
Expanders in arithmetic circuit lower bound: Towards a

separation between ROABPs and multilinear depth 3

circuits

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Science (Engineering)

IN THE

Faculty of Engineering

BY

Vineet Nair

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June 2015



Signature of the Author: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vineet Nair

Dept. of Computer Science and Automation

Indian Institute of Science, Bangalore

Signature of the Thesis Supervisor: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chandan Saha

Assistant Professor

Dept. of Computer Science and Automation

Indian Institute of Science, Bangalore

1





c© Vineet Nair

June 2015

All rights reserved





Acknowledgements

First and foremost, I am extremely thankful to my advisor Chandan Saha. The past two years

working with Chandan has been a deep learning curve for me. I have tried my best to im-

bibe in me the suggestions given by him. Words would not suffice to express my gratitude

towards him. In the coming years I hope I can inculcate in me at least a part of the enthusiasm

and dedication he has towards his work and research. In this thesis we have tried to resolve

the questions asked by him in many of the insightful discussions we had over the past two years.

Studying at IISc has been amazing. I am extremely indebted to all the faculties of the Depart-

ment of Computer Science and Automation. Specially I am thankful to Arnab Bhattacharya

for his valuable guidance on various occasions which helped me immensely. Arnab also pointed

out some corrections in the language used in section A.1 and brought to our notice the work of

[KMS98] which is used in the proof of theorem 3.2.2.

I am greatly thankful to Neeraj Kayal who pointed out the possibility of constructing hard

polynomial used in subsection 4.2.1 in one of the discussions we had. Neeraj also taught us a

course on Arithmetic Circuits in the winter/summer of 2015. This course helped me understand

the fundamental problems in Algebraic Complexity Theory better and grasp the motivation be-

hind the research done in this area. I am also thankful to Nitin Saxena, Rohit Gurjar and Arpita

Korwar for the stimulating discussions we had during their visit to IISc in 2014. The obser-

vation in section 4.1 was made in one such discussion. I am extremely thankful to Rohit in

particular who was subjected to numerous questions by me. He was patient enough to answer

each one of them, however stupid they seemed to be.

I made quite a few friends in IISc. Life in IISc was far more enjoyable because of them.

In particular I am thankful to Rafia Sabih and Srinivas Karthik for the engaging discussions

we had on Complexity Theory and sometimes on philosophy. Heartfelt thanks to Sabuj, Kiran,

Vishesh, Vibhuti, Monika and Srivarun for their constant company.

5



Acknowledgements

Last but not the least, I am extremely thankful to Umang Mammaniya, Vrishali Shah, Saurabh

Shertukde and Neha Nair for providing me constant support and love through all the ups and

downs in my life in the past two years. Finally, I owe a lot to my family. I thank my sister

for her love, protection, care and valuable career advices during my early student life. I thank

my father who inspired me to ask basic questions in science as a child and thus sparked my

interest in research. Lastly, I am thankful to my mother for every little thing she has done for

me. I would not have been here if she had not inspired me to pursue my interest in maths. I

dedicate this work to her.

6



DEDICATED TO

My mother, Geeta Nair

who understands me even before I do.



Abstract

Consider the problem of Polynomial Identity Testing(PIT): we are given an arithmetic circuit

computing a multivariate polynomial over some field and we have to determine whether that

polynomial is identically zero or not. PIT is a fundamental problem and has applications in

both algorithms and complexity theory. In this work, our aim is to study PIT for the model

of multilinear depth three circuits for which no deterministic polynomial time identity test is

known. An nO(logn) time blackbox PIT for set-multilinear depth three circuits (a special kind of

multilinear depth three circuits) is known due to [ASS12], [FS13]. To get a better understanding

of the problem at hand, we move towards multilinear depth three circuits by considering in-

termediate circuit classes which encompasse more polynomials than set-multilinear depth three

circuits and are ‘natural’ subclasses of multilinear depth three circuits. One such model is

‘superposition of set-multilinear depth 3 circuits’. Our initial observations are:

• There is an nO(logn) whitebox PIT for superposition of two set-multilinear depth 3 circuits.

• There is a sub-exponential time whitebox PIT for superposition of constantly many set-

multilinear depth 3 circuits.

The second observation is subsumed by the recent independent and almost simultaneous work

by [OSV15] that gives sub-exponential time hitting set for multilinear depth three circuits.

A recent line of research considers hitting set for Read Once Oblivious Algebraic Branching

Programs (ROABP’s) which subsumes set-multilinear depth three circuits. An nO(logn) black

box PIT is given for ROABP’s of width polynomial in the number of variables in [AGKS14].

It is natural to ask whether this result on ROABP PIT can be used to give efficient (meaning

polynomial or quasi-polynomial time) PIT for multilinear depth three circuits. For instance,

the result by [OSV15] elegantly uses ROABP PIT as a ‘base case’ (in a certain sense) to give

a sub-exponential time PIT algorithm for multilinear depth three circuits. At this point, we

i



Abstract

wondered if multilinear depth three circuits of size s could also be computed by an ROABP of

size polynomial in s. If true then this would immediately imply a quasi-polynomial time hitting

set for multilinear depth three circuits, which is a long standing open problem in algebraic

complexity theory. For instance, it can be shown that any multlinear depth three circuit with

top fan-in two and just two variables per linear polynomial can be computed by an ROABP

with constant width. But we show in our main result that this is not true for general multilinear

depth three circuits that are superpositions of only two set-multilinear depth three circuits.

• There is a polynomial computed by a superposition of two set-multilinear depth 3 circuits

with top fan-in just three and size polynomial in the number of variables n, such that any

ROABP computing the polynomial has width 2Ω(n).

• There is a polynomial computed by a superposition of three set-multilinear depth 3 circuits

with top fan-in just two and size polynomial in the number of variables n, such that any

ROABP computing the polynomial has width 2Ω(n).

This means the approach of directly converting a multilinear depth 3 circuit (even a superposi-

tion of set-multilinear depth 3 circuits) to an ROABP and then applying the existing PIT for

ROABP will not work. However the underlying techniques in [ASS12], [AGKS14] and [OSV15]

might still be useful. The proofs of the above lower bounds are based on explicit construction

of expander graphs that can be used to design multilinear depth three circuits (in particular su-

perposition of set-multilinear depth 3 circuits) with high ‘evaluation dimension’ - a complexity

measure that is well suited to capture a ‘weakness’ of ROABPs.

ii



Contents

Acknowledgements 5

Abstract i

Contents iii

List of Figures v

1 Introduction 1

1.1 Motivation and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8

2.1 Arithmetic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Connections between polynomial identity testing and arithmetic circuit lower

bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Algebraic Branching Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Read-Once Oblivious Algebraic Branching Program . . . . . . . . . . . . 13

2.4 Evaluation Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Expander Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Spectral gap and its connections to edge expansion . . . . . . . . . . . . 15

2.5.2 Explicit construction of degree three expanders . . . . . . . . . . . . . . 16

2.5.3 Double Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Superposition of set-multilinear depth 3 circuits 20

3.1 Whitebox PIT for superposition of two set-multilinear depth three circuits . . . 21

3.2 NP-hardness and approximation algorithm . . . . . . . . . . . . . . . . . . . . . 23

iii



CONTENTS

3.3 Hitting sets for superposition of set-multilinear depth three circuits . . . . . . . 25

4 Lower bounds for ROABP’s against multilinear depth 3 circuits 33

4.1 Constructing a polynomial sized ROABP . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Lower Bounds for ROABPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Lower Bounds for multilinear depth 3 circuits with 3 product gates and

2 base sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Lower Bounds for multilinear depth 3 circuits with 2 product gates and

3 base sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Future Work 55

A ROABP lower bound without expanders 57

A.1 Exp(
√
n) lower bound against ROABPs . . . . . . . . . . . . . . . . . . . . . . . 57

A.2 Exponential lower bound against ROABPs for multilinear depth three circuit

with O(n) top fan-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 70

iv



List of Figures

1.1
∑∏∑

depth three circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Degree three expander graph corresponding to Z5 . . . . . . . . . . . . . . . . . 17

2.2 3-regular graph G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Bipartite double cover of the graph in fig. 2.2 . . . . . . . . . . . . . . . . . . . 18

4.1 Directed acyclic graph corresponding to L11 and L21 . . . . . . . . . . . . . . . . 37

4.2 Directed acyclic graph corresponding to L11 and L21 in the same variable ordering 37

4.3 Connecting L11, L21 and L12, L22 in the same variable ordering . . . . . . . . . . 38

4.4 Double cover of Z5 shown in fig. 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.1 Depiction of the X variables appearing in the linear polynomials in C1 . . . . . 61

v



Chapter 1

Introduction

Leslie Valiant defined the complexity classes VP and VNP in [Val79a] and [Val79b]. VP and

VNP are algebraic analogs of P and NP respectively. It was later proved in [SV85] that P 6=NP

implies VP 6=VNP (more precisely, if ‘Permanent’ polynomial can be computed by a circuit C

of size polynomial in the number of variables n and the field constants appearing in C have

bit lengths bounded by nO(1) then P = NP). VP and VNP are in some sense the algebraic

analogs of P and NP respectively. Valiant’s work inspired many works related to proving lower

bounds for specific arithmetic circuit classes, but our knowledge with respect to lower bounds

or separating various algebraic complexity classes is far from complete. Specially the answer

to the question posed by Valiant, whether VP equals VNP still eludes us. Sometimes we find

in complexity theory that proving lower bounds for a specific complexity class has connections

to finding an efficient algorithm for a problem. For example connections between finding a

sub-exponential time algorithm for polynomial identity testing and proving arithmetic circuit

lower bounds are known due to [KI04],[HS80],[Aga05]. We elaborate on this in section 2.2. As

part of this thesis we worked on lower bounds and polynomial identity testing for restricted

circuit classes.

The problem of Polynomial Identity Testing(PIT) is significant and has profound applications.

Here we have an arithmetic circuit computing a multivariate polynomial as input and we need

to check whether this polynomial is formally zero (i.e all its coefficients are zero) and not just

zero as a function over the field. To understand the difference between these two notions of

zero consider the polynomial x2 − x, which is a zero function over F2 but not the zero poly-

nomial. Checking polynomial identities is a central question in a number of problems. For

example, some efficient parallel algorithms for perfect matching are based on testing whether a

symbolic determinant is formally zero or not [Lov79, KUW86, MVV87, CRS95]. In complexity

1



Figure 1.1:
∑∏∑

depth three circuit

theory identity testing played a major role in results such as IP=PSPACE[LFKN92, Sha92],

MIP=NEXPTIME[BFL91] and the proof of the PCP theorem[AS98, ALM+98].

The difficulty in the PIT problem comes from the way the polynomial is given as an input

to the algorithm. If the coefficients of the polynomial are given as input then the problem

is trivial. In our case the polynomial is given as input in the form of an arithmetic circuit

(definition given in section 2.1). The PIT problem is considered with respect to two models.

