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Abstract

In this work we study the multi-r-ic formula model introduced by [KS15c] and improve upon

the lower bound for multi-r-ic depth four circuits given in [KST16b], when viewed as a function

of the number of input variables N . The improvement leads to superpolynomial lower bounds

for values of r significantly higher than what is known from prior works.

A (syntactically) multi-r-ic formula is an arithmetic formula in which the formal degree with

respect to every variable is at most r at every gate. The formal degree of an input gate with

respect to a variable x is defined to be 1 if the gate is labelled with x and 0 if it is labelled with

a field element or a different variable. The formal degree of a sum (respectively, product) gate

with respect to x is defined as the maximum (respectively, sum) of the formal degrees of its

children with respect to x. A multi-r-ic formula computes a polynomial with individual degree

of every variable bounded by r.

Multi-r-ic formulas are a natural extension of the relatively well-studied multilinear formu-

las [Raz09, RY09]. In this work, we focus on multi-r-ic formulas that compute multilinear

polynomials. They are interesting because they allow the formal degree of the formula to

be as high as r times the number of underlying variables. This gives extra room for ‘clever’

cancellations of the high degree components inside the formula thereby making this type of

formulas harder to analyze (as formula homogenization is not known to be doable without

blowing up the size superpolynomially unless degree is very small [Raz10]). Most lower bound

proofs in the literature operate under the restriction of low formal degree or multilinearity

[Raz09, RY09, KSS14, KLSS]. In this light, multi-r-ic formulas computing multilinear polyno-

mials form a reasonable intermediate model to study in order to gain some insight on how to

deal with high formal degree in general formulas. Another motivation for understanding the

high formal degree case better (even at depth three) comes from the depth reduction result in

[GKKS14].

With the aim of making progress on multi-r-ic formula lower bound, [KST16b] gave a

( N
d·r2 )Ω(

√
d/r) lower bound for multi-r-ic depth four formulas computing the N -variate Iterated
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Matrix Multiplication (IMM) polynomial of degree d. As a function of N , the lower bound is at

most 2Ω(
√
N/r3) when d = Θ(N/r2). In this thesis, our focus is on getting multi-r-ic depth four

formulas with larger r into the arena of models that provenly admit a superpolynomial lower

bound. In [KST16b], r can be at most N1/3 for the bound to remain superpolynomial. Our

result (stated below) gives a superpolynomial lower bound for multi-r-ic depth four formulas

where r can be as high as (N · logN)0.9.

Theorem. Let N, d, r be positive integers such that 0.51 ·N ≤ d ≤ 0.9 · N and r ≤
(N · logN)0.9. Then there is an explicit N -variate degree-d multilinear polynomial in VNP

such that any multi-r-ic depth four circuit computing it has size 2
Ω
(√

N·logN
r

)
.

The theorem yields a better lower bound than that of [KST16b], when viewed as a function of

N . Also, the bound matches the best known lower bound (as a function of N) for multilinear

(r = 1) depth four circuits [RY09] which is 2Ω(
√
N ·logN).

The improvement is obtained by analyzing the shifted partials dimension (SPD) of an N -

variate polynomial in VNP (as opposed to a VP polynomial in [KST16b]) of high degree range

of Θ(N), and comparing it with the SPD of a depth four multi-r-ic circuit. In [KST16b] a

variant of shifted partials, called shifted skewed partials, is critically used to analyze the IMM

polynomial (which is in VP) and obtain a lower bound as a function of N and d (particularly

for low d). We observe that SPD (without ‘skew’) is still effective for the Nisan-Wigderson

polynomial (which is in VNP), and yields a better lower bound as a function of only N when

degree d is naturally chosen to be high.

Our analysis gives a better range for r and a better lower bound in the high degree regime,

not only for depth four multi-r-ic circuits but also for the weaker models: multi-r-ic depth three

circuits and multi-r-ic depth four circuits with low bottom support. These (weaker) models are

instrumental in gaining insight about general depth four multi-r-ic circuits, both in [KST16b]

and our work.
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Chapter 1

Introduction

The role of polynomials in computer applications cannot be overstated. Think of an image-

processing application for instance. In all probability it has a piece of code that takes as input a

square matrix of a certain size and outputs its determinant. Viewing individual matrix entries

as variables, the determinant is a polynomial expression in those variables. The piece of code

is effectively evaluating the (determinant) polynomial at given input values of variables. The

determinant is only an example; in fact every arithmetic/algebraic operation is equivalently a

process of evaluating, or computing, some polynomial.

A natural question then, from an algorithmist’s standpoint, is: “What is the most efficient

way to compute a polynomial?”. For example, the polynomial xyz+2xy+xz+2x+yz+2y+z+2

can be represented more compactly as (1+x) · (1+y) · (2+z). Under the former representation

the polynomial takes 8 multiplications and 7 additions to compute, while the latter offers a

more efficient way of computation, taking only 3 additions and 3 multiplications.

Of course, the notion of efficiency as well as the computation model should be clarified

before embarking on a serious investigation of the question, and we elaborate more on this

later. However, what is apparent is that for any polynomial of interest, it is useful to know

a threshold efficiency which cannot be surpassed by any algorithm computing the polynomial.

Proving such a threshold, or lower bound, immensely helps one understand the polynomial as

well as the algorithm (computing the polynomial). One can conclude that the best known

algorithm is the best algorithm, if its efficiency and the proven lower bound happen to match.

Even otherwise, i.e. if there is a gap between the two, algorithmists can inspect the proof and

make informed decision on how to go about. Thus, as most problems in computer science do,

polynomial computation offers two avenues of exploration for researchers, namely, proving a

sufficiently high lower bound for a polynomial of interest, or coming up with a more-efficient-
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than-current algorithm for the polynomial. Oftentimes the two processes are interdependent.

Several other questions, practically important ones, can be asked of polynomials, while keep-

ing efficiency in mind. Consider for instance checking whether two polynomials (represented

differently) are equal or not. This is equivalent to asking whether their difference, which is also

a polynomial, is identically zero or not. Checking (efficiently) whether a polynomial (computed

by a model) is identically zero is known as Polynomial Identity Testing (PIT). Its practical

significance comes from the fact that many problems in computer science can be reduced to the

problem of PIT. Another interesting problem is the reconstruction problem: from the knowl-

edge of what a “black-box polynomial” evaluates to at certain inputs, find a representation

(under the computation model agreed upon), preferrably an efficient one, of the polynomial.

One can see that polynomial interpolation is a special case of the reconstruction problem. We

remark that all the questions above are interdependent. To shed more detail on that, we need

to elaborate on our computation model and the notion of efficiency.

An algebraic expression such as the ones we gave above (which contains just +,− and ·
operators and paranthesis, no exponents) is called a formula. Formulas can be considered as a

computational model. To attach a notion of efficiency to it, we first define the size of a formula

as the number of +,− and · operators, called the basic operations, in it. For a formula to qualify

as efficient, we demand that the formula size be bounded by a function that is a polynomial in

the number of variables. Notice however that in practice we tend to reuse intermediate results

when possible. For example, while the formula (x + y + z + 2) · (x + y + z + 3) has size 7,

a more efficient way seems to first compute x + y + z and assign it to an fresh variable w

and then compute (w + 2) · (w + 3). Even if we count the intermediate assignment as a basic

operation we have in total 2 + 1 + 3 = 6 < 7 operations. Formally, such a model is called

an algebraic straight line program (ASLP). An ASLP is a sequence of instructions of the form

a = b ◦ c where ◦ is one of +,− and ·, a is a fresh variable and b and c are input variables

or fresh-at-a-previous-instruction variables. The size of an ASLP is the number of instructions

in it, and the efficiency is determined by the size of the ASLP in the same way as that for a

formula. In Section 2.3 of Chapter 2 we define the model of arithmetic circuits. It is easy to see

the equivalence between arithmetic circuits and algebraic straight line programs. Roughly, an

arithmetic circuit is a directed acyclic graph with leaves corresponding to inputs and internal

nodes corresponding to basic operations. Operands for a basic operation at an internal node

come through the incoming edges and the result is made available on the outgoing edges. The

size of an arithmetic circuit is the number of edges in the circuit.
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Proving arithmetic circuit lower bounds and PIT are connected. To see how, we first remark

that a randomized poly-time algorithm exists for PIT. Since it is widely believed that problems

solvable in randomized poly-time are also solvable in deterministic poly-time (more precisely,

BPP = P), a natural attempt is to derandomize PIT. Kabanets and Impagliazzo [KI04] showed

that a subexponential time deterministic algorithm for PIT of arithmetic circuits implies either a

superpolynomial lower bound for arithmetic circuits or NEXP 6⊂ P/poly. In the reverse direction,

they showed that a superpolynomial (similarly, exponential) lower bound for arithmetic circuits

implies subexponential (similarly, quasipolynomial) time PIT. Agrawal [Agr05] showed that a

polynomial time blackbox PIT algorithm implies a superpolynomial lower bound for circuits

computing an explicit (PSPACE-computable) polynomial.

The PIT problem and the circuit reconstruction problem are connected as well. Using the

test points given by the PIT algorithm we can distinguish two circuits, by evaluating their

difference on those points. The techniques used for distinguishing two circuits have at times

been used for designing some kind of learning algorithms for circuit reconstruction ([SY10]). In

this way, proving arithmetic circuit lower bounds has implications on several areas of algebraic

complexity theory.

Speaking of lower bounds, we would like to draw parallels with the boolean complexity theory.

In fact, one of the motivations behind developing the theory of arithmetic circuits was to gain

new insights on resolving the P vs NP problem. It is known that VP 6= VNP implies P 6= NP

in the nonuniform setting, under the generalized Riemann hypothesis [Bür00]. Therefore it is

plausible that proving VP 6= VNP is easier. However, despite decades of effort this remains

unresolved.

Some known lower bounds

In the course of time, several restricted models of arithmetic formulas have been considered

and lower bounds are proven. Nisan [Nis91] considered the setting of noncommutative rings

and proved an exponential lower bound on the size of (noncommutative) circuits computing

(a noncommutative version of) determinant (Detn). Similarly monotone circuits are consid-

ered. In monotone circuits negative constants and subtraction are prohibited throughout the

computation. Jerrum and Snir proved an exponential 2Ω(n) lower bound on monotone circuits

computing the permanent (Permn) of an n× n matrix.

Just like in the boolean world, arithmetic circuits with some structural restrictions have

been studied. Constant depth and multilinearity are among those, and are relevant to this

discussion. Under multilinearity constraint (first defined in [NW97]), the circuit is syntactically

3



forced to compute multilinear polynomials at all gates. (A polynomial is multilinear if its

degree with respect to every variable is at most one.) Computation aspects of multilinear

polynomials are of great interest for several reasons. To name a few, firstly, for every boolean

function there is a straightforward multilinear polynomial that matches the boolean function on

0-1 values. Secondly, important polynomials like Detn, Permn (which is VNP-complete), and

the iterated matrix multiplication (IMM) are multilinear. Furthermore, the smallest known

circuits computing Permn and IMM happen to be multilinear. The first nontrivial bound on

multilinear models was by Raz [Raz09], who proved that any multilinear formula computing

Detn takes nΩ(logn) size. Subsequently [RY08, RY09] showed superpolynomial lower bounds (and

separations) on constant depth (syntactically) multilinear circuits, against Detn and a newly-

defined multilinear polynomial. A natural question now is whether, against such multilinear

polynomials, nontrivial bounds can be proved on models that subsume multilinear formulas

and constant depth circuits. We shall return to this question later.

Our understanding of constant depth circuits (particularly depth three and depth four cir-

cuits) is relatively better. It is also where the distinction between the behavior arithmetic

circuits and boolean circuits becomes stark. It started with [VSBR83], where they proved that

any arithmetic circuit of size s computing a polynomial of degree d can be converted into one

with depth log s · log d, just at polynomial-blowup in size. This was taken forward by a series of

works [AV08, Koi12, Tav13] to show that any arithmetic circuit of size s computing an N -variate

polynomial fN of degree d can be transformed into a depth four circuit of size 2
√
d·log(d·s)·logN .

In particular if s is subexponential in N (and d = NO(1)) then so is the size of the depth four

circuit. Therefore, to show a superpolynomial lower bound on general arithmetic circuits, it is

sufficient to show a sufficiently high superpolynomial lower bound, i.e. Nω(
√
d), on depth four

circuits computing some explicit polynomial. (Furthermore if the polynomial is in VNP then

VP 6= VNP follows.) In contrast, no such depth reduction is known for boolean circuits.

Gupta et al. [GKKS13] took a step further in the course of depth reduction. [GKKS13] and

[Tav13] together imply that any arithmetic circuit of size s computing a polynomial fN of degree

d can be transformed into a depth three circuit of size 2
√
d·log(d·s)·logN , although they require

the underlying field to be of characteristic zero. Also, in the circuit resulted from a reduction

to depth three, the polynomials computed at intermediate gates can be of very high degree

compared to the degree of the output polynomial. In other words, reduction to depth three

does not preserve homogeneity. A circuit is said to be homogeneous if all its gates compute

homogeneous polynomials, i.e. polynomials in which all the monomials are of the same degree.

The reduction to log s · log d-depth and to depth four, mentioned before, preserves homogeneity.

4



In this light, proving an Nω(
√
d) for depth three or depth four circuits is a plausible goal, while

homogeneity can be assumed in the case of depth four. On depth four homogeneous circuits, a

series of works by [KLSS] and [KS14] yielded an NΩ(
√
d) lower bound for IMM.

However, for depth three circuits, the issue of high formal degree seems to be a hurdle for

existing proof techniques. Most of the current proofs work when the formal degree of the

circuit (i.e. the maximum degree of intermediate polynomials potentially computed) does not

exceed the number of underlying variables N . (A few notable exceptions are [KS15a, KS15b,

KS16, KST16a].) Note that this is in agreement with the aforementioned fact that we know

some nontrivial lower bounds on multilinear models: multilinearity, by definition, restricts

the formal degree to be at most N . A step forward towards understanding the high-formal-

degree regime could be to generalize the multilinear model. (Another direction would be to

homogenize a formula without a signficant blow up in size – this would bring down the formal

degree. However no efficient formula homogenization is known. In contrast, efficient circuit

homogenization is known.)

