from Observation 2.9 that its running time is poly(n, d). Now, we argue its cor-

rectness. Observation 2.9 implies that y is a set of essential variables of f and z ∩ y = ∅.
Hence, z′ is a set of redundant variables of g.

As
{

∂g
∂y

: y ∈ y
}

forms a basis of
{

∂g
∂x

: x ∈ x
}
, clearly for every z ∈ z′, there exist αy,z ∈

F, y ∈ y such that Equation (2.5) is satisfied. Fix z ∈ z′ arbitrarily. Let C be a matrix, whose

rows and columns are labelled by y and for y1, y2 ∈ y, the (y1, y2)-th entry of C is ∂g
∂y1

(ay2). Let

βz :=
(
−∂g

∂z
(ay)

)
y∈y and αz ∈ F|y| be such that for y ∈ y, the y-th entry is αy,z. Then, Equation

(2.5) implies C · αz = βz. Now, the Schwartz-Zippel lemma implies that C is invertible with

high probability and thus we get correct values of αy,z, y ∈ y with high probability.

63

Consider the matrix A computed in Step 6. Note that is invertible and has the following

structure: A maps every variable in z′ to itself and every y ∈ y to a linear form in y and z′. It

follows from Fact 2.11 that g(Ax) does not have redundant variables including the z-variables.

2

Suppose g1, . . . , gm ∈ F[x] are pairwise variable disjoint polynomials. Then, it is easy to see

that Ness(g1 · · · gm) = Ness(g1) + · · · +Ness(gm). In Claim 2.2.2, we prove the converse of this

and give an algorithm to compute an A ∈ GL(|x|,F) such that f1(Ax), . . . , fm(Ax) are pairwise

variable disjoint. Before that, we note some useful observations needed for this claim.

Observation 2.10 Let d,m, n ∈ N, F be a field satisfying either char(F) = 0 or char(F) > d,

x = {x1, . . . , xn} and g1, . . . , gm ∈ F[x] such that deg(g1 · · · gm) ≤ d.

1. Ness(g1 · · · gm) ≤ Ness(g1) + · · ·+Ness(gm).

2. Let Ness(g1 · · · gm) = Ness(g1) + · · ·+Ness(gm) and I ⊆ [m] be a non-empty set. Then,

Ness

(∏
i∈I

gi

)
=
∑
i∈I

Ness(gi).

Proof:

1. We know from Fact 2.11 that for every g ∈ F[x], Ness(g) = dim
〈
∂g
∂x

: x ∈ x
〉
. For i ∈ [m],

let Ui =
〈
∂gi
∂x

: x ∈ x
〉
and Wi =

〈 ∏
j∈[m]\{i}

gj · ∂gi∂x
: x ∈ x

〉
. As char(F) = 0 or char(F) >

d, ∂gi
∂x
̸= 0 for every i ∈ [m], x ∈ x. Note that for every i ∈ [m], dimUi = dimWi.

Let g = g1 · · · gm and W =
〈
∂g
∂x

: x ∈ x
〉
. Then, it is easy to see that W is an F-

subspace of W1 + · · · + Wm. Hence, dimW ≤ dimW1 + · · · + dimWm, which implies

Ness(g1 · · · gm) ≤ Ness(g1) + · · ·+Ness(gm).

2. Let I ⊆ [m], h1 :=
∏

i∈I gi and h2 :=
∏

i∈[m]\I gi. We know from Part 1 that Ness(h1h2) ≤
Ness(h1) + Ness(h2). Suppose Ness(h1) <

∑
i∈I Ness(gi). Then, using Part 1 we get

Ness(h2) ≤
∑

i∈[m]\I Ness(gi), which implies Ness(h1h2) < Ness(g1) + · · ·+Ness(gm). This

is a contradiction as h1h2 = g1 · · · gm. Hence, Ness(
∏

i∈I gi) =
∑

i∈I Ness(gi).

2

Observation 2.11 Let d, n ∈ N,x = {x1, . . . , xn} and F be a field satisfying char(F) = 0 or

char(F) > d. Let y ⊆ x, p ∈ F[y], and q ∈ F[x] be such that y is a set of essential variables of

p, deg(pq) ≤ d and Ness(pq) = Ness(p) +Ness(q). Then, y is redundant for q.

64

Proof: Let x′ ⊆ x be a set of essential variables of q and z = x \ y. If x′ ∩ y = ∅ then y is

redundant for q. Suppose x′∩y ̸= ∅. In this case, we show that there exists C ∈ GL(n,F), such
that C maps every y-variable to a linear form in y-variables, q(Cx) does not have redundant

variables and var(q(Cx))∩y = ∅. Let y′ ⊆ y and z′ ⊆ z such that x′ = y′⊎z′. Then, for every
x ∈ x \ x′, there exist αx,y′ , βx,z′ ∈ F for every y′ ∈ y′, z′ ∈ z′ such that

∑
y′∈y′

αx,y′
∂q

∂y′
+
∑
z′∈z′

βx,z′
∂q

∂z′
=

∂q

∂x
.

We call this as the equation corresponding to x. As char(F) = 0 or > d, ∂q
∂x
̸= 0 for every

x ∈ x. Suppose z ∈ z \ z′. Consider the equation corresponding to z. If there exists y′ ∈ y′,

such that αz,y′ ̸= 0 then we swap αz,y′
∂q
∂y′

and ∂q
∂z

in this equation and divide the equation by

αz,y′ . Now, we substitute ∂q
∂y′

with −
(∑

y′′∈y′\{y′}
αz,y′′

αz,y′
∂q
∂y′′

+
∑

z′∈z′
βz,z′

αz,y′
∂q
∂z′
− 1

αz,y′
∂q
∂z

)
in every

equation other that the equation corresponding to z. We iteratively do this for every z \ z′

satisfying the property that after the substitutions in the previous iterations, for some y′ ∈ y′

the coefficient of ∂q
∂y′

in the equation corresponding to z is still non-zero.

After doing this, we have two sets of equations: in the first set, the R.H.S. of every equation

is ∂q
∂y

for some y ∈ y and in the second set, the R.H.S. of every equation is ∂q
∂z

for some z ∈ z.

It is easy to note that in every equation in the second set, the coefficient of ∂q
∂y

is equal to 0 for

every y ∈ y. Let y1 ⊆ y be such that all the equations in the first set look like

∑
x∈x\{y1}

α′
x,y1

∂q

∂x
=

∂q

∂y1
, y1 ∈ y1, (2.6)

where α′
x,y1
∈ F for every y1 ∈ y1, x ∈ x \ {y1}. Similarly, let z1 ⊆ z be such that all the

equations in the second set look like

∑
x∈x\{z1}

β′
x,z1

∂q

∂x
=

∂q

∂z1
, z1 ∈ z1, (2.7)

where for every z1 ∈ z1, x ∈ x \ {z1}, β′
x,z1
∈ F. Further, we know that for every z1 ∈ z1, x ∈

y, β′
x,z1

= 0. Let C be an n × n matrix defined as follows: for every y1 ∈ y1, z1 ∈ z1, x ∈
x \ {y1}, x′ ∈ x \ {z1}, the (y1, y1), (z1, z1)-th entries of C are -1, the (x, y1)-th and (x′, z1)-

th entries of C are α′
x,y1

and β′
x′,z1

given in Equations (2.6) and (2.7) respectively; for every

x ∈ x \ (y1 ∪ z1), the (x, x)-th entry of A is 1 and other entries are zero.

Note that for y1 ∈ y1, z1 ∈ z1 the columns of C labelled by y1 and z1 are associated with the

coefficients involved in the Equations (2.6) and (2.7) corresponding to y1 and z1 respectively.

65

Also, notice that z1 ⊆ z \ z′. It is not difficult to see that for every x ∈ y1 ∪ z1, there exists

exactly one equation in the group of equations given in (2.6) and (2.7), where the coefficient of
∂q
∂x

is non-zero. Using this we can show that C ∈ GL(n,F). Observe that C maps a y-variable to

a linear form in y-variables. Thus, p(Cx) ∈ F[y] and every variable in y is essential for p(Cx).

Further, it follows from the proof of Fact 2.11 given in [KNST19] (see Claim 2.3 in [KNST19])

that q(Cx) is free from redundant variables. It is also easy to see that var(q(Cx)) ∩ y = ∅,
otherwise Ness(pq) < Ness(p) +Ness(q). Thus, y is redundant for q. 2

Claim 2.2.2 (Making polynomials variable disjoint) Let n, d,m ∈ N,x = {x1, . . . , xn},F
be a field satisfying char(F) = 0 or char(F) > d and |F| ≥ 2 ·nd, and g1, . . . , gm ∈ F[x] such that

Ness(g1 · · · gm) = Ness(g1) + · · ·Ness(gm). Then there exists a randomized poly(n, d) time algo-

rithm that takes black-box access to g1, . . . , gm and outputs an A ∈ GL(n,F) such that for every

i ∈ [m], gi does not contain redundant variables and for i ̸= j ∈ [m], var(gi(Ax)) = var(gj(Ax)).

Proof: We first give the algorithm and then argue its correctness.

Algorithm 3 Make-Polys-Var-Disjoint(g1, . . . , gm)

Input: Black-box access to g1, . . . gm ∈ F[x] such thatNess(g1 · · · gm) = Ness(g1)+· · ·+Ness(gm).

Output: A ∈ GL(n,F) such that ∀i ∈ [m], gi(Ax) does not have redundant variables and for

every i, j ∈ [m], i ̸= j, var(gi(Ax)) ∩ var(gj(Ax)) = ∅.
1. A← In×n, y← ∅.
2. for i = 1, . . . ,m do

3. Ai ← Remove-Redundant-Vars(gi(Ax),y),yi ← var(gi(AAix)).

4. A← AAi,y← y ∪ yi.

5. end for

6. Return A.

It follows from Claim 2.2.1 that the above algorithm runs in time poly(n, d). The correctness

of the algorithm follows from Subclaim 2.2.1. 2

Subclaim 2.2.1 Let i ∈ [m] be arbitrarily chosen and g, A, and y be as after the i-th iteration

of Algorithm 3. Then, for every j ≤ i, gj(Ax) does not have redundant variables and for every

j, k ∈ [i], j ̸= k, gj(Ax) and gk(Ax) are variable disjoint. Further, g(Ax) ∈ F[y] and every

variable in y is essential for g(Ax).

Proof: We prove the subclaim by induction on i. Suppose i = 1. Then, it follows from

the proof of correctness of Algorithm 2 that g1(Ax) does not have redundant variables and y

66

is a set of essential variables of g(Ax). Now, suppose i ≥ 2 and the claim holds for i − 1.

Let g′ = g1 · · · gi−1, A′ = A1 · · ·Ai−1 and y′ = y1 ∪ · · · ∪ yi−1. Then, we know from the

induction hypothesis that for every j ∈ [i − 1], gj(A
′x) does not have redundant variables, for

every j, k ∈ [i− 1], j ̸= k, var(gj(A
′x)) ∩ var(gk(A

′x)) = ∅ and g′(A′x) ∈ F[y′], such that every

variable in y′ is essential for g′(A′x).

Recall g = g′gi. Since Ness(g1 · · · gm) = Ness(g1) + · · ·+Ness(gm), Observation 2.10 implies

that Ness(g
′) = Ness(g1) + · · · + Ness(gi−1) and Ness(g) = Ness(g

′) + Ness(gi). As A′ is an

invertible matrix, Fact 2.12 implies that Ness(g(A
′x)) = Ness(g

′(A′x)) + Ness(gi(A
′x)). Since

from the induction hypothesis, we have that g′(A′x) ∈ F[y′] and it has no redundant variables,

it follows from the proof of Observation 2.11 that y′ is a set of redundant variables for gi(A
′x).

Then from Claim 2.2.1, Ai ∈ GL(n,F) maps every variable in y′ to itself and gi(A
′Aix) ∈ F[yi]

is free from redundant variables. Let A = A′Ai and y = y′ ∪ yi. Since Ai maps every variable

in y′ to itself, g′(Ax) = g′(A′x). This immediately implies that for every j ∈ [i], gj(Ax) does

not have redundant variables, for every j, k ∈ [i], j ̸= k, gj(Ax) and gk(Ax) are variable disjoint

and g(Ax) ∈ F[y] does not contain redundant variables. 2

The next claim is used in the ET for regular ROFs and it depends on Claim 2.2.2.

Claim 2.2.3 (Making factors variable disjoint) Let d,m, n ∈ N,x = {x1, . . . , xn} and

F be a field satisfying either char(F) = 0 or char(F) > d and |F| ≥ max {2n2d, d6}. Let

g, g1, . . . , gm ∈ F[x] be such that g = g1 · · · gm, where g1, . . . , gm need not be irreducible, deg(g) ≤
d and for every i, j ∈ [m], i ̸= j, var(gi) ∩ var(gj) = ∅. There is a randomized poly(n, d) time

algorithm that takes black-box access to g(Bx + d), where B ∈ GL(n,F),d ∈ Fn and does the

following:

1. It computes A ∈ GL(n,F) such that for every i ∈ [m], gi(BAx+d) does not have redundant

variables and for every i, j ∈ [m], i ̸= j, var(gi(BAx+ d)) ∩ var(gj(BAx+ d)) = ∅.

2. It also computes a set V = {var(hi,l(Ax)) : i ∈ [m], l ∈ [mi]}, where for every i ∈ [m],

there exist mi polynomials hi,1, . . . , hi,mi
, such that

∏
l∈[mi]

hi,l = gi(Bx + d) and for

distinct l, l′ ∈ [mi], var(hi,l(Ax)) ∩ var(hi,l′(Ax)) = ∅.

Proof: We give the algorithm and then argue its correctness.

Algorithm 4 Make-Factors-Var-Disjoint(g(Bx+ d))

Input: Black-box access to g(Bx + d), where g = g1 · · · gm and ∀i, j ∈ [m], i ̸= j, var(gi) ∩
var(gj) = ∅.
Output: A ∈ GL(n,F) and a set V as given in Claim 2.2.3

67

1. Factorize g(Bx+d) using Fact 2.17 and N ← {h1, . . . , hs′} is the set of black-boxes of the
irreducible factors of g(Bx+ d).

2. while Ness(
∏

h∈N h) ̸=
∑

h∈N Ness(h) do ,

3. For the first i ∈ [|N |], such thatNess(h1 · · ·hi) ̸= Ness(h1)+· · ·+Ness(hi), find a k ∈ [i−1],
such that Ness(h1 · · ·hk−1 ·hi) = Ness(h1)+ · · ·+Ness(hk−1)+Ness(hi) but Ness(h1 · · ·hk ·
hi) < Ness(h1) + · · ·+Ness(hk) +Ness(hi).

4. N ← N ∪ {hk · hi}, N ← N \ {hk, hi}.
5. end while

6. Let N = {h1, · · · , hs}. A← Make-Polys-Var-Disjoint(h1, . . . , hs) (Algorithm 3).

7. V ← {var(h1(Ax)), . . . , var(hs(Ax))}.
8. Return A, V .

We first figure out the running time of Algorithm 4. Fact 2.17 ensures that Step 1 runs in

randomized polynomial time. Note that there can be at most s′ ≤ d iterations of the the loop

of lines 2-5 and that each iteration executes in poly(n, d) time. Claim 2.2.2 implies that Step

6 also gets executed in randomized poly(n, d) time. In the next step, we can compute V in

randomized polynomial time by using the first-order partial derivatives and a randomized PIT

algorithm. Thus, the above algorithm has running time poly(n, d).

Now, we argue the correctness of this algorithm. We know that g = g1 · · · gm and for every

i, j ∈ [m], i ̸= j, var(gi) ∩ var(gj) = ∅. Then, Ness(g) = Ness(g1) + · · · + Ness(gm). Fact 2.11

implies that Ness(g(Bx+d)) = Ness(g1(Bx+d))+ · · ·+Ness(gm(Bx+d)). We first collect the

black-boxes of the irreducible factors of g(Bx+ d) in N and then keep on updating N in Step

2 until Ness(
∏

h∈N h) =
∑

h∈N Ness(h). The following subclaim ensures that Step 2 is correct.

Subclaim 2.2.2 Suppose there exists an i ∈ [|N |], such that Ness(h1 · · ·hi−1) = Ness(h1) +

· · ·+Ness(hi−1) but Ness(h1 · · ·hi) < Ness(h1) + · · ·+Ness(hi). Then, there exists a k ∈ [i− 1],

such that Ness(h1 · · ·hk−1 · hi) = Ness(h1) + · · ·+Ness(hk−1) +Ness(hi) but Ness(h1 · · ·hk · hi) <

Ness(h1) + · · · + Ness(hk) + Ness(hi). Further, there exists a j ∈ [m], such that hi and hk are

the factors of gj(Bx+ d).

A proof of Subclaim 2.2.2 is given after this proof. This subclaim ensures that after the execution

of the loop of lines 2-5, N = {h1, . . . , hs} satisfies Ness(h1 · · ·hs) = Ness(h1)+ · · ·+Ness(hs). So,

we can invoke Algorithm 3 on N , which returns A ∈ GL(n,F), such that h1(Ax), . . . , hs(Ax)

are pairwise variable disjoint.

68

Now, we have to show that g1(BAx + d), . . . , gm(BAx + d) are pairwise variable disjoint

polynomials. We claim that for every h ∈ N, there exists j ∈ [m], such that for every j′ ∈
[m] \ {j}, gcd(h, gj′(Bx + d)) = 1. Observe that this is true before the first iteration of the

loop of lines 2-5. Subclaim 2.2.2 implies that if it is ture before an iteration of this loop, then

it is also true after that iteration. For every j ∈ [m], let Ij ⊆ [s], such that for every l ∈ Ij,

hl is a factor of gj(Bx + d), which implies hl(Ax) is a factor of gj(BAx + d). Let j1, j2 ∈ [m]

be distinct and arbitrary. As var(gj1) ∩ var(gj2) = ∅, we get that gj1 and gj2 are co-prime,

which implies Ij1 ∩ Ij2 = ∅. Since h1(Ax), . . . , hs(Ax) are pairwise variable disjoint, we get

that g1(BAx+ d), . . . , gm(BAx+ d) are also pairwise variable disjoint polynomials. Note that

V = {var(h1(Ax)), . . . , var(hs(Ax))} is a required set. 2

Proof: [Proof of Subclaim 2.2.2] Suppose for every k ∈ [i−1], Ness(h1 · · ·hk−1 ·hi) = Ness(h1)+

· · ·+Ness(hk−1)+Ness(hi) and Ness(h1 · · ·hk ·hi) = Ness(h1)+ · · ·+Ness(hk)+Ness(hi). Then,

by setting k = i − 1, we get Ness(h1 · · ·hi−1 · hi) = Ness(h1) + · · · + Ness(hi−1) + Ness(hi),

which is a contradiction. Thus, there exists k ∈ [i − 1], such that Ness(h1 · · ·hk−1 · hi) =

Ness(h1)+· · ·+Ness(hk−1)+Ness(hi) and Ness(h1 · · ·hk ·hi) < Ness(h1)+· · ·+Ness(hk)+Ness(hi).

Now, we want to argue that there exists j ∈ [m], such that hk and hi are factors of gj(Bx+d).

Suppose for every l ∈ [|N |], h′
l ∈ F[x] is such that hl = h′

l(Bx + d). Then, it is sufficient to

show that there exists j ∈ [m], such that h′
k and h′

i are factors of gj. Suppose this is not true

and there exist j1, j2 ∈ [m], j1 ̸= j2, such that h′
k and h′

i are factors of gj1 and gj2 respectively.

For j ∈ {j1, j2}, let Ij ⊆ [k−1], such that for every l ∈ Ij, h
′
l is a factor of gj and pj :=

∏
l∈Ij h

′
l.

Further, let q :=
∏

l∈[k−1]\(Ij1∪Ij2)
h′
l. Then, note that

h′
1 · · ·h′

k−1 · h′
i = q · pj1 · pj2 · h′

i and h′
1 · · ·h′

k−1 · h′
k = q · pj1 · pj2 · h′

k.

Since q, pj1 and pj2 are factors of

(∏
j∈[m]\{j1,j2}

gj

)
, gj1 and gj2 respectively, q, pj1 and pj2 are pair-

wise variable disjoint polynomials. Also, as Ness(h1 · · ·hk−1 ·hi) = Ness(h1)+ · · ·+Ness(hk−1)+

Ness(hi), Fact 2.12 implies that

Ness(h
′
1 · · ·h′

k−1 · h′
i) = Ness(h

′
1) + · · ·+Ness(h

′
k−1) +Ness(h

′
i).

On using Observation 2.10, the above equation can be written as

Ness(q · pj1 · pj2 · h′
i) = Ness(q) +Ness(pj1) +Ness(pj2) +Ness(h

′
i). (2.8)

69

Similarly, we get Ness(h
′
1 · · ·h′

k−1 · h′
k) = Ness(h

′
1) + · · ·+Ness(h

′
k−1) +Ness(h

′
k), which implies

Ness(q · pj1 · pj2 · h′
k) = Ness(q) +Ness(pj1) +Ness(pj2) +Ness(h

′
k). (2.9)

Recall that h′
i and pj2 are the factors of gj2 . Then, it follows from Equation (2.8) and Observation

2.10 that Ness(h
′
ipj2) = Ness(h

′
i) +Ness(pj2). Then, Claim 2.2.2 implies that there exists Aj2 ∈

GL(n,F), which maps every variable in var(gj2) to a linear form in var(gj2) and maps every

variable in x\var(gj2) to itself, such that h′
i(Aj2x) and pj2(Aj2x) are variable disjoint. Similarly,

as h′
k, pj1 are factors of gj1 , there exists Aj1 ∈ GL(n,F), which maps every variable in var(gj1)

to a linear form in var(gj1) and maps every variable in x \ var(gj1) to itself, such that h′
k(Aj1x)

and pj1(Aj1x) are variable disjoint. Hence,

q · pj1 · pj2 · h′
k · h′

i(Aj1Aj2x) = q · pj1(Aj1x)pj2(Aj2x)h
′
k(Aj1x)h

′
i(Aj2x).

The polynomials h′
k and h′

i are factors of gj1 and gj2 respectively, which are variable disjoint as

j1 ̸= j2. Thus, q, pj1(Aj1x), pj2(Aj2x), h
′
k(Aj1x) and h′

i(Aj2x) are variable disjoint and we get

Ness(q · pj1 · pj2 · h′
k · h′

i) = Ness(h
′
1 · · ·h′

kh
′
i) =

∑
l∈[k]

Ness(h
′
l) +Ness(h

′
i),

which is a contradiction. Thus, j1 = j2. 2

2.2.3 PE for quadratic forms

A polynomial f is a quadratic form if it is homogeneous and deg(f) = 2. Recall that PE

for quadratic form (also called quadratic form equivalence and denoted QFE) is the following

problem: Given two n-variate quadratic forms f, g ∈ F[x], check if there exists an A ∈ GL(n,F)
such that f = g(A · x). If the answer is yes, output A ∈ GL(n,F) such that f = g(A ·
x). QFE over C,R,Q and finite fields are well-studied and these algorithms are based on

well-known results on classification of quadratic forms. We direct the interested reader to

[Ser73, Lam04, Ara11] for a comprehensive discussion on these classification results. In the

following fact, we state the complexity of QFE over different fields. Recall from Theorem 1.11

that the equivalence test for regular ROFs require oracle access to QFE. Then, the following

fact implies that the equivalence test for regular ROF given in Chapter 5 is efficient.

Over R and C, the model of computation is an arithmetic circuit with oracle access to a

root finding algorithm; every arithmetic operation in this circuit takes a unit time. Whereas,

over Q and finite fields, the model of computation is a Turing machine, where the running time

is measured in terms of bit operations.

70

Fact 2.19 (QFE over standard fields) Let n ∈ N be the number of variables present in each

of the two quadratic forms given as input to a QFE algorithm.

1. (Over R and C). There exists a poly(n, d) time algorithm over R and C.

2. (Over a finite field Fq). Let Fq be such that char(Fq) ̸= 2. There is a randomized

poly(n, log q) time QFE algorithm over Fq.

3. (Over Q) [Wal13]. There is a deterministic poly(n, β) time QFE algorithm over Q with

oracle access to integer factoring, where β is the bit length of the coefficients of the input

quadratic forms.

2.2.4 Full matrix algebra isomorphism

The full matrix algebra isomorphism (FMAI for short) over a field F is the following algorithmic

problem: given a basis B of an F-algebra A , where dimA = n2, determine whether A is

isomorphic as an F-algebra to Mn(F). If yes, output an F-algebra from A to Mn(F). In case

of a yes instance, the output of an FMAI algorithm is a basis A1, . . . , An2 of Mn(F) such that

if B = {B1, . . . , Bn2} then the required F-algebra isomorphism φ : A → Mn(F) is obtained as

follows: for every i ∈ [n2], φ(Bi) = Ai. Recall that the equivalence test for the determinant

given in Chapter 4 takes oracle access to FMAI over finite fields and over Q. In this section,

we record the results on FMAI over finite fields and over Q.

Theorem 2.2 [Theorem 5.1 of [Rón90]] Let F be a finite field. Given a basis of a F-algebra

A ⊆ Mm such that A and Mn are isomorphic F-algebras, an isomorphism φ : A → Mn can

be constructed in randomized poly(m, log |F|) time.

Theorem 2.3 [Theorem 1 of [IRS12]] There is a randomized algorithm with oracle access to

IntFact that takes input a basis of a Q-algebra A ⊆Mm such that A and Mn are isomorphic

F-algebras, and outputs an isomorphism φ : A →Mn with high probability. The algorithm runs

in time polynomial in the bit length of the input, if n is bounded.

Theorem 2.4 [Lemma 2.5 of [BR90]] There is a randomized algorithm that takes input a basis

of a Q-algebra A ⊆ Mm such that A and Mn are isomorphic F-algebras, and outputs an

isomorphism φ : A ⊗Q L → Mn(L) with high probability, where L is an extension field of Q
satisfying [L : Q] ≤ n. The algorithm runs in time polynomial in the bit length of the input.

71

Chapter 3

Structural and algorithmic results on

the NW polynomial

In this chapter, we prove the theorems given in Section 1.3.1. The content of this chapter

are present in [GS19], which is a joint work with Chandan Saha. There are two main

sections here: In Section 3.1, we present the characterization by symmetries and charac-

terization by circuit identities properties of NW and Section 3.2 contains three algorithmic

results for NW, namely a circuit testing algorithm, a flip theorem and a BD-PS equivalence

test for NW. These results are based on the symmetries of NW.

We recall the definition of the Nisan-Wigderson polynomial from Section 1.3.1. Let d be a

prime, k ∈ N, k << d, x = {xi,j : i, j ∈ Fd} and Fd[z]k = {h ∈ Fd[z] : deg(h) ≤ k}. Then,

NWd,k(x) =
∑

h∈Fd[z]k

d−1∏
i=0

xi,h(i),

The number of variables in NWd,k is d2. Although, our results hold for any k ∈ [1, d
4
− 5], we fix

k = dϵ for some arbitrarily chosen ϵ ∈ (0, 1) as in most of the lower bound proofs using NWd,k as

a hard polynomial, k is chosen to be dϵ. Henceforth, we would drop the subscripts from NWd,k

whenever the value of d is clear from the context. We would denote the elements of F and Fd by

α, β, γ and a, b, c respectively, and polynomial in F[x] and Fd[z] by f, g, q and h, p respectively.

We fix n = d2. For m ∈ N×, [m] = {0, . . . ,m − 1}. In this chapter, whenever we mention a

set-multilinear polynomial in F[x], it is always with respect to the partition x = ⊎i∈Fd
xi, i.e.,

every monomial of a set-mulitlinear polynomial has one variable from each xi.

In Section 3.1, we give the proofs of Theorems 1.1 and 1.2 along with a lemma that shows

that NW is characterized by circuit identities (Definition 2.25) over all fields. This lemma is

72

immensely helpful for the circuit testing algorithm for NW (Theorem 1.3) and a flip theorem

for NW (Theorem 1.4), which are given in Section 3.2. The circuit testing algorithm also has

an application in the BD-PS equivalence test for NW (Theorem 1.5) given in Section 3.2. This

equivalence test uses symmetries and some structural insights from the Lie algebra of NW. The

structure of the Lie algebra of NW, the structure of the symmetries of NW and some continuous

and discrete symmetries of NW were studied in the author’s master’s thesis [Gup17].

3.1 Structural results

This section is further divided into two subsections: The first one is on the characterization by

symmetries (Definition 2.24) property of NW over different fields and the next one is about the

characterization by circuit identities (Definition 2.25) property of NW.

3.1.1 Characterization by symmetries

We first recall Theorem 1.1 and then give its proof. Also, recall that Gf denotes the group of

symmetries of f . The rows and columns of matrices in GNW are labelled by the ordered set

((0, 0), (0, 1), . . . , (d − 1, d − 1)). Also, recall that an α ∈ F is called a d-th primitive root of

unity if αd = 1 and for every 1 ≤ r < d, αr ̸= 1.

Theorem 3.1 (NW characterized by its symmetries over C) Let d be a prime number, F
be a field containing a d-th primitive root of unity, and f be a homogeneous degree d polynomial

in d2 variables over F. If GNWd,k
⊆ Gf then f = α · NWd,k for some α ∈ F.

Before coming to the proof of the above theorem, we give the following useful claim.

Claim 3.1.1 (Useful symmetries of NW) Let d be a prime number and F be a field men-

tioned in Theorem 3.1. Then, the following matrices in Mn(F) are in GNW:

1. A diagonal matrix Aβ with Aβ((i, j), (i, j)) = βi ∈ F× for i, j ∈ [d] such that
∏

i∈Fd
βi = 1.

2. For h ∈ Fd[z]k, Ah satisfying Ah((i, j), (i, j + h(i))) = 1 for i, j ∈ [d] and other entries 0.

3. A diagonal matrix Aℓ with ((i, j), (i, j))-th entry as ζ i
ℓ·j for i, j ∈ [d], where ℓ ∈ [d−k−1].

Proof: By definition, Aβ, Aℓ ∈ GL(n,F). Note that for every h ∈ Fd[z]k, Ah is a permutation

matrix, which implies Ah ∈ GL(n,F). Observe that the polynomials NW(Aβx),NW(Aℓx) and

NW(Ahx) are obtained from NW(x) by replacing the variable xi,j with βi · xi,j, ζ
iℓ·j · xi,j and

xi,j+h(i) respectively, for i, j ∈ [d]. Let p ∈ Fd[z]k and mp =
∏

i∈Fd
xi,p(i). When Aβ is applied

on x, mp gets mapped to
∏

i∈[d] βi ·mp = mp as
∏

i∈[d] βi = 1, implying Aβ ∈ GNW. When Ah

73

is applied on x, mp gets mapped to mp+h; in other words, the monomials of NW are ‘shifted

around’ and so Ah ∈ GNW. When Aℓ is applied on x, mp is mapped to
∏

i∈[d] ζ
iℓ·p(i) ·mp. We

show below that
∏

i∈[d] ζ
iℓ·p(i) = 1 for every ℓ ∈ [d− k − 1], thereby implying Aℓ ∈ GNW.

Observation 3.1 For every p ∈ Fd[x]k and ℓ ∈ [d− k − 1],
∏

i∈[d] ζ
iℓ·p(i) = 1.

Proof: As ζ ̸= 1 is a d-th root of unity,
∏

i∈[d] ζ
iℓ·p(i) = ζ

∑
i∈Fd

iℓ·p(i), it is sufficient to show

that
∑

i∈Fd
iℓ · p(i) = 0. Suppose p(z) = arz

r + · · ·+ a0, where r ≤ k and ar, . . . , a0 ∈ Fd. Then

∑
i∈Fd

iℓ · p(i) = ar

(∑
i∈Fd

ir+ℓ

)
+ · · ·+ a0

(∑
i∈Fd

iℓ

)
.

Each summand in the R.H.S. of the above equation is of the form a ·
(∑

i∈Fd
is
)
, where 0 ≤ s ≤

d− 2. As
∑

i∈Fd
i0 = 0, assume that 1 ≤ s ≤ d− 2. Let b be a generator of F×

d . Then

∑
i∈Fd

is =
∑
i∈F×

d

is =
∑

t∈[d−1]

bt·s =
1− b(d−1)·s

1− bs
= 0, as bd−1 = 1 in Fd. (3.1)

Hence,
∑

i∈Fd
iℓ · p(i) = 0 implying

∏
i∈[d] ζ

iℓ·p(i) = 1. 2

2

Now we are ready to prove Theorem 3.1.

Proof: Let f ∈ F[x] be a non-zero homogeneous degree d polynomial such that GNW ⊆ Gf .

If f = 0, there is nothing to prove. Claim 3.1.1 implies that Aβ, Aℓ, Ah ∈ Gf for all choices of

β, ℓ, h mentioned in Claim 3.1.1. The presence of Aβ in Gf implies that f is a set-multilinear

polynomial. If not then there is a term α ·m in f , where α ∈ F× and m is a degree-d monomial

with no xt-variables for some t ∈ [d]. As F contains a d-th primitive root of unity, it is easy to

verify that |F| ̸= d+ 1. Thus, there exists a γ ∈ F× such that γd ̸= 1. Pick such a γ. Now, set

βi = γ for i ∈ [d]\{t} and βt = γ−(d−1) so that
∏

i∈[d] βi = 1 is satisfied. When Aβ is applied on

x, the term α ·m maps to αγd ·m ̸= α ·m, implying that f(Aβx) ̸= f(x).

As f is set-multilinear, every term of f is of the kind αp·mp, where αp ∈ F×,mp =
∏

i∈Fd
xi,p(i)

and p ∈ Fd[z] with deg(p) ≤ d−1. This is because any function from Fd to Fd can be represented

by a univariate polynomial of degree at most d − 1. We now show that deg(p) ≤ k for every

term αp ·mp in f . Suppose not. Then, there is a term αp ·mp such that p = arz
r+· · ·+a0, r > k

and ar ̸= 0. When Aℓ is applied on x, the term αp ·mp gets mapped to
∏

i∈[d] ζ
iℓ·p(i) · αp ·mp.

Now choose ℓ = d− r− 1 ≤ d− k− 2. That
∏

i∈[d] ζ
iℓ·p(i) ̸= 1 for this choice of ℓ can be argued

74

as follows: Since
∏

i∈[d] ζ
iℓ·p(i) = ζ

∑
i∈Fd

iℓ·p(i), it is sufficient to show that
∑

i∈Fd
iℓ · p(i) ̸= 0.

Expanding the sum,

∑
i∈Fd

iℓ · p(i) = ar

(∑
i∈Fd

id−1

)
+ ar−1

(∑
i∈Fd

id−2

)
+ · · ·+ a0

(∑
i∈Fd

id−r−1

)
.

As argued in Equation (3.1), the above sum is ar · (d − 1). As char(Fd) = d, ar · (d − 1) ̸= 0,

which implies f(Aℓx) ̸= f(x). Hence, every term αp ·mp of f must have deg(p) ≤ k. When Ah

is applied on x, a term αp ·mp maps to αp ·mp+h which implies αp = αp+h. Running over all

h ∈ Fd[z]k, we get αp = α for every p ∈ Fd[z]k, for some α ∈ F×. Hence, f = α · NW. 2

Now, we show that if F does not have a d-th primitive root of unity, the above result does

not hold. In particular, we prove Theorem 1.2, which we recall below.

Theorem 3.2 (NW not characterized by its symmetries over R) Let d be a prime num-

ber and F be either R,Q or a finite field satisfying d ∤ |F|− 1. Then, NWd,k is not characterized

by its symmetries over F.

Proof: As F does not contain a d-th primitive root of unity, it is easy to see that the matrices

Aℓ for ℓ ∈ [d− k− 1] mentioned in Claim 3.1.1 are not contained in GNW over F. To prove this

theorem, we need the following lemma, which says that every diagonal symmetry of NW over F
is of the first kind mentioned in Claim 3.1.1. We exploit this property and show that no matter

which other symmetry is present in GNW over F, NW is not characterized by its symmetries over

F . We first complete this proof assuming Lemma 3.1, which is proved later.

Lemma 3.1 (Diagonal symmetries over F) Let F be a field mentioned in Theorem 3.2. If

D ∈ GNW is a diagonal matrix over F then D = diag(β0, . . . , βd−1)⊗Id, where βi ∈ F× for every

i ∈ [d] and
∏

i∈[d] βi = 1.

Along with the above lemma, we also need the following result about the structure of GNW.

Theorem 3.3 ([Gup17]) Let d be a prime number and F be a field satisfying |F| >
(
d
2

)
and

char(F) ̸= d. If A ∈ GNW then A = DP , where D,P ∈ GNW are diagonal and permutation

matrices respectively.

A proof of the above theorem is given in Chapter 4 of [Gup17]. Let P1, . . . , Pr be all the

permutation matrices in GNW. We now show that there exists a set-multilinear polynomial

f ∈ F[x] such that f is not a non-zero scalar multiple of NW but GNW ⊆ Gf . Let h ∈ Fd[z] has

degree k + 1 and mh :=
∏

i∈[d] xi,h(i). Let S be the smallest set of monomials containing mh

75

such that for every monomial m ∈ S, m(Pix) ∈ S for every i ∈ {1, . . . , r}. Clearly, S is a set

of set-multilinear monomials. Suppose f ∈ F[x] is defined as follows

f =
∑
m∈S

m. (3.2)

It follows from Lemma 3.1 that if D ∈ GNW is a diagonal matrix and g ∈ F[x] is a set-

multilinear polynomial then D ∈ Gg. As f is set-multilinear, it is easy to see that all the

diagonal symmetries of NW are contained in Gf . By definition, all the permutation symmetries

of NW are also contained in Gf . Thus, GNW ⊆ Gf but f is not a scalar multiple of NW. 2

Proof of Lemma 3.1

Before proving Lemma 3.1, we give some useful results, one of which is the following claim.

This result forms the core of the analysis of the structure of the Lie algebra of NW and has

been proven in Chapter 3 of [Gup17].

Claim 3.1.2 ([Gup17]) Let F be a field such that char(F) ̸= d. Consider the linear system over

F obtained from the equations
∑

i∈[d] yi,h(i) = 0 for all h ∈ Fd[z]k, where {yi,j : i, j ∈ Fd} are the

variables. The solution space of the system consists of the solutions yi,0 = yi,1 = . . . = yi,d−1 = αi

for every i ∈ Fd, where α0, . . . , αd−1 ∈ F satisfy
∑

i∈[d] αi = 0, and these are the only solutions.

Some useful matrices. Let D ∈ Md2(F) such that the rows of D are labelled with {(a, b) :
a, b ∈ Fd}, where (a, b) is interpreted as bz + a ∈ Fd[z] and the columns of D are labelled by

{(l, r) : l, r ∈ Fd}, where (l, r) corresponds to xl,r. Then, the ((a, b), (l, r))-th entry of D is 1 if

xl,r is present in
∏

i∈Fd
xi,bi+a, else it is 0. The dimension of the Lie algebra of NW was studied

in [Gup17] by analysing the rank of D. In particular, we showed that over a field F satisfying

char(F) ̸= d, the d2 − d + 1 rows of D labelled by {(a, b) : a ∈ [d − 1], b ∈ [d]} are F-linearly
independent. Now, we define two useful matrices using D, which would be needed for the proof

of Lemma 3.1. Let u := d2 − d + 1 and x′ = x \ {x1,0, . . . , xd−1,0}. Let B be the u × d2 size

matrix obtained by restricting D to the rows indexed by {bz+ a : b ∈ [d], a ∈ [d− 1]}∪ {d− 1}
and C be the u× u matrix obtained by restricting B to the columns labelled by x′.

Claim 3.1.3 The absolute value of the determinant of C over Z is dr, where r = O(d2).

Proof: We know that

Bx =

(∑
i∈Fd

xi,0 · · ·
∑
i∈Fd

xi,(d−1)i · · ·
∑
i∈Fd

xi,d−2 · · ·
∑
i∈Fd

xi,(d−1)i+(d−2)

∑
i∈Fd

xi,(d−1)

)T

,

76

which gives the following set of linear polynomials in x.

S1 =

{∑
i∈Fd

xi,h(i) : h ∈ {bz + a : b ∈ [d], a ∈ [d− 1]} ∪ {d− 1}

}
.

Let S2 be the set of d2 − d+ 1 distinct linear polynomials in x defined as

S2 = {xi,j − xi,0 : i ∈ [d], j ∈ [d] \ {0}} ∪

{∑
i∈Fd

xi,0

}
.

Consider the following easy to prove fact.

Fact 3.1 Suppose S1, S2 are two sets of linear polynomials in n variables over F having same

solution spaces. Then, ⟨S1⟩ = ⟨S2⟩ over F.

Then, from Claim 3.1.2 and Fact 3.1, we get

⟨S1⟩ = ⟨S2⟩. (3.3)

Let A be the u× d2 coefficient matrix of the polynomials in S2. Then, Equation (3.3) implies

that there is an M ∈ GL(u,F) such that

M ·B = A. (3.4)

Let A1 be the u × u matrix obtained by restricting A to the columns indexed by x′. It is not

difficult to see from the structures of polynomials in S2 that A1 is invertible. Hence, Equation

(3.4) implies that M · C = A1 and so C is also invertible.

We claim that detZ(C) = dr for some r ∈ N. Suppose not. Then there exists a prime number

d′ ̸= d such that d′ divides detZ(C). Then, the determinant of C is 0 over the finite field Fd′ ,

which is a contradiction as char(Fd′) ̸= d. Since C is a 0/1 matrix, | detZ(C)| ≤ (d2 − d + 1)!,

which implies r = O(d2). 2

Now we generalize Claim 3.1.2 over the rings containing the inverse of d.

Claim 3.1.4 Let d be a prime number, R be a ring with multiplicative identity such that d is

invertible in R. Consider the linear system over R obtained from the equations
∑

i∈Fd
yi,h(i) = 0

for all h ∈ Fd[z]k, where yi,j : i, j ∈ [d] are variables. The solution space of the system consists

of the solutions yi,0 = yi,1 = . . . = yi,d−1 = αi for every i ∈ [d], where α0, . . . , αd−1 ∈ R satisfy∑
i∈[d] αi = 0, and these are the only solutions.

77

Proof: Recall matrices B and C. Observe that B · y = 0 implies the following

C · y′ = v,

where y′ = y \ {y1,0, . . . , yd−1,0} and the entries of v are linear forms in y1,0, . . . , yd−1,0. Let

Adj(C) be the adjoint of C. (Observe that entries of Adj(C) are integers and are well-defined

in R.) On multiplying the above equation with Adj(C), we get

Adj(C) · C · y′ = Adj(C) · v,

which implies

det(C) · y′ = v′, (3.5)

where v′ = Adj(C) · v. Clearly, every entry of v′ is a linear form in y1,0, . . . , yd−1,0. This

equation holds over any commutative ring R with multiplicative identity. In particular, it also

holds over a field F such that char(F) ̸= d. From Claim 3.1.2 we know yi,0 = yi,1 = . . . = yi,d−1

for every i ∈ [d] and
∑

i∈[d] yi,0 = 0. Thus, for i ∈ {1, . . . , d − 1}, j ∈ [d] \ {0} the entry of

v′ indexed by yi,j must be det(C) · yi,0, and for j ∈ [d] the entry indexed by y0,j must be

det(C) · (−(
∑d−1

i=1 yi,0)). From Claim 3.1.3, we know that det(C) = dr. As d is invertible in R,

on multiplying Equation (3.5) with (det(C))−1, we get the result. 2

Now, we are ready to prove Lemma 3.1.

Proof: Let F = R. Let D ∈ GNW be a diagonal matrix, and the ((i, j), (i, j))-th entry of D be

βi,j ∈ R for i, j ∈ [d]. We can express βi,j as βi,j = (−1)λi,j ·2γi,j , where λi,j ∈ {0, 1} and γi,j ∈ R.
On applyingD to x, a monomialmh =

∏
i∈Fd

xi,h(i) of NWmaps to
(∏

i∈Fd
(−1)λi,h(i) · 2γi,h(i)

)
·mh,

implying
∏

i∈Fd
(−1)λi,h(i) =

∏
i∈Fd

2γi,h(i) = 1. In other words,∑
i∈[d]

λi,h(i) = 0 over F2, for all h ∈ Fd[z]k, and∑
i∈[d]

γi,h(i) = 0 over R, for all h ∈ Fd[z]k.

By invoking Claim 3.1.2 (over F = F2 and over F = R) for the above two linear systems, we

get λi,0 = · · · = λi,d−1 = λi and γi,0 = · · · = γi,d−1 = γi for every i ∈ [d], where λi ∈ F2, i ∈ [d]

(similarly, γi ∈ R, i ∈ [d]) satisfy
∑

i∈[d] λi = 0 in F2 (similarly,
∑

i∈[d] γi = 0 in R). This implies

βi,0 = · · · = βi,d−1 = βi for every i ∈ [d], where β0, . . . , βd−1 ∈ R satisfy
∏

i∈[d] βi = 1. As Q is

a sub-field of R, NW can not have a diagonal symmetry other that diag(β0, . . . , βd−1)⊗Id over Q.

78

Let F be a finite field not containing a d-th primitive root of unity. Then, d ∤ |F| − 1. Let

R = Z|F|−1. We first argue that d is invertible over R. It follows from the pigeonhole principle

that to show d is invertible in R, it is sufficient to show that the map φd : R → R; a 7→ da is

injective. Let a1, a2 ∈ R such that da1 = da2, which implies d(a1− a2) = 0 in R. We also have

(|F| − 1) · 1 = 0 in R. If a1 ̸= a2 then we get a contradiction as d ∤ |F| − 1.

Let D = diag(β0,0, . . . , βd−1,d−1), where βi,j ∈ F for every i, j ∈ [d]. Then for every i, j ∈ [d],

βi,j can be written as βi,j = τ δi,j , where τ is a generator of F×. When D is applied to x, a

monomial mh =
∏

i∈Fd
xi,h(i) of NW gets mapped to (

∏
i∈Fd

τ δi,j)·mh. As D ∈ GNW,
∏

i∈Fd
τ δi,j =

1, which implies ∑
i∈[d]

δi,h(i) = 0 over R, for all h ∈ Fd[z]k.

By invoking Claim 3.1.4 over R for the above system, we get the desired result. 2

3.1.2 Characterization by circuit identities

In this section, we prove the following lemma. Recall Definition 2.25 from Chapter 2.

Lemma 3.2 The polynomial NW is characterized by circuit identities over any field F.

Proof: Recall, n = d2. We show that if an n-variate polynomial f ∈ F[x] satisfies the following
polynomial identities then f = α · NW for some α ∈ F. The rows and columns of the n × n

matrices in the identities below are indexed by the ordered set ((0, 0), (0, 1), . . . , (d− 1, d− 1)).

1. q1(f(Ai(u)x), f(x), u) = 0, for i ∈ [d], where q1(z1, z2, u) := z1 − u · z2. Here, Ai(u) ∈
F[u]n×n is a diagonal matrix with the ((i, j), (i, j))-th entry as u, for every j ∈ [d], and

the other diagonal entries as 1.

2. q2(f(Aa,rx), f(x)) = 0, for a ∈ F×
d and r ∈ [k + 1], where q2(z1, z2) := z1 − z2. Here,

Aa,r ∈ Fn×n with the ((i, j), (i, j + a · ir))-th entry as 1, for every i, j ∈ Fd, and the other

entries as 0.

3. q3(f(Atx)) = 0, for t ∈ [d]\[k+1], where q3(z) := z. Here, At ∈ Fn×n is a diagonal matrix

with the ((t, 0), (t, 0))-th and the ((i, j), (i, j))-th entries as 0, for every i ∈ [k + 1], j ∈
[d]\{0}, and the remaining diagonal entries as 1.

Observe that there are poly(n) many identities above: d many under item 1, (d−1)(k+1) many

under item 2, and (d− k − 1) many under item 3. Also, it is clear that every qi is computable

by a constant size circuit, and the matrices Ai(u), Aa,r and At are computable by poly(n) size

79

circuits. The identities under item 1 imply that f is a set-multilinear, homogeneous, degree-d

polynomial. If not then f contains a term β ·m, where the degree of the xi-variables in m is

e ̸= 1 for some i ∈ [d]. On applying Ai(u) to x, the term β ·m gets mapped to ueβ ·m ̸= uβ ·m,

implying f(Ai(u) · x) ̸= u · f(x), i.e., q1(f(Ai(u) · x), f(x), u) ̸= 0.

As f is set-multilinear and homogeneous, every term of f looks like αp ·mp, where αp ∈ F×

and mp =
∏

i∈Fd
xi,p(i) for some p ∈ Fd[z] with deg(p) ≤ d − 1. When Aa,r is applied on x, for

some a ∈ F×
d and r ∈ [k + 1], a term αp ·mp maps to αp ·mp+h, where h = azr ∈ Fd[z]k. Since,

f satisfies the identities in item 2, f(Aa,r · x) = f(x) and so αp ·mp+h is also a term in f . By

varying a ∈ F×
d and r ∈ [k + 1], we see that f contains the term αp ·mp+h for every h ∈ Fd[z]k.

Thus, there is a set S1 ⊆ Fd[z]d−1 such that f is of the form,

f =
∑
p∈S1

αp ·
∑

h∈Fd[z]k

mp+h. (3.6)

If f ̸= α ·NW for all α ∈ F, then there is a p ∈ Fd[z] with deg(p) > k such that f contains a

term αp ·mp for some αp ∈ F×. Let h ∈ Fd[z]k such that h(i) = −p(i) for all i ∈ [k + 1]. From

Equation (3.6), f contains the term αp · mp+h. As deg(p) > k, h(z) ̸= −p(z). So, there is a

t ∈ [d]\[k+1] such that p(t)+h(t) ̸= 0. On applying At to x, only those terms of f survive that

contain the variables x0,0, . . . , xk,0 but do not contain xt,0, and αp ·mp+h is such a term. Hence,

q3(f(At · x)) = f(At · x) ̸= 0. This contradicts f satisfying the identities in item 3. Therefore,

f = α · NW, for some α ∈ F. On the other hand, any f = α · NW satisfies all the identities.

2

3.2 Algorithmic results

Now, we present three algorithmic results for NW, namely a circuit testing algorithm, a flip

theorem and a BD-PS equivalence test in three subsections. In the following two sections,

whenever we say a size-s arithmetic circuit, we would mean an arithmetic circuit C of size s,

where the degree of the polynomial computed by C (also called the degree of C) is bounded by

δ(s), where δ : N→ N is a polynomial function.

3.2.1 Circuit testability

We recall Theorem 1.3 from Section 1.3.1.

Theorem 3.4 (Circuit testing) There is a randomized algorithm that takes input black-box

access to a size-s arithmetic circuit C over a finite field F, where |F| ≥ 4 · δ(s), and determines

whether or not C = NW with probability 1− exp(−s), using poly(s) field operations.

80

Proof: Consider the following algorithm.

Algorithm 5 Circuit-testing(C)
Input: Black-box access to a circuit C of size s over F.
Output: ‘True’ if C(x) = NW, else ‘False’.

1. Pick a ∈r Fn and µ ∈r F.
2. for i ∈ [d], a ∈ F×

d , r ∈ [k + 1], t ∈ [d]\[k + 1] do

3. if (C(Ai(µ) · a)− µ · C(a) ̸= 0) or (C(Aa,r · a)− C(a) ̸= 0) or (C(At · a) ̸= 0) then

4. Return ‘False’.

5. end if

6. end for

7. Let b ∈ Fn be an assignment obtained by setting xi0 = 1, for i ∈ [d], and all other variables

to zero. If f(b) ̸= 1, return ‘False’. Else, return ‘True’.

Let C be a given circuit of size s over F that computes an n-variate polynomial f = C(x).

Naturally, deg(f) ≤ δ(s). Algorithm 5 intends to check, in the for loop 2-6, if f satisfies the

identities given in the proof of Lemma 3.2. If f ̸= α ·NW for all α ∈ F, then at least one of the

identities is not satisfied. For the polynomials q1, q2 and q3 defined in the proof of Lemma 3.2,

observe that the degree of q1(f(Ai(u) ·x), f(x), u) is bounded by 2 · δ(s), whereas the degrees of
q2(f(Aa,rx), f(x)) and q3(f(Atx)) are at most δ(s). As |F| ≥ 4 ·δ(s), by Schwartz-Zippel lemma

[Zip79, Sch80], step 4 returns ‘False’ with probability at least 1
2
. If f = α · NW for some α ∈ F

then all the identities are satisfied, and step 7 ensures that α = 1. Clearly, the algorithm uses

poly(s) field operations. The success probability is boosted from 1
2
to 1− exp(−s) by repeating

the algorithm poly(s) times. 2

3.2.2 A flip theorem

Theorem 3.5 (Flip theorem) Suppose NW is not computable by size-s arithmetic circuits

over F, where |F| ≥ 4 · δ(s). Then, there exist a1, . . . , am ∈ Fn, where m = poly(s) such that

for every size-s arithmetic circuit C, there is an ℓ ∈ [m] satisfying C(aℓ) ̸= NW(aℓ). A set

of randomly generated points a1, . . . , am ∈r Fn has this property with probability 1 − exp(−s).
Moreover, black-box derandomization of PIT for size-(10s) circuits over F using poly(s) field

operations implies a1, . . . , am can be computed deterministically using poly(s) field operations.

Proof: Let C be a circuit of size s over a finite field F. As NW is not computable by size-

s circuits over F (by assumption), C(x) − NW ̸= 0. The polynomial C(x) − NW has degree

81

bounded by δ(s), as δ(s) ≥ d. By Schwartz-Zippel lemma, for any m ∈ N,

Pr
a1,...,am∈rFn

[C(aℓ) = NW(aℓ), for all ℓ ∈ [m]] ≤
(
δ(s)

|F|

)m

.

The number of size-s circuits over F is at most 2s
2+s · |F|s (as there are 2s ways to label the

nodes as + and × gates, at most 2s
2
ways to choose the adjacency matrix of the underlying

directed graph, and |F|s ways to label the edges of a given graph). Therefore,

Pr
a1,...,am∈rFn

[∃ a size-s circuit C such that C(aℓ) = NW(aℓ), for all ℓ ∈ [m]] ≤ |F|s·2s2+s·
(
δ(s)

|F|

)m

.

By fixing m = s2+2s, the above probability can be upper bounded by exp(−s) as |F| ≥ 4 ·δ(s).
Now, let us show that derandomization of black-box PIT implies a1, . . . , am can be computed

deterministically. Consider the class C of size-(10s) circuits over F on n + 1 variables x ⊎ u.

Assume that H = {(b0, µ0), . . . , (bw−1, µw−1)} ⊆ Fn+1 is a hitting set1 for C , and H is

computable using poly(s) field operations. Let P ⊆ Fn be the set of points that includes

b0, . . . ,bw−1 along with Ai(µℓ) · bℓ, Aa,r · bℓ and At · bℓ, where Ai, Aa,r, At are the matrices

considered in Lemma 3.2 for every ℓ ∈ [w], i ∈ [d], a ∈ F×
d , r ∈ [k + 1] and t ∈ [d]\[k + 1].

Finally, P also contains the point b ∈ Fn obtained by setting xi,0 = 1, for i ∈ [d], and all other

variables to zero. Observe that |P| = poly(s) as |H | = poly(s).

Claim 3.2.1 Let C be a size-s arithmetic circuit over F. Then, there exists an a in P such

that C(a) ̸= NW(a).

Proof: As NW is not computable by size-s circuits, f = C(x) ̸= α · NW for all α ∈ F× 2.

Hence, at least one of the identities, in the proof of Lemma 3.2, is not satisfied by f unless

f = 0. If f = 0 then f(b) ̸= NW(b) = 1, and so let f ̸= 0. The degrees of the polyno-

mials q1(f(Ai(u)x), f(x), u), q2(f(Aa,rx), f(x)) and q3(f(Atx)) mentioned in Lemma 3.2 are

upper bounded by 2 · δ(s). Also, it can be verified that the polynomials q1(f(Ai(u)x), f(x), u),

q2(f(Aa,rx), f(x)) and q3(f(Atx)) are computable by size-(10s) circuits on n + 1 variables

x ⊎ u. Hence, H is a hitting-set for these polynomials. Without loss of generality, let

q1(f(Ai(u)x), f(x), u) = 0 be an identity that is not satisfied by f . Then, there is a (bℓ, µℓ) ∈H

such that q1(f(Ai(µℓ)bℓ), f(bℓ), µℓ) ̸= 0 implying f(Ai(µℓ)bℓ) ̸= µℓ · f(bℓ). On the other hand,

1A set of points H is a hitting-set for a circuit class C if for every circuit C ∈ C computing a non-zero
polynomial, there exists a point b ∈H such that C(b) ̸= 0. Black-box derandomization of identity testing for
a circuit class amounts to constructing a hitting-set for the class.

2If α · NW is computable by a size-s circuit C, for some α ∈ F×, then NW is also computable by a size-s
circuit by appropriately scaling some of the edges feeding into the output gate of C by α−1.

