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Abstract

We develop a learning algorithm for non-degenerate n-variate degree d polynomial f which is
compuatble by a ΣΠ[m]ΣΛ[t] circuit. The non-degeneracy conditions are stated in Section 1.4. Now
f can be expressed as

f =

s∑
i=1

m∏
j=1

Qij

where Qij = cij1x
t
1 + · · ·+ cijnx

t
n. The learning algorithm takes black box access to f as inputs and

outputs black box access to cij′Qij′ where j′ = σ(j) where σ is some permutation, and cij′ ∈ F×. We
also discuss a “weaker” notion of learning for the case of non-degenerate homogenous depth-4 circuit.
A polynomial f computed by a homogenous depth-4 circuit can be expressed as

f = T1 + · · ·+ Ts, Ti =

m∏
i=1

Qij

where Qij is degree-t homogeneous polynomial. In this “weaker” notion instead of black-box access
to a polynomial f we are given black box access to

〈
T1, . . . , Ts

〉
and now the aim is to learn Qij ’s.

1 Introduction

The following are the important problems in the
field of Arithmetic circuits:

1. Lower Bound: find “hard” polynomials (i.e.
polynomials which require super-polynomial
sized circuits for computation) in some fam-
ily of polynomials or circuit classes.

2. PIT: Given an arithmetic circuit computing
a polynomial f , determine whether f = 0 or
not?

3. Reconstruction: Given black box access to a
polynomial f computable by a arithmetic cir-
cuit by circuit of size of s, we aim to find a
poly(s) size circuit computing the polynomial
f .1

1.1 Reconstruction Of Arithmetic
Circuits

The problem of reconstruction is deeply intercon-
nected to the problem of lower bounds and PIT
(see section 1 of [2] ), and these interconnections
could help us design the learning algorithm. The
design of all the learning algorithms2 mentioned in
this report is inspired by the deep connection be-
tween the lower bound and reconstruction problem.
Reconstruction of the arithmetic circuit is believed
to be a “hard” problem to solve, let alone the case

of general polynomials; there are results which tell
us that even reconstruction of depth 3 circuits is a
hard problem (see Section 1.2 of [1] ). Due to this,
we resort to “average case reconstruction” which is
described below.

1.2 Average Case Reconstruction

In average case reconstruction, we aim at learning
a polynomial f that satisfies some conditions called
the “non-degeneracy” conditions. Say f belongs to
a circuit class C, now the key point is that we choose
the non-degeneracy conditions such that if we ran-
domly sample a polynomial from C (i.e., we sample
from a large finite subset of C), then with a very
high probability f is non-degenerate (i.e., it sat-
isfies the non-degeneracy conditions). This report
will mainly focus on average case learning of various
circuit classes.

1.3 Previous Work

In this section, I will state the following two results
and discuss the techniques used in them,

1. Reconstruction of non-degenerate homoge-
neous depth 3 circuit : Let n, d, s ∈ N and
s ≤ (nd )

d
3 . Given black box access to n-variate

degree d polynomial f = T1 + · · · + Ts, Ti =
li1 . . . lid and lij is a linear form in n variables,
and f satisfies the non-degeneracy conditions
(stated in section 1.4) then in randomised

1There may be other notions of “reconstruction” in the literature, we will only stick with this here.
2Even though these are average case learning algorithms but still we can see how we can exploit these connections to

get a learning algorithm
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poly(n, d, s) time we get (with high probabil-
ity) black box access to cij′ lij′ where j

′ = σ(j)
for some permutation σ and cij′ ∈ F×, for ev-
ery i ∈ [s].3

2. Learning sums of powers of low-degree polyno-
mials in the non-degenerate: Let n, s, d, t ∈ N
s.t it satisfies relations in Corollary 1.1 of
[2]. Given black box access to f =

∑s
i=1 Q

m
i

where Qi’s are homogeneous t degree polyno-
mials and mt = d and coefficients of Qi’s are
selected at random from a set S ⊂ F s.t |S| ≥
(ns)150t, then in randomised poly((ns)t) time
we get ( with high probability) black box ac-
cess to cij′Qij′ ’s where i

′ = σ(i) for some per-
mutation σ and cij′ ∈ F×.