With this motivation, Kayal and Saha [KS15c] defined multi-r-ic formulas. In a multi-r-ic

formula the intermediate polynomials can have formal degree as high as r times the number of

variables. Clearly, multilinear formulas are the r = 1 case of multi-r-ic formulas.

1.1 Previous Works

[KS15c] proved a 2Ω(N/225·r) lower bound on depth three multi-r-ic circuits computing a multi-

r-ic (not multilinear) polynomial. This was improved to 2Ω(N) by Kayal, Saha and Tavenas

[KST16b]. [KST16b] also showed that a polynomial computed by a multi-r-ic formula of depth

three is “hard” for multi-r-ic homogeneous formulas of arbitrary depth. Finally, they proved

lower bounds on multi-r-ic formulas of depth three and depth four, against certain multilinear

and non-multilinear polynomials. The underlying hope is, techniques used to prove depth

three and depth four multi-r-ic formula lower bounds will shed some light on general multi-r-ic

fomulas just like in the multilinear (r = 1) case – consider for instance the proof of multilinear

formula lower bound using log-product formula [RY09], the latter is a kind of multilinear depth

four formula. Here we only list the [KST16b] results against multilinear polynomials. With

Detn as the target polynomial, they showed a 2Ω(n/r) lower bound on multi-r-ic depth three

circuits and a 2Ω(
√
n/r) lower bound on multi-r-ic depth four circuits. With IMMn,d as the target

polynomial (which is the (1, 1)-th entry of the product of d symbolic matrices of size n×n each),

they showed a lower bound of
(
n
r

)Ω(d)
and

(
n
r

)Ω(
√
d/r)

on multi-r-ic formulas of depth three and

depth four respectively.
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We note that the bounds against IMMn,d are functions of degree d (and the number of

variables N ≈ n2 · d). Since a multilinear polynomial has at most
(
N
d

)
≈
(
N
d

)d
monomials, for

r = 1 (or r � d) we can say that the bound is close to the optimum in the depth three case

and close to
(
N
d

)√d
in the depth four case (for d ≤ N0.9, say).

It is also relevant to talk about the proof techniques used in the recent lower bound proofs.

Many circuit lower bound results in the literature have followed a common template. First,

the circuit under study is brought into the form of (unless it already is) a sum of “building

blocks”, i.e. smaller circuits with possibly a certain structural property. Their number is

ensured to be not much more than the original circuit size. Next, a subadditive function that

maps polynomials to numbers is defined. Such a function is referred to as a measure in the

literature. On one hand, we want to devise a measure such that (the polynomial computed by)

a building block has low measure. On the other hand, we want to come up with an explicit

polynomial that has high measure. Finally, if such a polynomial is computed by our circuit then

the circuit must have a large measure which in turn demands a very large number of building

blocks and thus a large size.

Works such as [Nis91, NW97] showed that the dimension of the space of partial derivatives

often serves as a good measure. Building upon this concept, Kayal [Kay12] introduced The

shifted partials dimension (SPD) measure. Roughly speaking, SPD of a polynomial f is the

dimension of the space of all k-order partial derivatives (of f) multiplied by all possible mono-

mials of degree at most `, where the parameters k, ` are integers. (In Chapter 2 we define SPD

and roughly deduce the optimal choices of k and `.) [GKKS14] used SPD to prove a 2Ω(
√
n)

lower bound on depth four homogeneous circuits with bottom fanin bounded by
√
n, computing

Detn. An NΩ(d) lower bound for homogeneous depth four circuits (without the bottom fan-in

restriction) was proved in [KLSS] by introducing a variant of the SPD measure, called the (di-

mension of) projected shifted partials. Subsequent works such as [KS14, KS15a, KS15b, KS16]

used the projected shifted partials measure to exploit the structure of the models they were

trying to size-lower-bound.

[KST16b], keeping multi-r-ic models in mind, introduced another variant of SPD and called

it the (dimension of) shifted skewed partials (SSP). SSP differs from SPD in that it considers

k-th order derivatives with respect to a subset y (say) of variables and considers the derivatives

to be multiplied by non-y monomials of degree at most `. Furthermore, the remnant y-

variables (after taking derivatives) are “killed” by setting to zero. The term skew stands for

the (asymptotic) size disparity between y and its complement (where the larger subset is y),

which [KST16b] found to give an edge (over SPD) when the target polynomial is IMM (a VP

6



polynomial) of low degree.

1.2 Our results

While [KST16b] show a nontrivial lower bound on depth four multi-r-ic circuits that holds

for a range of d’s (in particular, low d’s), we give a lower bound on the same model that remains

superpolynomial for a wider range of r. (For more comparisons, see Section 1.3.)

Theorem 1 (Multi-r-ic depth four). Let N, d, r be positive integers such that 0.51 ·N ≤ d ≤
0.9·N and r ≤ (N ·logN)0.9. Then there is an explicit N-variate degree-d multilinear polynomial

in VNP such that any multi-r-ic depth four circuit computing it has size 2
Ω
(√

N·logN
r

)
.

Like in previous works, the route to prove the above theorem is via reduction to a restricted

model of depth four circuits where the bottom-support (i.e. the maximum number of variables

feeding to a bottom layer multiplication gate) is bounded.

Theorem 2 (Multi-r-ic τ -bottom-support depth four). Let N, d, r, τ be positive integers such that

221 · logN ≤ d ≤ 0.9 ·N , and 221

5000
· logN ≤ τ · r ≤ d

5000
. Then there is an explicit N-variate

degree-d multilinear polynomial in VNP such that any τ -bottom-support multi-r-ic depth four

circuit computing it has size at least
(
τ20·d
N ·r

)( 0.00001·d
τ ·r )

.

We use the same strategy as in [KST16b] to prove Theorem 2. However, for high degree

range (which is chosen to maximize the lower bound as a function of N) SSP does not seem

to do any better than SPD, and hence we choose SPD as the measure. What gives us leverage

is our choice of the Nisan-Wigderson polynomial (defined in [KSS14, KST16a]) as the target

polynomial, which is in VNP (in comparison to [KST16b]’s choice of IMM, a VP polynomial).

To build some intuition we separately prove a lower bound on multi-r-ic depth three circuits

(see Section 1.3 for another motivation).

Theorem 3 (Multi-r-ic depth three). Let N, d, r be positive integers such that 224 · r1.1 · logN ≤
d ≤ 0.9 · N . Then there is an explicit N-variate degree-d multilinear polynomial in VNP such

that any multi-r-ic depth three circuit computing it has size 2
Ω
(

d
r1.1·logN

)
.

Remarks.

1. The constant 0.9 in the above theorem statements can be brought arbitrarily closer to 1,

and the results still hold with slightly changed constants in the exponents.

2. By slightly tweaking the proof, the bound in Theorem 3 can be changed to 2
Ω
(

d1.1

r1.1·N0.1

)
,

which is better than 2
Ω
(

d
r1.1·logN

)
for d = Θ(N).
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1.3 Discussions

In this section we compare our results with [KST16b]’s. For summary, see Table 1.1. (N

and d denote the number of underlying variables and the degree of the polynomial computed,

respectively.)

Table 1.1: Comparison of our results with [KST16b]

Multi-r-ic

Model
Work

Lower Bound

(LB)
Constraints

Range of r for

Nω(1) LB

Depth

four
[KST16b]

(
N
d·r2
)Ω(
√

d
r

)
log2 N

d
≤ d

r ≤ N1/3

for d = Θ(N1/3)

Ours 2Ω(
√

N·logN
r

)
0.51 ·N ≤ d ≤ 0.9 ·N

r ≤ (N · logN)0.9
r ≤ (N · logN)0.9

Depth

three
[KST16b]

(
N
d·r2
)Ω(d)

r ≤ N1/2

Ours 2
Ω( d

r1.1·logN
)

224 · r1.1 · logN ≤ d ≤ 0.9 ·N
r ≤ N0.9

for d = Θ(N)

Depth

four

(τ -bottom-

support)

[KST16b]
(
N
d·r2
)Ω( d

τ ·r )
logN ≤ τ · r = o(d)

r ≤
(
N
τ

)1/3

for d = Θ((N · τ 2)1/3)

Ours
(
τ20·d
r·N

)Ω( d
τ ·r )

logN ≤ τ · r = o(d)

r ≤ N
τ

(for d = Θ(N)

and τ ≥ N1/21)

For multi-r-ic depth four lower bound.

1. Better range on r. In [KST16b], a lower bound of
(
N
d·r2
)Ω
(√

d
r

)
was shown for multi-r-ic

depth four circuits computing IMMn,d where N ≈ n2 ·d. For the bound to remain superpolyno-

mial, r can be at the most min(
√

N
d
, d). The expression min(

√
N
d
, d) is maximized at d = N1/3,
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and hence r has to be less than N1/3. On the other hand we show a lower bound of 2
Ω
(√

N·logN
r

)
for d ∈ [0.51 ·N, 0.9 ·N ] and r ≤ (N · logN)0.9 which continues to remain superpolynomial in

this range for r.

2. Improved lower bound. For any fixed function r = r(N), [KST16b]’s lower bound

of ( N
d·r2 )

Ω
(√

d
r

)
is maximized (as a function of N) to 2

Ω
(√

N
r3

)
at d = Θ

(
N
r2

)
. In comparison,

Theorem 1 shows a lower bound of 2Ω(
√

N·logN
r

) which is asymptotically better as a function of

N .

3. Extending the result of Raz and Yehudayoff ([RY09]). The best known lower bound

for multilinear (r = 1) depth four circuits is 2Ω(
√
N ·logN) [RY09]. Our result can be seen as an

extension of this lower bound to multi-r-ic depth four circuits, although the proof techniques in

[RY09] and in here are quite different. In particular, [RY09] used rank of a partial derivatives

matrix as the measure whereas we use SPD.

For multi-r-ic low-bottom-support depth four lower bound.

1. Better range on r. In [KST16b] a lower bound of roughly ( N
d·r2 )Ω( d

τ ·r ) was shown for

multi-r-ic depth four circuits with bottom support bounded by τ computing an N -variate

degree-d polynomial family in VP. For the bound to remain superpolynomial, r can be at

most min(
√

N
d
, d
τ
). Choosing d = (N · τ 2)1/3 for any fixed function τ = τ(N) to maximize

min(
√

N
d
, d
τ
), we can choose r at most

(
N
τ

)1/3
. On the other hand, in Theorem 2, r can be

chosen to be N
τ

for d = Θ(N) and τ ≥ N1/21. This gives a better range of r for higher τ .

2. Improved lower bound. The lower bound ( N
d·r2 )Ω( d

τ ·r ) in [KST16b], for any fixed func-

tions r = r(N) and τ = τ(N), is maximized (as a function of N) to 2Ω( N
τ ·r3 ) at d = Θ(N

r2
).

In comparison, Theorem 2 shows a lower bound of
(
N0.9

r

)Ω( N
r·τ )

for d = Θ(N) and τ ≥ N1/21

which is asymptotically better as a function of N and τ , for higher τ .

For multi-r-ic depth three lower bound.

1. Better range on r. In [KST16b] a lower bound of
(
N
d·r2
)Ω(d)

was shown for multi-r-

ic depth three circuits computing IMMn,d where N ≈ n2 · d. This means that r can be at

most
√
N/d ≤

√
N . On the other hand we show a lower bound of 2

Ω( d
r1.1·logN

)
which remains

superpolynomial for r ≤ N0.9 at d = Θ(N).

2. Shifted partials of elementary symmetric polynomials. [FLMS15] proved a lower

bound on SPD of the elementary symmetric polynomial ESymd
N where N and d are the number

of variables and the degree respectively.
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Theorem 4 ([FLMS15]). Let N, d, k ∈ N be such that d ≤ logN
10·log logN

and k = b d
t+1
c for some

t ∈ N satisfying t = 1 mod 4. Then, for ` = bN1−1/(2·t)c

SPDk,`(ESymd
N) ≥

(1− o(1)) ·
(
N+`
N

)
·
(
N−`
k

)(
3·
√
N

2

)k
· (2 · d)t

.

Now
(
N
k

)
·
(
N+`
N

)
= SPDmax

k,` (say) is the maximum value of the shifted partials dimension of any

N -variate multilinear polynomial we can get (see Section 2.5). Let us express the [FLMS15]

lower bound as a fraction of SPDmax
k,` .

SPDk,`(ESymd
N) ≥

0.9 ·
(
N+`
N

)
·
(
N
k

)
·
(
N−`
k

)(
3
2
·
√
N
)k
· (2 · d)t ·

(
N
k

)
≥

0.9 ·
(
N−`
k

)
(9

4
·N)k/2 · (2 · d)t ·

(
N
k

) · SPDmax
k,` . (1.1)

For t =
√
d (which is a typical value for t in the literature) we get k ≈

√
d = t and (2 · d)t ≈

(2 · d)k ≤ (logN)k. The ratio
(N−`k )
(Nk)

can be bounded as below.

(
N−`
k

)(
N
k

) =
(N − `) · (N − `− 1) . . . (N − `− k + 1)

N · (N − 1) . . . (N − k + 1)

=
N − `
N

· N − `− 1

N − 1
. . .

N − `− k + 1

N − k + 1

=

(
1− `

N

)
·
(

1− `

N − 1

)
. . .

(
1− `

N − k + 1

)
≥
(

1− `

N − k + 1

)k
≥ e−

2·k·`
N−k+1

(as ` = o(N) for d ≤ logN
10·log logN

in Theorem 4;

use Bound 2 from Section 2.2)

≥ e−2·k (again, as ` = o(N)).

Plugging this in Equation (1.1) we get

SPDk,`(ESymd
N) ≥

0.9 · SPDmax
k,`

(9
4
·N)k/2 · (logN)k · e2·k ≥

0.9 · SPDmax
k,`(√

9
4
·N · logN · e2

)k ≥ 1

N0.51·k · SPD
max
k,` .
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Thus SPDk,`(ESymd
N) is at most a factor of 1

N0.51·k away from SPDmax
k,` for the choice of low d

and ` as above.. Is SPDk,`(ESymd
N), however, actually a factor 1

Nγ·k away (for some constant

γ) from SPDmax
k,` , or is it “much closer” to SPDmax

k,` ? We observe that in a certain sense it is the

former case (at least when d is high and ` is chosen appropriately) as explained below:

In Section 3.5 we show that the shifted partials dimension of a multilinear depth three circuit

with top fan-in1 s, for the “optimum” choice of `,2 is at most s ·
(

33·N1/11·k1/1.1
α·d

)k
·SPDmax

k,` where

0 < α < 0.5 is a constant. There is a multilinear depth three circuit with top fanin s = N + 1

that can compute ESymd
N , due to Ben-Or [SW01]. Therefore

SPDk,`(ESymd
N) ≤ (N + 1) ·

(
33 ·N1/11 · k1/1.1

α · d

)k
· SPDmax

k,` .