The first one is the black box model in which we can only query the circuit at points over the

underlying field and in turn the circuit returns the values of the polynomial at those points. It

is clear that in the black box model we must generate a test set (also called a hitting set) for

the circuit, namely a set of points, such that if the circuit vanishes on all points in the hitting

set then it is computing the zero polynomial. The second setting is the white box model, where

we can ‘see’ the circuit, equivalently the underlying directed acyclic graph of the circuit is given

as input. Clearly the white box model is ‘easier’ of the two.

1.1 Motivation and Related Works

In this work we look at constant depth circuits particularly
∑∏∑

depth three circuits. This

circuit has been formally defined in section 2.1. An example of a
∑∏∑

depth 3 circuit is

shown in fig. 1.1. We can see that in a
∑∏∑

circuit the root is a sum gate, followed by

product gates at level 2. The children of product gates are again sum gates at level 3. The

2



leaves are input variables or field constants. Similarly we have
∑∏∑∏

depth four circuits

where we have product gates at level 4. We say
∑∏∑

circuit or
∑∏∑∏

circuit is a

homogeneous circuit if every gate in that circuit computes a homogeneous polynomial. The

motivation to look at these circuits comes from recent results by [AV08], [GKKS13], [Koi12]

and [Tav13]. It follows from the work of [AV08], [Koi12] and [Tav13] that any poly(n) sized

arithmetic circuit computing an n variate polynomial f of degree d = nO(1) can be computed

by a depth 4
∑∏∑∏

homogeneous circuit of size exp(O(
√
d log n)). Building on this depth

reduction result [GKKS13, Tav13] showed that any poly(n) sized arithmetic circuit computing

an n variate polynomial f of degree d = nO(1) can be computed by a depth three
∑∏∑

circuit

of size exp(O(
√
d log n)) but in this case the homogeneity of the circuit is lost. This implies

proving non trivial lower bounds for depth three circuits implies non trivial lower bounds for

general arithmetic circuits. It further follows from [AV08],[GKKS13] that a black-box poly-time

PIT for depth three circuit implies a quasi-polynomial time blackbox PIT for general circuits.

At present it seems we are quite far from a complete derandomization of depth three PIT.

Neither whitebox nor blackbox quasi-polynomial time PIT is known for even multilinear depth

three circuits (definitions given in section 2.1). The motivation to look at multilinear depth

three circuit PIT is the hope that a strong technique to generate hitting sets for multilinear

depth three circuits may give us some insight to general depth three circuit PIT. Finding an

efficient algorithm for multilinear depth three PIT is also stated as an open problem in [SY10].

Set-multilinear depth three circuits first defined by [NW97] are a subclass of multilinear depth

three circuits. We have defined set-multilinear depth three circuits formally in section 2.1. An

example of a set-multilinear depth three circuit C in variables X = {x1, x2, ..., xn} is given

below.

C(X) = (1 + x1 + 3x2 + 5x3)(2 + 4x4 + 3x5 + x6)

+(5 + 2x1 + x2 + x3)(1 + x4 + 3x5 + 4x6)

Observe that the variable set X has been partitioned in C(X) into X1 = {x1, x2, x3} and

X2 = {x4, x5, x6}, such that a linear polynomial contains variables from exactly one of these

sets. X1 and X2 are called colors of X. [ASS12] gave an nO(log k) time blackbox identity testing

for n-variate polynomials computed by set-multilinear depth three circuits with top fan-in

k, where the top fan-in is the number of product gates at level two of the input circuit. Set-

multilinear depth three circuits are also a subclass of ‘Read-once Oblivious Algebraic Branching

Programs’ (ROABPs). ROABP has been defined and motivated in section 2.3. An O(wnd)

time whitebox identity testing for degree d, n-variate polynomials computed by ‘ROABPs’ with

3



width w was given by [RS05]. Recently [AGKS14] gave a (nw)O(logn) time blackbox identity

test for n-variate polynomials computed by ‘ROABPs’ with width w. Since the set-multilinear

depth three circuit model is a subclass of ROABPs, these identity tests hold for set-multilinear

depth three circuits too. At this point it is natural to ask whether we can use the identity

testing algorithms of ROABPs for multilinear depth three circuits. Indeed [OSV15] use the

hitting set for ROABPs given by [AGKS14] to give an 2O(n
2
3 (1+δ)) size hitting set for multilinear

depth three circuits of size 2n
δ
. A useful notion in this context is ‘superposition of two or more

set-multilinear depth three circuits’, which is defined formally in chapter 3. We give an example

of superposition of two set-multilinear depth three circuits below.

C(X, Y ) = (1 + 3x1 + 5y2)(4 + x2 + y1) + (6 + 9x1 + 4y1)(2 + 5x2 + 3y2)

The variable sets X and Y are completely disjoint and are called the base sets of C(X, Y ).

C(X, Y ) is a set-multilinear depth three circuit in X variables with colors {x1} and {x2}, when

projected on X variables (i.e after putting the Y variables to zero). Similarly C(X, Y ) is a

set-multilinear depth three circuit in Y variables with colors {y1} and {y2}, when projected

on Y variables. A multilinear depth 3 circuit can be trivially viewed as a superpostion of n

set-multilinear depth 3 circuits with single variable in every base set. [OSV15] view multilinear

depth three circuits as a superposition of sub-exponentially many set-multilinear depth three

circuits but with some leeway in each product gate. In a product gate some linear polynomials

may have variables from two colors of the same base set, but the number of such linear poly-

nomials is bounded. They achieve hitting set for multilinear depth three circuits by finding the

sub-exponentially many base sets that satisfy this criteria and then use the hitting set given

by [AGKS14] on each of these base sets. The main step of the algorithm in [OSV15] is to find

the sub-exponentially many base sets in sub-exponential time. We show that it is at least NP

Hard to find base sets when circuit is a superposition of more than two set-multilinear depth

three circuits.

At this juncture we wondered whether we can use hitting sets for ROABPs to give hitting

sets for superposition of a small (constantly many) number of set-multilinear depth three cir-

cuits. If we could find the base sets (as done in [OSV15]) efficiently then [AGKS14] could be

applied immediately. It turns out that the problem of finding base sets from a given multilinear

depth three circuit that is a superposition of three or more set-multilinear depth three circuits

is an NP-hard problem, as we show in section 3.2. This rules out the possibility of finding

the base sets. But, could it be possible that we can reduce reduce nO(1) size superposition

4



of constantly many set-multlinear depth three circuits to nO(1) size ROABPs? If so then we

can use [AGKS14]’s result to give a quasi-polynomial time blackbox identity test for superpo-

sition of constantly many set-multlinear depth three circuits. However, we show that such a

direct approach of reducing to ROABP does not work. Our main result is an exponential lower

bound for ROABP, where the hard polynomial is computed by a poly-sized superposition of

constantly many set-multilinear depth three circuits. It is here that we use explicit construction

of expander graphs, to make the hard polynomial explicit. The polynomial against which the

lower bound is shown for ROABP is designed from an explicit 3-regular expander graph and

its ‘hardness’ is argued using a complexity measure known as ‘evaluation dimension’ (defined

in section 2.4). The hard polynomial so constructed turns out to be a superposition of con-

stantly many set-multilinear depth three circuits and simultaneously a sum of constantly many

set-multilinear depth three circuits. This model has been defined in section 3.3. For such a

model we give a quasi-polynomial time hitting set by extending the shift and rank concentration

technique used in [ASS12].

1.2 Contributions of thesis

As a stepping stone towards PIT for multilinear depth three circuits, we study the model-

superposition of two or more set-multilinear depth three circuits. This model has been described

in detail in chapter 3. We state our initial observations for this model below.

Theorem 1.2.1 Given a circuit C which is a superposition of 2 set-multilinear circuits C1 and

C2 on unknown base sets X and Y respectively, we can perform whitebox PIT for C in nO(logn)

time where n = |X| ∪ |Y |.

Theorem 1.2.1 is proved by finding base sets X
′

and Y
′
, such that C is a superposition of two

set-multilinear circuits C
′
1 and C

′
2 on the base sets X

′
and Y

′
respectively. We will elaborate

on this in section 3.1. However we also show that the same strategy of finding base sets from

C is unlikely to work for superposition of more than two set-multilinear circuits. This is due to

the following theorem.

Theorem 1.2.2 Given a circuit C which is a superposition of t set-multilinear circuits C1,C2,...,Ct

on unknown base sets X1, X2, ..., Xt respectively, finding t base sets X
′
1, X

′
2, ..., X

′
t such that C is

a superposition of t set-multilinear circuits C
′
1,C

′
2, ...,C

′
t respectively on base sets X

′
1, X

′
2, ..., X

′
t

respectively is NP-Hard when t > 2.

5



The proof of theorem 1.2.2 is given in section 3.2. The NP-Hardness result also leads us to the

following result via an approximation algorithm to find base sets.

Theorem 1.2.3 Given a circuit C which is a superposition of t set-multilinear circuits C1,C2,...,Ct

on unknown base sets X1, X2, ..., Xt, we can perform whitebox PIT for C in exp(O(n1− 3
t+1 .poly(log n)+

log t)) time.

We use an approximation algorithm given by [KMS98] to prove theorem 1.2.5 in section 3.2. It

is easy to see that when t is a constant, theorem 1.2.5 yields a sub-exponential time whitebox

PIT. We would like to note that theorem 1.2.3 is in a way superseded by the recent, independent

work of [OSV15]. As mentioned in section 1.1, they gave a hitting set for general multilinear

depth three circuits with running time roughly exp(n2/3). We note in the passing that the time

complexity of theorem 1.2.3 is better than exp(n2/3) for t < 9.

We now state the main result of this thesis.

Theorem 1.2.4 There exists explicit polynomials F1 computable by a superposition of two set-

multilinear depth three circuits with top fan-in just three and F2 computable by a superposition

of three set-multilinear depth three circuits with top fan-in just two such that every ROABP

computing F1 or F2 has width 2Ω(n), where n is the number of variables in F1 or F2.

We prove theorem theorem 1.2.4 for F1 in subsection 4.2.1 and for F2 in subsection 4.2.2.

In both the cases the hard polynomials i.e F1 and F2 are designed using an explicit degree

three expander graph. We observed that the hard polynomials F1 and F2 are superpositions

of constantly many set-multilinear depth three circuits and simultaneously a sum of constantly

many set-multilinear depth three circuits. Consider the following example:

C(X, Y ) = (1 + 3x1 + 5y2)(4 + x2 + y1) + (9 + 6x1 + 4y2)(3 + 2x2 + 5y1)

+(6 + 9x1 + 4y1)(2 + 5x2 + 3y2) + (3 + 6x1 + 9y1)(5 + 8x2 + 2y2)

C(X, Y ) is a superposition of two set-multilinear depth three circuits with base sets X =

{x1} ∪ {x2} and Y = {y1} ∪ {y2}. But C(X, Y ) is also a sum of two set-multlinear depth

three circuits with {x1, y2}, {x2, y1} being the colors in the first set-multilinear depth three

circuit (corresponding to the first two products) and {x1, y1}, {x2, y2} being the colors in the

second set-multilinear depth three circuit (corresponding to the last two products). We give a

sub-exponential time hitting set in section 3.3, for such a model i.e a subclass of multilinear

depth three circuits which is a superposition of constantly many set-multilinear depth three

circuits and simultaneously a sum of constantly many set-multilinear depth three circuits.