82

NW(Ai(µℓ)bℓ) = µℓ ·NW(bℓ) as NW satisfies all the identities. Therefore, either f(Ai(µℓ)bℓ) ̸=
NW(Ai(µℓ)bℓ) or f(bℓ) ̸= NW(bℓ). This implies the claim as Ai(µℓ)·bℓ and bℓ belong to P. 2

The proof of the theorem follows from the above claim and by observing that P can be

constructed from H using poly(s) field operations. 2

3.2.3 Equivalence test for NW

First, we show a randomized polynomial time reduction of equivalence test for NW to block-

permuted ET (in short, BP ET) in Lemma 3.3. Recall from Section 1.4.1 that a BP-equivalence

test for NW checks if there exists an invertible block-permuted matrix A such that the given

polynomial f satisfies f = NW(Ax). A d2 × d2 matrix A is said to be block-permuted with

block size d if there exists a d2 × d2 block-diagonal matrix B with block size d and a d × d

permutation matrix P such that A = B · (P ⊗ Id). For the following lemma, we assume that

univariate polynomial factorization over F can be done in polynomial time.

Lemma 3.3 (Reduction to BP ET) Let F be such that char(F) ̸= d and |F| ≥ 2d2. There

is a randomized algorithm that takes input black-box access to a degree d polynomial f ∈ F[x]
and does the following with high probability: It outputs black-box access to a degree d polynomial

g ∈ F[x] such that f is equivalent to NW if and only if g is BP equivalent to NW. Moreover, the

transformation for f can be recovered efficiently from the transformation for g. This algorithm

uses poly(d) many field operations.

Proof:

Algorithm 6 Reduce-ET-to-BP-ET(f)

Input: Black-box access to f ∈ F[x].
Output: If f is equivalent to NW then black-box access to a polynomial which is BP equiv-

alent to NW, otherwise ‘Fail’.

1. Compute a basis L1, . . . , Lr of gf using Fact 2.16. If r ̸= d− 1, output ‘Fail’.

2. Let S ⊆ F, |F| = d2. Let L = a1L1 + · · · + arLr, where ai ∈r S. Compute D ∈ GL(d2,F)
s.t. D−1 · L ·D = diag(β1, . . . , βd)⊗ Id, where βj ∈ F. If no such D exists, output ‘Fail.’

3. Output black-box access to f(Dx).

For arguing the correctness of the above algorithm, we need the following lemma from

[Gup17]. See Chapter 3 of [Gup17] for a proof of this lemma.

83

Lemma 3.4 [Gup17] Let d be a prime number, k ≥ 1 and F be a field having characteristic

not equal to d. Then, dim gNW = d− 1 over F and the diagonal matrices B1, . . . , Bd−1 (defined

below) form an F-basis of gNW. For ℓ ∈ {1, . . . , d− 1},

(Bℓ)(i,j),(i,j) =

1, if i = 0, j ∈ [d]

−1, if i = ℓ, j ∈ [d]

0, otherwise.

Proof of correctness. It follows from Lemma 3.4 and Fact 2.10 that if f is equivalent to NW

then dim gf = d− 1. The correctness of Steps 2 and 3 follows from the next claim.

Claim 3.2.2 With high probability, matrix D can be computed using poly(d) field operations.

Moreover, f is equivalent to NW if and only if f(Dx) is BP equivalent to NW.

2

Analysis of the running time. Fact 2.16 implies that a basis of gf can be computed in ran-

domized poly(d, ρ) time. We can compute a D mentioned in the algorithm by solving a system

of linear equations in the entries of D originating from D−1 · L ·D = diag(β1, . . . , βd)⊗ Id.

Proof of Claim 3.2.2. Suppose f = NW(Ax) for A ∈ GL(d2,F). Then, R1, . . . , Rd−1 is a

basis of gNW, where Li = A−1 · Ri · A (Fact 2.10). We know that L = a1L1 + · · · + ad−1Ld−1,

where a1, . . . , ad−1 are chosen uniformly at random from S. Pretend that a = {a1, . . . , ad−1}
are formal variables. Then, L = A−1 · R · A, where R = a1R1 + · · · + ad−1Rd−1. Lemma 3.4

implies that R = diag(α1, . . . , αd) ⊗ Id, where α1, . . . , αd are linear forms in a-variables, and

αd = −(
∑d−1

i=1 αi). As |F| ≥ d2, Lemma 3.4 implies that there is a setting of the a-variables that

makes α1, . . . , αd distinct field elements. In other words, α1, . . . , αd are pairwise distinct linear

forms in a-variables. Hence, from the Schwartz-Zippel lemma, on setting a1, . . . , ad uniformly

at random from S, α1, . . . , αd become distinct elements of F with high probability.

Compute the characteristic polynomial (Definition 2.21) of L, denoted hL(z) and factorize

it. As f is equivalent to NW, L and R are similar matrices and their characteristic polynomials

are the same. Then hL(z) factorizes as hL(z) = (z−β1)
d · · · (z−βd)

d, for distinct β1, . . . , βd ∈ F
such that there is an (unknown) permutation σ on [d] such that βi = ασ(i) for i ∈ [d]. Suppose

B = diag(β1, . . . , βd)⊗ Id. Let D be a d2 × d2 size formal matrix such that

L ·D = D ·B. (3.7)

Solve the system of linear equations obtained from Equation (3.7) (by treating the entries of

84

D as variables) and pick a random matrix from the solution space; call this solution matrix D.

With high probability D is invertible (as D = A−1P is also in the solution space for a suitable

permutation matrix P). Equation (3.7) implies that

R · A ·D = A ·D ·B.

Recall that R = diag(α1, . . . , αd) ⊗ Id and B = diag(ασ(1), . . . , ασ(d)) ⊗ Id. As α1, . . . , αd are

distinct, it is an easy exercise to show that AD is a block permuted matrix. Hence f(Dx) is

BP equivalent to NW.

A BD-PS equivalence test for NW

We saw in Lemma 3.3 that an efficient BP equivalence test for NW immediately implies an

efficient equivalence test for it. In this section, we give a special case of the BP equivalence

test, called BD-PS equivalence test (or block-diagonal permutation scaling equivalence test).

Recall that in the BD-PS equivalence test, the underlying matrix is a product of a block-

diagonal permutation matrix (recall the definition of a block-diagonal permutation matrix from

Section 1.3.1) and an invertible scaling (or diagonal) matrix. We hope that this variant of ET

would give us some useful insights on the BP ET for NW. We first recall Theorem 1.5.

Theorem 3.6 (BD-PS ET for NW) Let d be a prime number, F be a finite field such that

d ∤ (|F| − 1) and |F| ≥ 4d. There is a randomized poly(d, log |F|) time algorithm that takes

input black-box access to a degree d polynomial f ∈ F[x] and correctly decides if f is BD-PS

equivalent to NW with high probability. If the answer is yes then it outputs a BD-PS matrix

C ∈ GL(d2,F) such that f = NW(Cx).

The BD-PS ET has two steps: First we reduce the BD-PS equivalence test to scaling equiv-

alence test and then solves the scaling equivalence test. In the scaling equivalence test, it is de-

termined whether the given polynomial is equivalent to NW via an invertible scaling matrix. We

assume that the given polynomial f is BD-PS equivalent to NW and the equivalence test com-

putes a block-diagonal permutation matrix A and an invertible scaling matrix B. Thereafter,

it uses a circuit testing algorithm (Theorem 3.4) to determine whether f(A−1B−1x) = NW.

1. Reduction of BD-PS equivalence test to scaling equivalence test.

Assume f = NW(BAx), where A is a block-diagonal permutation matrix and B is an invertible

scaling matrix. Algorithm 7 does not explicitly use the knowledge of the entries of B. Thus, we

may assume without loss of generality that B = Id2 . Then, the task reduces to solving the BD

permutation equivalence test for NW. We identify matrix A with d permutations σ0, . . . , σd−1

85

on [d] as A = diag(Aσ0 , . . . , Aσd−1
), where Aσi

is the d × d permutation matrix corresponding

to σi ,i.e., for i, r, s ∈ [d], Aσi
(r, s) = 1 if and only if σi(r) = s.

Observation 3.2 Suppose f is BD permutation equivalent to NW, i.e., f = NW(Ax). Then,

a monomial
∏

i∈Fd
xi,h(i) of NW gets mapped to a unique monomial

∏
i∈Fd

xi,σi(h(i)) of f .

Algorithm 7 starts by assuming that σ0(0) = · · · = σk(0) = 0 and σ0(1) = 1. The symmetries

of NW allow us to make this assumption without loss of generality (see Claim 3.2.3). The aim

is to figure out all the entries of σi
1. This is done by carefully picking a bunch of polynomials

from Fd[z]k (which we call nice polynomials) and then exploiting the association between f and

NW mentioned in Observation 3.2 using these polynomials. The algorithm works over every

field. The following algorithm gradually discovers the entries of σ0, . . . , σd−1.

Algorithm 7 BD-Permutation-Equivalence(f)

Input: Black-box access to f ∈ F[x].
Output: Black-box access to g ∈ F[x] s.t. if f is BD-PS equivalent to NW then g is scaling

equivalent to NW.

1. Assume that σ0(0) = · · · = σk(0) = 0 and σ0(1) = 1 (Claim 3.2.3).

2. Construct a list of nice polynomials in Fd[z]k (Definition 3.1) as mentioned in Claim 3.2.4.

3. Recover (d − k) distinct entries of each permutation σ0, . . . , σd−1 as mentioned in Claim

3.2.5.

4. Let N be a d × d matrix, where the columns and rows are indexed by (σ0, . . . , σd−1) and

(0, . . . , d− 1) respectively and for l, i ∈ [d], N(l, i) := σi(l). Pick l0, . . . , lk ∈ [d] such that in

each of the rows indexed by l0, . . . , lk at least k + 1 entries are known (Claim 3.2.6).

5. Use l0, . . . , lk ∈ [d] to recover all the entries of the rows of N as mentioned in Claim 3.2.7.

Compute A = diag(Aσ0 , . . . , Aσd−1
) and return black box access to f(A−1x)

Proof of correctness. The correctness of Algorithm 7 follows from the following chain of

claims, which are proved immediately after this proof. In these claims, ρ is the bit complexity

of the coefficients of f .

Claim 3.2.3 (Canonical form of σ0, . . . , σd−1) Suppose f ∈ F[x] is BD permutation equiva-

lent to NW. Then, there exist permutations σ0, . . . , σd−1 on [d] such that σ0(0) = · · · = σk(0) =

0, σ0(1) = 1 and A = diag(Aσ0 , . . . , Aσd−1
) satisfies f = NW(Ax).

1σi is treated as an ordered tuple (σi(0), . . . , σi(d− 1))

86

The above claim helps to kick-start Algorithm 7. After that, we compute certain nice

polynomials, defined below.

Definition 3.1 (Nice polynomials) A set {h0, . . . , hd−k−1} ⊆ Fd[z]k is called a list of nice

polynomials if the following properties are satisfied:

1. For distinct r1, r2 ∈ [d− k], hr1(ℓ) = hr2(ℓ) for every ℓ ∈ [k] and hr1(ℓ) ̸= hr2(ℓ) for every

ℓ ∈ {k, . . . , d− 1}.

2. For every r ∈ [d− k], σ0(hr(0)), . . . , σk(hr(k)) can be computed in poly(d, ρ) time.

Claim 3.2.4 A list of nice polynomials {h0, . . . , hd−k−1} can be computed in poly(d, ρ) time.

Using the list of nice polynomials, we recover d− k distinct entries of σ0, . . . , σd−1.

Claim 3.2.5 Given a list of nice polynomials {h0, . . . , hd−k−1}, we can recover d − k distinct

entries in each of σ0, . . . , σd−1 in poly(d, ρ) time.

The matrix N defined in the algorithm is filled with some known entries and some unknowns.

The goal is to recover all the entries of N which is accomplished by the following claims.

Claim 3.2.6 Suppose k ∈ [1, d
3
]. Then, there exist k + 1 rows in N such that in each of these

rows at least k + 1 entries are known.

Claim 3.2.7 Using k + 1 rows of N indexed by l0, . . . , lk (as mentioned in Step 4), we can

recover all the entries of N in poly(d, ρ) time.

This completes the proof of correctness of Algorithm 7. Now, we give the proofs of these

claims one by one.

Proof of Claim 3.2.3. Since f ∈ F[x] is BD permutation equivalent to NW, there exist

permutations π0, . . . , πd−1 on [d], such that A′ = diag(Aπ0 , . . . , Aπd−1
) satisfies f = NW(A′x).

Let h ∈ Fd[z]k such that π0(0) = h(0), . . . , πk(0) = h(k). For i ∈ [d], define σi : Fd → Fd as

σi(l) := α · (πi(l)− h(i)) for all l ∈ [d],

where α := 1
π0(1)−h(0)

. Note that for every i ∈ [d], σi is well defined as π0(1) ̸= h(0). The

following observation can be verified easily.

Observation 3.3 σ0, . . . , σd−1 are permutations on Fd. Also, σ0(0) = · · · = σk(0) = 0 and

σ0(1) = 1.

87

For i ∈ [d], let τi : Fd → Fd be defined as τi(l) := α · (l − h(i)) for every l ∈ Fd. Observe that

τ0, . . . , τd−1 are permutations on Fd and for every i ∈ [d]

σi = τi ◦ πi. (3.8)

Let A = diag(Aσ0 , . . . , Aσd−1
), B′ = diag(B′

τ0
, . . . , B′

τd−1
). As A,A′, C are block diagonal matri-

ces, the above equation implies

A = B′ · A′.

Observation 3.4 Let B′ be the matrix defined above. Then, B′ ∈ GNW.

Proof: On applying B′ on x, xi,j gets mapped to xi,α·(j−h(i)) for every i, j ∈ [d]. This shows

B′ ∈ GNW (similar to item 2 of Claim 3.1.1). 2

Since NW(x) = NW(B′x), we get f = NW(B′A′x) = NW(Ax). This completes the proof.

Proof of Claim 3.2.4. We create two lists of d− k distinct polynomials in Fd[z]k, namely the

p-list and the h-list as described below. Then we show that the h-list is a list of nice polynomials.

A procedure to create h-list and p-list:

1. Interpolate (0, 0), . . . , (k, 0) to get p0 ∈ Fd[z]k and then interpolate (0, 1), (1, 0), . . . , (k −
1, 0), (k, 0) to get h0 ∈ Fd[z]k. (In this case, p0 = 0 and h0 ̸= 0.)

2. Interpolate (0, 0), . . . , (k − 1, 0), (k + 1, h0(k + 1)) to get p1 ∈ Fd[z]k and then interpolate

(0, 1), (1, 0) . . . , (k − 1, 0), (k, p1(k)) to get h1 ∈ Fd[z]k.

3. For r ∈ {2, . . . , d− k − 1} do the following.

(a) For r1 = 1 to r, interpolate (0, 0), . . . , (k − 1, 0), (k + r1, hr−1(k + r1)) to get p̃r1 ∈
Fd[z]k. (It is argued in Observation 3.6 that p̃1, . . . , p̃r are distinct polynomials.)

Pick a polynomial from p̃1, . . . , p̃r that is different from each of p0, . . . , pr−2. Set that

polynomial to be pr. (It is argued in Observation 3.7 that no polynomial amongst

p̃1, . . . , p̃r is equal to pr−1, and so pr ̸= pi for all i ∈ [r].)

(b) Interpolate (0, 1), (1, 0), . . . , (k − 1, 0), (k, pr(k)) to get hr ∈ Fd[z]k.

We note some easy-to-verify observations about these lists.

88

Observation 3.5 1. The p-list and h-list can be computed in poly(d) time and they do not

have a polynomial in common.

2. All polynomials in the p-list (similarly in the h-list) agree on k points, namely 0, . . . , k−1.

3. For distinct r, r′ ∈ [d − k], pr and hr agree on k points 1, . . . , k, and pr and hr′ agree on

k − 1 points 1, . . . , k − 1.

The following two sub claims imply that {h0, . . . , hd−k−1} is a list of distinct nice polynomials.

Subclaim 3.2.1 Each of the p-list and h-list contains d− k distinct polynomials.

Proof: For some r ∈ [d− k], item 2 of Observation 3.5 implies that if p0, . . . , pr are pairwise

distinct then h0, . . . , hr are also pairwise distinct. We show that p0, . . . , pr are pairwise distinct

polynomials by induction on r. The base case, i.e. r = 0 is trivially satisfied. Suppose the

hypothesis holds for r − 1, i.e. p0, . . . , pr−1 are pairwise distinct. This implies h0, . . . , hr−1

are also pairwise distinct. We construct r polynomials p̃1, . . . p̃r in Fd[z]k by interpolating

(0, 0), . . . , (k−1, 0), (k+1, hr−1(k+1)); . . . ; (0, 0), . . . , (k−1, 0), (k+r, hr−1(k+r)) respectively.

Consider the following observations.

Observation 3.6 p̃1, . . . , p̃r are distinct polynomials in Fd[z]k.

Proof: Suppose not. Then, there exist distinct r1, r2 ∈ {1, . . . , r}, such that p̃r1 = p̃r2 . This

implies that the polynomials p̃r1 and hr−1 agree on k + 1 points 1, . . . , k − 1, k + r1 and k + r2,

which is a contradiction because p̃r1 and hr−1 are distinct polynomials (recall that p̃r1(0) = 0

whereas hr−1(0) = 1). 2

Observation 3.7 For every r1 ∈ {1, . . . , r}, p̃r1 ̸= pr−1.

Proof: Suppose not. Then, there exists r1 ∈ {1, . . . , r} such that, p̃r1 = pr−1. Then,

pr−1(k + r1) = p̃r1(k + r1) = hr−1(k + r1), which along with item 3 of Observation 3.5 implies

that hr−1 and pr−1 agree on k + 1 points 1, . . . , k, k + r1, which can not happen as pr−1 and

hr−1 are distinct polynomials. 2

Hence, p0, . . . , pr are distinct polynomials. This completes the proof of Subclaim 3.2.1 2

The following fact would be required to prove that {h0, . . . , hd−k−1} is a list of nice polyno-

mials.

Fact 3.2 Suppose h ∈ Fd[z]k and i0, . . . , ik ∈ [d] be distinct elements. Given σi0(h(i0)), . . . , σik(h(ik)),

we can compute σi(h(i)) for every i ∈ [d] \ {i0, . . . , ik} in poly(d, ρ) time.

89

Proof: Since f is BD permutation equivalent to NW, Observation 3.2 implies that on setting

xi0,σi0
(h(i0)) = · · · = xik,σik

(h(ik)) = 1 and other variables x equal to zero, f reduces to

c ·
∏

i∈[d]\{i0,...,ik}

xi,σi(h(i)), where c ∈ F.

It is easy to show that in this case σi(h(i)) for i ∈ [d]\{i0, . . . , ik} can be recovered in poly(d, ρ)

time from black-box access to f . 2

Subclaim 3.2.2 For every r ∈ [d− k], σ0(hr(i)), i ∈ [k] can be computed in poly(d, ρ) time.

Proof: For every r ∈ [d − k], σ0(hr(0)) = 1, σ1(hr(1)) = · · · = σk−1(hr(k − 1)) = 0 from

Step 1 of Algorithm 7. We show that σk(hr(k)) can be computed efficiently by induction on r.

When r = 0, we know that σk(h0(k)) = σk(0) = 0. Thus, the base case holds. Suppose that the

hypothesis holds for r−1, i.e., we can efficiently compute σk(hr−1(k)). Recall that pr is computed

by interpolating (0, 0), . . . , (k − 1, 0), (k + r1, hr−1(k + r1)) for some r1 ∈ {1, . . . , r}. Using

Fact 3.2 on σ0(hr−1(0)), . . . , σk−1(hr−1(k − 1)), σk(hr−1(k)) we compute σk+r1(hr−1(k + r1)) =

σk+r1(pr(k + r1)) and then using Fact 3.2 again on σ0(0), . . . , σk−1(0), σk+r1(pr(k + r1)), we

compute σk(pr(k)), which is equal to σk(hr(k)). 2

This completes the proof of Claim 3.2.4.

Proof of Claim 3.2.5. We first show that using S := {h0, . . . , hd−k−1}, we can recover (d−k)

distinct entries of each of the permutations σk+1, . . . , σd−1. Fix an i ∈ {k + 1, . . . , d − 1}. As

h0, . . . , hd−k−1 are nice polynomials, for every h ∈ {h0, . . . , hd−k−1}, σ0(h(0)), . . . , σk(h(k)) can

be computed efficiently. By invoking Fact 3.2 on σ0(h(0)), . . . , σk(h(k)) for every such h, we

get σi(h0(i)), . . . , σi(hd−k−1(i)). Since h1(i) = h2(i) for every h1 ̸= h2 ∈ S, and for every i ∈ [k],

we get that for every ℓ ∈ {k, . . . , d − 1}, h1(ℓ) ̸= h2(ℓ). From item 2 of Observation 3.5 and

Subclaim 3.2.1 and the fact that σi is a permutation, σi(h0(i)), . . . , σi(hd−k−1(i)) are d − k

distinct entries of σi.

Now using the d − k known entries of σk+1, we recover d − k distinct entries of each of

σ0, . . . , σk. Suppose there exist distinct l0, . . . , ld−k−1 ∈ [d], such that σk+1(l0), . . . , σk+1(ld−k−1)

are known. Fix an i ∈ [k + 1]. For s ∈ [d − k], let ps be a polynomial in Fd[z]k obtained by

interpolating (i′, 0), (k + 1, ls) for i
′ ∈ [k + 1] \ {i}. Observe that these are d− k distinct poly-

nomials. Further, for s1 ̸= s2, ps1 and ps2 agree on k points i′ ∈ [k+1] \ {i} and ps1(i) ̸= ps2(i),

which implies that (σi(p0(i)), . . . , σi(pd−k−1(i))) is a tuple of distinct entries. Using Fact 3.2 on

σi′(ps(i
′)), σk+1(ps(k+1)) for i′ ∈ [k+1]\{i}, we obtain d−k distinct values σi(ps(i)) for every

s ∈ [d − k]. This shows that for every i ∈ [k + 1], we can compute d − k distinct entries of σi

90

efficiently. This completes the proof.

Proof of Claim 3.2.6. Suppose this is not true. Then, N has at most k rows such that in

each row at least k + 1 entries are known, and in the remaining at least d− k rows at most k

entries are known. This implies that at most d · k+ (d− k)k entries are known in N . We know

exactly d(d − k) entries in N due to Claim 3.2.5. Thus, d(d − k) ≤ 2dk − k2, which implies

k > d
3
. This is a contradiction.

Proof of Claim 3.2.7. First we show how to recover all the entries of the rows of N indexed

by l0, . . . , lk. Given that in the rows of N indexed by l0, . . . , lk, at least k+1 entries are known.

For l ∈ {l0, . . . , lk}, there exist distinct i0, . . . , ik ∈ [d], such that σi0(l), . . . , σik(l) are known.

Using Fact 3.2 on σi0(l), . . . , σik(l), we recover σi(l) for every i ∈ [d] \ {i0, . . . , ik}.
Now we show how to recover σi(l) for every l ∈ [d]\{l0, . . . , lk} and i ∈ [d]. Let h = z+(l−i).

Clearly, h(i) = l. Let i0, . . . , ik ∈ [d] be such that l0 = i0 + l − i, . . . , lk = ik + l − i. Then,

h(i0) = l0, . . . , h(ik) = lk. Use Fact 3.2 on the points σi0(h(i0)), . . . , σik(h(ik)) to recover

σi(h(i)), which is σi(l). Thus, we recover all the entries of N .

This completes the proofs of Claims 3.2.3-3.2.7.

2. Scaling equivalence test for NW. We present the scaling ET for NW over a finite field

F, where d ∤ |F| − 1. We also give a scaling equivalence test for NW over R by appropriately

modifying this algorithm. Assume that f is scaling equivalent to NW.

Algorithm 8 Scaling-ET(f)

Input: Black box access to f ∈ F[x].
Output: An invertible diagonal matrix B such that f = NW(Bx).

1. Let B = diag(α0,0, . . . , αd−1,d−1), where {αi,j : i, j ∈ [d]} are unknown. Set α1,0 = · · · =
αd−1,0 = 1 (Claim 3.2.8).

2. Let S = (0, z, . . . , (d−1)z, 1, z+1 . . . , (d−1)z+1, . . . , d−2, z+d−2 . . . , (d−1)z+d−2, d−1)
be the ordered set of d2 − d+ 1 polynomials in F[z]. For every h ∈ S, query the coefficient

ch of the monomial
∏

i∈Fd
xi,h(i) from the black-box of f (Observation 3.8).

3. Let C be a 0/1 matrix of size (d2 − d + 1) × (d2 − d + 1) whose rows and columns are

indexed by S and y = (y0,0, . . . , y0,d−1, y1,1, . . . , y1,d−1, . . . , yd−1,1, . . . , yd−1,d−1), respectively,

such that for h ∈ S and yi,j ∈ y, the (h, yi,j)-th entry of C is 1 if h(i) = j. (It is argued

91

in Claim 3.1.3 that | det(C)| is a power of d). Compute the inverse of det(C) in Z|F|−1 and

denote it by γ. (Note that y does not contain the variables {y1,0, . . . , yd−1,0}.)
4. Fix αi,j ∈ {α0,0, . . . , αd−1,d−1}\{α1,0, . . . , αd−1,0} arbitrarily. For every h ∈ S, compute the

minor of C with respect to the row and column indexed by h and yi,j respectively and call

it δh. Set αi,j =
∏

h∈S c
(δh·γ) mod (|F|−1)
h .

5. Return B = diag(α0,0, . . . , αd−1,d−1). (see Claim 3.2.9)

Proof of correctness: The following claims and observations argue the correctness of the

algorithm. We first complete this proof and then prove Claims 3.2.8 and 3.2.9.

Claim 3.2.8 We can assume that α1,0 = · · · = αd−1,0 = 1 without loss of generality.

The following observation can be proved easily.

Observation 3.8 Given a monomial m in x variables, we can recover the coefficient of m in

f in poly(d, ρ) time.

Claim 3.2.9 In Step 4, αi,j can be computed in poly(d, ρ) time. Further, f = NW(Bx).

This completes the proof of correctness of Algorithm 8.

Proof of Claim 3.2.8. As f is scaling equivalent to NW, there exists a C = diag(β0,0, . . . , βd−1,d−1)

such that f = NW(Cx). Suppose D = diag(a, β−1
1,0 , . . . β

−1
d−1,0) ⊗ Id, where a =

∏d−1
i=1 βi,0.

Then, from Claim 3.1.1, D ∈ GNW, which implies f = NW(DCx). Set B = DC. Hence

α1,0 = . . . = αd−1,0 = 1.

Proof of Claim 3.2.9. For i, j ∈ [d], suppose αi,j = τ yi,j , where τ is a generator of F×. Claim

3.2.8 implies that y1,0 = . . . = yd−1,0 = 0. If f = NW(Bx), then a monomial mh =
∏

i∈Fd
xi,h(i)

of NW gets mapped to ch ·mh, where ch =
∏

i∈Fd
αi,h(i). Let ch = τ eh . Then, we get the following

system of linear equations for every h ∈ Fd[z]k over the ring Z|F|−1.∑
i∈Fd

yi,h(i) = eh. (3.9)

Recall C, S and y from Step 3 of the algorithm. On restricting to the polynomials in S, we get

C · yT = e,

92

where e = (e0 ez . . . e(d−1)z e1 ez+1 . . . e(d−1)z+1 . . . ed−2 ez+d−2 . . . e(d−1)z+d−2 ed−1)
T . Recall γ

and δh from Step 3 and 4. From Cramer’s rule, we get

yi,j = γ ·

(∑
h∈S

eh · δh

)
mod (|F| − 1), (3.10)

This immediately implies,

αi,j = τ yi,j = τ γ·(
∑

h∈S eh·δh) mod (|F|−1),

As ch = τ eh , αi,j =
∏

h∈S c
(δh·γ) mod (|F|−1)
h . As C is a 0/1 matrix, | det(C)| is bounded by

(d2−d+1)!, which implies the bit complexity of det(C) is poly(d). This implies that the above

calculations can be done in poly(d, ρ) time using repeated squaring.

Scaling equivalence test for NW over R. We first state the model of computation over R.
We assume that addition, subtraction, multiplication and division of two real numbers can be

done in unit time. In addition, we also assume that the positive real root of a univariate real

polynomial yr − δ can be computed in poly(log r) time (see [Bre76, Ye94]).

Suppose a degree d polynomial f ∈ F[x] is scaling equivalent to NW. We wish to find a

B = diag(α0,0, . . . , αd−1,d−1) ∈ GL(d2,R), such that f = NW(Bx). Note that every αi,j can be

written as αi,j = (−1)si,j ·2βi,j , where si,j ∈ F2 and βi,j ∈ R. Assume si,j, βi,j, i, j ∈ [d] are formal

variables. Here also, we can assume without loss of generality that α1,0 = . . . = αd−1,0 = 1,

which sets si,0 = βi,0 = 0 for i ∈ {1, . . . , d− 1}. For h ∈ {az+ b : a ∈ [d], b ∈ [d− 1]}∪ {d− 1},
let ch = (−1)δh · 2γh be the coefficient of

∏
i∈Fd

xi,h(i) in f . This gives us the following system of

linear equations in β and s variables over R and F2 respectively.∑
i∈Fd

βi,h(i) = γh and
∑
i∈Fd

si,h(i) = δh. (3.11)

Hereon, the scaling equivalence test for NW over R can be obtained by easily adapting Algorithm

8 to solve the system of linear equations mentioned in Equation (3.11) and compute B.

93

Chapter 4

Determinant equivalence test over

finite fields and over Q

In this chapter, we prove the theorems stated in Section 1.3.2. This chapter is based on

[GGKS19], which is a joint work with Ankit Garg, Neeraj Kayal and Chandan Saha. The

content of the chapter is divided into four sections. In the first section, we state some

useful properties related to the Lie algebra of the determinant. Using these properties

along with other tools, we prove prove Theorems 1.6, 1.7 and 1.8 in the second section.

Our main technical contribution is Theorem 1.8, which reduces DET to FMAI over almost

any field. In the third section, we show that assuming GRH, the integer factoring problem

reduces in randomized polynomial time to DET for quadratic forms over Q. In the last

section, we give a reduction from FMAI over F to DET over F.

We start this chapter by introducing some notations. Let n ∈ N, F be a field, X = (xi,j)i,j∈[n]

be such that for every i, j ∈ [n], xi,j is a variable and x = {xi,j : i, j ∈ [n]}. Then, Detn(x) :=

det(X). Clearly, Detn(x) is a homogeneous polynomial of degree n. Whenever the value of n is

clear from the context, we would drop the subscript of Detn. Recall thatMn(F) is the set of n×n
matrices over F. Then, Mn(F) is an F-algebra (Definition 2.18) with respect to matrix addition

and matrix multiplication, and this is known as the full matrix algebra. Let Zn(F) be the set

of traceless matrices in Mn(F). Then, Zn(F) is clearly an F-vector space. Whenever F is clear

from the context, we will drop F from Mn(F) and Zn(F). For i, j ∈ [n], i ̸= j, let Ei,j ∈ Mn be

such that the (i, j)-th entry of Ei,j is 1 and other entries are 0. For ℓ ∈ {2, . . . , n}, let Eℓ ∈Mn

be the diagonal matrix, where the (1, 1)-th and (ℓ, ℓ)-th entries are 1 and -1 respectively and

other entries are 0. Then, it is easy to see that {Ei,j, Eℓ : i, j ∈ [n], i ̸= j, ℓ ∈ [2, n]} is an F-basis
of Zn and hence dimZn = n2 − 1. We fix r = n2 − 1 and m = n2 for the rest of this chapter.

94

4.1 The Lie algebra of the determinant

In this section, we highlight the structure of the Lie algebra of Det, denoted gDet, which is

well-studied. This structure is very crucially used in designing our DET algorithms. We first

setup the notations required for describing the structure of gDet.

Let In ∈Mn be the identity matrix. Let Mcol := In ⊗Mn, i.e., Mcol = {In ⊗ A : A ∈Mn},
where ⊗ denote the tensor product of matrices (Definition 2.20). Similarly, we define Mrow =

Mn ⊗ In,Lcol = In ⊗ Zn and Lrow = Zn ⊗ In. It is easy to see that Mcol and Mrow are F-
algebras (Definition 2.18) with respect to matrix addition and matrix multiplication and these

are isomorphic as F-algebras (see Definition 2.19) to Mn via the maps φ : Mcol →Mn; In⊗A 7→
A and ϕ : Mrow →Mn;A⊗In 7→ A respectively. Further, Lcol (similarly, Lrow) is an F-subspace
of Mcol (respectively, Mrow). The fact that dimZn = r implies dimLcol = dimLrow = r. In

fact, we also readily get bases of Lcol and Lrow from the basis of Zn given before. We record

this property as the following observation.

Observation 4.1 (Standard bases of Lcol and Lrow) For i, j ∈ [n], i ̸= j, let Eij ∈Mn be

such that the (i, j)-th entry is 1 and other entries are 0, and for ℓ ∈ [2, n], let Eℓ ∈ Mn be a

diagonal matrix with the (1, 1)-th and (ℓ, ℓ)-th entries as 1 and −1 respectively and other entries

as 0. Then,

1. {In ⊗ Eij, In ⊗ Eℓ : i, j ∈ [n], i ̸= j, and ℓ ∈ [2, n]} is a basis of Lcol. We call this as

the standard basis of Lcol and denote it as {S1, . . . , Sr}.

2. {Eij ⊗ In, Eℓ ⊗ In : i, j ∈ [n], i ̸= j, and ℓ ∈ [2, n]} is a basis of Lrow. We call this as

the standard basis of Lrow and denote it as {Sr+1, . . . , S2r}.

The following well-known fact shows that Lcol and Lrow are the only subspaces of gDet. See

Section 3.2 of [Nai19] for a proof of this fact. This fact will be crucially used later.

Fact 4.1 (Structure of gDet) Let n ∈ N× and F be a field satisfying char(F) ∤ n. Then,

gDetn = Lrow ⊕Lcol.

Let f = Detn(Ax) for some A ∈ GL(m,F). Claim 2.10 and Fact 4.1 imply the following.

Corollary 4.1 Let A ∈ GL(m,F) and f = Detn(Ax). Let Fcol := A−1 ·Lcol · A and Frow :=

A−1 ·Lrow · A. Then, gf = Frow ⊕Fcol.

Henceforth, we would refer to Lcol and Lrow (similarly, Fcol and Frow) as the Lie sub-

algebras of gDetn (respectively, gf). Now, we note some useful properties of gf .

95

Properties of gf

Recall the definition of the Lie bracket of matrices (Definition 2.28) from Chapter 2. In this

section, we first show that gf is closed under the Lie bracket operation. For this, we require

Observations 4.2 and 4.3, which are stated and proved below.

Observation 4.2 (Lie bracket of matrices in Mcol and Mrow) Let F ∈ Mrow and L ∈
Mrow. Then, [F,L] = 0.

Proof: Let A = (ai,j)i,j∈[n], B = (bl,r)l,r∈[n] ∈ Mn such that F = A ⊗ In and L = In ⊗ B.

Note that for i, j, l, r ∈ [n], the ((i, j), (l, r))-th entries of FL and LF are aj,lbi,r. Hence,

[F,L] = FL− LF = 0. 2

In other words, Observation 4.2 says that matrices in Mrow commute with matrices in Mcol.

It is easy to prove the following.

Observation 4.3 (Lrow and Lcol closed under Lie bracket) For every L1, L2 ∈ Lcol (sim-

ilarly, Lrow), [L1, L2] ∈ Lcol (respectively, Lrow).

Note that Corollary 4.1, Observations 4.2 and 4.3 imply the following.

Observation 4.4 (gf closed under Lie bracket) Let n ∈ N, A ∈ GL(n,F) and f = Detn(Ax).

Then, for every E,F ∈ gf , [E,F] ∈ gf .

The second important property associated with gf is the structure of the F-algebra generated
by an F-basis of Fcol (see Remark 2.2 in this context). We note it in the following observation

and this property will be very helpful for the DET algorithm.

Observation 4.5 (Algebra generated by Fcol) Let n ∈ N, A ∈ GL(n,F) and f = Detn(Ax).

Let A ⊆Mm be the F-algebra generated by a basis of Fcol. Then, A = A−1 · (In ⊗Mn) · A.

Proof: Consider the standard basis given in Observation 4.1. It is not difficult to see that

the F-algebra generated by this basis of Lcol is equal to In⊗Mn. This along with the fact that

Fcol = A−1 ·Lcol · A immediately implies that A = A−1 · (In ⊗Mn) · A. 2

4.2 Reduction from DET to FMAI: The algorithm

In this section, we prove Theorem 1.8. This theorem gives a randomized polynomial time

reduction from DET to FMAI (recall FMAI from Section 2.2.4), which works over any field

satisfying mild conditions on the size and the characteristic. As seen in Section 2.2.4, FMAI

algorithms over finite fields and Q are known. By invoking these algorithms, we get Theorems

1.6 and 1.7 readily from Theorem 1.8. We recall Theorems 1.6 and 1.7 below.

96

Theorem 4.1 (DET over finite fields) Let n ∈ N,x = {x1,1, . . . , xn,n}, F be a finite field

such that |F| ≥ 10n4 and char(F) ∤ n(n−1), and f ∈ F[x] be a degree n polynomial. Then, there

exists a randomized algorithm that takes black-box access to f and decides if f is equivalent to

Detn or not with high probability. If yes, it outputs an A ∈ GL(n2,F) such that f = Detn(Ax),

otherwise it outputs ‘Fail’. The running time of this algorithm is poly(n, log |F|).

Theorem 4.2 (DET over Q) Let n ∈ N,x = {x1,1, . . . , xn,n} and f ∈ Q[x] be a degree n

polynomial. Suppose we have black-box access to f . Let β be the bit length of coefficients of f .

1. There exists a randomized algorithm, which takes oracle access to an integer factoring

algorithm IntFact and decides if f is equivalent to Detn over Q with high probability. If

yes, it outputs an A ∈ GL(n2,Q) such that f = Detn(Ax), otherwise outputs ‘Fail’. If n

is bounded, the algorithm runs in poly(n, β) time.

2. There exists a randomized poly(n, β) time algorithm, which decides if f is equivalent

to Detn over Q with high probability. If yes, it outputs an A ∈ GL(n2,L) such that

f = Detn(Ax), where L is an extension field of Q satisfying [L : Q] ≤ n 1.

As mentioned above, the heart of the algorithms in the above two theorems is Theorem 1.8,

which we recall below.

Theorem 4.3 (Reduction of DET to FMAI) Let n ≥ 2, |F| > 10n4 and char(F) ∤ n(n −
1). Then, there exists a randomized polynomial time algorithm, with oracle access to FMAI,

that takes input black-box access to an f ∈ F[x] of degree n and solves DET for f over F with

high probability.

So, now the task is to prove Theorem 4.3. We first give an overview of the reduction from

DET to FMAI, then present the algorithm and then argue its correctness.

An overview of the reduction from DET to FMAI. The algorithm takes black-box access

to a polynomial f of degree n. We assume that f = Detn(Ax) for some A ∈ GL(n,F), otherwise
the algorithm will detect with high probability that f is not equivalent to Detn. The algorithm

has two phases: In the first phase, it computes an F-basis of the Lie algebra (Definition 2.30)

of f , denoted gf , using Fact 2.16. We know from Corollary 4.1 that gf = Frow ⊕ Fcol. In

this phase, the algorithm decomposes gf into Fcol and Frow. The details of this decomposition

is given in Section 4.3.1. After decomposing gf and obtaining Frow and Fcol, the algorithm

1See Definition 2.12 for the meaning of [L : Q].

97

computes the F-algebra A generated by an F-basis Fcol. Then, it follows from Observation 4.5

that A ,Mn are isomorphic F-algebras. In the second phase, we invoke FMAI on an F-basis
{L1, . . . , Lm} of A and it returns an F-algebra isomorphism φ : A →Mn in the form of an F-
basis {C1, . . . , Cm} of Mn, where for every i ∈ [m], φ(Li) = Ci. Then, using the Skolem-Noether

theorem (Theorem 2.1) we compute a B ∈ GL(n,F) from φ such that f = Detn(Bx). Now, we

give the formal description of the algorithm. It uses Decompose-Lie-Algebra() (Procedure 10)

as a sub-routine. This procedure takes input black-box access to f and returns a set of r many

F-linearly independent matrices. If f is equivalent to Det then this set is an F-basis of Fcol.

We give an overview, formal description and the analysis of Procedure 10 in Section 4.3.1.

Algorithm 9 Reduce-DET-to-FMAI(f)

Input: Black-box access to an f ∈ F[x] of degree n, and oracle access to FMAI.

Output: A B ∈ GL(m,F) s.t. f = Det(Bx), if such a B exists. Else, output ‘Fail’.

/* Decomposing the Lie algebra of f */

1. Suppose {U1, . . . , Ur} be the output of Decompose-Lie-Algebra(f) (Procedure 10).

/* Invoke FMAI algorithm */

2. Compute an F-basis {L1, . . . , Lk} of the F-algebra A generated by U1, . . . , Ur. If k ̸= m,

output ‘Fail’.

3. Invoke the FMAI oracle on (L1, . . . , Lm) which returns a basis (C1, . . . , Cm) of Mn.

/* Computing the matrix */

4. Pick a random M ∈Mm satisfying Li ·M = M · (In ⊗ Ci) for every i ∈ [m].

5. Let b be the evaluation of f(Mx) obtained by setting x1,1 = · · · = xn,n = 1 and remaining

xi,j’s equal to 0.

6. If M ̸∈ GL(m,F) or b = 0, output ‘Fail’. Else, set D = diag(b, 1, . . . , 1) ∈Mn.

7. Return (In ⊗D) ·M−1.

98

4.3 Analysis of the algorithm

In this section, we argue the correctness of Algorithm 9. This will be done in two stages: In

Section 4.3.1 we describe Procedure 10 and argue its correctness. Then, in Section 4.3.2, we

argue the correctness of Steps 2 - 6 of Algorithm 9.

4.3.1 Decomposition of the Lie algebra of f in the orbit of Detn

In this subsection, we prove the following theorem.

Theorem 4.4 (Decomposition of gf) Let n ≥ 2,x = {x1,1, . . . , xn,n}, F be a field satisfying

|F| ≥ 10n4, and char(F) ∤ n(n−1) and f ∈ F[x] be a degree n polynomial. There is a randomized

algorithm, which takes input black-box access to f and if f is equivalent to Det, it outputs bases

of Frow and Fcol with high probability. The running time of this algorithm is poly(n, γ), where

γ is the bit length of the coefficients of f .

We first give a high level overview of the decomposition algorithm and then state it formally.

An overview of the decomposition algorithm. We assume f = Det(Ax) for some

A ∈ GL(n,F), otherwise it will be detected with high probability that f is not equivalent

to Det because of the rich structure of gDet. This algorithm first computes black-box access

to a basis {B1, . . . , B2r} of gf using Fact 2.15. Then, using this basis, we compute a basis

{PB1 , . . . , PB2r} of a set P ⊆M2r(F), which correspond to a ‘special set’ of F-linear operators
on gf . P and the corresponding set of F-linear operators on gf are described below. Then, we

pick a random matrix Q in P, compute its characteristic polynomial, denoted h(z). Then, we

factorize h(z) using the algorithms in [Ber70] or [LLL82b] depending on whether F is a finite

field or Q. As f is equivalent to Detn, the irreducible factors of h(z) guide us to bases of Fcol

and Frow as follows: We compute an F-basis of the null space of h′(Q) for every factor h′ of

h(z) such that h′ is not a variable and then compute P-closure (Definition 2.17) of every vector

in bases of each of these null spaces. Because of the richness of gf induced by gDetn , it turns

out that this set of P-closures of vectors only contains Frow and Fcol as these are the only

irreducible invariant spaces of P. This is how we get access to bases of Frow and Fcol. Now,

we first describe the set P and then present the algorithm.

The description of P and its properties. Suppose f = Det(Ax) for some A ∈ GL(n,F).

99

Consider the following F-linear operators on gf : For every F ∈ gf ,

ρF : gf → gf

E 7→ [E,F].

Observation 4.4 implies that for every E ∈ gf , [E,F] ∈ gf . It is easy to see that ρF is an

F-linear map. As ρF is F-linear, we can associate a matrix PF ∈ M2r with ρF (see Definition

2.11), after fixing an ordering of the basis (B1, . . . , B2r) of gf computed by the algorithm. Let

P := {PF : F ∈ gf}. Then, P is an F-vector space.

Claim 4.3.1 (gf and P are isomorphic vector spaces) Let F be a field such that char(F) ∤
n. Then, gf and P are isomorphic as F-vector spaces via the map F 7→ PF for every F ∈ gf .

Proof: It is easy to see that P is an F-vector space. Consider the following map

τ : gf →P

F 7→ PF

Observe that τ is F-linear and onto. Let F ∈ Ker(τ)1. Then PF = 0, i.e., [E,F] = 0 for

every E ∈ gf , and hence L := A · F · A−1 ∈ gDet commutes with every element of gDet. Recall

the basis {S1, . . . , Sr} and {Sr+1, . . . , S2r} of Lcol and Lrow given in Observation 4.1. It is not

difficult to show that as if L commutes with {S1, . . . , S2r} then L = α · In2 for some α ∈ F. As
trace(L) = 0 and char(F) ∤ n, we have L = 0. Hence, τ is injective. 2

The above claim implies the following.

Observation 4.6 The matrices {PB1 , . . . , PB2r} is a basis of P, which can be efficiently com-

puted from {B1, . . . , B2r} (by considering the elements [Bi, Bj], for i, j ∈ [2r]).

We intend to study the irreducible invariant subspaces of P in order to compute bases of Frow

and Fcol. Claim 4.3.2 would be useful in this regard as it relates P and gDet. For that, we need

the following: For i ∈ [2r], let Ji := A ·Bi ·A−1. Then, it follows from Fact 2.10 that Ji, i ∈ [2r],

is an F-basis of gDet. Like ρF , we can associate a F-linear map χL with every L ∈ gDet as follows:

χL : gDet → gDet

K 7→ [K,L].

1Ker(τ) is called the kernel of τ and is defined as Ker(τ) := {F ∈ gf : τF = 0}.

100

Let QL ∈M2r be the matrix corresponding to the linear map χL, with respect to the (ordered)

basis (J1, . . . , J2r). The following claim implies that it is sufficient to focus on gDet while

analysing the invariant subspaces of P.

Claim 4.3.2 (P and gDet) For every i ∈ [2r], QJi = PBi
and so P = {QL : L ∈ gDet}.

Proof: Let E ∈ gf , K ∈ gDet and E = AKA−1. Observe that uE = vK , where uE,vK are

the coordinate vectors of E,K with respect to the bases (B1, . . . , B2r) and (J1, . . . , J2r) respec-

tively1. Hence, QJivK = v[K,Ji] = u[E,Bi] = PBi
uE = PBi

vK , implying QJi = PBi
. 2

Like Claim 4.3.1, gDet and P are isomorphic as F-vector spaces via the map L 7→ QL, for

L ∈ gDet. These connections of P with gf and gDet will be very helpful. We will compute a

basis of P using a basis of gf in the algorithm and will analyse some important properties of

P using gDet. The algorithm computes two invariant subspaces V1 and V2 of P defined below.

V1 =

v = (a1, . . . , a2r)
T ∈ F2r :

∑
i∈[2r]

ai · Ji ∈ Lcol

 ,

V2 =

v = (b1, . . . , b2r)
T ∈ F2r :

∑
i∈[2r]

bi · Ji ∈ Lrow

 .

(4.1)

Clearly, dim(V1) = dim(V2) = r. As Bi = A−1 · Ji · A, for i ∈ [2r], we get

V1 =

v = (a1, . . . , a2r)
T ∈ F2r :

∑
i∈[2r]

ai ·Bi ∈ Fcol

 ,

V2 =

v = (b, . . . , b2r)
T ∈ F2r :

∑
i∈[2r]

bi ·Bi ∈ Frow

 .

(4.2)

From bases of V1 and V2, and (B1, . . . , B2r), we get bases of Fcol and Frow readily. The aspects

of the space P that help in computing V1 and V2 are the facts that these are the only two

irreducible invariant subspaces of P and bases of these can be computed from a random element

of P. These facts are proved and elaborated upon in Section 4.3.1.2.

1Let E = α1B1+· · ·+α2rB2r, where αi ∈ F for every i ∈ [2r]. Then, the coordinate vector of W with respect
to (B1, . . . , B2r) is (α1, . . . , α2r). Similarly, we define the coordinate vector of K with respect to (J1, . . . , Jr).

101

4.3.1.1 The decomposition algorithm

Now, we present the algorithm and argue its correctness in the next section.

Procedure 10 Decompose-Lie-Algebra(f)

Input: Black box access to f .

Output: Either bases of spaces V1 and V2 (as in Equation (4.2)) or ‘Fail’.

1. Compute a basis {B1, . . . , B2r} of gf (Fact 2.16), and form the basis {PB1 , . . . , PB2r} of P.

2. Pick a random elementQ = a1PB1+· · ·+a2rPB2r from P, where every ai is chosen uniformly

and independently at random from a fixed subset of F of size 10n4.

3. Compute the characteristic polynomial h(z) of Q.

4. Factor h(z) into irreducible factors over F. Let h(z) = z2(n−1) · h1(z) · · ·hk(z), where

z, h1, . . . , hk are mutually coprime and irreducible. If h is not as above, output ‘Fail’.

5. For every i ∈ [k], compute a basis of the null space Ni of hi(Q), pick a vector v from the

basis of Ni and compute a basis of Ci := closureP(v) (using Fact 2.18).

6. Remove repetitive spaces from the set {C1, . . . ,Ck}. After this, if we are not left with

exactly two spaces U1 and U2 then output ‘Fail’. Else, output the basis of U1.

4.3.1.2 Analysis of the procedure

We first analyse P through the lens of a convenient basis of gDet, namely the basis {S1, . . . , S2r}
given in Observation 4.1. After that, we argue the correctness of Algorithm 10 in Lemma 4.3.

For K ∈ gDet, let wK ,vK ∈ F2r be the coordinate vectors of K with respect to the ordered

bases (S1, . . . , S2r) and (J1, . . . , J2r) respectively, where Ji = A · Bi · A−1 for every i ∈ [2r].

There is a basis change matrix H ∈ GL(2r,F) such that for every K ∈ gDet,

vK = H ·wK . (4.3)

Recall QL from Claim 4.3.2. Let RL := H−1 ·QL ·H, for every L ∈ gDet, and

R := {RL : L ∈ gDet} = H−1 ·P ·H. (4.4)

Observe that {RS1 , . . . , RS2r} is a basis of R. Also,

RL ·wK = w[K,L], (4.5)

for every L,K ∈ gDet. Let us note a few important properties of R.

102

Observation 4.7 (Structure of matrices in R) Every R ∈ R ⊆ M2r is a block diagonal

matrix having two blocks of size r × r each, i.e., the non-zero entries of R are confined to the

entries {(Si, Sj) : i, j ∈ [r]} and {(Si, Sj) : i, j ∈ [r + 1, 2r]}.

Proof: Let L = L1+L2 ∈ gDet, where L1 ∈ Lcol, L2 ∈ Lrow. From Equation (4.5), RL ·wSi
=

w[Si,L] = w[Si,L1]+[Si,L2]. Thus, RL · wSi
is either w[Si,L1] if i ∈ [r], or w[Si,L2] if i ∈ [r + 1, 2r].

By Observation 4.3, [Si, L1] ∈ Lcol for i ∈ [r] and [Si, L2] ∈ Lrow for i ∈ [r + 1, 2r]. Hence RL

is block diagonal. 2

We refer to the two blocks of R as R(1) and R(2), corresponding to {S1, . . . , Sr} and

{Sr+1, . . . , S2r}, respectively. A snapshot of R is given in Figure 4.1 below. The next ob-

servation follows directly from the definition of R.

S1

...

Sr
Sr+1

...

S2r

S1 · · · Sr Sr+1 · · · S2r

0 matrix

0 matrix

R(2)

R(1)

Figure 4.1: Structure of a matrix R ∈ R

Observation 4.8 (Invariant subspaces of P and R) W is an invariant subspace of R if

and only if H ·W is an invariant subspace of P, where H ·W = {H ·w : w ∈ W }.

Observation 4.8 allows us to switch from P to R while studying the invariant subspaces of

P. The following lemmas on the invariant subspaces of R are crucial in arguing the correctness

of Algorithm 10. Their proofs are given in Sections 4.3.1.3 and 4.3.1.4 respectively. Lemma 4.1

implies that the decomposition of F2r into irreducible invariant subspaces of R is unique.

Lemma 4.1 (Irreducible invariant subspaces) Let wK ∈ F2r for a nonzero K in Lcol or

103

in Lrow. Then,

closureR(wK) = {wL : L ∈ Lcol} =: W1, if K ∈ Lcol,

closureR(wK) = {wL : L ∈ Lrow} =: W2, if K ∈ Lrow.

Moreover, W1 and W2 are the only two irreducible invariant subspaces of R, and F2r = W1⊕W2.

Lemma 4.2 (Characteristic polynomial) Let R =
∑

i∈[2r] ℓi(a1, . . . , a2r)·RSi
, where ℓ1, . . . , ℓ2r

are F-linearly independent linear forms and a1, . . . , a2r are picked uniformly and independently

at random from a fixed subset of F of size 10n4. Then, with high probability, the characteristic

polynomial hR(z) of R factors as z2(n−1) · h1(z) · · ·hk(z), where z, h1(z), . . . , hk(z) are mutually

coprime irreducible polynomials over F.

The following lemma argues the correctness of Procedure 10.

Lemma 4.3 (Correctness of Procedure 10) Suppose f is equivalent to Det. Then, with

high probability, {U1,U2} = {Fcol,Frow}. In fact, we can assume without loss of generality

that U1 = Fcol and U2 = Frow.

Proof: In Step 2, we choose a random Q ∈ P. By Equation (4.4), there is an R ∈ R

satisfying the following equation

R = H−1 ·Q ·H = a1RJ1 + · · ·+ a2rRJ2r = ℓ1(a1, . . . , a2r) ·RS1 + · · ·+ ℓ2r(a1, . . . , a2r) ·RS2r ,

where ℓ1, . . . , ℓ2r are F linear forms in a1, . . . , a2r. As (RJ1 , . . . , RJ2r) and (RS1 , . . . , RS2r) are

F-bases of R, it is easy to verify that ℓ1(a), . . . , ℓ2r(a) are F-linearly independent. By Lemma

4.2, Step 4 of Procedure 10 holds with high probability. We know from Fact 2.3 that the

characteristic polynomial of R is same as the characteristic polynomial of Q. From Observation

4.7, R is a block diagonal matrix with blocks R(1) and R(2). Let h(z) = g1(z) · g2(z), where
g1(z) and g2(z) are the characteristic polynomials of R(1) and R(2), respectively. There are a

couple of factors of h, say h1 and h2, that divide g1 and g2, respectively. In Step 5, we compute

the null spaces N1 and N2 of h1(Q) and h2(Q) respectively. As h1(R) = H−1 · h1(Q) ·H and

h2(R) = H−1 ·h2(Q) ·H, the null spaces of h1(R) and h2(R), denoted by O1 and O2 respectively,

satisfy the following (due to Equation (4.3)): O1 = H−1 ·N1 and O2 = H−1 ·N2.

Claim 4.3.3 If wK ∈ O1 (similarly, wK ∈ O2) then K ∈ Lcol (respectively, K ∈ Lrow).

104

Proof: We give the proof for O1, a similar proof holds for O2. Recall wK is the coordinate

vector of K with respect to the ordered basis (S1, . . . , S2r) of gDet. Let w
(1)
K ,w

(2)
K ∈ Fr be

the sub-vectors obtained from wK by restricting it to the indices S1, . . . , Sr and Sr+1, . . . , S2r

respectively. It is sufficient to show w
(2)
K = 0 to prove K ∈ Lcol. Let R ∈ R. Then, R is a block

diagonal matrix with R(1), R(2) as the blocks. By definition, h1(R) ·wK = 0, which implies

h1(R
(1)) ·w(1)

K = h1(R
(2)) ·w(2)

K = 0.

As g2(z) is the characteristic polynomial of R(2), from the Cayley Hamilton theorem (Fact 2.4),

g2(R
(2)) = 0, which implies

g2(R
(2)) ·w(2)

K = 0.

Since h1(z) and g2(z) are coprime polynomials, there exist p1, p2 ∈ F[z] such that

h1(z) · p1(z) + g2(z) · p2(z) = 1.

This implies

h1(R
(2)) · p1(R(2)) + g2(R

(2)) · p2(R(2)) = Ir.

On multiplying the above equation with w
(2)
K , we get w

(2)
K = 0 showing K ∈ Lcol. 2

In Step 5, we pick a vector v from a null space, say N1, and compute closureP(v). Clearly,

v = vK for someK ∈ gDet. So, vK ∈ N1 if and only ifwK = H−1·vK ∈ O1. As R = H−1·P ·H,

Observation 4.8 implies that

closureP(vK) = H · closureR(wK)

= H ·W1 (by Claim 4.3.3 and Lemma 4.1)

= V1 (by Equations (4.1) and (4.3), as V1 = {vL : L ∈ Lcol}).