Setting k =
√
d and d ≥ N0.17 we get

SPDk,`(ESymd
N) = O

(
1

N0.001·k

)
· SPDmax

k,` .

Thus, in this particular sense, our upper bound “complements” the lower bound shown in

[FLMS15]. Indeed, it is this gap between SPDk,`(ESymd
N) and SPDmax

k,` that helps us prove the

lower bound in Theorem 3. We note however that the [FLMS15] result holds for small values

of degree, i.e. d ≤ logN
10·log logN

whereas our result holds for the degree range N0.17 ≤ d ≤ 0.9 ·N .

Also, we have chosen a different value for `.

We would also like to note that this loss of 1/N0.001·k factor does not imply so far that it is not

possible to prove a NΩ(
√
d) lower bound for homogeneous depth four circuits with low bottom

fanin computing ESymd
N for higher values of d (using SPD as the measure).3 This is because,

in principle (as explained in Section 2) the best possible lower bound achievable using SPDmax
k,`

is
(
N
k

)1−ε ≥
(
N
k

)(1−ε)·k
which for the setting of parameters k =

√
d, d = N0.52 and ε = 0.1 is at

least N0.6·k. A loss of 1
N0.001·k factor would still give a NΩ(

√
d) lower bound.

A common motivation.

Another motivation common to both the depth three and depth four lower bound results is

as follows. As mentioned before, [KST16b] used shifted skewed partials, a variant of SPD, as

the measure. We wondered if it is possible to show lower bounds for multi-r-ic depth three and

1The top fan-in of a circuit is the in-degree of its root.
2In Section 2.5 we explain what the optimum choice of ` is.
3[FLMS15] already proves such a lower bound but for low d, i.e. d ≤ logN

10·log logN .
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depth four circuits using SPD (as is in [Kay12]) primarily because this measure has the nice

property of invariance under affine transformations which is lacking for shifted skewed partials.

Indeed our proofs show that this is possible when degree is high (although for low degree d and

expressing the lower bound as a function of N and d which is the case covered in [KST16b], the

variant measure, shifted skewed partials, seems to be important). This means our lower bound

in Theorem 3 continues to hold for any depth three circuit that is derived from a multilinear

depth three circuit by replacing each variable by an affine form. A similar generalization is also

true in Theorem 2. However, to prove Theorem 1, we use random restriction on the circuit to

reduce it to a circuit with low bottom support. This step does not carry through if the variables

of the circuit are replaced by affine forms. So, applying affine invariance property to Theorem

1 does not seem to give a lower bound for a more general model than what is considered in the

theorem.

1.4 Outline of the rest of the thesis

The rest of the thesis is dedicated to proving the three theorems stated above. In Chapter 2,

Preliminaries, we set up notations, define the SPD measure and discuss its properties. Chapter 3

proves Theorem 3 while postponing the discussion of the target polynomial. Similarly, Chapter

4 proves Theorem 2. The target polynomial is elaborated in Chapter 5. The main theorem,

Theorem 1, is finally proven in Chapter 6. We conclude with remarks on future work, in Chapter

7.

12



Chapter 2

Preliminaries

2.1 Notations

We use a bold letter, like x,y etc., to denote a set of variables. Elements of x are denoted

by x1, x2, . . . etc. and are called x-variables. An x-monomial is a monomial only containing x-

variables. On the other hand, by an f -monomial, where f is a polynomial, we mean a monomial

whose coefficient in f is nonzero. If µ is an x-monomial and ν is a y-monomial then by the

x-part (respectively y-part) of µ · ν we mean µ (respectively ν). For a polynomial f , degx f

denotes the degree of f with respect to a variable x, and deg f denotes the total degree of f .

For an integer ` ≥ 0, the set of all x-monomials of total degree at most ` is denoted by x≤`. For

two sets F and G of polynomials, F · G (respectively, F + G) will denote the set of products

(respectively, sums) of two polynomials one from F and G each.

Let X be a set and a ≤ b be two integers. The set of all subsets of X of size between a and

b (inclusive) is denoted by
(
X

[a,b]

)
, and simply by

(
X
a

)
when a = b. The set of positive integers is

denoted by N and the set {1, 2, . . . , n} is denoted by [n]. ‘log’ and ‘ln’ denote logarithms to base

2 and base e respectively. Sometimes we use the term poly(n) to mean nO(1). In statements and

proofs of Theorems 1,2 and 3, we assume N , the number of variables, to be sufficiently large

(so as to legitimize inequalities that hold asymptotically). Also, sometimes we omit floor (b c)
and ceil (d e) notations for integer-valued functions of N, d etc. for simplicity of presentation.

2.2 Some well-known bounds

The following estimates will be useful in the upcoming chapters.

1. Exponential upper bound. For a real number x, 1 + x ≤ ex.

2. Exponential lower bound. For a real number 0 < x < 1
2
, 1− x ≥ e−2·x.
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3. Binomial bounds. For integers 0 ≤ k ≤ n,
(
n
k

)k ≤ (n
k

)
≤
(
e·n
k

)k
.

We also use Chernoff bound.

4. Chernoff bound. Let X be the sum of several independent 0-1 random variables. Let

µ = E[X]. Then for any constant ε > 0,

Pr[|X − µ| ≥ ε · µ] ≤ 2 · e−ε2·µ/3.

2.3 Arithmetic circuits

An arithmetic circuit is a directed acyclic graph in which every node with in-degree 0 (called

input gate) is labelled with a variable or a field element, and every node with positive in-degree

is labelled with either ‘+’ (in which case the node is a sum gate) or ‘×’ (in which case the node

is a product gate). If there is an edge from a node u to a node v then u is called a child of v.

With every node we associate a polynomial and say that the node computes the polynomial, as

follows: An input gate is said to compute what it is labelled with. A sum (respectively product)

gate is said to compute the sum (respectively product) of the polynomials associated with its

children. We consider circuits which have exactly one root, i.e. the node with out-degree 0,

and a circuit is said to compute the polynomial its root computes. Also, we allow edges to be

labelled with field constants. If an edge from node u to node v is labelled with a constant α

and u is computing a polynomial f then v considers α · f , rather than mere f , as the input

coming from u.

The size of a circuit is the number of edges in it. The depth of a circuit is the length of

the longest path from an input gate to the root. While size captures the number of times the

basic operations are executed, depth captures the complexity of parallel computation: given

sufficiently many processors, it is the number of parallel steps taken to compute the output.

An arithmetic circuit in which all nodes have out-degree at most one is called a formula.

When the depth is constant, we use terms circuit and formula interchangeably, as in that case

a circuit can be converted into a formula with just poly-size blow up.

Depth three and depth four circuits. An expression that is a sum of products of linear

polynomials clearly corresponds to an arithmetic circuit of depth three. From now on, by a

depth three circuit we mean such an expression. Such circuits are also called ΣΠΣ circuits,

meaning the circuit has a top sum gate followed by a layer of product gates and finally a bottom

layer of sum gates. Similarly a circuit with a sum gate on top, followed by a layer of product
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gates, then a layer of sum gates again, and finally a bottom layer of product gates corresponds

to a depth four circuit (also called a ΣΠΣΠ circuit). Naturally, a depth four circuit is associated

with an expression that is a sum of product of sum of monomials, and hence by a depth four

circuit we mean such an expression. Further if the monomials computed at the bottom layer

of product gates of a depth four circuit are such that each of them has at most τ variables

appearing in it, then we say that the depth four circuit has τ -bottom-support.

Multi-r-ic formulas. The formal degree of an input gate g with respect to a variable x is

defined to be 1 if g is labelled with x and 0 if g is labelled with a different variable or a field

element. The formal degree of a sum (respectively product) gate g with respect to a variable

x is defined to be the maximum (respectively sum) of the formal degrees of its children with

respect to x. Let r be a positive integer. A multi-r-ic formula is an arithmetic formula such

that every gate in it has formal degree at most r with respect to every variable. If r = 1, a

multi-r-ic formula is called a multilinear formula. A polynomial is said to be multilinear if the

degree of every variable is at most one in every monomial of the polynomial.

Homogeneous circuits. A polynomial is said to be homogeneous if all its monomials are

of the same degree. A circuit is said to be homogeneous if all its gates compute homogeneous

polynomials.

2.4 Arithmetic complexity classes

Valiant [Val79] defined arithmetic complexity classes VP and VNP, analogous to the noted

boolean complexity classes P and NP. In the definitions below, F denotes a field.

Definition 1. A family of polynomials {fn} over F is said to be p-bounded if there is a poly-

nomial t : N→ N such that for every n, fn has at most t(n) variables, has degree at most t(n)

and can be computed by a circuit of size at most t(n). The class of all p-bounded families over

F is denoted by VPF, or simply, VP.

Definition 2. A family of polynomials {fn} over F is said to be p-definable if there is a

polynomial family {gn} over F in VP and polynomials t, k : N→ N such that

f(x1, . . . , xt(n)) =
∑

(w1,...,wk(n))∈{0,1}k(n)
g(x1, . . . , xt(n), w1, . . . , wk(n)).

The class of all p-definable families over F is denoted by VNPF, or simply, VNP.

In fact, in the above definition it can be assumed that g is computable by a poly(n) sized

formula (instead of a circuit). Valiant [Val79] gave a sufficient condition for a polynomial
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family’s membership in VNP. Called Valiant’s criterion, it turns out to be useful in Chapters

5 and 6. We state it below and prove a special case of it where multilinearity and binary

coefficients are assumed. (Polynomial families showing up in the later chapters are multilinear

and have binary coefficients.)

Proposition 5 (Valiant’s criterion). A family {fn} of multilinear polynomials with 0-1 coeffi-

cients is in VNP if there is a poly(n)-time algorithm1which, given any monomial, computes its

coefficient in fn.

Proof. Let x1, . . . , xt(n) be the variables of fn for some polynomial t. It is given to us that there

is a deterministic turing machine M that takes as input a binary vector e, corresponding to the

monomial xe11 . . . x
et(n)
t(n) , runs in time u(n) for some polynomial u, and outputs the monomial’s

coefficient in fn. Along the lines of the proof of Cook-Levin theorem one can construct a ‘small’

boolean formula φ that simulates M on e. φ obtained in this way is in variables e ∪ y such

that |e ∪ y| = O(u2(n)) (where y-variables are fresh), has size poly(n), and has the following

property: For every assignment a ∈ {0, 1}|e|,

1. if M(a) = 0 then φ(a,y) is not satisfiable, and

2. if M(a) = 1 then there is exactly one assignment b ∈ {0, 1}|y| such that φ(a,b) = 1.

We arithmetize φ. In other words, we construct an arithmetic formula gn in variables e∪y such

that it agrees with φ on inputs from {0, 1}|e|+|y|. This is easily done by replacing expressions

of the form ¬z1 with (1− z1), z1 ∧ z2 with z1 · z2, and z1 ∨ z2 with z1 + z2 − z1 · z2. It is easy

to see that gn as a polynomial family is p-bounded: Firstly gn has just O(u2(n)), i.e. poly(n),

variables. Without loss of generality we could assume φ to be in 3CNF with poly(n) clauses. In

that case the degree of a clause (after arithmetization) would be at most a constant and hence

the degree of gn would be poly(n). Finally, gn as a formula is of size at most three times that

of φ, which is poly(n) again. With the p-boundedness of gn established, proving the equality

below is sufficient to show fn is VNP:

fn(x1, . . . , x|e|) =
∑

a∈{0,1}|e|
b∈{0,1}|y|

gn(a,b) ·
∏

1≤i≤|e|

xaii .

Proof is by comparing coefficients on both sides. The coefficient of a fixed monomial
∏

1≤i≤|e|
xaii

on the right hand side (RHS) is
∑

b∈{0,1}|y|
gn(a,b). If the monomial’s coefficient on the left hand

1 In fact, even the much weaker condition of being able to compute the coefficient of a given monomial of
fn in #P suffices to show that the family {fn} is in VNP.
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side (LHS) is 0 then φ is unsatisfiable, i.e. gn(a,b) = 0 for all b ∈ {0, 1}|y| and thus the

coefficient on the RHS is 0. On the other hand if the coefficient on the LHS is 1 then there is

exactly one satisfying b ∈ {0, 1}|y| for φ, and hence the coefficient on the RHS is 1 as well.

In the rest of the text whenever we make statements like “an N -variate polynomial f is com-

puted by a circuit C,” we mean that there is a family of polynomials {fn} and a family of

circuits {Cn} with N = poly(n), such that fn is computed by Cn for n ∈ N. Statements like “a

polynomial is in VNP” should also be similarly interpreted.

2.5 The shifted partials dimension measure

Let F be a field. For integer parameters k, ` ≥ 0, the shifted partials dimension is a function

SPDk,` : F[x] → N defined as follows. Let f ∈ F[x]. For any µ ∈
(
x
k

)
, we write ∂µf to denote

∂k f
∂µ1·∂µ2·...·∂µk

where µ1, . . . , µk are elements of µ. Also, for a set of polynomials S we denote by

∂µS the set {∂µf : f ∈ S}. Let ∂=kf denote the set {∂µf : µ ∈
(
x
k

)
}. In other words, ∂=kf is

the set of all k-th order partial derivatives of f , while differentiating with respect to a variable

at most once. Then we define

SPDk,`(f)
def
= dim (spanF (x≤` · ∂=kf)). (2.1)

By a shift of a derivative ∂µf we mean an element of x≤` · {∂µf}. A nice property of SPD is

that it is subadditive.

Proposition 6 (Subadditivity). Let f, g ∈ F[x] be two polynomials. Then SPDk,`(f + g) ≤
SPDk,`(f) + SPDk,`(g).

