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Abstract

Given n-variate degree d homogenous polynomial f we want to decide whether there exists a invertible trans-
form A ∈ Fn×n such that there exists a (n, t, s, d)-design polynomial g such that f(x) = g(Ax). This problem
is commonly referred to as Equivalence testing of Design Polynomials. In this report we give an equivalence
test for design polynomials which runs in time O(nt) if d > 3t and some technical assumptions on the size and
characteristic of the field F.

∗Joint work with Agrim Dewan and Prof Chandan Saha
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1 Introduction

1.1 Problem Statement and Results
Definition 1. (Design Polynomials) A polynomial g is (n, t, s, d)-design polynomial is a degree d homogeneous
polynomial with sparsity s, and additionally for every monomial m, n in g we have deg gcd(m,n) < t.

Definition 2. (Equivalence testing of Design Polynomials) Given black box access to a n-variate degree d homogenous
polynomial f , decide whether there exists a invertible linear transform A ∈ Fn×n such that f = g(Ax) and g is
(n, t, s, d)-design polynomial

Our main result gives an equivalence testing algorithm for design polynomials satisfying some technical assump-
tions.

Theorem 1. (Equivalence testing of design polynomials) There is a randomised algorithm given black box access to
n-variate degree d polynomial f outputs n linear independent linear forms L1, . . . , Ln and (n, t, s, d) design polynomial
g s.t f = g(L1, . . . , Ln) if f is in the orbit of a (n, t, s, d) design polynomial else it output “No”. The running time of
the algorithm is poly(nt). The algorithm runs under the following technical assumptions, d > 3t, |F| > max(s3, d7)
and char(F) = 0 or > d

Our algorithm also works for “random” homogeneous degree d polynomials with some technical assumptions on
the sparsity (Refer Section 6.2).

1.2 Previous Work
The previous work on equivalence tests used Hessian matrices and Lie Algebras, such as in [8]. Equivalence test
algorithms for sum-product and power symmetric polynomial were given by using Hessian matrices which worked
over C, finite fields and Q; Equivalence test for determinants and permanents over C, finite fields and Q was given
in [7] and [3] using Lie algebras. For design polynomials no equivalence test is known; In [5] equivalence test for the
Nisan Wigderson design polynomial is given for block diagonal permutation scaling transformation over finite fields
by analysing the lie algebra of NW polynomial. A better result is unlikely to be expected by this technique as the
lie algebra of NW polynomial is “very weak”. It seems unlikely that Hessian matrices and Lie algebra would help
in designing an equivalence test. Hence we use the meta-framework mentioned in [4] to get an equivalence test for
design polynomials.

1.3 Proof Techniques
The basis of the equivalence test is the vector space decomposition framework (particularly the meta-algorithm)
developed in [4]. Briefly, the vector space decomposition framework itself is based on lower bound techniques used
to learn circuits from black box access to a polynomial f . If f is of the form:

f = T1 + T2 + ...+ Ts (1)

Then learning circuits for the Ti’s suffices for learning f . The authors in [4] reduce the problem of learning the
Ti’s to the vector space decomposition problem which, as stated in [4], is as follows :
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Given the tuple (L, U, V ) consisting of vector spaces U and V and a set of linear maps L from U to V ,
decompose U and V as:

U = U1 ⊕ · · · ⊕ Us

V = V1 ⊕ · · · ⊕ Vs

such that ⟨L(Ui)⟩ ⊂ Vi for 1 ≤ i ≤ s.

By choosing an appropriate set of linear maps L1 and L2, one can define the spaces U and V for a polynomial f ,
where V = L2(U), and then compute the vector space decomposition of U and V which can then be used to recover
the monomials in f . However, this decomposition may not necessarily be unique. The criteria for the uniqueness of
the decomposition has been laid down in [4] and are based on the Krull- Schimdt theorem.

Briefly, the uniqueness of decomposition can be established using the notion of adjoint algebra which is defined, for
the tuple (L, U, V ), as the set of pairs of linear operators (D,E) where D : U → U , E : V → V and ∀L ∈ L, LD = EL
and is denoted as Adj(L, U, V ). If (D,E) ∈ (L, U, V ) and are invertible operators, then U = D(U1) ⊕ · · · ⊕D(Us)
and V = E(V1) ⊕ · · · ⊕ E(Vs) and it follows from the Krull Schimdt Theorem that the decomposition of U, V as
mentioned is unique (upto permutations) under the action of the maps L.

For our case, we can view the problem as trying to learn the linearly independent linear forms under which the
polynomial, provided as a black box, is equal to some design polynomial. For any (n, t, s, d) design polynomial with
d > 3t, it turns out that the direct sum structure and uniqueness of decomposition are satisfied, and this holds true
for any polynomial in the orbit of such a design polynomial as well. This implies that the vector space decomposition
framework can be used to recover the linear forms. The meta-algorithm for vector space decomposition is, as stated
in [4]:

Algorithm 1 Meta algorithm

• Input - g = T1 + T2 + ...+ Ts

• Output - T ′
1, T

′
2 . . . T

′
s s.t. T ′

i = Tj where j = π(i) π is a permutation on [s] .