Similarly, if we pick a v ∈ N2 then closureP(v) = V2. Thus, in Step 6, one of U1 and U2 is

V1 and the other is V2. Finally, we can take U1 = V1 and U2 = V2 without loss of generality:

Let P ∈ Mm be the permutation matrix such that P maps xi,j to xj,i when multiplied to x.

Clearly, P−1 = P . Note that P is a symmetry of Det, i.e.,

Det(x) = Det(Px) and hence f(x) = Det(Ax) = Det(PAx).

105

Observe that Lcol = P−1 ·Lrow · P . Hence,

Fcol = A−1P−1 ·Lrow · PA and Frow = A−1P−1 ·Lcol · PA.

As the underlying matrix is unknown to Algorithm 10, we can take it to be either A or PA. 2

Before proving Lemmas 4.1 and 4.2, we give a comparison of our decomposition algorithm

with the algorithm for decomposing semisimple Lie algebras given in [de 97] and with the al-

gorithm for decomposition of modules over finite algebras given in [CIK97].

Comparison with decomposition algorithms in [de 97] and [CIK97]. A polynomial

time algorithm for decomposition of semisimple Lie algebra into direct sum of simple Lie

subalgebras was given in [de 97]. This algorithm works over fields having characteristic zero.

Our decomposition algorithm is a special case of the decomposition algorithm given in [de 97]

as gf is a direct sum of Fcol and Frow. However, our algorithm works over any field satisfying

mild conditions on its size and characteristic. It is not clear to us how to adapt the algorithm in

[de 97] in our case. In [CIK97], a randomized polynomial time algorithm was given to decompose

modules over a finite dimensional algebra into indecomposable submodules. This algorithm

works over finite fields. As the decomposition of F2r into irreducible invariant subspaces of R

is unique (follows from Lemma 4.1), the algorithm in [CIK97] can be used to compute Fcol and

Frow over finite fields in randomized polynomial time. However, in case of Q, the algorithm

in [CIK97] decomposes modules into submodules in polynomial time, where each submodule is

over an extension field of Q.

4.3.1.3 Proof of Lemma 4.1

We first complete the proof of the lemma assuming the following three claims and then prove

these. The proof of these claims are given for Lcol, and similar proofs hold for Lrow. Recall

wK is the coordinate vector of K ∈ Lcol with respect to the ordered basis (S1, . . . , S2r) of Lcol.

Claim 4.3.4 Let the entry indexed by In⊗Eij (similarly, Eij ⊗ In) in wK is nonzero for some

i, j ∈ [n], i ̸= j. Then closureR(wK) contains the unit vector wIn⊗Eij
(respectively, wEij⊗In).

Claim 4.3.5 Let p, q ∈ [n] and p ̸= q. Then

closureR(wIn⊗Epq) = {wL : L ∈ Lcol} = W1.

Similarly, closureR(wEpq⊗In) = {wL : L ∈ Lrow} = W2.

106

Claim 4.3.6 Suppose wK ∈ F2r is such that the entry indexed by In ⊗ Eℓ (similarly, Eℓ ⊗ In)

for ℓ ∈ [2, n] is nonzero, and the entries indexed by In ⊗ Eij (similarly, Eij ⊗ In) are zero for

every i, j ∈ [n], i ̸= j. Then, for some i ̸= ℓ,

wIn⊗Eiℓ
∈ closureR(wK) (respectively, wEiℓ⊗In ∈ closureR(wK)).

Claims 4.3.4, 4.3.5 and 4.3.6 imply that for a nonzero K ∈ Lcol, closureR(wK) = W1 (similarly,

for a nonzero K ∈ Lrow, closureR(wK) = W2). This completes the proof of the lemma. Now,

we prove these claims one by one.

Proof of Claim 4.3.4. First, consider the following subclaim.

Subclaim 4.3.1 There is a diagonal matrix R ∈ R such that R(In ⊗ Eℓ, In ⊗ Eℓ) = R(Eℓ ⊗
In, Eℓ ⊗ In) = 0 for every ℓ ∈ [2, n], and the remaining 2n2 − 2n diagonal entries are distinct

nonzero field elements.

Let R ∈ R be the diagonal matrix given in Subclaim 4.3.1. Consider the following equation

in the variables a1, . . . , a2n2−2n,

wIn⊗Eij
=

2n2−2n∑
i=1

ai ·Ri ·wK .

As the resulting system is a Vandermonde system, there is a solution over F. Before coming

to the proof of Subclaim 4.3.1, we prove some important facts. We state these facts for Lcol,

similar statements hold for Lrow.

Fact 4.2 Let S = In ⊗ Eℓ for ℓ ∈ [2, n]. Then RS ∈ R is a diagonal matrix that satisfies:

1. R
(2)
S is an all zero matrix.

2. If St = In ⊗ Eℓ′ , ℓ
′ ∈ [2, n], then the (St, St)-th entry of RS is 0.

3. If St = In ⊗ Eij, i, j ∈ [n] and i ̸= j, then the (St, St)-th entry of RS is

(a) −1 if i = 1 and j ̸∈ {1, ℓ}, or j = ℓ and i ̸∈ {1, ℓ},

(b) 1 if i = ℓ and j ̸∈ {1, ℓ}, or j = 1 and i ̸∈ {1, ℓ},

(c) −2 if (i, j) = (1, ℓ),

(d) 2 if (i, j) = (ℓ, 1),

107

(e) 0 otherwise.

Proof: Recall that S = In ⊗ Eℓ for ℓ ∈ [2, n]. It follows from Observation 4.9 that R
(2)
S = 0.

To prove other parts of the fact, let us consider a generic element T = In⊗Z in Lcol such that

Z = (aij)i,j∈[n]. Clearly, [T, S] = In ⊗ [Z,Eℓ].

[Z,Eℓ] =

a11 . . . a1n
...

. . .
...

aℓ1 . . . aℓn
...

. . .
...

an1 . . . ann

·

1 . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . −1 . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . 0

−

1 . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . −1 . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . 0

·

a11 . . . a1n
...

...
...

aℓ1 . . . aℓn
...

. . .
...

an1 . . . ann

From this, we get

[Z,Eℓ] =

a11 0 . . . −aiℓ . . . 0
...

...
. . .

...
. . .

...

aℓ1 0 . . . −aℓℓ . . . 0
...

...
. . .

...
. . .

...

an1 0 . . . −anℓ
... 0

−

a11 a12 . . . aiℓ . . . a1n
...

...
. . .

...
. . .

...

−aℓ1 −aℓ2 . . . −aℓℓ . . . −aℓn
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . 0

This implies

[Z,Eℓ] =

0 −a12 . . . −2aiℓ . . . −a1n
...

...
. . .

...
. . .

...

2aℓ1 aℓ2 . . . 0 . . . aℓn
...

...
. . .

...
. . .

...

an1 0 . . . −anℓ . . . 0

Restricting Z to Eℓ′ and Eij for different settings of i, j, ℓ

′ imply the result. 2

The following fact immediately follows from Fact 4.2.

Fact 4.3 Let R1 =
∑

ℓ∈[2,n] aℓ · RIn⊗Eℓ
, where a2, . . . , an ∈ F. Then R1 is a diagonal matrix

satisfying the following properties:

1. R
(2)
1 is a zero block.

2. If St = In ⊗ Eℓ′ , ℓ
′ ∈ [2, n], then the (St, St)-th entry of R1 is 0.

3. If St = In ⊗ Eij, i, j ∈ [n], i ̸= j, then the (St, St)-th entry of R1 is

108

(a) ai − aj, if i, j ∈ [2, n],

(b) −(
∑n

k=2 ak + aj) if i = 1,

(c) (
∑n

k=2 ak + ai) if j = 1.

In the next fact, we argue the structures of matrices RIn⊗Eij
for i, j ∈ [n], i ̸= j.

Fact 4.4 Let S = In ⊗ Eij for i, j ∈ [n], i ̸= j. Then, RS satisfies the following properties:

1. R
(2)
S is an all zero matrix.

2. A column indexed by In ⊗ Epq, p, q ∈ [n], p ̸= q has the following structure:

(a) If p ̸= j and q = i then the column contains exactly one nonzero entry, namely a 1

at the row indexed by In ⊗ Epj.

(b) If q ̸= i and p = j then the column contains exactly one nonzero entry, namely a −1
at the row indexed by In ⊗ Eiq .

(c) If (p, q) = (j, i) and i, j ̸= 1 then the column has exactly two nonzero entries, namely

a 1 and a −1 at the rows indexed by In ⊗ Ei and In ⊗ Ej respectively.

(d) If (p, q) = (j, i) and j = 1 (similarly, (p, q) = (j, i) and i = 1) then the column has

exactly one nonzero entry, a 1 (respectively, a −1) at the row indexed by In ⊗ Ei

(respectively, In ⊗ Ej).

(e) Otherwise the entire column is zero.

3. A column indexed by In ⊗ Eℓ, ℓ ∈ [2, n] has the following structure:

(a) If i, j ̸= 1, and ℓ = i then the column has exactly one nonzero entry, namely a −1
at the row indexed by In ⊗ Eij.

(b) If i, j ̸= 1, and ℓ = j then the column has exactly one nonzero entry, namely a 1 at

the row indexed by In ⊗ Eij.

(c) If i = 1 and ℓ = j then the column has exactly one nonzero entry, namely a 2 at the

row indexed by In ⊗ Eij. If i = 1 and ℓ ̸= j, then the column exactly one nonzero

entry, a 1 at the row indexed by In ⊗ Eij.

(d) If j = 1 and ℓ = i, then it has exactly one nonzero entry, a −2 at the row indexed

by In⊗Eij. If j = 1 and ℓ ̸= i, then the column contains exactly one nonzero entry,

a −1 at the row indexed by In ⊗ Eij.

(e) Otherwise the column has all zero entries.

109

Proof: First we note a useful observation, which follows from the proof of Observation 4.7.

Observation 4.9 For all i ∈ [r], R
(2)
Si

= 0. Similarly, for all i ∈ [r + 1, 2r], R
(1)
Si

= 0.

Part 1 follows from Observation 4.9. Let us consider a generic element T = In ⊗ Z in Lcol

such that Z = (aij)i,j∈[n]. Clearly, [T, S] = In ⊗ [Z,Eij]. A derivation similar to that in the

proof of Fact 4.2, implies the following.

[Z,Eij] =

0 0 . . . a1i . . . 0
...

...
. . .

...
. . .

...

−aji −aj2 . . . aii − ajj . . . −ajn
...

...
. . .

...
. . .

...

0 0 . . . ani . . . 0

,

where the rows and columns other than the i-th row and the j-th column are 0. Restricting Z

to Epq and Eℓ for various settings of p, q, ℓ imply the result. 2

Now we are ready to prove Subclaim 4.3.1.

Proof of Subclaim 4.3.1. We wish to show that R contains a diagonal matrix R such that

R(In ⊗ Eℓ, In ⊗ Eℓ) = R(Eℓ ⊗ In, Eℓ ⊗ In) = 0 for every ℓ ∈ [2, n], and the remaining 2n2 − 2n

entries of R are distinct nonzero field elements. Let

R =
∑

ℓ∈[2,n]

(aℓ ·RIn⊗Eℓ
+ bℓ ·REℓ⊗In),

where aℓ, bℓ ∈ F. From Fact 4.3 (for both Lcol and Lrow), R is a diagonal matrix with exactly

2(n − 1) zero diagonal entries and the remaining diagonal entries are distinct nonzero linear

forms in a2, . . . , an and b2, . . . , bn (as char(F) ̸= 2). As |F| >
(
2n2−2n

2

)
, the Schwartz-Zippel

lemma implies that if we substitute a2, . . . , an and b2, . . . , bn randomly from a fixed subset of F
of size 10n4, then R has the desired property.

This also completes the proof of Claim 4.3.4.

Proof of Claim 4.3.5. We would show that the vectorswS1 , . . . ,wSr are in closureR(wIn⊗Epq).

The three observations below follow from the structure of matrices in R mentioned in Fact 4.4.

1. If S = In ⊗ Eqj, where j ̸= p then RS ·wIn⊗Epq = wIn⊗Epj
. (from Fact 4.4 item 2(a))

2. If S = In ⊗ Eip, where i ̸= q then RS ·wIn⊗Epq = −wIn⊗Eiq
. (from Fact 4.4 item 2(b))

110

3. If q ̸= 1, p = 1 then for S = In ⊗ Eq1, RS · wIn⊗Epq = wIn⊗Eq . Similarly, if p ̸= 1, q = 1

then for S = In ⊗ E1p, RS ·wIn⊗Epq = −wIn⊗Ep . (From Fact 4.4 item 2(d))

These properties immediately imply that

wIn⊗Epj
∈ closureR(wIn⊗Epq) for j ∈ [n], j ̸= p,

wIn⊗Eiq
∈ closureR(wIn⊗Epq) for i ∈ [n], i ̸= q,

wIn⊗Eq ∈ closureR(wIn⊗Epq) for q ̸= 1, p = 1,

wIn⊗Ep ∈ closureR(wIn⊗Epq) for p ̸= 1, q = 1.

(4.6)

Now we show that for S = In ⊗ Est,wS ∈ closureR(wIn⊗Epq) for any s, t ∈ [n], s ̸= t. If

(s, t) = (p, q), there is nothing to prove. Suppose (s, t) ̸= (p, q).

Case 1: Suppose t ̸= p, then from Equation (4.6), wIn⊗Ept ∈ closureR(wIn⊗Epq). Further,

applying Equation (4.6) on wIn⊗Ept , we get wIn⊗Est ∈ closureR(wIn⊗Ept) as s ̸= t.

Case 2: Suppose s ̸= q then from Equation (4.6), wIn⊗Esq ∈ closureR(wIn⊗Epq). Further,

applying Equation (4.6) on wIn⊗Esq , we get wIn⊗Est ∈ closureR(wIn⊗Esq) as s ̸= t.

Case 3: Let (s, t) = (q, p). If n ≥ 3 then pick a j ∈ [n]\{p, q}. By applying Equa-

tion (4.6) repeatedly, we have wIn⊗Epj
∈ closureR(wIn⊗Epq), wIn⊗Eqj

∈ closureR(wIn⊗Epj
) and

wIn⊗Eqp ∈ closureR(wIn⊗Eqj
). If n = 2 then either p or q is 1. Suppose p = 1 and s = q ̸= 1,

then wIn⊗Eq ∈ closureR(wIn⊗Epq) (from Equation (4.6)). On applying Fact 4.4 item 3(d),

wIn⊗Eqp ∈ closureR(wIn⊗Eq) (note that char(F) ̸= 2 as char(F) ∤ n(n− 1)).

To complete the proof of the claim, we would like to show that wIn⊗Eℓ
∈ closureR(wIn⊗Epq)

for every ℓ ∈ [2, n]. It follows from what we have shown so far thatwIn⊗E1ℓ
∈ closureR(wIn⊗Epq).

We conclude from Equation (4.6) that wIn⊗Eℓ
∈ closureR(wIn⊗E1ℓ

).

Proof of Claim 4.3.6. Let K ∈ Lcol and wK =
∑

p∈[2,n] ap ·wIn⊗Ep , where ap ∈ F and aℓ ̸= 0.

Then, for i ̸∈ {1, ℓ},

RIn⊗Eiℓ
wK =

∑
p∈[2,n]

apRIn⊗Eiℓ
wIn⊗Ep = (aℓ − ai)wIn⊗Eiℓ

, from Fact 4.4 items 3(a) and 3(b), and

RIn⊗E1ℓ
wK =

∑
p∈[2,n]

apRIn⊗E1ℓ
wIn⊗Ep = (a2 + · · ·+ 2aℓ + · · ·+ an)wIn⊗E1ℓ

, from Fact 4.4 item 3(c).

111

If RIn⊗Eiℓ
· wK = 0 for all i ∈ [n] \ {1, ℓ} then ai = aℓ for all i ∈ [n] \ {1, ℓ}, implying

RIn⊗E1ℓ
·wK = n · aℓ ·wIn⊗E1ℓ

, which is non-zero as char(F) ∤ n.

4.3.1.4 Proof of Lemma 4.2

Let R = RL for some L ∈ gDet and e be the maximum power of z dividing the characteristic

polynomial hR(z) of R. Clearly, e is greater than equal to the dimension of the null space of

RL. Let us now lower bound the dimension of this null space. Suppose wK is in the null space

of RL, where K ∈ gDet. Then,

RL ·wK = 0,

which along with Equation (4.5) implies w[K,L] = 0. This means [K,L] = 0, i.e., K commutes

with L. Thus, the dimension of the null space of RL is exactly equal to the dimension of the

subspace of gDet, that commute with L. We know that L = L1 + L2 and K = K1 + K2,

where L1, K1 ∈ Lcol and L2, K2 ∈ Lrow. Observation 4.2 implies that [K,L] = 0 if and only

if [K1, L1] = [K2, L2] = 0. The following claim is helpful in this regard. We first complete the

proof of this lemma assuming the claim below and then prove the claim.

Claim 4.3.7 (Dimension of the subspaces of Mn and Zn commuting with B) Let n ∈
N and B ∈ Mn. Then, the dimension of the space of matrices in Mn (similarly, in Zn) that

commute with B is at least n (respectively, at least n− 1).

It follows from Claim 4.3.7 that e ≥ 2(n− 1). We know

R =
∑
i∈[2r]

ℓi(a1, . . . , a2r) ·RSi
.

Treat a1, . . . , a2r as formal variables. Then, from the above discussion, we get

hR(z) = z2(n−1) · g(z),

where the coefficients of g(z), which is a monic polynomial of degree 2n(n−1), are polynomials

in a1, . . . , a2r of degree at most 2r. As the linear forms ℓi(a1, . . . , a2r), i ∈ [2r], are F-linearly
independent, Subclaim 4.3.1 implies that there is a way to set the a-variables to field constants

such that g(z) is square-free, has only linear factors and is not divisible by z. This means that the

determinant of the Sylvester matrix (Definition 2.22) of g(z) and ∂g(z)
∂z

is a nonzero polynomial

in a-variables of degree at most 8n4 (see Fact 2.6 in this context). As g is monic, i.e., the leading

constant of g with respect to the underlying variable ordering is 1, and char(F) ∤ n(n− 1), the

112

dimension of the Sylvester matrix does not change with various settings of the a-variables to

field constants. Hence, from the Schwartz-Zippel lemma, if we plug a1, . . . , a2r with random

values from a subset of F of size 10n4, then with high probability the characteristic polynomial

hR(z) factors as

hR(z) = z2(n−1) · h1(z) · · ·hk(z),

where z, h1, . . . , hk are mutually coprime irreducible polynomials over F.

Proof of Claim 4.3.7. Let F be the algebraic closure (Definition 2.14) of F and λ1, . . . , λt be

distinct eigenvalues of B, where for i ∈ [t], λi appears ni times. Then, it follows from Fact 2.5

that there exists a G ∈ GL(n,F) such that B = G · J · G−1, where J = diag(J1, . . . , Jt), Ji is

the ni×ni Jordan block corresponding to λi for every i ∈ [t], and n1+ · · ·+nt = n. For a fixed

i ∈ [t], the Jordan block Ji ∈Mni
(F) looks like

Ji =

λi 1 0 . . . 0 0

0 λi 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . λi 1

0 0 0 . . . 0 λi

. (4.7)

Let S , S̃ be the spaces of n×nmatrices that commute with B, J over F and F respectively. We

claim that S̃ = G−1 ·S ·G. This is so because if S ∈ S then SB = BS. Using B = G ·J ·G−1,

we get G−1SG · J = J · G−1SG. Thus, G−1SG ∈ S̃ . Thus, G−1 ·S · G ⊆ S̃ . Similarly, it is

easy to show that S̃ ⊆ G−1 ·S ·G. Hence, S̃ = G−1 ·S ·G. Thus, to prove the claim, it is

sufficient to show that the dimension S̃ is at least n. The structure of Ji given above implies

Ji = λi · Ini
+Ni,

where Ni is a nilpotent matrix1 and looks like

Ni =

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 0 1

0 0 0 . . . 0 0

.

1A ∈Mn is said to be nilpotent if there exists an r ∈ N× such that Ar = 0, where 0 is the all zero matrix.

113

It is easy to see that Ini
, Ni, . . . , N

ni−1
i are F-linearly independent and they commute with Ji.

Since J is a block diagonal matrix, the dimension of the space of matrices commuting with J

over F is at least
∑

i∈[t] ni = n. This proves that the dimension of the space of matrices in Mn

that commutes with B is at least n.

Let B1, . . . , Bs be a basis of the space of matrices in Mn(F) commuting with B. We are

interested in the space C of traceless matrices that commute with B. Then,

C :=

a1B1 + · · ·+ asBs : a1, . . . , as ∈ F and trace

∑
i∈[s]

aiBi

 = 0

 .

Observe that the dimension of C is s− 1, which is at least n− 1 as s ≥ n.

4.3.2 Invoking FMAI

In this section, we argue the correctness of Steps 2 - 6 of Algorithm 9. Recall the FMAI problem

from Section 2.2.4. An algorithm for FMAI takes input an ordered basis (L1, . . . , Lm) of an

F-algebra A ⊆Mn2 such that A is isomorphic as an F-algebra to Mn, and outputs a F-algebra
isomorphism ϕ : A →Mn in the form of an ordered basis (C1, . . . , Cm) of Mn, where Ci = ϕ(Li)

for i ∈ [m]. Recall m = n2.

If f is not equivalent to Det then it can be detected with high probability by checking if

f(a) = b · Det(M−1a) at a random point a ∈r Sm, where S ⊆ F is sufficiently large. So,

assume that f = Det(Ax) for some A ∈ GL(m,F). The correctness of Algorithm 10 ensure

that U1 = Fcol without loss of generality. Step 2 can be executed efficiently by checking

if UiUj ∈ ⟨U1, . . . , Ur⟩ for i, j ∈ [r]. Observation 4.5 implies that A ,Mn are isomorphic F-
algebras, i.e., Li = A−1 · (In ⊗ B′

i) · A for every i ∈ [m], where {B′
1, . . . , B

′
m} is a basis of

Mn. In Step 3, the FMAI oracle returns an F-algebra isomorphism ϕ : A → Mn such that

{Ci := ϕ(Li) : i ∈ [m]} is an F-basis of Mn. Consider the following claim.

Claim 4.3.8 There exists an S ∈ GL(n,F) such that B′
i = S−1 · Ci · S for every i ∈ [m].

Proof: Recall Li = A−1 · (In⊗B′
i) ·A, for i ∈ [m], where {L1, . . . , Lm} and {B′

1, . . . , B
′
m} are

bases of A and Mn respectively. Consider the following F-algebra isomorphism from Mn to A

τ :Mn → A

B′ 7→ A−1 · (In ⊗B′) · A.

Let Γ = ϕ ◦ τ , where ϕ : A → Mn is the F-algebra isomorphism constructed in Step 3 of

114

Algorithm 9. Clearly, Γ : Mn → Mn is an F-algebra isomorphism. On applying the Skolem-

Noether theorem (Theorem 2.1) on Γ, we get an S ∈ GL(n,F) such that for every i ∈ [m],

Bi = S−1 · Ci · S, (4.8)

where Γ(Bi) = ϕ(Li) = Ci. 2

The above claim implies that Li = A−1(In ⊗ S−1)(In ⊗ Ci)(In ⊗ S)A. Then, it is easy to

verify that (In⊗S) and (In⊗S−1) are inverses of each others, which implies Li = A−1(In⊗Ci)A.

Hence, the matrix M mentioned in Step 4 of the algorithm exists. Consider the linear system

defined by the equation Li ·M = M · (In ⊗ Ci), where the entries of M are taken as variables.

Step 4 is executed by picking the free variables of the solution space of the system from a

sufficiently large subset of F. Finally, the correctness of Step 6 is argued in the following claim.

Claim 4.3.9 Suppose f = Det(Ax), where A ∈ GL(m,F). Then, f = Det((In ⊗ D)M−1x)

with high probability.

Proof: Recall that Li = A−1 · (In⊗Bi) ·A, where L1, . . . , Lm and B′
1, . . . , B

′
m are bases of the

F-algebras A and Mn respectively, and M satisfies the following equation for every i ∈ [m],

Li ·M = M · (In ⊗ Ci).

This implies, for all i ∈ [m],

(In ⊗B′
i) · AM = AM · (In ⊗ Ci). (4.9)

We view AM as a block matrix of block size n × n. Let Mℓk ∈ Mn be the (ℓ, k)-th block of

AM . Then, from Equation (4.9), we get the Equation 4.10 for every ℓ, k ∈ [n] and i ∈ [m]:

B′
i ·Mℓk = Mℓk · Ci (4.10)

Observation 4.10 The block M11 ∈Mn is an invertible matrix with high probability.

Claim 4.3.8 implies that A−1 · (In ⊗ S−1) is a candidate for M , and for this choice of M ,

M11 = S−1. The Schwartz-Zippel lemma then implies the above observation. From Observation

4.10 and Equation (4.10), we get the next equation for every ℓ, k ∈ [n] and i ∈ [m],

B′
i ·Mℓk ·M−1

11 = Mℓk ·M−1
11 ·B′

i.

115

As B′
1, . . . , B

′
m is a basis of Mn, the above equation implies that Mℓk ·M−1

11 commutes with every

matrix in Mn. Thus, according to Observation 4.11, Mℓk ·M−1
11 = bℓk · In, for some bℓk ∈ F.

Observation 4.11 If C ∈Mn commutes with every B ∈Mn then C = c · In for some c ∈ F.

Observation 4.11 can be easily proved by considering the basis {Eij : i, j ∈ [n]} of Mn, where

Eij is the matrix having (i, j)-th entry 1 and other entries 0. Thus, we get the following

AM = G⊗M11 = (G⊗ In) · (In ⊗M11),

where G = (bℓk)ℓ,k∈[n]. As f = Det(A · x), we get

f(Mx) = Det(AMx)

= Det((G⊗ In) · (In ⊗M11) · x)

= det(G ·X ·MT
11)

= b · det(X)

= b · Det(x)

= Det((In ⊗D) · x),

where D = diag(b, 1, . . . , 1) ∈Mn. This implies

f(x) = Det((In ⊗D)M−1x).

2

4.4 Reduction from integer factoring to DET over Q
We first recall Theorem 1.9 and then give a proof. In this section, GRH means the Generalized

Riemann Hypothesis.

Theorem 4.5 (IntFact reduces to DET for quadratic forms) Assuming GRH, there ex-

ists a randomized polynomial time reduction from the problem of factoring square-free integers

to computing an A ∈ GL(4,Q) such that f = Det2(Ax), provided f is equivalent to Det2.

Consider the following result from [Ron87], which is required for the proof of Theorem 4.5.

Fact 4.5 ([Ron87]) Assuming GRH, there is a randomized polynomial time reduction from the

problem of factoring square-free integers to the following problem: Given non-zero a, b ∈ Q, find

rational numbers x, y, z (not all zero) such that x2 − ay2 − bz2 = 0, if such a solution exists.

116

The following fact cited in [Ron87] is also required for the proof of Theorem 4.5. We give a

proof for the sake of completeness.

Fact 4.6 Let a, b ∈ Q be non-zero. Then the equation x2−ay2−bz2 = 0 has a non-zero rational

solution if and only if the equation x2 − ay2 − bz2 + abw2 = 0 has a non-zero rational solution.

Proof: If x2 − ay2 − bz2 = 0 has a non-zero solution then the same solution gets extended to

x2 − ay2 − bz2 + abw2 = 0. Now, suppose x2 − ay2 − bz2 + abw2 = 0 has a non-zero solution

(x, y, z, w) ∈ Q4. Using this, we will construct a non-zero solution of x2 − ay2 − bz2 = 0.

Suppose a is a perfect square. Then, we immediately get the following solution for x2 −
ay2 − bz2 + abw2 = 0: z = 0, w = 0, y = 1, x =

√
a. Thus, we can assume that none of a

and b is a perfect square. We have x2 − ay2 = b(z2 − aw2). Suppose z2 − aw2 = 0. As b

is not a perfect square, we get x = y = z = w = 0. This contradicts the assumption that

x2 − ay2 − bz2 + abw2 = 0 has a non-zero solution. Hence, z2 − aw2 ̸= 0. Then, we get

b =
(x2 − ay2)

(z2 − aw2)

=
(x2 − ay2)(z2 − aw2)

(z2 − aw2)2

=
(xz + ayw)2

(z2 − aw2)2
− a(wx+ yz)2

(z2 − aw2)2
.

The above equation can be rewritten as x2
1 − ay21 − bz21 = 0, where x1 =

(xz+ayw)
(z2−aw2)

, y1 =
a(wx+yz)
(z2−aw2)

and z1 = 1. As b ̸= 0, we get that x2 − ay2 − bz2 = 0 has a non-zero rational solution. 2

The proof of Theorem 4.5 follows immediately from the Lemma 4.4 and Fact 4.5.

Lemma 4.4 Let a, b ∈ Q×,x = {x1,1, . . . , x2,2} and fa,b = x2
1,1 − ax2

1,2 − bx2
2,1 + abx2

2,2. Then,

fa,b(x) = Det2(Ax) for some A ∈ GL(4,Q) if and only if the equation x2 − ay2 − bz2 = 0 has a

non-zero solution over Q. Moreover, such a solution can be efficiently computed using A.

Proof: Suppose, fa,b(x) = Det2(Ax), where A ∈ GL(4,Q). This means

fa,b(A
−1x) = x1,1x2,2 − x1,2x2,1.

Let a = (1, 0, 0, 0) and A−1 = (αi,j)i,j∈[4]. Then,

fa,b(A
−1a) = α2

1,1 − aα2
2,1 − bα2

3,1 + abα2
4,1 = 0.

117

As A ∈ GL(4,Q), there exists an i ∈ [4] such that αi,1 ̸= 0. This gives a non-zero rational

solution for the equation x2−ay2−bz2+abw2 = 0. Then, Fact 4.6 implies that x2−ay2−bz2 =

0 also has a non-zero solution over Q. Now, suppose x, y, z ∈ Q, not all zero, such that

x2− ay2− bz2 = 0. We want to construct an A ∈ GL(4,Q) such that fa,b(x) = Det2(Ax). Note

that both y and z can not be simultaneously zero. Otherwise, we get x = y = z = 0, which is

a contradiction. This implies that either u2 − av2 = b or u2 − bv2 = 0 depending on whether

y ̸= 0 or z ̸= 0. Assume without loss of generality that u2 − av2 = b. Let

A =

1 0 u −av
0 1 v −u
0 1 −av au

1 0 −u av

It is easy to verify that fa,b = Det2(Ax). Now, we show that A ∈ GL(4,Q) by arguing that the

columns C1, . . . , C4 of A are Q-linearly independent. Let β1, . . . , β4 ∈ Q such that∑
i∈[4]

βiCi = 0.

Observe that the above equation gives us the following equations:

β1 = β2 = 0, uβ3 = avβ4 and vβ3 = uβ4.

From the last two equation, we get either get β4 = 0 or u2−av2 = 0. Recall that u2−av2 = b ̸= 0.

Hence, β4 = 0, which implies β3 = 0. Thus, A ∈ GL(4,Q). This completes the proof. 2

4.5 Reduction from FMAI to DET

This section is devoted to the proof of Theorem 1.10, which we recall below.

Theorem 4.6 (FMAI reduces to DET) Let n ∈ N and F be a field that satisfies char(F) ∤
n. There exists an algorithm, which takes input a basis of an F-algebra A , has oracle access to

DET over F and decides if A is isomorphic as an F-algebra to Mn(F) or not using nO(n) many

field operations. If the answer is yes, it outputs an F-algebra isomorphism from A to Mn(F).

For this proof, we need a structural result about gDet given in the following subsection.

118

4.5.1 Deteminant characterized by its Lie algebra

The following lemma is a well-known fact over C. Its proof given below holds over any field

satisfying char(F) ∤ n. Recall from Fact 4.1 that gDet = Lrow ⊕Lcol.

Lemma 4.5 (Characterization of Det by its Lie algebra) Let n ∈ N,x = {x1,1, . . . , xn,n},
F be a field satisfying char(F) ∤ n and f ∈ F[x] be a degree n homogeneous polynomial. If

Lcol ⊆ gf then f = αDetn(x) for some α ∈ F.

Proof: Recall the definition of the lie algebra of a polynomial (Definition 2.30). Let B =

(b(i,j),(k,l))i,j,k,l,∈[n] ∈ gf . Then,

∑
i,j,k,l∈[n]

b((i,j),(k,l)) · xk,l ·
∂f

∂xi,j

= 0. (4.11)

Since Lcol ⊆ gf , we will pick some specific matrices from Lcol to argue that f is a scalar

multiple of Detn. The basis given in Observation 4.1 becomes helpful here. Let j, l ∈ [n] be

distinct and B = In⊗Ej,l. Then, it follows from Equation (4.11) that for every j, l ∈ [n], j ̸= l,

∑
i∈[n]

xi,l ·
∂f

∂xi,j

= 0. (4.12)

For j ∈ [n], let Bj be the matrix where the (j, j)-th entry is 1 and every other entry is 0 and

B = In⊗ (Bj−n−1In). As char(F) ∤ n, n−1 exists in F. Then, it is easy to verify that B ∈ Lcol.

Then, Equation (4.11) implies that for every j ∈ [n],

∑
i∈n

xi,j ·
∂f

∂xi,j

= n−1

 ∑
i′,j′∈[n]

xi′,j′ ·
∂f

∂xi′,j′

 = f(x), (4.13)

where the second equation follows from Euler’s identity and the fact that n−1 is present in F. Let
L be the n× n matrix, where for every i, j ∈ [n], the (j, i)-th entry is ∂f

xi,j
. Let X = (xi,j)i,j∈[n].

Then, it follows from Equations (4.12) and (4.13) that

LX = f(x) · In.

Hence

L =
f(x)

Detn
· (Adj(X)),

119

where Adj(X) is the adjoint of X. Then, every entry in Adj(X) is a degree n− 1 polynomial.

As every entry in L is a homogeneous degree n−1 polynomial, Detn is irreducible, and deg(f) =

deg(Detn) = n, we get that f = αDetn(x) for some α ∈ F. 2

If we remove the condition char(F) ∤ n from he above theorem then Detn not characterized

by its Lie algebra. A counter example is f = xn
1,1 + Detn(x). Observe that over F satisfying

char(F) ∤ n, gf = gDetn . The above lemma immediately implies the following.

Corollary 4.2 Let n ∈ N,x = {x1,1, . . . , xn,n},F be a field satisfying char(F) ∤ n, and f ∈ F[x]
be a homogeneous polynomial of degree n. If there exists A ∈ GL(n2,F) such that A−1 ·Lcol ·A ⊆
gf then f = αDetn(Ax) for some α ∈ F.

Proof: It is given that A−1 ·Lcol · A ⊆ gf . Let h = f(A−1x). We know from Fact 2.10 that

gh = A−1 · gf · A. Then, Lcol ⊆ gh. As char(F) ∤ n, Lemma 4.5 implies that g = αDetn(x) for

some α ∈ F, which implies f = αDetn(Ax). 2

We first give the algorithm for Theorem 1.10 and then argue its correctness. Throughout

the following discussion, n ∈ N is fixed and char(F) ∤ n.

The algorithm

Algorithm 11 Reduce-FMAI-to-DET(A)

Input: A basis {B1, . . . , Br} of an F-algebra A ⊆Mm, and access to an algorithm for DET.

Output: If A is isomorphic to Mn as an F-algebra for some n ∈ N then 1 and an F-algebra
isomorphism from A to Mn, otherwise 0.

1. If r ̸= n2 for any n ∈ N, output 0 and halt. Else, rename the basis elements as B1,1, . . . , Bn,n.

2. For i, j ∈ [n], let Li,j ∈ Mn2 be the matrix corresponding to the left-multiplication action

of Bi,j on B1,1, . . . , Bn,n. That is Bi,j ·Bi2,j2 =
∑

i1,j1
Li,j ((i1, j1), (i2, j2)) ·Bi1,j1 .

3. Compute a basis for the traceless parts of Li,j’s, i.e., compute a basis L̃1, . . . , L̃s of the space

spanned by L1,1 − tr(L1,1)

n2 In2 , . . . , Ln,n − tr(Ln,n)

n2 In2 . If s ̸= n2 − 1, output 0 and halt.

4. Find a non-zero homogeneous polynomial f(x) of degree n, satisfying the following equa-

tions for every M ∈ {L̃1, . . . , L̃n2−1} (these give linear equations in the coefficients of f). If

no such non-zero polynomial exists then output 0 and halt.

∑
i1,j1,i2,j2∈[n]

M((i1, j1), (i2, j2)) · xi2,j2 ·
∂f

∂xi1,j1

= 0 (4.14)

120

5. Run DET on f . If it outputs ‘Fail’ then output 0 and halt. Else, it outputs an A ∈ GL(n,F)
such that f(x) = Detn(Ax).

6. Check if there exist F1,1, . . . , Fn,n ∈ Mn such that A · Li,j · A−1 = In ⊗ Fi,j for all i, j. If

yes, output 1 and the isomorphism ϕ(Bi,j) = Fi,j (extended linearly to whole of A). If no,

check if there exist F1,1, . . . , Fn,n ∈ Mn such that A · Li,j · A−1 = Fi,j ⊗ In for all i, j. If

yes, output 1 and the isomorphism ϕ(Bi,j) = Fi,j (extended linearly to whole of A). If no,

output 0.

Analysis of the algorithm

Claim 4.5.1 Suppose the algebra A spanned by B1,1, . . . , Bn,n is isomorphic as an F-algebra

to Mn for some n ∈ N. Let Li,j, i, j ∈ [n] be the matrices computed in Step 2 of the above

algorithm. Then, there exist a K ∈ GL(n2,F) and C1,1, . . . , Cn,n ∈ Mn such that for every

i, j ∈ [n], Li,j = K−1 · (In ⊗ Ci,j) ·K.

Proof: Recall the matrices L1,1, . . . , Ln,n generated in the algorithm and let L be the F-
algebra generated by these n2 matrices. It is not difficult to show that L is isomorphic as

an F-algebra to A . As A is isomorphic to Mn, we get that L and Mn are isomorphic as

F-algebras. L also contains the identity matrix In2 . Then, the Skolem-Noether theorem (The-

orem 2.1) implies that there exist a K ∈ GL(n2,F) and C1,1, . . . , Cn,n ∈Mn such that for every

i, j ∈ [n], Li,j = K−1 · (In ⊗ Ci,j) ·K. 2

Correctness of Algorithm 11. Since for every n ∈ N, dimMn = n2, first step of the algorithm

is correct. As {B1,1, . . . , Bn,n} is an F-basis of A , the matrices L1,1, . . . , Ln,n mentioned in Step

2 exist. Suppose A is isomorphic as an F-algebra to Mn for some n ∈ N. Then, Claim 4.5.1

implies that there exists a K ∈ GL(n2,F) and matrices C1,1, . . . , Cn,n ∈Mn such that for every

i, j ∈ [n], L1,j = K−1 · (In ⊗ Ci,j) ·K. As L1,1, . . . , Ln,n is an F-basis of A , it is easy to verify

from above that C1,1, . . . , Cn,n is an F-basis of Mn. In the next step, we compute the F-vector
space spanned by the traceless parts L̃i,j, i, j ∈ [n] of Li,j, i, j ∈ [n]. Then, it follows from the

above discussion that ⟨L̃1, . . . , L̃n2−1⟩ = K−1 ·Lcol ·K.

In Step 4, we compute a polynomial f by solving the set of linear equations in the coefficients

of f obtained from Equation (4.14). As K−1 ·Lcol ·K ⊆ gf , it follows from Corollary 4.2 that

f(x) = αDetn(Kx). It is this step which takes nO(n) field operations and dominates the overall

time complexity of Algorithm 11. As f is equivalent to Detn, on invoking Step 5, we get an

A ∈ GL(n,F) such that f = Detn(Ax). As L̃1, . . . , L̃n2−1 spans a Lie algebra of dimension

121

n2−1, it follows from the decomposition of gDetn given in Fact 4.1 that these n2−1 either span

A−1 ·Lcol ·A or A−1 ·Lrow ·A. This immediately implies that either of the following conditions

should be true:

1. There exist F1,1, . . . , Fn,n ∈Mn such that A · Li,j · A−1 = In ⊗ Fi,j for every i, j ∈ [n].

2. There exist F1,1, . . . , Fn,n ∈Mn such that A · Li,j · A−1 = Fi,j ⊗ In for every i, j ∈ [n].

This immediately argues the correctness of Step 6. It is easy to show that whatever the

algorithm outputs is actually an F-algebra isomorphism from A to Mn.

122

Chapter 5

Equivalence test for regular ROFs

This chapter is devoted to the proof of Theorem 1.11. This is a joint work with Chandan

Saha and Bhargav Thankey. There are three sections in this chapter - in the first one, we

list some important properties of the Hessian determinant of an ROF, which are used in

the equivalence test for regular ROFs, the second section contains the ET algorithm and

the last section contains the analysis of the ET algorithm. The properties of the Hessian

determinant of an ROF stated in the first section are proved in Chapter 6.

Notations. Let C be a regular ROF (Definition 2.40) over a field F. Let x = var(C), where

var(C) refers to the set of variables appearing in C. Then, every variable in x is attached to a

product gate in C. Corollary 2.2 implies that every variable in x is essential (Definition 2.32)

for C. Throughout this section, we will identify a node of C with the polynomial it computes.

It follows from Remark 2.4 that we can assume without loss of generality that C has alternate

layers of + gates and × gates, every non-leaf node in C has at least two children, and none of

the children of a × gate is a constant. Further, as C is regular, there are no edge labels in C.

We will denote + gates of C with Q,Qi, Qi,j etc. and × gates of C with T, Ti, Ti,j etc. We say

that C is +-rooted (similarly, ×-rooted) if the topmost gate of C (also called the root of C) is a

+ gate (respectively, a × gate). In this chapter, we consider a slightly more general definition

of the orbit of a polynomial. We say that an n-variate polynomial f is in the orbit of C, denoted

orb(C), if there exist an A ∈ GL(n,F) and a b ∈ Fn such that f = C(Ax+ b).

We recall Theorem 1.11 below. In this theorem, QFE means PE for quadratic forms.

Theorem 5.1 (ET for regular ROFs) Let n ∈ N,x = {x1, . . . , xn}, F be a field satisfying

char(F) = 0 or char(F) ≥ n2 and |F| ≥ n13, and f ∈ F[x] be in the orbit of an unknown regular

ROF C. Then, there exists a randomized poly(n) time algorithm that takes input black-box access

to f , has oracle access to QFE over F and does the following with high probability: it outputs

123

an A ∈ GL(n,F) such that f(Ax) = C(PSx + b), where P, S ∈ GL(n,F) are permutation and

scaling matrices respectively and b ∈ Fn.

As f is in the orbit of a regular ROF C and as C does not have redundant variables, it

follows from Fact 2.12 that f also does not contain any redundant variable. We introduce a

useful definition here. We say that an n-variate polynomial g is in the PS-orbit of C, denoted

PS-orb(C), if there exist a permutation matrix P ∈ GL(n,F), a scaling matrix S ∈ GL(n,F),
and a vector d ∈ Fn, such that g = C(PSx + d). Using this terminology, we say that the

algorithm in Theorem 5.1 outputs an A ∈ GL(n,F) such that f(Ax) ∈ PS-orb(C).

In the equivalence test for ROFs (Algorithm 12), we will extensively use some important

properties of the Hessian determinant (Definition 2.27) of C, denoted detHC. In Section 5.1,

we state these properties for a canonical ROF (Definition 2.39) and give their proofs in Chapter

6. Since every regular ROF C by definition is canonical, these properties hold for detHC.

5.1 The Hessian determinant of an ROF

This section is devoted to some important properties of the Hessian determinant of a canonical

ROF, which are needed for Algorithm 12. We only present the statements of these properties

here for the sake of completeness and give their proofs in Chapter 6. The reason for pushing

these proofs to a separate chapter is their long lengths due to a detailed analysis of the Hessian

determinant of a canonical ROF.

Lemma 5.1 (Non-zeroness of det(HC)) Let n ∈ N and F be a field such that either char(F) =
0 or ≥ n. Let C = T1 + · · ·+ Ts + γ be a canonical ROF over F, where for every l ∈ [s], Tl is a

×-rooted child of the root node in C, |var(Tl)| ≤ n, deg(Tl) ≥ 2, and γ ∈ F. Then, the Hessian

determinant of C is non-zero over F.

As C is an ROF, all Tl’s are pairwise variable disjoint, which implies that the Hessian of C

is a block-diagonal matrix, where the blocks on the diagonal are Hessians of T1, . . . , Ts. Thus

det(HC) =
∏
l∈[s]

det(HTl
). (5.1)

Hence, it is sufficient to argue that every det(HTl
) is non-zero over fields of characteristic either

zero or greater than equal to n. So, we focus on an arbitrary term T ∈ {T1, . . . , Ts}. If T

is a product of +-rooted ROFs such that each of these +-rooted ROFs has product-depth

at most 1, then we give the complete description of det(HT) in Claim 6.4.1 of Chapter 6.

Otherwise, we show in Lemma 6.1 of Chapter 6 that det(HT) is non-zero whenever char(F) = 0

124

or char(F) ≥ n. This statement may not hold over F, where |F| < n. For example, let

C = x1x2x3. Then, det(HC) = 0 over fields having characteristic two.

We prove the non-zeroness of det(HT) by understanding the structure of some nice monomi-

als in det(HT). We show that these nice monomials have non-zero coefficients when char(F) = 0

or char(F) ≥ n. The analysis of the coefficients of these nice monomials is long and involved

because of the two reasons: First, the exact values of these coefficients are helpful in showing

that det(HT) is non-zero even over fields of relatively small characteristic. Second, the precise

structures of these nice monomials are useful in getting the complete understanding of the

essential variables of det(HT) in Claim 5.1.2 and Claim 5.1.3, when T is a regular ROF.

In the following claim, we study the factors of the Hessian determinant of C, which are

obtained by carefully analysing the structure of the Hessian of C. The knowledge of these

factors is very crucially used in Algorithm 12.

Claim 5.1.1 (Factors of det(HC)) Let C a canonical ROF over an arbitrary field F.

1. Let x ∈ x be such that x is a child of a × gate in C that computes a polynomial of degree

at least 3. Then, x is a factor of det(HC).

2. Let Q be a +-rooted sub-ROF of C and Q1, · · · , Qm the siblings of Q in C, i.e., for every

i ∈ [m], Qi is either a variable or a +-rooted sub-ROF of C, and Q and Qi have the same

parent in C. Let |var(Q1)|+ · · ·+ |var(Qm)| = k. Then, the multiplicity of Q in det(HC)

is at least (k − 1).

The proof of Claim 5.1.1 follows from Claim 6.2.3 of Section 6.2 in Chapter 6, where the

factorization of the Hessian determinant of an arbitrary term T of C is studied. Corollary 5.1

follows from Corollary 6.1 of Section 6.2 in Chapter 6.

Corollary 5.1 Let F be an arbitrary field and C = T1 + · · ·+ Ts + γ a canonical ROF over F,

where for every l ∈ [s], Tl is a ×-rooted canonical ROF and γ ∈ F. If l ∈ [s] is such that Tl

computes a polynomial of degree at least 3, then there is a +-rooted child Q of Tl such that Q

is a factor of det(HC).

Now, we discuss the essential variables in the Hessian determinant of a ×-rooted regular ROF

T . We have a complete understanding of the essential variables of det(HT).

Claim 5.1.2 (Variables of det(HT) for a regular T) Let n ∈ N and F be a field satisfying

either char(F) = 0 or ≥ n. Let T be a ×-rooted regular ROF over F such that |var(T)| = n. If

n ≥ 3 then all the variables present in T appear in the Hessian determinant of T .

125

Claim 5.1.3 (Essential variables of det(HT) for a regular T) Let n ∈ N and F be a field

satisfying either char(F) = 0 or ≥ n. Let T be a ×-rooted regular ROF over F such that

|var(T)| = n. If n ≥ 3 then all the variables present in T are essential for the Hessian

determinant of T .

Claims 5.1.2 and 5.1.3 are Claims 6.5.3 and 6.5.4 of Section 6.5.7 in Chapter 6 respectively.

Claim 5.1.3 is used in Algorithm 12 to make the terms of the input polynomial f variable

disjoint (see Section 5.3.1). Its proof uses Claim 5.1.2, Observation 2.5 and Observation 2.6.

Remark 5.1 After we obtained this involved analysis of the Hessian determinant of C, Bhargav

Thankey independently came up with a different analysis, which is much shorter and proves all

the results stated here. His analysis is given in Section 3 and its associated appendix of [GST22].

The main difference between our and Thankey’s proofs is as follows: We analyse coefficients

and structures of some explicit monomials in det(HC), which we call nice monomials. The

construction of such monomials and analysis of their coefficients make our proof longer. On

the other hand, Thankey’s proof shows that there exists some high degree monomials (without

giving the explicit description of such monomials or their coefficients in det(HC)) having non-

zero coefficients in det(HC).

However, we feel that the knowledge of the structure and coefficients of nice monomials can

be helpful in understanding the Hessian determinant of univariate-substituted ROFs (see Point

1). As the class of univariate-substituted ROFs generalise ROFs, it is natural to ask if we can

use the ideas given here to design an efficient ET for univariate-substituted ROFs. As in the

ET for regular ROFs given in this chapter, the Hessian determinant of a univariate-substituted

ROF can also turn out to be instrumental in designing an ET for this model. See Section 7.3

of Chapter 6 for motivations to study ET for univariate-substituted ROFs.

5.2 Equivalence test

We start by giving an overview of the equivalence test before stating it formally. Recall Fact

2.17, Claims 2.2.2 and 2.2.3 from Chapter 2. These would be used in the algorithm. We are

given that f is in the orbit of an unknown regular ROF C. We can assume without loss of

generality that C is a +-rooted regular ROF. This is so because we can reduce an ET for a

×-rooted ROF to an ET for a +-rooted ROF as follows: Suppose C = Q1 · · ·Qs, where for

every k ∈ [s], Qk is either a variable or a +-rooted regular ROF. Let f ∈ orb(C), i.e., there

exist a B ∈ GL(n,F) and a d ∈ Fn such that f = C(Bx + d). Let Q̂k = Qk(Bx + d) for

every k ∈ [s]. Using the algorithm in Claim 2.2.2, we compute a matrix A0 ∈ GL(|x|,F) such

126

that Q̂1(A0x), . . . , Q̂s(A0x) are variable disjoint. For k ∈ [s], let xk = var(Q̂k(A0x)). Now,

we compute black-box access to irreducible factors of f(A0x) using Fact 2.17. It follows from

Observation 2.7 that after factorization, we get black-box access to αkQ̂k(A0x), k ∈ [s], where

every αk ∈ F× and α1 · · ·αs = 1. Now, suppose we have an ET for +-rooted regular ROFs,

which when invoked on αkQ̂k(A0x), returns an Ak ∈ GL(|xk|,F) for every k ∈ [s], such that

αkQ̂k(A0(Akxk,x \ xk)) ∈ PS-orb(Qk). Let A = diag(A1, . . . , As). Then, A ∈ GL(|x|,F) and it

is easy to that f(A0Ax) ∈ PS-orb(C).

5.2.1 An overview of the algorithm

Let C = T1 + · · · + Ts + γ, where for every k ∈ [s], Tk is a ×-rooted regular ROF and γ ∈ F.
Let f = C(Bx + d), where B ∈ GL(n,F) and d ∈ Fn. Then, f = T̂1 + · · · + T̂s + γ, where for

every k ∈ [s], T̂k = Tk(Bx + d). We refer to T1, . . . , Ts and T̂1, . . . , T̂s as the terms of C and f

respectively. Without loss of generality, assume that there exists an s1 ∈ [s] such that for every

k ∈ [s1], deg(Tk) = deg(T̂k) ≥ 3 and for every k ∈ {s1 + 1, . . . , s}, deg(Tk) = deg(T̂k) = 2. Let

q := Ts1+1 + · · ·+ Ts and q̂ = T̂s1+1 + · · ·+ T̂s. Then, we call q and q̂ as the quadratic terms of

C and f respectively. The algorithm has two phases, which are described below:

Phase 1: Making terms of f variable disjoint. The objective of this phase is to compute

an A0 ∈ GL(n,F) such that T̂1(A0x), . . . , T̂s(A0x) are variable disjoint (see Procedure 13). This

phase further has the following two steps.

1. Handling non-quadratic terms of f : We first compute the Hessian determinant of

f using Fact 2.14. Lemma 5.1 and Corollary 2.1 ensure that det(Hf) ̸= 0 over F. Let

k ∈ {s1+1, . . . , s}. Then, it is easy to see that det(HTk
) ∈ F×. This along with Equation

(5.1) and Corollary 2.1 implies that

det(Hf) = α ·
∏
k∈[s1]

det(HTk
)(Bx+ d),

where α ∈ F×. Let C1 = T1+ · · ·+Ts1 and f1 = T̂1+ · · ·+ T̂s1 . Since deg(Tk) ≥ 3 for every

k ∈ [s1], it follows from Claim 5.1.3 that the number of essential variables in det(HC1
)

is equal to the number of variables appearing in C1. Then, using the basic approach

mentioned in Section 1.4.3 (see Claim 2.2.3), we compute an A0 ∈ GL(n,F) such that

T̂1(A0x), . . . , T̂s1(A0x) are variable disjoint.

2. Handling the quadratic term of f : In the previous step, we computed an A0 ∈

127

GL(n,F) such that f1(A0x) is a sum of variable disjoint polynomials. However, the

terms of q̂(A0x) need not be variable disjoint. At this point, we invoke QFE over F and

compute an A′
0 ∈ GL(n,F) such that A′

0 maps every variable in f1(A0x) to itself and

q̂(A′
0x) = (y1 + β1)(y2 + β2) + · · · + (ym−1 + βm−1)(ym + βm), where for every i ∈ [m],

yi ̸∈ var(f1(A0x)) and βi ∈ F. We update A0 = A0 · A′
0. Then,

f(A0x) =
∑
k∈[s1]

T̂k(A0x) + (y1 + β1)(y2 + β2) + · · ·+ (ym−1 + βm−1)(ym + βm),

where for every k ̸= k′ ∈ [s], var(T̂k(A0x)) ∩ var(T̂k′(A0x)) = ∅. Let f ′ := f(A0x) and for

k ∈ [s], T ′
k := T̂k(A0x).

Phase 2: Recursively performing ET on the factors of the terms of f ′. The objective

of this phase is to first get black-box access to a term T ′
k of f ′ using only one black-box query

to f and if T ′
k = Q′

k,1 · · ·Q′
k,mk

then obtain black-box access to a factor Q′
k,j using only one

black-box query to T ′
k. The algorithm first learns the variable sets of T ′

1, . . . , T
′
s1
, say z1, . . . , zs1 .

Then, it picks a k ∈ [s1] and for every k′ ∈ [s1] \ {k}, it substitutes every variable in zk′ equal

to 0. Thus, we get black-box access to

g := T ′
k + γ′,

where γ′ ∈ F. As shown in the proof overview of Theorem 1.11 given in Section 1.4.3, we

compute γ′ using a “good factor” of det(Hg) and after that we subtract γ′ from the black-box

of g, which allows us to compute black-box of T ′
k using only one query to black-box of f . Once

we have access to T ′
k, we factorize it using Fact 2.17, and then recursively solve the problem for

factors of T ′
k one by one as each of these factors is an instance of f and has product-depth less

than the product-depth of f .

5.2.2 The algorithm

We now give a formal description of the algorithm.

Algorithm 12 Find-Equivalence(f(x))

Input: Black-box access to an n-variate polynomial f in the orbit of an unknown +-rooted

regular ROF C such that every x ∈ x is essential for f .

Output: An A ∈ GL(n,F) such that f(Ax) ∈ PS-orb(C).

/* The base case. */

128

1. If deg(f) = 1, return In×n.

/* Making the terms of f variable disjoint */

2. Let (A0,y, z1, . . . , zs′) be the output of Make-Terms-Var-Disjoint(f). Let z = ⊎k∈[s′]zk.

/* Learning var(T̂1(A0x)), . . . , var(T̂s1(A0x)) */

3. Let E = ∅, V = {z1, . . . , zs′} and G = (V,E) be a graph.

4. for i, j ∈ [s′] do

5. If there exist zi ∈ zi and zj ∈ zj such that ∂2f(A0x)
∂zi∂zj

̸= 0 then add the edge (zi, zj) to E.

6. end for

7. Let z1, . . . , zs1 be the variable sets corresponding to the different connected component of

G. Let C = {z1, . . . , zs1}.
8. for k ∈ [s1] do

9. Let T̂ be the output of Compute-Term-Black-Box(f(A0(zk,x \ zk = 0))).

/* Making factors of T̂ (A0x) variable disjoint */

10. Use algorithm in Fact 2.17 to obtain black-box access to factors Q̂1, . . . , Q̂m of T̂ (A0x).

11. Let Ak,0 ∈ GL(|zk|,F) be the output of the Make-Polys-Var-Disjoint(Q̂1, . . . , Q̂m) (Algo-

rithm 3 in Claim 2.2.2). For l ∈ [m], zk,l := var(Q̂l (Ak,0zk)) and zk,l := zk \ zk,l.