Proof. Let SPDk,`(f) = u and SPDk,`(g) = v. Then U = spanF(x≤` ·∂=kf) and V = spanF(x≤` ·
∂=kg) are of dimensions u and v respectively. We have that SPDk,`(f + g) = dim(spanF(x≤` ·
∂=k(f+g))) which is at most u+v for the following reason. For any element h from spanF(x≤` ·
∂=k(f + g)) we have

h =
∑

µ∈(x
k),m∈x≤`

cµ,m · ∂µ(f + g) ·m (cµ,m’s are from F)

=
∑

µ∈(x
k),m∈x≤`

cµ,m · ∂µf ·m+
∑

µ∈(x
k),m∈x≤`

cµ,m · ∂µg ·m
(from the additivity

of derivatives)

∈ U + V

where U + V = {F +G : F ∈ U,G ∈ V } which is of dimension at most u+ v.
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In the definition of SPD above, the restriction of deriving with respect to a variable at most

once is not essential as such, but it eases the presentation in the later chapters as the target

polynomial there is multilinear. However, only for the rest of this section let us allow taking

derivative with respect to a variable more than once. With this relaxation we can prove the

following: SPD of a polynomial remains the same under invertible, linear change of coordinates.

(The shifted skewed partials dimension measure used in [KST16b], on the other hand, is not

known to have this property.) Precisely, let |x| = n and let g1, . . . , gn ∈ F[x] be linear forms.

For any polynomial f ∈ F[x], let us write f(g(x)), or simply f(g), to denote the polynomial

obtained by applying the substitution xi → gi(x) in f , for i = 1, . . . , n. Then we have

Proposition 7 (Invariance under invertible, linear change of coordinates). If the substitution

g is invertible, then SPDk,`(f(g)) = SPDk,`(f(x)) .

First we show the invariance of partial derivatives’ dimension (i.e. without shift). For a set f

of polynomials in variables x, let f(g) denote the set {f(g) : f ∈ f}.

Proposition 8. spanF ∂
=k(f(g)) ⊆ spanF (∂=kf)(g).

Proof. For brevity, let us just write ∂i in place of ∂xi , for i = 1, . . . , n. It suffices to show

that every element of ∂=k(f(g)) is a linear combination of elements in (∂=kf)(g). Partic-

ularly, we show (without loss of generality) that the derivative ∂1,...,k(f(g)) equals the sum∑
j1,...,jk∈[n]

(∂j1,j2,...,jkf)(g) ·
∏
t∈[k]

∂tgjt . Then, since g1, . . . , gn are linear forms, it follows that ∂tgjt

is a constant for every t ∈ [k] and that the sum serves as the required linear combination. It

remains to present the proof by induction. For k = 0 the claim trivially holds. Assume the

inductive hypothesis for k − 1. Then

∂1,...,k(f(g)) = ∂1∂2,...,k(f(g))

= ∂1

 ∑
j2,...,jk∈[n]

(∂j2,...,jkf)(g) ·
∏

t=2,...,k

∂tgjt

 (from the inductive

hypothesis)

=
∑

j2,...,jk∈[n]

∂1 ((∂j2,...,jkf)(g)) ·
∏

t=2,...,k

∂itgjt
(from the linearity

of derivatives)

=
∑

j2,...,jk∈[n]

∑
j1∈[n]

(∂j1,j2,...,jkf)(g) · ∂1gj1

 · ∏
t=2,...,k

∂tgjt
(from

chain rule)

=
∑

j1,...,jk∈[n]

(∂j1,j2,...,jkf)(g) ·
∏
t∈[k]

∂tgjt .
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We point out that if we stick to the unmodified definition of SPD (where the derivative with

respect to a variable can be taken at most once), then the containment spanF ∂
=k(f(g)) ⊆

spanF (∂=kf)(g) does not hold for a general (non-multilinear) f .

Proof of Proposition 7. Our strategy is to show a chain of equalities:

SPDk,`(f(g)) = dim(spanF (x≤`) · spanF (∂=kf(g)))

= dim(spanF (x≤`) · spanF (∂=kf)(g))

= dim(spanF (x≤`(g)) · spanF (∂=kf)(g))

= dim(spanF (x≤` · ∂=kf)(g))

= SPDk,`(f(x)).

The first (as well as the fourth) equality is easy to verify. The second one comes from Proposition

8 and invertibility of the substitution map g. Invertibility of g also implies that x≤`(g) is

(ring-)isomorphic to x≤`. Furthermore x≤`(g) is a subset of spanF(x≤`) because it only has

polynomials of degree at most `, as gi’s are linear. Hence spanF x≤` = spanF x≤`(g), justifying

the third equality. The last equality is again justified by g’s invertibility.

Choosing the parameters k and `: Some intuition ([Sah16]). In the rest of this section,

we (intuitively) address the following question: For what setting of parameters k, ` in SPDk,`

can we hope to get the best lower bound? From Section 1.1 it is clear that we want to maximize

the ratio SPDk,` of the hard polynomial to SPDk,` of a building block. Let us first find what is

the maximum value the SPDk,` of any multilinear polynomial can possibly take.

Let |x| = N and let f ∈ F[x] be a multilinear polynomial of degree d. From the mapping

µ ∈
(
x
k

)
to ∂µ(f) it is clear that |∂=kf | ≤

(
N
k

)
. This, together with the fact that |x≤`| =

(
N+`
N

)
,

implies SPDk,`(f) ≤ |x≤` · ∂=kf | ≤
(
N
k

)
·
(
N+`
N

)
. On the other hand, elements of ∂=kf are

of degree at most d − k whence that of x≤` · ∂=kf are of degree at most d − k + `. Hence

SPDk,`(f) ≤ |x≤` · ∂=kf | ≤
(
N+d−k+`

N

)
. Thus SPDk,`(f) ≤ min

((
N
k

)
·
(
N+`
N

)
,
(
N+d−k+`

N

))
.

To demonstrate the reasoning behind choosing k and ` in the particular way we fix them

in the later chapters, let us pick the model multi-r-ic depth four formulas with τ -bottom-

support. We want to upper bound SPDk,` of a building block or term T in such a circuit. This

upper bound has been worked out in Chapter 4 (Lemma 14) and it turns out SPDk,`(T ) ≤(
2·N/τ+1

k

)
·
(
N+k·τ ·r+`

N

)
.
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We are trying to maximize the ratio
min((Nk)·(

N+`
N ),(N+d−k+`

N ))
(2·N/τ+1

k )·(N+k·τ ·r+`
N )

. In other words, letting R1 =

(Nk)·(
N+`
N )

(2·N/τ+1
k )·(N+k·τ ·r+`

N )
and R2 =

(N+d−k+`
N )

(2·N/τ+1
k )·(N+k·τ ·r+`

N )
we want to maximize min(R1, R2). In order for

this to make sense we need R2 > 1 which is true only when d− k > k · τ · r. Hence let us say

ε · d ≈ k · τ · r where 0 < ε < 1. This gives us some idea about the value of k in the analysis:

we will choose k ≈ ε·d
τ ·r for some 0 < ε < 1. In fact, we will set ε to a constant.

With k fixed as above, it remains to set ` appropriately. As ` increases, we notice that in R1

the denominator dominates whereas in R2 the numerator dominates. min(R1, R2) is optimal

when R1 = R2, solving which for ` we get(
N

k

)
·
(
N + `

N

)
=

(
N + d− k + `

N

)
⇒
(
N

k

)
· (N + `) . . . (1 + `)

N !
=

(N + d− k + `) . . . (1 + d− k + `)

N !

⇒
(
N

k

)
=

(N + d− k + `) . . . (1 + d− k + `)

(N + `) . . . (1 + `)

=

(
1 +

d− k
N + `

)
. . .

(
1 +

d− k
1 + `

)
≈
(

1 +
d− k
1 + `

)N (assuming ` > N > d− k,

which will be the case in our analysis.)

≈ e
(d−k)·N

1+`

ln

(
N

k

)
≈ (d− k) ·N

1 + `

` ≈ (d− k) ·N
ln
(
N
k

) .

This is the optimum choice of ` we were referring to in Section 1.3. We note that ln
(
N
k

)
≤

k · ln
(
e·N
k

)
< k · ln(e ·N). Since k ≈ ε·d

r·τ and since τ ≥ logN for multi-r-ic depth four formulas

with τ -bottom-support in Theorem 2, indeed ` ≥ r·N
ε
> d− k. Even for multi-r-ic depth three

formulas, our choice of k would be similar, and the condition ` > d− k will hold in Chapter 3.
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Chapter 3

Depth three Multi-r-ic circuits

In this chapter we prove Theorem 3.

Theorem 3 (Restated). Let N, d, r be positive integers such that 224 ·r1.1 ·logN ≤ d ≤ 0.9·N .

Then there is an explicit N-variate degree-d multilinear polynomial in VNP such that any multi-

r-ic depth three circuit computing it has size 2
Ω
(

d
r1.1·logN

)
.

The proof follows the three-step template described in the previous chapters. We begin with

restating the multi-r-ic depth three circuit model.

3.1 Model

Let F be a field. Let r be a positive integer. A multi-r-ic depth three circuit C computing a

polynomial in F[x] is of the form

C =
∑
i∈[s]

∏
j∈[mi]

Qij

where Qij ∈ F[x] are linear polynomials and degx

( ∏
j∈[mi]

Qij

)
≤ r for every x ∈ x and every

i ∈ [s].

Let |x| = N . Our first task is to upper bound SPDk,`(C).
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3.2 Upper bounding SPD of a term

For every i ∈ [s], we call
∏

j∈[mi]

Qij a term in C. From subadditivity of SPD (Proposition 6),

we have

SPDk,`(C) ≤
∑
i∈[s]

SPDk,`

 ∏
j∈[mi]

Qij

 . (3.1)

Hence it suffices to estimate an upper bound of SPD of a term in C. Let us focus on the i-th

term, for some i. For simplicity we drop the subscript “i” and henceforth denote the term with∏
j∈[m]

Qj. We call every Qj a factor of the term.

Preprocessing a term: Grouping. Before proceeding with the estimation we preprocess

the term as follows. Let τ be a positive integer (to be fixed later). We pick τ many linear

factors and multiply them out to get a degree-τ factor. The new factor will replace the old τ

factors. We repeat this process until there are less than τ linear factors remaining. We multiply

out these remaining factors also into a single factor. Thus at the end, all the factors, except one

possibly, have degree τ . Therefore, we assume without loss of generality that for every factor

(except possibly one) Qj,

degQj = τ. (3.2)

Bounding m. Let D denote the degree of the term
∏

j Qj. The model ensures that D ≤ r ·N .

This, together with Equation (3.2) which holds for at least m− 1 factors, implies

(m− 1) · τ ≤ D ≤ r ·N

⇒ m ≤ r ·N
τ

+ 1. (3.3)

Lemma 9. For any k ≤ m, ∂=k

( ∏
j∈[m]

Qj

)
⊆ spanF

 ⋃
A∈( [m]

m−k)
(x≤k·τ ·

∏
j∈A

Qj)

.

Proof. We induct on k. For k = 0 the claim is trivially true. Assume that the inductive

22



hypothesis is true for k − 1. Let µ ∈
(
x
k

)
. We need to show that

∂µ

∏
j∈[m]

Qj

 ∈ spanF

 ⋃
A∈( [m]

m−k)

(x≤k·τ ·
∏
j∈A

Qj)

 .

Pick some x ∈ µ. Then

∂µ

∏
j∈[m]

Qj

 = ∂x∂µ\{x}

∏
j∈[m]

Qj

 .

From the inductive hypothesis

∂µ\{x}

∏
j∈[m]

Qj

 ∈ spanF

 ⋃
B∈( [m]

m−k+1)

(x≤(k−1)·τ ·
∏
j∈B

Qj)

 .

Therefore

∂µ

∏
j∈[m]

Qj

 ∈ spanF

 ⋃
B∈( [m]

m−k+1)

∂x(x
≤(k−1)·τ ·

∏
j∈B

Qj)

 . (3.4)

Examining ∂x(x
≤(k−1)·τ ·

∏
j∈B

Qj), an element of it is of the form ∂x(q ·
∏
j∈B

Qj) for some q ∈

x≤(k−1)·τ .

∂x(q
∏
j∈B

Qj) = ∂xq ·
∏
j∈B

Qj + q ·
∑
j′∈B

∂xQj′ ·
∏

j∈B\{j′}

Qj (by product rule)

= ∂xq ·Qb ·
∏

j∈B\{b}

Qj +
∑
j′∈B

q · ∂xQj′ ·
∏

j∈B\{j′}

Qj (for any b ∈ B)

∈
⋃

A∈( B
m−k)

spanF

(
x≤k·τ ·

∏
j∈A

Qj

)

where the last step follows from the observation that ∂xq, q ∈ x≤(k−1)·τ , and Qb, ∂xQj′ ∈
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spanF(x≤τ ) and in turn ∂xq ·Qb, q · ∂xQj′ ∈ spanF(x≤k·τ ). Thus we have that

∂x(x
≤(k−1)·τ ·

∏
j∈B

Qj) ⊆
⋃

A∈( B
m−k)

spanF

(
x≤k·τ ·

∏
j∈A

Qj

)
.

Plugging this in Equation (3.4) we get

∂µ

∏
j∈[m]

Qj

 ∈ spanF

 ⋃
B∈( [m]

m−k+1)

⋃
A∈( B

m−k)

spanF

(
x≤k·τ ·

∏
j∈A

Qj

)
= spanF

 ⋃
A∈( [m]

m−k)

(x≤k·τ ·
∏
j∈A

Qj)

 .

Lemma 10. For any k ≤ m, SPDk,`

( ∏
j∈[m]

Qj

)
≤
( r·N

τ
+1

k

)
·
(
N+k·τ+`

N

)
.

Proof. From Lemma 9,

∂=k

∏
j∈[m]

Qj

 · x≤` ⊆ spanF

 ⋃
A∈( [m]

m−k)

(x≤k·τ ·
∏
j∈A

Qj)

 · x≤`

⊆ spanF

 ⋃
A∈( [m]

m−k)

(x≤k·τ+` ·
∏
j∈A

Qj)


⇒ SPDk,`

∏
j∈[m]

Qj

 ≤ (m
k

)
· |x≤k·τ+`|

=

(
m

k

)
·
(
N + k · τ + `

N

)
≤
(
r·N
τ

+ 1

k

)
·
(
N + k · τ + `

N

)
(from Equation (3.3)).