1. Compute U = ⟨L1(f)⟩,V = ⟨L2(L1(f))⟩

2. Obtain a vector space decomposition of U, V as U = U1 ⊕ · · · ⊕ Us,V = V1 ⊕ · · · ⊕ Vs.

3. Recover T ′
i from Ui.
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The algorithm works under the following assumptions:

1. ∃ L1,L2 s.t. ∀L1 ∈ L1, L2 ∈ L2, it holds that U = ⟨L1(f)⟩, V = ⟨L2(L1(f))⟩, Ui = ⟨L1(Ti)⟩, Vi = ⟨L2(L1(Ti))⟩

U = U1 ⊕ · · · ⊕ Us

V = V1 ⊕ · · · ⊕ Vs

2. The aforementioned decomposition is unique up to permutation of the Ui’s and Vi’s.

3. There is an efficient algorithm to recover Ti from Ui.

The vector space decomposition algorithm of [2] can be used in step 2 and it works over R,C and finite fields,
although over Q it outputs a polynomial in an extension field. Section 4 gives a vector space decomposition algorithm
based on the algorithm developed in [1] which works over Q as well.

1.4 Roadmap of the report
Section 2 establishes some required preliminaries and the notations used.

In Section 3, we state the algorithm. We first prove it’s correctness by proving that the direct sum condition and
uniqueness of decomposition hold.

Section 4 describes the adjoint algebra in our case. We then show that the operators in the adjoint are simulta-
neously triangulable by exhibiting a basis. Using this an algorithm for vector space decomposition is given.
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2 Preliminaries and Notations
A (n, t, s, d)-design polynomial is a degree d homogeneous polynomial with sparsity s and for every monomial m,n
in the polynomial deg gcd(m,n) < t.
The polynomial g(x1, . . . , xn) denotes a (n, t, s, d)-design polynomial design polynomial with d > 3t i.e

g = g1 + · · ·+ gs

where gi’s are monomials satisfying the design condition.
Let f(x1, . . . , xn) denotes a polynomial in the orbit of g i.e

f = T1 + T2 + · · ·+ Ts

where Ti = gi(l1, . . . , ls) (li’s are linearly independent linear forms). Define

U := ⟨∂tf⟩ U ′ := ⟨∂tg⟩

Ui := ⟨∂tgi⟩ U ′
i := ⟨∂tTi⟩

V := ⟨∂2tf⟩ V ′ := ⟨∂2tg⟩

Vi := ⟨∂2tgi⟩ V ′
i := ⟨∂2tTi⟩

We will denote all the order k differential operators in x variables by ∂k, and xα denotes a degree k monomial
where α is an n−tuple ∈ Zn

≥0 whose elements sum to k.
The following are some preliminary facts that we need in our algorithm:

1. Black box access to Partial Derivative Space: Given black box access to n-variate degree d polynomial
f(x1, . . . , xn), we get black box to ∂kf

∂xα in poly(n, dk) time where deg α = k (for more details check section 2.2
[9]).

2. Finding coefficients w.r.t to a basis Given a linearly independent set f1, . . . , fl ∈ F[x]d, say that f lies in
the span of the set then in randomised poly(n, l, d) we can compute βi’s s.t f =

∑l
i=1 βifi(for more details

check corollary 29 of [1]).

3 The algorithm
In this section, we give an algorithm for equivalence testing of design polynomials, we assume that we know the value
of s, t, n.
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Algorithm 2 Equivalence testing of design polynomials
Input: Black box access to f = T1 + · · ·+ Ts which is in the orbit of an (n, t, s, d)-design polynomial.
Output: Circuits of n + 1 independent linear form L1, . . . , Ln and (n, t, s, d) design polynomial g of degree d s.t
f = g(L1, . . . , Ln).
Sub-routines:

1. Returns black boxes to all the t-order partial derivatives of a polynomial given the black box access to the
polynomial (see preliminary 1)

2. Vector space decomposition algorithm (See Algorithm 3 in 4.3)
3. Say U = U1 ⊕ · · · ⊕ Us and we have a black box access to basis Bi of Ui for all i ∈ [s]. Then given black box

access to u = u1 + · · ·+ us s.t ui ∈ Ui it returns the black box of ui’s. (see preliminary 2)
4. Black box factorisation algorithm ([6])
5. Given black box access to polynomials p1, . . . , pn returns basis to (p1, . . . , pn)

⊥. (section A.1 of [8])

1: Compute the black boxes to U =
〈
∂tf

〉
and V =

〈
∂tU

〉
using sub-routine 1.

2: Use the sub-routine 2 on (∂t, U, V ) to get a decomposition of U = U ′
1 ⊕ · · · ⊕ U ′

s′ if s ̸= s′ then output "No",
else continue.

3: For each xα of degree t express ∂tf
∂xα = u′

1α + · · ·+ u′
sα s.t u′

iα ∈ U ′
i then use sub-routine 3 on ∂tf

∂xα and B′
i’s (basis

of U ′
i) obtained from step 2 to get black boxes to u′

iα.
4: For each x the black box Pi returns (d−t)!

d!

∑
α

(
t

α1...αn

)
xαu′

iα(x) ▷ Refer section 4.3 of [10]
5: For every i ∈ [s] use sub-routine 4 to get irreducible factorisation of Pi, if the degree of any irreducible element

is > 1 output "No", else evaluate the irreducible elements to get circuits of the linear forms L1, . . . , Ln and the
circuits for the gi s.t Pi = gi(L1, . . . , Ln) can be obtained from the factorisation.