For (ii) one can equivalently state the result in terms
of “non-degeneracy conditions” ( see Theorem 1 of
[2]).

Now we will discuss a meta frame-work which helps
us design learning algorithm from lower bound re-
sults. The design of meta-framework in itself is
inspired from lower bound techniques (See section
1.2 of [2] for more details). Here we will discussing
meta framework for polynomials f which can be ex-
pressed as f = T1+ · · ·+Ts where Ti’s are “simple”
polynomials in some sense 4.The meta-framework is
divided into three parts:-

1. Choose family of linear operator L1, L2 s.t

• U = U1 ⊕ · · · ⊕ Us where U =
〈
L1 ◦ f

〉
and Ui =

〈
L1 ◦ Ti

〉
.

• V = V1 ⊕ · · · ⊕ Vs where V =
〈
L2 ◦ U

〉
and Vi =

〈
L2 ◦ Ui

〉
.

2. We want to choose L2 s.t the above decom-
position of U and V w.r.t L2 is unique (upto
some permutation) and indecomposable ( de-
fined in section 2.4 ).

3. Recovery of Ti from
〈
L1 ◦ Ti

〉
Note that, in the general setting, it is unlikely to
find L1,L2 satisfying the conditions mentioned in
the framework for all f belonging to some circuit
class; we aim to choose them such that for a “ran-
dom” f these conditions are satisfied with high
probability. Once we are ready with the frame-
work, i.e. we have found L1 and L2, which satisfy
the above conditions. It is pretty easy to design a
learning algorithm ( see algorithm 1 of [2] for more
details) for f . This meta-framework is used in [2]
to design a learning algorithm for sums of powers of
low-degree polynomials in the non-degenerate case;
also, it can be used to learn non-degenerate homo-
geneous depth three circuits.

1.4 Our Results

A powered homogeneous depth three circuits is a
circuit of form ΣΠ[m]ΣΛ[t] computing the polyno-
mial of form f =

∑s
i=1

∏m
j=1(cij1x

t
1 + · · ·+ cijnx

t
n)

where cijk ∈ F. We provide a learning algorithm for
non-degenerate powered homogeneous depth three
circuits. Let us first state the non-degeneracy
conditions:-

Non-Degeneracy Conditions: We say a polyno-
mial f =

∑s
i=1

∏m
j=1(cij1x

t
1 + · · · + cijnx

t
n) com-

puted by a ΣΠ[m]ΣΛ[t] circuit to be non-degenerate
if the polynomial g =

∑s
i=1

∏m
j=1(cij1x1 + · · · +

cijnxn) satisfies the following

1. dim(U) = s
(
m
k

)
where U =

〈
∂=k(g)

〉
and

k = ⌊ log(s)
log( n

ed )
⌋.

2. For every i there exists 2k + 1 lin-
ear forms lir1 , . . . , lir2k+1

s.t dim(U mod〈
lir1 , . . . , lir2k+1

〉
) = (s − 1)

(
m
k

)
where〈

lir1 , . . . , lir2k+1

〉
is the ideal generated by

li1 , . . . , li2k+1
, lij = (cij1x1 + · · ·+ cijnxn).

Note that f is non-degenerate w.r.t the above men-
tioned non-degeneracy conditions if and only if g
is non-degenerate w.r.t non-degeneracy conditions
mentioned in section 1.1 of [1]. Also note the no-
tion of random choice is same for both f and g.

Lemma 1. Let f be as defined above. Now if
we randomly choose cijl’s from a set S ⊆ F then
f is non-degenerate with a probablity of at least

1− 2s2d3

|S| .

Proof. By combining the above observation with re-
sult in appendix A of [1] we are done.