Corollary 11. For any k ≤ r·N
τ

+ 1, SPDk,`

( ∏
j∈[m]

Qj

)
≤
( r·N

τ
+1

k

)
·
(
N+k·τ+`

N

)
.
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Proof. The case k ≤ m is already handled by Lemma 10. For m+ 1 ≤ k ≤ r·N
τ

+ 1, we observe

that x≤` · ∂=k(
∏

j∈[m] Qj) ⊆ spanF
(
x≤m·τ+`

)
⊆ spanF(x≤k·τ+`) (as m < k), which suffices.

3.3 A lower bound on SPD of a hard polynomial

The next step towards proving Theorem 3 is to show an explicit polynomial with large SPD

measure. For this purpose we assume the following theorem for this section. A proof is given

in Chapter 5.

Theorem 12. Let N, d be positive integers such that 220 · logN ≤ d ≤ 0.9 · N . Then for any

positive integer k ≤ d
220·logN

there exists an explicit N-variate degree-d multilinear homogeneous

polynomial Fd,k in VNP such that

SPDk,`(Fd,k) ≥
1

2
·
(
N/4001

k

)
·
(
N + `

N

)
(3.5)

where ` = 0.006·d·N
ln (N/4001k )

−N .

Remark. One can show that ` > 500 ·N for every choice of d and k allowed by Theorem 12.

3.4 Putting things together

Let the N -variate degree-d polynomial F (x), given by Theorem 12, be the polynomial com-

puted by C. Then SPDk,`(F ) = SPDk,`(C) ≤
s∑
i=1

SPDk,`

( ∏
j∈[ti]

Qij

)
from Equation (3.1). For

any k such that k ≤ r·N
τ

and k ≤ d
220·logN

, Corollary 11 and Theorem 12 imply

1

2
·
(
N/4001

k

)
·
(
N + `

N

)
≤ SPDk,`(F ) = SPDk,`(C) ≤ s ·

(
r·N
τ

+ 1

k

)
·
(
N + k · τ + `

N

)

⇒ s ≥
1
2
·
(
N/4001

k

)
·
(
N+`
N

)( r·N
τ

+1

k

)
·
(
N+k·τ+`

N

)
=

1

2
·

(
N/4001

k

)
· (N+`)...(1+`)

N !( r·N
τ

+1

k

)
· (N+k·τ+`)...(1+k·τ+`)

N !

=
1

2
·

(
N/4001

k

)( r·N
τ

+1

k

)
· (N+k·τ+`)...(1+k·τ+`)

(N+`)...(1+`)

≥ 1

2
·

(
N/4001

k

)( r·N
τ

+1

k

)
·
(
1 + k·τ

1+`

)N
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≥ 1

2
·

(
N/4001

k

)( r·N
τ

+1

k

)
· e

k·τ
1+`
·N

(using exponential upper bound 1 from Section 2.2)

=
1

2
·

(
N/4001

k

)( r·N
τ

+1

k

)
· e

0.006·d·N
N+`

· k·τ
0.006·d ·

N+`
1+`

=
1

2
·

(
N/4001

k

)
( r·N

τ
+1

k

)
·
(
N/4001

k

) k·τ
0.006·d ·

N+`
1+`

(since ` =
0.006 · d ·N
ln
(
N/4001

k

) −N)

≥ 1

2
·

(
N/4001

k

)
( r·N

τ
+1

k

)
·
(
N/4001

k

) k·τ
0.0055·d

(by putting
N + `

1 + `
≤ 12

11
, as ` > 500 ·N)

≥ 1

2
·

(
k · τ

3 · r ·N
·
(

N

4001 · k

)(1− k·τ
0.0055·d )

)k

(using binomial bounds 3 from Section 2.2)

=
1

2
·

(
k · τ

3 · r ·N
·
(

N

4001 · k

)(1− k·τ
ε·d )
)k

(3.6)

where ε = 0.0055 (say). Finally we set values for k and τ as follows:

k =
d

150 · τ · logN
and

τ = 216 · r1.1.

Before proceeding we make a few remarks. First, we are omitting floor and ceiling notations for

simplicity of exposition. Second, this choice of k and τ meets the requirements of Corollary 11

and Theorem 12: clearly k < r·N
τ

and k ≤ d
220·logN

. Also, since it is given that d ≥ 224 ·r1.1 ·logN ,

we have k = d
150·τ ·logN

≥ 224·r1.1·logN
150·216·r1.1·logN

≥ 1. Plugging the value for k in Equation (3.6),

s ≥ 1

2
·

(
d

3 · r ·N · 150 · logN
·
(
N · 150 · τ · logN

4001 · d

)(1− 1
ε·150·logN )

)k

=
1

2
·

(
1

3 · r
·
(

d

150 ·N · logN

) 1
ε·150·logN

·
( τ

4001

)1− 1
ε·150·logN

)k

≥ 1

2
·

(
1

3 · r
·
(

1

N1.1

) 1
ε·150·logN

·
( τ

4001

)1/1.1
)k

=
1

2
·

(
1

3 · r
· 2(−1.1

ε·150) ·
(

216 · r1.1

4001

)1/1.1
)k
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>
1

2
· (1.5)k

= 2
Ω
(

d
r1.1·logN

)
.

This completes the proof of Theorem 3.

3.5 SPD of a depth three circuit vs. the maximum SPD

In this section we express (the upper bound of) SPDk,`(C), given by Corollary 11 as a fraction

of
(
N
k

)
·
(
N+`
N

)
= SPDmax

k,` (say), the maximum the SPD measure of any polynomial can get

(see Section 2.5). This is to aid discussion in Section 1.3, on SPD of elementary symmetric

polynomials. Let r = 1, ` = α·d·N
ln (Nk)

−N . Then

SPDmax
k,`

SPDk,`(C)
≥

(
N
k

)
·
(
N+`
N

)
s ·
(
N/τ+1
k

)
·
(
N+k·τ+`

N

) (from Lemma 11).

Mimicking the calculations in Section 3.4 (till Equation (3.6)) we get

SPDmax
k,`

SPDk,`(C)
≥ 1

s
·

(
k · τ
3 ·N

·
(
N

k

)(1− 12·k·τ
11·α·d )

)k

.

Setting τ = α·d
12·k , we get

SPDmax
k,`

SPDk,`(C)
≥ 1

s
·

(
α · d

33 ·N
·
(
N

k

)1/1.1
)k

≥ 1

s
·
(

α · d
33 ·N1/11 · k1/1.1

)k
.
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Chapter 4

Depth four multi-r-ic circuits with low

bottom support

This chapter considers the model of depth four multi-r-ic circuits with low bottom support

and proves Theorem 2.

Theorem 2 (Restated). Let N, d, r, τ be positive integers such that 221 · logN ≤ d ≤ 0.9 ·N ,

and 221

5000
· logN ≤ τ · r ≤ d

5000
. Then there is an explicit N-variate degree-d multilinear polyno-

mial in VNP such that any τ -bottom-support multi-r-ic depth four circuit computing it has size

at least
(
τ20·d
N ·r

)( 0.00001·d
τ ·r )

.

The organization and content here are similar to that of Chapter 3.

4.1 Model

Let F be a field. Let r be a positive integer. A multi-r-ic depth four circuit C computing a

polynomial in F[x] is of the form

C =
∑
i∈[s]

∏
j∈[mi]

Qij

where Qij ∈ F[x] are such that degx
∏

j∈[mi]

(Qij) ≤ r for every x ∈ x and every i ∈ [s].

In this chapter we further assume that C has τ -bottom-support, i.e. every monomial of Qij

has at most τ variables in it. A consequence of it is that degQij ≤ τ · r.
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Let |x| = N and let the output polynomial degree be d. Our first task is to upper bound

SPDk,`(C).

4.2 Upper bounding SPD of a term

For every i ∈ [s], we call
∏

j∈[mi]

Qij a term in C. From Proposition 6 we have

SPDk,`(C) ≤
∑
i∈[s]

SPDk,`

( ∏
j∈[mi]

Qij

)
. (4.1)

Hence it suffices to upper bound SPD of a term in C. Let us focus on i-th term, for some i.

For simplicity we drop the subscript “i” and henceforth denote the term with
∏
j∈[m]

Qj. We call

every Qj a factor of the term.

Preprocessing a term: Grouping. Before proceeding with the estimation we preprocess

the term as follows. Suppose there are two factors Qj1 , Qj2 in the term such that each of them

has degree less than τ ·r
2

. Then we multiply out Qj1 , Qj2 to get a (new) single factor (of degree

degQj1 + degQj2). The new factor will replace Qj1 and Qj2 . We repeat the process as long as

there are two or more factors in the term each having degree less than τ ·r
2

. When the process

ends, all the factors, except one possibly, have degree at least τ ·r
2

. Moreover all the factors will

have degree at most τ · r, since that was initially ensured by the model and nowhere in the

preprocessing part have we multiplied out two factors either of which has degree greater than

or equal to τ ·r
2

. In summary we can assume without loss of generality that for every factor

(except possibly one) Qj,

τ · r
2
≤ degQj ≤ τ · r. (4.2)

Bounding m. Let D denote the degree of the term
∏

j Qj. The model ensures that D ≤ r·N .

This, together with Equation (4.2) which holds for at least m− 1 factors, implies

(m− 1) · τ · r
2
≤
∑
j∈[m]

degQj = D ≤ r ·N

m ≤ 2 ·N
τ

+ 1. (4.3)

Lemma 13. For any k ≤ m, ∂=k(
∏
j∈[m]

Qj) ⊆ spanF

 ⋃
A∈( [m]

m−k)
(x≤k·τ ·r ·

∏
j∈A

Qj)

.
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Proof. We induct on k. For k = 0 the claim is trivially true. Assume that the inductive

hypothesis is true for k − 1. Let µ ∈
(
x
k

)
. We need to show that

∂µ

∏
j∈[m]

Qj

 ∈ spanF

 ⋃
A∈( [m]

m−k)

(x≤k·τ ·r ·
∏
j∈A

Qj)

 .

Pick some x ∈ µ. Then

∂µ(
∏
j∈[m]

Qj) = ∂x∂µ\{x}(
∏
j∈[m]

Qj).

From the inductive hypothesis

∂µ\{x}(
∏
j∈[m]

Qj) ∈ spanF

 ⋃
B∈( [m]

m−k+1)

(x≤(k−1)·τ ·r ·
∏
j∈B

Qj)

 .

Therefore

∂µ(
∏
j∈[m]

Qj) ∈ spanF

 ⋃
B∈( [m]

m−k+1)

∂x(x
≤(k−1)·τ ·r ·

∏
j∈B

Qj)

 . (4.4)

We examine ∂x(x
≤(k−1)·τ ·r ·

∏
j∈B

Qj). An element of it is of the form ∂x(q ·
∏
j∈B

Qj) for some

q ∈ x≤(k−1)·τ ·r.

∂x(q
∏
j∈B

Qj) = ∂xq ·
∏
j∈B

Qj + q
∑
j′∈B

∂xQj′ ·
∏

j∈B\{j′}

Qj (by product rule)

= ∂xq ·Qb ·
∏

j∈B\{b}

Qj +
∑
j′∈B

q · ∂xQj′ ·
∏

j∈B\{j′}

Qj (for any b ∈ B)

∈
⋃

A∈( B
m−k)

spanF

(
x≤k·τ ·r ·

∏
j∈A

Qj

)

where the last step follows from the observation that ∂xq, q ∈ x≤(k−1)·τ ·r, and Qb, ∂xQj′ ∈
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spanF(x≤τ ·r) and in turn ∂xq ·Qb, q · ∂xQj′ ∈ spanF(x≤k·τ ·r). Thus we have that

∂x(x
≤(k−1)·τ ·r ·

∏
j∈B

Qj) ⊆
⋃

A∈( B
m−k)

spanF

(
x≤k·τ ·r ·

∏
j∈A

Qj

)
.

Plugging this in Equation (4.4) we get

∂µ

∏
j∈[m]

Qj

 ∈ spanF

 ⋃
B∈( [m]

m−k+1)

⋃
A∈( B

m−k)

spanF

(
x≤k·τ ·r ·

∏
j∈A

Qj

)
= spanF

 ⋃
A∈( [m]

m−k)

(x≤k·τ ·r ·
∏
j∈A

Qj)

 .

Lemma 14. For any k ≤ m, SPDk,`(
∏
j∈[m]

Qj) ≤
(

2·N/τ+1
k

)(
N+k·τ ·r+`

N

)
.

Proof. From Lemma 13,

∂=k(
∏
j∈[m]

Qj) · x≤` ⊆ spanF

 ⋃
A∈( [m]

m−k)

(x≤k·τ ·r ·
∏
j∈A

Qj)

 · x≤`

⊆ spanF

 ⋃
A∈( [m]

m−k)

(x≤k·τ ·r+` ·
∏
j∈A

Qj)


⇒ SPDk,`(

∏
j∈[m]

Qj) ≤
(
m

k

)
· |x≤k·τ ·r+`|

=

(
m

k

)
·
(
N + k · τ · r + `

N

)
≤
(

2 ·N/τ + 1

k

)
·
(
N + k · τ · r + `

N

)
(from Equation (4.3)).

Corollary 15. For any k ≤ 2·N
τ

+ 1, SPDk,`(
∏
j∈[m]

Qj) ≤
( 2·N

τ
+1

k

)
·
(
N+k·τ ·r+`

N

)
.

Proof. The case k ≤ m is already handled by Lemma 14. For m+ 1 ≤ k ≤ 2·N
τ

+ 1, we see that

∂=k(
∏

j∈[m] Qj) · x≤` ⊆ spanF
(
x≤m·τ ·r+`

)
⊆ spanF

(
x≤k·τ ·r+`

)
, which suffices.
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4.3 A lower bound on SPD of a hard polynomial

As before, we assume Theorem 12 (a proof is given in Chapter 5).

Theorem 12 (Restated). Let N, d be positive integers such that 220 · logN ≤ d ≤ 0.9 · N .

Then for any positive integer k ≤ d
220·logN

there exists an explicit N-variate degree-d multilinear

homogeneous polynomial Fd,k in VNP such that

SPDk,`(Fd,k) ≥
1

2
·
(
N/4001

k

)
·
(
N + `

N

)
(4.5)

where ` = 0.006·d·N
ln (N/4001k )

−N .