6: For i ̸= j compute gcd(gi, gj) using subroutine 4 if deg gcd(gi, gj) ≥ t for any i ̸= j output "No". Use sub-
routine 5 to check if L1, . . . , Ln are linearly independent, if they are not output "No". Else return the circuits of
L1, . . . , Ln and g = g1 + · · ·+ gs.
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3.1 Correctness of the algorithm
Before we can prove the correctness of algorithm, we need the following lemma

Lemma 2. If l1, . . . , ln are linearly independent then for any t ≤ k ≤ d− t we have

W = W1 ⊕W2 ⊕ · · · ⊕Ws

where W =
〈
∂kf

〉
and Wi =

〈
∂kTi

〉
(similar to U and Ui as defined in section 2).

Proof. Since the linear forms are linearly independent thus from theorem 10 we have that W ∼= W ′ =
〈
∂kg

〉
and

for every 1 ≤ i ≤ s and t ≤ k ≤ d − t we have Wi
∼= W ′

i =
〈
∂kgi

〉
. Hence we have W = W1 ⊕ W2 ⊕ · · · ⊕ Ws iff

W ′ = W ′
1 ⊕W ′

2 ⊕ · · · ⊕W ′
s.

Now we will prove that W ′ = W ′
1⊕· · ·⊕W ′

s.Note that for any k we have W ′ ⊆ W ′
1+ · · ·+W ′

s . For each i one can
easily see that {∂kgi} is the spanning set of W ′

i . Hence dim Ui ≤ Mi = |{∂kgi}| 1. Now if dim W ′ =
∑s

i=1 Mi = M
then it is clear that W ′ = W ′

1 ⊕ · · · ⊕W ′
s.

Now what remains to show that dim
〈
∂kg

〉
= M . So, for some i ∈ [s] let u ∈ {∂kgi}, say m = gi/u, since

deg m ≥ t thus ∂gj
∂m = 0 for j ̸= i by the design condition. Hence ∂g

∂m = u. Thus we have {∂kgi} ⊆
〈
∂kg

〉
. Let

Bi = {∂kgi}, now if we show that Bi ∩ Bj = ϕ then clearly |
⋃s

i=1 Bi| = M and also since Bi’s is a set of monomials
hence being disjoint is equivalent to saying that the union forms an independent set, now

⋃s
i=1 Bi ⊆

〈
∂kg

〉
hence

the dim
〈
∂kg

〉
= M , and we will be done.

So, the only thing remaining to prove is that Bi’s are pairwise disjoint. Say that for some i ̸= j, Bi∩Bj ̸= ϕ then let
b be in the intersection then b|gi and b|gj , hence deg gcd(gi, gj) ≥ deg b, now deg b = d− k ≥ t which contradicts
the design condition. Hence this completes the proof.

To prove the correctness we have to show :

1. U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs

2. Uniqueness of vector space decomposition.

where U, Ui, V, and Vi are as defined earlier in Section 2.

3.1.1 Direct Sum Structure

Lemma 3.
〈
∂tU

〉
=

〈
∂2tp

〉
for any polynomial p ∈ F[x] where U =

〈
∂tp

〉
Proof. Let v ∈

〈
∂tU

〉
now we have a monomial xα of degree t and u ∈ U s.t v = ∂tu

∂xα , now u =
∑

degβ=t cβ
∂tp
∂xβ , now

v =
∑

degβ=t cβ
∂2tp

∂xβxα , hence v ∈
〈
∂2tp

〉
.

Now the spanning set for
〈
∂2tp

〉
is {∂2tp}, so if we show {∂2tp} ⊆

〈
∂tU

〉
then

〈
∂2tp

〉
⊆

〈
∂tU

〉
. So let v ∈ {∂2tp}

then there is a monomial xα of degree 2t s.t v = ∂2tp
∂xα , now write α = α1α2 where deg α1 = t then u = ∂tp

∂xα1
∈ U

and v = ∂tu
∂xα2

∈
〈
∂tU

〉
. Hence we are done.

As d ≥ 3t ≥ 2t then by lemma 2 we have U = U1⊕· · ·⊕Us and V = V1⊕· · ·⊕Vs where Vi =
〈
∂2tf

〉
. Now applying

lemma 3 to f we get V =
〈
∂tU

〉
, similarly applying 3 to Ti we get Vi =

〈
∂tUi

〉
. Hence we have U = U1 ⊕ · · · ⊕ Us

and V = V1 ⊕ · · · ⊕ Vs where Vi =
〈
∂tUi

〉
and V =

〈
∂tU

〉
.

1One can prove that dim Ui is maximum when the monomial is multilinear i.e Mi ≤
(d
k

)
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3.1.2 Uniqueness Of Vector Space Decomposition

Now we have to show the uniqueness of the vector space decomposition ( for definition refer Appendix A of [1]).
Now to show this we it is enough to show that for any invertible (D,E) ∈ Adj(∂t, U, V ) we have D(Ui) ⊆ Ui for all
i ∈ [s].( This method of showing uniqueness of decomposition using adjoint algebra is discussed in appendix A of
[4]).

Now we will prove a corollary of theorem 10 which will help us prove uniqueness.

Corollary 4. If ∀ (D′, E′) ∈ Adj(∂t, U ′, V ′) and ∀ i ∈ [s] we have D′(U ′
i) ⊆ U ′

i then ∀ (D,E) ∈ Adj(∂t, U, V ) and
∀ i ∈ [s] we have D(Ui) ⊆ Ui.