/* Performing ET on Q̂1(Ak,0zk), . . . , Q̂m(Ak,0zk) */

12. for l ∈ [m] do

13. Let a be a size-|zk,l| vector of random field elements and Q̂l = T̂k(Ak,0(zk,l, zk,l = a)).

14. Let Ak,l ∈ GL(|zk,l|,F) be the output of Find-Equivalence(Q̂l).

15. end for

16. Construct an A′
k,0 ∈M|zk|(F), which maps every z ∈ zk,l to Ak,l ◦ z for every l ∈ [m].

17. Let Ak = Ak,0A
′
k,0.

18. end for

19. Construct an A′
0 ∈Mn(F) such that A′

0 ◦z = Ak ◦z,∀z ∈ zk, k ∈ [s1] and A′
0 ◦y = y,∀y ∈ y.

20. Return A0A
′
0.

Here, we give the input-output behaviours of the procedures Make-Terms-Var-Disjoint()

(Procedure 13) and Compute-Term-Black-Box() (Procedure 14), which are used as subroutines

in the above algorithm. These procedures are formally described in Section 5.3. The procedure

129

Make-Terms-Var-Disjoint() takes input black-box access to f in the orbit of an unknown +-

rooted regular ROF such that every variable in x is essential for f and computes a matrix

A ∈ GL(n,F) such that f(Ax) is a sum of variable disjoint terms. The procedure Compute-

Term-Black-Box() takes black-box access to T̂k(A0x) + γ′, where T̂k is a term of f ′, γ′ ∈ F, and
A0 is the matrix mentioned in Step 2 and outputs black-box access to T̂k(A0x) using only one

query to the black-box of f .

5.3 Analysis of the algorithm

The following lemma will establish the correctness of Algorithm 12.

Lemma 5.2 (Correctness of Algorithm 12) Let n ∈ N,x = {x1, . . . , xn},F be a field such

that char(F) = 0 or char(F) ≥ n2 and |F| ≥ n13, and f(x) be in the orbit of a +-rooted regular

ROF C such that every x ∈ x is essential for f . Let A be the matrix returned by Algorithm 12.

Then, there exist a permutation matrix P ∈ Mn(F), an invertible scaling matrix S ∈ Mn(F),
and a b ∈ Fn such that f(Ax) = C(PSx+ b).

We first give the formal description of Procedure Make-Terms-Var-Disjoint() below and

argue its correctness in Sections 5.3.1 and 5.3.2. Then, we give Procedure Compute-Term-

Black-Box() in Section 5.3.3. After that, we prove Lemma 5.2.

Procedure 13 Make-Terms-Var-Disjoint(f(x))

Input. Black-box access to an n-variate polynomial f in the orbit of an unknown +-rooted

regular ROF such that every x ∈ x is essential for f .

Output. (A,y, z1, . . . , zs′), where A ∈ GL(n,F), s.t. the terms of f(Ax) are variable disjoint,

y = var(q̂(Ax)), for i ̸= j ∈ [s′], zi ∩ zj = ∅ and ∀T̂k satisfying deg(T̂k) ≥ 3,∃Jk ⊆ [s′], s.t.

var(T̂k(Ax)) = ⊎i∈Jkzi.

/* Handling the terms of f computing polynomials of degree at least 3 */

1. Let h = det(Hf) and (A1, {z1, . . . , zs′}) be the output of Make-Factors-Var-Disjoint(h)

(Algorithm 4 in Claim 2.2.3). Let z = var(h(A1x)) and y = x \ z.
2. If z = var(f(A1x)), return (A1, ∅, z1, . . . , zs′).

/* Handling the terms of f1 computing degree 2 polynomials */

3. Let f1 = f(A1x), y = {y1, . . . , y2m}, and q̃ = y1y2 + · · ·+ ym−1ym.

4. Compute black-box access to the degree-2 homogeneous part q′ of f1 in y-variables.

130

5. Let Â2 be the output of QFE (q′, q̃). Extend Â2 ∈ GL(|y|,F) to A2 ∈ GL(n,F), such that

A2 ◦ z = z and for every y ∈ y, A2 and Â2 map y to the same linear form in y-variables.

6. Let f2 = f1(A2x).

7. for y ∈ y do

8. Compute the black-box access to ∂f2
∂y

and interpolate it. Let ∂f2
∂y

= y′ + ℓz,y′ + αy′ , where

y′ ∈ y \ {y}, ℓz,y′ ∈ F[z] is a linear form and αy′ ∈ F.
9. end for

10. Compute A3 ∈ GL(n,F), that maps every y′ ∈ y to y′ − ℓz,y′ and every z ∈ z to itself.

11. Return (A1A2A3,y, z1, . . . , zs′).

Recall f = T̂1+ · · ·+ T̂s+γ and q̂ = T̂s1+1+ · · ·+ T̂s, where q̂ is the quadratic term of f . The

objective of the above procedure is to compute anA0 ∈ GL(n,F) such that T̂1(A0x), . . . , T̂s(A0x)

become variable disjoint. Let I1 = [s1] and I2 = {s1 + 1, . . . , s}. Then, we know that for every

k ∈ I1, T̂k computes a polynomial of degree at least 3 and for every k ∈ I2, T̂k computes a

degree 2 polynomial. In Section 5.3.1 we first show how to make the terms of f corresponding to

I1 variable disjoint and then show in Section 5.3.2 how to handle the terms of f corresponding

to I2 by using oracle access to QFE over F.

5.3.1 Making terms variable disjoint

In the procedure, we first compute h = det(Hf). Lemma 5.1 and Corollary 2.1 imply that

h ̸= 0. Then, it follows from Claim 5.1.2 and Fact 2.7 that for every k ∈ I1, det
(
HT̂k

)
is a

non-constant polynomial and it is easy to see that for every k ∈ I2, det
(
HT̂k

)
∈ F×. Thus,

when we invoke Algorithm 4 in Step 1 and factorize h inside this algorithm, the non-constant

irreducible factors of h are only contributed by det
(
HT̂k

)
, k ∈ I1. It follows from Claim 5.1.3

that for all k ∈ I1, all variables appearing in det
(
HT̂k

)
are essential. So, Claim 2.2.3 implies

that for every k, k′ ∈ I1, k ̸= k′, det
(
HT̂k

)
(A1x) and det

(
HT̂k′

)
(A1x) are variable disjoint,

where A1 ∈ GL(n,F) is the matrix obtained in Step 1. The following observation ensures that

A1 makes T̂k, k ∈ I1 variable disjoint.

Observation 5.1 For every k, k′ ∈ I1, k ̸= k′, T̂k(A1x) and T̂k′(A1x) are variable disjoint.

Further for every k ∈ I1, T̂k(A1x) has no redundant variables.

Proof: Fix k ∈ I1 arbitrarily. Let xk := var(det(HTk
)) and zk := var

(
det
(
HT̂k

)
(A1x)

)
. We

know from Claim 5.1.2 that xk is the set of variables appearing in Tk and as Tk is a regular

ROF, Observation 2.8 and Claim 5.1.3 imply that every variable in xk is essential for det (HTk
).

131

Claim 2.2.3 implies that zk is a set of essential variables of det(HT̂k
)(A1x). Then, it follows

from Fact 2.12 that |xk| = |zk| for every k ∈ I1.

Let k ∈ I1. We know T̂k = Tk(Bx+ d), which implies T̂k(A1x) = Tk(BA1x+ d). We know

det(HTk
) ∈ F[xk] and det

(
HT̂k

)
(A1x) ∈ F[zk], which implies det(HTk

)(BA1x + d) ∈ F[zk].
As |zk| = |xk| and xk is the set of essential variables of Tk, it follows from Observation 2.4

that BA1 maps every variable in xk to a linear form in zk. As xk = var(Tk) and BA1 maps

every variable in xk to zk, clearly var
(
T̂k(A1x)

)
= zk. Because every variable in xk is es-

sential for Tk, we get that zk is the set of essential variables of T̂k(A1x). Since for every

k, k′ ∈ I1, k ̸= k′, zk ∩ zk′ = ∅, T̂k(A1x) and T̂k′(A1x) are variable disjoint. 2

For k ∈ I1, let zk = var
(
det
(
HT̂k

)
(A1x)

)
. As noted in the proof of Observation 5.1,

T̂k(A1x) computes a polynomial in F[zk]. Let z = ⊎k∈I1zk and y = x \ z. Then, z is the set

of variables appearing in
∑

k∈I1 T̂k(A1x). If I1 = [s] then z = x and we are done. Otherwise,

it might happen that there exist a k′ ∈ I2 and z ∈ z, such that z ∈ var
(
T̂k′(A1x)

)
. We show

how to handle the terms corresponding to I2 in the following section.

5.3.2 Handling the top quadratic term

Now, we handle the terms corresponding to I2. Recall f1 = f(A1x). Then,

f1 =
∑
k∈I1

T̂k(A1x) +
∑
k∈I2

(ℓk,1,y + ℓk,1,z + αk,1)(ℓk,2,y + ℓk,2,z + αk,2) + γ,

where for every k ∈ I2, j ∈ [2], ℓk,j,y ∈ F[y], ℓk,j,z ∈ F[z] are linear forms and αk,j ∈ F.
It is easy to verify that the following observation is true. If not, it can be shown the number

of essential variables of f1 (which is equal to the number of essential variables of f) is strictly

less than n, which gives a contradiction as f1 is in the orbit of an n-variate regular ROF.

Observation 5.2 The set {ℓk,j,y : k ∈ I2, j ∈ [2]} is F-linearly independent.

In Step 4, we compute black-box access to q′, which is the homogeneous degree 2 part of

f1 in y-variables. This is done by multiplying every variable in y with a fresh variable t and

then interpolating the coefficient of t2 from the black-box of f1. Note that this coefficient is the

black-box of q′, which is equal to
∑

k∈I2 ℓk,1,y · ℓk,2,y. We rename the set y = {y1, . . . , ym} to

y = {yk,1, yk,2 : k ∈ I2}. Let q̃ =
∑

k∈I2 yk,1 · yk,2. Observation 5.2 implies that we can invoke

QFE on (q′, q̃), which returns Â2 ∈ GL(|y|,F), such that

q′
(
Â2 · y

)
=
∑
k∈I2

ℓk,1,y · ℓk,2,y
(
Â2y

)
=
∑
k∈I2

yk,1 · yk,2. (5.2)

132

Let A2 be the extension of Â2 in the following manner: For every z ∈ z, A2 maps z to itself and

for every y ∈ y, A2 and Â2 map y to the same linear form in y-variables. Clearly, A2 ∈ GL(n,F).
Let f2 = f1(A2x). The following observation is helpful in understanding f2.

Observation 5.3 Let A2 ∈ GL(n,F) be the matrix computed in Step 5. Then, for every k ∈ I2,

there exist linear polynomials hk,1, hk,2 ∈ F[z], such that∑
k∈I2

(ℓk,1,y + ℓk,1,z + αk,1)(ℓk,2,y + ℓk,2,z + αk,2)(A2x) =
∑
k∈I2

(yk,1 + hk,1)(yk,2 + hk,2).

Proof: For every k ∈ I2, j ∈ [2], let pk,j = ℓk,j,z + αk,j. Then,∑
k∈I2

(ℓk,1,y + pk,1)(ℓk,2,y + pk,2)(A2x) =
∑
k∈I2

(ℓ′k,1,y + pk,1)(ℓ
′
k,2,y + pk,2),

where for k ∈ I2, j ∈ [2], ℓ′k,j,y = ℓk,j,y(A2x) and as A2 maps every variable in z to itself, for

k ∈ I2, j ∈ [2], pk,j(A2x) = pk,j. Since A2 ∈ GL(n,F), Observation 5.2 implies that {ℓ′k,j,y : k ∈
I2, j ∈ [2]} is F-linearly independent. On expanding the R.H.S. of the above equation, we get∑
k∈I2

(ℓ′k,1,y + pk,1)(ℓ
′
k,2,y + pk,2) =

∑
k∈I2

ℓ′k,1,yℓ
′
k,2,y +

∑
k∈I2

(ℓ′k,1,ypk,2 + ℓ′k,2,ypk,1) +
∑
k∈I2

pk,1pk,2. (5.3)

For k ∈ I2, let hk,1, hk,2 be the coefficients of yk,2, yk,1 in
∑
k∈I2

(ℓ′k,1,ypk,2 + ℓ′k,2,ypk,1) respectively.

Then, for every k ∈ I2, hk,1, hk,2 ∈ F[z] are linear polynomials and∑
k∈I2

(ℓ′k,1,ypk,2 + ℓ′k,2,ypk,1) =
∑
k∈I2

(yk,1hk,2 + yk,2hk,1).

Equation (5.2) implies that
∑

k∈I2 ℓ
′
k,1,yℓ

′
k,2,y =

∑
k∈I2 yk,1 · yk,2. Using this and on adding and

subtracting
∑

k∈I2 hk,1hk,2 from Equation (5.3), we get∑
k∈I2

(ℓ′k,1,y + pk,1)(ℓ
′
k,2,y + pk,2) =

∑
k∈I2

(yk,1 + hk,1)(yk,2 + hk,2) +
∑
k∈I2

(pk,1pk,2 − hk,1hk,2).

Now, we show that
∑

k∈I2(pk,1pk,2 − hk,1hk,2) = 0. Substitute yk,j = yk,j − hk,j for every

k ∈ I2, j ∈ [2] in the above equation. Then, we get∑
k∈I2

(ℓ′k,1,y + p′k,1)(ℓ
′
k,2,y + p′k,2) =

∑
k∈I2

yk,1yk,2 +
∑
k∈I2

(pk,1pk,2 − hk,1hk,2),

133

where p′k,j ∈ F[z] is a linear polynomial for every k ∈ I2, j ∈ [2]. Note that as the R.H.S. of the

above equation does not have a monomial containing variables from both y and z, we get∑
k∈I2

(ℓ′k,1,yp
′
k,2 + ℓ′k,2,yp

′
k,1) = 0.

Since {ℓ′k,j,y : k ∈ I2, j ∈ [2]} is F-linearly independent, it is easy to see that for every

k ∈ I2, p
′
k,1 = p′k,2 = 0, which implies

∑
k∈I2(pk,1pk,2 − hk,1hk,2) = 0. Hence∑

k∈I2

(ℓk,1,y + ℓk,1,z + αk,1)(ℓk,2,y + ℓk,2,z + αk,2)(A2 · x) =
∑
k∈I2

(yk,1 + hk,1)(yk,2 + hk,2).

2

This observation implies that f2 looks as follows.

f2 =
∑
k∈I1

T̂k(A1A2x) +
∑
k∈I2

(yk,1 + hk,1)(yk,2 + hk,2) + γ.

When we take partial derivatives of f2 with respect to yk,1, yk,2 for k ∈ I2, we get black-box

access to yk,2 + hk,2 and yk,1 + hk,1 respectively. For k ∈ I2, j ∈ [2] let hk,j = ℓ̃k,j,z + βk,j, where

ℓ̃k,j,z ∈ F[z] is a linear form and βk,j ∈ F. Now, we compute A3 ∈ GL(n,F), which maps yk,j

to yk,j − ℓ̃k,j,z for every k ∈ I2, j ∈ [2] and every other variable to itself. Let f3 = f2(A3x).

Let A = A1A2A3. As noted before, A2A3 maps every variable in z to itself. Thus, for every

k ∈ I1, T̂k(Ax) = T̂k(A1x) and hence T̂k(Ax) ∈ F[zk]. This implies

f3 = f(Ax) =
∑
k∈I1

T̂k(Ax) +
∑
k∈I2

(yk,1 + βk,1)(yk,2 + βk,2) + γ.

Since T̂k(Ax) ∈ F[zk] for every k ∈ I1, the above equation immediately implies that for

every k, k′ ∈ [s], k ̸= k′, T̂k(Ax) and T̂k′(Ax) are variable disjoint. Further, it follows from

Claim 2.2.3 and the proof of Observation 5.1 that for every k ∈ [s1], there exists Jk ⊆ [s′], such

that var(T̂k(Ax)) = ⊎i∈Jkzi.

5.3.3 Computing efficient black-box access to a term

Before describing Procedure 14, we show in the following observation that the for loop in Steps

4 - 6 of Algorithm 12 is correct.

Observation 5.4 (Learning variable sets) After execution of the for loop in Steps 4 - 6,

for every k ∈ [s1], zk = var
(
T̂k(A0x)

)
.

134

Proof: Recall C = {z1, . . . , zs1} is the set of variable sets corresponding to the connected

components of the graph G = (V,E), where V = {z1, . . . , zs′}. Pick a k ∈ [s1] arbitrarily and let

T̂k = Q̂k,1 · · · Q̂k,mk
. If there exists an i ∈ [s′] such that for every l ∈ [mk], var(Q̂k,l(A0x)) ⊆ zi

then var(T̂k(A0x)) ⊆ zi. Suppose this is not the case and there exist i1 ̸= i2 ∈ [s′], I1, I2 ⊆ [mk]

such that I1 ∩ I2 = ∅, var(
∏

l∈I1 Q̂k,l) ⊆ zi1 and var(
∏

l∈I2 Q̂k,l) ⊆ zi2 . Then, we show in the

following two cases that we add an edge between zi1 and zi2 .

Case 1. Either mk ≥ 3 or deg(Qk,1) ≥ 2 and deg(Qk,2) ≥ 2. In this case, we know from Corol-

lary 5.1 and Observation 2.7 that for every l ∈ [mk], Q̂k,l is an irreducible factor of det(HT̂k
).

It follows from Claim 2.2.3 that there exist i1, i2 ∈ [s′], i1 ̸= i2 and I1, I2 ⊆ [mk] such that

∪l∈I1var(Q̂k,l) ⊆ zi1 and ∪l∈I2var(Q̂k,l) ⊆ zi2 . Let z1 ∈ zi1 , z2 ∈ zi2 be arbitrary. As zi1∩zi2 = ∅,

∂2f(A0x)

∂z1∂z2
=

∂2T̂k(A0x)

∂z1∂z2
=

∏
l∈[mk]\(I1⊎I2)

Q̂k,l

(
∂
∏

l1∈I1 Q̂k,l1(A0x)

∂z1

)(
∂
∏

l2∈I2 Q̂k,l2(A0x)

∂z2

)
.

Clearly, ∂2f(A0x)
∂z1∂z2

̸= 0 and we add an edge between zi1 and zi2 .

Case 2. mk = 2 and exactly one of Qk,1 and Qk,2 is a variable. Without loss of generality,

let Qk,1 is a variable. It follows from Corollary 5.1 that Q̂k,1 is a factor of det(HT̂k
). Then,

Claim 2.2.3 implies that there exist distinct i1, i2 ∈ [s′] such that var(Q̂k,1(A0x)) ⊆ zi1 and

var(Q̂k,2(A0x)) ∩ zi2 ̸= ∅. Pick z1 ∈ zi1 and z2 ∈ zi2 ∩ var(Q̂k,2(A0x)) arbitrarily.

∂2f(A0x)

∂z1∂z2
=

∂2T̂k(A0x)

∂z1∂z2
=

∂

∂z1

(
Q̂k,1(A0x)

∂Q̂k,2(A0x)

∂z2

)
.

As z1 ∈ var(Q̂k,1(A0x)), clearly
∂2f(A0x)
∂z1∂z2

̸= 0 and we add an edge between zi1 and zi2 .

It follows from these two cases that for every k ∈ [s1], var(T̂k(A0x)) is contained in one

connected component of G. Now, suppose z1 ∈ var(T̂k1(A0x)) and z2 ∈ var(T̂k2(A0x)). Then,

clearly ∂2f(A0x)
∂z1∂z2

= 0. This implies that we add an edge between zi1 and zi2 if and only if

zi1 ⊎ zi2 ⊆ var(T̂k(A0x)) for some k ∈ [s1]. Thus, C = {var(T̂1(A0x)), . . . , var(T̂s1(A0x))}. 2

Now, we formally describe Procedure 14.

Procedure 14 Compute-Term-Black-Box(g)

Input: Black-box access to T̂ (A0x) + γ′, where T̂ is a term of f and γ′ ∈ F.
Output: Black-box access to T̂ (A0x) using just one black-box query to f .

135

1. Compute black-box access to det(Hg) with respect to var(g) and factorize it using Fact

2.17. Let N be the set of black-boxes of the irreducible factors of det(Hg).
2. for p ∈ N do

3. Let a be a size-|var(g)| vector containing random field elements. For a fresh variable t,

interpolate p(a · t) and g(a · t).
4. Compute p′(t) and β ∈ F such that p(a · t)p′(t)+β = g(a · t) by solving a system of linear

equations in the coefficients of p′ and β.
5. If g − β is reducible, then return black-box access to g − β.

6. end for

The correctness of the above procedure is argued in the following claim.

Claim 5.3.1 Let k ∈ [s1], zk = var(T̂k(A0x)). Then, Compute-Term-Black-Box(A0(zk, z\zk =
0)) returns black-box access to T̂k(A0x) with high probability. Moreover, one query to T̂k(A0x)

requires just one black-box query to f .

Proof: We know that

f(A0x) = T̂1(A0x) + · · ·+ T̂s1(A0x) + q̂(A0x) + γ.

As T̂1(A0x), . . . , T̂s1(A0x), q̂(A0x) are pairwise variable disjoint,

f(A0(zk, z \ zk = 0)) = T̂k(A0x) + γ′,

where γ′ ∈ F. Let g = f(A0(zk, z \ zk = 0)). Note that black-box access to g can be directly

computed from the black-box of f . The objective is to learn γ′ and then subtract it from the

black-box of g to get black-box access to T̂k(A0x).

The procedure computesN , which is the set of irreducible factors of det(Hg) = det(HT̂k(A0x)
).

As deg(T̂k(A0x)) ≥ 3, it follows from Corollary 5.1 and Corollary 2.1 that N contains non-zero

constant multiples of at least one child of the root of f(A0x). We call such factors as “good

factors” and other factors are called “bad factors”. Suppose p is a factor of det(Hg) picked by

the algorithm. Then, p can either be good or bad. We analyse these two cases separately.

Case 1: p is a good factor. In this case, p is also a factor of T̂k(A0x). The procedure

computes p′ and β, which satisfy

p(a · t)p′(t) + β = g(a · t), (5.4)

136

where a is a vector of |zk| many random field elements and t is a fresh variable. One choice

for p′(t) and β are T̂k(A0x)
p

(a · t) and γ′ respectively. We can compute p′(t) and β as follows:

Interpolate p(a · t) and g(a · t) as univariate polynomials in F[t] and treat the coefficients of p′(t)

and β as formal variables. Now, solve the system of linear equations in the coefficients of p′(t)

and β by comparing the coefficients of different monomials in t variables in the L.H.S. and the

R.H.S. of Equation (5.4). We now argue that we get a unique solution.

Suppose (p′1(t), β1) and (p′2(t), β2) satisfy Equation (5.4). Then, we get

p(a · t)(p′1(t)− p′2(t)) = β1 − β2.

As a contains random field elements, the Schwartz-Zippel lemma implies that with high prob-

ability, deg(p(a · t)) ≥ 1. Thus, β1 = β2, which further implies p′1(t) = p′2(t). Because of this,

β = γ′. Then, g−β is reducible and the procedure halts by returning black-box access to g−β.

Case 2: p is a bad factor. In this case, if β = γ′ then we are done. Let β ̸= γ′. Then, note

that g−β is in the orbit of Tk+γ′−β. It follows from Observation 2.7 that g−β is irreducible

and the procedure picks another factor from N .

For the ‘moreover’ part, observe that after learning β, black-box access to T̂k(A0(zk =

ak,x \ zk = 0)) can be computed for any ak ∈ F|zk| using just one black-box query to f . 2

Now, we are ready to prove Lemma 5.2.

Proof of Lemma 5.2

We prove the lemma by induction on the product-depth ∆ of C. Recall that we want to show

that if A is the matrix computed by Find-Equivalence(f) then f(Ax) ∈ PS-orb(C), where C

is an n-variate regular ROF and f does not have redundant variables. Let ∆ = 0. Then,

C = x1 and f is an affine form. As all the variables in f are essential, f = αx1 + β for some

α, β ∈ F, α ̸= 0. As n = 1, f(In×nx) ∈ PS-orb(C). This proves the base case.

Now, suppose the lemma holds for ∆ > 0 and the product-depth of C is ∆ + 1. Recall

that C = T1 + · · · + Ts + γ, f = C(Bx + d) for some B ∈ GL(n,F) and d ∈ Fn. Then,

f = T̂1+· · ·+T̂s+γ, where for every k ∈ [s], T̂k = Tk(Bx+d). Also recall that q = Ts1+1+· · ·+Ts

is a quadratic form and q̂ = q(Bx + d). It follows from the analysis of Procedure 13 given in

Section 5.3.1 that after Step 2 is completed, T̂1(A0x), . . . , T̂s1(A0x), q̂(A0x) are variable disjoint

polynomials. Further, q̂(A0x) = (y1 + β1)(y2 + β2) + · · · + (ym−1 + βm−1)(ym + βm), where for

every i ∈ [m], βi ∈ F. Observation 5.4 implies that after execution of the for loop in Steps 2-6,

137

for every k ∈ [s1], T̂k(A0x) = zk.

Let P0 ∈ Mn(F) be a permutation matrix such that for every k ∈ [s1], var(Tk(P0x)) = zk

and var(q(P0x)) = y, where y = {y1, . . . , ym}. Then, there exist a B′ ∈ GL(n,F) and a d′ ∈ Fn

such that f(A0(B
′x+d′)) = C(P0x). Thus, it suffices to prove that f(A0x) ∈ PS-orb(C(P0x)).

The following claim argues the correctness of the for loop in lines 8-18 for some k ∈ [s1]. We

first complete the proof of this lemma assuming the claim below and then prove Claim 5.3.2.

Claim 5.3.2 Let k ∈ [s1]. After the execution of the k-th iteration of the for loop in lines 8-18,

there exist a permutation matrix Pk ∈ M|zk|(F), an invertible diagonal matrix Sk ∈ M|zk|(F)
and a bk ∈ F|zk| such that T̂k(A0(Akzk,x \ zk)) = Tk(P0(PkSkzk + bk,x \ zk)).

As q̂(A0x) = (y1+β1)(y2+β2)+· · ·+(ym−1+βm−1)(ym+βm), clearly there exist a permutation

matrix Ps1+1 ∈ M|y|(F), an invertible diagonal matrix Ss1+1 ∈ M|y|(F) and a bs1+1 ∈ F|y| such

that q̂(A0x) = q(P0(Ps1+1Ss1+1y+bs1+1,x\y)). Let P ∈Mn(F) be a permutation matrix such

that for every k ∈ [s1], z ∈ zk, P ◦z = Pk◦z and for every y ∈ y, P ◦y = Ps1+1◦y. Let S ∈Mn(F)
be an invertible diagonal matrix such that for every k ∈ [s1], z ∈ zk, S ◦ z = Sk ◦ z and for every

y ∈ y, S ◦y = Ss1+1◦y. Let b ∈ Fn such that for k ∈ [s1], the coordinates of b labelled by zk are

bk and the coordinates labelled by y are bs1+1. Since A
′
0 maps every z ∈ zk to Ak ◦ z for every

k ∈ [s1] and maps every y ∈ y to itself, we have f(A0A
′
0x) = C(P0(PSx+ b)) ∈ PS-orb(C).

Proof of Claim 5.3.2

Fix a k ∈ [s′]. The correctness of Procedure 14 given in Claim 5.3.1 ensures that after Step

9 is executed, T̂ is the black-box of T̂k(A0x). Suppose that T̂k(A0x) =
∏

l∈[mk]
Q̂k,l(A0x), the

corresponding term Tk(P0x) of C(P0x) is Tk(P0x) =
∏

l∈[mk
Qk,l, for every l ∈ [mk] Qk,l is either

a variable or a +-rooted sub-ROF of C(P0x) and Q̂k,l(A0(B
′x+ d′)) = Qk,l. Then, the factors

Q̂1, . . . , Q̂mk
of T̂ computed in Step 10 are non-zero constant multiples of Q̂k,l(A0x), l ∈ [mk],

respectively. Since Qk,1, . . . , Qk,mk
are variable disjoint ROFs,

Ness (Qk,1 · · ·Qk,mk
) = Ness (Qk,1) + · · ·+Ness (Qmk

) .

Also, for all l ∈ [mk], Ness

(
Q̂l

)
= Ness

(
Q̂k,l(A0x)

)
= Ness (Qk,l) . Similarly, Ness

(
Q̂1 · · · Q̂mk

)
=

Ness (Qk,1 · · ·Qk,mk
) . Thus,

Ness

(
Q̂1 · · · Q̂mk

)
= Ness

(
Q̂1

)
+ · · ·+Ness

(
Q̂mk

)
.

138

So, from Claim 2.2.2, there exists an Ak,0 ∈ GL(|zk|,F) such that Q̂1(Ak,0zk), . . . , Q̂mk
(Ak,0zk)

are variable disjoint. Claim 2.2.2 also implies that Q̂1(Ak,0zk), . . . , Q̂mk
(Ak,0zk) do not contain

any redundant variable. This means that for all l ∈ [mk], |var (Qk,l) | = |zk,l|, where zk,l =

var
(
Q̂l(Ak,0zk)

)
. So, there exists a permutation matrix Pk,0 ∈ M|zk|(F) such that for all

l ∈ [mk], var (Qk,l(Pk,0zk)) = zk,l.

We now analyse the l-th iteration of the inner loop of lines 12-15 for some l ∈ [mk]. As a is

chosen randomly, with high probability Q̂l = T̂ (Ak,0 (zk,l, zk \ zk,l = a)) is cl ·Q̂k,l(A0(Ak,0zk,x\
zk)) for some cl ∈ F\{0}. Let Ql be a regular ROF obtained by multiplying cl with Qk,l(Pk,0zk),

pushing it down to the leaves, and removing it from any non-constant leaf.

Let B′′ = A′−1
k,0B

′P ′
k,0, where A′

k,0 ∈ GL(n,F) maps every z ∈ zk to Ak,0 ◦ z and every other

variable to itself, while P ′
k,0 ∈Mn(F) maps every z ∈ zk to Pk,0 ◦ z and every other variable to

itself. Also, let d′′ = A′−1
k,0 d

′. It is not difficult to see that Q̂l (B
′′x+ d′′) = Ql. Note that the

product-depth of Ql is at most ∆. To recursively perform equivalence test on Q̂l we shall show

that there exist a Bl ∈ GL(|zk,l|,F) and a dl ∈ F|zk,l| such that Q̂l (Blzk,l + dl) = Ql(zk,l).

As Q̂l ∈ F[zk,l], every variable in zk,l is essential for Q̂k,l and Q̂l(B
′′x + d′′) ∈ F[zk,l], it

follows from Observation 2.4 that B′′ maps every zk,l-variable to a linear form in zk,l. Let

[B′′]zk,l×zk,l and [B′′]zk,l×x\zk,l be obtained by restricting the rows and columns of B′′ to zk,l, zk,l

and zk,l,x \ zk,l respectively. Then, [B′′]zk,l×x\zk,l = 0 and as B′′ ∈ GL(n,F), we get that

[B′′]zk,l×zk,l ∈ GL(|zk,l|,F). Using this and the fact that var
(
Q̂l

)
= zk,l, we get

Ql(zk,l) = Q̂l

(
[B′′]zk,l×zk,l

zk,l + [d′′]zk,l

)
,

where [d′′]zk,l is obtained by restricting d′′ to zk,l. As [B′′]zk,l×zk,l
is invertible, we can set

Bl = [B′′]zk,l×zk,l
and dl = [d′′]zk,l .

Thus, by the induction hypothesis, Ak,l computed in Step 14, is such that there exist a

permutation matrix Pk,l ∈ M(|zk,l|,F), an invertible scaling matrix Sk,l ∈ M(|zk,l|,F) and

a bk,l ∈ F|zk,l| satisfying Q̂l(Ak,lzk,l) = Ql(Pk,lSk,lzk,l + bk,l). As Q̂k,l(A0(Ak,0zk,x \ zk)) =

c−1
l · Q̂l(zk) and Ql(zk) = c−1

l ·Qk,l(Pk,0zk) we get,

Q̂k,l(A0(Ak,0(Ak,lzk,l, zk \ zk,l),x \ zk)) = Qk,l(Pk,0(Pk,lSk,lzk,l + bk,l, zk \ zk,l)).

Since this is true for all l ∈ [mk], after the execution of the for loop of lines 12-15 and Step 16,

for all l ∈ [mk],

Q̂k,l(A0(Akzk,x \ zk)) = Qk,l(Pk,0(PkSkzk + bk)),

where for all l ∈ [mk] and z ∈ zk,l, Pk maps z to Pk,l ◦ z, Sk maps z to Sk,l ◦ z and the z-th

139

coordinate of bk is the same as that of the z-th coordinate of bk,l. Hence,

T̂k(A0(Akzk,x \ zk)) = Tk(P0(PkSkzk + bk,x \ zk)).

This completes the proof.

Running time analysis

We first show that Procedures 13 and 14 run in polynomial time and then analyse Algorithm 12.

Procedure 13. Using Fact 2.14, we can compute det(Hf) efficiently. Claim 2.2.3 ensures that

Make-Factors-Var-Disjoint() also runs in polynomial time. It is easy to see that all the other

steps of this procedure also run in polynomial time.

Procedure 14. Here also det(Hg) can be computed efficiently using Fact 2.14 and then we

can factorize det(Hg) in polynomial time using Fact 2.17. As the number of irreducible factors

of det(Hg) is at most n, univariate polynomials can be interpolated in polynomial time and a

system of linear equations can also be solved in polynomial time, we get that this procedure

also runs in polynomial time.

Algorithm 12. It follows from the running time analysis of Procedures 13 and 14 that the time

spent by Find-Equivalence() outside the recursive calls is poly(n). First, observe that there are

at most n recursive calls made to Find-Equivalence(). This is so because every recursive call is

made to a polynomial in the orbit of a distinct +-rooted sub-ROF of C. As there are at most

n such sub-ROFs, the number of recursive calls made are also at most n. Now, we show that

each recursive call also takes polynomial time.

Suppose that during the execution of Algorithm 12, at some recursion depth, recursive

call is made to f1(x1), where f1 is in the orbit of a +-rooted sub-ROF C1 of C. Then, we

obtain black-box of f1 by evaluating black-box of f at some known points from F|x1| and then

subtracting a constant from the black-box of f . Hence, one query to f1 can be computed from

one black-box-query to f in poly(n) time and not in poly(|x1|) time. Now suppose a call to

Find-Equivalence(f2(x2)) is made from Find-Equivalence(f1). In this case, the time required

to prepare a black-box for f2 is also poly(n) because here we evaluate f on some known points

from F|x2| and then subtract an appropriate constant from black-box of f to obtain black-box

of f2. Thus, the running time to prepare a black-box of f2 is independent of the recursion depth

of the call for f1. Hence, Algorithm 12 runs in poly(n) time.

140

Chapter 6

Hessian determinant of an ROF

In this chapter, we analyse some important properties of the Hessian determinant of a

canonical ROF (Definition 2.39) mentioned in Section 5.1 of Chapter 5. This is a joint

work with Chandan Saha and Bhargav Thankey. These properties are crucially used in

designing an efficient equivalence test for the class of regular ROF (Algorithm 12) given

in Chapter 5. The content of this chapter is divided into five sections. In the first section,

we give a set of useful notations exclusively for this chapter. The second section is devoted

to understanding the structure of the Hessian determinant of a canonical ROF C and the

third section contains the Laplace’s expansion of the Hessian determinant of C. In the

fourth section, we give a complete description of the Hessian determinant of a product-

depth 2 ROF. The last section is devoted to understanding some important properties of

the Hessian determinant of a canonical ROF of arbitrary product-depth.

Let C be a canonical ROF (Definition 2.39) and var(C) denote the set of variables appearing

in C. As C is canonical, it has alternate layers of + gates and × gates, every gate in C has

at least two children, every child of a × gate computes a non-constant polynomial, and every

+ gate has at most one variable child. Recall that the product-depth of C, denoted ∆, is

equal to the number of × gates in a longest path from a leaf to the root of C. We identify

the polynomial computed by any node v of C with v. In this chapter, we analyse the Hessian

determinant (Definition 2.27) of a ×-rooted canonical ROF. We first show that it is sufficient

to understand the Hessian determinant of a ×-rooted canonical ROF. Let

C = T1 + · · ·+ Ts + γ,

where there exists at most one l ∈ [s] such that Tl is a variable, for every k ∈ [s]\{l}, Tk is a ×-

141

rooted canonical ROF, and γ ∈ F. Then, the Hessian of C, denoted H(C), 1 is a block-diagonal

matrix, with the diagonal blocks being HT1 , . . . , HTs , where the rows and columns of every HTk

are labelled by var(Tk). Then, the Hessian determinant of C, denoted det(H(C)), is as follows:

det(H(C)) =
s∏

l=1

det(H(Tl)).

Thus, to study det(H(C)), it is sufficient to focus on det(H(Tl)) for every l ∈ [s]. If for any

l ∈ [s], |var(Tl)| = 1 then det(H(C)) = 0. Thus, we assume that for every l ∈ [s], deg(Tl) ≥ 2.

Suppose the product-depth of C is ∆ + 1. Henceforth, we focus on an arbitrary term T ∈
{T1, . . . , Ts}. The following view of T would be helpful in understanding det(H(T)).

The ‘extended’ version of T . For the sake of analysis of H(T), we transform T as follows:

Let p be an arbitrary path in T starting from the topmost × gate and ending at a non-leaf

node w, which is connected to at least one variable. Suppose the length of p, i.e., the number of

nodes in p, is ℓ. If ℓ < (2∆+1) then we disconnect all the variable children from w, add a path

of alternate ‘dummy’ + and × gates, such that the length of this path is (2∆+1)− ℓ. Further,

if w is a + gate then the starting node of this path is a × gate and vice-versa. Thereafter, we

connect all the variable children of w to the bottom-most gate of this path, which is a × gate.

Now, the length of p from root to the last dummy gate is 2∆ + 1. Since C is canonical, if w

is a + gate then it has at most one variable child. Because of this, it is easy to see that the

node w in the original T and the node w in the transformed T compute the same polynomial.

We would work with this variant of T in this section and we call it as the extended canonical

form of T . So, if T = Q1 · · ·Qm then for every u ∈ [m], Qu is a +-rooted sub-ROF of T having

product-depth equal to ∆. A pictorial view of the extended canonical form is given below.

×

+ x1

× x2

x3 x4

Original canonical ROF C

×

+ +

× × ×

x3 x4 x2 x1

The extended canonical form of C

1In this chapter, we have used H(C) instead of the standard notation HC for denoting the Hessian of C.
This is so because we would be using H along with subscripts to denote some ‘special’ submatrices of the Hessian
of C in the later part of this chapter.

142

One of the most important properties of det(H(T)) needed for the equivalence test given

in Chapter 5 is that det(H(T)) ̸= 0. We prove that if F satisfies char(F) = 0 or char(F) ≥
|var(T)| then det(H(T)) ̸= 0 over F. However, it can happen that if F is a finite field and

char(F) < |var(T)| then det(H(T)) = 0. For example, suppose m ∈ N is such that m − 1 is a

prime number and T = x1 · · · xm then we show in Observation 6.3 that det(H(T)) is divisible

by m− 1, which implies that det(H(T)) = 0 over the fields of characteristic m− 1.

Now, we briefly talk about how to show that det(H(T)) is non-zero. We first give a set of

useful notations in Section 6.1. Then, we analyse the Hessian of T in Section 6.2 and observe

some important properties about the structure of H(T). Now, we preprocess H(T) as follows:

We first take out all the variables and +-rooted sub-ROFs of T common from the rows and

columns of H(T). Let the residual matrix be H ′(T). We call det(H ′(T)) as the ‘spurious term’

of det(H(T)). det(H ′(T)) is a rational function. We study the denominator of det(H ′(T)) in

Observation 6.1 and denote the numerator of det(H ′(T)) as gT .

Recall that T = Q1 · · ·Qm, where for every u ∈ [m], Qu is a +-rooted ROF of product-depth

∆. If each Qu is a variable (i.e., ∆ = 0) then it follows from Claim 6.2.1 and Observation 6.3

that the spurious term of det(H(T)) is equal to m − 1. But, with an increase in the value of

∆, the spurious term starts becoming more complex. Thus, to understand this, we use the

Laplace’s expansion of the determinant (Theorem 6.1). In Section 6.3, we study the Laplace’s

expansion of the spurious term of det(H(T)) for a general ×-rooted canonical ROF T . After

that, we give the complete description of the spurious term of det(H(T)) when ∆ = 1 in

Section 6.4. In case of ∆ = 0, the spurious term of det(H(T)) is an integer whereas for ∆ = 1,

gT is a multilinear polynomial. So, it appears to us that giving the complete description of

the spurious term of det(H(T)) for higher value of ∆ can be quite challenging because of the

complex combinatorial structure of gT . Thus, for ∆ ≥ 2, we focus on some special monomials

of gT , which we call as the nice monomials of gT .

We show that the coefficients of these nice monomials in gT are non-zero over the fields

of characteristic either 0 or greater than equal to |var(T)|. We are able to do this because

the coefficients of these nice monomials are integers and we get neat factorizations of these

coefficients, where each factor of the coefficient of any nice monomial is at most |var(T)| − 1.

We want to mention here that although there can be F-constants attached to the + gates in T

but the coefficients of the nice monomials are independent of these F-constants. A large part

of this chapter comprises of Section 6.5, where we understand the structures and coefficients of

nice monomials in gT , where T is a ×-rooted canonical ROF having arbitrary product-depth.

As mentioned before, this detailed analysis helps us in showing that det(H(T)) is non-zero over

fields of characteristic zero and finite fields satisfying char(F) ≥ |var(T)|.

143

6.1 Notations

Due to the detailed analysis of the Hessian determinant of a ×-rooted canonical ROF, we need

a set of useful notations. The notations given in this chapter is divided into two parts: We

present the first part here and give the second part in Section 6.5.

1. x denotes the set of variables appearing in T and |x| = n.

2. The top-most × gate in T is denoted by v0 and this layer is called as the 0-th layer of T .

The fan-in of v0 is denoted by sv0 , which is equal to m.

3. For ℓ ∈ [∆],

(a) Let Σℓ and
∏

ℓ represent the sets of + gates and × gates in the ℓ-th layer of sum

gates and the ℓ-th layer of product gates respectively, starting from the top.1 The

gates in Σℓ and
∏

ℓ are denoted by uℓ, u
′
ℓ, ûℓ, . . . and vℓ, v

′
ℓ, v̂ℓ, . . . respectively.

(b) For a fixed uℓ ∈ Σℓ, ruℓ
denotes the number of non-constant children of uℓ in T and

Quℓ
represents the sub-ROF of T rooted at the + gate uℓ. Similarly, for a fixed

vℓ ∈
∏

ℓ, svℓ and Tvℓ denote the number of children of vℓ
2 and the sub-ROF of T

rooted at the × gate vℓ respectively. Further, for uℓ ∈ Σℓ, vℓ ∈
∏

ℓ, nuℓ
and nvℓ

represent the number of variables in Quℓ
and Tvℓ respectively.

(c) r(Σℓ) :=
∑

uℓ∈Σℓ

ruℓ
and s(

∏
ℓ) :=

∑
vℓ∈

∏
ℓ

svℓ .

(d) Let uℓ ∈ Σℓ. Then, v ∈ [ruℓ
] means that v is a non-constant child of uℓ and v′ ∈

[ruℓ
] \ {v} means that v′ is a non-constant child of uℓ other that v.

(e) Let vℓ ∈
∏

ℓ. Then, u ∈ [svℓ] means that u is a child of vℓ and u′ ∈ [svℓ] \ {u} means

that u′ is a child of vℓ other than u.

4. Let u ∈ [m] be chosen arbitrarily. Then, Au := [m] \ {u}.

5. Let S =
{
(u,v) := (uℓ, vℓ)ℓ∈[∆] : for every ℓ ∈ [∆], uℓ ∈ [svℓ−1

], vℓ ∈ [ruℓ
]
}
. Notice that S

is the set of all paths in T starting from the first layer of sum gates to the last layer of

product gates in T . For u ∈ [m], let Su := {(u,v) ∈ S : u1 = u}.3

1The layers of gates in T are always labelled from the top-most gate, which is in the 0-th layer.
2Recall that in an extended canonical ROF, a multiplication gate does not have a constant child.
3One of the reasons to consider the extended canonical form of T is that it gives a uniform description to

every path in S. This is helpful in defining the nice monomials.

144

6. For (u,v) ∈ S, let x(u,v) := {x(u,v,k) : k ∈ [n(u,v)]}, where n(u,v) = |x(u,v)|. Let R :={
(u,v, k) : (u,v) ∈ S, k ∈ [n(u,v)]

}
1 and for u ∈ [m], Ru := {(u,v, k) ∈ R : (u,v) ∈ Su}.

6.2 The structure of the Hessian of an ROF

This is our first step towards understanding det(H(T)), which is a polynomial in F[x]. In this

section, we first investigate the structure of H(T) and then apply some elementary row and

column operations onH(T) to obtain certain factors of det(H(T)). Let (u,v, k), (u′,v′, k′) ∈ R.

Then, it is easy to observe that the ((u,v, k), (u′,v′, k′))-th entry ofH(T) is one of the following:

1. If (u,v, k) = (u′,v′, k′) then the entry is 0.

2. If (u,v) = (u′,v′) = (uℓ, vℓ)ℓ∈[∆] and k ̸= k′ then the entry is

x(u,v)

x(u,v,k) · x(u,v,k′)

∏
ℓ∈[∆]

 ∏
ûℓ∈[svℓ−1

]\{uℓ}

Qûℓ

 .

3. For every i = 1, . . . ,∆, let (u,v)i−1 = (u′,v′)i−1 = (uℓ, vℓ)ℓ∈[i−1].

(a) If ui = u′
i and vi ̸= v′i then the entry is 0.

(b) If ui ̸= u′
i then it is equal to

x(u,v) · x(u′,v′)

x(u,v,k) · x(u′,v′,k′)

∏
ℓ∈[i−1],

ûℓ∈[svℓ−1
]\{uℓ}

Qûℓ

∏
ûi∈[svi−1]\{ui,u′

i}

Qûi

∏
t∈{i+1,∆},

ût∈[svt−1]\{ut},
û′
t∈[sv′t−1

]\{u′
t}

QûtQû′
t
.

Observe that the condition ûℓ ∈ [svℓ−1
]\{uℓ} implies that svℓ−1

≥ 2. Since the original T and its

extended canonical form compute the same polynomial, it is sufficient to analyse the Hessian

determinant of the extended canonical form. It follows from the structure of H(T) that we

can take out the following things common from the rows and the columns of H(T): For every

(u,v, k) ∈ R, take out x(u,v,k) from the denominators of each entry of the row and columns

indexed by (u,v, k) and x(u,v) ·
∏

ℓ∈[∆]

(∏
ûℓ∈[svℓ−1

]\{uℓ}
Qûℓ

)
from the numerator of each entry of

the (u,v, k)-th row of H(T). Note that the polynomials we have taken out common from the

rows and the columns of det(H(T)) become factors of det(H(T)). Let H ′(T) be the residual

matrix, which we call the residual Hessian of T .

1R is the set of indices of all the variables in x.

145

Claim 6.2.1 (Factorization of det(H(T))) Let ℓ ∈ [∆] and uℓ ∈ Σℓ be chosen arbitrarily

and nuℓ
=
∑

u′
ℓ∈[svℓ−1

]\{uℓ} nu′
ℓ
, which is equal to the number of variables in the siblings of Quℓ

.

Then,

det(H(T)) =

 ∏
(u,v)∈S

x
n(u,v)−2

(u,v)

 ∏
ℓ∈[∆]

 ∏
uℓ∈[svℓ−1

]:svℓ−1
̸=1,

vℓ∈[ruℓ]

Q
nuℓ
uℓ

× det(H ′(T)).

Remark 6.1 By the notation
∏

ℓ∈[∆]

 ∏
uℓ∈[svℓ−1

]:svℓ−1
̸=1,

vℓ∈[ruℓ]

Quℓ

 we mean the product of all the +-

rooted sub-ROFs of T whose parent product gate has fan-in at least 2.

Proof: Observe that the multiplicity of x(u,v) is n(u,v) − 2 for every (u,v) ∈ S. This is

so because we are taking x(u,v) common from the numerators of n(u,v) many rows and from

the denominators of the row and the column labelled by x(u,v). Fix ℓ ∈ [∆], uℓ ∈ [svℓ−1
] ar-

bitrarily, such that svℓ−1
̸= 1, i.e., the × gate vℓ−1 has at least two children. Then, it is

easy to see that the multiplicity of Quℓ
is equal to the number of rows of H(T) from which

Quℓ
was taken out. Let (u′,v′, k′) ∈ R be arbitrary. Note that Quℓ

comes out from the nu-

merator of the entries of the (u′,v′, k′)-th row if and only if u′
1 = u1, . . . , v

′
ℓ−1 = vℓ−1 and

u′
ℓ ∈ [svℓ−1

] \ {uℓ}, v′ℓ ∈ [ru′
ℓ
], . . . , u′

∆ ∈ [sv′∆−1
], v′∆ ∈ [ru′

∆
], k′ ∈ [n(u′,v′)]. Then, clearly the multi-

plicity of Quℓ
is equal to nuℓ

=
∑

u′
ℓ∈[svℓ−1

]\{uℓ}
nu′

ℓ
, where nu′

ℓ
= |var(Qu′

ℓ
)|. 2

The structure of H ′(T). Note that for (u,v, k), (u′,v′, k′) ∈ R, the ((u,v, k), (u′,v′, k′))-th

entry of H ′(T) is one of the following.

1. If (u,v, k) = (u′,v′, k′) then the entry is 0.

2. If (u,v) = (u′,v′) and k ̸= k′ then the entry is 1.

3. For every i = 1, . . . ,∆, let (u,v)i−1 = (u′,v′)i−1.

(a) If ui = u′
i and vi ̸= v′i then the entry is 0.

(b) If ui ̸= u′
i then it is equal to

x(u′,v′)·
∏

t∈[i+1,∆]

∏
û′t∈[s

v′t−1
]\{u′t}

Qû′t

Qu′
i

.

We call det(H ′(T)) as the spurious term of det(H(T)). Note that det(H ′(T)) is a rational

function in x over F. In the following observation, we analyse the denominator of det(H ′(T)).

146

Observation 6.1 The denominator of det(H ′(T)) is equal to dT :=
∏

ℓ∈[∆]

 ∏
uℓ∈[svℓ−1

]:svℓ−1
̸=1,

vℓ∈[ruℓ]

Quℓ

.

Proof: Let ℓ ∈ [∆], uℓ ∈ [svℓ−1
] be picked arbitrarily, such that svℓ−1

̸= 1. Let

(u,v)ℓ−1 := (u1, v1, · · · , uℓ−1, vℓ−1),

where for every i ∈ [ℓ − 1], ui ∈ [svi−1], vi ∈ [rui
] (recall that sv0 = m). Then, it fol-

lows from the structure of H ′(T) that for (û, v̂, k̂), (u′,v′, k′) ∈ R, the denominator of the

((û, v̂, k̂), (u′,v′, k′))-th entry is Quℓ
if and only if (û, v̂)ℓ−1 = (u,v)ℓ−1 = (u′,v′)ℓ−1, ûℓ ̸= uℓ

and u′
ℓ = uℓ. Let

Vuℓ
:= {(u′,v′, k′) ∈ R : (u′,v′)ℓ−1 = (u,v)ℓ−1, u

′
ℓ = uℓ}

and

Wuℓ
:=
{
(û, v̂, k̂) ∈ R : (û, v̂)ℓ−1 = (u,v)ℓ−1, ûℓ ̸= uℓ

}
.

It follows from the structure of H ′(T) that for any (u′,v′, k′) ∈ Vuℓ
, all the entries of the

(u′,v′, k′)-th column of H ′(T) restricted to Wuℓ
are the same. Pick (û, v̂, k̂) ∈ Wuℓ

arbitrarily

and subtract the (û, v̂, k̂)-th row of H ′(T) from the (u′′,v′′, k′′)-th row of H ′(T) for every

(u′′,v′′, k′′) ∈ Wuℓ
\ {(û, v̂, k̂)}. After doing this, note that Quℓ

appears in the denominator of

the non-zero entries of exactly one row in H ′(T). Since this is true for every ℓ ∈ [∆], uℓ ∈ [svℓ−1
],

such that svℓ−1
̸= 1 and since every such Quℓ

is irreducible (Observation 2.7), we get that the

multiplicity of Quℓ
in the denominator of det(H ′(T)) is equal to 1. 2

Claim 6.2.1 and Observation 6.1 imply the following.

Claim 6.2.2 For ℓ ∈ [∆], let nuℓ
=

∑
u′
ℓ∈[svℓ−1

]\{uℓ}
nu′

ℓ
. Then,

det(H(T)) =

 ∏
(u,v)∈S

x
n(u,v)−2

(u,v)

 ∏
ℓ∈[∆]

 ∏
uℓ∈[svℓ−1

]:svℓ−1
̸=1,

vℓ∈[ruℓ]

Q
nuℓ

−1
uℓ

× gT , (6.1)

where gT = dT · det(H ′(T)) and dT is the denominator of H ′(T) defined in Observation 6.1.

This implies the following useful result.

147

Claim 6.2.3 (Factors of det(H(T))) Let F be an arbitrary field and T = Q1 · · ·Qm, where

for every u ∈ [m], Qu is a +-rooted extended canonical ROF having product-depth ∆.

1. Let (u,v) ∈ S. If either n(u,v) ≥ 3 or there exists ℓ ∈ [∆], such that svℓ−1
≥ 2 and Quℓ

computes x(u,v), where n(u,v) ≤ 2 then every x ∈ x(u,v) is a factor of det(H(T)).

2. Let ℓ ∈ [∆], svℓ−1
̸= 1 and uℓ ∈ [svℓ−1

] be such that the polynomial computed by Quℓ
is not

a monomial. Let nuℓ
=

∑
u′
ℓ∈[svℓ−1

]\{uℓ}
nu′

ℓ
. Then, the multiplicity of Quℓ

in det(H(T)) is at

least nuℓ
− 1.

Proof: Let (u,v) ∈ S be arbitrary. If n(u,v) ≥ 3 then it follows from Claim 6.2.2 that every

x ∈ x(u,v) is a factor of det(H(T)). Suppose there exists ℓ ∈ [∆], such that svℓ−1
≥ 2 and

Quℓ
computes x(u,v), such that n(u,v) ≤ 2. It is clear from the extended canonical structure

of T that there does not exist u′
ℓ ∈ [svℓ−1

] \ {uℓ}, such that Qu′
ℓ
computes a monomial. Thus,

for every u′
ℓ ∈ [svℓ−1

] \ {uℓ}, deg(Qu′
ℓ
) ≥ 2. Let n(u,v) = 2 then Claim 6.2.2 implies that every

x ∈ x(u,v) is a factor of det(H(T)). This is so because the multiplicity of Quℓ
in the middle

factor of Equation (6.1) is at least 1.

Now, suppose n(u,v) = 1. We know Quℓ
computes x(u,v), which is now a variable. Note

that if nuℓ
≥ 3 then Claim 6.2.2 implies that x(u,v) is a factor of det(H(T)), as before. Now

suppose nuℓ
= 2. In this case, note that the degree of x(u,v) in the factors of det(H(T)) other

that gT is equal to zero. However, we show that x(u,v) is a factor of gT . It is not difficult to see

from the structure of H ′(T) given above that if Quℓ
appears in the denominator of any entry

of H ′(T) then it also appears in the numerator of the same entry as Quℓ
computes a monomial

x(u,v). Since svℓ−1
̸= 1, the multiplicity of Quℓ

in the denominator dT of det(H ′(T)) computed

in Observation 6.1 is equal to 1. Thus, Quℓ
should be a factor of gT , which is the numerator of

det(H ′(T)). Thus, the variable x(u,v) is a factor of det(H(T)).

The second point of the claim follows immediately from Claim 6.2.2.

2

Corollary 6.1 Let T = Q1 · · ·Qm for some m ≥ 2, where for every u ∈ [m], Qu is a +-rooted

canonical ROF. If T computes a polynomial of degree at least 3 then there exists u ∈ [m], such

that Qu is a factor of det(H(T)).

Proof: Let m ≥ 3. Then, it follows from Claim 6.2.2 that for every u ∈ [m], Qu is a factor

of det(H(T)). Now, suppose m = 2. As T computes a polynomial of degree at least 3, there

exists u ∈ [2], such that Qu computes a polynomial of degree at least 2, which implies that

|var(Qu)| ≥ 2. Then, Qu′ is a factor of det(H(T)), where u′ ∈ [2] \ {u}. 2

148

Note that gT ∈ F[x]. Now, our goal is to analyse gT . In Section 6.5, we show that if

char(F) ≥ n or char(F) = 0, gT is not equal to 0, which implies that det(H(T)) ̸= 0 over F.
Now, we simplify H ′(T) by applying the following elementary row and column operations

on it: For every (u,v) ∈ S and for every k ∈ [2, n(u,v)], subtract the (u,v, 1)-th row from

the (u,v, k)-th row and the (u,v, 1)-th column from the (u,v, k)-th column from H ′(T). This

simplification would be very helpful in analysing det(H ′(T)). Observe that these elementary

operations do not change the value of det(H ′(T)). Let u1, u
′
1 ∈ [m], u1 ̸= u′

1. Note that before

applying these elementary operations onH ′(T), all the entries in the sub-matrix ofH ′(T), whose

rows are indexed by Ru1 and columns by {(u′,v′, k′), k′ ∈ [n(u′,v′)]} for some (u′,v′) ∈ Su′
1
are

same, i.e.,

x(u′,v′)·
∏

t∈[2,∆]

∏
û′t∈[s

v′t−1
]\{u′t}

Qû′t

Qu′1

. This implies the following.