6



Theorem 1.2.5 Given a circuit C which is a superposition of m set-multilinear depth three

circuits C1, C2, ..., Cm on base sets X1, X2, ..., Xm and simultaneously a sum of k set-multilinear

depth three circuits C
′
1, C

′
2, ..., C

′

k , we can find a hitting set for C in time lkm(log l+1) · nO(m log l)

time, where l is the bound on the top fan-in of circuit C.

In another recent work, [GKST15] gave a (wk2knd)O(k) time whitebox test for degree d, n-

variate polynomials computed by a sum of k ROABPs each of width less than w. They also

gave a (wnd)k2k log(wnd) time hitting set for the same model. Hence when k is a constant this

yields a polynomial time white-box test and a quasi-polynomial time blackbox test for degree

d, n-variate polynomials computed by a sum of k ROABPs, each of width nO(1). Observe that

in both cases: whitebox and blackbox identity testing, dependence on k is doubly exponential.

In contrast we have a singly exponential dependence on k as stated in theorem 1.2.5, but our

model is a superposition of constantly many set-multilinear depth three circuits in addition to

being a sum of set-multilinear depth three circuits.

1.3 Organization of thesis

In chapter 2 we have defined various models that compute polynomials. In this chapter we

also talk about the connections between polynomial identity testing and lower bounds for

arithmetic circuits. We also introduce tools like evaluation dimension and expander graphs in

this chapter. We define the model: superposition of set-multilinear depth three circuits and

then give results related to identity testing for this model in chapter 3. In chapter 4 we give

lower bounds for Read-once Oblivious Algebraic Branching Programs computing polynomials

that are superposition of set-multilinear depth three circuits. Finally in chapter 5 we discuss

future directions and the possibility of extending this work.

7



Chapter 2

Preliminaries

Arithmetic circuits are algebraic analogs of boolean circuits. They compute polynomials over

aribitrary fields. Below we define arithmetic circuits and look at special classes of circuits called

multilinear depth three circuits and set-multilinear depth three circuits.

2.1 Arithmetic Circuits

An arithmetic circuit is a standard model to compute a polynomial. Arithmetic circuits take

inputs X = {x1, . . . , xn} variables and perform additions and multiplications on them, to output

a polynomial (or a set of polynomials) in X variables. We formally define arithmetic circuits

below.

Definition 2.1.1 (Arithmetic Circuit) An arithmetic circuit C over a field F and the set

of variables X is a directed acyclic graph. The leaves of the graph (with indegree equal to zero)

are the input nodes and are labelled by input variables or field elements. The other gates are

labelled by × or + and are referred to as product gates or sum gates respectively. For two gates

u and v in C, if (u, v) is an edge in C, then u is called a child of v, and v is called a parent of

u. Every gate in C computes a polynomial as follows:

• The leaf nodes compute an input variable or the field element that they are labelled with.

• If u is a sum gate, then u computes a sum of the polynomials computed by its children.

• Similarly if u is a product gate, then u computes a product of the polynomials computed

by its children.

Every gate of outdegree zero is called the output gate. The polynomials computed by the output

gates are the polynomials computed by the circuit C. When C has a single output gate we call

the output gate as the root of the circuit C.

8



From here on if not mentioned explicitly, we assume the circuit C has a single output gate. We

study two natural measures of complexity associated with arithmetic circuits: ‘size’ and ‘depth’

of circuit. The size of a circuit captures ‘the number of elementary operations: additions and

multiplications required to compute a polynomial’ whereas the depth captures, ‘how fast we can

compute the polynomial in parallel’. The most classical question along this line is, ‘what is the

size of the smallest circuit or the depth of the shortest circuit computing a specific polynomial’.

We now formally define the size and depth of an arithmetic circuit.

Definition 2.1.2 (Size and Depth) The size of a circuit C, denoted by |C| is the number of

nodes in C. The depth of a ciruit C denoted by depth(C) is the length of the longest path from

the root of the ciruit to a leaf.

A polynomial is called homogeneous, if all the monomials in the polynomial have the same

degree. An arithmetic circuit is called a homogeneous circuit if all the gates in that circuit

compute a homogeneous polynomial. Before we look at special classes of arithmetic circuits,

we define arithmetic formulas.

Definition 2.1.3 (Arithmetic Formula) An arithmetic formula φ is an arithmetic circuit

where the outdegree of each node is 1.

Similar to arithmetic circuits we can associate, complexity measures of size and depth with

arithmetic formulas. The definitions for size and depth of an arithmetic formula φ are similar

to that of an arithmetic circuit. At this point we would like to make a small remark below.

Remark: When polynomial sized circuits - circuits whose size are bounded by a polyno-

mial in the number of variables; and constant depth circuits - circuits whose depth are bounded

by a constant independent of |X| are considered, we can reduce the circuit to an arithmetic

formula whose size is still bounded by a polynomial in |X| and the depth is constant. Hence for

constant depth, polynomial sized arithmetic circuits and polynomial sized arithmetic formulas

are equivalent.

Now we define special classes of circuits called depth three and depth four circuits.

Definition 2.1.4 (Depth three circuits) A depth three circuit is an arithmetic circuit with

depth equal to three. The root - ‘output gate’ is a sum gate at level 1. All children of the root

are product gates at level 2, and all children of these product gates are sum gates at level 3.

These are also called
∑∏∑

circuits.

9



Definition 2.1.5 (Depth four circuits) A depth four circuit is an arithmetic circuit with

depth equal to four. The root- ‘output gate’ is a sum gate at level 1. All children of the root

are product gates at level 2, all children of these product gates are sum gates at level 3, and all

children of these sum gates are again product gates at level 4. These are also called
∑∏∑∏

circuits.

A polynomial is multilinear, if the individual degree of each variable is at most 1 in all the mono-

mials. An arithmetic circuit is multilinear if all the gates in that circuit compute multilinear

polynomials. Below we define ‘multilinear depth three circuits’.

Definition 2.1.6 (Multilinear depth three circuits) A circuit C =
∑k

i=1

∏d
j=1 lij(X

i
j) is

called a multilinear depth 3 circuit in X variables where X i
1, X

i
2, ..., X

i
d is a disjoint partitioning

of X variables observed in the ith product gate, and lij’s are linear polynomials in X i
j variables

computed by the sum gates at layer 3.

An example of a multilinear depth 3 circuit C in the X variables with X1
1 = {x1, x2, x3},

X1
2 = {x4, x5, x6}, X2

1 = {x1, x3, x5} and X2
2 = {x2, x4, x6} is given below

C(X1) = (1 + 3x1 + x2 + 2x3)(3 + 6x4 + 8x5 + 7x6)

+(4 + x1 + 2x3 + 6x5)(7 + 3x2 + x4 + 8x6)

‘k’ in the above definition is called the top fan-in of circuit C and it is equal to number of

product gates in layer 2 of circuit C. Set-multilinear depth three circuits (as defined below)

form a subclass of multilinear depth three circuits, and they are closely related to tensor ranks

[Raz10].

Definition 2.1.7 (Set-Multilinear Depth 3 Circuit) A circuit C =
∑k

i=1

∏d
j=1 lij(Xj) is

called a set-multilinear depth 3 circuit in X variables where X is the disjoint union of X1, X2, ..., Xd

and lij’s are linear polynomials in variables Xj. X1, X2, ..., Xd are called colors of set X. If

|Xj| = 1 we say it is a singleton color. When Xj is a singleton color for all j ∈ [d] we say X

has singleton colors and C is set-multilinear depth 3 circuit with singleton colors.

Here is an example of a set-multilinear depth three circuit C in variables X with colors X1 =

{x1, x2, x3} and X2 = {x4, x5, x6}

C(X) = (1 + x1 + 3x2 + 5x3)(2 + 4x4 + 3x5 + x6)

+(5 + 2x1 + x2 + x3)(1 + x4 + 3x5 + 4x6)

10



The sets X1, X2, ..., Xd remain unchanged for all product gates in layer 2, i.e the disjoint parti-

tioning of |X| variables observed in every product gate is same. This is precisely the difference

between set-multilinear depth 3 circuits and multilinear depth 3 circuits. A multilinear depth

3 circuits might have separate disjoint partitioning of X variables across product gates in layer 2.

A convention - In this report sometimes we have referred to set-multilinear (multilinear) depth

3 circuits as simply set-multilinear (multilinear) circuits.

2.2 Connections between polynomial identity testing and

arithmetic circuit lower bounds

One of the goals of algebraic complexity theory is to separate the complexity classes VP and

VNP. It was shown by Valiant in [Val79a] and [Val79b] that permanent is VNP complete. VP

and VNP can be separated by proving a super polynomial lower bound on the size of any

circuit computing the permanent. Kabanets and Impagliazzo showed that an existence of sub-

exponential time algorithm for blackbox PIT implies either an arithmetic circuit lower bound

for the permanent or a boolean circuit lower bound for NEXP in [KI04].

Theorem 2.2.1 ([KI04]) If Permanent is computable by polynomial size arithmetic circuits

over Z then either

• NEXP ⊆ P/poly

or

• There is a sub-exponential time algorithm for blackbox PIT

In the same paper [KI04], Kabanets and Impagliazzo also showed that lower bounds for arith-

metic circuits imply efficient deterministic algorithms for blackbox PIT.

Theorem 2.2.2 ([KI04]) Let F be a large enough field (of size at least some polynomial in

n). Under the assumption that there exists a multilinear m-variate polynomial f(x1, x2, ..., xm)

cannot be computed by arithmetic circuits over F with size less than s(m), where s : N → N is

monotonically increasing function, there exists a deterministic blackbox PIT algorithm for arith-

metic circuits in n variables, of polynomial degree over F, that runs in time exp(s−1(poly(r))2)

for size r = r(n) ≥ n circuits.

To understand theorem 2.2.2 better we will work out an example. Say s(m) = 2m, then

s−1(t) = log t, hence we have a blackbox PIT algorithm for poly(n) sized circuits that runs in

11



exp((log n)2) time. [HS80, Aga05] showed the following connection between blackbox identity

testing and arithmetic circuit lower bounds.

Theorem 2.2.3 ([HS80, Aga05]) If there exists a blackbox identity testing algorithm for size

s circuits, that runs in time T (s), where T : N → N is a monotonically increasing function,

then there exists an n variate polynomial F whose coefficients are computable in PSPACE such

that every arithmetic circuit computing F has size at least T−1(cn) where c is a constant greater

than 1 and T−1 is the inverse function of T .

Blackbox identity testing thus seems a promising approach to proving lower bounds.

2.3 Algebraic Branching Programs

Algebraic Branching Programs (ABPs) were first defined and used in [Nis91] to show expo-

nential lower bounds on the size of non-commutative ABPs computing the non-commutative

permanent and determinant polynomials.