Proof. First note that by theorem 10 we have T : U ′ → U given by T (p) = p(l1, . . . , ln) is a isomorphism, also
note that T (U ′

i) = Ui for all i ∈ [s]. Now let (D,E) ∈ Adj(∂t, U, V ), now by proposition 25 of [1] we have
(D′, E′) ∈ Adj(∂t, U ′, V ′) s.t D = TD′T−1. We have

D(Ui) = (TD′T−1)(Ui)

= TD′(U ′
i)

⊆ T (U ′
i)

⊆ Ui

for all i ∈ [s] and (D,E) ∈ Adj(∂t, U, V ).

Now we are ready to prove the uniqueness of the decomposition.

Lemma 5. For ∀ (D,E) ∈ Adj(∂t, U, V ) we have D(Ui) ⊆ Ui for all i ∈ [s]

Proof. Now by corollary 4 it is enough to prove that D′(U ′
i) ⊆ U ′

i for all (D′, E′) ∈ Adj(∂t, U ′, V ′) and i ∈ [s].

For u ∈ U ′
i D′(u) = u′

1 + · · · + u′
s s.t u′

j ∈ U ′
j . Take mj |u′

j and deg mj = t. By the design condition we have
∂u
∂mk

= 0 for all i ̸= k and ∂uj

∂mk
= 0 for all j ̸= k.

Now for j ̸= i we have,

∂D′(u)

∂mj
=

∂u′
j

∂mj

=⇒ E′(
∂u

∂mj
) =

∂u′
j

∂mj

=⇒ E′(0) =
∂u′

j

∂mj

=⇒ 0 =
∂u′

j

∂mj

=⇒ u′
j = 0

Hence we have D′(U ′
i) ⊆ U ′

i . This completes our proof.

3.2 Time Complexity
Steps 1 and 2 are the dominant steps in the time complexity of the algorithm. Step 1 requires poly(n, dt) time as
noted in 1. Step 2 uses subroutine 2, the complexity of which is poly(s, nt, dt) as shown in Section 4.3.
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Step 3 uses subroutine 3 with O(sdt) many linearly independent polynomials (since |B| ≤ s
(
d
t

)
= O(sdt)) of

degree d− t, hence requires poly(n, s, dt) time.
The remaining steps use Kaltofen’s black box factorisation algorithm s times to factor Pi, which is of degree d,

compute the gcd of the gi monomials (from the recovered circuits) which are of degree d and also use Sub-routine 5
on n linear forms. Hence, these steps require poly(s, n, d)) time (including recovering the circuits of the linear forms).

Thus, the overall complexity of the algorithm is poly(s, nt, dt). Usually n > d2 for a design polynomial and s can
be at most nt for a t-design polynomial,therefore the complexity is poly(nt).

4 Adjoint Algebra of design polynomials
The adjoint algebra for the polynomials considered in [4] and [1] was trivial, which means the operators in the adjoint
were scalar multiples of the identity map. This was used to obtain a vector space decomposition algorithm which
works over rationals as well by computing the eigenspaces of the operators. Note that if the adjoint is trivial in some
basis of the spaces U and V , then it would be trivial in any basis of these spaces. Hence, if there is an operator
which does not even have a diagonal representation in some basis, then the adjoint is non-trivial.

In the case of non-multilinear polynomials, the adjoint is not necessarily trivial, we will start by giving an example
of a polynomial with non-trivial adjoint algebra, then we give a structural result and then using this result we give
a vector space decomposition algorithm for design polynomials.

4.1 Characterisation of Adjoint algebra
By lemma 5 we know that elements of Adj(∂t, U, V ) are block diagonal matrices hence to understand their structure
it is enough to understand individual blocks, i.e it is enough to understand D|Ui

’s. Hence in this section we will
focus our attention on each individual block.

Note that by theorem 10 we know that Adj(∂t, Ui, Vi) ∼= Adj(∂t, U ′
i , V

′
i ), so in this section we will be working

with Adj(∂t, U ′
i , V

′
i ), so for the sake of simplicity we will denote U ′

i by U , V ′
i by V , gi by g and Adj(∂t, U ′

i , V
′
i ) by

Adj(∂t, U, V ).

4.1.1 Non-trivial Adjoint Algebra

So, given any matrix D′ : U ′ → U ′ what conditions should we impose on D′ to ensure that ∃ E′ : V ′ → V ′ s.t
(D′, E′) ∈ Adj(∂t, U ′, V ′) ? The following lemma answers the question.

Define Dk = {m | m ∈ F[x], deg m = k and m|g}

Lemma 6. The following statements are equivalent:-

(a) (D′, E′) ∈ Adj(∂t, U ′, V ′)

(b) For every i ∈ [s], m,n ∈ Dt we have
∂

∂m
D′(

∂g

∂m′ ) =
∂

∂n
D′(

∂g

∂n′ ) (2)

∀m,m′ s.t mm′ = nn′ and mm′, nn′ ∈ D2t else

∂

∂m
D′(

∂g

∂m′ ) = 0 (3)
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Proof. Say if (D′, E′) ∈ Adj(∂t, U ′, V ′) then ∂
∂mD′( ∂g

∂m′ ) = E′( ∂g
∂mm′ ) = E′( ∂g

∂nn′ ) =
∂
∂nD

′( ∂g
∂n′ ) so if mm′ ∈ D2t then

∂
∂mD′( ∂g

∂m′ ) =
∂
∂nD

′( ∂g
∂n′ ) else ∂

∂mD′( ∂g
∂m′ ) =

∂
∂nD

′( ∂g
∂n′ ) = 0.