Theorem 1. Let n, d, s,m ∈ N and F be the un-
derlying field, satisfying s ≤ ( n

m )
m
3 and char(F) >

max(ms2, t(m + 1)) or 0. Given black box access
to n-variate degree d polynomial f = T1 + · · ·+ Ts,
where each Ti =

∏m
j=1 Qij and Qij = (cij1x

t
1 +

· · ·+cijnx
t
n) and f satisfies the non-degeneracy con-

ditions,then in randomised poly(n, d, s) time we get
black box access to cij′Qij′ where j

′ = σ(j) for some
permutation σ and cij′ ∈ F×, for every i ∈ [s].

2 Preliminaries

In this section, we will be working with an under-
lying field F unless specified.

3After getting black box access to lij ’s we can get a circuit computing f in poly(n, d, s) time
4For example: In case of homogeneous depth three circuits Ti’s are just product of some linear forms
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2.1 Notation

Let α = (a1, . . . , an), x = {x1, . . . , xn} and
f(x1, . . . , xn) be a polynomial. Now we define

xα = xa1
1 . . . xan

n

|α| = a1 + · · ·+ an

∂kf

∂xα
=

∂kf

∂xa1
1 ∂xa2

2 . . . ∂xan
n

∂=k
x =

{ ∂kf

∂xα

∣∣∣ |α| = k
}

2.2 Arithemetic Circuits

An Arithmetic Circuit is a directed acyclic graph
with nodes of in-degree 0 or more, and there is pre-
cisely one node with out-degree 0. The nodes with
in-degree are called input nodes and are labelled
by variables or constants (from F); the node with
out-degree 0 is called the output node. All nodes
except the input nodes are labelled by {+,×}. Size
or an arithmetic circuit is defined as the number
of edges in the graph. Depth of a node is defined
as the length of the shortest path from that node
to an input node, depth of an arithmetic circuit is
defined as the depth of the output node.

An arithmetic circuit captures the computation of
a polynomial. Σ, Π, Λ denote addition, multiplica-
tion and powering gates. A ΣΛ[t] denotes an arith-
metic circuit with two layers where the first layer
has powering gates of in-degree t and the second
layer consist of addition gates of arbitrary in-degree;
now, one can understand similar notations accord-
ingly.

2.3 Black-Box

A black box of a polynomial f(x1, . . . , xn) takes
a n-tuple (a1, . . . , an) as input and outputs
f(a1, . . . , an). We do not consider the computation
time of a black box while analysing the time com-
plexity of a algorithm, i.e we treat the computation
as a instantaneous one.

Lemma 2. Given a black box to a n-variate degree
d polynomial f(x1, . . . , xn) we can black box access
to all homogeneous components of f in O(d3) time.

Proof. Multiply each variable by the variable z.
Now the polynomial looks like f = f [0] + · · · +
f [i]zi + · · · + f [d]zd where f [i] is the homogeneous
polynomial with degree i. Now we evaluate f at d
distinct values of z, so we get a d-tuple of polyno-
mial from the evaluations, which can be expressed
as the product of the vandermonde matrix on the
d distinct evaluations times the row vector of the
homogeneous components. By choice of the eval-
uations, we know that the matrix is invertible, so
we can multiply it by its inverse5 and get all the
homogenous components.

Lemma 3. Given a n-variate degree d polynomial

f(x1, . . . , xn), we get black box to ∂kf
∂xα in poly(n, dk)

time.

Proof. We will first give the algorithm for k = 1, so
let’s say we are taking the derivative w.r.t x1, then
f(x1, x2, . . . , xn) = f0 + f1x1 + · · ·+ fdx

d
1 where fi

are polynomial in x2, . . . , xn. Again as we did in
lemma 2 we can evaluate x1 at d distinct and get
all fi’s. As f1 is the partial derivative of f w.r.t
x1 we are done. Now for k > 1 we can continue
recursively.