Definition 2.3.1 (Algebraic Branching Program) An Algebraic Branching Program(ABP)

in the variables X = {x1, x2, ..., xn} is represented by a directed acyclic graph with a source ver-

tex s and a sink vertex t. Between s and t we have (d−1) sets or layers of vertices V1, V2, ..., Vd−1.

The width of an ABP is the maximum number of vertices in any of the (d − 1) layers. The

source vertex s has only outgoing edges. Similarly the sink vertex t has only incoming edges.

All the outgoing edges from the source vertex s are incident to the vertices in the layer V1 and

all the edges incident to the sink vertex t originate from the vertices in Vd−1. All the other edges

in an ABP are such that an edge starts from a vertex in Vi and is directed to a vertex in Vi+1

where Vi belongs to the set {V1, V2, ..., Vd−1}. The edges in an ABP are labelled by polynomials

over the base field. The weight of the path between any two vertices u and v in an ABP is

computed by taking the product of the edge labels on the path from u to v. An ABP computes

the sum of the weights of all the paths from s to t.

In a ‘non-commutative ABP’, the product of the labels is in the order of the path, from source

to sink. The ABP itself computes the sum of all such polynomials. Although the ‘ABP’ model

might seem unnatural it is quite significant in algebraic complexity theory - it is directly linked

to the complexity of iterated matrix multiplication. In particular derandomizing PIT for ABPs

is important. Specifically, the results of [BOC92] imply that blackbox PIT, even for width-3

ABPs, would imply derandomization of PIT for general arithmetic circuits of logarithmic depth

and in general, a quasi-polynomial time derandomization of PIT for polynomial sized arithmetic

circuits. Further Saha, Saptharishi and Saxena [SSS09] showed that black-box derandomization

12



of PIT of width-2 ABPs implies derandomization of PIT for depth-3 circuits. We work with a

restricted class of ABPs called ‘Read-once Oblivious ABP’(ROABP) introduced in [FS13]. We

define and motivate ROABP in the next subsection.

2.3.1 Read-Once Oblivious Algebraic Branching Program

Definition 2.3.2 (Read-Once Oblivious Algebraic Branching Program) A Read-Once

Oblivious Algebraic Branching Program(ROABP) has an associated permutation π : [n] → [n]

of the variables X. In the case of an ROABP the number of variables is equal to one plus the

number of layers, i.e n = 1 + (d − 1) = d. All the outgoing edges from the source vertex s are

labelled with univariate polynomials in the variable xπ(1) and all the incoming edges to the sink

vertex s are labelled with univariate polynomials in the variable xπ(n). The labels associated with

each edge e from a vertex in Vi to a vertex in Vi+1 is an univariate polynomial in the variable

xπ(i+1).

The importance of the ROABP model stems from its connection to the ‘L vs RL’ question in the

boolean world. The PIT problem for ROABP is the algebraic analog of the ‘L vs RL’ question.

Forbes and Shpilka [FS13] gave a quasi-polynomial time blackbox PIT algorithm for ROABPs,

when the associated permutation π (also known as the ordering of the variables) is known. The

hitting set given by [FS13] is very close in nature to Nisans [Nis92] pseudo-random generator

(PRG) for read-once oblivious (boolean) branching programs, which are a non-uniform version

of randomized log-space Turing machines.

2.4 Evaluation Dimension

A general framework for proving lower bounds for a model T against a polynomial f involves

using a measure µ, that is a function mapping polynomials to real numbers. We show that µ

for a polynomial computed by the model T is less than some quantity specific to T ; for example

in case of ROABPs we might show it is less than the width of ROABP or for multlinear depth

three circuits we might show it is less than top fan-in of circuit, and for polynomial f we show

it is at least some value, which is a function in the number of variables in f . This would yield

a lower bound on the quantity specific to T . The measure we use in this work is called the

evaluation dimension. This concept has been used before in [RY09] and [FS13].

Definition 2.4.1 (Evaluation Dimension) The evaluation dimension of a polynomial h ∈
F[X] with respect to a set S ⊆ [X] denoted as EvaldimS[h(X)] is defined as

dim(span{h(X)|∀xj∈S xj=αj : ∀xj ∈ S αj ∈ F})

13



We will be using the following claim about evaluation dimension in the proofs for lower bounds

given in section 4.2

Claim 2.4.1 Suppose h1(X), h2(X), ..., hm(X) are F-linearly independent polynomials in the

variables X = {x1, x2, ...., xn} where m = 2n. If Y = {y1, y2, ...., yn} are n variables different

from {x1, x2, ...., xn} then

EvaldimY [
∑
Si⊆[n]

ySihi(X)] = m

where for S ⊆ [n] yS =
∏

j∈S yj

Proof: We will prove the claim in 2 parts. First we will show that EvaldimY [
∑

Si⊆[n] ySihi(X)] ≥
m. Finally to complete the proof we will claim that EvaldimY [

∑
Si⊆[n] ySihi(X)] ≤ m. These

two inequalities together would imply that EvaldimY [
∑

Si⊆[n] ySihi(X)] = m

Let us prove the first part. Consider the F-evaluation of {y1, y2, ...., yn} over the following

set of points, ∀Si ⊆ [n] (if j ∈ Si put yj = 1 else yj = 0). It is easy to see that there are m such

points. Evaluating over these m points and then taking appropriate linear combinations gives

us m polynomials h1(X), h2(X), ... and hm(X). These m polynomials are given to be F-linearly

independent.

⇒ EvaldimY [
∑

Si⊆[n] ySihi(X)] ≥ m

For the second part observe that any F-evaluation of the polynomial
∑

Si⊆[n] ySihi(X) over

the Y variables is a linear combination of the m polynomials h1(X), h2(X), ... and hm(X).

⇒ EvaldimY [
∑

Si⊆[n] ySihi(X)] ≤ m. Hence EvaldimY [
∑

Si⊆[n] ySihi(X)] = m 2

A Quick Comparison: Evaluation dimension has been used earlier (like in [RY09]) to prove

a lower bound on multilinear depth 3 circuits. They show that evaluation dimension for a

single product gate is ‘low’ with respect to a randomly chosen subset of variables with a high

probability. Applying union bound, the existence of a set such that evaluation dimensions of all

the product gates are low with respect to that set is established. Finally they use a polynomial

with high evaluation dimension with respect to every set to show it cannot be computed by a

poly-sized multilinear depth 3 circuit. In contrast, we would like the hard polynomial (against

which an ROABP lower bound is shown) to be computed by a small multilinear depth three

circuit, and hence our approach is to show that with respect to every subset of variables of

a certain size, the evaluation dimension of the hard circuit is somewhat ‘high’. This forces

us to look at all the product gates at a time instead of a single product gate as done before,

14



because for a single product gate there always exists a set with respect to which the evaluation

dimension is 1.

2.5 Expander Graphs

Expander graphs are sparse but well connected graphs. They have found applications in a

lot of areas due to their ‘pseudorandom’ properties. Expander graphs are defined in terms of

expansion property they possess. Below we define edge boundary and edge expansion of an

undirected d-regular graph G.

Definition 2.5.1 ([HLW06]) Let G = (V,E) be an undirected d-regular graph with self loops

and multiple edges. For S, T ⊆ V let E(S, T ) = {(u, v)|(u ∈ S), (v ∈ T ), (u, v) ∈ E}. Then

1. The ‘Edge boundary’ of a set S, denoted as ∂S = E(S, S). This is the set of edges emanating

from the set S to its compliment.

2. The ‘Edge expansion’ of G denoted h(G) is defined as:

h(G) = minS: |S|≤n
2

|∂S|
|S|

We can have an alternate definition of expansion called ‘vertex expansion’ φ(G). Here we count

the number of neighbouring vertices of vertex sets S rather than the number of outgoing edges.

Expander graphs are defined with respect to edge expansion as follows.

Definition 2.5.2 (Expander graph) A d-regular graph family {G1, G2, ...} where Gi has i

vertices is an ‘Expander graph family’ if for all Gi in the family {G1, G2, ...}, h(Gi) > 0.

It was first shown by [Pin73] and independently by [KB93], that any random graph satisfies the

properties of expander graphs with high probability. Explicit constructions of expander graphs

are also known [Mar73],[GG81],[LPS88] and [Mar88]. They are non trivial and use algebraic

and group-theoretic techniques. More combinatorial constructions are known using the zig-zag

product [ORW02]. In subsection 2.5.1 we look at expander graphs from a different perspective

by looking at the second eigenvalue of the adjacency matrix of an expander graph.

2.5.1 Spectral gap and its connections to edge expansion

Let G be a connected d-regular undirected graph with n vertices. The adjacency matrix of G

is an n× n matrix such that (u, v) entry in G represents the number of edges in G between u

and v. Let AG be the adjacency matrix of G. Since AG is real and symmetric, it has n real

eigenvalues. Say λ1 ≥ λ2 ≥ ... ≥ λn are the n eigenvalues of AG. The eigenvalues of AG are

15



referred to as the spectrum of G. The connection between the second eigenvalue ‘λ2’ and the

edge expansion h(G) is given by the following theorem.

Theorem 2.5.1 (Cheeger’s inequality) Let G be a d-regular graph with spectrum λ1 ≥ λ2 ≥
... ≥ λn. Then

d− λ2

2
≤ h(G) ≤

√
2d(d− λ2)

Cheeger [Che70] and independently Buser [Bus82] proved theorem 2.5.1 in the continuous case.

In the discrete case, it was proved by Dodziuk [Dod84] and independently by Alon and Milman

[AM85] and Alon [Alo86]. Since G is a d-regular graph we know d = λ1 ≥ λ2 ≥ ... ≥ λn ≥ −d.

(d−λ2) is referred to as the ‘spectral gap’ for G. Spectral gap provides an estimate on the edge

exapansion of G as stated in the above theorem. More the spectral gap, more the expansion.

2.5.2 Explicit construction of degree three expanders

Let G be a connected d-regular undirected graph with n vertices. Let AG be the adjacency

matrix of G and let λ1 ≥ λ2 ≥ ... ≥ λn be the n eigenvalues of AG. Since G is a d-regular graph

we know d = λ1 ≥ λ2 ≥ ... ≥ λn ≥ −d. We define λ(G) as follows:

λ(G) = max|λi|<d |λi|

Definition 2.5.3 (Explicit Expander Graph Family) Let G = {G1, G2, ..., Gi, ...} be a fam-

ily of d-regular expander graphs such that the number of vertices in Gi: ni, is bounded by a

polynomial in i. G is

• Mildly Explicit if there exists an algorithm that takes input i ∈ N constructs Gi in time

polynomial in the size of Gi.

• Strongly explicit if there exists an algorithm that takes input i ∈ N, j ∈ {1, ..., ni} and k ∈
{1, ..., d} and outputs the kth neighbour of the jth vertex in graph Gi in time polynomial

in (log i+ log ni + log d) (size of the input).