Remark. As mentioned before, ` > 500 ·N for every choice of d and k allowed by Theorem

12.

4.4 Putting things together

Let the N -variate degree-d polynomial F (x), given by Theorem 12, be the polynomial com-

puted by C. Then SPDk,`(F ) = SPDk,`(C) ≤
s∑
i=1

SPDk,`

( ∏
j∈[ti]

Qij

)
from Equation (4.1). For

any k such that 1 ≤ k ≤ 2·N
τ

and k ≤ d
220·logN

, Corollary 15 and Theorem 12 imply

1

2
·
(
N/4001

k

)
·
(
N + `

N

)
≤ SPDk,`(F ) = SPDk,`(C) ≤ s ·

(
2 ·N/τ + 1

k

)
·
(
N + k · τ · r + `

N

)

⇒ s ≥
1
2
·
(
N/4001

k

)
·
(
N+`
N

)(
2·N/τ+1

k

)
·
(
N+k·τ ·r+`

N

)
≥ 1

2
·

(
N/4001

k

)
· (N+`)...(1+`)

N !(
3·N/τ
k

)
· (N+k·τ ·r+`)...(1+k·τ ·r+`)

N !

=
1

2
·

(
N/4001

k

)(
3·N/τ
k

)
· (N+k·τ ·r+`)...(1+k·τ ·r+`)

(N+`)...(1+`)

≥ 1

2
·

(
N/4001

k

)(
3·N/τ
k

)
·
(
1 + k·τ ·r

1+`

)N
≥ 1

2
·

(
N/4001

k

)(
3·N/τ
k

)
· e

k·τ ·r
1+`
·N

(using exponential upper bound 1 from Section 2.2)
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=
1

2
·

(
N/4001

k

)(
3·N/τ
k

)
· e

0.006·d·N
N+`

· k·τ ·r
0.006·d ·

N+`
1+`

=
1

2
·

(
N/4001

k

)
(

3·N/τ
k

)
·
(
N/4001

k

) k·τ ·r
0.006·d ·

N+`
1+`

(since ` =
0.006 · d ·N
ln
(
N/4001

k

) −N)

≥ 1

2
·

(
N/4001

k

)
(

3·N/τ
k

)
·
(
N/4001

k

) k·τ ·r
0.0055·d

(by putting
N + `

1 + `
≤ 12

11
, as ` > 500 ·N)

≥ 1

2
·

(
k · τ

3 · e ·N
·
(

N

4001 · k

)(1− k·τ ·r
ε·d )
)k

(using binomial bounds 3 from Section 2.2),

(4.6)

where ε = 0.0055 (say). We set k = ε·d
21·τ ·r . (Again, we are omitting ceil/floor notations for

simplicity.) We verify that 1 ≤ k ≤ d
220·logN

by noting that d
5000
≥ τ · r ≥ 221

5000
· logN and

d ≥ 221 · logN (given in Theorem 2). That k ≤ 2·N
τ

is easy to see. Plugging the value of k in

Equation (4.6) we get

s ≥ 1

2
·

(
ε · d

3 · e ·N · 21 · r
·
(
N · 21 · τ · r
4001 · ε · d

)(1−1/21)
) ε·d

21·τ ·r

=
1

2
·

(
1

3 · e
·
(

ε · d
21 ·N · r

)1/21

·
( τ

4001

)20/21
) ε·d

21·τ ·r

=
1

2
·

((
1

3 · e

)21

· ε · d
21 ·N · r

·
( τ

4001

)20
) ε·d

21·21·τ ·r

≥
(
τ 20 · d
N · r

) 0.00001·d
τ ·r

.
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Chapter 5

A polynomial family with large SPD

In this chapter we prove Theorem 12 by giving an explicit polynomial family having large

SPD complexity.

Theorem 12 (Restated). Let N, d be positive integers such that 220 · logN ≤ d ≤ 0.9 · N .

Then for any positive integer k ≤ d
220·logN

there exists an explicit N-variate degree-d multilinear

homogeneous polynomial Fd,k in VNP such that

SPDk,`(Fd,k) ≥
1

2
·
(
N/4001

k

)
·
(
N + `

N

)
(5.1)

where ` = 0.006·d·N
ln (N/4001k )

−N .

Remarks.

1. One can show that ` > 500 ·N for every choice of d and k allowed by Theorem 12. Also,

recall from Section 2.5 the rough estimate of (d−k)·N
ln (Nk)

for ` that maximized min(R1, R2).

The estimate almost matches with the value of ` of the theorem above.

2. The constant 0.9 above can be changed to any other constant in (0.5, 1). Accordingly the

constants 1
4001

and 0.006 will have to be adjusted.

5.1 SPD and the pairwise monomial distance

Suppose we manage to come up with a polynomial f such that in the set ∂=kf , at least(
N/4001

k

)
derivatives are monomials, all distinct (and hence linearly independent). In this so-far

nice scenario we have a promising SPDk,0 ≥
(
N/4001

k

)
. However, it is not clear a priori if it

scales by a factor of 1
2
·
(
N+`
N

)
(let alone

(
N+`
N

)
) after applying shifts. The reason is that two
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distinct monomials (derivatives) can potentially become equal under multiplication by degree-

` monomials (shifts). This prompts us to define distance between monomials just as in the

previous works (as in [CM14]) involving Nisan-Wigderson polynomial family.

Definition 3. The distance between two multilinear monomials a and b is defined as the number

of variables that appear in a but not in b. (When a and b are of the same degree, the distance

is symmetric.)

Like in previous works, we observe that more the distance between two monomials, fewer

the number of common monomials after shifts. Therefore, a large pairwise monomial distance

among derivatives may bring about the required high SPDk,`. To that effect we have the

following lemma and a corollary:

Lemma 16. Let |x| = N . Let D be a set of multilinear x-monomials, all of the same degree,

such that for every a, b ∈ D , the distance between a and b is at least δ ∈ N. Then for any ` ∈ N,

dim
(
spanF{x≤` ·D}

)
≥ |D | ·

(
N + `

N

)
− 1

2
· |D |2 ·

(
N + `− δ

N

)
. (5.2)

Corollary 17. Suppose that there is an N-variate degree-d polynomial f such that ∂=kf is a

superset of D . Further suppose that |D | =
(
N/4001

k

)
, δ = 0.006 · d. Then for ` = 0.006·d·N

ln (N/4001k )
−N ,

SPDk,`(f) ≥ 1

2
·
(
N/4001

k

)
·
(
N + `

N

)
.

We now prove the lemma and the corollary.

Proof of Lemma 16. Let µ1, µ2, . . . , µ|D | be the elements of D , each of degree d0 (say). Then

from the inclusion-exclusion principle

|x≤` ·D | ≥
|D |∑
i=1

|x≤` · µi| −
∑

1≤i<j≤|D |

|
(
x≤` · µi

)
∩
(
x≤` · µj

)
|. (5.3)

Clearly |x≤` · µi| = |x≤`| =
(
N+`
N

)
. Let us estimate an upper bound on the size of the set(

x≤` · µi
)
∩
(
x≤` · µj

)
= Ii,j (say). An observation is that every element of Ii,j is divisible by

µi and µj both. In other words every element of Ii,j has LCM(µi, µj) as a factor. (LCM(a, b)

of two monomials a, b refers to the smallest-degree common multiple of the monomials.) Hence

if we pretend to factor out LCM(µi, µj) from each of them, Ii,j still has the same number of

monomials but each with degree at most ` + d0 − degLCM(µi, µj) = `0 (say). Then |Ii,j| is
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at most the number of N -variate monomials of degree not exceeding `0, which is
(
N+`0
N

)
. It is

given that µj has at least δ variables that are not in µi. Hence degLCM(µi, µj) ≥ d0 + δ. That

implies `0 ≤ `− δ and in turn |Ii,j| ≤
(
N+`−δ
N

)
. Plugging the bounds in Equation (5.3) we get

|x≤` ·D | ≥ |D | ·
(
N + `

N

)
− |D | · (|D | − 1)

2
·
(
N + `− δ

N

)
.

Since x≤` · D is a set of monomials, its size equals dim
(
spanF{x≤` ·D}

)
. Therefore, the in-

equality above implies the lemma statement.

Proof of Corollary 17. Rewriting the subtrahend in Equation (5.2),

1

2
· |D |2 ·

(
N + `− δ

N

)
=

1

2
· |D |2 · (N + `− δ) . . . (1 + `− δ)

N !

=
1

2
· |D |2 · (N + `) . . . (1 + `)

N !
· (N + `− δ) . . . (1 + `− δ)

(N + `) . . . (1 + `)

=
1

2
· |D |2 ·

(
N + `

N

)
·
(

1− δ

N + `

)
. . .

(
1− δ

1 + `

)
≤ 1

2
· |D |2 ·

(
N + `

N

)
·
(

1− δ

N + `

)N
≤ 1

2
· |D | · |D | ·

(
N + `

N

)
· e−

δ·N
N+` (using exponential upper bound from Section 2.2)

=
1

2
· |D | · e

δ·N
N+` ·

(
N + `

N

)
· e−

δ·N
N+`

=
1

2
· |D | ·

(
N + `

N

)
,

where in the penultimate step we used the equality |D | =
(
N/4001

k

)
= e

δ·N
N+` which simply follows

from the value of ` and δ handed to us. On plugging the values in Equation (5.2), and noting

that SPDk,`(f) ≥ dim
(
spanF{x≤` ·D}

)
, the corollary follows.

The rest of the chapter is devoted to constructing f such that at least
(
N/4001

k

)
of the k-th order

derivatives of f are monomials, and the distance between any two of these monomials is at least

δ = 0.006 · d.
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5.2 Proving Theorem 12

Our job is to come up with f that meets all the conditions of Corollary 17 simultaneously.

Assuming for a moment that we already have a set of monomials D in N variables such that

|D | =
(
N/4001

k

)
and δ = 0.006 ·d, how do we form f whose k-th order derivatives include D? We

follow a three-step procedure that has been used in previous works, particularly in [KST16a]:

First, we preserve a small subset of x-variables, call it y, such that at least
(
N/4001

k

)
many

multilinear y-monomials of degree k each can be formed. (This naturally fixes |y| = N/4001.)

Then, we work with x \ y and form a set of monomials D with the required size
(
N/4001

k

)
and

distance δ as per Corollary 17. Finally, we “tag” (i.e. multiply) every monomial of D with a

unique y-monomial and include it as a summand in f . Clearly then, from f one can get back

D by simply differentiating it with respect to every tag. We need to show that the second step

is possible, with all details. This we postpone to the next section while merely recording as

Lemma 18 here, and using it to complete the proof of Theorem 12.

Definition 4. For a set S of monomials and any µ ∈ S, the index of µ in S is the number of

elements of S that precede µ, under lexicographic ordering.

Lemma 18. Let N, d, k be positive integers such that 220 · logN ≤ d ≤ 0.9 ·N and k ≤ d
220·logN

.

Then there is an explicit set D of multilinear monomials in 4000
4001
· N variables of degree d − k

such that |D | =
(
N/4001

k

)
, and for any two monomials a, b ∈ D the distance between a and b is

at least δ = 0.006 · d. Furthermore, for any given monomial, we can determine its membership

and (if applicable) index in D in poly(N) time.

Proof of Theorem 12. Let |x| = N and y ⊆ x with |y| = N/4001. Also let z = x\y. Readily we

have D in z-variables, imported from Lemma 18 with all the details. Let µ1 ≺ µ2 ≺ . . . ≺ µ|D |

be elements of D , and ν1 ≺ ν2 ≺ . . . ≺ ν(N/4001k ) be multilinear y-monomials of degree k, under

lexicographic ordering. Define

Fd,k(x)
def
=

(N/4001k )∑
i=1

µi · νi.

Fd,k is multilinear and homogeneous: every Fd,k-monomial is multilinear and has degree deg µi+

deg νi = d − k + k = d. To verify that Fd,k ∈ VNP we use Valiant’s coefficient computation

criterion. We give a procedure that takes as input a monomial α and outputs its coefficient in

Fd,k in poly(N) time. In fact it is enough to check if α is an Fd,k-monomial or not, since Fd,k

has 0-1 coefficients. The procedure to check this goes as follows. Split α into β, the z-part, and
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γ, the y-part. Check if β is in D and if yes then find its index h, by invoking the “furthermore”

part of Lemma 18. (If β 6∈ D then α is not an Fd,k-monomial.) Now that β = µh+1, for α to be

an Fd,k-monomial it is necessary that α = µh+1 · νh+1, i.e. γ = νh+1. Check if so is the case by

inspecting γ and seeing whether its index in {νi : i ∈ [
(
N/4001

k

)
]} is also h —this can be done

efficiently. To elaborate, suppose i1 < i2 < . . . < ik are the subscripts of the y-variables in γ. A

(multilinear, degree-k) y-monomial with subscripts j1 < j2 < . . . < jk precedes γ if and only if

the following conditions hold: jt < it for some t ∈ [k], and ju = iu for all 1 ≤ u < t. For a fixed

t, while the conditions leave j1, . . . , jt−1 with no choice but to equal i1, . . . , it−1 respectively,

they leave jt with choices it−1 + 1, . . . , it − 1 and the remaining part (i.e. jt+1, . . . , jk) with

totally |
(
y\[jt]
k−t

)
| =

(|y|−jt
k−t

)
choices. This gives a poly(N)-time-computable expression, namely∑

t∈[k]

it−1∑
jt=it−1+1

(|y|−jt
k−t

)
, for the index of γ. All the steps above take poly(N) time each and hence

Fd,k is in VNP.

Clearly ∂=kFd,k is a superset of {∂νiFd,k : i = 1, 2, . . . ,
(
N/4001

k

)
} = D . The values of δ

and |D |, supplied by Lemma 18, and the value of `, are precisely what Corollary 17 demands.

Hence, applying Corollary 17, SPDk,`(Fd,k) is at least 1
2
·
(
N/4001

k

)
·
(
N+`
N

)
.

5.3 Monomials with large pairwise distance

Thinking of proving Lemma 18, we first wonder about forming D by greedily picking
(
N/4001

k

)
monomials with high pairwise distance. The lemma below would be useful in showing that this

idea can be made to work. Its proof involves a simple application of probabilistic method and

is deferred until Section 5.3.1.