Say D′ : U ′ → U ′ satisfies the conditions mentioned in (b) then define E′ : V ′ → V ′ as

E′(
∂g

∂m
) =

{
∂

∂m1
D′( ∂g

∂m2
) m ∈ D2t and m1,m2 ∈ Dt

0 otherwise

where m1m2 = m, this is well-defined because of condition (b).
Now we will prove that (D′, E′) ∈ Adj(∂t, U ′, V ′). Let L = ∂

∂m , now we wish to show that LD′( ∂g
∂m′ ) = E′(L( ∂g

∂m′ )),
now there are two cases here,

• Say mm′ ∈ D2t now LD′( ∂g
∂m′ ) =

∂
∂mD′( ∂g

∂m′ ) = E′( ∂g
∂mm′ ) = E′(L( ∂g

∂m′ ))

• Say mm′ ̸∈ D2t now E′(L( ∂g
∂m′ )) = E′( ∂g

∂mm′ ) = 0 and LD′( ∂g
∂m′ ) =

∂
∂mD′( ∂g

∂m′ ) = 0.

Since m,m′ are arbitrary, this completes the proof.

Now, we will use the above lemma to show that g = x6
1x

2
2 has a non-trivial adjoint algebra. Say (D′, E′) ∈

Adj(∂=2, U ′, V ′), now by lemma 6 it is equivalent to saying D′ satisfies 2,3; these gives us a system of linear equations
whose solutions are as follows

Adj(∂=2, U ′, V ′) =

{a b c
0 a 12

5 b
0 0 a

 ,

a 3
2b

5
2c

0 a 4b
0 0 a

 : a, b, c ∈ F

}

4.1.2 Structural Result

In this section we show that diagonal entries of an element in the adjoint algebra are the same and look at a sufficient
condition which tells us when the off-diagonal entries of an element in adjoint algebra is 0.

For the sake of simplicity D(mi)[mj ] denotes the coefficient of ∂g
∂mj

in D( ∂g
∂mi

) for the rest of the section.

Lemma 7. For mi,mj ∈ Dt we have

(a) D(mi)[mj ] = 0 if {∂t( ∂g
∂mj

)} ̸⊆ {∂t( ∂g
∂mi

)}

(b) D(mi)[mi] = D(mj)[mj ]

Proof. We will apply lemma 6 to prove this,

(a) We are given that {∂t( ∂g
∂mj

)} ̸⊆ {∂t( ∂g
∂mi

)} hence we can find a monomial n of degree t s.t mjn ∈ D2t and
∂g

∂nmj
̸∈ {∂t( ∂g

∂mi
)}. Now we have two cases

• Say min ̸∈ D2t then

∂

∂n
D(

∂g

∂mi
) = 0

=⇒ ∂

∂n
(
∑
r∈Dt

αr
∂g

∂r
) = 0

=⇒
∑

m∈Dt

αr
∂g

∂nr
= 0

11



Since mjn ∈ D2t we have ∂g
∂mjn

̸= 0. Now αmj = D(mi)[mj ] is the coefficient of ∂g
∂mjn

in the sum and

since ∂g
∂mjn

̸= 0 we have D(mi)[mj ] = 0.

• Say min ∈ D2t then we have ∂
∂nD( ∂g

∂mi
) = ∂

∂mi
D( ∂g∂n ), On L.H.S of the equation the coefficient of ∂g

∂mjn
is

D(mi)[mj ] and on the R.H.S the coefficient of ∂g
∂mjn

is 0 because ∂g
∂nmj

̸∈ {∂t( ∂g
∂mi

)}. Since mjn ∈ D2t we

have ∂g
∂mjn

̸= 0, hence D(mi)[mj ] = 0.

(b) As d > 2t we have a monomial r s.t deg r = t and r| gδ where δ =
mimj

gcd(mi,mj)
now it is clear that mir,mjr ∈ D2t.

Now by lemma 6 we have the following

∂

∂mi
D(

∂g

∂r
) =

∂

∂r
D(

∂g

∂mi
)

Now the coefficient of ∂g
∂mir

on the L.H.S is D(r)[r] and on the R.H.S is D(mi)[mi] and since ∂g
∂mir

̸= 0 we have
D(mi)[mi] = D(r)[r]. Similarly we get D(mj)[mj ] = D(r)[r]. Hence we have D(mi)[mi] = D(mj)[mj ].

4.2 Simultaneously Upper Triangulation
In this section we will construct a basis for U ′ such that for any (D′, E′) ∈ Adj(∂t, U ′, V ′) the representation of D′

in the basis is block-diagonal and upper triangular.

Let’s introduce a graph G = (V,E) where V =
⋃

i=1,...,s Di,t where Di,t = {mj | deg(mj) = t and mj |gi} and
E = {(mi,mj) | ∂t( ∂g

∂mi
) ⊂ ∂t( ∂g

∂mj
)}. A few quick observations we get are as follows:-

1. All the Di,t are disjoint because of the design condition as deg gcd(gi, gj) < t.

2. Again by design condition we have ∂g
∂mi

= ∂gi
∂mi

for each i ∈ [s].

By the 2 observation we have E =
⋃

i=1,...,s Ei where Ei = {(mj ,mk) | ∂t( ∂gi
∂mj

) ⊂ ∂t( ∂gi
∂mk

) and mj ,mk ∈ Di,t}
and Ei’s are disjoint.