In this work we use mildly explicit 3-regular expander graphs. We prove two similar but equally

important lower bounds in section 4.2. In both lower bounds we start with a 3-regular expander

graph and reduce it to a polynomial that can be computed by a small multilinear depth three

circuit but every ROABP computing it requires exponential width. [HLW06] mentions an

explicit construction of ‘a family of 3-regular p-vertex graphs’ for every prime p. The vertices

of the graph correspond to elements in Zp. Each vertex x in this graph is connected to x + 1,

x − 1 and to its inverse x−1 (operations are mod p and inverse of 0 is defined as 0). The

16



Figure 2.1: Degree three expander graph corresponding to Z5

expander graph corresponding to Z5 is shown in fig. 2.1. If G is a graph constructed as above it

can be shown that λ(G) < 1− 1
104

. For the proof we refer the readers to [HLW06], section 11.1.2.

From theorem 2.5.1 we know that if G is a 3-regular exapnder graph with λ(G) < 1− 1
104

, then

h(G) >
2+ 1

104

2
.

2.5.3 Double Cover

In the reductions stated in section 4.2, we work with a bipartite 3-regular expander graph. We

do this by taking the double cover of the explicit 3-regular expander graph mentioned in the

previous section.

Definition 2.5.4 (Double Cover) The double cover of a graph G = (V,E) is the bipartite

graph H = (L∪R,EH) where L = R = V and there are edges between uL ∈ L and vR ∈ R, and

uR ∈ R and vL ∈ L iff there is an edge between u ∈ V and v ∈ V .

We will illustrate double cover of a graph with an example. Let the given graph G = (V,E)

be as given in fig. 2.2. G is a 3-regular graph. The double cover of G is shown in fig. 2.3. As we

can see H: the double cover of G, is bipartite and 3-regular. In claim 2.5.1 we show that if a

d-regular graph G has a large spectral gap then the double cover of G also has a large spectral

gap.

Claim 2.5.1 For a given d-regular graph G = (V,E) if λ(G) is less than t then for the double

cover H of G, λ(H) is less than t.

17



Figure 2.2: 3-regular graph G

Figure 2.3: Bipartite double cover of the graph in fig. 2.2

18



Proof: Let G = (V,E) be the given d-regular graph with |V | = n and H = (VH , EH) be its

double cover, thus |VH | = 2n. From the construction of double cover it is clear that H is a

d-regular bipartite graph. Let AG be the adjacency matrix of G and λ1 ≥ λ2 ≥ ... ≥ λn be the

n eigenvalues of AG. Since G is a d-regular graph we know λ1 = d. Given that, λ(G) < t. It

is easy to see that if λ is an eigenvalue of G then λ and −λ are eigenvalues of H. This implies

λ(H) < t. 2

From claim 2.5.1 we know the double cover H of a graph G constructed as stated in subsec-

tion 2.5.2 has λ(H) < 1 − 1
104

. Hence h(H) >
2+ 1

104

2
. We will use the following lemma about

bipartite graphs in section 4.2 to reduce an expander graph to the required polynomial.

Lemma 2.5.1 A 3-regular bipartite graph can be split into 3 edge disjoint perfect matchings.

Lemma 2.5.1 follows directly from Hall’s marriage theorem [Hal35].

19



Chapter 3

Superposition of set-multilinear depth

3 circuits

We study the model ‘superposition of set-multilinear depth three circuits’ in this chapter.

Definition 3.0.5 (Superposition of Set-Multilinear Depth Three Circuits) A multilin-

ear depth 3 circuit C is a superposition of t set-multilinear depth three circuits over disjoint sets

of variables X1, X2, ..., Xt if for every i ∈ [t], C is a set-multilinear depth three circuit in Xi vari-

ables over the field F(X1, .., Xi−1, Xi+1, .., Xt). X1, ..., Xt are called the base sets of C. Further,

we assume that Xi has singleton colors for every i ∈ [t].

Here is an example of a depth 3 multilinear circuit that is a superposition of two set-multilinear

depth 3 circuits C in the base sets X, Y with colors {x1} and {x2} for X and {y1} and {y2} for

Y .

C(X, Y ) = (1 + 3x1 + 5y2)(4 + x2 + y1)

+(6 + 9x1 + 4y1)(2 + 5x2 + 3y2)

Naturally a multilinear depth 3 circuit C over X variables can be trivially viewed as a super-

position of n set-multilinear depth three circuits with each variable corresponding to a distinct

base set. Before we give results for this model we define support of a monomial.

Definition 3.0.6 (Support of a monomial) The support of monomial η = xa11 x
a2
2 ...x

an
n de-

noted as supp(η) is the number of variables xi such that the degree corresponding to it, i.e ai

is non zero.

We give results for the superposition of set-multilinear depth three circuit model below.

20



3.1 Whitebox PIT for superposition of two set-multilinear

depth three circuits

[ASS12] gave a quasi-polynomial time hitting set for set-multilinear depth three circuits. Below

we briefly explain the shift and rank concentration technique used by [ASS12] to give a quasi-

polynomial time hitting set for set-multilinear depth three circuits.

Shift and Rank Concentration: We wish to check whether a polynomial computed by

a set-multilinear depth three circuit is identically zero or not. Suppose the given polynomial is

C =
k∑
i=1

d∏
j=1

lij(Xj)

in X variables, where X is the disjoint union of X1, X2, ..., Xd, Xj = {x1j, x2j, ..., xnj} and lij’s

are linear polynomials in variables Xj. We view the polynomial C as a k component vector

where the ith component is the polynomial computed by the ith product gate. A dot product

with the all ones vector (1), would give us the polynomial C. In shift and rank concentration, we

shift each variable xij to xij = xij+tij, where tij’s are formal variables. Let Tj = {t1j, t2j, ..., tnj},
T = T1 ] T2 ] ... ] Td, S ⊆ X, XS =

∏
xij∈S xij and ZXS be the coefficient vector over F(T )

corresponding to the monomial XS . We use a map τ : tij → tωij such that

spF(t){ZXj |supp(Xj) ≤ dlog ke} = spF(t){ZXj}

where spF(t){ZXj} denotes the the span of the coefficient vectors over F(t) corresponding to the

different monomials in the shifted monomial. [KS01],[ASS12] show that it is sufficient to try

nO(log k) many maps to find the desired one such that the ωij’s are bounded by a polynomial in

n2, the number of variables. After such a shift using the desired map, the polynomial C is non

zero if and only if there a exists a monomial in the shifted polynomial with, support less than

or equal to dlog ke and has a non zero coefficient over F(t). Thus we can check whether the

shifted polynomial has a monomial with support less than or equal to dlog ke, by projecting

over all possible choices of dlog ke variables and test if the shifted polynomial is non zero using

[KS01] in nO(log k) time.

Lemma 3.1.1 shows that in case of superposition of t set-multilinear depth three circuits if

we know the base sets a priori then a quasi-polynomial time hitting set can be readily con-

21



structed using [ASS12]. However this would not be a complete PIT algorithm as in a real

setting we would not have the knowledge of the base sets to begin with.

Lemma 3.1.1 Given a circuit C which has top fan-in k and is a superposition of t set-

multilinear depth three circuits C1,C2,...,Ct on base sets X1, X2, ..., Xt. With the knowledge

of base sets we can find a hitting set for C in tnO(t log k) time.

Proof: We shift variables xij to xij + r
ωij
i , where each ri is a formal variable and ωij’s belong

to N (the values of ωij’s would be fixed later). Observe that we are shifting variables in different

base set by powers of different variables whereas the variables in the same base set, say Xi,

are shifted by powers of the same variable ri. We can do this because we have the knowledge

of base sets. We view the polynomial C as a set-multilinear depth three polynomial in X1

variables over F(X2, ..., Xt). Since [ASS12] make no assumptions on the underlying field we can

initially shift only the variables in X1 (just for analysis), i.e x1j = x1j + r
ω1j

1 where the ω′1js

(as explained in ‘Shift and Rank Concentration’) are chosen such that, the input polynomial

is non zero if and only if a monomial with support less than l = dlog k + 1e (also known as

low support monomial) in X1 variables has non zero coefficient over the field F(r1, X2, ..., Xt).

Any coefficient polynomial over F(r1, X2, ..., Xt), corresponding to a monomial in X1 variables

is again a superposition of (t − 1) set-multilinear depth three circuits on base sets X2, ..., Xt

over F(r1). Hence we repeat the same process on the coefficient polynomial of the low support

monomial in X1 variables. We shift the X2 variables, i.e x2j = r
ω2j

2 and ensure that the input

polynomial is non zero if and only if a low support monomial in X2 variables has non zero

coefficient over the field F(r1, r2, X3, ..., Xt). We keep repeating the same process for each

of the base sets. Eventually we would have that, the polynomial is non zero if and only if

there exists a monomial with support less than tl in the shifted polynomial that has non zero

coefficient over F(r1, r2, ..., rt) . We can check whether a monomial with support less than tl

has a non zero coefficient over F(r1, r2, ..., rt) in tnO(t log k) time by by projecting over all possible

choices of l variables and test if the shifted polynomial is non zero . 2

Consider circuit C which is a superposition of 2 set-multilinear circuits C1 and C2 defined over

base sets X and Y respectively. The following lemma shows that we can find two base sets

with singleton colors (not necessarily X and Y ) such that restricted to any of the base sets,

C is set-multilinear. Restricting a polynomial F (X) to a set of of variables X1 ⊆ X implies

substituting all the variables in X \X1 to 0.

Lemma 3.1.2 Given a circuit C which is a superposition of 2 set-multilinear circuits C1 and

C2 on base sets X and Y , we can find 2 base sets X
′

and Y
′

with singleton colors in polynomial

22



time such that restricted to any of the base sets X
′

or Y
′
, C is a set-multilinear depth three

circuit.

Proof: We construct a graph G with vertices as variables. We add an edge between 2 variables

x1 and y1 if they appear in the same linear polynomial in any of the product gates. Since the

given circuit C is a superposition of two set-multilinear circuits, the graph G is a bipartite

graph with all the edges between the variables in the set X and the variables in the set Y. We

color the vertices of G such that, if (xi, yj) is an edge then xi and yj have different colors. Since

G is bipartite we can color G greedily using two colors, say red and yellow in O(n) time, where

n = |X|+ |Y |. All the vertices colored red form the base set X
′

and those colored yellow form

the base set Y
′
. From the way we color the graph G it is easy to see that, circuit C when

restricted X
′

or Y
′

is a set-multilinear circuit. 2

Once we have the knowledge of the base sets we can use lemma 3.1.1 to give us a hitting set

for C in quasi-polynomial time. The algorithm is clearly whitebox since to find the base sets

we look at the linear polynomials on the incoming edges to layer 2 product gates of circuit C.

We state the result formally in the next theorem.

Theorem 3.1.1 Given a circuit C which is a superposition of 2 set-multilinear circuits C1 and

C2 on unknown base sets X and Y respectively, we can perform whitebox PIT for C in nO(logn)

time where n = |X|+ |Y |.

3.2 NP-hardness and approximation algorithm

We know that the problem of deciding whether a given graph G is t colorable is NP-Complete

when t > 2. A proof of the case when t = 3 is shown in [? ]. We reduce this problem to our

problem of finding the base sets in C where C is a superposition of t set-multilinear circuits,

where t > 2.