Lemma 19. Given m variables, it is possible in time eO(m) to generate a set M(m) of e0.001·m

many multilinear monomials that have the following properties: (i) Every monomial of M(m)

is of degree 0.9 · 4001
4000
·m ≈ 0.9 ·m, and (ii) the distance between every two distinct monomials

a, b of M(m) is at least 0.007 ·m.

We will use the above lemma to prove Lemma 18.

A remark. Let us think about the “furthermore” part of Lemma 18. If we apply Lemma

19 with m = Θ(N) then it seems that the best one can do to search M(Θ(N)) for a given

monomial is to use brute force, which clearly takes an undesirable eΘ(N) time. On the other

hand, if one were to adapt Lemma 19 in favor of poly(N)-time index-finding of monomials using

brute force, then the size of the set M(Θ(N)) would have to be compromised with to poly(N)

(not to mention the corresponding reduction in degree and distance as well). Nevertheless, an
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upside of it, in a sense, would be that we would be spending only Θ(log(N)) out of N variables.

This would let us form roughly Θ(N/ logN) many variable-disjoint sets M (i)(Θ(logN)), each

in Θ(logN) variables. [KST16a] showed that a careful recombination of elements of various

M (i)(Θ(logN))’s produces enough monomials with sufficient pairwise distance in such a way to

enable efficient determination of membership (and index). The Nisan-Wigderson polynomial

family, defined first in [KSS14], is an important ingredient of their technique. We use the same

idea as in [KST16a] in the proof of Lemma 18 below:

Proof of Lemma 18. Taking note of the budget of at most 4000
4001
· N variables and the need to

cater for degree d− k, we fix an n-sized subset (out of 4000
4001
·N variables) to work with, where

n = d−k
0.9
· 4000

4001
< 4000

4001
·N as d ≤ 0.9 ·N1. We partition the n-sized subset further into n

c·logn
= n0

(say) disjoint subsets of size c · log n each and call them Z(i), i ∈ [n0]. Here c is a constant

between 1000 and 2000, chosen in such a way that n0 is a prime number2. For every Z(i), let

M (i)(c · log n), or simply M (i), denote the monomial set given by Lemma 19 on Z(i) variables.

Since M (i) has at least e0.001·c·logn ≥ n ≥ n0 monomials, we identify η
(i)
1 , . . . , η

(i)
n0 with the

(lexicographically first n0 many) monomials of M (i). From Lemma 19, these monomials are of

degree 0.9 · 4001
4000
· c · log n. Let K be a prime field of size n0. Elements of K will be denoted with

1, 2, 3, . . . , n0. Define

D ′
def
=

∏
i∈[n0]

η
(i)
h(i)

 h∈K[t],
deg h=0.1·n0,
h is monic

.

(The Nisan-Wigderson polynomial is the sum of monomials of D ′, and is parametrized by

the size of K and the degree of h.) Clearly the elements of D ′ are multilinear and of degree

n0 · deg η
(i)
h(i) = 0.9 · 4001

4000
· n = d− k each.

Pairwise monomial distance of D ′. For two monomials µ1 and µ2 let ∆(µ1, µ2) denote

the set of variables that appear in µ1 but not in µ2. Consider any two monomials
∏

i∈[n0]

η
(i)
h(i)

and
∏

a∈[n0]

η
(a)
g(a) from D ′, where h, g ∈ K[t] are two different monic polynomials with deg h =

deg g = 0.1 · n0. Trivially ∆(η
(i)
h(i),

∏
a∈[n0]

η
(a)
g(a)) ⊆ ∆(η

(i)
h(i), η

(i)
g(i)). Due to the variable-disjointness

of M (i)’s, variables appearing in η
(i)
h(i) do not appear in η

(a)
g(a) for every a 6= i. Hence ∆(η

(i)
h(i), η

(i)
g(i))

1Without loss of generality n is an integer; see Chapter 2.
2 From Bertrand-Chebyshev theorem [Erd32], there is always a prime number between α and 2α for α ≥ 1.
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⊆ ∆(η
(i)
h(i),

∏
a∈[n0]

η
(a)
g(a)) as well. This implies that

∆(η
(i)
h(i),

∏
a∈[n0]

η
(a)
g(a)) = ∆(η

(i)
h(i), η

(i)
g(i)), (5.4)

which is of size zero if h(i) = g(i) (trivially) and at least 0.007 ·c · log n otherwise, due to Lemma

19.

Now consider ∆(
∏

i∈[n0]

η
(i)
h(i),

∏
a∈[n0]

η
(a)
g(a)). Any element of it has to be in ∆(η

(i)
h(i),

∏
a∈[n0]

η
(a)
g(a)) for

some i ∈ [n0]. Also, it can be in η
(i)
h(i) for at most one i, thanks again to the variable-disjointness

of M (i)’s. Thus ∆(
∏

i∈[n0]

η
(i)
h(i),

∏
a∈[n0]

η
(a)
g(a)) =

⊎
i∈[n0]

∆(η
(i)
h(i),

∏
a∈[n0]

η
(a)
g(a)). This implies that δ, the

distance between
∏

i∈[n0]

η
(i)
h(i) and

∏
a∈[n0]

η
(a)
g(a), is

δ = |∆(
∏
i∈[n0]

η
(i)
h(i),

∏
a∈[n0]

η
(a)
g(a))| =

∑
i∈[n0]

|∆(η
(i)
h(i), η

(i)
g(i))| (from Equation (5.4))

=
∑

i∈[n0], h(i)6=g(i)

|∆(η
(i)
h(i), η

(i)
g(i))|

≥
∑

i∈[n0], h(i)6=g(i)

0.007 · c · log n (from Lemma 19)

≥ (n0 − 0.1 · n0) · 0.007 · c · log n (5.5)

≥ 0.006 · n.

Inequality 5.5 follows from the fact that h and g, being degree-(0.1·n0) univariate polynomials,

can have the same evaluation on at most 0.1 · n0 points from the field. Indeed, this property is

at the heart of the design of Nisan-Wigderson polynomial family.

Since k ≤ d
220·logN

, we have n = d−k
0.9
· 4000

4001
≥ d

0.9
· 4000

4001
·(1− 1

220 logN
) ≥ d. Therefore, δ ≥ 0.006·d.

Finding index of a monomial in D ′. Let z
(i)
1 ≺ . . . ≺ z

(i)
c·logn denote the elements of Z(i),

for i ∈ [n0]. Also let z
(i)
j ≺ z

(i0)
j0

for every i ≺ i0. Recall that η
(i)
1 ≺ . . . ≺ η

(i)
n0 .

Let µ be a given monomial in ]i∈[n0]Z
(i)-variables. Split µ into µ1, . . . , µn0 , where µi is the

Z(i)-part of µ. Find the index of µi in M (i), for all i ∈ [n0], by explicitly generating M (i) with the

help of Lemma 19 and searching M (i) for µi. Let j1, . . . , jn0 be the respective indexes. Applying

polynomial interpolation on any 0.1·n0 +1 evaluations from {j1, . . . , jn0}, find the coefficients of

a degree-(0.1 ·n0) polynomial h. Verify that h is monic, and that it evaluates to ji on the point
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i for all n0 points in K. Success in all the steps above attests µ’s membership. Also, the tuple

(j1, . . . , jn0) gives the index of µ in D ′, using a straightforward formula as described in Sec-

tion 5.2. Every step above takes poly(n) = poly(N) time and hence so does the whole procedure.

Size of D ′. The nonzero pairwise monomial distance also implies that the size of D ′ is exactly

|{h ∈ K[t], deg h = 0.1 ·n0, h is monic}|, which is at least |K|0.1·n0 ≥
(

n
c·logn

) 0.1·n
c·logn

. We aim to

show that this is at least
(
N/4001

k

)
. It suffices to show log

(
N/4001

k

)
≤ 0.1·n

c·logn
· log

(
n

c·logn

)
. Using

binomial bounds 3 (Section 2.2) again, we have

log

(
N/4001

k

)
≤ log

(
e ·N/4001

k

)k
= k · log

(
e ·N

4001 · k

)
≤ k ·

(
log

(
N

k

)
− 10

)
, (5.6)

while

0.1 · n
c · log n

· log

(
n

c · log n

)
≥ 0.1 · n
c · log n

· log n0.99 ≥ 0.099 · n
c

.

The upper bound on k given in Theorem 12 can be rephrased as the condition d ≥ 220 ·k · logN .

Plugging it in the expression for n,

n =
d− k
0.9

· 4000

4001
≥ k · (220 · logN − 1) · 1

0.9
· 4000

4001
,

which implies

0.099 · n
c

≥ k · (220 · logN − 1) · 1

0.9
· 4000

4001
· 0.099

2000

> k · (16 · logN − 16 · 2−20)

which is clearly greater than k ·
(
log
(
N
k

)
− 10

)
of Equation (5.6).

By retaining the (lexicographically) first
(
N/4001

k

)
elements of D ′, we get D with the required

properties.

5.3.1 Proof of Lemma 19

Lemma 19 (Restated). Given m variables, it is possible in time eO(m) to generate a set M(m)

of e0.001·m many multilinear monomials that have the following properties: (i) Every monomial

of M(m) is of degree 0.9 · 4001
4000
·m ≈ 0.9 ·m, and (ii) the distance between every two distinct

monomials a, b of M(m) is at least 0.007 ·m.
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Proof. For brevity, let c0 = 0.9 · 4001
4000

. In Algorithm 1 we outline a greedy way to construct the

required monomials. From Algorithm 1, it is clear that the elements of M have the required

Algorithm 1: A greedy algorithm to generate distant monomials

Input : m, an integer
Output: M , a set of monomials in m variables having properties specified in Lemma 19

1 M := ∅
2 L := array of all multilinear monomials of degree c0 ·m in the lexicographic order
3 i := 1
4 while |M | < e0.001·m do
5 if the distance between Li (i.e. the i-th element of L) and ν is at least 0.007 ·m for

all ν ∈M then
6 M := M ∪ {Li}
7 end
8 i := i+ 1

9 end
10 return M

degree and distance. The claim below shows that in the while loop, the iterator i does not run

out of bounds of L as long as |M | ≤ e0.001·m.

Claim 20. Let x be a set of m variables. Let M be a set of multilinear monomials of degree

c0 ·m in x (where c0 = 0.9 · 4001
4000

). If |M | < e0.001·m then there always exists an x-monomial of

degree c0 ·m such that the distance between the monomial and ν is at least 0.007 ·m for every

ν ∈M .

Hence M has the sufficient size as well. It remains to estimate the runtime complexity. Ini-

tializing L takes time polynomial in |L| ≤
(
m
c0·m

)
≤ 2m. In the while loop, every increment of

i is preluded by checking not more than |L| pairs of monomials for distance. Since computing

distance is a linear-time process, at most m · |L| ≤ m · 2m time is spent in an iteration of the

while loop. Hence the whole while-loop takes time at most m · 2m · e0.001·m ≤ e2·m in total.

Proof of Claim 20. We use the probabilistic argument. Consider picking every variable inde-

pendently with probability c0
0.99

(which is less than 1) and multiplying the picked variables to

form a monomial µ (say). Then the expected degree of µ is E[deg µ] = c0
0.99
·m. From Chernoff

bound (Section 2.2),

Pr
[
deg µ < 0.99 · c0

0.99
·m
]
≤ e−

0.012

3
· c0
0.99
·m

⇒ Pr [deg µ < c0 ·m] < e−0.00003·m (by plugging c0 = 0.9 · 4001

4000
)
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= e1 (say).

Recall that ∆(a, b) denotes the set of variables present in monomial a but not in monomial b.

Let ν̃ be some fixed monomial from M . (Thus deg ν̃ = c0 ·m.) The distance |∆(ν̃, µ)| is then

the sum of independent 0-1 random variables I1, . . . , Ideg ν̃ , where Ii takes 1 if the i-th variable

of ν̃ is not in µ, and takes 0 otherwise. Hence

E[|∆(ν̃, µ)|] =

deg ν̃∑
i=1

Pr[Ii = 1] (from linearity of expectation)

=

c0·m∑
i=1

(1− c0

0.99
)

= c0 · (1−
c0

0.99
) ·m,

and we can apply Chernoff bound again:

Pr[|∆(ν̃, µ)| < 0.1 · (c0 · (1−
c0

0.99
) ·m)] ≤ e−

0.92

3
·c0·(1− c0

0.99
)·m.

⇒Pr[|∆(ν̃, µ)| < 0.007 ·m] ≤ e−0.022·m (by plugging c0 = 0.9 · 4001

4000
).

From union bound, the probability that there is a monomial ν ∈M with |∆(ν, µ)| < 0.007 ·m
is at most

|M | · e−0.022·m ≤ e0.001·m · e−0.022·m = e−0.021·m = e2 (say).

Thus, µ has degree at least c0 ·m and distance |∆(ν, µ)| at least 0.007 ·m for all ν ∈ M with

probability at least 1− e1 − e2 = 1− e−0.00003·m − e−0.021·m � 0 (for m large enough). In other

words, there exists a monomial µ with distance (from monomials of M) at least 0.007 ·m and

degree at least c0 · m. However we want the degree to be exactly c0 · m. We can chop off a

few variables from µ to ensure that. Note that such a chopping does not decrease |∆(ν, µ)|.
Moreover, this causes |∆(µ, ν)| to equal |∆(ν, µ)| ≥ 0.007 ·m, as desired.
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Chapter 6

Depth four multi-r-ic circuits

In this chapter we want to lift the restriction of low bottom support off multi-r-ic depth four

circuits and prove Theorem 1. (Theorem 1 however works with a narrower degree range of

0.51 ·N ≤ d ≤ 0.9 ·N , compared to Theorem 2.) We begin with recording two (not necessarily

disjoint) subclasses of depth four multi-r-ic circuits for which the lower bound stated in Theorem

1 is readily established:

1. Consider multi-r-ic depth four circuits that compute Fd0,k0 in N0 variables (with 0.05·N0 ≤
d0 ≤ 0.9 · N0) and have bottom support bounded by τ0 = 20 ·

√
d0·log d0

r
. For such a τ0

and the choice of k0 = k0(d0, τ0, r) as in Section 4.4, Theorem 2 gives a lower bound of

N

(
0.00001·d0

τ0·r

)
0 = N

Ω
(√

d0
r·log d0

)
0 , which for d0 = Θ(N0) translates to 2

Ω

(√
N0·logN0

r

)
. Note that

the choice of τ0 is consistent with the constraint τ0 ≥ 221·logN0

5000·r in Theorem 2.