Let’s say G has a cycle mi1, . . . .min, by definition of the edge set, this is equivalent to saying that ∂t( ∂g
∂mi1

) ⊂
∂t( ∂g

∂min
) ⊂ ∂t( ∂g

∂mi1
) but it is not possible; thus G is acyclic.

Let Top(.) denote the to topological sort of a graph. Now since Di,t’s and Ei’s are disjoint thus we have,

Top(G) =
⋃

i=1...s

Top(Di,t, Ei)

Define Topi = Top(Di,t, Ei) = {t1, . . . , tb}, where b = dim U ′
i . Say D ∈ Adj(∂t, U ′, V ′), then D(ti)[tj ] = 0 (

recall that this notation denotes the coefficient of tj in D(ti)) if if i < j because else ∂t( ∂g
∂mtj

) ⊂ ∂t( ∂g
∂mti

) which
would mean there is an edge from tj to ti when i < j which contradicts the fact that Topi is a toplogical sort.

Let Rev({a1, . . . , an}) = {an, . . . , a1} now notice that B =
⋃

i=1...s Rev(Topi) is the basis of U ′, since D′(ti)[tj ] = 0
for i < j thus the representation of D′ in the basis B is upper-triangular and by the uniqueness of the decomposition
it is also block diagonal.
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Algorithm 3 Vector Space Decomposition Algorithm
Input: Black box access to vector spaces U = U1 ⊕ · · · ⊕ Us and V = U1 ⊕ · · · ⊕ Us where (∂t, U, V ) form a vector
space decomposition structure (for definition see section 1.1.2 of [4]).
Output: Black box access to W1, . . . ,Ws s.t Wi = Uπ(i) for some permutation π.

1: Find the basis D1, . . . , Db of Adj(∂t, U, V )1 = {D | (D,E) ∈ Adj(∂t, U, V )} by solving the system of linear
equation given by KD = EK for all K ∈ ∂t.

2: Randomly pick c1, . . . , cb from a set S and let D = c1D1 + · · ·+ cbDb.
3: Find the eigenvalues of D, if there are s distinct eigenvalues call them λ1, . . . , λs else abort.
4: Set Wi = Ker(D − λiI)

dim U and output W1, . . . ,Ws.

4.3 Vector Space Decomposition Algorithm
Now, we will design a randomised algorithm using the basis B constructed in the previous section.

4.3.1 Correctness Of Algorithm

To prove the correctness2 of the algorithm, we have to prove a few lemmas. In the remaining section, we will use the
notation defined in the algorithm without stating explicitly. Also, let T : U ′ → U be as defined in theorem 10.

First, let’s make the following observations:-

1. Let (D,E) ∈ Adj(∂t, U, V ), now by theorem 10 and proposition 25 of [1] we have (D′, E′) ∈ Adj(∂t, U ′, V ′) such
that D′ = TDT−1. Now D and D′ have the same eigenvalues. Express D′ in the basis B. In this representation
of D′, the eigenvalues are diagonal entries as it is upper triangular. We also know that D′ is block diagonal
with s blocks, and lemma 7 tells us that all diagonal entries of a block are the same.

2. Assume that the blocks of D′ have pairwise distinct diagonal entries (which, because of the upper triangular
nature, happen to be the eigenvalues of D′) denoted by λ1, . . . , λs. In (D′ − λiI), the diagonal entry of the
i-th block is 0; now we know that diagonal-less upper triangular matrix is nilpotent with order less than the
dimension of the matrix. Hence the blocks in (D′ − λiI)

dimU have non-zero diagonal entries except the i-th
block, which is as a whole 0. Thus by construction of B we have Ker(D′ − λiI)

dim U = U ′
i .

Lemma 8. D has s distinct eigenvalues with probability ≥ 1− (s2)
|S|

Proof. By observation 1, it is enough to show that the blocks of D′ have different diagonal entries. Denote the
diagonal entry of the i-th block by D′

i(c1, . . . , cb) =
∑b

j=1 cjDj [i][i] (Look at D′
i as a linear form in c1, . . . , cb).

Now we have D′
i − D′

j ̸= 0 (as linear forms) as a1
∣∣
U ′

i

+ b1
∣∣
U ′

j

for a ̸= b is a member of Adj(∂t, U, V ) and since

D1, . . . , Db is the basis of Adj(∂t, U, V ) there exists a b-tuple c0 s.t (D′
i −D′

j)(c0) = a− b ̸= 0. Hence by Schwartz-
Zippel lemma, we have for a random b-tuple c, (D′

i −D′
j)(c) ̸= 0 with a probablity ≥ 1− 1

|S| .The analysis is true for

arbitrary i, j; hence by union bound, the blocks of D have pairwise distinct with probability ≥ 1− (s2)
|S| .

Lemma 9. Wi = Uπ(i) for some permutation π.
2By that, we mean showing the algorithm gives the desired result with high probability

13



Proof. By observation 2 we have Ker(D′ − λiI)
dim U = U ′

i and by observation 1 we have D′ = TDT−1. Since T is
invertible, we have the following

Ker(D′ − λiI)
dim U = U ′

i

Ker(TDT−1 − λiI)
dim U = U ′

i

Ker(T (D − λiI)T
−1)dim U = (U ′

i)

Ker(T (D − λiI)
dim UT−1) = (U ′

i)

Ker(T (D − λiI))
dim U = T (U ′

i), Since T is invertible

Ker(D − λiI)
dim U = Ui

As we don’t know the order in which we will get the eigenvalues, hence there exists a permutation π s.t Wi = Uπ(i).