Theorem 3.2.1 Given a circuit C which is a superposition of t set-multilinear circuits C1,C2,...,Ct

on unknown base sets X1, X2, ..., Xt respectively, finding t base sets X
′
1, X

′
2, ..., X

′
t such that C is

a superposition of t set-multilinear circuits C
′
1,C

′
2, ...,C

′
t respectively on base sets X

′
1, X

′
2, ..., X

′
t

respectively is NP-Hard when t > 2.

Proof: We will reduce the t-coloring problem to this problem. Let us suppose we are given

a graph G(V,E). From G we construct a circuit C which is a superposition of t base sets with

singleton colors if and only if G is t colorable. Let V={u1, ..., un}. We add a product gate p

in C consisting of the product of n variables (u1)...(un). If there exists an edge between two

23



vertices u1 and u2 in G then we add a product gate pu1,u2 in C having a single linear polynomial

(u1 + u2).

Claim 3.2.1 Circuit C constructed using the above reduction is a superposition of t set-multilinear

depth three circuits if and only if graph G is t colorable.

Proof: If G is t colorable then it is easy to see that C is a superposition of t set-multilinear

depth three circuits. The t partitions of G correspond to t base sets in C. In the reverse

direction, say C is a superposition of t set-multilinear depth three circuits. This implies C has

t base sets. We claim these t base sets correspond to t partitions of G. Say two variables ui

and uj belong to the same base set, then it implies ui and uj don’t appear in the same linear

polynomial. But this implies there is no edge between ui and uj in G else there would have

been a product gate pui,uj having a single linear polynomial (u1 + u2) in C. 2

We know deciding whether a given graph G is t colorable is NP-Complete for t > 2. Hence

from claim 3.2.1, theorem 3.2.1 follows. 2

Although it is provably hard to find the base sets in polynomial time in C where C is a

superposition of t base sets when t > 2, we can find n1− 3
t+1 base sets using [KMS98], such that

restricted to any of the base sets C is a set-multilinear circuit. This immediately gives us a

sub-exponential whitebox PIT when t is a constant. We state this formally in the next theorem.

Theorem 3.2.2 Given a circuit C which is a superposition of t set-multilinear circuits C1,C2,...,Ct

on unknown base sets X1, X2, ..., Xt, we can perform whitebox PIT for C in exp(O(n1− 3
t+1 .poly(log n)+

log t)) time.

Proof: We draw a t partite graph G where the vertices are the variables from the circuit C.

We draw an edge between two variables if they appear in the same linear polynomial in any

of the product gates. It is easy to see that, if C is a superposition of t set-multilinear circuits,

then the resulting graph G is t partite, the t base sets in C would correspond to the t partitions

of vertices in G. Now we use a simple greedy algorithm given in [KMS98] to color a t colorable

graph with less than n1− 3
t+1 colors, where n is the number of vertices in the graph G. This would

essentially give us n1− 3
t+1 base sets such that restricted to any one of them C is a set-multilinear

circuit. Using lemma 3.1.1 we get a whitebox PIT for C in exp(O(n1− 3
t+1 .poly(log n) + log t))

time. 2

24



3.3 Hitting sets for superposition of set-multilinear depth

three circuits

In this section we use shift and rank concentration technique used in [ASS12] to give a quasi-

polynomial time hitting set for a restricted class of superposition of set-multilinear depth three

circuits. The model we consider is a multilinear depth 3 circuit that is both a superposition

of m set-multilinear depth three circuits and simultaneously a sum of k set-multilinear depth

three circuits, where m and k are constants. Consider for example the following polynomial

C(X, Y, Z) = (1 + 3x1 + 5y2 + 4z1)(4 + x2 + y1 + 6z2) + (9 + 6x1 + 4y2 + z1)(3 + 2x2 + 5y1 + 3z2)

+(6 + 9x1 + 4y1 + z2)(2 + 5x2 + 3y2 + 2z1) + (3 + 6x1 + 9y1 + 5z2)(5 + 8x2 + 2y2 + 8z1)

C(X, Y, Z) is a superposition of three set-multilinear depth three circuits with base sets X =

{x1} ∪ {x2}, Y = {y1} ∪ {y2} and Z = {z1} ∪ {z2}. But C(X, Y, Z) is also a sum of two

set-multlinear depth three circuits with {x1, y2, z1}, {x2, y1, z2} being the colors in the first

set-multilinear depth three circuit (corresponding to the first two products) and {x1, y1, z2},
{x2, y2, z1} being the colors in the second set-multilinear depth three circuit (corresponding to

the last two products). The motivation for studying this model comes from the lower bound

result in chapter 4. In chapter 4 we give an exponential lower bound for ROABP where the

hard polynomial is a polynomial of this kind; that is it is simultaneously a superposition of

constantly many set-multilinear depth three circuits as well as sum of constantly many set-

multilinear depth three circuits.We prove the following for this model.

Theorem 3.3.1 (Main Theorem) Given a circuit C which is a superposition of m set-

multilinear depth three circuits C1, C2, ..., Cm on base sets X1, X2, ..., Xm, where Xi = {xi1, xi2, ...,
xin}, and simultaneously a sum of k set-multilinear depth three circuits C

′
1, C

′
2, ..., C

′

k , we can

find a hitting set for C in time lkm(log l+1) ·nO(m log l) time, where l is the bound on the top fan-in

of circuit C.

[GKST15] recently gave a (wnd)k2k log(wnd) time hitting set for n variate polynomials computed

by sum of k ROABPs each of width less than w. Observe the doubly exponential dependence

on k in their result. On the contrary in theorem 3.3.1 the dependence is singly exponential in

k. Although it is important to note that the model considered in theorem 3.3.1 is weaker than

the sum of ROABPs model. Sum of k set-multilinear depth three circuits reduces to sum of k

ROABPS. Moreover our model is a superposition of m set-multilinear depth three circuits and

simultaneously a sum of k set-multilinear depth three circuits. We will now prove theorem 3.3.1.

25



Proof: Let X = {X1 ∪ ... ∪Xm}. Hence we can represent C as follows.

C(X1, X2, ..., Xm) =
l∑

i=1

n∏
j=1

(αij + zi11x11 + zi2σi2(j)x2σi2(j) + ...+ zimσim(j)xmσim(j))

where for all i ∈ [l] and q ∈ {2, ...,m}, σiq represents the permutation function [n]→ [n] corre-

sponding to the ith product gate and qth base set. Without loss of generality we can assume

identity permutation corresponds to the first base set X1 in all the product gates. Now C is

also a sum of k set-multilinear circuits C ′1, ..., C
′
k. Observe that the permutations with respect

to a base set corresponding to a particular set-multilinear circuit say, C
′
p are identical, i.e if

i1 and i2 are two product gates corresponding to the same set-multilinear circuit C
′
p then for

all b ∈ [m] σi1b and σi2b are identical. Thus we have just km many distinct permutation each

corresponding to a combination of a base set and a set-multilinear circuit.

Proof Outline: Let Ti = {ti1, ti2, ..., tin}, we have m such sets T1, T2, ..., Tm. Let T =

{T1 ∪ ... ∪ Tm}. We shift a variable xij to (xij + tij). For now consider each of the tij variables

as formal variables, finally we will substitute tij = tωij , where t is a fresh variable and wij is an

appropriate small constant. We analyze the shift in m steps. In the ith step we analyze the

shift of the Xi variables and show that there exists a monomial in X1 ∪X2 ∪ ... ∪Xi variables

of support less than i log l, where l is the top fan-in of circuit C, that has a non-zero coefficient

polynomial over F(T1 ∪ ...∪ Ti ∪Xi+1 ∪ ...∪Xm). Finally after substituting every tij to tωij we

show that there exists a monomial of support less than m log l that has a non-zero coefficient

over the field F(t). This would imply the original polynomial C is non-zero if and only if there

exists a monomial in the shifted polynomial of support less than m log l that has a non-zero

coefficient over the field F(t) . Once we show this, finding a hitting set is easy: project over all

possible choices of (m log l) variables and test if the shifted polynomial is non-zero over F(t])

using sparse PIT [KS01]. We stress again that the algorithm shifts all variables simultaneously,

only the analysis proceeds in steps.

We will explain step 1 and then generalize the argument to the rth step.

Step 1: We view C as a polynomial in X1 variables with coefficients over F(X2∪X3∪ ...∪Xm).

Thus C is a set-multilinear depth three circuit in X1 variables. In step 1 we consider shifts of

only the variables in base set X1, i.e we shift x1j to x1j + t1j. Since C is a set-multilinear depth

three circuit in X1 variables, from [ASS12] we know that, C is non-zero if and only if there

exists a low support monomial in X1 variables (support less than log l) that has a non-zero

26



coefficient polynomial over F(T1 ∪ X2 ∪ X3 ∪ ... ∪ Xm). Let x11...x1 log l be such a monomial.

We will call such monomials as non-zero monomials. The coefficient polynomial of the the

monomial x11...x1logl is as follows:

C2(X2, ..., Xm) =
l∑

i=1

n∏
j=log l+1

(1 + zi11(t1j) + zi2σi2(j)x2σi2(j) + ...+ zimσim(j)xmσim(j))

The coefficient polynomial is again both, a superposition of (m− 1) set-multilinear depth three

circuits on base sets X2, ..., Xm and sum of k set-multilinear depth three circuits over F(T1).

Hence in each step we shift the variables from a particular base set and obtain a coefficient

polynomial corresponding to a non-zero monomial (in the variables from the base set that have

already been shifted) that is both, a superposition of set-multilinear depth three circuits (but

on lesser number of base sets) and sum of k set-multilinear depth three circuits. Thus in the

(r− 1)th step we would have a monomial in X1 ∪X2...∪Xr−1 variables with support less than

(r − 1) log l that has a non-zero coefficient polynomial over F(T1 ∪ ... ∪ Tr−1 ∪Xr ∪ ... ∪Xm).

The coefficient polynomial we get in general would be as follows:

Cr(Xr, ..., Xm) =
l∑

i=1

n∏
j=1

(1 + zi11t1j + zi2σi2(j)t2σi2(j) + ...+ zi(r−1)σi(r−1)(j)t(r−1)σi(r−1)(j)

+zirσir(j)xrσir(j) + ...+ zimσim(j)xmσim(j))

Step r: In step r we analyze the non-zero coefficient polynomial of the low support monomial

in X1 ∪X2... ∪Xr−1 variables that we get from step (r − 1). These non-zero coefficient poly-

nomial is over F(T1 ∪ ... ∪ Tr−1 ∪Xr ∪ ... ∪Xm). We show that, after we shift the Xr variables

by Tr, there exists a monomial in Xr variables with support less than log l in Cr such that,

it has a non-zero coefficient polynomial over F(T1 ∪ ... ∪ Tr ∪ Xr+1 ∪ ... ∪ Xm). This would

imply after the rth step we have a monomial in X1 ∪ X2 ∪ ... ∪ Xr variables of support less

than r log l in C, that has a non-zero coefficient polynomial over F(T1∪ ...∪Tr∪Xr+1∪ ...∪Xm).