2. Consider multi-r-ic depth four circuits (regardless of which polynomial they compute)

that have sparsity more than 2
√

N·logN
100·r (where N is the number of underlying variables).

Sparsity of a depth four circuit refers to the sum of the fanin of nodes at the bottom

summation layer. It is trivially a lower bound for circuit size.

Arbitrary as the definitions of the two subclasses may seem, they hint at taking into account

the (collective) fanin of the bottom summation layer. Recall that in the proof of Theorem 2

we did not care about sparsity; we managed with lower bounding the top fanin alone. We

had the low-bottom-support constraint then. This is not the case anymore, and our proof

strategy hinges on reducing general depth four multi-r-ic circuits to the two subclasses. Before

elaborating further we describe a new polynomial family H which will eventually be shown to

be hard for general depth four multi-r-ic circuits. H is in a sense a “compound” of several

instances of Fd0,k0 glued by “auxiliary variables”.
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6.1 Polynomial H

From here on we just write Fd0 to refer to Fd0,k0 with the value of k0 = k0(d0, τ0, r) fixed

to be the same as that in the proof of Theorem 2 in Section 4.4, with τ0 = 20 ·
√

d0·log d0
r

. To

emphasize that Fd0 is in variables from a set S, we may write Fd0(S).

Let x,u,v be sets of variables of sizes n, n, 0.02 ·n respectively, making a total of 2.02 ·n = N

(say) variables. We call u-variables and v-variables as auxiliary variables. Let d be an integer

such that 0.51 ·N ≤ d ≤ 0.9 ·N . Also, we set d0 = d−0.97 ·n. Consider the following N -variate,

degree-d polynomial:

H(x,u,v)
def
=

∑
S∈( x

[0.95·n,0.97·n])

Fd0(S) ·
∏

i: xi∈S

ui ·
0.97·n−|S|∏

j=1

vj. (6.1)

In the analysis below, we would apply Theorem 2 on τ0-bottom-support multi-r-ic depth four

circuits computing Fd0(S). As the theorem has some restrictions on the various parameters, let

us verify them first in the following remarks.

Remarks.

1. We call the expression Fd0(S) ·
∏

i: xi∈S
ui ·

0.97·n−|S|∏
j=1

vj as the summand corresponding to S.

It is easy to see that H is multilinear, homogeneous, and has binary coefficients. Every

H-monomial stores information about its summand via the u-part. The v-part enforces

homogeneity.

2. To verify that degFd0(S) ≤ 0.9 · |S|, note that degFd0(S) = d0 = d− 0.97 · n ≤ 0.9 ·N −
0.97 · N

2.02
< 0.4199 ·N whereas 0.9 · |S| ≥ 0.9 · (0.95 · n) = 0.9 · 0.95

2.02
·N > 0.42 ·N .

3. As d0 ≥ 0.51 · N − 0.97
2.02
· N > 0.029 · N = Θ(N) and |S| = Θ(N), clearly the condition

τ0 ≥ 221·log |S|
5000·r in Theorem 2 is satisfied. Moreover, since r ≤ (N · logN)0.9 (as prescribed

by Theorem 1), we have τ0 · r = 20 ·
√
r · d0 · log d0 = O ((d0 · log d0)0.95), satisfying the

other requirement τ0 · r ≤ d0
5000

in Theorem 2.

Lemma 21. H defines a polynomial family in VNP.

Proof. From Valiant’s criterion, it is sufficient to give a poly(N)-time algorithm to find the

coefficient of any given monomial in H. The coefficient is in fact binary, hence checking whether

the given monomial is an H-monomial or not is sufficient. Given a monomial, we simply scan

its u-part and find its corresponding S or lack thereof. In case such an S does exist, we check
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whether the x-part of the monomial is in Fd0(S), using the procedure described in Section 5.2.

We can also easily check if the v-part is consistent with the rest. Thus, in poly(N) time we can

tell if the input monomial is an H-monomial or not.

The following observation turns out to be quite useful for our proof.

Observation 22. For every S ∈
(

x
[0.95·n,0.97·n]

)
there is a 0-1 assignment to the auxiliary vari-

ables such that after the assignment H equals Fd0(S).

Proof. The 0-1 assignment is as follows: Assign vj 1 if j ∈ [0.97·n−|S|] and 0 otherwise. Assign

ui 1 if xi ∈ S and 0 otherwise. After the assignment to v-variables, only those summands

corresponding to S̃ ∈
(

x
[|S|,0.97·n]

)
survive. Of those, only the summand corresponding to S

further survives after the assignment to u-variables. That summand, with u and v parts

already purged, is simply Fd0(S).

6.2 Proof of Theorem 1

Recall the two subclasses mentioned in the beginning. The lemma below reveals the proof

strategy for Theorem 1. We prove the lemma in the next section.

Lemma 23. Let H be computed by a depth four multi-r-ic circuit (with parameters d, r as

required by Theorem 1). Then either the circuit is in Subclass 2, or there exists an assignment

of field values to all auxiliary variables and less than 5% of x-variables that reduces the circuit

to a member of Subclass 1 computing Fd0.

Proof of Theorem 1. H(x,u,v) ∈ VNP as defined in the previous section is our target polyno-

mial. If the circuit size is greater than 2
√

N·logN
100·r (which is the case for circuits in Subclass 2)

then there is nothing to prove. Hence we assume otherwise. This lands us in the “or” case of

the either-or statement of Lemma 23, where a certain assignment is guaranteed to exist. We

employ that assignment and consider the resulting circuit in Subclass 1. Since the act of as-

signing field values to variables does not increase the circuit size, the forthcoming lower bound

analysis remains valid.

Now Fd0(S) is being computed for some S ∈
(

x
[0.95·n,0.97·n]

)
. HenceN0

def
= |S| and d0 = d−0.97·n

are the number of variables and the degree respectively at this point. As conditions d0 ≤ 0.9·N0

and 221

5000
·logN0 ≤ τ0·r ≤ d0

5000
are satisfied (see remarks at the beginning of the previous section),

Theorem 2 is applicable on this circuit from Subclass 1. Theorem 2 now implies that the circuit
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size (in particular top fanin) should be at least

(
τ 20

0 · d0

N0 · r

)( ε0·d0
τ0·r

)
=

(
2020 ·

(
d0 · log d0

r

)10

· d0

N0 · r

)( ε0·d0
τ0·r

)
(where ε0 = 0.00001)

>

((
d0 · log d0

r

)10

· 1

r

)( ε0·d0
τ0·r

)
(as d0 ≥ 0.029 ·N and

N0 ≤ 0.97
2.02
·N)

≥

((
0.02 ·N · logN

r

)10

· 1

r

)( ε0·d0
τ0·r

)

≥
(
0.0210 · (N · logN)0.1

)( ε0·d0
τ0·r

)
(as r ≤ (N · logN)0.9)

≥ N

(
0.1· ε0·d0

20·
√

d0·log d0
r ·r

)

= 2

(
ε0
200
· d0·logN√

r·d0·log d0

)

= 2Ω(
√

N·logN
r

) (as d0 = Θ(N)).

6.3 Proof of Lemma 23

If a multi-r-ic depth four circuit C (say) computing H is in Subclass 2 then there is nothing

to prove. Hence assume otherwise, namely, that

C has sparsity at most 2
√

N·logN
100·r . (6.2)

Under this assumption we now need to show the existence of an assignment of the required

kind.

We use the probabilistic method. The sample space of assignments is defined by the following

procedure: Independently, retain every x-variable with probability 0.96 and set to 0 with

probability 0.041. Let the set of retained variables be denoted with S ⊆ x. If S ∈
(

x
[0.95·n,0.97·n]

)
then further make assignments to auxiliary variables as described in the proof of Observation 22

to make H equal Fd0(S) after the assignment. Otherwise, assign 0 to all the auxiliary variables.

For any such assignment σ, let C and H with σ applied be respectively denoted by Cσ and

Hσ. Since every x-variable is retained or assigned zero independently of others, we can apply

1The process is referred to as ‘random restriction’ in the literature.
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Chernoff bound (Section 2.2) to say

Pr
σ

[0.95 · n ≤ |S| ≤ 0.97 · n] ≥ 1− e−
1
3
·( 0.01

0.96
)2·0.96·n.

In other words, with probability at most e−
1
3
· 0.01

2

0.96
·n the event that |S| 6∈ [0.95 · n, 0.97 · n] and

in turn its sub-event that ∀S ∈
(

x
[0.95·n,0.97·n]

)
Hσ 6= Fd0(S), occur.

Let us now turn our attention to Cσ. Suppose that most assignments convert C into one

with low bottom support. Precisely, suppose that

Pr
σ

[
Cσ has at least 20 ·

√
d0 · log d0

r
-bottom-support

]
≤ 2−0.01·

√
N·logN

r . (6.3)

Then the probability that Cσ is not in Subclass 1 is at most e−
1
3
· 0.01

2

0.96
·n + 2−0.01·

√
N·logN

r < 1, for

sufficiently large N . Thus there exists an assignment that converts C into a circuit in Subclass

1 computing Fd0(S) for some S ⊆ x of size between 0.95 · n and 0.97 · n. This completes the

proof, except that we need yet to show that Inequality (6.3) is indeed true (under Condition

(6.2)).

For that purpose, let us examine the effect of assignments on the bottom support. For every

monomial µ computed at the bottom multiplication layer, we observe that the assignments

substitute 0-1 values for u- and v-parts of µ. Hence for every µ, only the support of its x-part

(or “x-support” for short) contributes to the bottom support of Cσ. Let µσ denote µ with the

substitution σ. Clearly even a single x-variable of µ being assigned 0 causes µσ to equal 0 and

not contribute to the bottom support of Cσ. Hence the case of high bottom support for Cσ

requires some µ with µσ having high x-support, which is not likely:

Pr
σ

[
µσ has x-support at least 20 ·

√
d0 · log d0

r

]
≤ 0.9620·

√
d0·log d0

r ≤ 2−
√
d0·log d0

r

⇒ Pr
σ

[
There exists a µσ that has x-support at least 20 ·

√
d0 · log d0

r

]
≤ 2−

√
d0·log d0

r · 2
√

0.01·N·logN
r (from Condition (6.2) and union bound)

≤ 2−
√

0.02·N·logN
r · 2

√
0.01·N·logN

r (as d0 ≥ 0.029 ·N)

≤ 2−0.01·
√

N·logN
r .
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Chapter 7

Conclusion

To summarize, we have improved existing multi-r-ic depth four formula lower bounds and

also improved the range of r for which the bound remains superpolynomial. While the proof

ideas are along the lines of [KST16b], improvement comes from the choice of a VNP polynomial

as the hard polynomial, for high degree range. We have used the original shifted partials (SPD)

as the measure. The Skewed Shifted Partials measure, devised by [KST16b] to show lower

bounds for low degree range, does not seem to remain superior to the original SPD at high

degree range.

Our lower bound for multi-r-ic depth four formulas deteriorates when r exceeds (N · logN)0.9.

(The constant 0.9 can be brought arbitrarily close to 1 though, we reiterate.) A significant step

would be to prove a lower bound that remains superpolynomial for r much greater than N , say

r = N2. This would strengthen our understanding of general depth four multi-r-ic formulas.

The depth four model can also be helpful if some of kind of a useful depth reduction from

arbitrary depth multi-r-ic formulas to depth four multi-r-ic formulas is discovered. For instance,

[RY09] showed a reduction from arbitrary depth multilinear formulas to a special kind of depth

four multilinear formulas (called log-product), and used it to simplify the proof of [Raz09]’s

result that gave an nΩ(logn) multilinear formula lower bound against Detn and Permn.

Our lower bound for multi-r-ic depth three formulas also fails to remain superpolynomial

for r beyond N0.9. Raising this limit would be a (small) step towards proving general formula

lower bounds as well, since at r = Nω(
√
d) we reach the maximum formal degree of a depth

three circuit (obtained from depth-reducing a general poly(N)-sized circuit).

Proving lower bounds for multi-r-ic circuits of higher depth would also be interesting, partic-

ularly with IMMn,d as the hard polynomial. An upper bound of nO(log d) on multilinear formulas

for IMMn,d is easy to show. (On the other hand Detn, another important polynomial in VP, is
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conjectured to require multilinear formulas of size much larger than nlogn.) Hence a matching

lower bound (for r = 1) would be desirable for IMMn,d. Even with Detn as the hard polynomial,

a lower bound for higher depth multi-r-ic formulas would be substantial progress.

In the multilinear world, a superpolynomial separations between formulas of depth ∆ and

∆+1 is known, due to [RY09]. It would be desirable to see a similar separation in the multi-r-ic

regime.

[KST16b] generalized the notion of multilinear polynomials by defining multi-r-ic polyno-

mials, i.e. polynomials whose individual degree is bounded by r. (Clearly, multi-r-ic circuits

compute multi-r-ic polynomials.) One can take a multilinear polynomial, raise some (or all)

variables of it to the power r, to get its “multi-r-ic version”. A multi-r-ic version, in this sense,

of a ‘restriction’ of IMM was studied by [KST16b] and a better lower bound on multi-r-ic

depth four circuits was obtained. In fact the lower bound is 2Ω(
√
N), where N is the number of

variables, which does not depend on r at all. It would be interesting to see if a similar result

could be obtained for higher depth.

In our definition of multi-r-ic formulas we have syntactically bounded the individual degree of

polynomials, by introducing the notion of formal degree. It is possible to define a semantically

multi-r-ic model where one only requires the polynomials computed at intermediate gates to

be multi-r-ic. Such a model potentially has high formal degree. Thus, proving nontrivial

lower bounds on (syntactically) multi-r-ic formulas may offer some insight on the separation

between syntactic and semantic multi-r-ic models. As of now, it is an open question whether

semantically multi-r-ic formulas are more powerful than (syntactically) multi-r-ic formulas for

a general r. For r = 1, they are equally powerful (up to polynomial factor), as shown in [Raz09].
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