Hence lemma 8 and 9 proves that algorithm 2 works with probability ≥ 1− (s2)
|S| .

Time Complexity: The dominant time cost is that of step 1, which involves solving a linear system of equations
in dim(U)2 + dim(V )2 variables with

(
n+t−1

t

)
· dim(V ) · dim(U) many equations. Since dim(U) ≤ s

(
d
t

)
< sdt and

dim(V ) ≤ s
(
d
2t

)
< sd2t ,therefore there are poly(s, nt, dt) many linear equations and poly(s, dt) many variables in

this system. Thus, such a system can be solved in poly(s, nt, dt) time.

5 Conclusions and future work
We have designed an equivalence test for design polynomials with some mild technical assumptions. A natural
learning question which now arises is that if can we efficiently learn lower rank projections3 of a design polynomial in
the non-degenerate. Immediately one can see that there are important structural properties in the full-rank case that
don’t hold in the low-rank case. In our case, we proved the direct sum condition and uniqueness of decomposition
using the properties of base polynomials as for full-rank projections the adjoint algebra of the projected polynomial
is isomorphic to the adjoint algebra of the base polynomial (Even coming with up a reasonable non-degeneracy
condition for which these conditions are satisfied is not trivial). Even though we can’t use these properties, but for
the low-sparsity case it seems like we can use the meta-framework of [4] to design a learning algorithm.
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6 Appendix

6.1 Adjoint Isomorphism
In this section, we will show that the adjoint algebra of a polynomial (in the sense defined in theorem 10) does not
change under invertible transformations and translations.

The definitions used in this section can be found in appendix A of [1].

Theorem 10. Let g ∈ F[x], x = {x1, . . . , xn}, h = g(l1, . . . , ln) where l1, . . . , ln are linearly independent. Then
Adj(∂k, Ud, Ud+k) ∼= Adj(∂k, U ′

d, U
′
d+k) where Ud =

〈
∂=dg

〉
and U ′

d =
〈
∂=dh

〉
Proof. Define Td : Ud → U ′

d s.t Td(p) = p(l1, . . . , ln). This map is injective as the map p → p(l′1, . . . , l
′
n) is the left

inverse of Td where (l′1, . . . , l
′
n) is the inverse of (l1, . . . , ln) when seen as matrices. We will prove by induction on d

that im(Td) = U ′
d. For d = 0 it is clear that this holds. Let is be true for d = q now for d = q + 1 we have,

Consider the identity
∂(p(l1, . . . , ln))

∂xi
=

n∑
j=1

(
∂p

∂xj
)(l1, . . . , ln)

∂lj
∂xi

(4)

Since l1, . . . , ln are linearly independent thus we have
〈
{∂(p(l1,...,ln))

∂xi
}i∈[n]

〉
=

〈
{ ∂p
∂xi

(l1, . . . , ln)}i∈[n]

〉
Let u′ ∈ {∂=q+1g} then we have a monomial m of degree q + 1 s.t u′ = ∂g

∂m , now Tq+1(u
′) = ∂g

∂m (l1, . . . , ln).
Now for some i ∈ [n] we have xi|m and let m′ = m

xi
then define u = ∂g

∂m′ . Now Tq+1(u
′) = ∂u

∂xi
(l1, . . . , ln) ∈〈

{∂(u(l1,...,ln))
∂xi

}i∈[n]

〉
=

〈
{∂(Tq(u))

∂xi
}i∈[n]

〉
hence by induction hypothesis we have Tq+1(u

′) ∈ U ′
q+1. Since u′ is arbitary

and {∂=q+1g} is spanning set of Uq+1 thus we have im(Tq+1) ⊆ U ′
q+1.

Let v ∈ {∂=q+1h} then we have a monomial m of degree q + 1 s.t v = ∂h
∂m . Now for some i ∈ [n] we have xi|m and

let m′ = m
xi

, define u′ = ∂h
∂m′ ∈ U ′

q now by induction hypothesis we have a u ∈ Uq s.t Tq(u) = u′. Now we know that

〈
{∂(u(l1, . . . , ln))

∂xi
}i∈[n]

〉
=

〈
{ ∂u

∂xi
(l1, . . . , ln)}i∈[n]

〉
=⇒

〈
{∂u

′

∂xi
}i∈[n]

〉
=

〈
{Tq+1(

∂u

∂xi
)}i∈[n]

〉
=⇒ v ∈

〈
{Tq+1(

∂u

∂xi
)}i∈[n]

〉
Since v is arbitary and {∂=q+1h} is the spanning set of Uq+1 thus we have U ′

q+1 ⊆ im(Tq+1). This completes our
proof of U ′

q+1 = im(Tq+1).