Observation 6.2 Let u1, u
′
1 ∈ [m], u1 ̸= u′

1, (u
′,v′, k′) ∈ Ru′

1
(recall Ru′

1
). After applying the

above mentioned elementary operations on H ′(T), the (u′,v′, k′)-th column restricted to Ru1

is non-zero if and only if k′ = 1. Further, the (u,v, k)-th entry in the (u′,v′, 1)-th column

restricted to Ru1 is equal to

x(u′,v′)·
∏

t∈[2,∆]

∏
û′t∈[s

v′t−1
]\{u′t}

Qû′t

Qu′1

 if k = 1 and 0 otherwise.

For the sake of reader’s convenience, we present here the matrixH ′(T), where T = Q1 · · ·Qm

and every Qu is a +-rooted canonical ROF of product-depth 1. This view would also be helpful

in Section 6.4 where we give the complete description of the spurious term of the Hessian

determinant of a product-depth 2 canonical ROF. For every u ∈ [m], let Qu be given by the

following equation

Qu = xu,1 + · · ·+ xu,ru + αu, (6.2)

where for every v ∈ [ru], xu,v is a monomial in x-variables1, |xu,v| = n(u,v), such that for distinct

v, v′ ∈ [ru],xu,v and xu,v′ are variable disjoint and αu ∈ F. For u ∈ [m], xu := ∪v∈[ru]xu,v, |xu| :=
nu. It is easy to see that H ′(T) looks as follows.

H ′(T) =

x1 x2 · · · xm

x1 B1 F1,2 · · · F1,m

x2 F2,1 B2 · · · F2,m

...
...

...
. . .

...

xm Fm,1 Fm,2 · · · Bm

, (6.3)

1We will also treat xu,v as a set of variable and the usage should be clear from the context.

149

where for distinct u1, u
′
1 ∈ [m], Fu1,u′

1
is an nu1 × nu′

1
size sub-matrix of H ′(T), whose rows

and columns are labelled by xu1 and xu′
1
respectively, and for u ∈ [m], Bu is the nu × nu size

sub-matrix of H ′(T), whose rows and columns are labelled by xu. It follows from the structure

of H ′(T) (after applying the elementary operations) that Bu looks as

Bu =

Bu,1 0 · · · 0 0

0 Bu2· · · 0 0
...

...
. . .

...
...

0 0 · · ·Bu,ru−1 0

0 0 · · · 0 Bu,ru

nu×nu

(6.4)

, where for every v ∈ [ru], Bu,v is the following matrix.

Bu,v =

0 1 1 · · · 1

1 −2 −1 · · · −1
...

... · · · ...
...

1 −1 −1 · · · −2

n(u,v)×n(u,v)

Then, it follows from Observation 6.2 that Fu1,u′
1
looks as

Fu1,u′
1
=

xu′
1,1,1

· · · xu′
1,1,n(u′1,1)

xu′
1,2,1

· · · xu′
1,ru′1

,1 · · · xu′
1,ru′1

,n(u′1,ru′1
)

xu1,1,1

xu′1,1

Qu′1
· · · 0

xu′1,2

Qu′1
· · ·

xu′1,ru′1
Qu′1

· · · 0

...
...

. . .
...

...
. . .

...
. . .

...

xu1,1,n(u1,1)
0 · · · 0 0 · · · 0 · · · 0

xu1,2,1

xu′1,1

Qu′1
· · · 0

xu′1,2

Qu′1
· · ·

xu′1,ru′1
Qu′1

· · · 0

...
...

. . .
...

...
. . .

...
. . .

...

xu1,2,n(u1,2)
0 · · · 0 0 · · · 0 · · · 0

...
...

. . .
...

...
. . .

...
. . .

...

xu1,ru1 ,1

xu′1,1

Qu′1
· · · 0

xu′1,2

Qu′1
· · ·

xu′1,ru′1
Qu′1

· · · 0

...
...

. . .
...

...
. . .

...
. . .

...

xu1,ru1 ,n(u1,ru1)
0 · · · 0 0 · · · 0 · · · 0

(6.5)

Recall the objective of the remainder of this chapter is to analyse det(H(T)) and in particular

150

det(H ′(T)). In the following observation, we give the description of det(H(T)) where T is a

product of distinct variables. The proof of this immediately follows from the above discussion

and it is easy to see that in this case, det(H ′(T)) is an integer.

Observation 6.3 (Hessian determinant of a multilinear monomial) Let T = x1 · · ·xm,m ≥
2. Then,

det(H(T)) = (−1)(m−1) · (m− 1)
∏
i∈[m]

xm−2
i .

Remark 6.2 (Hessian determinant of a general monomial) Suppose T = xe1
1 · · ·xen

n , where

for every i ∈ [n], ei ≥ 1. Then, it is also not difficult to show that

det(H(T)) = (−1)n−1e1 · · · en · (e1 + e2 + · · ·+ en − 1)× (xe1·n−2
1 · · · xen·n−2

n).

6.3 The Laplace expansion

We start with the following theorem, which gives a useful description of the determinant of a

matrix. We will use this to understand det(H(T)).

Theorem 6.1 (Laplace expansion of the determinant) [Jan08] Let F be a field, n ∈ N,

A ∈M(n,F), whose rows and columns are indexed by the ordered tuple (1, . . . , n), D = det(A)

and 1 ≤ r ≤ n. Then, for every 1 ≤ i1 < · · · < ir ≤ n,

D =
∑

1≤j1<···<jr≤n

(−1)
∑

ℓ∈[r](iℓ+jℓ) ·D(i1, i2, . . . , ir | j1, j2, . . . , jr) ·D(i1, i2, . . . , ir | j1, j2, . . . , jr),

(6.6)

where D(i1, i2, . . . , ir | j1, j2, . . . , jr) is the order-r minor lying in the intersection of the i1-th,

. . . , ir-th rows and j1-th, . . . , jr-th columns of A and D(i1, i2, . . . , ir | j1, j2, . . . , jr) is the order-

(n− r) minor lying in the intersection of remaining (n− r) rows and (n− r) columns of A.

We call Equation (6.6) as the Laplace expansion of D along {i1, . . . , ir}. We would use this

to analyse det(H ′(T)). We assume here that the set of children of every gate in T is ordered.

Then, for ℓ ∈ [∆], uℓ ∈ Σℓ and vℓ ∈
∏

ℓ, the sets [uℓ − 1] and [vℓ − 1] consist of all the indexes

of all the +-rooted and ×-rooted siblings of uℓ and vℓ, whose orders are less than uℓ and vℓ

respectively. Recall that R = {(u,v, k) : (u,v) ∈ S, k ∈ [n(u,v)]} is the set of the indices of

variables in C. We first label the rows and columns of H ′(T) with increasing natural numbers

151

using the map µ : R→ N, where for every (u,v, k) ∈ R,

µ((u,v, k)) :=
∑
ℓ∈[∆]

 ∑
ûℓ∈[uℓ−1]

nûℓ
+

∑
v̂ℓ∈[vℓ−1]

nv̂ℓ

+ k,

where for every ℓ ∈ [∆], uℓ, vℓ are the coordinates of (u,v), nûℓ
and nv̂ℓ are the number of

variables in the +-rooted ROF Qûℓ
and ×-rooted ROF Tv̂ℓ respectively. The map µ imposes

the order ≺ on R in the following way: let (u,v, k), (u′,v′, k′) ∈ R. Then, (u′,v′, k′) ≺
(u,v, k) if and only if µ((u′,v′, k′)) < µ

(
(u,v, k)

)
. Observe that for every ℓ ∈ [∆], nuℓ

=∑
vℓ∈[ruℓ]

nvℓ and nvℓ =
∑

uℓ+1∈[svℓ]
nuℓ+1

. It is easy to prove the following.

Observation 6.4 ≺ imposes the lexicographic ordering on R.

We will see later in this section how the map µ becomes instrumental in the simplification

of the Laplace expansion of det(H ′(T)).

From now onwards, we would always treat every subset of R as an ordered set with respect

to ≺. Let D = det(H ′(T)). Fix u1 ∈ [m] arbitrarily. Recall the set Ru1 from Section 6.1. Then,

|Ru1 | = nu1 . Theorem 6.1 implies that the Laplace expansion of D along Ru1 is given as follows.

D =
∑

C⊆R,|C|=nu1

sgn(Ru1) · sgn(C) ·D(Ru1|C) ·D(Ru1|C), (6.7)

where sgn(Ru1) = (−1)
∑

(u,v,k)∈Ru1

µ((u,v,k))

, for any C ⊆ R, |C| = nu1 , sgn(C) = (−1)
∑

(u,v,k)∈C

µ((u,v,k))

,

D(Ru1 |C) is the order-nu1 minor lying in the intersection of rows and columns of H ′(T) labelled

by Ru1 and C respectively and D(Ru1|C) is the order-(n− nu1) minor lying in the intersection

of the rows and columns of H ′(T) labelled by Ru1 := R \Ru1 and C := R \C respectively. The

structure of H ′(T) and Observation 6.2 imply the following.

Observation 6.5 Let C ⊆ R be an arbitrary set, such that |C| = nu1. If C satisfies one of the

following conditions then D(Ru1 |C) ·D(Ru1|C) = 0.

1. |C ∩Ru1| ≤ nu1 − 2.

2. |C ∩Ru1 | = nu1 − 1 and (u′,v′, k′) ∈ C \Ru1, such that k′ ̸= 1.

3. |C ∩Ru1 | = nu1 − 1 and (u,v, k) ∈ Ru1 \ C, such that k ̸= 1.

152

Proof:

1. Suppose |C ∩Ru1| ≤ nu1 − 2. Let H(Ru1|C) be the sub-matrix of H ′(T), whose rows and

columns are labelled by Ru1 and C respectively. Then, det(H(Ru1|C)) = D(Ru1|C) and

at least two columns in H(Ru1|C) are the columns of H ′(T) labelled by tuples in Ru1 and

restricted to Ru1 . It follows from Observation 6.2 that such columns are F(x)-linearly
dependent. This implies D(Ru1|C) = 0.

2. Suppose (u′,v′, k′) ∈ C \Ru1 , such that k′ ̸= 1. Observation 6.2 implies D(Ru1|C) = 0.

3. Suppose (u,v, k) ∈ Ru1 \ C, such that k ̸= 1. Then, it is easy to see from Observation

6.2 that the column (u,v, k) restricted to the rows labelled by Ru1 is zero. This implies

that D(Ru1|C) = 0.

2

For u1 ∈ [m], recall that Au1 = [m] \ {u1}. Let u′
1 ∈ Au1 and

Cu1,u′
1
=
{
C(u,v),(u′,v′) := (Ru1 \ {(u,v, 1)}) ∪ {(u′,v′, 1)} : (u,v) ∈ Su1 , (u

′,v′) ∈ Su′
1

}
.

Note that for every C(u,v),(u′,v′) ∈ Cu1,u′
1
, |C(u,v),(u′,v′)| = nu1 . Every C(u,v),(u′,v′) is ordered by ≺.

Then, Observation 6.5 implies that Equation (6.7) can be written as follows

D = D(Ru1|Ru1) ·D(Ru1|Ru1) +
∑

u′
1∈Au1

(∑
C(u,v),(u′,v′)∈Cu1,u

′
1

sgn(Ru1)·

sgn(C(u,v),(u′,v′)) ·D(Ru1|C(u,v),(u′,v′)) ·D(Ru1|C(u,v),(u′,v′))

)
,

(6.8)

where C(u,v),(u′,v′) := R \ C(u,v),(u′,v′) and is ordered by ≺. Let (u,v) ∈ Su1 , (u
′,v′) ∈ Su′

1
,

b(u,v,1) :=
∑

v̂1∈[v1−1]

nv̂1 +
∑

ℓ∈[2,∆]

 ∑
ûℓ∈[uℓ−1]

nûℓ
+

∑
v̂ℓ∈[vℓ−1]

nv̂ℓ

+ 1

and

b(u′,v′,1) :=
∑

v̂′1∈[v′1−1]

nv̂′1
+
∑

ℓ∈[2,∆]

 ∑
û′
ℓ∈[u

′
ℓ−1]

nû′
ℓ
+

∑
v̂′ℓ∈[v

′
ℓ−1]

nv̂′ℓ

+ 1.

153

Note that b(u,v,1) = µ((u,v, 1)) −
∑

û1∈[u1−1]

nû1 and b(u′,v′,1) = µ((u′,v′, 1)) −
∑

û′
1∈[u′

1−1]

nû′
1
. Also,

notice that b(u,v,1) and b(u′,v′,1) are the positions of (u,v, 1) and (u′,v′, 1) in the ordered sets Ru1

and Ru′
1
. Now, we swap a few tuples in each of C(u,v),(u′,v′) and C(u,v),(u′,v′) to bring (u′,v′, 1)

and (u,v, 1) to b(u,v,1)-th and b(u′,v′,1)-th positions in C(u,v),(u′,v′) and C(u,v),(u′,v′) respectively.

This would be helpful in the simplifying Equation (6.8) and is shown in the following two cases.

1. u1 < u′
1: Observe that in this case, the rightmost tuple in the ordered set C(u,v),(u′,v′) is

(u′,v′, 1). It is easy to verify that the number of right to left swaps required to bring

(u′,v′, 1) to b(u,v,1)-th position in C(u,v),(u′,v′) is equal to b1 := nu1−b(u,v,1). Let C ′
(u,v),(u′,v′)

be the resulting set. Similarly, in C(u,v),(u′,v′), the leftmost tuple is (u,v, 1). Here, the

number of left to right swaps required to bring (u,v, 1) at the b(u′,v′,1)-th position in

C(u,v),(u′,v′) is equal to b2 := nu1+1 + · · · + nu′
1−1 + b(u′,v′,1) − 1. Let C

′
(u,v),(u′,v′) be the

resulting set. Note that C ′
(u,v),(u′,v′) and C

′
(u,v),(u′,v′) are no longer ordered by ≺. Then, it

is easy to show that:

D(Ru1|C(u,v),(u′,v′)) = (−1)b1D(Ru1|C ′
(u,v),(u′,v′)),

D(Ru1|C(u,v),(u′,v′)) = (−1)b2D(Ru1 |C
′
(u,v),(u′,v′)).

(6.9)

2. u1 > u′
1: In this case the leftmost tuple in the ordered set C(u,v),(u′,v′) is (u′,v′, 1).

Similarly, the rightmost tuple in C(u,v),(u′,v′) is (u,v, 1). It is easy to verify that the

number of left to right swaps required to bring (u′,v′, 1) at the b(u,v,1)-th position in

C(u,v),(u′,v′) is equal to b3 := b(u,v,1)−1. Similarly, observe that the number of right to left

swaps performed on C(u,v),(u′,v′) to bring (u,v, 1) at the b(u′,v′,1)-th position in C(u,v),(u′,v′)

is equal to b4 = nu1−1 + · · ·+ nu′
1
− b(u′,v′,1). In this case, we get

D(Ru1|C(u,v),(u′,v′)) = (−1)b3D(Ru1|C ′
(u,v),(u′,v′)),

D(Ru1|C(u,v),(u′,v′)) = (−1)b4D(Ru1 |C
′
(u,v),(u′,v′)).

(6.10)

The values of sgn(Ru1), sgn(C(u,v),(u′,v′)), b1, b2, b3 and b4 imply the following.

Observation 6.6 Let u1, u
′
1 ∈ [m] be such that u1 ̸= u′

1 and C(u,v),(u′,v′) ∈ Cu1,u′
1
. Then,

sgn(Ru1) · sgn(C(u,v),(u′,v′)) · (−1)b1 · (−1)b2 = sgn(Ru1) · sgn(C(u,v),(u′,v′)) · (−1)b3 · (−1)b4 = −1.

Then, Equations (6.8), (6.9), (6.10) and the above observation imply the following.

154

D = D(Ru1|Ru1)D(Ru1|Ru1)−
∑

u′
1∈Au1

C(u,v),(u′,v′)∈Cu1,u
′
1

D(Ru1 |C ′
(u,v),(u′,v′))D(Ru1 |C

′
(u,v),(u′,v′)). (6.11)

Remark 6.3 1. Let u1 ∈ [m].

(a) D(Ru1 |Ru1) is the determinant of H ′(Qu1), which is the residual Hessian of Qu1.

Since H ′(Qu1) is a block diagonal matrix where the diagonal blocks are H ′(Tv1), v1 ∈
[ru1], D(Ru1|Ru1) =

∏
v1∈[ru1]

det(H ′(Tv1)). As for every v1 ∈ [ru1], the product-

depth of Tv1 is one less that the product-depth of T , we say that det(H ′(Tv1)) is a

‘product-depth (∆− 1)’ instance of D.

(b) Let T1 be obtained from T by removing the sub-ROF rooted at u1. Then, D(Ru1|Ru1) =

det(H ′(T1)). Thus, we say that D(Ru1|Ru1) is a ’product-depth ∆ and top fan-in

(m− 1)’ instance of D.

2. Let u1, u
′
1 ∈ [m], u1 ̸= u′

1, (u,v) ∈ Su1 , (u
′,v′) ∈ Su′

1
. Let H(u,v),(u′,v′),Ru1

be obtained

from the sub-matrix of H ′(T), whose rows and columns are labelled by Ru1 by replacing

the (u′,v′, 1)-th column with the (u,v, 1)-th column of H ′(T) confined to Ru1. Then,

D(Ru1|C
′
(u,v),(u′,v′)) = det(H(u,v),(u′,v′),Ru1

). Similarly, let H(u′,v′),(u,v),Ru1
be obtained

from the sub-matrix of H ′(T), whose rows and columns are labelled by Ru1 by replac-

ing the (u,v, 1)-th column with the (u′,v′, 1)-th column of H ′(T) confined to Ru1. Then,

D(Ru1 |C ′
(u,v),(u′,v′)) = det(H(u′,v′),(u,v),Ru1

). Observe that H(u′,v′),(u,v),Ru1
is a smaller in-

stance of H(u,v),(u′,v′),Ru1
. Due to this, we say that D(Ru1|C ′

(u,v),(u′,v′)) is a ’smaller in-

stance’ of D(Ru1|C
′
(u,v),(u′,v′)).

6.4 The Hessian determinant of a product-depth 2 ROF

In the following claim, we give the complete description of gT , where T = Q1 · · ·Qm and for

every u ∈ [m], Qu is a +-rooted extended canonical ROF of product-depth 1.

Claim 6.4.1 (The spurious term of det(H(T))) Let n ∈ N,x = {x1, . . . , xn} and F be a

field. Let T = Q1 · · ·Qm,m ≥ 2, where for every u ∈ [m], Qu is a +-rooted extended canonical

ROF of product-depth 1 as given in Equation (6.2) and there exists a u ∈ [m], such that Qu

155

computes a polynomial of degree at least 2. Let gT :=
∏

u∈[m]

Qu · det(H ′(T)). Then,

gT =
∏
u∈[m]

(−1)nu−ru

 ∑
M∈P([m])

∑
u∈M,vu∈[ru]

βM,vM
·
∏
u∈M

xu,vu

 ,

where nu = |var(Qu)|, ru is the number of non-constant children of the topmost +-gate of Qu,

P([m]) is the power set of [m],vM = (vu)u∈M , and for M = ∅ or |M | = 1,

βM,vM
=
∏
u∈[m]

∏
v∈[ru]

(n(u,v) − 1)
∏

û∈[m]\M

αû (6.12)

and for M satisfying |M | ≥ 2, βM,vM
= (−1)|M |−1 · β′

M,vM
, where

β′
M,vM

=
∏

û∈[m]\M

αû

∏
v̂∈[rû]

(n(û,v̂) − 1)

 ∏
u∈M

v̂∈[ru]\{vu}

(n(u,v̂) − 1)

(∑
u∈M

n(u,vu) − 1

)
. (6.13)

In particular, if char(F) = 0 or char(F) ≥ n then gT ̸= 0.

Consider the following claim, which is helpful in understanding the minorD(Ru1 |C
′
(u1,v1),(u′

1,v
′
1)
)

used in Equation (6.11). This claim will be used in the proof of Claim 6.4.1. Recall that for

u1 ∈ [m], Au1 = [m] \ {u1}.

Claim 6.4.2 (Coefficients of useful monomials) Let n ∈ N,x = {x1, . . . , xn} and F be a

field. Let m ≥ 2, u1 ∈ [m], u′
1 ∈ Au1, v1 ∈ [ru1], v

′
1 ∈ [ru′

1
] and Au1,u′

1
= [m] \ {u1, u

′
1}. Let

M ′ ∈ P(Au1,u′
1
), v̂′′1 ∈ [rû′′

1
] be fixed arbitrarily for every û′′

1 ∈ M ′. Then, the coefficient of the

monomial xu1,v1

∏
û′′
1∈M ′

xû′′
1 ,v̂

′′
1

in Qu1

∏
u′′
1∈Au1,u

′
1

Qu′′
1
·D(Ru1 |C

′
(u1,v1),(u′

1,v
′
1)
) is equal to

∏
u∈Au1

(−1)(nu−ru)+|M ′|
∏

u∈Au1,u
′
1
\M ′,

v∈[ru]

(n(u,v)−1)αu

∏
û′′
1∈M ′,

v̂1∈[rû′′1
]\{v̂′′1 }

(nû′′
1 ,v̂1
−1)

∏
v̂′1∈[ru′1

]\{v′1}

(n(u′
1,v̂

′
1)
−1)n(u′

1,v
′
1)
.

Let q be an arbitrary monomial of Qu1

∏
u′′
1∈Au1,u

′
1

Qu′′
1
· D(Ru1 |C

′
(u1,v1),(u′

1,v
′
1)
), u′′

1 ∈ Au1,u′
1

and

(u′′,v′′) ∈ Su′′
1
. Then, q contains xu1,v1 and the degree of x(u′′,v′′) in q is at most 1.

These two claims complement each other in the following way: To prove Claim 6.4.1, we

need a ‘top fan-in m − 1 instance’ of this claim as well as Claim 6.4.2. Further, to prove

156

Claim 6.4.2, we need a ‘top fan-in m − 2 instance’ of Claim 6.4.1. Thus, their proofs are by

mutual induction on each other. Consider the following useful observation, which immediately

follows from Observation 6.2. Recall from notations that S is the set of all the paths in T ,

starting from the top-most layer of + gates. When the product depth of T is 2, note that

every element of S looks like (u, v), where u ∈ [m], v ∈ [ru]. Further, recall that in this case,

R = {(u, v, k) : (u, v) ∈ S, k ∈ [n(u,v)]}.

Observation 6.7 Let u1 ∈ [m] be arbitrary, and j be a 0-1 vector, whose entries are labelled

by R, such that if k = 1 then the (u, v, 1)-th entry is 1 otherwise it is 0. Let Ru1 = R \Ru1 and

H(u′,v′),j,Ru1
be obtained from the sub-matrix of H ′(T), whose rows and columns are indexed by

Ru1 by replacing the (u, v, 1)-th column with j restricted to Ru1. Then,

D(Ru1 |C
′
(u1,v1),(u′

1,v
′
1)
) =

xu1,v1

Qu1

det(H(u′,v′),j,Ru1
).

Further, every monomial in Qu1

∏
u′′
1∈Au1,u

′
1

Qu′′
1
·D(Ru1 |C

′
(u1,v1),(u′

1,v
′
1)
) contains xu1,v1.

Remark. We would see a generalization of the above observation in Section 6.5.

Before going to the proofs of these claims, we mention the following observations, which follow

immediately from the matrices given in Equation (6.4) and Equation (6.5). These would be

used in the proofs of Claim 6.4.1 and Claim 6.4.2.

Observation 6.8 Let u ∈ [m]. Then, det(Bu) = (−1)nu−ru
∏

v∈[ru]
(n(u,v) − 1), where Bu is given

in Equation (6.4).

Observation 6.9 Let u1, u
′
1 ∈ [m] be distinct and v1 ∈ [ru1], v

′
1 ∈ [ru′

1
]. Let B̂u1 be obtained by

replacing the (u1, v1, 1)-th column of Bu1 with the (u′
1, v

′
1, 1)-th column of Fu1,u′

1
, which is given

in Equation (6.5). Then,

det(B̂u1) = (−1)nu1−ru1
∏

v̂1∈[ru1]\{v1}

(n(u1,v̂1) − 1) · n(u1,v1) ·
xu′

1,v
′
1

Qu′
1

.

6.4.0.1 Proof of Claim 6.4.1

We begin by recalling the Laplace expansion of D = det(H ′(T)) given by Equation (6.11). As

noted before, every element in S looks like (u1, v1), where u1 ∈ [m], v1 ∈ [ru1]. We prove this

157

claim by induction on m. Suppose m = 2. In this case, we set u1 = 1, u′
1 = 2 and thus Equation

(6.11) becomes

D = D(R1 |R1) ·D(R1 |R1)−

 ∑
v1∈[r1],v2∈[r2]

D(R1 |C ′
(1,v1),(2,v2)

) ·D(R1 |C
′
(1,v1),(2,v2)

)

 . (6.14)

Note that D(R1 |R1) = det(B1) and D(R1 |R1) = det(B2), (Bu is defined in Equation (6.4) for

u ∈ [2]). It follows from Observation 6.8 that

D(R1 |R1) = (−1)n1−r1
∏

v1∈[r1]

(n(1,v1) − 1) and D(R1 |R1) = (−1)n2−r2
∏

v2∈[r2]

(n(2,v2) − 1).

Further, it follows from Observation 6.9 that

D(R1 |C ′
(1,v1),(2,v2)

) = (−1)n1−r1
∏

v̂1∈[r1]\{v1}

(n(1,v̂1) − 1) · n(1,v1) ·
x2,v2

Q2

and

D(R1 |C
′
(1,v1),(2,v2)

) = (−1)n2−r2
∏

v̂2∈[r2]\{v2}

(n(2,v̂2) − 1) · n(2,v2) ·
x1,v1

Q1

.

Let gT = Q1 ·Q2 ·D. Then, on putting all these equations together, we get

gT =
∏
u∈[2]

(−1)nu−ru

 ∏
u∈[2],
vu∈[ru]

(n(u,vu) − 1)Q1 ·Q2 −

 ∑
v1∈[r1],
v2∈[r2]

∏
u∈[2],

v̂u∈[ru]\{vu}

(n(u,v̂u) − 1) · n(u,vu) · xu,vu

 .

It is easy to see from the above equation that for M ∈ {∅, {1}, {2}}, the coefficient of
∏

u∈M
xu,vu

in gT is equal to

βM,vM
=
∏
u∈[2]

(−1)nu−ru
∏

v1∈[r1]

(n(1,v1) − 1)
∏

v2∈[r2]

(n(2,v2) − 1) ·
∏

u′∈[m]\M

αu′

and for M = {1, 2}, the coefficient of x1,v1x2,v2 for v1 ∈ [r1], v2 ∈ [r2] is equal to

∏
u∈[2]

(−1)nu−ru(−1)|M |−1

∏
u∈M

∏
v̂u∈[ru]\{vu}

(n(u,v̂u) − 1)(
∑
u∈M

n(u,vu) − 1)

 .

158

Thus, the base case holds. Now, suppose that m ≥ 3 and the lemma holds for (m− 1). Recall

Equation (6.11). As seen before, D(Ru1 |Ru1) = det(Bu1) (Bu1 is defined in Equation (6.4) and

we know det(Bu1) from Observation 6.8). Note that D(Ru1 |Ru1) is the restriction of H ′(T) to

the sub-matrix whose rows and columns are indexed by variables in (m− 1) sets xu′
1
, u′

1 ∈ Au1 .

Thus, from induction hypothesis of this claim, we also know the value of D(Ru1 |Ru1). If we

can figure out D(Ru1 |C ′
(u1,v1),(u′

1,v
′
1)
) and D(Ru′

1
|C ′

(u1,v1),(u′
1,v

′
1)
) for every C(u1,v1),(u′

1,v
′
1)
∈ Cu1,u′

1
,

we would be done. As D(Ru1 |C ′
(u1,v1),(u′

1,v
′
1)
) is the minor lying in the intersection of the rows

and columns of H ′(T) in the row block Ru1 and the column block C ′
(u1,v1),(u′

1,v
′
1)

respectively,

Observation 6.9 implies

D(Ru1 |C ′
(u1,v1),(u′

1,v
′
1)
) = (−1)nu1−ru1

∏
v̂1∈[ru1]\{v1}

(n(u1,v̂1) − 1) · n(u1,v1) ·
xu′

1,v
′
1

Qu′
1

.

Let M ∈ P([m]), vu ∈ [ru] for u ∈ M , and v = (vu)u∈M . It is easy to verify that the

statement of the claim holds true for M satisfying either M = ∅ or |M | = 1. This is so because

in these cases, the monomial
∏

u∈M xu,vu is only present in Qu1Qu′
1
D(Ru1 |Ru1) ·D(Ru1 |Ru1) and

not in Qu1Qu′
1
D(Ru1|C ′

(u1,v1),(u′
1,v

′
1)
) ·D(Ru1|C

′
(u1,v1),(u′

1,v
′
1)
) for any u′

1 ∈ Au1 .

LetM = {u1, u
′
1} and xM,v =

∏
u∈M

xu,vu . Observation 6.8 and the induction hypothesis of this

claim applied on D(Ru1|Ru1) imply that the coefficient of xM,v in T ·D(Ru1 |Ru1) ·D(Ru1 |Ru1)

is equal to∏
u∈[m]

(−1)nu−ru
∏

v̂1∈[ru1]

(n(u1,v̂1) − 1)
∏

v̂′1∈[ru′1
]

(n(u′
1,v̂

′
1)
− 1)

∏
u∈[m]\M

αu

∏
v∈[ru]

(n(u,v) − 1), (6.15)

where T = Q1 · · ·Qm. It follows from Observation 6.9 and Claim 6.4.2 that the coefficient

of the monomial xM,v in T ·D(Ru1 |C ′
(u1,vu1),(u

′
1,vu′1

)) ·D(Ru1 |C
′
(u1,vu1),(u

′
1,vu′1

)) is equal to

∏
u∈[m]

(−1)nu−ru
∏

v̂1∈[ru1]\{vu1}

(nu1,v̂1−1)n(u1,vu1)

∏
v̂′1∈[ru′1

]\{vu′1
}

(n(u′
1,v̂

′
1)
−1)n(u′

1,vu′1
)

∏
u∈[m]\M

αu

∏
v∈[ru]

(n(u,v)−1)

(6.16)

and the coefficient of this monomial in other terms is equal to 0. On subtracting Equation

(6.16) from Equation (6.15), we get the desired result for |M | = 2.

Let |M | > 2 and Mu1 = M \ {u1}. Then, |Mu1| ≥ 2. It follows from Observation 6.8 and

the induction hypothesis of this claim applied on D(Ru1|Ru1) that the coefficient of xM,v in

159

T ·D(Ru1 |Ru1) ·D(Ru1 |Ru1) is equal to

∏
u∈[m]

(−1)nu−ru(−1)|M |−2
∏

v̂1∈[ru1]

(n(u1,v̂1) − 1)

 ∏
u∈[m]\M
v∈[ru]

(n(u,v) − 1)αu

 ∏

û′
1∈Mu1

v̂′1∈[rû′1
]\{vû′1

}

(n(û′
1,v̂

′
1)
− 1)(

∑
û′
1∈Mu1

n(û′
1,vû′1)

− 1)

 .

Here we have used the fact that [m] \M = ([m] \ {u1}) \Mu1 . Note that xM,v is present in

T ·D(Ru1 |C ′
(u1,v1),(u′

1,v
′
1)
) ·D(Ru1 |C

′
(u1,v1),(u′

1,v
′
1)
) only if u′

1 ∈Mu1 , v1 = vu1 and v′1 = vu′
1
. This is

so because every monomial in Qu′
1
·D(Ru1|C ′

(u1,v1),(u′
1,v

′
1)
) contains xu′

1,v
′
1
and Claim 6.4.2 implies

that every monomial in
∏

u∈[m]\{u′
1}
Qu ·D(Ru1 |C

′
(u1,v1),(u′

1,v
′
1)
) contains xu1,v1 . Let u

′
1 ∈Mu1 and

M ′ = Mu1\{u′
1}. Hence, |M ′| = |M |−2. Observation 6.9 applied onQu′

1
·D(Ru1|C ′

(u1,vu1),(u
′
1,vu′1

))

and Claim 6.4.2 applied on
∏

u∈[m]\{u′
1}Qu · D(Ru1|C

′
(u1,vu1),(u

′
1,vu′1

)) imply that the coefficient

of xM,v in T ·D(Ru1 |C ′
(u1,vu1),(u

′
1,vu′1

)) ·D(Ru1 |C
′
(u1,vu1),(u

′
1,vu′1

)) for u
′
1 ∈Mu1 is equal to

∏
u∈[m]

(−1)nu−ru(−1)|M ′|
∏

v̂1∈[ru1]\{vu1}

(n(u1,v̂1) − 1)n(u1,vu1)

 ∏
u∈[m]\M
v∈[ru]

(n(u,v) − 1)αu

 ∏

û′
1∈Mu1

v̂′1∈[rû′1
]\{vû′1

}

(n(û′
1,v̂

′
1)
− 1)n(u′

1,vu′1
)

 .

Here, we have used the fact that [m] \M = Au1,u′
1
\M ′, where Au1,u′

1
= [m] \ {u1, u

′
1}. Thus,

on substituting |M ′| = |M | − 2 in the above equation, adding the coefficients of xM,v in

T ·D(Ru1 |C ′
(u1,vu1),(u

′
1,vu′1

)) ·D(Ru1 |C
′
(u1,vu1),(u

′
1,vu′1

)) for every u′
1 ∈Mu1 and subtracting it from

the coefficient of this monomial in T ·D(Ru1 |Ru1) ·D(Ru1 |Ru1), we get the desired result. This

completes the proof of Claim 6.4.1.

160

6.4.0.2 Proof of Claim 6.4.2

We prove this by induction on |Au1|. Letm = 2, |Au1| = 1, u1 = 1, u′
1 = 2 and v1 ∈ [r1], v2 ∈ [r2].

Then, Au1,u′
1
= ∅ and hence M ′ = ∅. Observation 6.9 implies that

Q1 ·D(R1 |C
′
(1,v1),(2,v2)

) = (−1)n2−r2
∏

v̂2∈[r2]\{v2}

(n(2,v̂2) − 1)n(2,v2)x1,v1 .

Thus, the base case holds.

Suppose |Au1| ≥ 2. Let H be the sub-matrix of H ′(T), whose rows and columns are indexed

by Ru1 and C
′
(u1,v1),(u′

1,v
′
1)
. Then, det(H) = D(Ru1 |C

′
(u1,v1),(u′

1,v
′
1)
). To prove the result for Au1 ,

we would look at the Laplace’s expansion of det(H) corresponding to the set of rows indexed

by the ordered set Ru′
1
= {(u′

1, v
′
1, k

′) : v′1 ∈ [ru′
1
], k′ ∈ [n(u′

1,v
′
1)
]}. Consider the ordered set E,

which is obtained from Ru′
1
by replacing (u1, v1, 1) with (u′

1, v
′
1, 1). Then, E looks as

E =
(
(u′

1, 1, 1), . . . , (u
′
1, v

′
1 − 1, n(u′

1,v
′
1−1)), (u1, v1, 1), . . . , (u

′
1, ru′

1
, n(u′

1,ru′1
))
)
.

Let E = Ru1,u′
1
= Ru1 \Ru′

1
. Let u′′

1 ∈ Au1,u′
1
, where Au1,u′

1
= [m]\{u1, u

′
1}, v′′1 ∈ [ru′′

1
], E(u′′

1 ,v
′′
1)

be

obtained from the ordered set E by replacing (u1, v1, 1) with (u′′
1, v

′′
1 , 1) and E(u′′

1 ,v
′′
1)

be obtained

from the ordered set E by replacing (u′′
1, v

′′
1 , 1) with (u1, v1, 1). Then, it is easy to verify that

the structure of H, observation analogous to Observation 6.5 and the Laplace’s expansion of

det(H) imply

D(Ru1 |C
′
(u1,v1),(u′

1,v
′
1)
) = D(Ru′

1
|E)·D(Ru1,u′

1
|E)−

∑

u′′
1∈Au1,u

′
1
,

v′′1∈[ru′′1
]

D(Ru′
1
|E(u′′

1 ,v
′′
1)
) ·D(Ru1,u′

1
|E(u′′

1 ,v
′′
1)
)

 .

(6.17)

It follows from Observation 6.9 that

Qu1 ·D(Ru′
1
|E) = (−1)nu′1

−ru′1
∏

v̂′1∈[ru′1
]\{v′1}

(n(u′
1,v̂

′
1)
− 1) · n(u′

1,v
′
1)
· xu1,v1 (6.18)

and for u′′
1 ∈ Au1,u′

1
, v′′1 ∈ [ru′′

1
],

Qu′′
1
·D(Ru′

1
|E(u′′

1 ,v
′′
1)
) = (−1)nu′1

−ru′1
∏

v̂′1∈[ru′1
]\{v′1}

(n(u′
1,v̂

′
1)
− 1) · n(u′

1,v
′
1)
· xu′′

1 ,v
′′
1
. (6.19)

161

Notice that D(Ru1,u′
1
|E) is the minor of H ′(T), whose rows and columns are indexed by Ru1,u′

1
.

Thus, it is a smaller instance of the determinant mentioned in the statement of Claim 6.4.1 as

it is the product of (m− 2) preprocessed Hessians H ′(Tu′′
1
), u′′

1 ∈ Au1,u′
1
. Thus, by the induction

hypothesis of Claim 6.4.1, we can describe D(Ru1,u′
1
|E). Notice that D(Ru1,u′

1
|E(u′′

1 ,v
′′
1)
) is a

smaller instance of D(Ru1 |C
′
(u1,v1),(u′

1,v
′
1)
) and hence we use the induction hypothesis of this

claim here. Let M ′ ∈ P(Au1,u′
1
) be chosen arbitrarily. We prove the result in the following

three cases.

1. IfM ′ = ∅ then the coefficient of xu1,v1 in
∏

u∈[m]\{u′
1}Qu·D(Ru′

1
|E(u′′

1 ,v
′′
1)
)·D(Ru1,u′

1
|E(u′′

1 ,v
′′
1)
)

is equal to 0 for every u′′
1 ∈ Au1,u′

1
, v′′1 ∈ [ru′′

1
] and it follows from the induction hypothesis

of Claim 6.4.1 the coefficient of xu1,v1 in
∏

u∈[m]\{u′
1}Qu ·D(Ru′

1
|E) ·D(Ru1,u′

1
|E) is equal

to ∏
u∈Au1

(−1)nu−ru
∏

v̂′1∈[ru′1
]\{v′1}

(n(u′
1,v̂

′
1)
− 1)n(u′

1,v
′
1)

∏
u′′
1∈Au1,u

′
1

(αu′′
1

∏
v′′1∈[ru′′1

]

(n(u′′
1 ,v

′′
1)
− 1)).

Thus, the claim holds in this case.

2. Let M ′ = {u′′
1} and p = xu1,v1 · xu′′

1 ,v
′′
1
. It follows from Observation 6.9 and the induction

hypothesis of Claim 6.4.1 that the coefficient of p in
∏

u∈[m]\{u′
1}Qu·D(Ru′

1
|E)·D(Ru1,u′

1
|E)

is equal to∏
u∈Au1

(−1)nu−ru
∏

v̂′1∈[ru′1
]\[v′1]

(n(u′
1,v̂

′
1)
− 1)n(u′

1,v
′
1)

∏
u∈Au1,u

′
1,u

′′
1

(n(u,vu) − 1)αu

∏
v̂′′1∈[ru′′1

]

(n(u′′
1 ,v̂

′′
1)
− 1),

where Au1,u′
1,u

′′
1
= [m] \ {u1, u

′
1, u

′′
1}. Observation 6.9 applied on Qu′′

1
·D(Ru′

1
|E(u′′

1 ,v
′′
1)
) and

the induction hypothesis of this claim applied on
∏

u∈[m]\{u′
1,u

′′
1}Qu · D(Ru1,u′

1
|E(u′′

1 ,v
′′
1)
)

implies that the coefficient of p in
∏

u∈[m]\{u′
1}Qu ·D(Ru′

1
|E(u′′

1 ,v
′′
1)
) ·D(Ru1,u′

1
|E(u′′

1 ,v
′′
1)
) is

∏
u∈Au1

(−1)nu−ru
∏

v̂′1∈[ru′1
]\[v′1]

(n(u′
1,v̂

′
1)
−1)n(u′

1,v
′
1)

∏
u∈Au1,u

′
1,u

′′
1

(n(u,vu)−1)αu

∏
v̂′′1∈[ru′′1

]\{v′′1 }

(n(u′′
1 ,v̂

′′
1)
−1)n(u′′

1 ,v
′′
1)

and the coefficient of this monomial in the other terms in Equation (6.17) is equal to 0.

Now, the result directly follows by plugging in these coefficients of p Equation (6.17).

3. Suppose |M ′| ≥ 2. Let v′′1 ∈ [ru′′
1
] for u′′

1 ∈ M ′. By applying Observation 6.9 on Qu1 ·
D(Ru′

1
|E) and induction hypothesis of Claim 6.4.1 on

∏
û′′
1∈Au1,u

′
1

Qû′′
1
·D(Ru1,u′

1
|E), the coef-

162

ficient of the monomial p := xu1,v1

∏
û′′
1∈M ′

xû′′
1 ,v̂

′′
1
inQu1 ·

∏
û′′
1∈Au1,u

′
1

Qû′′
1
·D(Ru′

1
|E)·D(Ru1,u′

1
|E)

is equal to∏
u∈Au1

(−1)nu−ru · (−1)|M ′|−1
∏

v̂′1∈[ru′1
]\{v′1}

(n(u′
1,v̂

′
1)
− 1)n(u′

1,v
′
1)

∏
u∈Au1,u

′
1
\M ′,

v∈[ru]

(n(u,v) − 1) · αu

×
∏

û′′
1∈M ′,

v̂1∈[rû′′1
]\{v̂′′1 }

(n(û′′
1 ,v̂1)
− 1)

 ∑
û′′
1∈M ′

n(û′′
1 ,v̂

′′
1)
− 1

 .

Note that this monomial is in Qu1 ·
∏

û′′
1∈Au1,u

′
1

Qû′′
1
·D(Ru′

1
|E(u′′

1 ,v̂
′′
1)
) ·D(Ru1,u′

1
|E(u′′

1 ,v̂
′′
1)
) only

if u′′
1 ∈ M ′ and v̂′′1 = v′′1 . This is so because every monomial in Qu1 · D(Ru′

1
|E(u′′

1 ,v̂
′′
1)
)

contains x(u′′
1 ,v̂

′′
1)
. Thus, for u′′

1 ∈M ′, by Observation 6.9 and induction hypothesis of this

claim, the coefficient of p in Qu1 ·
∏

û′′
1∈Au1,u

′
1

Q′′
û1
· D(Ru′

1
|E(u′′

1 ,v
′′
1)
) · D(Ru1,u′

1
|E(u′′

1 ,v
′′
1)
) is

equal to∏
u∈Au1

(−1)nu−ru · (−1)|M ′|−1
∏

v̂′1∈[ru′1
]\{v′1}

(n(u′
1,v̂

′
1)
− 1)n(u′

1,v
′
1)

∏
u∈Au1,u

′
1
\M ′,

v∈[ru]

(n(u,v) − 1) · αu

×

 ∏
û′′
1∈M ′,

v̂1∈[rû′′1
]\{v̂′′1 }

(n(u′′
1 ,v̂1)
− 1) · n(u′′

1 ,v
′′
1)

 .

This implies that the coefficient of p in Equation (6.17) is equal to

∏
u∈Au1

(−1)nu−ru · (−1)|M ′|·

 ∏
u∈Au1,u

′
1
\M ′,

v∈[ru]

(n(u,v) − 1) · αu

×
 ∏

û′′
1∈M ′,

v̂1∈[rû′′1
]\{v̂′′1 }

(n(û′′
1 ,v̂1)
− 1)

∏
v̂′1∈[ru′1

]\{v′1}

(n(u′
1,v̂

′
1)
− 1) · n(u′

1,v
′
1)

 .

Let u′′
1 ∈ Au1,u′

1
, v′′1 ∈ [ru′′

1
] be arbitrarily chosen. Then, we know that D(Ru1,u′

1
|E(u′′

1 ,v
′′
1)
)

163

is a smaller instance of D(Ru1 |C
′
(u1,v1),(u′

1,v
′
1)
) . Thus, by the induction hypothesis of this

claim, every monomial q′ in
∏

u∈[m]\{u′
1,u

′′
1}Qu ·D(Ru1,u′

1
|E(u′′

1 ,v
′′
1)
) contains xu1,v1 and for every

(u′′,v′′) ∈ Su′′
1
, the degree of x(u′′,v′′) in q′ is at most 1. Let q̂ be an arbitrary monomial of

D(Ru1,u′
1
|E). Then, it follows from Claim 6.4.1 that the degree of x(u′′,v′′) in q̂ is at most 1.

This along with Equations (6.18), (6.19) and (6.17) implies that if q is an arbitrary monomial

in Qu1

∏
u′′
1∈Au1,u

′
1

Qu′′
1
· D(Ru1 |C

′
(u1,v1),(u′

1,v
′
1)
) and (u′′,v′′) ∈ Su′′

1
then q contains xu1,v1 and the

degree of x(u′′,v′′) in q is at most 1. This completes the proof of Claim 6.4.2.

6.5 The Hessian determinant of a general ROF

This section contains the major fraction of this chapter. We start this section by giving some

useful notations, which is in continuation with the notations given in Section 6.1.

6.5.1 Notations

1. For every (u,v) ∈ S, let b(u,v) be defined as the number of multiplication gates with

fan-in at least 2, in the path (u,v). Recall n(u,v) = |x(u,v)|. If n(u,v) ≥ 2 then we define

a(u,v) = b(u,v) otherwise a(u,v) = b(u,v) + 1.

2. Let (u,v) = (u1, v1, . . . , u∆, v∆) ∈ S. Suppose there exists i ∈ [∆], such that for every

j < i, ruj
̸= 1, svj ̸= 1, rui

̸= 1 and for every k ∈ [i+ 1,∆], ruk
= 1 and svk−1

= 1. Then,

W(u,v) :=
{
(u′,v′) := (u1, v1, · · · , ui−1, vi−1, ui, v

′
i, u

′
i+1, . . . , v

′
∆) : v′i ∈ [rui

] \ {vi},

for every k ∈ [i+ 1,∆], sv′k−1
= 1, ru′

k
= 1
}
.

Suppose (u′,v′) ∈ W(u,v). Then, it is easy to see that the nodes vi in (u,v) and v′i in

(u′,v′) compute monomials.

3. For every ℓ ∈ [∆],

(a) Let Σℓ,1 := {uℓ ∈ Σℓ : there exists vℓ ∈ [ruℓ
], nvℓ = 1}, where nvℓ is the number of

variables in the ×-rooted ROF Tvℓ . Since T is canonical, it follows immediately

that for every uℓ ∈ Σℓ,1, there exists a unique vℓ ∈ [ruℓ
], such that nvℓ = 1. Let

Σℓ,1 := Σℓ \ Σℓ,1.

(b) Let M ⊆ [m]. Then, ΣM
ℓ ⊆ Σℓ and

∏M
ℓ ⊆

∏
ℓ are such that for every uℓ ∈ ΣM

ℓ , vℓ ∈∏M
ℓ , there exist u, u′ ∈ M , such that the + gate uℓ is present in the sub-ROF Qu

164

and the × gate vℓ is present in the sub-ROF Qu′ . Further, Σ̂M
ℓ ⊆ ΣM

ℓ is such that

for every uℓ ∈ Σ̂M
ℓ , the parent × gate of uℓ has fan-in at least two.

(c)

Vℓ =
{
vℓ := (vuℓ

)uℓ∈Σℓ
: ∀uℓ ∈ Σℓ,1, vuℓ

∈ [ruℓ
], s.t. nvuℓ

= 1,∀uℓ ∈ Σℓ,1, vuℓ
∈ [ruℓ

]
}
.

In other words, for every ℓ ∈ [∆], vℓ is a tuple, whose entries are labelled by the +

gates in Σℓ and for every uℓ ∈ Σℓ, the uℓ-th entry of vℓ is exactly one non-constant

child of the + gate uℓ. Further, for uℓ ∈ Σℓ,1, if vuℓ
∈ [ruℓ

] is such that nuvℓ
= 1 then

the uℓ-th coordinate of vℓ is equal to vuℓ
. Since T is canonical, such a vuℓ

is unique.

4. Let V = V1 × · · · × V∆. Then, an element v ∈ V looks as v = (vℓ)ℓ∈[∆], where for every

ℓ ∈ [∆], vℓ ∈ Vℓ.

The following sets would be used to define the nice monomials in gT .

5. Let u ∈ [m] and v ∈ V be fixed arbitrarily. Then,

(a) Sv,u,0 =
{
(u,v) := (uℓ, vuℓ

)ℓ∈[∆] : u1 = u, and for ℓ ∈ [2,∆], uℓ ∈ [svuℓ−1
]
}
. Note here

that for every ℓ ∈ [∆], the coordinate vuℓ
in (u,v) is fixed by the tuple v. Suppose

u ∈ [m] is such that one of its children computes a variable. Then, |Sv,u,0| = 1.

(b) For i ∈ [∆],

Sv,u,i =
{
(u,v) = (u1, . . . , vi, ui+1, vui+1

, . . . , u∆, vu∆
) : u1 = u, v1 ∈ [ru1],

∀j ∈ [2, i− 1], vj ∈ [ruj
], uj ∈ [svj−1

], ui ∈ [svi−1
], vi ∈ [rui

] \ {vui
},

ui+1 ∈ [svi],∀k ∈ [i+ 2,∆], uk ∈ [svuk−1
]
}
.

Note that for any (u,v) ∈ Sv,u,i and for j ∈ [1, i − 1], the coordinate vj of (u,v) is

picked arbitrarily from [ruj
], vi is picked arbitrarily from [rui

] \ {vui
}, where vui

is

fixed by v and for k ∈ [i+ 1,∆], vuk
is also fixed by v

1.

6.5.2 Technical lemmas.

Lemma 6.1 (Description of nice monomials) Let ∆, n ∈ N,∆ ≥ 2,F be a field such that

either char(F) = 0 or char(F) ≥ n, T = Q1 · · ·Qm, where for every u ∈ [m], Qu is a +-

rooted extended canonical ROF of product-depth ∆ and there exists u ∈ [m], such that Qu

1We emphasize here again that it is very important that for any + gate ui, [rui] does not contain the label
of its constant child, if there is any.

165

computes a polynomial of degree at least 2 and |var(T)| = n. Let dT be the denominator of

det(H ′(T)) given in Observation 6.1 and gT := dT · det(H ′(T)). Then, gT = gT1 + gT2, where

gT1 =
∑
v∈V

(−1)b βv · pv, b =
∑

ℓ∈[∆]

(s(
∏

ℓ) − r(Σℓ)) + (m − 1), pv =
∏

u∈[m]

∏
i∈[0,∆−1]

∏
(u,v)∈Sv,u,i

x
a(u,v)−i
(u,v)

and βv = βv,0
∏

u∈[m]

∏
i∈[∆−1]

βv,u,i, where

βv,0 =

 ∑
u∈[m]

(u,v)∈Sv,u,0

n(u,v) − 1

 ∏
u∈[m]

(u,v)∈Sv,u,0

∏
(û,v̂)∈W(u,v)

(n(û,v̂) − 1)

and for every u ∈ [m], i ∈ [∆− 1],

βv,u,i =
∏

(u′,v′)i∈Bv,u,i

 ∑

(u,v)∈Sv,u,i:
(u,v)i=(u′,v′)i

n(u,v) − 1

 ∏
(u,v)∈Sv,u,i,
(u,v)i=(u′,v′)i

∏
(û,v̂)∈W(u,v)

(n(û,v̂) − 1)

 ,

where Bv,u,i = {(u′,v′)i = (u′
1, v

′
1, . . . , u

′
i, v

′
i) : (u′,v′) ∈ Sv,u,i}. Further, gT2 ∈ F[x] and gT1

and gT2 are monomial disjoint.

The proof of Lemma 6.1 is dependent on the next lemma, where we understand the minor

D(Ru1|C
′
(u,v),(u′,v′)) given in Equation (6.11). Let u1 ∈ [m]. Then, recall Au1 = [m] \ {u1}.

Further, for ℓ ∈ [∆],M ⊆ [m], recall the definition of the set Σ̂M
ℓ .

Lemma 6.2 Let n ∈ N, F be a field such that either char(F) = 0 or char(F) ≥ n, u1, u
′
1 ∈

[m], u1 ̸= u′
1 and Au1,u′

1
= [m] \ {u1, u

′
1}, where m is the fan-in of the top-most gate of T and

n = |var(T)|, where T is a product-rooted extended canonical ROF considered in Lemma 6.1.

Let (u,v) ∈ Su1 , (u
′,v′) ∈ Su′

1
.

1. The denominator of D(Ru1|C
′
(u,v),(u′,v′)) is equal to

d̄((u,v),(u′,v′)) :=

Qu1

∏
û1∈Au1,u

′
1

Qû1

∏
ℓ∈[2,∆]

 ∏
û′
ℓ∈Σ̂

Au1
ℓ

Qû′
ℓ

∏

ℓ∈[2,∆]: sv′ℓ−1
̸=1

Qu′
ℓ

,

where u′
ℓ, ℓ ∈ [2,∆] correspond to (u′,v′). Then, D̃(Ru1 |C

′
(u,v),(u′,v′)) := D(Ru1|C

′
(u,v),(u′,v′))·

d̄(u,v),(u′,v′) is a polynomial in F[x].

166

2. Let v ∈ V , (u′,v′) ∈ Sv,u′
1,0
, (u,v) ∈ Sv,u1,0 and

qv,u′
1
:=

∏
(û,v̂)∈Sv,u1,0

x(û,v̂) ×
∏

j∈[a(u′,v′)−1]

∏

(û′,v̂′)∈S
v,u′1,0

:

(û′,v̂′)j=(u′,v′)j ,û′
j+1 ̸=u′

j+1

x
a(û′,v̂′)−j
(û′,v̂′)

×

∏
u′′
1∈Au1,u

′
1
,

(u′′,v′′)∈S
v,u′′1 ,0

x
a(u′′,v′′)
(u′′,v′′) ×

∏
i∈[∆−1],
û′
1∈Au1

∏
(û′,v̂′)∈S

v,û′1,i

x
a(û′,v̂′)−i
(û′,v̂′) .

Then, the coefficient of qv,u′
1

in D̃(Ru1|C
′
(u,v),(u′,v′)) is equal to

(−1)c n(u′,v′)

∏
û′
1∈Au1

∏

(û′,v̂′)∈S
v,û′1,0

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)
∏

i∈[∆−1]

βv,û′
1,i

 ,

where c =
∑

ℓ∈[∆]

(
s(
∏Au1

ℓ)− r(Σ
Au1
ℓ)

)
+ |Au1| − 1 and βv,û′

1,i
is defined in Lemma 6.1.

3. Let (u′,v′) ∈ Su′
1

be picked arbitrarily and q be an arbitrary monomial of D̃(Ru1|C
′
(u,v),(u′,v′)).

Let (û′, v̂′) ∈ Su′
1

be such that there exists i ∈ [∆], such that either (u′,v′)i−1 = (û′, v̂′)i−1,

u′
i = û′

i and v′i ̸= v̂′i or (u′,v′)i = (û′, v̂′)i and u′
i+1 ̸= û′

i+1. Then, degx(û′,v̂′)
q ≤

(a(û′, v̂′)− i)1. Let u′′
1 ∈ Au1,u′

1
, (u′′,v′′) ∈ Su′′

1
. Then, deg(u′′,v′′) q ≤ a(u′′,v′′).

Remark 6.4 1. Note that if F is a finite field with char(F) ≥ n or char(F) = 0 then for

every v ∈ V , the coefficients of pv in gT and qv,u′
1

in D̃(Ru1|C
′
(u,v),(u′,v′)) is non-zero. This

is so because n =
∑

(u,v)∈S
n(u,v).

2. Let j ∈ [a(u′,v′) − 1], (û′, v̂′) ∈ Sv,u′
1,0

, such that (û′, v̂′)j = (u′,v′)j and û′
j+1 ̸= u′

j+1.

Observe that this immediately implies a(û′, v̂′) ≥ j. Similarly, for i ∈ [∆ − 1], û′
1 ∈

Au1 , (û
′, v̂′) ∈ Sv,û′

1,i
, a(û′, v̂′) ≥ i. This implies that pv in Lemma 6.1 and qv,u′

1
in Lemma

6.2 are monomials in x variables.