We rewrite the non-zero coefficient polynomial that we get from step (r− 1), such that, we can

associate the identity permutation with the base set Xr.

Cr(Xr, ..., Xm) =
l∑

i=1

n∏
j=1

(1 + zi1πi1(j)t1πi1(j) + zi2πi2(j)t2πi2(j) + ...+ zi(r−1)πi(r−1)(j)t(r−1)πi(r−1)(j)

+zirjxrj + ...+ zimπim(j)xmπim(j))

27



Here again πij represents the permutation function [n]→ [n] corresponding to the ith product

gate and jth base set. We view Cr(Xr, ..., Xm) as a polynomial in Xr variables over F[Xr+1 ∪
... ∪Xm ∪ T1 ∪ ... ∪ Tr−1]. For J ⊆ [n], XrJ =

∏
j∈J xrj. We view the coefficient of a monomial

XrJ as a l component vector ZXrJ , where the ith component is the coefficient of the monomial

in the ith product gate which is equal to∏
j∈J

zirj
∏

j∈[n]\J

(1 + zi1πi1(j)t1πi1(j) + ...+ zi(r−1)πi(r−1)(j)t(r−1)πi(r−1)(j)

+zi(r+1)πi(r+1)(j)x(r+1)πi3(j) + ...+ zimπim(j)xmπim(j))

Pick a monomial whose support is exactly log l + 1. Say we pick XrJ , corresponding to J =

[log l + 1]. We consider the monomial XrJ and all its subset monomials XrJ ′ corresponding to

J
′ ⊆ J , there are exactly 2log l+1 > l many such monomials. Hence we have a linear dependency

among the coefficient polynomials of these monomials, i.e∑
J⊆[log l+1]

bJZXrJ = 0

where ∀ J ⊆ [log l + 1], bJ ∈ F[Xr+1 ∪ ... ∪Xm ∪ T1 ∪ ... ∪ Tr−1] and ∃ J ⊆ [log l] such that

bJ 6= 0. Now we shift the variables in Xr, i.e we shift xrj = xrj + trj. Thus we have

C
′

r(Xr, ..., Xm) =
l∑

i=1

n∏
j=1

(1 + zi1πi1(j)t1πi1(j) + zi2πi2(j)t2πi2(j) + ...+ zi(r−1)πi(r−1)(j)t(r−1)πi(r−1)(j)

+zirj(xrj + trj) + ...+ zimπim(j)xmπim(j))

For i ∈ [l] and j ∈ [n] we let

ρij = (zi1πi1(j)t1πi1(j) + zi2πi2(j)t2πi2(j) + ...+ zi(r−1)πi(r−1)(j)t(r−1)πi(r−1)(j)

+zi(r+1)πi(r+1)(j)x(r+1)πi(r+1)(j) + ...+ zmπim(j)xmπim(j))

Hence we have

C
′

r(Xr, ..., Xm) =
l∑

i=1

n∏
j=1

(1 + ρij + zrj(xrj + trj))

C
′

r(Xr, ..., Xm) =
l∑

i=1

(
n∏
j=1

(1 + ρij + zirjtrj))(
n∏
j=1

(1 +
zirjx2j

1 + ρij + zirjtrj
))

28



Let

Dr(Xr, ..., Xm, T1, .., Tr) =
l∑

i=1

n∏
j=1

z
′

irjxrj

where

z
′

irj =
zirj

1 + ρij + zirjtrj

⇒ zirj =
z
′
i2j(1 + ρij)

1− z′irjtrj

First observe that Cr(Xr, ..., Xm) is non-zero if and only if C
′
r(Xr, ..., Xm) is non-zero. Recall we

intend to show that C
′
r(Xr, ..., Xm) is non-zero if and only if there exists a low support monomial

ofXr variables that has a non-zero coefficient polynomial over F(T1∪...∪Tr∪Xr+1∪Xr+2∪...Xm).

To show this it is sufficient to show, Dr(Xr, ..., Xm, T1, ..., Tr) has a low support monomial of Xr

variables that has a non-zero coefficient polynomial over F(T1 ∪ ...∪ Tr ∪Xr+1 ∪Xr+2 ∪ ...Xm).

We view the coefficient of a monomial XrJ in Dr, where J ⊆ [n], as a l component vector Z
′
XrJ

,

where the ith component is the coefficient of the monomial in the ith product gate which is

equal to
∏

j∈J z
′
rj. Let P = T1 ∪ ...∪ Tr ∪Xr+1 ∪Xr+2 ∪ ...Xm. We show the following for these

set of coefficient vectors,

spanF(P ){Z
′

XrJ
|J ⊆ [n]} = spanF(P ){Z

′

X2J
|J ⊆ [n], supp(X2J) < l}

This would imply Cr(Xr, ..., Xm) is non-zero if and only if Dr(Xr, ..., Xm, T1, ..., Tr) has a low

support monomial of Xr variables that has a non-zero coefficient polynomial over F(P ). Recall∑
J⊆[log l+1]

bJZXrJ = 0

We write the equation for the ith component of coefficient vectors∑
J⊆[log l+1]

bJ
∏
j∈J

zirj
∏

j∈[n]\J

(1 + ρij) = 0

⇒
∑

J⊆[log l+1]

bJ
∏
j∈J

zirj
∏

j∈[l]\J

(1 + ρij) = 0

⇒
∑

J⊆[log l+1]

bJ
∏
j∈J

z
′
irj(1 + ρij)

1− z′irjtirj

∏
j∈[l]\J

(1 + ρij) = 0

29



Since
∏

j∈[log l+1](1 + ρij) 6= 0 we have

∑
J⊆[log l+1]

bJ
∏
j∈J

z
′
irj

1− z′irjtirj
= 0

Multiplying both sides by
∏

j∈[log l+1](1− z
′
irjtirj)∑

J⊆[log l+1]

bJ
∏
j∈J

z
′

irj

∏
j∈[log l+1]\J

(1− z′irjtirj) = 0

Since this is true for all the l components of coefficient vectors we have∑
J⊆[log l+1]

bJZ
′

rJ

∏
j∈[log l+1]\J

(1− Z ′rjtrj) = 0

(
∑

J⊆[log l+1]

bJ(−1)l−|J |
∏

j∈[l]\J

trj)︸ ︷︷ ︸
g[log l+1](T1,T2,...,Tr,Xr+1,...,Xm)

Z
′

r[log l+1] +
∑

J⊂[log l+1]

gJ(T1, T2, ..., Tr, Xr+1, ..., Xm)Z
′

rJ = 0

Since ∀ J ⊆ [log l+1], bJ ∈ F(T1∪ ...∪Tr−1∪Xr+1∪ ...∪Xn), g[log l+1][T1, T2, ..., Tr, Xr+1, ..., Xm]

is non-zero, Z
′

r[log l+1] is F(T1, T2, ..., Tr, Xr+1, ..., Xm) linearly dependent on vectors Z
′

rJ ′
where

J
′ ⊂ [log l + 1]. The set [log l + 1] is just a representative case. By the same argument we

have that Z
′
rJ , where J ⊆ [n] and |J | = log l+ 1 is F(T1, T2, ..., Tr, Xr+1, ..., Xm) linearly depen-

dent on vectors Z
′

rJ ′
where J

′ ⊂ J . Also every J ⊆ [n], Z
′
rJ can be inductively expressed as

F(T1∪T2∪ ...∪Tr∪Xr+1, ..., Xm) linear combinations of Z
′

rJ ′
, where J

′ ⊆ [n] and |J ′| < log l+1.

This would imply after the rth step if C(X1, X2, ..., Xm) computes a non-zero polynomial then

we have a monomial in X1 ∪ ... ∪Xr variables with support less than r(log l + 1) such that it

has a non-zero coefficient polynomial over F(T1∪ ...∪Tr ∪Xr+1∪ ...∪Xn). Hence after m steps

there exists a monomial in X1∪ ...∪Xm variables with support less than m(log l+ 1), such that

it has a non-zero coefficient polynomial over F(T1 ∪ ... ∪ Tm).

Now we apply a map ψ that maps tij to tωij , where for all i ∈ [m] and j ∈ [n], ωij ∈ N
such that ωij’s are bounded by a polynomial in (mn: the number of variables) and the non-zero

coefficient polynomial over F(T1 ∪ ... ∪ Tm) corresponding to the monomial in X1 ∪ ... ∪ Xm

variables with support less than m(log l+ 1), continues to be non-zero over F(t) after we apply

this map. We claim that we can find such a map in time lkm(log l+1) · nO(m log l). To show this we

30



look at the structure of g[log l+1](T1, T2, ..., Tr, Xr+1, ..., Xm) in the above argument. We claim

the following:

Claim 3.3.1 The number of distinct variables from {T1 ∪ T2 ∪ ... ∪ Tr−1} in

g[log l+1](T1, T2, ..., Tr, Xr+1, ..., Xm) is at most (r − 1)k(log l + 1).

Proof:

g[log l+1](T1, T2, ..., Tr, Xr+1, ..., Xm) =
∑

J⊆[log l+1]

bJ(−1)l−|J |
∏

j∈[log l+1]\J

trj

Observe that variables from the set {T1 ∪ T2 ∪ ... ∪ Tr−1} only appear in the bJ ’s. We know∑
J⊆[log l+1]

bJZXrJ = 0

bJ ’s don’t contain variables from the set Tr. We study bJ ’s using Cramer’s rule [? ]. Let

J
′ ⊆ [log l+1], using Cramer’s rule we can express bJ ′ as a ratio of two determinants, each over

F(T1 ∪ T2 ∪ ... ∪ Tr−1 ∪Xr+1 ∪ ... ∪Xm) and of dimension at maximum l × l. Let V ar(bJ ′ ) be

the set of variables from {T1 ∪ T2 ∪ ... ∪ Tr−1} appearing in bJ ′ . Let the coefficient vector ZrJ

of monomial xrJ where J ⊆ [log l + 1], be one of the column vectors in both the determinants.