We have isomorphic maps Td : Ud → U ′
d and Td+k : Ud+k → U ′

d+k. Let m = y1 · · · yk (y1, . . . , yk are not necessarily
distinct) and deg m = k, now we have
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∂Td(p)

∂m
=

∂(p(l1, . . . , ln))

∂m

=

n∑
i1,...,ik=1

(
∂p

∂xi1 · · ·xik

)(l1, . . . , ln)
[∂li1
∂y1

· · · ∂lik
∂yk

]
= (

n∑
i1,...,ik=1

(
∂p

∂xi1 · · ·xik

)
[∂li1
∂y1

· · · ∂lik
∂yk

]
)(l1, . . . , ln)

= Td(ϕk(
∂

∂m
)p)

where

ϕk(
∂

∂m
) =

n∑
i1,...,ik=1

[∂li1
∂y1

· · · ∂lik
∂yk

] ∂

∂xi1 · · ·xik

(5)

Now, we show that ϕk is an invertible linear transformation. We first show that

〈
{ ∂p

∂m
(l1, . . . , ln)}degm=k

〉
=

〈
{∂p(l1, . . . , ln)

∂m
}degm=k

〉
(6)

Note that the L.H.S of equation 6 is just im(Uk) and R.H.S is U ′
k, since im(Uk) = U ′

k, thus equation 6 holds.
Now notice that coefficients of 5 is the coefficients of change of basis between the L.H.S and R.H.S of equation 6.
Hence ϕk is invertible.

Theorem 11. Let g ∈ F[x], x = {x1, . . . , xn}, h = g(x + b) where b = (b1, . . . , bn) ∈ F. Then Adj(∂k, Ud, Ud+k) ∼=
Adj(∂k, U ′

d, U
′
d+k) where Ud =

〈
∂=dg

〉
and U ′

d =
〈
∂=dh

〉
Proof. Define Td : Ud → U ′

d s.t Td(p) = p(x + b). This map is injective as the map p → p(x − b) is the left inverse
of Td. Now we will show that Td is surjective. Say p ∈ U ′

d then

p =
∑

deg m=d

cm
∂h

∂m

=
∑

deg m=d

cm
∂g(x + b)

∂m

= (
∑

deg m=d

cm
∂g

∂m
)(x + b)

= Td(
∑

deg m=d

cm
∂g

∂m
)

Hence p ∈ im(Td), thus the map is surjective. Define ϕ :
〈
∂k

〉
→

〈
∂k

〉
to be the identity function, then clearly it is

invertible. Moreover, ϕ(L)Td = Td+kL, ∀L ∈
〈
∂k

〉
, hence proved.

6.2 Random Homogeneous Polynomial
In this section, we would like an average case estimate of t for a “Random homogeneous polynomial”. We establish
the conditions on s,t,d and n, under which a random homogeneous degree d polynomial of with s monomials has is
a t design polynomial with high probability.
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A random n-variate homogeneous degree d polynomial with s monomials is a polynomial where each one of the
s monomials is selected independently of the others. By selecting a monomial, we mean choosing d variables from
the n variables uniformly and independently with repetition allowed for each variable to form a degree d monomial.

Lemma 12. A random n-variate homogeneous degree d polynomial with s monomials is a t-design polynomial with
probability at most 1− ϵ, if t ≥

2log( s√
ϵ
)

log( n
d2

)

Proof. Let Ei,j denote the event that for monomials mi,mj deg gcd( mi,mj) ≥ t.
Clearly, deg gcd( mi,mj) ≥ t if and only if ∃m such that deg m ≥ t and m|mi and m|mj .
Now,

Pr[m|mi,deg m = t] =

(
n+d−t−1

d−t

)(
n+d−1

d

)
This is because mi is formed by choosing d variables uniformly at random with repetition, which can be done

in
(
n+d−1

d

)
ways. When m|mi, then mi is some multiple of m. In this case, mi can be formed by selecting d − t

variables uniformly (as deg m = t), which can be done in
(
n+d−t−1

d−t

)
ways.

Since mi and mj are selected independently of one another, therefore

Pr[m|mi,m|mj ] =

(
n+d−t−1

d−t

)2(
n+d−1

d

)2
By using union bound on all

(
n+t−1

t

)
many possible degree t monomials which can divide both mi and mj , we

have

Pr[Ei,j ] ≤
(
n+t−1

t

)(
n+d−t−1

d−t

)2(
n+d−1

d

)2
For a polynomial with s monomials, using union bound (on the

(
s
2

)
possible pairs of monomials) we have:

Pr[∃ i, j ∈ [s] Ei,j ] ≤
∑

1≤i<j≤s

(
n+t−1

t

)(
n+d−t−1

d−t

)2(
n+d−1

d

)2
≤

(
s

2

)(
n+t−1

t

)(
n+d−t−1

d−t

)2(
n+d−1

d

)2
≤ s2

(n+ t− 1)!

(n− 1)!t!

(n+ d− t− 1)!2

(n− 1)!2(d− t)!2
(n− 1)!2d!2

(n+ d− 1)!2

= s2
(n+ t− 1)!

(n− 1)!t!

(n+ d− t− 1)!2

(n+ d− 1)!2
d!2

(d− t)!2

≤ s2
(n+ t− 1)t

t!

d2t

(n+ d− t)2t

= s2
d2t

t!

(n+ t− 1)t

(n+ d− t)2t
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≤ s2
d2t

t!

(2n)t

n2t

≤ s2d2t

nt

We need this probability to be small (say ≤ some ϵ). Thus,

s2
d2t

nt
≤ ϵ

nt

d2t
≥ s2

ϵ

t ≥
2log( s√

ϵ
)

log( n
d2 )

The inequality in the last step holds as n > d2.

Our equivalence test works for (n, d, s, t) polynomial if it satisfies some technical conditions on the base field and
d > 3t. From the above lemma we can see that a “random” homogeneous polynomial of degree δt > d > 3t and

sparsity s <
√

ϵ( n
d2 )

d
δ is t-design with a probability of 1−ϵ. So in this sense, we have an equivalence test for “random”

homogeneous polynomial with some technical assumption on sparsity.
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