3. The notation
∏

ℓ∈[2,∆]: sv′ℓ−1
̸=1

Qu′
ℓ

means the product of all +-rooted sub-ROFs except Qu′
1

on

the path (u′,v′) whose parent product gates have fan-in at least 2.

1degx(û′,v̂′)
q means the degree of x(û′,v̂′) in q.

167

Lemma 6.1 and Lemma 6.2 complement each other. We call the monomials of gT as the

nice monomials in gT . Before proceeding with the proofs, we want to draw the attention of

the reader that in the product-depth 2 case (Claim 6.4.1), the nice monomials in gT are the

monomials of the kind
∏

u∈M xu,vu , where M = [m] and for u ∈ M, if Qu contains a variable

then vu ∈ [ru] is such that n(u,vu) = 1 otherwise vu ∈ [ru] is arbitrary.

6.5.3 Proof of Lemma 6.1

We have already seen the proof of this for ∆ = 1 in Claim 6.4.1. We now prove this lemma for

a fixed ∆ ≥ 2. Let D = det(H ′(T)) and u1 ∈ [m] be fixed arbitrarily. We first give the high

level overview of the proof.

Proof idea. Recall gT = dT ·det(H ′(T)). We look at the Laplace’s expansion of gT after clear-

ing the denominators in Equation (6.11). We aim to find the coefficients of the set of monomials

pv, v ∈ V in gT . In Equation (6.11), we have a positive part and a negative part. We find the

coefficient of a fixed pv in the positive part using the induction on Lemma 6.1. We want to

mention here that in the proof, we use induction at two level: One at the top fan-in of T for a

fixed product-depth ∆ and other at the product-depth of the underlying ×-rooted ROF. After

that, we find the coefficient of pv in the negative part of the Laplace’s equation. An immediate

problem is that there are more than one of negative ‘terms’ in the Laplace’s expansion of gT ,

captured by the set Cu1,u′
1
for u′

1 ∈ Au1 and it is not clear which ‘term’ contains the monomial

pv. Using the structure of pv, we are able to describe all the negative terms in the Laplace’s

expansion of gT , in which the coefficient of pv is non-zero (see Claim 6.5.1). Then, we use

Lemma 6.2 to compute the coefficient of pv in the negative part and by subtracting it from the

coefficient of pv in the positive part, we get its coefficient in gT .

Now, we start the proof. We start with normalizing Equation (6.11) by removing the

denominators of every term involved in this equation. We first calculate the denominators of

D(Ru1|Ru1) ·D(Ru1|Ru1).

1. As D(Ru1|Ru1) =
∏

v1∈[ru1]
det(H ′(Tv1)), it follows from the first point of Remark 6.3

given after Equation (6.11) that by invoking Observation 6.1 on det(H ′(Tv1)), which

is a product-depth (∆ − 1) instance of det(H ′(T)), for every v1 ∈ [ru1], we get that the

168

denominator of D(Ru1|Ru1) is equal to

du1 :=
∏

v1∈[ru1]

∏
ℓ∈[2,∆]

 ∏
uℓ∈[svℓ−1

]:svℓ−1
̸=1,

vℓ∈[ruℓ]

Quℓ

 .

2. As noted in Remark 1 given after Equation (6.11), D(Ru1|Ru1) is a product-depth ∆ and

top fan-in (m− 1) instance of det(H ′(T)). Thus, by changing [m] to Au1 in the definition

of dT given in Observation 6.1, we get that the denominator of D(Ru1|Ru1) is equal to

d̄u1 :=
∏

u′
1∈Au1

Qu′
1

∏
ℓ∈[2,∆]

∏

u′
ℓ∈[sv′

ℓ−1
]:sv′

ℓ−1
̸=1,

v′ℓ∈[ru′
ℓ
]

Qu′
ℓ

 .

This implies that the denominator of D(Ru1|Ru1) · D(Ru1|Ru1) is equal to dT
Qu1

. Now, we

calculate the denominator of D(Ru1|C ′
(u,v),(u′,v′)) ·D(Ru1|C

′
(u,v),(u′,v′)), where (u,v) ∈ Su1 and

(u′,v′) ∈ Su′
1
are arbitrary.

1. As noted in Remark 2 given after Equation (6.11), D(Ru1|C ′
(u,v),(u′,v′)) is a smaller instance

of D(Ru1|C
′
(u,v),(u′,v′)). Now, if we set u1 = u′

1, Au1 = {u1}, Au1,u′
1
= ∅ and change

sv′ℓ−1
to svℓ−1

, u′
ℓ to uℓ for ℓ ∈ [2,∆] in Lemma 6.2, we get that the denominator of

D(Ru1|C ′
(u,v),(u′,v′)) is equal to

d(u,v),(u′,v′) :=

Qu′
1

∏
ℓ∈[2,∆]

∏
ûℓ∈Σ̂

{u1}
ℓ

Qûℓ∏
ℓ∈[2,∆]: svℓ−1

̸=1

Quℓ

.

2. The denominator of D(Ru1|C
′
(u,v),(u′,v′)) is given in Lemma 6.2.

Then, it is not difficult to see that the denominator of D(Ru1|C ′
(u,v),(u′,v′)) ·D(Ru1|C

′
(u,v),(u′,v′))

is equal to

 dT∏
ℓ∈[2,∆]:svℓ−1 ̸=1

Quℓ
×

∏
ℓ∈[2,∆]:s

v′
ℓ
−1

̸=1

Qu′
ℓ

. Let

D̃(Ru1|Ru1) = du1 ·D(Ru1 |Ru1), D̃(Ru1|C ′
(u,v),(u′,v′)) = d(u,v),(u′,v′) ·D(Ru1|C ′

(u,v),(u′,v′)),

169

D̃(Ru1|Ru1) = d̄u1 ·D(Ru1|Ru1), D̃(Ru1|C
′
(u,v),(u′,v′)) = d̄(u,v),(u′,v′) ·D(Ru1|C

′
(u,v),(u′,v′)),

where d̄(u,v),(u′,v′) is defined in Lemma 6.2 and gT = dT ·D. Then, Observation 6.1 implies

that Equation (6.11) can be rewritten as

gT =Qu1 · D̃(Ru1 |Ru1)D̃(Ru1 |Ru1)−
∑

u′
1∈Au1 ,

C(u,v),(u′,v′)∈Cu1,u
′
1

∏
ℓ∈[2,∆]: svℓ−1

̸=1

Quℓ

×
∏

ℓ∈[2,∆]: sv′ℓ−1
̸=1

Qu′
ℓ
× D̃(Ru1 |C ′

(u,v),(u′,v′))D̃(Ru1 |C
′
(u,v),(u′,v′)).

(6.20)

For simplicity, we use the terminology ((u,v), (u′,v′))-th term of Equation (6.20) to refer to

the polynomial
∏

ℓ∈[2,∆]: svℓ−1
̸=1

Quℓ
×

∏
ℓ∈[2,∆]: sv′ℓ−1

̸=1

Qu′
ℓ
×D̃(Ru1|C ′

(u,v),(u′,v′))D̃(Ru1|C
′
(u,v),(u′,v′)). Let

(u,v) ∈ Su1 and (u′,v′) ∈ Su′
1
, such that u1 ̸= u′

1. Let H(u,v),(u′,v′),Ru1
and H(u′,v′),(u,v),Ru1

be

the nu1 × nu1 and (n − nu1) × (n − nu1) size sub-matrices of H ′(T), whose rows are indexed

by Ru1 and Ru1 and columns are indexed by C ′
(u,v),(u′,v′) and C

′
(u,v),(u′,v′) respectively, such

that D(Ru1|C ′
(u,v),(u′,v′)) = det(H(u,v),(u′,v′),Ru1

) and D(Ru1|C
′
(u,v),(u′,v′)) = det(H(u′,v′),(u,v),Ru1

).

It follows from Observation 6.2 that the only non-zero entry of the (u′,v′, 1)-th column of

H(u,v),(u′,v′),Ru1
is

x(u′,v′)
∏

ℓ∈[2,∆]

∏
û′
ℓ
∈[sv′ℓ−1

]\{u′
ℓ
}
Qû′

ℓ

Qu′1

, where u′
ℓ, ℓ ∈ [∆] correspond to (u′,v′) and the

only non-zero entry of the (u,v, 1)-th column of H(u′,v′),(u,v),Ru1
is

(
x(u,v)

∏
ℓ∈[2,∆]

∏
ûℓ∈[svℓ−1

]\{uℓ}
Qûℓ

Qu1

)
,

where uℓ, ℓ ∈ [∆] correspond to (u,v). This along with Observation 6.2 implies the following.

Recall from the notations that R is the set of indices of variables.

Observation 6.10 Let j be the 0-1 column vector, whose entries are labelled by (û, v̂, k̂) ∈ R,

such that if k̂ = 1 then the (û, v̂, k̂)-entry of j is 1, otherwise 0. Let H(u,v),j,Ru1
and H(u′,v′),j,Ru1

be obtained by replacing the columns labelled by (u′,v′, 1) and (u,v, 1) in H(u,v),(u′,v′),Ru1
and

H(u′,v′),(u,v),Ru1
with j restricted to Ru1 and Ru1 respectively. Then,

D(Ru1 |C ′
(u,v),(u′,v′)) =

x(u′,v′)

∏
ℓ∈[2,∆]

∏
û′
ℓ∈[sv′ℓ−1

]\{u′
ℓ}
Qû′

ℓ

Qu′
1

 · det(H(u,v),j,Ru1
)

170

and

D(Ru1|C
′
(u,v),(u′,v′)) =

x(u,v)

∏
ℓ∈[2,∆]

∏
ûℓ∈[svℓ−1

]\{uℓ}
Qûℓ

Qu1

 · det(H(u′,v′),j,Ru1
).

Recall that the denominators of D(Ru1|C ′
(u,v),(u′,v′)) and D(Ru1|C

′
(u,v),(u′,v′)) are d(u,v),(u′,v′)

and d̄(u,v),(u′,v′) respectively. Then, the denominators of det(H(u,v),j,Ru1
) and det(H(u′,v′),j,Ru′1

)

are
d(u,v),(u′,v′)

Qu′1
and

d̄(u,v),(u′,v′)
Qu1

, respectively. Let d̃et(H(u,v),j,Ru1
) = det(H(u,v),j,Ru1

) × d(u,v),(u′,v′)
Qu′1

and d̃et(H(u′,v′),j,Ru′1
) = det(H(u′,v′),j,Ru′1

) × d̄(u,v),(u′,v′)
Qu1

. Then, after substituting the values of

d(u,v),(u′,v′) and d̄(u,v),(u′,v′) in the above two equations, we get∏
ℓ∈[2,∆]: svℓ−1

̸=1

Quℓ
· D̃(Ru1|C ′

(u,v),(u′,v′)) = x(u′,v′)

∏
ℓ∈[2,∆]

∏
û′
ℓ∈[sv′ℓ−1

]: sv′ℓ−1
̸=1

Qû′
ℓ
× d̃et(H(u,v),j,Ru1

)

(6.21)

and ∏
ℓ∈[2,∆]: sv′ℓ−1

̸=1

Qu′
ℓ
· D̃(Ru1|C

′
(u,v),(u′,v′)) = x(u,v)

∏
ℓ∈[2,∆]

∏
ûℓ∈[svℓ−1

]: svℓ−1
̸=1

Qûℓ
× d̃et(H(u′,v′),j,Ru1

).

(6.22)

Remark 6.5 Let (û, v̂) ∈ S. Then, the notation
∏

ℓ∈[2,∆]

∏
ûℓ∈[sv̂ℓ−1

]: sv̂ℓ−1
̸=1

Qûℓ
means the product

of the children of all the × gates on the path (û, v̂) except v̂∆, such that each of these × gates

has fan-in at least 2.

Proof: It is shown in Claim 6.5.2 that the denominators of det(H(u,v),j,Ru1
) and det(H(u′,v′),j,Ru′1

)

are
d(u,v),(u′,v′)

Qu′1
and

d̄(u,v),(u′,v′)
Qu1

, respectively. The remaining details are easy to verify. 2

It is easy to note the following from the structures of H(u,v),j,Ru1
and H(u′,v′),j,Ru1

.

Observation 6.11 Let u1, u
′
1 ∈ [m], u1 ̸= u′

1, p1, p2 be arbitrary monomials of d̃et(H(u,v),j,Ru1
)

and d̃et(H(u′,v′),j,Ru′1
) respectively and (û, v̂) ∈ Su1 and (û′, v̂′) ∈ Su′

1
. Then, p1 and p2 do not

contain x(û′,v̂′) and x(û,v̂) respectively.

We now calculate the coefficient of the monomial pv in gT , where v ∈ V . Recall that

pv =
∏

u∈[m]

∏
i∈[0,∆−1]

∏
(u,v)∈Sv,u,i

x
a(u,v)−i
(u,v) , where Sv,u,i and a(u,v) are given in Points 5 and 1 of the

second part of the notations. The following claim is very helpful as it shows which all terms in

the negative part of Equation (6.20) contain pv.

171

Claim 6.5.1 Let u1 ∈ [m], v ∈ V , u′
1 ∈ Au1 , (u,v) ∈ Su1 and (u′,v′) ∈ Su′

1
. Then, the

monomial pv is in the ((u,v), (u′,v′))-th term of Equation (6.20) if and only if (u,v) ∈ Sv,u1,0

and (u′,v′) ∈ Sv,u′
1,0

.

We first complete the proof of Lemma 6.1 assuming the above claim, whose proof is given

in Section 6.5.4. Let v ∈ V be fixed arbitrarily. We now use induction on m of this lemma for

a fixed product-depth ∆ to prove that the coefficient of pv in gT is βv. As m is the fan-in of the

top multiplication gate in T , m ≥ 2. We analyse the coefficient of pv in the following two cases.

Recall the definition of Σℓ,1 for some ℓ ∈ [∆] from Point 3 of the second part of the notations.

Case 1: |{u1, u
′
1} ∩ Σ1,1| ≥ 1. Without loss of generality, let u1 ∈ Σ1,1. Then, we know that

there exists a unique v1 ∈ [ru1], such that nv1 = 1. Let (u,v) ∈ S, be such that the first two

entries of (u,v) from the left are u1 and v1 and for every ℓ ∈ [2,∆], uℓ = vℓ = 1. It is important

to note that Sv,u1,0 = {(u,v)}, a(u,v) = 1 and n(u,v) = |x(u,v)| = 1. Let H ′
1 be the sub-matrix

of H ′(T), whose rows and columns are labelled by Ru1 . Then, observe that all the entries of

the column of H ′
1 labelled by the variable x(u,v) are zero. As D(Ru1|Ru1) = det(H ′

1), we get

that D(Ru1|Ru1) = 0. Then, Equation (6.20) looks as

gT =−
∑

u′
1∈Au1 ,

C(u,v),(u′,v′)∈Cu1,u
′
1

(∏
ℓ∈[2,∆]: svℓ−1

̸=1

Quℓ
×

∏
ℓ∈[2,∆]: sv′ℓ−1

̸=1

Qu′
ℓ

× D̃(Ru1|C ′
(u,v),(u′,v′))D̃(Ru1|C

′
(u,v),(u′,v′))

)
,

(6.23)

Let (u,v) ∈ Sv,u1,0, (u
′,v′) ∈ Sv,u′

1,0
be picked arbitrarily. We first give a factorization of pv

in the ((u,v), (u′,v′))-th term of Equation (6.20), which would be helpful in figuring out its

coefficient in this term. Recall from Lemma 6.2 that

qv,u′
1
=

∏
(û,v̂)∈Sv,u1,0

x(û,v̂) ×
∏

j∈[a(u′,v′)−1]

∏

(û′,v̂′)∈S
v,u′1,0

:

(û′,v̂′)j=(u′,v′)j ,û′
j+1 ̸=u′

j+1

x
a(û′,v̂′)−j
(û′,v̂′)

×

∏
u′′
1∈Au1,u

′
1
,

(u′′,v′′)∈S
v,u′′1 ,0

x
a(u′′,v′′)
(u′′,v′′) ×

∏
i∈[∆−1],
û′
1∈Au1

∏
(û′,v̂′)∈S

v,û′1,i

x
a(û′,v̂′)−i
(û′,v̂′) .

Let qv,u1 be obtained from the monomial qv,u′
1
by making the following changes: change (u′,v′)

172

to (u,v), set Au1,u′
1
= ∅, u′

1 = u1, u1 = u′
1, and Au1 = {u1}. Then, qv,u1 looks as

qv,u1 :=
∏

(û′,v̂′)∈S
v,u′1,0

x(û′,v̂′) ×
∏

j∈[a(u,v)−1]

 ∏
(û,v̂)∈Sv,u1,0:

(û,v̂)j=(u,v)j ,ûj+1 ̸=uj+1

x
a(û,v̂)−j
(û,v̂)

∏

i∈[∆−1]

∏
(û,v̂)∈Sv,u1,i

x
a(û,v̂)−i
(û,v̂) .

(6.24)

Let

pu1 = x
a(u,v)−1
(u,v) ·

∏
j∈[a(u,v)−1]

 ∏
(û,v̂)∈Sv,u1,0:

(û,v̂)j=(u,v)j ,ûj+1 ̸=uj+1

xj−1
(û,v̂)

 ,

pu′
1
= x

a(u′,v′)−1
(u′,v′) ·

∏
j∈[a(u′,v′)−1]

∏

(û′,v̂′)∈S
v,u′1,0

:

(û′,v̂′)j=(u′,v′)j ,û′
j+1 ̸=u′

j+1

xj−1
(û′,v̂′)

 .

Then, it is easy to observe that

pv = qv,u1 · qv,u′
1
· pu1 · pu′

1
. (6.25)

Further, observe that pu1 and pu′
1
are contributed by

∏
ℓ∈[2,∆]:svℓ−1

̸=1

Quℓ
and

∏
ℓ∈[2,∆]:sv′ℓ−1

̸=1

Qu′
ℓ
re-

spectively. The following observation argues that the only factorization of pv in the ((u,v), (u′,v′))-

th term of Equation (6.20) is given by Equation (6.25).

Observation 6.12 Let u′
1 ∈ Au1 , (u,v) ∈ Sv,u1,0 and (u′,v′) ∈ Sv,u′

1,0
be arbitrary. Let pv =

h1·h2·h3·h4, where h1, h2, h3, h4 are monomials of f1 :=
∏

ℓ∈[2,∆]: svℓ−1
̸=1

Quℓ
, f2 :=

∏
ℓ∈[2,∆]: sv′ℓ−1

̸=1

Qu′
ℓ

, f3 := D̃(Ru1|C ′
(u,v),(u′,v′)) and f4 := D̃(Ru1|C

′
(u,v),(u′,v′)) respectively. Then, h1 = pu1 , h2 =

pu′
1
, h3 = qv,u1 and h4 = qv,u′

1
, where pu1 , pu′

1
, qv,u1 and qv,u′

1
are the monomials considered in

Equation (6.25).

Proof: Recall that pv =
∏

u∈[m]

∏
i∈[0,∆−1]

∏
(u,v)∈Sv,u,i

x
a(u,v)−i
(u,v) . First observe that for arbitrary i1, i2 ∈

[∆−1], (û, v̂) ∈ Sv,u1,i1 and (û′, v̂′) ∈ Sv,u′
1,i2

,x(u,v) and x(û,v̂) are not present in any monomial of

f1 and f2. Let (û
′, v̂′) ∈ Sv,u′

1,0
, j ∈ [a(u′,v′)−1], such that (û′, v̂′)j = (u′,v′)j and û′

j+1 ̸= u′
j+1.

173

Then, it follows from Lemma 6.2 that degx(û′,v̂′)
h4 ≤ a(û′, v̂′)− j. Since D̃(Ru1|C ′

(u,v),(u′,v′)) is

a smaller instance of D̃(Ru1|C
′
(u,v),(u′,v′)), we can show that if (û, v̂) ∈ Sv,u1,0, j

′ ∈ [a(u,v)− 1],

such that (û, v̂)j′ = (u,v)j′ and ûj′+1 ̸= uj′+1 then degx(û,v̂)
h3 ≤ a(û, v̂) − j′. Notice that

degx(û,v̂)
f3 = a(û, v̂) − j′ and degx(û′,v̂′)

f4 = a(û′, v̂′) − j, degx(û,v̂)
f1 = j′ − 1, degx(u,v)

f1 =

a(u,v)−1, degx(û′,v̂′)
f2 = j−1 and degx(u′,v′)

f2 = a(u′,v′)−1. This is so because qv,u1 , qv,u′
1
, pu1

and pu′
1
are monomials of f3, f4, f1, and f2 respectively. Then, it follows from Observation

6.14 that degx(û,v̂)
f3 = degx(û′,v̂′)

f4 = 1. Further, Equations (6.21) and (6.22) imply that

degx(u′,v′)
f3 = degx(u,v)

f4 = 1. Now, it is easy to see that this immediately implies that h1 = pu1

and h2 = pu′
1
. This implies that h3 and h4 should contain

∏
(û′,v̂′)∈S

v,u′1,0

x(û′,v̂′) and
∏

(û,v̂)∈Sv,u1,0
x(û,v̂)

respectively. Let i1, i2 ∈ [∆− 1], (û, v̂) ∈ Sv,u1,i1 and (û′, v̂′) ∈ Sv,u′
1,i2

be arbitrary. Then, it is

not difficult to see from Equations (6.21) and (6.22) that x(û′,v̂′) and x(û,v̂) are not present in f3

and f4 respectively. This is so because d̃et(H(u,v),j,Ru1
) and d̃et(H(u′,v′),j,Ru1

) given in Equations

(6.21) and (6.22) do not contain x(û′,v̂′) and x(û,v̂) respectively. It follows from this discussion

that h3 = qv,u1 and h4 = qv,u′
1
. 2

The above observation and Equation (6.25) imply that the coefficient of pv in the ((u,v), (u′,v′))-

th term is the product of coefficients of qv,u1 and qv,u′
1
in D̃(Ru1 |C ′

(u,v),(u′,v′)) and D̃(Ru1|C
′
(u,v),(u′,v′))

respectively. Now, we find the coefficient of pv in the ((u,v), (u′,v′))-th term of Equation (6.20)

by induction on m.

Base Case: m = 2. Let [m] = {u1, u
′
1}. Pick (u′,v′) ∈ Sv,u′

1,0
arbitrarily. Observe that in

this case, D̃(Ru1|C
′
(u,v),(u′,v′)) = D̃(Ru′

1
|C ′

(u′,v′),(u,v)), which implies that D̃(Ru1|C ′
(u,v),(u′,v′)) and

D̃(Ru1|C
′
(u,v),(u′,v′)) are similar to each other. Let qv,u′

1
be as defined in Lemma 6.2 (note that

in the base case Au1,u′
1
= ∅). From Lemma 6.2, the coefficient of qv,u′

1
in D̃(Ru1|C

′
(u,v),(u′,v′)) is

(−1)c1 · n(u′,v′)

∏

(û′,v̂′)∈S
v,u′1,0

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)

∏

i∈[∆−1]

βv,u′
1,i
,

where c1 =
∑

ℓ∈[∆]

(
s(
∏Au1

ℓ)− r(Σ
Au1
ℓ)

)
and Au1 = {u′

1}. Recall how qv,u1 was obtained from

qv,u′
1
. This implies the following.

174

Observation 6.13 The coefficient of the monomial qv,u1 in D̃(Ru1|C ′
(u,v),(u′,v′)) is equal to

(−1)c2 n(u,v)

 ∏
(û,v̂)∈Sv,u1,0

(u′′,v′′)∈W(û,v̂)

(n(u′′,v′′) − 1)

 ∏
i∈[∆−1]

βv,u1,i,

where c2 =
∑

ℓ∈[∆]

(
s(
∏{u1}

ℓ)− r(Σ
{u1}
ℓ)

)
.

Then, the coefficient of pv in the ((u,v), (u′,v′))-th term of Equation (6.20) is equal to

(−1)b−1 n(u,v) · n(u′,v′)

∏
u∈[m]

 ∏
(û′,v̂′)∈Sv,u,0

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)
∏

i∈[∆−1]

βv,u,i

 . (6.26)

where b =
∑

ℓ∈[∆]

(s(
∏

ℓ) − r(Σℓ)) + (m − 1). Since Sv,u1,0 = {(u,v)}, Claim 6.5.1 and Equation

(6.23) imply that the coefficient of pv in gT is equal to

(−1)b n(u,v)

 ∑
(u′,v′)∈S

v,u′1,0

n(u′,v′)

 ∏
u∈[m]

 ∏
(û′,v̂′)∈Sv,u,0

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)
∏

i∈[∆−1]

βv,u,i

 . (6.27)

Using the facts that n(u,v) = 1 and Sv,u1,0 = {(u,v)}, the above equation can be rewritten as

(−1)b

∑

(u′,v′)∈S
v,u′1,0

,

(u,v)∈Sv,u1,0

n(u′,v′) + n(u,v) − 1

∏
u∈[m]

 ∏
(û′,v̂′)∈Sv,u,0

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)
∏

i∈[∆−1]

βv,u,i

 .

(6.28)

This proves the base case.

Induction step. Letm ≥ 3 and assume the statement holds true form−1. Let (u′,v′) ∈ Sv,u′
1,0

and recall Sv,u1,0 = {(u,v)}. Let qv,u1 and qv,u′
1
be the monomials defined in Equation (6.24)

and Lemma 6.2 respectively. Then, an argument similar to the one used in Observation 6.12

implies that the factorization of pv in the ((u,v), (u′,v′))-th term of Equation (6.20) given in

Equation (6.25) is unique. It is easy to verify from Equation (6.25), Observation 6.13, Lemma

175

6.2 and Claim 6.5.1 that the coefficient of pv in gT the same as given by Equation (6.27). As

n(u,v) = 1, this coefficient is equal to the one present in Equation (6.28). This proves the

induction step.

Case 2: {u1, u
′
1} ∩ Σ1,1 = ∅. In this case, for every (u,v) ∈ Sv,u1,0, (u

′,v′) ∈ Sv,u′
1,0
, n(u,v) ≥ 2

and n(u′,v′) ≥ 2. Recall Equation (6.20). We want to find the coefficient of pv in gT . As noted

above, Equation (6.26) gives the coefficient of pv in the ((u,v), (u′,v′))-th term of Equation

(6.20), where (u,v) ∈ Sv,u1,0, (u
′,v′) ∈ Sv,u′

1,0
. Further, Claim 6.5.1 implies that the coefficient

of pv in the negative part of Equation (6.20) is

(−1)b−1

 ∑
(u,v)∈Sv,u1,0

n(u,v)

 ∑

u′
1∈Au1

∑
(u′,v′)∈S

v,u′1,0

n(u′,v′)

×
∏
u∈[m]

 ∏
(û′,v̂′)∈Sv,u,0

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)
∏

i∈[∆−1]

βv,u,i

 .

(6.29)

In this case, we mainly figure out the coefficient of pv in the positive part of Equation (6.20)

and then put the things together. We compute the required coefficient by induction on m.

Base case: m = 2. Let [m] = {u1, u
′
1}. In this case, Au1,u′

1
= ∅. Note that D(Ru1|Ru1) =

D(Ru′
1
|Ru′

1
), which implies that the two factors D(Ru1|Ru1), D(Ru1|Ru1) of the positive part of

Equation (6.20) are similar and it is easy to see that the positive part of Equation (6.20) looks

as Qu1 · D̃(Ru1 |Ru1) ·Qu′
1
· D̃(Ru′

1
|Ru′

1
). Let

p1 =
∏

i∈[0,∆−1]

∏
(u,v)∈Sv,u1,i

x
a(u,v)−i
(u,v) and p2 =

∏
i∈[0,∆−1]

∏
(u′,v′)∈S

v,u′1,i

x
a(u′,v′)−i
(u′,v′) .

Then, note that pv = p1 · p2. Observe that Qu1 · D̃(Ru1|Ru1) and Qu′
1
· D̃(Ru′

1
|Ru′

1
) are variable

disjoint. This implies that the above factorization of pv in Qu1 · D̃(Ru1 |Ru1) ·Qu′
1
· D̃(Ru′

1
|Ru′

1
) is

unique. We first calculate the coefficient of p1 in Qu1 ·D̃(Ru1|Ru1) and since Qu1 ·D̃(Ru1|Ru1) and

Qu′
1
· D̃(Ru′

1
|Ru′

1
) are similar to each other, we also get the coefficient of p2 in Qu′

1
· D̃(Ru′

1
|Ru′

1
).

We noted in Remark 1 given after Equation (6.11) that D(Ru1|Ru1) =
∏

v̂1∈[ru1]
det(H ′(Tv̂1)) and

each det(H ′(Tv̂1)) is a product-depth (∆− 1) instance of det(H ′(T)). Fix v̂1 ∈ [ru1] arbitrarily.

By the induction hypothesis of Observation 6.1 on the product-depth of Tv̂1 , we get that the

176

denominator of det(H ′(Tv̂1)) is equal to

dTv̂1
:=

∏
ℓ∈[2,∆]

 ∏
ûℓ∈[sv̂ℓ−1

]:sv̂ℓ−1
̸=1,

v̂ℓ∈[rûℓ]

Qûℓ

 .

Let d̃et(H ′(Tv̂1)) = dTv̂1
· det(H ′(Tv̂1)). Then, clearly we get D̃(Ru1|Ru1) =

∏
v̂1∈[ru1]

d̃et(H ′(Tv̂1)).

Let v1 = vu1 , where vu1 is the coordinate of v labelled by u1, where v is used to define the

monomial pv. Then,

D̃(Ru1 |Ru1) =
∏

v̂1∈[ru1]\{v1}

d̃et(H ′(Tv̂1))× d̃et(H ′(Tv1)). (6.30)

We want to find the coefficient of p1 in Qu1 · D̃(Ru1|Ru1). Suppose p′1 is defined as

p′1 =
∏

(u,v)∈Sv,u1,0

x
a(u,v)−1
(u,v)

∏
i∈[∆−1]

 ∏
(u,v)∈Sv,u1,i

x
a(u,v)−i
(u,v)

 .

Since d̃et(H ′(Tv̂1)) is a product-depth ∆ − 1 instance of gT for every v̂1 ∈ [ru1], it follows

from Equation (6.30) and Observation 6.14 that for every (û, v̂) ∈ Sv,u1,0, the degree of x(û,v̂)

in any monomial of D̃(Ru1|Ru1) is at most a(û, v̂) − 1. Thus, it is easy to see that p1 =∏
(u,v)∈Sv,u1,0

x(u,v) · p′1 is the only factorization of p1 in Qu1 · D̃(Ru1|Ru1). Thus, the coefficient of

p1 in Qu1 · D̃(Ru1|Ru1) is equal to the coefficient of p′1 in D̃(Ru1|Ru1).

It is not difficult to see from the definition of Sv,u1,0 that
∏

(u,v)∈Sv,u1,0
x(u,v) is contributed by

Qu1 and we would show that p′1 is contributed by D̃(Ru1|Ru1). Let v̂1 ∈ [ru1] and û2 ∈ [sv̂1] be

fixed arbitrarily. Let

Sv,u1,v̂1,û2,0 :=
{
(u′′,v′′) = (u1, v̂1, u

′′
2, vu′′

2
, . . . , u′′

∆, vu′′
∆
) : u′′

2 = û2, ℓ ∈ [3,∆], u′′
ℓ ∈ [sv′′ℓ−1

]
}
,

(6.31)

177

where, for every ℓ ∈ [2,∆], vu′′
ℓ
is fixed by v. For i ∈ [∆− 2],

Sv,u1,v̂1,û2,i :=

{
(u′′,v′′) = (u1, v̂1, u

′′
2, . . . , v

′′
i+1, u

′′
i+2, vu′′

i+2
, . . . , u′′

∆, vu′′
∆
) : u′′

2 = û2, v
′′
2 ∈ [ru′′

2
]

∀j ∈ [3, i], u′′
j ∈ [sv′′j−1

], v′′j ∈ [ru′′
j
], u′′

i+1 ∈ [sv′′i], v
′′
i+1 ∈ [ru′′

i+1
] \ {vu′′

i+1
},

u′′
i+2 ∈ [sv′′i+1

],∀k ∈ [i+ 3,∆], u′′
k ∈ [svu′′

k−1

]

}
,

(6.32)

where vu′′
i+1

, . . . , vu′′
∆−1

are fixed by v. As v1 = vu1 , it is easy to note that

Sv,u1,0 =
⋃

u2∈[sv1]

Sv,u1,v1,u2,0 and Sv,u1,1 =
⋃

v̂1∈[ru1]\{v1}

⋃
û2∈[sv̂1]

Sv,u1,v̂1,û2,0, (6.33)

Further, for every i ∈ [2,∆− 1],

Sv,u1,i =
⋃

v̂1∈[ru1]

⋃
û2∈[sv̂1]

Sv,u1,v̂1,û2,i−1. (6.34)

For v̂1 ∈ [ru1], let

p1,v̂1 :=
∏

i∈[0,∆−2]

∏
û2∈[sv̂1]

∏
(u′′,v′′)∈Sv,u1,v̂1,û2,i

x
(a(u′′,v′′)−1)−i
(u′′,v′′) .

This along with Equations (6.33) and (6.34) implies that the monomial p′1 defined above can be

written as p′1 =
∏

v̂1∈[ru1]
p1,v̂1 . To figure out the coefficient of p1,v̂1 , we first show that it is a ‘smaller

instance’ of pv. Recall the definition of Σ
{u1}
ℓ from Point 3 of the second part of the notations.

Let Σ
{(u1,v̂1)}
ℓ ⊆ Σ

{u1}
ℓ such that every uℓ ∈ Σ

{u1}
ℓ lies in the sub-ROF, whose parent is v̂1 and

grandparent is u1. Let v
{(u1,v̂1)} := (v

{(u1,v̂1)}
ℓ)ℓ∈[2,∆], where v

{(u1,v̂1)}
ℓ = (vuℓ

)
uℓ∈Σ

{(u1,v̂1)}
ℓ

and for

every uℓ ∈ Σ
{(u1,v̂1)}
ℓ,1 , vuℓ

∈ [ruℓ
] satisfies nvuℓ

= 1, where such vuℓ
is unique as T is canonical and

for uℓ ∈ Σ
{(u1,v̂1)}
ℓ \ Σ{(u1,v̂1)}

ℓ,1 , vuℓ
∈ [ruℓ

] is arbitrary. Then, note that p
v
{(u1,v̂1)} in d̃et(H ′(Tv̂1))

is similar to pv in gT . Since the product-depth of Tv̂1 is one less than the product-depth of T ,

the value of a(u′′,v′′) also reduces by 1 for every (u′′,v′′) ∈ Sv,u1,v̂1,û2,i. Thus,

p
v
{(u1,v̂1)} =

∏
i∈[0,∆−2]

∏
û2∈[sv̂1]

∏
(u′′,v′′)∈Sv,u1,v̂1,û2,i

x
(a(u′′,v′′)−1)−i
(u′′,v′′) .

178

Hence, p
v
{(u1,v̂1)} = p1,v̂1 . Since, d̃et(H ′(Tv̂1)) is a product-depth (∆ − 1) instance of gT ,

it follows from the induction hypothesis of Lemma 6.1 on the product-depth (∆ − 1), that

the coefficient of p1,v̂1 in d̃et(H ′(Tv̂1)) is equal to (−1)cv̂1βv,u1,v̂1,0

∏
û2∈[sv̂1]

∏
i∈[2,∆−1]

βv,u1,v̂1,û2,i, where

cv̂1 =
∑

ℓ∈[2,∆]

(
s(
∏{(u1,v̂1)}

ℓ)− r(Σ
{(u1,v̂1)}
ℓ) + sv̂1 − 1

)
,

βv,u1,v̂1,0 =

 ∑
û2∈[sv̂1],

(u′′,v′′)∈Sv,u1,v̂1,û2,0

n(u′′,v′′) − 1

∏
û2∈[sv̂1],

(u′′,v′′)∈Sv,u1,v̂1,û2,0,
(û′,v̂′)∈W(u′′,v′′)

(n(û′,v̂′) − 1)

 (6.35)

and for û2 ∈ [sv̂1] and i ∈ [2,∆− 1],

βv,u1,v̂1,û2,i =
∏

(û,v̂)i∈Bv,u1,v̂1,û2,i

 ∑
(u′′,v′′)∈Sv,u1,v̂1,û2,i−1

(u′′,v′′)i=(û,v̂)i

n(u′′,v′′) − 1

×
∏

(û,v̂)i∈Bv,u1,v̂1,û2,i

 ∏
(u′′,v′′)∈Sv,u1,v̂1,û2,i−1

(u′′,v′′)i=(û,v̂)i,

∏
(û′,v̂′)∈W(u′′,v′′)

(n(û′,v̂′) − 1)

 ,

(6.36)

where Bv,u1,v̂1,û2,i = {(û, v̂)i = (û1, . . . , v̂i) : (û, v̂) ∈ Sv,u1,v̂1,û2,i−1}. It follows from Equations

(6.33), (6.34), (6.35) and (6.36) that∏
v̂1∈[ru1]\{v1}

βv,u1,v̂1,0 = βv,u1,1 (6.37)

and for i ∈ [2,∆− 1], ∏
v̂1∈[ru1]

∏
û2∈[sv̂1]

βv,u1,v̂1,û2,i = βv,u1,i. (6.38)

This along with Equation (6.33) implies that, the coefficient of p′1 in
∏

v̂1∈[ru1]
d̃et(H ′(Tv̂1)) and

179

hence the coefficient of p1 in Qu1 ·D(Ru1|Ru1) is equal to

(−1)c2
 ∑

(u,v)∈Sv,u1,0

n(u,v) − 1

 ∏
(u,v)∈Sv,u1,0,
(û,v̂)∈W(u,v)

(n(û,v̂) − 1)
∏

i∈[∆−1]

βv,u1,i,

where c2 =
∑

ℓ∈[∆]

(
s(
∏{u1}

ℓ)− r(
∑{u1}

ℓ)
)
. Similarly, the coefficient of p2 in Qu′

1
· D̃(Ru′

1
|Ru′

1
)

is equal to

(−1)c1

 ∑
(u′,v′)∈S

v,u′1,0

n(u′,v′) − 1

 ∏
(u′,v′)∈S

v,u′1,0
(û′,v̂′)∈W(u′,v′)

(n(û′,v̂′) − 1)
∏

i∈[∆−1]

βv,u′
1,i
,

where c1 =
∑

ℓ∈[∆]

(
s(
∏{u′

1}
ℓ)− r(

∑{u′
1}

ℓ)
)
. As pv = p1 · p2, these two equations imply that the

coefficient of p1 in the positive part of Equation (6.20) is equal to

(−1)c1+c2
∏
u∈[m]

 ∑

(u,v)∈Sv,u,0

n(u,v) − 1

 ∏
(u,v)∈Sv,u,0
(û,v̂)∈W(u,v)

(n(û,v̂) − 1)
∏

i∈[∆−1]

βv,u,i

Note that c1 + c2 = b− 1, where b =

∑
ℓ∈[∆]

(s(
∏

ℓ)− r(
∑

ℓ)) + 1. Then, Equation (6.20) implies

that on subtracting Equation (6.29) from the above equation, we get that the coefficient of pv

in gT is equal to (−1)bβv,0 ·
∏

i∈[∆−1],u∈[m]

βv,u,i, where b =
∑

ℓ∈[∆]

(s(
∏

ℓ)− r(
∑

ℓ)) + 1. This proves

the base case.

Inductive step. Let m ≥ 3 and assume that the induction hypothesis holds for m − 1.

Then, we want to find the coefficient of pv in the positive part of Equation (6.20). Let p1 =∏
i∈[0,∆−1]

∏
(u,v)∈Sv,u1,i

x
a(u,v)−i
(u,v) and p2 =

∏
u′
1∈Au1

∏
i∈[∆−1]

∏
(u′,v′)∈S

v,u′1,i

x
a(u′,v′)−i
(u′,v′) . Then, note that pv =

p1 · p2. Observe that Qu1 · D̃(Ru1|Ru1) and D̃(Ru1 |Ru1) are variable disjoint. This implies

that the above factorization of pv in Qu1 · D̃(Ru1 |Ru1) · D̃(Ru1|Ru1) is unique. We have already

computed the coefficient of p1 in Qu1 ·D̃(Ru1|Ru1) in the base case. Note that p2 can be obtained

by replacing [m] with Au1 in the definition of pv. It follows from Remark 1 given after Equation

(6.11), D̃(Ru1|Ru1) is a product-depth ∆ and top fan-in (m − 1) instance of det(H ′(T)), thus

180

the induction hypothesis of Lemma 6.1 implies that the coefficient of p2 in D̃(Ru1|Ru1) is equal

to

(−1)c3

 ∑
u′
1∈Au1

(u′,v′)∈S
v,u′1,0

n(u′,v′) − 1

 ∏
u′
1∈Au1

(u′,v′)∈S
v,u′1,0

∏
(û′,v̂′)∈W(u′,v′)

(n(û′,v̂′) − 1)
∏

i∈[∆−1],
u′
1∈Au1

βv,u′
1,i
,

where c3 =
∑

ℓ∈[∆]

(
s(
∏Au1

ℓ)− r(
∑Au1

ℓ)
)
+ |Au1| − 1. On multiplying the coefficients of p1 and p2

together, we get that the coefficient of pv in the positive part of Equation (6.20) is equal to

(−1)c2+c3

 ∑
(u,v)∈Sv,u1,0

n(u,v) − 1

 ∑

u′
1∈Au1

(u′,v′)∈S
v,u′1,0

n(u′,v′) − 1

×
∏
u∈[m]

(u,v)∈Sv,u,0

∏
(û,v̂)∈W(u,v)

(n(û,v̂) − 1)×
∏

i∈[∆−1],
u∈[m]

βv,u,i.

As c2 + c3 = b− 1, it follows from Equation (6.20) that on subtracting the coefficient given in

Equation (6.29) from the above equation, we get the coefficient of pv in gT , is equal to (−1)bβv.
This completes the inductive step.

It is clear that gT1 and gT2 are monomial disjoint. This completes the proof of Lemma 6.1.

6.5.4 Proof of Claim 6.5.1

Let pv be present in the ((u,v), (u′,v′))-th term of Equation (6.20) where (u,v) ∈ Su1 , (u
′,v′) ∈

Su′
1
and u′

1 ∈ Au1 . Then, Equations (6.21) and (6.22) of Observation 6.10 imply that every

monomial of this term contains x(u,v) and x(u′,v′) and hence x(u,v),x(u′,v′) are present in pv.

This implies that there exist i, j ∈ [0,∆ − 1], such that (u′,v′) ∈ Sv,u′
1,i

and (u,v) ∈ Sv,u1,j.

We want to show that i = j = 0.

Suppose i ̸= 0. Then, i ∈ [∆ − 1] and (u′,v′) ∈ Sv,u′
1,i
. Let k ∈ [0, i − 1] be such

that v′1 = vu′
1
, . . . , v′k = vu′

k
but v′k+1 ̸= vu′

k+1
, where v′1, . . . , v

′
k+1 correspond to (u′,v′) and

vu′
1
, . . . vu′

k+1
are fixed by v. Let (û′, v̂′) ∈ Sv,u′

1,0
be such that for every ℓ ∈ [k], û′

ℓ = u′
ℓ, v̂

′
ℓ = v′ℓ

and û′
k+1 = u′

k+1. Then, v̂′k+1 = vu′
k+1

. It follows from the definition of pv that degx(û′,v̂′)
pv

should be equal to a(û′, v̂′). As pv is in the ((u,v), (u′,v′))-th term of Equation (6.20), it is easy

181

to see from Equations (6.20), (6.21) and Point 3 of Lemma 6.2 that in the ((u,v), (u′,v′))-th

term of Equation (6.20), x(û′,v̂′) is contributed only by

h :=
∏

ℓ∈[2,∆]

∏
û′
ℓ∈[sv′ℓ−1

]: sv′ℓ−1
̸=1

Qû′
ℓ
· D̃(Ru1 |C

′
(u,v),(u′,v′))

in the ((u,v), (u′,v′))-th term. This is so because it is easy to see that in Equation (6.21),

d̃et(H(u,v),j,Ru1
) does not contain a monomial divisible by x(û′,v̂′). Let p and q be arbitrary

monomials of the polynomials
∏

ℓ∈[2,∆]

∏
û′
ℓ∈[sv′ℓ−1

]: sv′ℓ−1
̸=1

Qû′
ℓ
and D̃(Ru1|C

′
(u,v),(u′,v′)) respectively.

Then, observe that degx(û′,v̂′)
p ≤ k, as x(û′,v̂′) can only be contributed by Qu′

ℓ
, ℓ ∈ [2, k + 1].

It follows from Lemma 6.2 that degx(û′,v̂′)
q ≤ (a(û′, v̂′) − (k + 1)). This implies the degree

of x(û′,v̂′) in any monomial of h and hence in any monomial of the ((u,v), (u′,v′))-th term of

Equation (6.20) is at most (a(û′, v̂′)−1). Thus, pv is not present in the ((u,v), (u′,v′))-th term

of Equation (6.20), which is a contradiction. Hence, i = 0. Similarly, we can show that j = 0.

It follows from the factorization of pv given in Equation (6.25) and Lemma 6.2 that if

(u,v) ∈ Sv,u1,0, (u
′,v′) ∈ Sv,u′

1,0
then pv is in the ((u,v), (u′,v′))-th term of Equation (6.20).

This proves the converse and completes the proof.

6.5.5 Proof of Lemma 6.2

Recall that the objective of this lemma is to understand D(Ru1 |C
′
(u,v),(u′,v′)). As noted in

Observation 6.10,

D(Ru1|C
′
(u,v),(u′,v′)) = x(u,v)

∏
ℓ∈[2,∆]

∏
ûℓ∈[svℓ−1

]\{uℓ}

Qûℓ
×

det(H(u′,v′),j,Ru1
)

Qu1

, (6.39)

where uℓ, vℓ, ℓ ∈ [2,∆] correspond to (u,v) and H(u′,v′),j,Ru1
is defined in Observation 6.10. Let

D1 = det(H(u′,v′),j,Ru1
). Consider the following claim.

Claim 6.5.2 Let u1, u
′
1 ∈ [m], u1 ̸= u′

1 and d̄((u,v),(u′,v′)) be as given in Lemma 6.2. Then, the

denominator of D1 is d̄′((u,v),(u′,v′)) :=
d̄((u,v),(u′,v′))

Qu1
. Let v ∈ V , (u′,v′) ∈ Sv,u′

1,0
, (u,v) ∈ Sv,u1,0

182

and

q′
v,u′

1
:=

∏
j∈[a(u′,v′)−1]

∏

(û′,v̂′)∈S
v,u′1,0

,

(û′,v̂′)j=(u′,v′)j ,
û′
j+1 ̸=u′

j+1

x
a(û′,v̂′)−j
(û′,v̂′)

×
∏

u′′
1∈Au1,u

′
1

∏
(u′′,v′′)∈S

v,u′′1 ,0

x
a(u′′,v′′)
(u′′,v′′)

×
∏

i∈[∆−1],û′
1∈Au1

∏
(û′,v̂′)∈S

v,û′1,i

x
a(û′,v̂′)−i
(û′,v̂′) .

Then, the coefficient of q′
v,u′

1
in D̃1 := D1 × d̄′((u,v),(u′,v′)) is equal to

(−1)c n(u′,v′)

∏
û′
1∈Au1

∏

(û′,v̂′)∈S
v,û′1,0

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)
∏

i∈[∆−1]

βv,û′
1,i

 ,

where c =
∑

ℓ∈[∆]

(
s(
∏Au1

ℓ)− r(Σ
Au1
ℓ)

)
+ |Au1 | − 1 and βv,û′

1,i
is defined in Lemma 6.1. Let

(u′,v′) ∈ Su′
1

be picked arbitrarily and q1 be an arbitrary monomial of D̃1. Let (û′, v̂′) ∈
Su′

1
be such that there exists i ∈ [∆], such that either (u′,v′)i−1 = (û′, v̂′)i−1, u

′
i = û′

i and

v′i ̸= v̂′i or (u′,v′)i = (û′, v̂′)i and u′
i+1 ̸= û′

i+1. Then, degx(û′,v̂′)
q1 ≤ (a(û′, v̂′) − i). Let

u′′
1 ∈ Au1,u′

1
, (u′′,v′′) ∈ Su′′

1
. Then, deg(u′′,v′′) q ≤ a(u′′,v′′).

We first complete the proof of Lemma 6.2 assuming Claim 6.5.2, whose proof is given in Sec-

tion 6.5.6. Equation (6.39) and Claim 6.5.2 imply that the denominator of D(Ru1|C
′
(u,v),(u′,v′))

is equal to d̄((u,v),(u′,v′)). On clearing the denominator of Equation (6.39), we get

D̃(Ru1|C
′
(u,v),(u′,v′)) = x(u,v)

∏
ℓ∈[2,∆]

∏
ûℓ∈[svℓ−1

]\{uℓ}

Qûℓ
× d̃et(H(u′,v′),j,Ru1

). (6.40)

Recall (u,v) ∈ Sv,u1,0. Note that qv,u′
1
= q′

v,u′
1
×

∏
(û,v̂)∈Sv,u1,0

x(û,v̂). Observe that the mono-

mial
∏

(û,v̂)∈Sv,u1,0
x(û,v̂) is present in x(u,v)

∏
ℓ∈[2,∆]

∏
ûℓ∈[svℓ−1

]\{uℓ}
Qûℓ

. Since
∏

ℓ∈[2,∆]

∏
ûℓ∈[svℓ−1

]\{uℓ}
Qûℓ

and

d̃et(H(u′,v′),j,Ru1
) are variable disjoint, the factorization of qv,u′

1
given in the beginning of this

paragraph is unique. Thus, the coefficient of q′
v,u′

1
in D̃1 in Claim 6.5.2 is equal to the coefficient

of qv,u′
1
in D̃(Ru1|C(u,v),(u′,v′)) in Lemma 6.2. This completes the proof of Lemma 6.2.

183

6.5.6 Proof of Claim 6.5.2

We prove this claim by induction on the product-depth ∆. Let ∆ = 1 andD1 = det(H(u′,v′),j,Ru1
),

where H(u′,v′),j,Ru1
is the matrix defined in Observation 6.7. It follows from Observation 6.7 and

Claim 6.4.2 that the denominator of D1 is equal to
∏

u′′
1∈Au1,u

′
1

Qu′′
1
. Further, the monomial q′

v,u′
1

in this case looks as
∏

u′′
1∈Au1,u

′
1

xu′′
1 ,vu′′1

, where for every u′′
1 ∈ Au1,u′

1
, vu′′

1
∈ [ru′′

1
] is picked in the

following way: if there exists v′′1 ∈ [ru′′
1
], such that n(u′′

1 ,v
′′
1)

= 1 then vu′′
1
= v′′1 otherwise vu′′

1
is

picked arbitrarily. Then, the coefficient of this monomial in D̃1 :=
∏

u′′
1∈Au1,u

′
1

Qu′′
1
·D1 is given by

Claim 6.4.2, which is equal to

∏
u∈Au1

(−1)(nu−ru)+|Au1 |−1
∏

û′′
1∈Au1 ,

v̂1∈[rû′′1
]\{v̂′′1 }

(nû′′
1 ,v̂1
− 1)n(u′

1,v
′
1)
.

It is not difficult to see that this coefficient is equal to the coefficient of q′
v,u′

1
given in the

statement of the instance of this claim for ∆ = 1. Further, if u′′
1 ∈ Au1,u′

1
, (u′′,v′′) ∈ Su′′

1
then

Claim 6.4.2 implies that the degree of x(u′′,v′′) in any monomial of D̃1 is at most 1. This proves

the base case.

Now, suppose this claim holds for product-depth ∆ − 1. We understand D1 by looking at

its Laplace’s expansion. Recall the definition of Ru′
1
from notations. Then, |Ru′

1
| = nu′

1
, where

nu′
1
is the number of variables appearing in the +-rooted sub-ROF Qu′

1
and we assume Ru′

1
is

ordered by ≺ defined in Section 6.3. Let Ru1,u′
1
:= Ru1 \ Ru′

1
also be ordered by ≺. Recall

from Observation 6.10 that the matrix H(u′,v′),j,Ru1
is obtained from the sub-matrix of H ′(T)

whose rows and columns are labelled with Ru1 by replacing the (u,v, 1)-th column with the

vector j confined to Ru1 and not with the (u′,v′, 1)-th column of H ′(T) confined to Ru1 . Then,

Theorem 6.1 implies that

D1 =
∑

C⊆Ru1 ,|C|=nu′1

sgn(Ru′
1
) · sgn(C) ·D(Ru′

1
|C) ·D(Ru1,u′

1
|C).

Let E be the set of tuples labelling the columns of H(u′,v′),j,Ru1
, where the first coordinates

of these tuples are u′
1 and E be ordered by ≺. We want to mention that we have used here

E instead of Ru′
1
(although both sets are same) to emphasise on the fact that the column of

H(u′,v′),j,Ru1
labelled by (u,v, 1) is j confined to Ru1 . Let E = Ru1 \E. Observe that E = Ru1,u′

1
.

Let (u′′,v′′) ∈ Su′′
1
, where u′′

1 ∈ Au1,u′
1
and E(u′′,v′′) be obtained from E by replacing (u,v, 1)

184

with (u′′,v′′, 1), such that E(u′′,v′′) as an ordered set it is same as E with the change that the

position of (u′′,v′′, 1) in E(u′′,v′′) and the position of (u,v, 1) in E are same. Let E(u′′,v′′) be

obtained from the ordered set Ru1,u′
1
by replacing the tuple (u′′,v′′, 1) in Ru1,u′

1
with (u,v, 1).

Then, note that E(u′′,v′′) and E(u′′,v′′) are similar to the sets C ′
(u,v),(u′,v′) and C

′
(u,v),(u′,v′) men-

tioned in Section 6.3 respectively and neither E(u′′,v′′) nor E(u′′,v′′) is ordered by ≺. Then, it is
easy to show that the arguments similar to those used in Section 6.3 to converge to Equation

(6.11) imply the following.

D1 = D(Ru′
1
|E) ·D(Ru1,u′

1
|E)−

∑

u′′
1∈Au1,u

′
1
,

(u′′,v′′)∈Su′′1

D(Ru′
1
|E(u′′,v′′)) ·D(Ru1,u′

1
|E(u′′,v′′))

 , (6.41)

where

1. D(Ru′
1
|E(u′′,v′′)) is the determinant of the matrix obtained from the sub-matrix ofH(u′,v′),j,Ru1

,

whose rows and columns are labelled by Ru′
1
and E respectively, by replacing the column

labelled by (u,v, 1) with its (u′′,v′′, 1)-th column restricted to Ru′
1
.

2. D(Ru1,u′
1
|E(u′′,v′′)) is the determinant of the matrix obtained from the sub-matrix of

H(u′,v′),j,Ru1
, whose rows and columns are labelled by Ru1,u′

1
and E respectively, by re-

placing the column labelled by (u′′,v′′, 1) with the vector j confined to Ru1,u′
1
.

It is easy to note from the structure of H ′(T) given in Section 6.2 that the following equation

holds.

D(Ru′
1
|E(u′′,v′′)) = x(u′′,v′′) ·

∏
ℓ∈[2,∆]

∏
û′′
ℓ ∈[sv′′ℓ−1

]\{u′′
ℓ }

Qû′′
ℓ
×

det(H(u′,v′),j,Ru′1
)

Qu′′
1

,

where H(u′,v′),j,Ru′1
is obtained from the sub-matrix of H ′(T), whose rows and columns are

labelled by Ru′
1
by replacing the (u,v, 1)-th column with the vector j confined to Ru′

1
. Then,

observe that det(H(u′,v′),j,Ru′1
) = D(Ru′

1
|E). Thus,

D(Ru′
1
|E(u′′,v′′)) = x(u′′,v′′) ·

∏
ℓ∈[2,∆]

∏
û′′
ℓ ∈[sv′′ℓ−1

]\{u′′
ℓ }

Qû′′
ℓ
×

D(Ru′
1
|E)

Qu′′
1

.

185

Then, Equation (6.41) can be re-written as

D1 = D(Ru′
1
|E)

D(Ru1,u′
1
|E)−

∑

u′′
1∈Au1,u

′
1
,

(u′′,v′′)∈Su′′1

x(u′′,v′′)

∏
ℓ∈[2,∆],

û′′
ℓ ∈[sv′′ℓ−1

]\{u′′
ℓ }

Qû′′
ℓ
·
D(Ru1,u′

1
|E(u′′,v′′))

Qu′′
1

 .

(6.42)

Now, we prove Claim 6.5.2 in three parts.

Part 1. The denominator of D1. We first calculate the denominators of the minors in the

R.H.S of Equation (6.42) and then put the things together.