2.4 Vector Space Decomposition

Given vector space U , V and a set of linear opera-
tor L. Then a decomposition s.t U = U1 ⊕ · · · ⊕Us

,V = V1 ⊕ · · · ⊕ Vn and
〈
L ◦ Ui

〉
⊆ Vi is called a

Vector Space Decomposition. We say that a Vec-
tor Space Decomposition is indecomposable w.r.t to
L if there do not exists Ui1, Ui2, Vi1, Vi2 satisfying
Ui = Ui1 ⊕ Ui2 , Vi = Vi1 ⊕ Vi2 and

〈
L ◦ Uij

〉
⊆

Vij ∀j ∈ [2].

2.5 Affine projections on par-
tials(APP)

We have n-variate polynomial f(x1, x2, . . . , xn) and
a n-tuple of linear forms L = (li(z1, . . . , zn0

))i∈[n].
Say x = (x1, . . . , xn) and z = (z1, . . . , zn0

). We de-
fine a projection map πL : F[x] → F[z] as πL(f) =
f(l1(z), . . . , ln(z)), clearly this map is linear. If
S ⊂ F[x] then we define πL(S) = {πL(f) : f ∈ S}.
Then,

APPk,n0(f) = max
L

dim
〈
πL(∂

=k
x f)

〉
APP measure was first introduced in [2] to tackle
the following problem: We get very high dimension
spaces when we use shifted partial measure, due to
which we do not get direct sum decomposition(For
more details, check appendix C and section 1.2.3 of
[2] ).

Lemma 4. If |F| ≥ α (d−k)
(
n+k−1

k

)
and every coef-

ficient of every linear form in L = (l1(z), . . . , ln(z))
is selected at random from a S ⊂ F s.t |S| =
α (d−k)

(
n+k−1

k

)
. Then with a probability of atleast

1− 1
α we get

APPk,n0(f) = dim
〈
πL(∂

=k
x f

〉
)

Proof. Let r = APPk,n0
We construct a matrix M

where the rows are indexed by all k degree monomi-
als and the columns are indexed by all d− k degree
monomials, so the (α, β)-th entry of M is the coeffi-

cient of β in ∂kf
∂xα . Now, dim

〈
πL(∂

=k
x f

〉
) = rank(M)

so the question boils done to existence a r × r sub-
matrix of M , and now by using Schwartz-Zippel
lemma we done.

5We can fix the d evaluations before the computation so the inverse can be pre-calculated
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3 Learning algorithm for non-
degenerate ΣΠ[m]ΣΛ[t] cir-
cuits

In this section, I will state the algorithm to learn
powered homogeneous depth three circuits and its
correctness. However, I will first discuss the most
crucial idea around which the algorithm is devel-
oped.

3.1 Reduction to homogeneous
depth three circuits

Given a black box to f =
∑s

i=1 Ti where Ti =∏m
j=1 Qij and Qij = cij1x

t
1 + · · · + cijnx

t
n, if we

can get black box access to g =
∑s

i=1 T
′
i where

T ′
i =

∏m
j=1 Q

′
ij and Q′

ij = cij1x1+ · · ·+ cijnxn then
by applying result 1 of section 1.3 we can learn Q′

ij

hence learn Qij .

Naive Approach: What we want to do is treat xt
i

as a variable Xi, and then f w.r.t X1, . . . , Xn can
be computed by a homogeneous depth-3 circuit,
but we do not necessarily have black-box access
to f(X1, . . . , Xn). To have black-box access to
f(X1, . . . , Xn) we must be able to evaluate it at
any n-tuple of input. However, for that to happen,
we need t-th radical of every element of F, but this
is not true for all fields; some important fields like
Q do not satisfy these conditions.

Improved Approach: We will build now upon
the “Naive Approach” by using formal power series

expansion. We know that P (x) = 1+
∑∞

i=0

( 1
t
i

)
xi =

t
√
1 + x 6, I will show that not all terms in the power

series are relevant ( The reader will understand
what I mean by this in the next few arguments).
Define PD(x) be the truncation of P at degree D
now we have.