1. Denominator of D(Ru′
1
|E): As noted above, det(H(u′,v′),j,Ru′1

) = D(Ru′
1
|E). Then, it is

easy to show that

D(Ru′
1
|E) =

∏
v̂′1∈[ru′1

]\{v′1}

det(H ′(Tv̂′1
))× det(H(u′,v′),j,Ru′1

,v′1
), (6.43)

whereH(u′,v′),j,Ru′1
,v′1

is the sub-matrix ofH(u′,v′),j,Ru′1
, whose rows and columns are labelled

by the set {(û, v̂, k̂) ∈ Ru′
1
: v̂1 = v′1}. Let D2 = det(H(u′,v′),j,Ru′1

,v′1
). Note that D2 is

a product-depth (∆ − 1) instance of the determinant studied in Claim 6.5.2. Thus,

on replacing [2,∆] by [3,∆], Au1,u′
1
by [sv′1] \ {u

′
2} and Au1 by [sv′1] in the definition of

d̄′(u,v),(u′,v′), we get the denominator of D2. So, from the induction hypothesis of Claim

6.5.2 for product-depth (∆ − 1) along with these changes, we get that the denominator

of D2 is equal to ∏
û2∈[sv′1

]\{u′
2}
Qû2

∏
ℓ∈[3,∆]

∏
û′
ℓ∈Σ̂

[s
v′1

]

ℓ

Qû′
ℓ∏

ℓ∈[3,∆]:sv′ℓ−1
̸=1

Qu′
ℓ

,

where u′
ℓ, ℓ ∈ [3,∆] correspond to (u′,v′). Observe that for every v̂′1 ∈ [ru′

1
] \ {v′1},

det(H ′(Tv̂′1
)) is a product-depth (∆ − 1) instance of the determinant studied in Lemma

6.1 and can be seen by making the following changes in Lemma 6.1: [∆] is replaced by

[2,∆], uℓ, vℓ are replaced with û′
ℓ and v̂ℓ′ respectively. Then, by Observation 6.1 we get

186

that the denominator of
∏

v̂′1∈[ru′1
]\{v′1}

det(H ′(Tv̂′1
)) is equal to

∏
v̂′1∈[ru′1

]\{v′1}

 ∏
ℓ∈[2,∆]

∏
û′
ℓ∈[sv̂′

ℓ−1
]:sv̂′

ℓ−1
̸=1,v̂′ℓ∈[rû′

ℓ
]

Qû′
ℓ

 .

On putting the things together, observe that the denominator of D(Ru′
1
|E) is equal to

d1 :=

∏
v̂1∈[ru′1

]

(∏
ℓ∈[2,∆]

∏
ûℓ∈[sv̂ℓ−1

]:sv̂ℓ−1
̸=1,v̂ℓ∈[rûℓ]

Qûℓ

)
∏

ℓ∈[2,∆]:sv′ℓ−1
̸=1

Qu′
ℓ

.

2. Denominator of D(Ru1,u′
1
|E): As noted above E = Ru1,u′

1
, which immediately implies that

D(Ru1,u′
1
|E) is a product-depth ∆ and top fan-in (m − 2) instance of the determinant

computed in Lemma 6.1. Thus, by using the induction hypothesis of Lemma 6.1, we get

that the denominator of D(Ru1,u′
1
|E) is equal to

d2 =
∏

u′′
1∈Au1,u

′
1
,v′′1∈[ru′′1

]

Qu′′
1

∏
ℓ∈[2,∆]

 ∏
u′′
ℓ ∈[sv′′ℓ−1

]:sv′′ℓ−1
̸=1,v′′ℓ ∈[ru′′

ℓ
]

Qu′′
ℓ

 .

3. Denominator of D(Ru1,u′
1
|E(u′′,v′′)): Observe that it is the smaller instance of the deter-

minant studied in Claim 6.5.2 and by the induction hypothesis of this claim, we get that

the denominator of D(Ru1,u′
1
|E(u′′,v′′)) is equal to

d3 :=

∏
û1∈Au1,u

′
1,u

′′
1

Qû1

∏
ℓ∈[2,∆]

∏
û′′
ℓ ∈Σ̂

A
u1,u

′
1

ℓ

Qû′′
ℓ∏

ℓ∈[2,∆]:sv′′ℓ−1
̸=1

Qu′′
ℓ

,

where Au1,u′
1,u

′′
1
= [m] \ {u1, u

′
1, u

′′
1} and u′′

ℓ , ℓ ∈ [2,∆] correspond to (u′′,v′′).

Now, on putting these things together, it is not difficult to see that Equation (6.42) implies

187

that the denominator of D1 is equal to

d̄(u,v),(u′,v′) :=

∏
û1∈Au1,u

′
1

Qû′
1
·
∏

ℓ∈[2,∆]

∏
û′
ℓ∈Σ̂

Au1
ℓ

Qû′
ℓ∏

ℓ∈[2,∆]:sv′ℓ−1
̸=1

Qu′
ℓ

.

This completes the proof of this part. Then, on normalising the denominator of D1, Equation

(6.42) can be rewritten as

D̃1 = D̃(Ru′
1
|E)

D̃(Ru1,u′
1
|E)−

∑

u∈Au1,u
′
1
,

(u′′,v′′)∈S,u′′
1=u

x(u′′,v′′)

∏
ℓ∈[2,∆],

û′′
ℓ ∈[sv′′ℓ−1

]:

sv′′ℓ−1
̸=1

Qû′′
ℓ
· D̃(Ru1,u′

1
|E(u′′,v′′))

 ,

(6.44)

where D̃1 = d̄(u,v),(u′,v′) ·D1, D̃(Ru′
1
|E) = d1 ·D(Ru′

1
|E), D̃(Ru1,u′

1
|E) = d2 ·D(Ru1,u′

1
|E) and

D̃(Ru1,u′′
1
|E(u′′,v′′)) = d3 ·D(Ru1,u′′

1
|E(u′′,v′′)).

Part 2. Coefficient of q′
v,u′

1
: Let (u′,v′) ∈ Sv,u′

1,0
and (u,v) ∈ Sv,u1,0. We use induction on

|Au1| to compute the coefficient of q′
v,u′

1
in D̃1.

Base Case. |Au1| = 1: Let Au1 = {u′
1}. In this case Au1,u′

1
= ∅. It is easy to see from Equation

(6.44) that as Au1,u′
1
= ∅ in this case, we get

D̃1 = D̃(Ru′
1
|E). (6.45)

Equation (6.43) would be helpful to understand this. Note that on clearing the denominators

in this equation, we get the following.

D̃(Ru′
1
|E) =

∏
v̂′1∈[ru′1

]\{v′1}

d̃et(H ′(Tv̂′1
))× d̃et(H(u,v),j,Ru′1

,v′1
). (6.46)

Let D̃2 = d̃et(H(u,v),j,Ru′1
,v′1
). Let v ∈ V be picked arbitrarily. Then, we want to find the

188

coefficient of q′
v,u′

1
in D̃(Ru′

1
|E). For v̂′1 ∈ [ru′

1
] \ {v′1}, let

p1,v̂′1 =
∏

i∈[0,∆−2],
û′
2∈[sv̂′1

]

∏
(û′,v̂′)∈S

v,u′1,v̂
′
1,û

′
2,i

x
(a(û′,v̂′)−1)−i
(û′,v̂′) ,

q2 =

∏

j∈[2,a(u′,v′)−1]:
(û′,v̂′)∈S

v,u′1,v
′
1,u

′
2,0

,

(û′,v̂′)j=(u′,v′)j ,
û′
j+1 ̸=u′

j+1

x
a(û′,v̂′)−j
(û′,v̂′)

×

∏

û′
2∈[sv̂′1

]\{u′
2},

(û′,v̂′)∈S
v,u′1,v

′
1,û

′
2,0

x
a(û′,v̂′)−1
(û′,v̂′)

∏

i∈[2,∆−1],
û′
2∈[s′v1],

(û′,v̂′)∈S
v,u′1,v

′
1,û

′
2,i−1

x
a(û′,v̂′)−i
(û′,v̂′) ,

where for any v̂′1 ∈ [ru′
1
], Sv,u′

1,v̂
′
1,û

′
2,i

is defined similar to the one defined in Equation (6.32) and

in the definition of q2, u
′
2 is the third coordinate of (u′,v′) from the left. Then, the variants

of Equation (6.33) and Equation (6.34) by replacing u1, v1 with u′
1, v

′
1 respectively imply that

q′
v,u′

1
= q1 · q2, where q1 =

∏
v̂′1∈[ru′1

]\{v′1}
p1,v̂′1 . This is so because v′1 = vu′

1
is fixed by v since

(u′,v′) ∈ Sv,u′
1,0
. It follows from the discussion similar to the one given after Equation (6.34)

that p1,v̂′1 is present in d̃et(H ′(Tv̂′1
)). As d̃et(H ′(Tv̂′1

)) is a product-depth ∆ − 1 instance of

gT studied in Lemma 6.1, we get the coefficient of p1,v̂′1 in d̃et(H ′(Tv̂′1
)) from the induction

hypothesis of Lemma 6.1 on the product-depth is equal to

(−1)cv̂′1 βv,u′
1,v̂

′
1,0

∏
i∈[2,∆−1]

∏
û′
2∈[sv̂′1

]

βv,u′
1,v̂

′
1,û

′
2,i
,

where cv̂′1 =
∑

ℓ∈[2,∆]

(
s(
∏{(u′

1,v̂
′
1)}

ℓ)− r(Σ
{(u′

1,v̂
′
1)}

ℓ)
)
+ sv̂′1 − 1 and the coefficients βv,u′

1,v̂
′
1,0

and

βv,u′
1,v̂

′
1,û

′
2,i
, i ∈ [2,∆−1] are similar to those defined in Equations (6.35) and (6.36) respectively.

Thus, we get that the coefficient of q1 in
∏

v̂′1∈[ru′1
]\{v′1}

d̃et(H ′(Tv̂′1
)) is equal to

(−1)

∑
v̂′1∈[r

u′1
]\{v′1}

cv̂′1 ∏
v̂′1∈[ru′1

]\{v′1},
û′
2∈[sv̂′1

]

βv,u′
1,v̂

′
1,û

′
2,0
×

∏
i∈[2,∆−1]

∏
v̂′1∈[ru′1

]\{v′1},
û′
2∈[sv̂′1

]

βv,u′
1,v̂

′
1,û

′
2,i
.

Now, we argue that q2 is present in D̃2. Observe that if we make the following changes to

q′
v,u′

1
and use Equation (6.33), it becomes q2: replace [∆ − 1] with [2,∆ − 1], [a(u′,v′) − 1]

189

with [2, a(û′, v̂′) − 1], û′
1 with û′

2, for i ≥ 1, Sv,u′
1,i

with Sv,u′
1,v

′
1,u

′
2,i−1, set Au1 = [sv′1], Au1,u′

1
=

[sv′1]\{u
′
2}. As noted before, D̃2 is a product-depth (∆−1) instance of the determinant studied

in Claim 6.5.2, we get that q2 is present in D̃2. Thus, by the induction hypothesis of Claim

6.5.2 on the product-depth ∆− 1 and applying the above mentioned changes, the coefficient of

q2 in D̃2 is equal to

(−1)c2 n(u′,v′)

∏
û′
2∈[sv′1

]

∏

(û′,v̂′)∈S
v,u′1,v

′
1,û

′
2,0

,

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)
∏

i∈[2,∆−1]

βv,u′
1,v

′
1,û

′
2,i

 ,

where c2 =
∑

ℓ∈[2,∆]

(
s(
∏[sv′1

]

ℓ)− r(Σ
[sv′1

]

ℓ)

)
+sv′1−1. It is easy to verify that

∑
ℓ∈[2,∆]

(
s(
∏[sv′1

]

ℓ)− r(Σ
[sv′1

]

ℓ)

)
=

∑
ℓ∈[2,∆]

(
s(
∏{(u′

1,v
′
1)}

ℓ)− r(Σ
{(u′

1,v
′
1)}

ℓ)
)
. Thus, c2 =

∑
ℓ∈[2,∆]

(
s(
∏{(u′

1,v
′
1)}

ℓ)− r(Σ
{(u′

1,v
′
1)}

ℓ)
)
+sv′1−1.

As (u′,v′) ∈ Sv,u′
1,0
, observe that Sv,u′

1,0
=

⋃
û′
2∈[sv̂′1

]\{u′
2}
Sv,u′

1,v
′
1,û

′
2,0

⋃
Sv,u′

1,v
′
1,u

′
2,0
, which implies the

following

∏
û′
2∈[sv′1

]

∏

(û′,v̂′)∈S
v,u′1,v

′
1,û

′
2,0

,

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)

 =
∏

(û′,v̂′)∈S
v,u′1,0

∏
(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1).

Note that for v̂′1 ∈ [ru′
1
] \ {v′1}, d̃et(H ′(Tv̂′1

)) and d̃et(H(u,v),j,Ru′1
,v′1
) given in Equation (6.46) are

variable disjoint. This implies that the factorization of qv,u′
1
as q′

v,u′
1
= q1 · q2 in D̃(Ru′

1
|E) is

unique and thus the coefficient of q′
v,u′

1
in D̃(Ru′

1
|E) is equal to the coefficient of q1 · q2. On

multiplying together the coefficients of q1 and q2 and using the variants of Equations (6.37) and

(6.38) by changing u1 to u′
1 and v1 to v′1 , we get that the coefficient of qv,u′

1
in D̃1 is equal to

(−1)c n(u′,v′)

∏
(û′,v̂′)∈S

v,u′1,0
,

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)×
∏

i∈[∆−1]

βv,u′
1,i
,

where c =
∏

ℓ∈[∆]

(
s(
∏{u′

1}
ℓ)− r(Σ

{u′
1}

ℓ)
)
. This proves the base case.

190

Induction step. Let |Au1| ≥ 2. Recall Equation (6.44). Let q′
v,u′

1
be as given in the claim. Let

q1 =
∏

j∈[a(u′,v′)−1]

∏

(û′,v̂′)∈S
v,u′1,0

,

(û′,v̂′)j=(u′,v′)j ,
û′
j+1 ̸=u′

j+1

x
a(û′,v̂′)−j
(û′,v̂′)

×
∏

i∈[∆−1]

∏
(û′,v̂′)∈S

v,u′1,i

x
a(û′,v̂′)−i
(û′,v̂′)

and

q2 =
∏

i∈[0,∆−1]

 ∏
u′′
1∈Au1,u

′
1

∏
(u′′,v′′)∈S

v,u′′1 ,i

x
a(u′′,v′′)−i
(u′′,v′′)

 .

Then, note that q′
v,u′

1
= q1 · q2. It follows from Equation (6.44) that q1 is contributed by

D̃(Ru′
1
|E) and q2 is contributed by the other factor of D̃1 in the R.H.S of Equation (6.44). As

D̃(Ru′
1
|E) and that other factor are variable disjoint, the above factorization of q′

v,u′
1
is unique.

We have already calculated the coefficient of q1 in D̃(Ru′
1
|E) in the base case. Observe that q2

is obtained from pv on replacing [m] with Au1,u′
1
and hence is a smaller instance of pv. Now,

we calculate the coefficient of q1 · q2 in the positive and the negative part of Equation (6.44).

As already noted, D̃(Ru1,u′
1
|E) is a product-depth ∆ and top fan-in (m − 2) instance of the

determinant studied in Lemma 6.1. Thus, it follows from the induction hypothesis of Lemma

6.1 that the coefficient of q1 · q2 in the positive part of Equation (6.44) is equal to

(−1)c1 n(u′,v′)

∑

u′′
1∈Au1,u

′
1
,

(u′′,v′′)∈S
v,u′′1 ,0

n(u′′,v′′) − 1

∏

û′
1∈Au1

∏
(û′,v̂′)∈S

v,û′1,0
,

(û,v̂)∈W(û′,v̂′)

(n(û,v̂) − 1)
∏

i∈[∆−1],
û′
1∈Au1

βv,û′
1,i
, (6.47)

where c1 =
∑

ℓ∈[∆]

(
s(
∏Au1

ℓ)− r(Σ
Au1
ℓ)

)
+ |Au1,u′

1
| − 1 =

∑
ℓ∈[∆]

(
s(
∏Au1

ℓ)− r(Σ
Au1
ℓ)

)
+ |Au1| − 2.

Now, we compute the coefficient of q2 in the negative part of Equation (6.44). It is easy to verify

that a claim similar to Claim 6.5.1 implies that q2 is present in the (u′′,v′′)-th term of Equation

(6.44) if and only if (u′′,v′′) ∈ Sv,u′′
1 ,0

for some u′′
1 ∈ Au1,u′

1
. As seen before, D̃(Ru1,u′′

1
|E(u′′,v′′)) is

a smaller instance of the determinant studied in Claim 6.5.2. Thus, by the induction hypothesis

of Claim 6.5.2, the base case and the variant of Claim 6.5.1 for Equation (6.44), the coefficient

191

of qv,u′
1
in the negative part of Equation (6.44) is equal to

(−1)c1

∑

u′′
1∈Au1,u

′
1
,

(u′′,v′′)∈S
v,u′′1 ,0

n(u′,v′) · n(u′′,v′′)

∏

û′
1∈Au1

∏
(û′,v̂′)∈S

v,û′1,0
,

(û,v̂)∈W(û′,v̂′)

(n(û,v̂) − 1)
∏

i∈[∆−1],
û′
1∈Au1

βv,û′
1,i
. (6.48)

On subtracting Equation (6.48) from Equation (6.47), we get that the coefficient of qv,u′
1
in D̃1

is equal to

(−1)c n(u′,v′)

∏
û′
1∈Au1

∏

(û′,v̂′)∈S
v,û′1,0

(u′′,v′′)∈W(û′,v̂′)

(n(u′′,v′′) − 1)
∏

i∈[∆−1]

βv,û′
1,i

 ,

where c =
∑

ℓ∈[∆]

(
s(
∏Au1

ℓ)− r(Σ
Au1
ℓ)

)
+ |Au1| − 1. This proves the induction hypothesis.

Part 3. Other details: Let (u′,v′) ∈ Su′
1
be an arbitrary tuple1 and q1 be an arbitrary

monomial in D̃1. Let q1 be an arbitrary monomial of D̃1. Let (û
′, v̂′) ∈ Su′

1
be such that there

exists i ∈ [∆], such that (u′,v′)i−1 = (û′, v̂′)i−1, u
′
i = û′

i and v′i ̸= v̂′i. It follows from Equation

(6.44) that in D̃1, x(û′,v̂′) is contributed only by D̃(Ru′
1
|E). We give an upper bound on the

degree of x(û′,v̂′) in q1 for i = 1 and i ≥ 2 separately. Before proceeding, we note the following

observation, which is used in the proof of this part. Its proof is given in the subsequent section.

Observation 6.14 Let T = Q1 · · ·Qm, where for every u ∈ [m], Qu is a +-rooted extended

canonical ROF of product-depth ∆. Let (u,v) ∈ S be arbitrary. Then, the degree of x(u,v) in

gT is at most a(u,v).

Let i = 1. Then, Equations (6.44), (6.45) and (6.46) imply that in D̃1, x(û′,v̂′) is contributed

only by d̃et(H ′(Tv̂′1
)) for some v̂′1 ∈ [ru′

1
] \ {v′1}. As d̃et(H ′(Tv̂′1

)) is a product-depth ∆ − 1

instance of gT , it follows from Observation 6.14 applied on d̃et(H ′(Tv̂′1
)) that in any monomial

of d̃et(H ′(Tv̂′1
)), the degree of x(û′,v̂′) is at most a(û′, v̂′)− 1 as the product-depth in this case

has reduced by 1. Thus, degx(û′,v̂′)
q ≤ a(û′, v̂′)− 1.

Suppose i ≥ 2, then it follows from Equations (6.45) and (6.46) that in D̃1, only D̃2 con-

tributes x(û′,v̂′). Let q1 = q′1·q′2 be such that q′1 and q′2 are monomials in
∏

v̂′1∈[ru′1
]\{v′1}

d̃et(H ′(Tv̂′1
))

and D̃2 respectively. Note that
∏

v̂′1∈[ru′1
]\{v′1}

d̃et(H ′(Tv̂′1
)) does not contain x(û′,v̂′). As D̃2 is a

1We are not assuming here that (u′,v′) ∈ Sv,u′
1,0

192

product-depth ∆− 1 instance of D̃1 and as the product-depth has reduced by 1, it follows from

the induction hypothesis of this claim that deg(û′,v̂′) q
′
2 ≤ (a(û′, v̂′)− 1)− (i− 1). Since q′1 does

not contain x(û′,v̂′), deg(û′,v̂′) q1 ≤ a(û′, v̂′)− i.

Let (û′, v̂′) ∈ Su′
1
be such that there exists i ∈ [∆], such that (u′,v′)i = (û′, v̂′)i and u′

i+1 ̸=
û′
i+1. Then, it follows from Equations (6.44) and (6.46) that in D̃1, only D̃2 contributes x(û′,v̂′).

Let R[u′
1,u

′
i]
:= {(û, v̂, k̂) ∈ R : (û, v̂)i−1 = (u′,v′)i−1, u

′
i = û′

i} and H(u′,v′),j,R[u′1,u
′
i
],v

′
i
be the sub-

matrix of H(u′,v′),j,Ru′1
,v′1
, whose rows and columns are indexed by {(û, v̂, k̂) ∈ R[u′

1,u
′
i]
: v̂i = v′i}.

Let D̃i+1 = d̃et(H(u′,v′),j,R[u′1,u
′
i
],v

′
i
). Then, it is not difficult to see that D̃i+1 is a product-depth

(∆− i) instance of D̃1.

Now, we recursively expand D̃1 by using the Laplace’s expansion till level i. For example,

Equation (6.44) is the expansion of D̃1 till level 1 and in the next level, we expand D̃2 given in

Equation (6.46) using its Laplace’s expansion and so on. The last minor that gets expanded in

this process is D̃i. Then, it is not difficult to show that by doing so, D̃i+1 is a factor of D̃1 and

it is the only factor, which contains x(û′,v̂′). Thus, it is sufficient to upper bound the degree of

x(û′,v̂′) in an arbitrary monomial of D̃i+1.

Let qi+1 be an arbitrary monomial of D̃i+1. Then, it is easy to see that if x(û,v̂) appears in

qi+1 for some (û, v̂) ∈ S then (û, v̂)i = (u′,v′)i. We know that D̃i+1 is a product-depth (∆− i)

instance of D̃1 and (û′, v̂′)i = (u′,v′)i, û
′
i+1 ̸= u′

i+1. Then, notice that finding the degree of

x(û′,v̂′) in qi+1 is similar to finding the degree of x(u′′,v′′) ∈ Su′′
1
in an arbitrary monomial q1 of

D̃1 for some u′′
1 ∈ Au1,u′

1
in the product-depth (∆ − i) set-up. Thus, by using the induction

hypothesis of Claim 6.5.2 on the part of the claim which upper bounds the degree of x(u′′,v′′) in

q1 for some (u′′,v′′) ∈ Su′′
1
, where u′′

1 ∈ Au1,u′
1
, we get that the degree of x(û′,v̂′) in any monomial

of D̃i+1 is at most a(û′, v̂′)− i. This implies degx(û′,v̂′)
(q1) ≤ a(û′, v̂′)− i.

Now, let u′′
1 ∈ Au1,u′

1
and (u′′,v′′) ∈ Su′

1
be arbitrary. It follows from Equation (6.44) that

x(u′′,v′′) is contributed by the factor of D̃1 other that D̃(Ru′
1
|E) in the R.H.S of this equation. In

this factor, notice that D̃(Ru1,u′
1
|E) is a product-depth ∆ and top fan-inm−2 instance of gT and

it follows from Observation 6.14 that the degree of x(u′′,v′′) in any monomial of D̃(Ru1,u′
1
|E) is at

most a(u′′,v′′). Further, let û1 ∈ Au1,u′
1
, (û, v̂) ∈ Sû1 . Suppose that either u′′

1 ̸= û1 or there ex-

ists i ∈ [∆], such that either (u′′,v′′)i−1 = (û, v̂)i−1, u
′′
i = ûi and v′′i ̸= v̂i or (u

′′,v′′)i = (u′,v′)i

and u′′
i+1 ̸= ûi+1. Since D̃(Ru1,û1|E(û,v̂)) is a smaller top fan-in instance of D̃1 for product-depth

∆, by using the induction hypothesis of Claim 6.5.2, it is not difficult to show that the degree of

x(u′′,v′′) in any monomial of

x(û,v̂)

∏
ℓ∈[2,∆],

û′′
ℓ ∈[sv̂ℓ−1

]:sv̂ℓ−1
̸=1

Qû′′
ℓ
· D̃(Ru1,u′

1
|E(û,v̂))

 is at most a(u′′,v′′).

193

This complete the proof of Claim 6.5.2

Proof of Observation 6.14

Consider H(T) given in the beginning of Section 6.2 before the factors were taken out common

from the numerators and denominators of its rows and columns. For every k ∈ [n(u,v)], take out

x(u,v) from the numerator of the (u,v, k)-th row of H(T) and x(u,v) from the denominator of the

(u,v, k)-th row and (u,v, k)-th column of H(T). Let (u′,v′, k′) ∈ R be arbitrary. Then, the

structure of modified H(T) implies that the numerator of an entry of the (u′,v′, k′)-th row of

H(T) contains x(u,v) if and only if there exists ℓ ∈ [∆], such that (u,v)ℓ−1 = (u′,v′)ℓ−1, uℓ ̸= u′
ℓ.

This is so because Quℓ
is present in the numerator of every entry of this row and Quℓ

contains

x(u,v). This immediately implies that the number of rows in the modified H(T) containing x(u,v)

is equal to nuℓ
=
∑

ℓ∈[∆]

∑
u′
ℓ∈[svℓ−1

]\{uℓ}
nu′

ℓ
, where nu′

ℓ
is the number of variables present in the +-

rooted sub-ROF Qu′
ℓ
. Thus, the total degree of x(u,v) in det(H(T)) is at most n(u,v)−2+

∑
ℓ∈[∆]

nuℓ
.

Consider the factorization of det(H(T)) given in Claim 6.2.2. Observe that there exists a

monomial in
∏

(u,v)∈S
x
n(u,v)−2

(u,v)

∏
ℓ∈[∆]

 ∏
uℓ∈[svℓ−1

]:

svℓ−1
̸=1,vℓ∈[ruℓ]

Q
nuℓ

−1
uℓ

, in which the degree of x(u,v) in gT is

equal to n(u,v) − 2 +
∑

ℓ∈[∆]

(nuℓ
− 1). It is not difficult to verify that |{Qu′

ℓ
: ℓ ∈ [∆], u′

ℓ ∈

[svℓ−1
] \ {uℓ}}| = a(u,v). This immediately implies that the degree of x(u,v) in gT is at most

a(u,v).

6.5.7 About the essential variables in det(H(T))

We first show that if T is a regular ROF, such that T computes a polynomial of degree at

least 3 then all the variables appearing in T are essential for det(H(T)) and then talk about

essential variables in det(H(T)) when T is a ×-rooted canonical ROF (without the regularity

condition). Consider the following observation.

Observation 6.15 Let (u,v) ∈ S be such that n(u,v) ≥ 2 and T be a ×-rooted ROF, such that

|var(T)| = n. Suppose p is an arbitrary monomial in det(H(T)) and α ∈ F is the coefficient of

p in det(H(T)). Then, for every j, k ∈ [n(u,v)], j ̸= k, degxj
(α · p) = degxk

(α · p).

Proof: Suppose this is not true and there exist distinct j, k ∈ [n(u,v)], such that degxj
(α ·p) =

e1, degxk
(α · p) = e2 and e1 > e2. Let var(T) = {x1, . . . , xn} and c ∈ F× \ {1} be such that it is

194

not a root of unity1. Let A be an n× n diagonal matrix, whose rows and columns are indexed

by {x1, . . . , xn}, such that the xj-th entry of A is c, xk-th entry is c−1 and all the other diagonal

entries are 1. As det(A) = 1, Corollary 2.1 implies that

det(H(T)) = det(H(T))(A · x).

We get a monomial ce1−e2αp in det(H(T)), which is not true as ce1−e2 ̸= 1. Hence, e1 = e2. 2

Now, we talk about the essential variables of a ×-rooted regular ROF.

Claim 6.5.3 Let n ∈ N,F be a field satisfying either char(F) = 0 or char(F) ≥ n, T be a

×-rooted regular ROF over F and x = {x1, . . . , xn} be the set of variables appearing in T . If

n ≥ 3 then every variable in x is present in the Hessian determinant of T .

Proof: Consider the extended canonical form of T which is T = Q1 . . . Qm, where m ≥ 2

and for every u ∈ [m], Qu is a +-rooted sub-ROF of T having product-depth equal to ∆, where

∆ ∈ N. If ∆ = 0 then the claim immediately follows from Observation 6.3 since n ≥ 3.

Suppose x ∈ x is an arbitrary variable. If x is connected to a × gate that computes

a polynomial of degree at least 3 then Claim 6.2.2 implies that x is present in det(H(T)).

Suppose x ∈ x is connected to a × gate, which computes a degree 2 monomial. Since T is a

regular ROF, there does not exist a + gate in T , which has a variable child. Suppose ∆ = 1.

Then, it is easy to verify from Claim 6.4.1 that as T is a regular ROF, there exists a monomial

in gT that contains x.

Suppose ∆ ≥ 2. We show that there exists a v ∈ V , such that the monomial pv contains x.

Let (u,v) ∈ S be such that x ∈ x(u,v) and n(u,v) = 2. Suppose ℓ ∈ [∆] is such that ruℓ
≥ 2 and

for every i ∈ [ℓ + 1,∆], rui
= svi−1

= 1, where ui, vi are the coordinates of (u,v). Since T is a

regular ROF, it is easy to see that there exists v ∈ V , such that the entry in v labelled by uℓ is

equal to vℓ. Since for every i ∈ [ℓ + 1,∆], rui
= svi−1

= 1 the entry in v labelled by ui is equal

to vi for every i ∈ [ℓ + 1,∆]. Thus, pv contains x(u,v). As either char(F) = 0 or char(F) ≥ n,

Lemma 6.1 implies that the coefficient of pv in gT is non-zero. Thus, x ∈ var(det(H(T))). 2

This along with Observation 2.5 and Observation 2.6 help us show the following.

Claim 6.5.4 Let n ∈ N and F be a field satisfying either char(F) = 0 or char(F) ≥ n. Let

T be a ×-rooted regular ROF over F, such that |var(T)| = n. If n ≥ 3 then all the variables

present in T are essential for the Hessian determinant of T .

1One way to do this is to pick c from a finite subset of F size greater than deg(det(H(T))). If F is small, we
work with a large enough extension field G of F and consider det(H(T)) over G. Then, with high probability, c
is not a root of unity.

195

Proof: Let x = var(T). As n ≥ 3, Lemma 5.1 implies that det(H(T)) ̸= 0. Consider the

following equation. ∑
x∈x

βx
∂ det(H(T))

∂x
= 0,

where for every x ∈ x, βx ∈ F. Let x ∈ x be an arbitrary variable. Suppose x is a child of a ×
gate, which computes a polynomial of degree at least 3. We know from Claim 6.2.2 that x is a

factor of det(H(T)). Then, Observation 2.5 implies that βx = 0.

Now, suppose x is connected to a × gate, which computes a degree 2 monomial, say x · x′.

Observation 6.15 implies that if p is an arbitrary monomial of det(H(T)) then the degrees

of x and x′ in p are same. We know from Claim 6.5.4 that x appears in det(H(T)), which

implies that there exists i ≥ 1, such that (x · x′)i has non-zero coefficient in det(H(T)). Then,

Observation 2.6 implies that βx = 0. Since βx = 0 for every x ∈ x, Fact 2.11 implies that every

variable in x is essential for det(H(T)). 2

196

Chapter 7

Conclusion

In this chapter, we summarize our main results and mention some open questions. The central

theme of this thesis is the equivalence testing problem (in short, ET). An ET for a polynomial

family {fn}n∈N (similarly, a circuit class C) takes input black-box access to a g ∈ F[x] and
decides whether g is in the orbit of an f ∈ {fn}n∈N (respectively, a circuit in C). If yes, it

outputs an f ∈ {fn}n∈N and an A ∈ GL(|x|,F) (respectively, a C ∈ C and an A ∈ GL(|x|,F))
such that g = f(Ax) (respectively, g = C(Ax)). In this thesis, we study equivalence tests for

two polynomial families, namely the families of the Nisan-Wigderson design polynomials (in

short, NW) and the determinant, and a circuit class, namely the class of regular read-once

arithmetic formulas (in short, ROFs). In the process of designing an equivalence test for the

family of NW, we also study some fundamental structural and algorithmic results questions to

the symmetries of NW. An invertible matrix A is called a symmetry of NW if NW = NW(Ax).

The structural questions for NW that we study are related to properties of characterization by

symmetries and characterization by circuit identities, and the algorithmic questions include a

circuit testing algorithm and a flip theorem for NW. These questions are important from the

perspective of GCT and have been studied for the permanent. The content of this chapter is

divided into three parts - the first one is devoted to the results on NW, the second one to the

ET for the family of determinant, and the last one to the ET for the class of regular ROFs.

7.1 Structural and algorithmic results on NW

In ACT, many polynomial families like the families of permanent, determinant, iterated matrix

multiplication (in short, IMM) polynomial, elementary symmetric polynomial, power symmet-

ric polynomial, Nisan-Wigderson polynomial (NW) etc. have been used to prove lower bounds

for various classes of arithmetic circuits. Unlike the other families mentioned here, not much

197

is known about the family of NW. We know that the family of NW is in VNP but it is not

known whether it is in VP or VNP-complete. On the other hand, the families of determinant,

IMM, power symmetric polynomial, elementary symmetric polynomial are in VP and the fam-

ily of permanent is VNP-complete. Several other interesting results are also known for other

polynomials. For instance, the permanent, the determinant, the IMM, the power symmetric

polynomials are characterized by their symmetries whereas the elementary symmetric polyno-

mial is not characterized by its symmetries. We also have efficient equivalence tests for all the

polynomial families mentioned before except the family of NW. In addition to this, two efficient

circuit testing algorithms and a flip theorem are also known for the permanent. In the first

work of this thesis, we study characterization by symmetries, circuit testing, flip theorem and

a special case of ET for the family of NW. We talk about these results below.

Structural results. The first result is related to the characterization by symmetries property

(Definition 2.24). This property bypasses the natural proof barrier (see Section 1.3.1). This

property is important from the viewpoint of GCT; GCT aims to exploit the characterization by

symmetries properties of the permanent and the determinant to show that the permanent of an

n× n symbolic matrix is not an affine projection of a poly(n)-size determinant. In this thesis,

we show that NW is characterized by its symmetries over C but not over R and Q. On the

other hand, the permanent of an n×n symbolic matrix is characterized by its symmetries over

fields having more than n elements [MM62, Gro12]. The main reason for this contrasting result

for NW over different fields is as follows: The characterization by symmetries property of NW

over C very crucially uses some symmetries of NW which are obtained from a d-th primitive

root of unity, where d is a prime number used as a parameter in the definition of NW. We also

show that in the absence of such symmetries over R and Q, NW can not be characterized by

its symmetries over these two fields. To show that NW is not characterized by its symmetries

over R and Q, we use the following two results about NW, which were studied in the author’s

master’s thesis [Gup17]: The structure of the group of symmetries of NW (see Theorem 3.3)

and a structural insight obtained from the analysis of the Lie algebra of NW (see Claim 3.1.2).

Apart from this, we also showed that NW is characterized by circuit identities (Definition

2.25) over any field. This property means there are poly(d) many polynomial indentities satis-

fied by NW, where every polynomial in each of these identities is computable by a poly(d) size

arithmetic circuit, and an f ∈ F[x] satisfies these identities if and only if f = α · NW for some

α ∈ F. The proof of the property that NW is characterized by circuit identities also uses some

symmetries of NW. This property implies two algorithmic results for NW namely, a circuit

testing algorithm and a flip theorem.

198

Algorithmic results. Our first algorithmic result is a randomized polynomial time circuit

testing algorithm for NW over almost any field. It takes input black-box access to a circuit C

and checks whether C computes NW. We know that the family of NW is in VNP but is not

known to be in VP. In the absence of a proof that VP = VNP, it becomes a natural problem to

test if given an arithmetic circuit C, whether C computes NW. Circuit testing for NW is a special

case of ET for NW and it is also required in an ET for NW. We exploit the characterization

by circuit identities property of NW to design a circuit testing algorithm for NW. Two efficient

circuit testing algorithms are also known for the permanent [Lip89, Mul10].

The second result is a flip theorem for NW. It says that if NW is not computable by

arithmetic circuits of size at most s then in randomized polynomial time, we can compute a list

of poly(s) many ‘witness points’ over the underlying field against all arithmetic circuits of size

at most s. This means that for every circuit C of size at most s, there exists a witness point a

in this list such that NW(a) ̸= C(a). Using the characterization by circuit identities property

of NW, we also show that a polynomial time black-box PIT algorithm for arithmetic circuits of

size-10s implies that we can compute the list of above mentioned poly(s) many witness points

in polynomial time. A flip theorem is also known for the permanent [Mul10, Mul11b].

The third result is related to equivalence test for the family of NW. We give a random-

ized polynomial time reduction from general ET for NW to block permuted ET for NW, which

determines if there exists an invertible block-permuted matrix (recall the definition from Sec-

tion 1.3.1) A such that the input polynomial f satisfies f = NW(Ax). We give a randomized

polynomial time algorithm for a special case of block-permuted ET for NW, which we call block-

diagonal permutation scaling ET (in short, BD-PS ET). A BD-PS ET determines whether there

exists a block-diagonal permutation matrix A (recall the definition from Section 1.3.1) and an

invertible scaling matrix B such that f = NW(ABx). This algorithm works over the field of

real numbers and over finite fields satisfying d ∤ (|F| − 1), where d is a prime number used as a

parameter in the definition of NW. The BD-PS ET crucially uses symmetries of NW. On the

other hand, a complete randomized polynomial time ET is known for the permanent [Kay12].

Future work. Our contributions draw more parallels between the permanent and NW: It was

known that both of these polynomials are in VNP. Our work implies that both of these are

characterized by its symmetries over C, both have randomized polynomial time circuit testing

algorithm, and flip theorems hold for both of these. However, certain aspects of the family of

NW are still not clear. We note some interesting open questions about NW below.

199

1. Complexity of zero-testing for NW: The zero-testing for NW is the following algo-

rithmic problem: Suppose d is a prime number. Given a point a ∈ {0, 1}d2 , determine

whether NW(a) = 0. This is an interesting problem and has been well-studied in the

Boolean complexity theory. It is known as Andreev’s problem in the Boolean complexity

literature (see [Joh86]). It is easy to see that the zero-testing problem for NW is in NP

- if NW(a) = 1 then we can give a set {(i, li) : i, li ∈ Fd} as a certificate, where for

every i ∈ Fd, ai,li = 1 and
∏

i∈Fd
xi,li is a monomial of NW. Is the zero testing for NW

NP-complete? This question was stated in [Joh86] and has remained unresolved till date.

Recently, [Pot19] gave an AC0[⊕] lower bound for Andreev’s problem. On the other hand,

the zero-testing problem for the permanent is in P - it is related to checking whether a

bipartite graph has a perfect matching.

2. Complexity of NW: We know that the family of NW is in VNP. Is the family of NW in VP

or is it VNP-complete? Complexities of several other useful polynomial families in ACT

like the families of permanent, determinant, IMM, elementary symmetric polynomials etc.

are well-studied. If the family of NW is in VP then the zero-testing for NW can be solved

efficiently. If this family turns out to be VNP-complete then it would also be good as

it will enrich the list of VNP-complete polynomials. Unlike NP-complete functions, we

do not have many examples of VNP-complete families. A list of VNP-complete families

is given in [Bür00] and most of these polynomials have graph theoretic definition. If

NW is VNP-complete then we will also have a VNP-complete family having an algebraic

definition. Apart from this, the complexity of NW is also interesting from the viewpoint

of GCT because some properties like characterization by symmetries, which plays an

important role in GCT, have been studied for NW. If the family of NW turns out to be

VNP-complete then it can be a substitute for the permanent in GCT.

3. A full ET for NW: We saw a special case of ET for NW, which we called the block-

diagonal permutation scaling (BD-PS) ET for NW. This ET crucially used symmetries

and other structural insights of NW. We saw in Section 3.2.3 of Chapter 3 that this ET

is a special case of the block-permuted equivalence test (in short, BP ET) for NW. We

also gave a randomized polynomial time reduction from general ET for NW to its BP ET

over almost every field. Thus, a BP ET for NW would imply a full ET for NW. Can we

design an efficient BP ET for NW? The ideas used in designing a BD-PS ET for NW can

play a crucial role in its BP ET.

200

7.2 DET over finite fields and Q
In the second work, we study equivalence testing problem for the determinant (in short, DET).

This is an important problem from the perspective of GCT. As DET deals with checking if a

given polynomial is in the orbit of the determinant, it is a natural first step in the direction

of understanding whether permanent is in the orbit closure of a polynomial size determinant.

Recall from Section 1.1.2.2 that showing this would separate the complexities of permanent

and determinant. A randomized polynomial time DET over C was given by Kayal [Kay12].

A randomized polynomial time DET over a finite field Fq was given in [KNS19], where if the

input polynomial is equivalent to the determinant then the DET outputs a certificate matrix

over a degree n extension field of Fq. Before our work, DET over Q was not known.

DET over finite fields. In this work, we give a randomized polynomial time DET over finite

fields satisfying mild conditions on the size and the characteristic. Our DET algorithm outputs

a certificate matrix over the base field Fq and not over an extension field of Fq.

DET over Q. We give the first randomized DET over Q with oracle access to an integer fac-

toring algorithm IntFact. If f is equivalent to the determinant of an n×n symbolic matrix, this

DET outputs a certificate matrix over Q. This DET algorithm runs in polynomial time if n is

bounded. However, for unbounded n we have a DET over Q, which runs in randomized polyno-

mial time but outputs a certificate matrix over an extension field L of Q satisfying [L : Q] ≤ n.

This DET does not require oracle access to IntFact. We show that it is unlikely to get rid of

oracle access to IntFact from the DET over Q. In particular, we show that assuming the Gener-

alized Riemann Hypothesis (GRH), there exists a randomized polynomial time reduction from

factoring square-free integers to DET for quadratic forms (i.e., n = 2 case) over Q. This shows

that assuming GRH, DET for quadratic forms over Q and IntFact are randomized polynomial

time reducible to each other and hence it is unlikely to get rid of IntFact oracle from DET overQ.

Relation between FMAI and DET. Our main technical contribution is to give a random-

ized polynomial time reduction from DET to another problem called the full matrix algebra

isomorphism (FMAI). This reduction holds over almost every field. FMAI is a well-studied

problem in computer algebra. The FMAI problem takes input an F-algebra A ⊆ Mn2(F) and
decides whether A is isomorphic to the full matrix algebra Mn(F). If the answer is yes, it also
outputs an F-algebra isomorphism φ : A → Mn(F). FMAI algorithms are known over finite

fields and over Q (see Section 2.2.4).

201

Our reduction from DET to FMAI exploits the rich structure of the Lie algebra of the

determinant, denoted gDetn . It is well-known that over a field F satisfying char(F) ∤ n, gDetn =

Lrow⊕Lcol, where Lrow := Zn⊗ In,Lcol := In⊗Zn, In is the identity matrix and Zn is the set

of n× n traceless matrices over F. Suppose f = Det(Ax) for some A ∈ GL(|x|,F) then the Lie

algebra of f , denoted gf , is a direct sum of Frow := A−1 ·Lrow · A and Fcol := A−1 ·Lcol · A.
Suppose f ∈ F[x] is the input of DET. In the first phase, the algorithm decomposes gf as

follows: It computes gf and then computes a special set P of linear operators on gf . Then, it

computes irreducible invariant spaces (Definition 2.16) of P. We show that if f is equivalent

to Detn then Fcol and Frow are the only irreducible invariant subspaces of P. This is how the

algorithm gets hold of Fcol and Frow. The reason this decomposition is important is because

the algebra A generated by Fcol is isomorphic to Mn(F). On invoking FMAI on A , we get an

F-algebra isomorphism φ : A → Mn(F). Using φ and the Skolem-Noether theorem (Theorem

2.1), we compute an A ∈ GL(n2,F) such that f = Detn(Ax), provided f is equivalent to Detn.

We also give a reduction from DET to FMAI over fields satisfying char(F) ∤ n, which is effi-

cient when the value of the parameter n is bounded. This reduction crucially uses the property

that the determinant is characterized by its Lie algebra, i.e., if f ∈ F[x] such that Lcol is an

F-subspace of gf then f is a scalar multiple of the determinant. In a follow up work, [MNS20]

gave a randomized polynomial time reduction from FMAI to DET for any n.

Future work. Now, we mention an open question in this direction.

1. An efficient DET over Q with oracle access to IntFact. We saw in the first part of

Theorem 1.7 that if we insist that our DET algorithm outputs a certificate matrix over

Q, the DET algorithm takes oracle access to IntFact and is efficient only when the input

parameter n is bounded. We also saw in Theorem 1.9 that it is unlikely to get rid of

IntFact oracle from this variant of DET over Q. Can we design a randomized polynomial

time algorithm, that takes input black-box access to an n2-variate polynomial f over Q,

has oracle access to IntFact, and determines whether f and Detn are equivalent, outputs

a certificate matrix over Q and runs in poly(n) time for every value of n?

7.3 An ET for regular ROFs

In the third work, we give the first randomized polynomial time ET for the class of regular

ROFs. This ET takes oracle access to quadratic form equivalence (in short, QFE) and works

over fields satisfying some mild restrictions on the size and the characteristic. ET for regular

ROFs generalizes QFE over C and ET algorithms for two sub-classes of regular ROFs, namely

202

the class of sum-product polynomials and the class of ROANFs. Efficient ET algorithms for

these two sub-classes were given recently in [MS21]. We gave a randomized polynomial time ET

for the class of general ROFs in a follow-up work [GST22]. This ET also takes oracle access to

QFE and works over fields satisfying some mild restrictions on the size and the characteristic.

The ET for general ROFs is not a part of this thesis.

Hessian determinant of a regular ROF. The ET for the class of regular ROFs crucially

uses some properties of the Hessian determinant of a regular ROF. We study these properties

for the Hessian determinant of a canonical ROF (Definition 2.39). Since a regular ROF is

canonical by definition, all these properties also hold for the Hessian determinant of a regular

ROF. We list these properties below.

� Non-zeroness of the Hessian determinant. We show that if C is a canonical ROF

then over any field F satisfying char(F) = 0 or char(F) ≥ |var(C)|, the Hessian determi-

nant of C, denoted det(HC), is non-zero. However, this may not be true over a finite field

F satisfying char(F) < |var(C)|. For example, if C = x1x2x3 then det(HC) = 0 over F
satisfying char(F) = 2. We prove the non-zeroness of det(HC) by analysing the structures

and the coefficients of some nice monomials in det(HC).

� Essential variables of the Hessian determinant. We show that if T is a ×-rooted
regular ROF such that deg(T) ≥ 3 then every variable appearing in T is essential for

det(HT). This result is obtained by analysing the structures of nice monomials in det(HT)

and using the fact that T is regular. On the other hand, if deg(T) = 2 then det(HT) ∈ F×.

� Factors of the Hessian determinant. We study factors of the Hessian determinant

of a ×-rooted canonical ROF T and show that if deg(T) ≥ 3, then there exists a child of

the topmost × gate of T , which is also a factor of det(HT).

Efficient ET for regular ROFs. The input of the ET algorithm is black-box access to an

f ∈ F[x] in the orbit of a +-rooted regular ROF. Using the polynomial factorization algorithm

in [KT90], we can reduce the ET for a ×-rooted ROF to the ET for a +-rooted ROF. In the

first phase, the ET algorithm computes an A ∈ GL(|x|,F) such that f(Ax) is the sum of vari-

able disjoint ×-rooted terms. To accomplish this phase, the algorithm uses the knowledge of

essential variables in the Hessian determinant of a regular ROF, a basic approach by Kayal

(see Section 1.4.3) and a QFE over F. In the next phase, the algorithm gets black-box access

to every ×-rooted terms of f(Ax) from black-box of f , then factorizes these terms using the

algorithm in [KT90] and then recurses on these terms. The knowledge of the factors of the

203

Hessian determinant of a regular ROF plays a crucial role in obtaining black-box access to a

×-rooted term of f(Ax) using just one black-box query to f . It is important that we use ex-

actly one black-box query to f in this case, otherwise the running time of the algorithm can be

exponential in |x| as the product-depth of f can be as large as |x|. This is how the knowledge of

essential variables and factors of the Hessian determinant of a regular ROF plays an important

role in the ET for the class of regular ROFs.

Future work. Now we mention some open questions in this direction.

1. Equivalence test for univariate-substituted ROFs. A univariate-substituted ROF

is an arithmetic formula, which is obtained from an ROF C by replacing every variable

x in C with a univariate polynomial in x. The class of univariate-substituted ROFs is

well-studied - polynomial time black-box PIT algorithm and reconstruction algorithm for

univariate-substituted ROFs are known [SV14, MV18]1. We have given a randomized

polynomial time equivalence test for the class of general ROFs in [GST22]. As the class

of univariate-substituted ROFs generalizes the class of ROFs, it is natural to ask the

following: Can we design an efficient ET for the class of univariate-substituted ROFs?

An ET for univariate-substituted ROFs is an important problem as it generalizes QFE

over arbitrary fields not having characteristic equal to two: Let F be a field such that

char(F) ̸= 2 and g ∈ F[x] be a quadratic form not having redundant variables (Definition

2.32). It follows from the well-known classification results on quadratic forms that g is

in the orbit of h := α1x
2
1 + · · · + αnx

2
n, where α1, . . . , αn ∈ F. Thus, QFE over F boils

down to checking if two given quadratic forms are equivalent to h. Note that h is a

depth 2 univariate-substituted ROF. Thus, an ET for univariate-substituted ROF would

generalize QFE over F. An ET for univariate-substituted ROFs would also generalize the

reconstruction algorithm for univariate-substituted ROFs studied in [SV14, MV18] and

equivalence test for sum of univariates model considered in [GKP18]. We hope that the

ideas used in the ET for general ROFs given in [GST22] can be helpful in designing an

equivalence test for the class of univariate-substituted ROFs. We are also hopeful that

the detailed analysis of the Hessian determinant of a canonical ROF given in Chapter

6 can be helpful in analysing the Hessian determinant of a univariate-substituted ROF,

which can be an important component in the ET for univariate substituted ROFs.

2. Equivalence test for other classes of circuits. As mentioned in Section 1.1.4, PIT for

orbits of various circuit classes like ROFs, sparse polynomials, bounded-width ROABPs

1A univariate-substituted ROF was called a preprocessed ROF in [SV14, MV18].

204

etc. have been studied recently in [MS21, ST21, BG21]. Like ROFs, do the classes of

sparse polynomials and ROABPs also admit efficient equivalence tests?

A variant of equivalence testing for sparse polynomials, called equivalence testing under

shifts, over rings has been recently studied in [CGS22]. Equivalence testing for sparse

polynomials under shifts is the following algorithmic problem: Let f ∈ R[x] be a poly-

nomial over a ring R. Given f , determine if there exists an a ∈ R|x| such that number

of non-zero monomials in f(x + a) is less than the number of non-zero monomials in

f . Recently, [CGS22] showed some hardness results for equivalence testing for sparse

polynomials under shifts over integral domains, which are not fields.

3. Reconstruction of random arithmetic formulas. As mentioned in Section 1.3.3, an

efficient ET for the class of ROFs implies an efficient algorithm to reconstruct random

arithmetic formulas in the high number of variables setting, i.e., when the number of

variables n is greater than the size s of the formula. Can we reconstruct random arithmetic

formulas efficiently when n is much smaller than s?

205

Bibliography

[Aar16] Scott Aaronson. The p=?np. Open problems in mathematics, 2016. https://www.

scottaaronson.com/papers/pnp.pdf. 3, 6, 8

[AB03] Manindra Agrawal and Somenath Biswas. Primality and identity testing via chi-

nese remaindering. J. ACM, 50(4):429–443, jul 2003. 3, 9

[AFS+18] Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and

Ben Lee Volk. Identity Testing and Lower Bounds for Read-k Oblivious Algebraic

Branching Programs. TOCT, 10(1):3:1–3:30, 2018. Conference version appeared

in the proceedings of CCC 2016. 27

[AGKS14] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets

for roabp and sum of set-multilinear circuits. SIAM Journal on Computing, 44, 06

2014. 234

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In Pro-

ceedings of the 25th International Conference on Foundations of Software Technol-

ogy and Theoretical Computer Science, FSTTCS ’05, page 92–105, Berlin, Heidel-

berg, 2005. Springer-Verlag. 233

[AKS02] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of

Mathematics, 160:781 – 793, 09 2002. 3, 9

[AM10] V. Arvind and Partha Mukhopadhyay. The ideal membership problem and poly-

nomial identity testing. Inf. Comput., 208(4):351–363, apr 2010. 233

[AMV15] Matthew Anderson, Dieter Melkebeek, and Ilya Volkovich. Derandomizing polyno-

mial identity testing for multilinear constant-read formulae. Computational Com-

plexity, 24:695–776, 2015. 233, 234

206

https://www.scottaaronson.com/papers/pnp.pdf
https://www.scottaaronson.com/papers/pnp.pdf

BIBLIOGRAPHY

[Ang88] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342,

apr 1988. 10

[Ara11] Manuel Araújo. Classification of quadratic forms. https://www.math.tecnico.

ulisboa.pt/~ggranja/manuel.pdf, 2011. 14, 27, 70

[AS05] Manindra Agrawal and Nitin Saxena. Automorphisms of finite rings and applica-

tions to complexity of problems. In 23rd Annual Symposium on Theoretical Aspects

of Computer Science, STACS 2005, pages 1–17, 2005. 13, 14

[AS06] Manindra Agrawal and Nitin Saxena. Equivalence of f-algebras and cubic forms.

In 23rd Annual Symposium on Theoretical Aspects of Computer Science, STACS

2006, pages 115–126, 2006. 14

[ASSS16] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena.

Jacobian Hits Circuits: Hitting Sets, Lower Bounds for Depth-D Occur-k Formulas

and Depth-3 Transcendence Degree-k Circuits. SIAM J. Comput., 45(4):1533–

1562, 2016. Conference version appeared in the proceedings of STOC 2012. 233,

234

[AT85] V. S. Alagar and Mai Thanh. Fast polynomial decomposition algorithms. In

Bob F. Caviness, editor, EUROCAL ’85, pages 150–153, Berlin, Heidelberg, 1985.

Springer Berlin Heidelberg. 13

[Ats06] Albert Atserias. Distinguishing SAT from polynomial-size circuits, through black-

box queries. In 21st Annual IEEE Conference on Computational Complexity (CCC

2006), 16-20 July 2006, Prague, Czech Republic, pages 88–95, 2006. 22

[AV08] Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four.

In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS

2008, October 25-28, 2008, Philadelphia, PA, USA, pages 67–75. IEEE Computer

Society, 2008. 231, 233

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster

matrix multiplication. SODA ’21, page 522–539, USA, 2021. Society for Industrial

and Applied Mathematics. 2

[B0̈0] Peter Bürgisser. Cook’s versus valiant’s hypothesis. Theor. Comput. Sci.,

235(1):71–88, mar 2000. 5

207

https://www.math.tecnico.ulisboa.pt/~ggranja/manuel.pdf
https://www.math.tecnico.ulisboa.pt/~ggranja/manuel.pdf

BIBLIOGRAPHY

[Bab16] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In

Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing,

STOC ’16, page 684–697. Association for Computing Machinery, 2016. 1

[BBB+00] Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and

Stefano Varricchio. Learning functions represented as multiplicity automata. J.

ACM, 47(3):506–530, may 2000. 235

[Ber70] Elwyn R Berlekamp. Factoring polynomials over large finite fields. Mathematics

of Computation, 24:713–735, 1970. 61, 99

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a

small number of processors. Information Processing Letters, 18(3):147–150, 1984.

2

[BFP15] Jérémy Berthomieu, Jean-Charles Faugère, and Ludovic Perret. Polynomial-time

algorithms for quadratic isomorphism of polynomials: The regular case. J. Com-

plex., 31(4):590–616, 2015. 14

[BG21] Vishwas Bhargava and Sumanta Ghosh. Improved hitting set for orbit of roabps.

In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM

2021, August 16-18, 2021, University of Washington, Seattle, Washington, USA

(Virtual Conference), volume 207 of LIPIcs, pages 30:1–30:23. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2021. 10, 16, 27, 205

[BGKS21] Vishwas Bhargava, Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning gen-

eralized depth-three arithmetic circuits in the non-degenerate case. Electron. Col-

loquium Comput. Complex., page 155, 2021. 236

[BHH95] Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning arithmetic

read-once formulas. SIAM J. Comput., 24(4):706–735, 1995. Conference version

appeared in the proceedings of STOC 1992. 27, 29

[BLS16] Nikhil Balaji, Nutan Limaye, and Srikanth Srinivasan. An almost cubic lower

bound for ΣΠΣ circuits computing a polynomial in VP. Electronic Colloquium on

Computational Complexity (ECCC), 23:143, 2016. 231

208

BIBLIOGRAPHY

[BMS13] M. Beecken, J. Mittmann, and N. Saxena. Algebraic independence and blackbox

identity testing. Information and Computation, 222:2–19, 2013. 38th International

Colloquium on Automata, Languages and Programming (ICALP 2011). 233

[BOT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse mul-

tivariate polynomial interpolation. In Proceedings of the Twentieth Annual ACM

Symposium on Theory of Computing, STOC ’88, page 301–309, New York, NY,

USA, 1988. Association for Computing Machinery. 233, 234

[BR90] László Babai and Lajos Rónyai. Computing irreducible representations of finite

groups. Mathematics of Computation, 55(192):705–722, 1990. 71

[Bre76] R.P Brent. Multiple-precision zero-finding methods and the complexity of ele-

mentary function evaluation. Analytic Computational Complexity, pages 151–176,

1976. 93

[BS83] Walter Baur and Volker Strassen. The Complexity of Partial Derivatives. Theor.