P (x) = PD(x) + xD(S) S ∈ F[[x]]
=⇒ P (x)t = 1 + x = PD(x)t + xD(S′) S′ ∈ F[[x]]

(1)

Note that all the above computations were carried
out in F[[x]]. Now observe that as 1+x = P (x)t and
PD(x)t are polynomials then S′ has to be polyno-
mial because it satisfies equation 1. Now fix i ∈ [s],
then

Qij(PD(x1), . . . , PD(xn)) =

n∑
l=1

cijl((1 + xl)

− xD
l (S′))

= (

n∑
i=1

cijlxl) + (

n∑
l=1

cijl)

+ S0

where S0 has degree ≥ D. If D = m + 1 then it
can be easily observed that the degree m homo-
geneous polynomial of Ti(PD(x1), . . . , PD(xn)) =∏m

j=1(
∑n

l=1 cijlxl) =
∏m

j=1 Q
′
ij(x1, . . . , xn) =

T ′
i (x1, . . . , xn).Then the degree m homoge-

neous polynomial of f(PD(x1), . . . , PD(xn)) is
g(x1, . . . , xn).

As PD ∈ F[x] thus every evaluation of PD on
Fn belongs to F, hence if we have black box ac-
cess to f then we get a black box access to f ◦
(PD(x1), . . . , PD(xn)) ( here ◦ denotes composi-
tion) in O(n · D · log(D)) time. Now by lemma
2 we can get degree m homogenous component
of f ◦ (PD(x1), . . . , PD(xn)) in O((2 · D · m)3).
And as degree m homogenous component of f ◦
(PD(x1), . . . , PD(xn)) is g(x1, . . . , xn). Thus we can
get black box of g given black box access to f in
O(n ·D4 · log(D) ·m3) time.

3.2 Learning Algorithm

I will now state the learning algorithm discussed in
the previous section.
Algorithm: The algorithm takes a black box ac-
cess to non-degenrate n-variate degree d polyno-
mial f =

∑s
i=1 Ti where Ti =

∏m
j=1 Qij and Qij =

cij1x
t
1+ · · ·+cijnx

t
n as input and outputs black box

access to Qij′ where j
′ = σ(j) for some permutation

σ for every i ∈ [s].

1. Get black box access to g =
∑s

i=1 T
′
i where

T ′
i =

∏m
j=1 Q

′
ij and Q′

ij = cij1x1+· · ·+cijnxn.

2. By applying result 1 to g(x1, . . . , xn) we get
black box access to cij′Q

′
ij′ where j′ = σ(j)

for some permutation σ and cij′ ∈ F×, for
every i ∈ [s].

3. Output black box of cij′Q
′
ij′ ◦ (xt

1, . . . , x
t
n)

where j′ = σ(j), for every i ∈ [s].

Step 1 of the algorithm can be done by discussion
in the previous section. In step 2 one has take
into account a minor caveat, to apply result 1 we
need g to be a non-degenerate polynomial, one can
easily observe that by definition of non-degeneracy
condition of f ( stated in section 1.4 ) it requires
g to be non-degenerate. Now in step 3 we have
black-box access to Q′

ij and we are composing it
with (xt

1, . . . , x
t
n) and it is easy to see that we can

get the black-box access to Q′
ij ◦ (xt

1, . . . , x
t
n) in

O(n · log(D)) time. So overall, the running time
of the algorithm is randomised poly(n, d, s). Also,
note that all the relations on the parameters except
the characteristic of the field are imposed by the
learning algorithm of non-degenerate depth three
circuits. An extra condition on the characteristic
of the field is imposed, so the coefficients in the
truncated formal power series are well defined.

6In F[[x]] this is defined as P (x)t = 1 + x
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The above learning algorithm can be easily modi-
fied to work for the following cases

• When t is unknown, we first set all the vari-
ables except x1 to 0. Now we evaluate f at
different values of x1; since m is known to the
learning algorithm, we get the value of t from
these evaluations.

• When different variables have been raised to
different powers i.e Qij = (cij1x

t1
1 + · · · +

cijnx
tn
n ) where ti ∈ N. One can independently

substitute appropriate power series expansion
depending on the power the variable is raised
to.

4 Learning non-degenerate
ΣΠ[m]ΣΠ[t] circuits

APP measure gives us a lower bound for
ΣΠ[m]ΣΠ[t] (see theorem 2 of [2]). Hence we we
want to use the meta-framework to design learn-
ing algorithm for it (stated in section 1.3). But,
in this section we will working on a weaker no-
tion of recontruction. So, let f =

∑s
i=1 Ti where

Ti =
∏m

j=1 Qj1 . . . Qjm, now instead of f we are

given black box access to U =
〈
T1, . . . , Ts

〉
and our

aim is to learn Ti. Now giving black box access to
U reduces a lot of effort. So in step 1 of the meta-
framework we just need to work one linear map L
instead of two to get a vector space decomposition
i.e we need to choose L s.t Σ

〈
L ◦ Ti

〉
=

⊕〈
L ◦ Ti

〉
and this will give us a vector space decomposi-
tion between U and

〈
L ◦ U

〉
; also note that here〈

L ◦ U
〉
= Σ

〈
L ◦ Ti

〉
follows trivially. In step 2 we

get that the the decomposition is trivially indecom-
posable as dim(Ti) = 1, then only thing to work on
is the uniqueness of the decomposition. Step 3 is
totally scrapped out as we directly get access to Ti

from vector space decomposition. So now to learn
this model we need to

1. Choose7 a L s.t Σ
〈
L ◦ Ti

〉
=

⊕〈
L ◦ Ti

〉
.

2. Showing the uniqueness of vector space de-
composition between U and

〈
L ◦ U

〉
Attempt to solve the step 1: As APP measure
gave us the lower bound so from our formulation
we expect for L = APPk,n0

to be the right choice.
In order to get the direct sum structure we started
by exploring Vi =

〈
L◦Ti

〉
, and tried to understand

the structure of its basis and its dimension.

Let S denote the collection of all m − k size sub-
sets of [m] Define Gij =

〈
πL(∂

=k
x Qij)

〉
, GiS =

Gis1 · · ·Gism−k
where S = {s1, . . . , sm−k} ∈ S and

s1 < s2 < · · · < sm−k. Let Md,n0,x = {xα | α ∈
Nn0 |α| = d}.
As Vi ⊆ F −

〈
p · GiS

〉
where S ∈ S and p ∈

Mk(t−1),n0,x, so if we show
∑

F −
〈
p · GiS

〉
=

⊕ F −
〈
p · GiS

〉
then 1 follows. (Note that here

we have just stated the spanning set it is does not
say anything about linear independence).

One obvious kind of dependency in this spanning
set are of the following form: p1 · GiS = p2 · GiS′

where S, S′ ∈ S. Now this equation has a solution
for p1, p2 ( we have fixed the Li ’s) if and only if
gcd(GiS , GiS′) ≥ (m − k)t − k(t − 1). Also note
that in the average case know that if either i ̸= i′

or j ̸= j′ then gcd(Gij , Gi′j′) = 1 with a very high
probablity, so in average case each product GiS can
be identified by S and the gcd(GiS , GiS′) = |S∩S′|t.

Also, we could not find any other dependencies.
Keeping all this in mind, we conjectured the follow-
ing lemma. Let B′ be the subset of {GiS | S ∈ S}
with highest cardinality s.t gcd(b, b′) < (m− k)t−
k(t − 1) for all b, b′ ∈ B′. We observed that in the
average case, we could identify a product by a m−k
subset of [m], and the gcd of any two products can
be completely determined by the cardinality of the
intersection of their corresponding sets.

Lemma 5. Let B = {p · b} where b ∈ B′ and
p ∈ Mk(t−1),n0,x. Then in the average case B forms
a basis with a very high probablity.

I ran experiments onMathematica software to check
whether it is a reasonable assumption. I was check-
ing these for the average case, which means I was
uniformly sampling the coefficients of L,Qij from a
reasonably large set. In these experiments, I found
several counter-examples to the lemma. If the result
were true, it is improbable to find a single counter-
example!
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