Comput. Sci., 22:317–330, 1983. 7, 230

[BSV20] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction of depth-4

multilinear circuits. In Proceedings of the Thirty-First Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA ’20, page 2144–2160, USA, 2020. Society

for Industrial and Applied Mathematics. 235

[BSV21] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction Algo-

rithms for Low-Rank Tensors and Depth-3 Multilinear Circuits, page 809–822. As-

sociation for Computing Machinery, New York, NY, USA, 2021. 235

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory,

volume 7 of Algorithms and computation in mathematics. Springer, 2000. 4, 5, 200

[BZ85] David R. Barton and Richard Zippel. Polynomial decomposition algorithms. Jour-

nal of Symbolic Computation, 1(2):159–168, 1985. 12, 13

[Car06] Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic

Geometry and Geometric Modeling, pages 237–247. Springer Berlin Heidelberg,

2006. 53, 62

[CELS18] Suryajith Chillara, Christian Engels, Nutan Limaye, and Srikanth Srinivasan. A

Near-Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits. In

209

BIBLIOGRAPHY

Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Com-

puter Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 934–945. IEEE

Computer Society, 2018. 232

[CGS22] Suryajith Chillara, Coral Grichener, and Amir Shpilka. On hardness of testing

equivalence to sparse polynomials under shifts, 2022. https://arxiv.org/abs/

2207.10588. 205

[CIK97] Alexander Chistov, Gábor Ivanyos, and Marek Karpinski. Polynomial time algo-

rithms for modules over finite dimensional algebras. In Proceedings of the 1997 In-

ternational Symposium on Symbolic and Algebraic Computation, ISSAC ’97, page

68–74, New York, NY, USA, 1997. Association for Computing Machinery. 106

[CKS18] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Some closure results for

polynomial factorization and applications, 2018. https://arxiv.org/abs/1803.

05933. 233, 234

[CKSV20] Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. A quadratic

lower bound for algebraic branching programs. In Proceedings of the 35th Computa-

tional Complexity Conference, CCC ’20, Dagstuhl, DEU, 2020. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik. 20, 230

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial Derivatives in Arithmetic

Complexity and Beyond. Foundations and Trends in Theoretical Computer Sci-

ence, 6(1-2):1–138, 2011. 21, 50, 51, 232

[CM14] Suryajith Chillara and Partha Mukhopadhyay. Depth-4 lower bounds, determinan-

tal complexity: A unified approach. In 31st International Symposium on Theoret-

ical Aspects of Computer Science (STACS 2014), STACS 2014, March 5-8, 2014,

Lyon, France, pages 239–250, 2014. 19

[CMM17] Sunil K. Chebolu, Dan McQuillan, and Ján Mináč. Witt’s cancellation theorem

seen as a cancellation. Expositiones Mathematicae, 35(3):300–314, 2017. 17

[Coh03] Joel S. Cohen. Computer Algebra and Symbolic Computation. CRC Press, 2003.

3, 12, 13

[Csa76] L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing,

5(4):618–623, 1976. 2

210

https://arxiv.org/abs/2207.10588
https://arxiv.org/abs/2207.10588
https://arxiv.org/abs/1803.05933
https://arxiv.org/abs/1803.05933

BIBLIOGRAPHY

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calculation

of complex fourier series. Mathematics of Computation, 19:297–301, 1965. 3

[CU13] Henry Cohn and Christopher Umans. Fast matrix multiplication using coherent

configurations. In SODA, 2013. 2

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic

progressions. J. Symb. Comput., 9(3):251–280, mar 1990. 2

[CZ81] David Geoffrey Cantor and Hans Zassenhaus. A new algorithm for factoring poly-

nomials over finite fields. Mathematics of Computation, 36:587–592, 1981. 3

[de 97] W.A. de Graaf. Calculating the structure of a semisimple lie algebra. Journal of

Pure and Applied Algebra, 117-118:319–329, 1997. 106

[Dic89] Matthew Thomas Dickerson. The functional decomposition of polynomials. PhD

thesis, Cornell university, 1989. 12

[Dic93] Matthew T. Dickerson. General polynomial decomposition and the s-1-

decomposition are np-hard. International Journal of Foundations of Computer

Science, 04(02):147–156, 1993. 13

[DKSS08] Anindya De, Piyush P. Kurur, Chandan Saha, and Ramprasad Saptharishi. Fast

integer multiplication using modular arithmetic. In Cynthia Dwork, editor, Pro-

ceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,

British Columbia, Canada, May 17-20, 2008, pages 499–506. ACM, 2008. 3

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic

program testing. Information Processing Letters, 7(4):193–195, 1978. 9, 60

[DMPY12] Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating

multilinear branching programs and formulas. In Howard J. Karloff and Toniann

Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing Con-

ference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 615–624.

ACM, 2012. 232

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polyno-

mial identity testing for depth 3 circuits. SIAM Journal on Computing, 36(5):1404–

1434, 2007. 233

211

BIBLIOGRAPHY

[DS13] A. Davie and AJ Stothers. Improved bound for complexity of matrix multiplication.

Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143, 04

2013. 2

[DSY10] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for

bounded depth arithmetic circuits. SIAM Journal on Computing, 39(4):1279–1293,

2010. 233

[Dvi08] Zeev Dvir. On the size of kakeya sets in finite fields. Journal of the American

Mathematical Society, 22(4):1093–1097, jun 2008. 2

[Dvi12] Zeev Dvir. Incidence theorems and their applications. Foundations and Trends®

in Theoretical Computer Science, 6, 08 2012. 2

[FGT16] Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is

in quasi-nc. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory

of Computing, STOC ’16, page 754–763, New York, NY, USA, 2016. Association

for Computing Machinery. 9

[FK09] Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit

lower bounds. J. Comput. Syst. Sci., 75(1):27–36, 2009. 9, 234

[FLMS15] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower

Bounds for Depth-4 Formulas Computing Iterated Matrix Multiplication. SIAM J.

Comput., 44(5):1173–1201, 2015. Conference version appeared in the proceedings

of STOC 2014. 231

[FP09a] Jean-Charles Faugère and Ludovic Perret. An efficient algorithm for decomposing

multivariate polynomials and its applications to cryptography. Journal of Symbolic

Computation, 44:1676–1689, 12 2009. 13

[FP09b] Jean-Charles Faugère and Ludovic Perret. High order derivatives and decomposi-

tion of multivariate polynomials. pages 207–214, 01 2009. 13

[FPS08] Lance Fortnow, Aduri Pavan, and Samik Sengupta. Proving SAT does not have

small circuits with an application to the two queries problem. J. Comput. Syst.

Sci., 74(3):358–363, 2008. 22

[Fro97] Georg Frobenius. Ueber die darstellung der endlichen gruppen durch linearc sub-

stitutionen. Sitzungber. der Berliner Akademie, 7:994–1015, 1897. 20

212

BIBLIOGRAPHY

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Testing of

Non-commutative and Read-Once Oblivious Algebraic Branching Programs. In

54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,

26-29 October, 2013, Berkeley, CA, USA, pages 243–252, 2013. 234, 235

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for

multilinear read-once algebraic branching programs, in any order. In Proceedings

of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14,

page 867–875, New York, NY, USA, 2014. Association for Computing Machinery.

233, 234

[FSV17] Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct hitting sets and

barriers to proving algebraic circuits lower bounds. STOC 2017, page 653–664,

New York, NY, USA, 2017. Association for Computing Machinery. 20

[FvzGP10] Jean-Charles Faugère, Joachim von zur Gathen, and Ludovic Perret. Decomposi-

tion of generic multivariate polynomials. In Proceedings of the 2010 International

Symposium on Symbolic and Algebraic Computation, ISSAC ’10, page 131–137,

New York, NY, USA, 2010. Association for Computing Machinery. 13

[Fü09] Martin Fürer. Faster integer multiplication. Proceedings of the Annual ACM

Symposium on Theory of Computing, 39, 01 2009. 3

[Ges16] Fulvio Gesmundo. Gemetric aspects of iterated matrix multiplication. Journal of

Algebra, 461:42–64, 2016. 20

[GG13] Joachim von zur Gathen and Jrgen Gerhard. Modern Computer Algebra. Cam-

bridge University Press, USA, 3rd edition, 2013. 3

[GGKS19] Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determinant equiv-

alence test over finite fields and over Q. In Christel Baier, Ioannis Chatzigian-

nakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Collo-

quium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019,

Patras, Greece, volume 132 of LIPIcs, pages 62:1–62:15. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2019. 24, 94

[GK86] S Goldwasser and J Kilian. Almost all primes can be quickly certified. In Proceed-

ings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC

213

BIBLIOGRAPHY

’86, page 316–329, New York, NY, USA, 1986. Association for Computing Machin-

ery. 3

[GK98] Dima Grigoriev and Marek Karpinski. An Exponential Lower Bound for Depth 3

Arithmetic Circuits. In Proceedings of the Thirtieth Annual ACM Symposium on

the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 577–582,

1998. 231

[GKKS14a] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Ap-

proaching the chasm at depth four. J. ACM, 61(6), dec 2014. 24

[GKKS14b] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Ap-

proaching the Chasm at Depth Four. J. ACM, 61(6):33:1–33:16, 2014. Conference

version appeared in the proceedings of CCC 2013. 231

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arith-

metic circuits: A chasm at depth 3. SIAM Journal on Computing, 45(3):1064–1079,

2016. 231, 233

[GKL11] Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Efficient Reconstruc-

tion of Random Multilinear Formulas. In IEEE 52nd Annual Symposium on Foun-

dations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,

2011, pages 778–787, 2011. 235

[GKP18] Ignacio Garćıa-Marco, Pascal Koiran, and Timothée Pecatte. Polynomial Equiva-

lence Problems for Sum of Affine Powers. In Manuel Kauers, Alexey Ovchinnikov,

and Éric Schost, editors, Proceedings of the 2018 ACM on International Sympo-

sium on Symbolic and Algebraic Computation, ISSAC 2018, New York, NY, USA,

July 16-19, 2018, pages 303–310. ACM, 2018. 11, 18, 204

[GKQ13] Ankit Gupta, Neeraj Kayal, and Youming Qiao. Random Arithmetic Formulas

Can Be Reconstructed Efficiently. In Proceedings of the 28th Conference on Com-

putational Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013,

pages 1–9, 2013. 28, 236

[GKS20] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-

degree polynomials in the non-degenerate case. In Sandy Irani, editor, 61st IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,

NC, USA, November 16-19, 2020, pages 889–899. IEEE, 2020. 236

214

BIBLIOGRAPHY

[GKSS17] Joshua A. Grochow, Mrinal Kumar, Michael E. Saks, and Shubhangi Saraf. To-

wards an algebraic natural proofs barrier via polynomial identity testing. CoRR,

abs/1701.01717, 2017. 20

[GQ21] Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism prob-

lems for tensors, groups, and polynomials I: tensor isomorphism-completeness. In

James R. Lee, editor, 12th Innovations in Theoretical Computer Science Confer-

ence, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs,

pages 31:1–31:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 14

[GQT21] Joshua A. Grochow, Youming Qiao, and Gang Tang. Average-case algorithms for

testing isomorphism of polynomials, algebras, and multilinear forms. In Markus

Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoret-

ical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken,

Germany (Virtual Conference), volume 187 of LIPIcs, pages 38:1–38:17. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 14

[GR00] Dima Grigoriev and Alexander A. Razborov. Exponential Lower Bounds for Depth

3 Arithmetic Circuits in Algebras of Functions over Finite Fields. Appl. Algebra

Eng. Commun. Comput., 10(6):465–487, 2000. Conference version appeared in the

proceedings of FOCS 1998. 231

[Gro12] Joshua Abraham Grochow. Symmetry and equivalence relations in classical and

geometric complexity theory. PhD thesis, Department of Computer Science, The

University of Chicago, Chicago, Illinois, 2012. 6, 8, 20, 21, 50, 198

[GS19] Nikhil Gupta and Chandan Saha. On the symmetries of and equivalence test

for design polynomials. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter

Katoen, editors, 44th International Symposium on Mathematical Foundations of

Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume

138 of LIPIcs, pages 53:1–53:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2019. 18, 72

[GST20] Nikhil Gupta, Chandan Saha, and Bhargav Thankey. A super-quadratic lower

bound for depth four arithmetic circuits. In Proceedings of the 35th Computational

Complexity Conference, CCC ’20, Dagstuhl, DEU, 2020. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik. 19, 231

215

BIBLIOGRAPHY

[GST22] Nikhil Gupta, Chandan Saha, and Bhargav Thankey. Equivalence test for read-

once arithmetic formulas. Electronic Colloquium on Computational Complexity

(ECCC), 2022. https://eccc.weizmann.ac.il/report/2022/099/. 11, 17, 18,

29, 38, 126, 203, 204

[GT20] Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc.

Comput. Complex., 29(2):9, 2020. 9

[Gup14] Ankit Gupta. Algebraic geometric techniques for depth-4 pit & sylvester-gallai

conjectures for varieties. Electron. Colloquium Comput. Complex., 21:130, 2014.

233

[Gup17] Nikhil Gupta. Towards a characterization of the symmetries of the nisan-wigderson

polynomial family. Master’s thesis, Indian Institute of Science, 2017. iv, 21, 23,

24, 31, 33, 73, 75, 76, 83, 84, 198

[Gut16] Larry Guth. Polynomial Methods in Combinatorics. University Lecture Series.

American Mathematical Society, 2016. 2

[GV88] D. Yu. Grigor’ev and N. N. Vorobjov. Solving systems of polynomial inequalities

in subexponential time. J. Symb. Comput., 5(1–2):37–64, feb 1988. 13

[Hal03] Brian C Hall. Lie Groups, Lie Algebras and Representations: An Elementary

introduction. Graduate Texts in Mathematics. Springer, 2003. 51

[Har70] R. A. Harshman. Foundations of the PARAFAC procedure: Models and condi-

tions for an ”explanatory” multi-modal factor analysis. UCLA Working Papers in

Phonetics, 16:1–84, 1970. 11

[H̊as90] Johan H̊astad. Tensor Rank is NP-Complete. J. Algorithms, 11(4):644–654, 1990.

235

[HH91] Thomas R. Hancock and Lisa Hellerstein. Learning read-once formulas over fields

and extended bases. In Manfred K. Warmuth and Leslie G. Valiant, editors,

Proceedings of the Fourth Annual Workshop on Computational Learning Theory,

COLT 1991, Santa Cruz, California, USA, August 5-7, 1991, pages 326–336. Mor-

gan Kaufmann, 1991. 27, 29

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (ex-

tended abstract). In Proceedings of the Twelfth Annual ACM Symposium on Theory

216

https://eccc.weizmann.ac.il/report/2022/099/

BIBLIOGRAPHY

of Computing, STOC ’80, page 262–272, New York, NY, USA, 1980. Association

for Computing Machinery. 233

[Hüt16] Jesko Hüttenhain. The Stabilizer of Elementary Symmetric Polynomials. CoRR,

abs/1607.08419, 2016. 21

[HvdH21] David Harvey and Joris van der Hoeven. Integer multiplication in time O(nlog n).

Annals of Mathematics, 193(2):563 – 617, 2021. 3

[HW99] Ming-Deh Huang and Yiu-Chung Wong. Solvability of systems of polynomial

congruences modulo a large prime. Comput. Complex., 8(3):227–257, dec 1999. 13

[HY11] Pavel Hrubeš and Amir Yehudayoff. Arithmetic complexity in ring extensions.

Theory of Computing, 7:119–129, 01 2011. 4, 5

[Ier89] D. Ierardi. Quantifier elimination in the theory of an algebraically-closed field. In

Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,

page 138–147, New York, NY, USA, 1989. Association for Computing Machinery.

13

[IQ19] Gábor Ivanyos and Youming Qiao. Algorithms Based on *-Algebras, and Their

Applications to Isomorphism of Polynomials with One Secret, Group Isomorphism,

and Polynomial Identity Testing. SIAM J. Comput., 48(3):926–963, 2019. Confer-

ence version appeared in the proceedings of SODA 2018. 14

[IRS12] Gábor Ivanyos, Lajos Rónyai, and Josef Schicho. Splitting full matrix algebras

over algebraic number fields. Journal of Algebra, 354:211–223, 2012. 71

[Jan08] Milan Janjić. A proof of generalized laplace’s expansion theorem. Bull. Soc. Math.

Banja Luka, 2008. 151

[Joh86] David S. Johnson. The np-completeness column: An ongoing guide. J. Algorithms,

7(2):289–305, 1986. 200

[Kal85] K. Kalorkoti. A Lower Bound for the Formula Size of Rational Functions. SIAM

J. Comput., 14(3):678–687, 1985. 24, 230

[Kal87] E. Kaltofen. Single-factor hensel lifting and its application to the straight-line

complexity of certain polynomials. In Proceedings of the Nineteenth Annual ACM

Symposium on Theory of Computing, STOC ’87, page 443–452, New York, NY,

USA, 1987. Association for Computing Machinery. 3

217

BIBLIOGRAPHY

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs. In

Randomness and Computation, pages 375–412. JAI Press, 1989. 3

[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equiva-

lence problem. In Dana Randall, editor, Proceedings of the Twenty-Second Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, Cal-

ifornia, USA, January 23-25, 2011, pages 1409–1421. SIAM, 2011. 11, 15, 18, 36,

53, 62, 63

[Kay12] Neeraj Kayal. Affine projections of polynomials: extended abstract. In Proceedings

of the 44th Symposium on Theory of Computing Conference, STOC 2012, New

York, NY, USA, May 19 - 22, 2012, pages 643–662, 2012. iv, 6, 13, 17, 23, 24, 52,

61, 199, 201

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity

tests means proving circuit lower bounds. In Proceedings of the Thirty-Fifth Annual

ACM Symposium on Theory of Computing, STOC ’03, page 355–364, New York,

NY, USA, 2003. Association for Computing Machinery. 233

[KL89] Dexter Kozen and Susan Landau. Polynomial decomposition algorithms. Journal

of Symbolic Computation, 7(5):445–456, 1989. 13

[KLSS14] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. Super-

polynomial lower bounds for depth-4 homogeneous arithmetic formulas. STOC ’14,

page 119–127, New York, NY, USA, 2014. Association for Computing Machinery.

231

[KLSS17] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Expo-

nential Lower Bound for Homogeneous Depth Four Arithmetic Formulas. SIAM

J. Comput., 46(1):307–335, 2017. Conference version appeared in the proceedings

of FOCS 2014. 19, 231

[KLZ96] Dexter Kozen, Susan Landau, and Richard Zippel. Decomposition of algebraic

functions. J. Symb. Comput., 22:235–246, 01 1996. 13

[KMSV13] Zohar S. Karnin, Partha Mukhopadhyay, Amir Shpilka, and Ilya Volkovich. Deter-

ministic identity testing of depth-4 multilinear circuits with bounded top fan-in.

SIAM Journal on Computing, 42(6):2114–2131, 2013. 233

218

BIBLIOGRAPHY

[KNS19] Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factor-

ization and reconstruction of low width algebraic branching programs. Comput.

Complex., 28(4):749–828, 2019. iv, 17, 24, 201, 236

[KNST19] Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction

of full rank algebraic branching programs. ACM Trans. Comput. Theory, 11(1):2:1–

2:56, 2019. Conference version appeared in the proceedings of CCC 2017. 12, 17,

20, 24, 53, 60, 61, 62, 63, 66

[Koe21] W. Koepf. Computer Algebra: An Algorithm-Oriented Introduction. Springer Un-

dergraduate Texts in Mathematics and Technology. Springer International Pub-

lishing, 2021. 3

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor.

Comput. Sci., 448:56–65, 2012. 231

[KS01] Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing

of multivariate polynomials. In Proceedings on 33rd Annual ACM Symposium on

Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 216–223,

2001. 233, 234

[KS06] Adam R. Klivans and Amir Shpilka. Learning Restricted Models of Arithmetic

Circuits. Theory of Computing, 2(10):185–206, 2006. 235

[KS07a] Zohar Karnin and Amir Shpilka. Black box polynomial identity testing of general-

ized depth-3 arithmetic circuits with bounded top fan-in. Combinatorica, 31:333–

364, 01 2007. 233

[KS07b] Zohar Karnin and Amir Shpilka. Black box polynomial identity testing of general-

ized depth-3 arithmetic circuits with bounded top fan-in. Combinatorica, 31:333–

364, 01 2007. 235

[KS07c] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits.

Computational Complexity, 16:115–138, 01 2007. 233

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth

3 circuits. In 2009 50th Annual IEEE Symposium on Foundations of Computer

Science, pages 198–207, 2009. 233

219

BIBLIOGRAPHY

[KS12] Neeraj Kayal and Chandan Saha. On the sum of square roots of polynomials and

related problems. ACM Trans. Comput. Theory, 4(4), nov 2012. 3

[KS14a] Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arithmetic

formulas: it’s all about the top fan-in. In Symposium on Theory of Computing,

STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 136–145, 2014.

19, 231

[KS14b] Mrinal Kumar and Shubhangi Saraf. Superpolynomial lower bounds for general

homogeneous depth 4 arithmetic circuits. In Automata, Languages, and Program-

ming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July

8-11, 2014, Proceedings, Part I, pages 751–762, 2014. 231

[KS16a] Neeraj Kayal and Chandan Saha. Lower Bounds for Depth-Three Arithmetic

Circuits with small bottom fanin. Computational Complexity, 25(2):419–454, 2016.

Conference version appeared in the proceedings of CCC 2015. 19

[KS16b] Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low algebraic

rank. In 31st Conference on Computational Complexity, CCC 2016, May 29 to

June 1, 2016, Tokyo, Japan, pages 34:1–34:27, 2016. 19, 233

[KS16c] Mrinal Kumar and Shubhangi Saraf. Sums of products of polynomials in few

variables: Lower bounds and polynomial identity testing. In Proceedings of the

31st Conference on Computational Complexity, CCC ’16, Dagstuhl, DEU, 2016.

233

[KS17a] Mrinal Kumar and Ramprasad Saptharishi. An exponential lower bound for ho-

mogeneous depth-5 circuits over finite fields. In 32nd Computational Complexity

Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, pages 31:1–31:30, 2017. 19,

232

[KS17b] Mrinal Kumar and Shubhangi Saraf. On the Power of Homogeneous Depth 4

Arithmetic Circuits. SIAM J. Comput., 46(1):336–387, 2017. Conference version

appeared in the proceedings of FOCS 2014. 231

[KS19] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous

depth three circuits. In Moses Charikar and Edith Cohen, editors, Proceedings of

the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,

Phoenix, AZ, USA, June 23-26, 2019, pages 413–424. ACM, 2019. 236

220

BIBLIOGRAPHY

[KS21a] Pascal Koiran and Subhayan Saha. Black Box Absolute Reconstruction for Sums

of Powers of Linear Forms. CoRR, abs/2110.05305, 2021. 18

[KS21b] Pascal Koiran and Mateusz Skomra. Derandomization and absolute reconstruction

for sums of powers of linear forms. Theor. Comput. Sci., 887:63–84, 2021. 18

[KS22] Deepanshu Kush and Shubhangi Saraf. Improved low-depth set-multilinear circuit

lower bounds. 2022. CCC ’22. 19

[KSS14] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial

lower bound for regular arithmetic formulas. In Symposium on Theory of Comput-

ing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 146–153,

2014. 18, 19, 231

[KST16] Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An Almost Cubic Lower

Bound for Depth Three Arithmetic Circuits. In 43rd International Colloquium on

Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,

Italy, pages 33:1–33:15, 2016. 19, 231

[KT90] Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By

Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization,

Separation of Numerators and Denominators. J. Symb. Comput., 9(3):301–320,

1990. Conference version appeared in the proceedings of FOCS 1988. 3, 29, 36,

37, 39, 40, 61, 203, 235

[Kum17] Mrinal Kumar. A Quadratic Lower Bound for Homogeneous Algebraic Branching

Programs. In Proceedings of the 32nd Computational Complexity Conference, CCC

’17, pages 19:1–19:16, 2017. 230

[KUW85] Richard Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is

in random nc. volume 6, pages 22–32, 12 1985. 9

[Lam04] T. Y. Lam. Introduction To Quadratic Forms Over Fields. American Mathematical

Society, 2004. 70

[LG12] François Le Gall. Faster algorithms for rectangular matrix multiplication. In 2012

IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 514–

523, 2012. 2

221

BIBLIOGRAPHY

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings

of the 39th International Symposium on Symbolic and Algebraic Computation, IS-

SAC ’14, page 296–303, New York, NY, USA, 2014. Association for Computing

Machinery. 2

[Lip89] Richard J. Lipton. New directions in testing. In Distributed Computing And

Cryptography, Proceedings of a DIMACS Workshop, Princeton, New Jersey, USA,

October 4-6, 1989, pages 191–202, 1989. 8, 21, 199

[LLL82a] Arjen Lenstra, H. Lenstra, and Lovász László. Factoring polynomials with rational

coefficients. Mathematische Annalen, 261, 12 1982. 3

[LLL82b] Arjen K Lenstra, Hendrik W Lenstra, and László Lovász. Factoring polynomials

with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982. 61, 99

[Lor08] Falko Lorenz. Algebra Volumne 2: Fields with structures, Algebras and advanced

topics. Springer, 2008. 48

[LRA93] S. E. Leurgans, R. T. Ross, and R. B. Abel. A decomposition for three-way arrays.

SIAM Journal on Matrix Analysis and Applications, 14(4):1064–1083, 1993. 11

[LST21] N. Limaye, S. Srinivasan, and S. Tavenas. Superpolynomial lower bounds against

low-depth algebraic circuits. In 2021 IEEE 62nd Annual Symposium on Founda-

tions of Computer Science (FOCS), pages 804–814, Los Alamitos, CA, USA, feb

2021. IEEE Computer Society. 231, 232, 233, 234

[LV03] Richard J. Lipton and Nisheeth K. Vishnoi. Deterministic identity testing for

multivariate polynomials. In Proceedings of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland,

USA, pages 756–760. ACM/SIAM, 2003. 233

[Lá79] Lovász László. On determinants, matchings and random algorithms. volume 79,

pages 565–574, 01 1979. 9

[MM62] Marvin Marcus and Francis May. The permanent function. Canadian Journal of

Mathematics, 14:177–189, 1962. 20, 198

[MNS20] Janaky Murthy, Vineet Nair, and Chandan Saha. Randomized Polynomial-Time

Equivalence Between Determinant and Trace-IMM Equivalence Tests. In Javier

Esparza and Daniel Král’, editors, 45th International Symposium on Mathematical

222

BIBLIOGRAPHY

Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech

Republic, volume 170 of LIPIcs, pages 72:1–72:16. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2020. 17, 26, 202

[MS01] Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory I: an ap-

proach to the P vs. NP and related problems. SIAM J. Comput., 31(2):496–526,

2001. 5

[MS21] Dori Medini and Amir Shpilka. Hitting sets and reconstruction for dense orbits

in vp {e} and ΣΠΣ circuits. In 36th Computational Complexity Conference, CCC

2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume

200 of LIPIcs, pages 19:1–19:27. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2021. v, 10, 16, 18, 27, 28, 203, 205

[Mul07] Ketan Mulmuley. On P vs. NP, Geometric Complexity Theory, and the Flip I: a

high level view. CoRR, abs/0709.0748, 2007. 22

[Mul10] Ketan Mulmuley. Explicit proofs and the flip. CoRR, abs/1009.0246, 2010. 8, 21,

22, 199

[Mul11a] Ketan Mulmuley. Geometric complexity theory vi : The flip via positivity. 2011.

http://ramakrishnadas.cs.uchicago.edu/gct6.pdf. 8

[Mul11b] Ketan Mulmuley. On P vs. NP and geometric complexity theory: Dedicated to Sri

Ramakrishna. J. ACM, 58(2):5:1–5:26, 2011. 22, 199

[MV97] Meena Mahajan and V. Vinay. A combinatorial algorithm for the determinant.

In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA ’97, page 730–738, USA, 1997. Society for Industrial and Applied

Mathematics. 24

[MV18] Daniel Minahan and Ilya Volkovich. Complete derandomization of identity test-

ing and reconstruction of read-once formulas. ACM Trans. Comput. Theory,

10(3):10:1–10:11, 2018. Conference version appeared in the proceedings of CCC

2017. 27, 29, 204, 234, 235

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy

as matrix inversion. In Proceedings of the Nineteenth Annual ACM Symposium

on Theory of Computing, STOC ’87, page 345–354, New York, NY, USA, 1987.

Association for Computing Machinery. 9

223

http://ramakrishnadas.cs.uchicago.edu/gct6.pdf

BIBLIOGRAPHY

[Nai19] Vineet Nair. On Learning and Lower Bound Problems Related to the Iterated Ma-

trix Multiplication Polynomial. PhD thesis, Indian Institute of Science, Bangalore,

2019. 34, 95

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,

49(2):149–167, 1994. 19

[NW97] Noam Nisan and Avi Wigderson. Lower Bounds on Arithmetic Circuits Via Partial

Derivatives. Computational Complexity, 6(3):217–234, 1997. Conference version

appeared in the proceedings of FOCS 1995. 231

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,

2014. 2

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials

(IP): two new families of asymmetric algorithms. In Advances in Cryptology -

EUROCRYPT ’96, International Conference on the Theory and Application of

Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, pages

33–48, 1996. 14

[PG97] Jacques Patarin and Louis Goubin. Asymmetric cryptography with s-boxes. In

Proceedings of the First International Conference on Information and Communica-

tion Security, ICICS ’97, page 369–380, Berlin, Heidelberg, 1997. Springer-Verlag.

12

[Pip22] Nicholas Pippenger. A formula for the determinant, 2022. https://arxiv.org/

abs/2206.00134. 2

[Pot19] Aditya Potukuchi. On the acˆ0[oplus] complexity of andreev’s problem. In Arkadev

Chattopadhyay and Paul Gastin, editors, 39th IARCS Annual Conference on Foun-

dations of Software Technology and Theoretical Computer Science, FSTTCS 2019,

December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 25:1–25:14.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 200

[Rab80] Michael O Rabin. Probabilistic algorithm for testing primality. Journal of Number

Theory, 12(1):128–138, 1980. 3

[Raz06] Ran Raz. Separation of Multilinear Circuit and Formula Size. Theory of Comput-

ing, 2(6):121–135, 2006. Conference version appeared in the proceedings of FOCS

2004. 232

224

https://arxiv.org/abs/2206.00134
https://arxiv.org/abs/2206.00134

BIBLIOGRAPHY

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-

polynomial size. J. ACM, 56(2), apr 2009. 24, 232

[Raz10] Ran Raz. Elusive Functions and Lower Bounds for Arithmetic Circuits. Theory of

Computing, 6(1):135–177, 2010. Conference version appeared in the proceedings

of STOC 2008. 19, 232

[Raz13] Ran Raz. Tensor-Rank and Lower Bounds for Arithmetic Formulas. J. ACM,

60(6):40:1–40:15, 2013. Conference version appeared in the proceedings of STOC

2010. 232

[Ron87] L. Ronyai. Simple algebras are difficult. In Proceedings of the Nineteenth Annual

ACM Symposium on Theory of Computing, STOC ’87, page 398–408, New York,

NY, USA, 1987. Association for Computing Machinery. 35, 116, 117

[Rón90] Lajos Rónyai. Computing the Structure of Finite Algebras. J. Symb. Comput.,

9(3):355–373, 1990. 71

[RR97] Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer

and System Sciences, 55(1):24–35, 1997. 20

[RY09] Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant Depth

Multilinear Circuits. Computational Complexity, 18(2):171–207, 2009. Conference

version appeared in the proceedings of CCC 2008. 24, 232

[Sap15] Ramprasad Saptharishi. A selection of known lower bounds in arithmetic circuits,

2015. Github survey. 232

[Sax06] Nitin Saxena. Morphisms of rings and applications to complexity. PhD thesis,

Indian Institute of Technology, Kanpur, 2006. 13, 14

[Sax08] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In Proceedings

of the 35th International Colloquium on Automata, Languages and Programming -

Volume Part I, ICALP ’08, page 60–71, Berlin, Heidelberg, 2008. Springer-Verlag.

233

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial

Identities. J. ACM, 27(4):701–717, 1980. 9, 60, 81

[Ser73] Jean-Pierre Serre. A course in arithmetic. Springer, 1973. 14, 27, 70

225

BIBLIOGRAPHY

[Sha92] Adi Shamir. Ip = pspace. J. ACM, 39(4):869–877, oct 1992. 2, 3, 9

[Shi16] Yaroslav Shitov. How hard is the tensor rank? arXiv, abs/1611.01559, 2016. 235

[Sho05] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-

bridge University Press, USA, 2005. 3

[Shp09] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication

gates. SIAM J. Comput., 38(6):2130–2161, 2009. 235

[Sin16] Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In Pro-

ceedings of the 31st Conference on Computational Complexity, CCC ’16, Dagstuhl,

DEU, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 235

[Sin22] Gaurav Sinha. Efficient reconstruction of depth three arithmetic circuits with top

fan-in two. In Mark Braverman, editor, 13th Innovations in Theoretical Com-

puter Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley,

CA, USA, volume 215 of LIPIcs, pages 118:1–118:33. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2022. 235

[SS71] Arnold Schönhage and Volker Strassen. Schnelle multiplikation großer zahlen.

Computing, 7:281–292, 1971. 2, 3

[SS77] R. Solovay and V. Strassen. A fast monte-carlo test for primality. SIAM J. Com-

put., 6(1):84–85, mar 1977. 3

[SS97] Victor Shoup and Roman Smolensky. Lower Bounds for Polynomial Evaluation

and Interpolation Problems. Computational Complexity, 6(4):301–311, 1997. Con-

ference version appeared in the proceedings of FOCS 1991. 232

[SS11] Nitin Saxena and C. Seshadhri. An almost optimal rank bound for depth-3 iden-

tities. SIAM Journal on Computing, 40(1):200–224, 2011. 233

[SS12] Nitin Saxena and C. Seshadhri. Blackbox identity testing for bounded top-

fanin depth-3 circuits: The field doesn’t matter. SIAM Journal on Computing,

41(5):1285–1298, 2012. 233

[SS13] Nitin Saxena and C. Seshadhri. From sylvester-gallai configurations to rank

bounds: Improved blackbox identity test for depth-3 circuits. J. ACM, 60(5),

oct 2013. 233

226

BIBLIOGRAPHY

[ST17] O. Svensson and J. Tarnawski. The matching problem in general graphs is in quasi-

nc. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science

(FOCS), pages 696–707, Los Alamitos, CA, USA, October 2017. IEEE Computer

Society. 9

[ST21] Chandan Saha and Bhargav Thankey. Hitting sets for orbits of circuit classes and

polynomial families. In Approximation, Randomization, and Combinatorial Opti-

mization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18,

2021, University of Washington, Seattle, Washington, USA (Virtual Conference),

volume 207 of LIPIcs, pages 50:1–50:26. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2021. 6, 9, 10, 16, 27, 205

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numer. Math.,

13(4):354–356, aug 1969. 2

[Str73a] Volker Strassen. Die berechnungskomplexiät von elementarysymmetrischen funk-

tionen und von iterpolationskoeffizienten. Numerische Mathematik, 20:238–251,

1973. 7

[Str73b] Volker Strassen. Die berechnungskomplexität von elementarsymmetrischen funk-

tionen und von interpolationskoeffizienten. Numerische Mathematik, 20:238–251,

1973. 230

[Str73c] Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte

Mathematik, 264:184–202, 1973. 4

[SV10] Amir Shpilka and Ilya Volkovich. On the relation between polynomial identity

testing and finding variable disjoint factors. In Samson Abramsky, Cyril Gavoille,

Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors,

Automata, Languages and Programming, 37th International Colloquium, ICALP

2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I, volume 6198 of

Lecture Notes in Computer Science, pages 408–419. Springer, 2010. 235

[SV14] Amir Shpilka and Ilya Volkovich. On Reconstruction and Testing of Read-Once

Formulas. Theory of Computing, 10(18):465–514, 2014. Conference version ap-

peared in the proceedings of STOC 2008. 27, 204, 235

227

BIBLIOGRAPHY

[SV15] Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Comput.

Complex., 24(3):477–532, 2015. Conference versions appeared in the proceedings

of STOC 2008 and APPROX-RANDOM 2009. 27

[SV17] Shubhangi Saraf and Ilya Volkovich. Black-box identity testing of depth-4 multi-

linear circuits. Combinatorica, 38, 12 2017. 233

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of char-

acteristic zero. Computational Complexity, 10(1):1–27, 2001. Conference version

appeared in the proceedings of CCC 1999. 24, 231

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results

and open questions. Foundations and Trends in Theoretical Computer Science,

5(3-4):207–388, 2010. 232, 234

[Tao13] Terence Tao. Algebraic combinatorial geometry: the polynomial method in arith-

metic combinatorics, incidence combinatorics, and number theory. EMS Surveys

in Mathematical Sciences, 1, 10 2013. 2

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf.

Comput., 240:2–11, 2015. Conference version appeared in the proceedings of MFCS

2013. 231

[Thi98] Thomas Thierauf. The isomorphism problem for read-once branching programs

and arithmetic circuits. Chicago J. Theor. Comput. Sci., 1998, 1998. 13

[Val79] Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11h An-

nual ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta,

Georgia, USA, pages 249–261, 1979. 4, 5

[Val82] L.G. Valiant. Reducibility by algebraic projections. de L’Enseignement Mathema-

tique: Logic and Algorithmic, pages 365 – 380, 1982. 4

[Vol16] Ilya Volkovich. A Guide to Learning Arithmetic Circuits. In Proceedings of the

29th Conference on Learning Theory, COLT 2016, New York, USA, June 23-26,

2016, pages 1540–1561, 2016. 9, 234

[Vol17] Ilya Volkovich. On some computations on sparse polynomials. In Klaus Jansen,

José D. P. Rolim, David Williamson, and Santosh S. Vempala, editors, Approx-

imation, Randomization, and Combinatorial Optimization. Algorithms and Tech-

228

BIBLIOGRAPHY

niques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, vol-

ume 81 of LIPIcs, pages 48:1–48:21. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2017. 235

[von90] Joachim von zur Gathen. Functional decomposition of polynomials: The wild case.

Journal of Symbolic Computation, 10(5):437–452, 1990. 13

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel

Computation of Polynomials Using Few Processors. SIAM J. Comput., 12(4):641–

644, 1983. 231

[vzG90] Joachim von zur Gathen. Functional decomposition ofpolynomials: the tame case.

Journal of Symbolic Computation, 9(3):281–299, 1990. Computational algebraic

complexity editorial. 13

[Wal13] Lars Ambrosius Wallenborn. Computing the hilbert symbol, quadratic form equiv-

alence and integer factoring. Diploma thesis, Rheinischen Friedrich-Wilhelms-

Universität Bonn, 2013. 71

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-

winograd. STOC ’12, page 887–898, New York, NY, USA, 2012. Association for

Computing Machinery. 2

[Wit37] Ernst Witt. Theorie der quadratischen Formen in beliebigen Körpern. J. Reine

Angew. Math., 176:31–44, 1937. 16, 27

[Yau16] Morris Yau. Almost cubic bound for depth three circuits in VP. Electronic Collo-

quium on Computational Complexity (ECCC), 23:187, 2016. 231

[Ye94] Yinyu Ye. Combining binary search and newton’s method to compute real roots

for a class of real functions. J. Complexity, 10(3):271–280, 1994. 93

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and

Algebraic Computation, EUROSAM ’79, An International Symposiumon Symbolic

and Algebraic Computation, Marseille, France, June 1979, Proceedings, pages 216–

226, 1979. 9, 60, 81

229

Appendix A

A survey of results on lower bounds,

PIT and reconstruction

In this appendix, we present a brief survey of the progress made in the three most important

problems in algebraic complexity theory, namely lower bounds, polynomial identity testing

(PIT) and reconstruction of arithmetic circuits. We have given an introduction to these three

problems along with their connections with equivalence testing problem in Sections 1.1.3 - 1.1.5.

A.1 Lower bounds

Lower bounds for general circuits, formulas, ABPs. The best known lower bound for

general arithmetic circuits is super-linear. [Str73b, BS83] showed that any arithmetic circuit

computing the d-th power symmetric polynomial or the d-th elementary symmetric polynomial

in n variables requires size Ω(n log d). The situation is slightly better for arithmetic formulas,

for which a quadratic lower bound is known [Kal85, CKSV20]. A quadratic lower bound on the

size of a ‘homogeneous’ algebraic branching program (ABP) (see Definition 2.36) computing

the n-th power symmetric polynomial in n variables was given in [Kum17]. Later, [CKSV20]

showed that any ‘layered’ ABP computing the same polynomial should have size Ω(n2).

As proving good lower bounds for general arithmetic circuits, formulas, or ABPs seem very

difficult, it is natural to focus on the restricted classes of arithmetic circuits. One can hope that

proving strong lower bounds for such restricted classes might also give us a handle on showing

good lower bounds for general arithmetic circuits. One such natural restricted class is the class

of low-depth circuits. It is known because of the depth reduction results in ACT that to prove

super-polynomial lower bounds on the size of general arithmetic circuits, it is sufficient to prove

‘strong enough’ lower bounds on the size of low-depth arithmetic circuits.

230

Depth reduction results. [VSBR83] showed that if an n-variate degree d polynomial f is

computed by an arithmetic ciruit of size s then f can also be computed by another arithmetic

circuit of size poly(s, d) and depth O(log d(log s+ log d)). Building on this, Agrawal and Vinay

showed in [AV08] that if a degree d polynomial f is computed by an arithmetic circuit of

size 2o(d+d log n
d
) then it can also be computed by a depth 4 circuit (i.e., ΣΠΣΠ circuit) of size

2o(d+d log n
d
). This result was further refined in [Koi12, Tav15] and Tavenas showed that if f

having degree d = poly(n) is computed by an arithmetic circuit of size s then it can also be

computed by a depth 4 circuit of size 2O(
√

d log(sd) logn), where the fan-in of every × gate in

the resulting depth 4 circuit is upper bounded by O(
√
d). These results hold over any field

and if f is homogeneous then the resulting depth 4 circuit is also homogeneous 1. Further,

[GKKS16, Tav15] showed that if a degree d = poly(n) polynomial f is computed by a size-

s arithmetic circuit, it can also be computed by a depth 3 circuit (i.e., ΣΠΣ circuit) of size

2O(
√
d log s logn). This result holds only over the fields of characteristic zero and if f is homogeneous

then the resulting depth 3 circuit need not be homogeneous.

These results say that to show that the permanent of an n × n symbolic matrix is not

computed by arithmetic circuits of size poly(n), it is sufficient to show that every homogeneous

ΣΠ[O(
√
n)]ΣΠ[O(

√
n)] circuit (i.e., a depth 4 circuit where the fan-in of every multiplication gate

is O(
√
n)) or a depth 3 circuit (over a field of characteristic zero) for the permanent needs size

2ω(
√
n logn). This naturally motivates the study of lower bounds for homogeneous depth 4 and

(non-homogeneous) depth 3 arithmetic circuits.

Lower bounds for constant-depth circuits before [LST21]. Depth 2 circuit (i.e., ΣΠ

circuit) is the simplest low-depth arithmetic circuit. Any polynomial containing exponentially

many monomials requires ΣΠ circuits of exponential size. Thus, the smallest interesting class

from the viewpoint of lower bounds is that of ΣΠΣ circuits. Nisan-Wigderson gave an exponen-

tial lower bound on the size of homogeneous ΣΠΣ circuit over any field in [NW97]. Thereafter,

an exponential lower bound for ΣΠΣ circuits over finite fields was given in [GK98, GR00].

But, before [LST21], the best known lower bound for general ΣΠΣ circuits over fields of char-

acteristic zero was almost cubic [KST16, BLS16, Yau16], which improved a quadratic lower

bound given in [SW01]. The situation was similar for the depth 4 circuits. A long line of

research converged to a 2Ω(
√
n logn) lower bound for homogeneous depth 4 circuits over any field

[GKKS14b, KSS14, FLMS15, KS14a, KLSS14, KS14b, KLSS17, KS17b]. Before [LST21], the

best known lower bound on the size of a general depth 4 circuit was super-quadratic [GST20].

1An arithmetic circuit C is said to be homogeneous is every node in C computes a homogeneous polynomial.

231

An exponential lower bound for homogeneous depth 5 circuits over small finite fields was given

in [KS17a]. Before [LST21], the best known lower bound for arithmetic circuits having product-

depth1 ∆ = O(log n), was O(∆n1+ 1
∆) [SS97, Raz10].

A breakthrough on constant-depth arithmetic circuits by [LST21]. Last year, Limaye,

Srinivasan and Tavenas gave the first super-polynomial lower bound for unrestricted arithmetic

circuits of constant-depth. This was a quantum leap in the status of lower bound for constant-

depth arithmetic circuits. In particular, they showed that for N ∈ N, d = o(logN), if C is an

arithmetic circuit of product-depth ∆ which computes IMMn,d, where N = n2d, then the size

of C is greater than Ndexp(−O(∆))
. Their result holds over any field having characteristic equal to

0 or greater than d.

Lower bounds for mutlilinear circuits. An arithmetic circuit C is said to be multilinear

if every gate in C computes a multilinear polynomial2. Raz showed in [Raz13] that for d =

O(logn
log logn

), if an n-variate degree d polynomial f is computed by a polynomial size arithmetic

formula then f can also be computed by a polynomial size set-multilinear circuit. Thus, a

super-polynomial lower bound on the size of set-multilinear circuits computing a low-degree

polynomial implies a super-polynomial lower bound on the size of arithmetic formulas.

In [Raz09], Raz gave a super-polynomial lower bound for arithmetic formulas computing

the determinant or the permanent. Thereafter, he showed in [Raz06] that there exists a multi-

linear polynomial f , which can be computed by a multilinear circuit of size poly(n) but every

multilinear formula computing f requires size nΩ(logn), which implies a super-polynomial sep-

aration between multilinear circuits and multilinear formulas. A super-polynomial separation

between multilinear formulas and multilinear branching programs was given in [DMPY12]. Raz

and Yehudayoff in [RY09] gave a super-polynomial separation between multilinear circuits of

depths ∆ and ∆ + 1, where ∆ is a constant. [CELS18] later improved this result and gave

exponential separation.

We direct interested readers to [SY10, CKW11, Sap15] for a detailed exposure to lower

bound results in ACT.

1The product-depth of an arithmetic circuit C is the maximum number of product gates on any path from
an input gate to the output gate of C.

2A polynomial is said to be multilinear if the degree of every variable in this polynomial is at most 1.

232

A.2 Polynomial identity testing

Connection between lower bounds and PIT. It was shown in [KI03] that if a polynomial

time algorithm exists for PIT over integers then either NEXP ̸⊆ P/poly or the permanent is not

computed by a polynomial size arithmetic circuit. [KI03] also showed a (partial) converse - if

there exists an exponential time computable multilinear polynomial, which is not computed by

polynomial size arithmetic circuits then PIT has a quasi-polynomial time deterministic algo-

rithm. It was shown in [HS80, Agr05] that if a polynomial time deterministic black-box PIT

algorithm exists then there is a polynomial f , whose coefficients can be computed in PSPACE

and any arithmetic circuit for f has exponential size. Results analogous to [KI03] relating PIT

and lower bounds for bounded depth arithmetic circuits are also known [DSY10, CKS18].

PIT for constant-depth circuits before [LST21]. A tight connection between PIT and

lower bounds makes the task of coming up with a deterministic polynomial time PIT algo-

rithm very challenging. Thus, researchers have focused on restricted models of computations

like low-depth arithmetic circuits. Polynomial time black-box PIT algorithms are known for

depth 2 circuits [BOT88, KS01, LV03]. Before [LST21], designing efficient sub-exponential

PIT algorithm even for depth 3 circuits appeared very demanding. It follows from the depth

reduction results that polynomial time black-box PIT for depth 4 circuits or depth 3 circuits

imply a sub-exponential time deterministic black-box PIT algorithm for general arithmetic

circuits (see [AV08, GKKS16]). Thus, PIT for special cases of depth 3 and depth 4 arith-

metic circuits was studied. In [Sax08], a polynomial time white-box PIT algorithm for depth

3 powering circuits was given. A black-box PIT algorithm for the same model was given

by [FSS14], which runs in quasi-polynomial time for arbitrary depth 3 powering circuit but

runs in polynomial time if the fan-in of topmost gate (or the top fan-in) of such a circuit

is a constant. PIT for depth 3 circuits with bounded top fan-in has also received a lot of

attention and after lot of work, a polynomial time black-box PIT algorithm is known when

the top fan-in is a constant [DS07, KS07a, KS07c, KS09, AM10, SS11, SS12, SS13]. A poly-

nomial time black-box PIT algorithm was given in [ASSS16] for depth 3 circuits where the

transcendence degree of the set of polynomials computed by product gates is a constant. PIT

for some restricted classes of depth 4 circuits have also been studied. Polynomial time algo-

rithm for black-box PIT is known for multilinear depth 4 circuits with constant top fan-in

[AMV15, KMSV13, SV17]. Efficient PIT algorithms are also known for depth 4 circuits with

other constraints (see [BMS13, Gup14, KS16c, KS16b]).

233

A breakthrough on PIT for constant-depth circuits [LST21]. The first sub-exponential

time black-box PIT algorithm for constant-depth arithmetic circuits was given in [LST21],

which appeared a hard nut to crack before this work. This PIT algorithm was achieved by

combining the super-polynomial lower bound for constant-depth circuits given in [LST21] with

a result in [CKS18].

PIT for constant-read arithmetic circuits/ABPs. PIT algorithms have also been studied

for models of computations, where a variable is read constantly many times. Polynomial time

deterministic black-box PIT algorithms are known for read-once arithmetic formulas (ROFs)

[MV18], for constant-depth constant-read multilinear arithmetic formulas [AMV15] and for

constant-depth constant-occur formulas [ASSS16]. Quasi-polynomial deterministic black-box

PIT algorithms for read-once oblivious algebraic branching programs (ROABPs) with known

variable ordering, for multilinear unknown variable order ROABPs, and for unknown variable

order ROABPs were given in [FS13], [FSS14] and [AGKS14] respectively.

A.3 Arithmetic circuit reconstruction

Relation of circuit reconstruction with lower bounds and PIT. It was shown in [FK09]

that a randomized polynomial time reconstruction algorithm for a circuit class C implies that

there exists a polynomial f , whose evaluations on Boolean inputs can be computed in BPEXP

but f can not be computed by polynomial size circuits from C . After that, [Vol16] showed

that if there exists a deterministic polynomial time reconstruction algorithm for C then there

exists a multilinear polynomial f computable in exponential time such that any circuit from

C that computes f requires exponential size. Observe that a deterministic polynomial time

reconstruction algorithm for C immediately implies a deterministic black-box PIT algorithm

for C . In several cases, deterministic black-box PIT algorithms have led to the discovery of

efficient reconstruction algorithms (see Chapter 5 of [SY10]). Thus, designing polynomial time

reconstruction algorithms (randomized or deterministic) for general arithmetic circuits is a very

challenging task. Similar to PIT and lower bounds, the natural next step in this situation is

to study reconstruction of restricted classes of arithmetic circuits. We give a brief summary of

two types of reconstruction algorithms here: worst-case algorithms, which work for all circuits

in a circuit class C and average-case algorithms, which work for almost all circuits in C .

Worst-case reconstruction algorithms. Deterministic polynomial time algorithms for re-

construction of ΣΠ circuits are known [BOT88, KS01]. It is easy to see from the depth reduction

results that polynomial time reconstruction algorithms for depth 3 or depth 4 circuits would im-

234

mediately imply sub-exponential time reconstruction algorithms for general circuits. Thus, the

next step to focus on sub-classes of depth 3 and depth 4 circuits. One such sub-class is ΣΠΣ(k)

circuits, where k is the top fan-in of a depth 3 circuit. When k = 1, the reconstruction problem is

same as black-box polynomial factorisation problem, for which a randomized polynomial time

algorithm is known [KT90]. A randomized poly(n, |F|) time (respectively, quasi-polynomial

(n, d, |F|) time)1 algorithm was given by Shpilka [Shp09] for multilinear ΣΠΣ(2) (respectively,

ΣΠΣ(2)) circuits2. This result was later derandomized and extended for constant value of k in

[KS07b]. As the running time of these algorithms depend on |F|, these algorithms are efficient

only over small finite fields. The first polynomial time randomized algorithm for ΣΠΣ(2) cir-

cuits over fields of characteristic zero was given in [Sin16]. Recently, [Sin22] gave a randomized

reconstruction algorithm for ΣΠΣ(2) circuits, where the running time is poly(n, d, log |F|).
Apart from ΣΠΣ(k), reconstuction algorithms for other sub-classes of ΣΠΣ circuits have

also been studied. [H̊as90] and [Shi16] proved that reconstructing a smallest set-multilinear

depth 3 circuit and a smallest depth 3 powering circuit is NP-hard respectively. Random-

ized polynomial time reconstruction algorithms for set-multilinear depth 3 circuits are known

[BBB+00, KS06], where the outputs are read-once algebraic branching programs (ROABPs)

and hence these algorithms are improper. [KS06] also gave a poly(m,n, 2d) algorithm to recon-

struct a ΣΠΣ circuit having m multiplication gates. Recently, [BSV21] gave polynomial time

randomized algorithms for reconstructing set-multilinear ΣΠΣ(k) circuits, depth 3 powering

circuits with top fan-in k and multilinear ΣΠΣ(k) circuits. In these algorithms, k is a constant.

Their algorithms are deterministic over R and C. Reconstruction algorithms are also studied for

multilinear ΣΠΣΠ(k) class, where k is the top fan-in. A polynomial time algorithm for k = 1

was given in [SV10]. A deterministic polynomial time reconstruction algorithm for k = 2 was

given in [Vol17] and a randomized polynomial time reconstuction algorithm for random mul-

tilinear ΣΠΣΠ(2) circuits was given in [GKL11]. Recently, a deterministic quasi-polynomial

reconstruction algorithm is given for multilinear ΣΠΣΠ(k) is given in [BSV20] when k is a

constant. The running time of their algorithm depends on |F|, hence the algorithm is efficient

only over small fields. A polynomial time reconstruction algorithm for read-once arithmetic

formulas was given in [MV18], which improved the results in [SV14]. A quasi-polynomial time

deterministic algorithm for reconstructing ROABPs was given in [FS13], for which a random-

ized polynomial time algorithm was given by [KS06].

1Unless otherwise specified, n and d denote the number of variables and the degree of the underlying
polynomial respectively.

2The algorithm is proper for multilinear ΣΠΣ(2) circuits but in case of general ΣΠΣ(2) circuits, the algorithm
either outputs a ΣΠΣ(2) circuit or a depth 3 circuit of quasi-polynomial size, depending upon the rank of the
underlying polynomial.

235

Non-degenerate reconstruction algorithms. As reconstructing an arithmetic circuit in

the worst-case is very challenging and as some of its instances are NP-hard, it is natural to

consider average-case reconstruction algorithms. An average-case algorithm for a class C re-

constructs circuits from C satisfying some non-degeneracy conditions. These conditions are

satisfied with high probability by circuits chosen randomly from C according to some distri-

bution and thus such algorithms work for almost all circuits in C . As seen above, efficient

(worst-case) reconstruction algorithms for depth 3 and multilinear depth 4 circuits are known

only when the top fan-in is a constant. [KS19] gave a randomized polynomial time algorithm

to reconstruct non-degenerate homogeneous depth 3 circuits. Their algorithm handles circuits

with large top fain-in. In [BGKS21], a polynomial time randomized algorithm for reconstructing

non-degenerate generalized depth 3 circuits was given. A randomized polynomial time recon-

struction algorithm for non-degenerate sum of low-degree polynomials1 was given in [GKS20]. A

randomized algorithm for reconstructing random n-variate width w ABPs was given in [KNS19],

where n ≥ 4w2. [GKQ13] gave a randomized polynomial time algorithm to reconstruct random

arithmetic formulas in the alternate normal form (ANF)2.

1Such polynomials have the following structure: f = α1Q
m
1 + · · ·+ αsQ

m
s , where α1, · · · , αs ∈ F and every

Qi is a homogeneous polynomial of degree t.
2An arithmetic formula is said to be in the alternating normal form if its underlying tree is a complete

binary tree, where the leaves are labelled by affine forms and it has alternate layers of + and × gate.

236

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	1 Introduction
	2 Preliminaries
	3 Structural and algorithmic results on the NW polynomial
	4 Determinant equivalence test over finite fields and over Q
	5 Equivalence test for regular ROFs
	6 Hessian determinant of an ROF
	7 Conclusion
	Bibliography
	Appendix A A survey of results on lower bounds, PIT and reconstruction