The coefficient of monomial xrJ where J ⊆ [log l + 1], in any product gate j ∈ [l] has exactly

(r− 1)(n− |J |) variables from {T1 ∪ T2 ∪ ...∪ Tr−1}. These variables correspond to the (r− 1)

variables from {T1 ∪ T2 ∪ ... ∪ Tr−1} that appear along with xri where i ∈ [n] \ J , in the same

linear factor in product gate j. Recall for i ∈ [l] and j ∈ [n] we let

ρij = (zi1πi1(j)t1πi1(j) + zi2πi2(j)t2πi2(j) + ...+ zi(r−1)πi(r−1)(j)t(r−1)πi(r−1)(j)

+zi(r+1)πi(r+1)(j)x(r+1)πi(r+1)(j) + ...+ zmπim(j)xmπim(j))

ρij contains the (r − 1) variables from {T1 ∪ T2 ∪ ... ∪ Tr−1} that appear along with xri where

i ∈ [n]\J , in the same linear factor in product gate j. Among these only (r− 1)(log l+ 1−|J |)
variables from {T1 ∪ T2 ∪ ...∪ Tr−1} that appear in ρij where i ∈ [log l+ 1] \ J might eventually

appear in V ar(bJ ′ ), the rest get cancelled. The product gates corresponding to a single set-

multilinear circuit in Cr would have the same variables from {T1∪T2∪...∪Tr−1} in the coefficient

of monomial xrJ , since these product gates have the same permutation function. There are k

set-multilinear circuits, hence the number of variables from {T1∪T2∪...∪Tr−1} in the coefficient

vector ZrJ is at most k(r − 1)(log l + 1). Since all the monomials we consider are subsets of∏log l+1
i=1 xri the total number of variables in both the determinants used to express bJ ′ is at most

31



k(r−1)(log l+1). This implies |V ar(bJ ′ )| ≤ k(r−1)(log l+1). Let J
′′

= φ, then ∀J ⊆ [log l+1],

V ar(bJ) ⊆ V ar(bJ ′′ ). Hence

| ∪J⊆[log l+1] V ar(bJ)| ≤ k(r − 1)(log l + 1)

. 2

Let J ⊆ [log l + 1], from claim 3.3.1 we know that every monomial in bJ has at most k(r −
1)(log l+1) variables from {T1∪T2∪ ...∪Tr−1}. The degree of each of these variables is at most

l in a monomial. Now every monomial in bJ is multiplied with a monomial in Tr with support

less than (log l+ 1). The variables in the monomial in Tr are a subset of {tr1, ..., tlog l+1}. Hence

the total number of variables in g[log l+1](T1, T2, ..., Tr, Xr+1, ..., Xm) from {T1 ∪ T2 ∪ ... ∪ Tr} is

at most kr(log l + 1). Thus any monomial in g[log l+1](T1, T2, ..., Tr, Xr+1, ..., Xm) has at most

kr(log l + 1) variables from {T1 ∪ T2 ∪ ... ∪ Tr} with degree of each of these variables being at

most l. This is even true at step m. Let g[log l+1][T1, T2, ..., Tm] correspond to Z
′

m[log l+1] as in the

above argument, then any monomial in g[log l+1](T1, T2, ..., Tm) has at most km(log l+1) distinct

variables with degree of each of these variables being at most l. There are at most lkm(log l+1)

such monomials. Hence the non-zeroness of g[log l+1](T1, T2, ..., Tm) is maintained by a univariate

transformation ψ : tij → tωij that maps these lkm(log l+1) many monomials to distinct weights.

We construct the map ψ in time lO(km(log l+1)), using well known sparse PIT methods [KS01].

As states previously the set [log l + 1] is just a representative case. By the same argument we

have that Z
′
mJ , where J ⊆ [n] and |J | = log l + 1 is F(t) linearly dependent on vectors Z

′

mJ ′

where J
′ ⊂ J . Also every J ⊆ [n], Z

′
mJ can be inductively expressed as F(t) linear combina-

tions of Z
′

mJ ′
, where J

′ ⊆ [n] and |J ′ | < log l + 1. This implies even after applying ψ we have

a monomial in X1 ∪ ... ∪ Xr variables with support less than m(log l + 1) such that it has a

non-zero coefficient polynomial over F(t).

Once we know that there exists a monomial with support less than m(log l + 1) in the shifted

polynomial C(X +T ) iff C(X) is non-zero, finding a hitting set is elementary. We project over

all possible choices of m log l variables and test if C(X + T ) is non-zero using [KS01]. This can

be done in nO(m log l) time. Hence we can find a hitting set for C in lkm(log l+1) · nO(m log l) time.

If l is bounded by a polynomial in n then we can find a hitting set in nO(m logn(k+1)) time. 2

32



Chapter 4

Lower bounds for ROABP’s against

multilinear depth 3 circuits

In this chapter we first show in section 4.1 that, any multilinear depth 3 circuit having two

product gates and at most two variables in every linear factor in each product gate, can be

computed by a polynomial sized ROABP. Further we show that if we either increase the number

of product gates or the number of variables in every linear factor in each product gate, in the

multilinear depth 3 circuit model to three then there exists a multilinear polynomial computed

by such a model of polynomial size which requires exponential width ROABP to compute it.

4.1 Constructing a polynomial sized ROABP

Say we have a multilinear polynomial F (X) which can be computed by a multilinear depth 3

circuit with top fan-in 2 and the linear polynomials computed by ‘sum’ gates at level 3 from

the top, has at most 2 variables. Let σ : [n]→ [n] be a permutation function. Then F (X) can

be expressed as

F (X) =
∏

i=1;i mod 2=1

(1 + xi + xi+1) +
∏

i=1;i mod 2=1

(1 + xσ(i) + xσ(i+1))

We have assumed that the coefficients of the variables x′is are 1 and the constant term in every

linear polynomial is also 1. This is without any loss of generality and our argument holds even

otherwise.. We will show that F (X) can be computed by a polynomial sized ROABP with

constant width.

Proof Outline: First we show that F (X) can be expressed as sum of two, width two ROABP’s.

33



The two ROABPs correspond to the two product gates. Without loss of generality assume the

first ROABP computes the polynomial computed by the first product gate i.e
∏

i=1;imod 2=1(1+

xi + xi+1) and the second ROABP computes the polynomial computed by the second prod-

uct gate, i.e
∏

i=1;imod 2=1(1 + xσ(i) + xσ(i+1)). The variable ordering in the first ROABP is

{x1, x2, ..., xn}. The variable ordering in the second ROABP is ‘σ’ permutation of the variable

ordering in the first ROABP, i.e if xj is in jth position of the variable ordering in first ROABP,

then xσ(j) is in the jth position of the variable ordering in second ROABP . We then express

both the ROABPs in the same variable ordering - which is possible because F (X) has only two

product gates and two variables in every linear polynomial. We show that in this process the

width of the first ROABP remains same whereas the width of the second ROABP increases

only by a constant. Now we join both the ROABP’s (since the variable ordering is same) to

give a single ROABP computing F (X).

We will call
∏

i=1; i mod 2=1(1 + xi + xi+1) as P1 and
∏

i=1; i mod 2=1(1 + xσ(i) + xσ(i+1)) as P2.

Each linear polynomial l = (1 + xj + xk) in Pi where i ∈ [2] and xj, xk ∈ X can be expressed

as a product of two matrices:[
1 + xj 1

0 0

][
1 0

xk 0

]
=

[
1 + xj + xk 0

0 0

]

The product of two linear polynomials l1 = (1 + xj1 + xk1) and l2 = (1 + xj2 + xk2) in Pi can be

computed as the product of four matrices as follows:[
1 + xj1 1

0 0

][
1 0

xk1 0

][
1 + xj2 1

0 0

][
1 0

xk2 0

]

Hence it is easy to see P1 can be expressed by an ROABP with the variable ordering (x1, ..., xn)

and P2 can be expressed by an ROABP with the variable ordering (xσ(1), ..., xσ(n)). There are

two important observations to be noted here:

1. The linear polynomials in P1 and P2 can commute and hence even P1 could be expressed

by ROABPs in different variable orderings for example (x3, x4, x1, x2, ..., xn) is also a valid

variable ordering for an ROABP computing P1. Thus the variable ordering depends on

the way the linear polynomials are ordered in P1.

2. The two variables in a particular linear polynomial in P1 or P2 can be exchanged because

l = (1 + xj + xk) in Pi where i ∈ [2] and xj, xk ∈ X can be expressed as a product of two

34



matrices, in two ways: [
1 + xj 1

0 0

][
1 0

xk 0

]
=

[
1 + xj + xk 0

0 0

]

and [
1 + xk 1

0 0

][
1 0

xj 0

]
=

[
1 + xj + xk 0

0 0

]
Hence even (x2, x1, x3, x4, ..., xn, xn−1) is also a valid variable ordering for an ROABP

computing P1.

This shows that F (X) can be expressed as sum of two ROABP’s. Our next step would be

to express the two ROABP’s in the same variable ordering. To do this we would partition

the linear polynomials in P1 and P2 into sets L11, L12, . . . , L1k and L21, L22, . . . , L2k such that

the set of variables appearing in the linear polynomials in L1t is equal to the set of variables

appearing in the linear polynomials in L2t, where t ∈ [k], and is completely disjoint from the

set of variables appearing in linear polynomials in Lmr where m ∈ [2] and r ∈ [k] \ t . We give

the partition procedure below and explain it with an example later.

Mark all the linear polynomials in P1 and P2 as unpicked. Initialize t = 1 and i = 1:

1. Pick an unpicked linear polynomial lp = (1 + xi + xi+1) in P1 and put it in L1t. Mark lp

as picked. Store the value i in temp: temp=i.

2. Let the linear polynomial in which the variable xi+1 appears in P2 be lq = (1 +xi+1 +xj).

Put lq in L2t and mark lq as picked.

3. If j is equal to temp then increment t and start from step 1.

4. Else set i = j and let the linear polynomial in which the variable xi appears in P1 be

lr = (1 + xi + xi+1). Put lr in L1t and mark lr as picked.

5. Repeat from step 2.

Since permutation can be written as a product of cycles it is easy to see why the set of variables

appearing in the linear polynomials in L1t is equal to the set of variables appearing in the linear

polynomials in L2t, where t ∈ [k], and is completely disjoint from the set of variables appearing

in linear polynomials in Lmr where m ∈ [2] and r ∈ [k] \ {t}. We will explain the partition

35



procedure with the following example. Let

C(X) = (1+x1+x2)(1+x3+x4)(1+x5+x6)(1+x7+x8)+(1+x3+x6)(1+x7+x1)(1+x4+x5)(1+x2+x8)

In step 1 we pick the linear polynomial (1 + x1 + x2) and put it in L11. In step two we pick

the linear polynomial in which x2 appears in P2, i.e (1 + x2 + x8) and put it in L21. Since x8

is not equal to x1 we move onto step 4. In step four we pick the linear polynomial in which x8

appears in P1, i.e (1 + x7 + x8) and put it in L11. Similarly we pick (1 + x7 + x1) from P2 and

put it in L22. Since x7 is paired with x1 in P2 we begin fresh from step 1 to construct L12 and

L22. Hence we get L11 = {(1 + x1 + x2), (1 + x7 + x8)}, L21 = {(1 + x2 + x8), (1 + x7 + x1)},
L12 = {(1 + x3 + x4), (1 + x5 + x6)} and L22 = {(1 + x4 + x5), (1 + x6 + x3)}.

We express the two ROABPs in same variable ordering in k parts. In each part we pick

the linear polynomials in L1t and L2t and order them such that they are in same variable order-

ing. Finally we combine these k parts to give a single ROABP of width 6. To order the linear

polynomials in L1t and L2t in the same variable ordering, we arrange the linear polynomials in

L1t and L2t one below the other, in the order they are picked during the partition process. In

the example we gave above, we would arrange for L11 and L21 as follows.[
a+ x1 1

0 0

][
1 0

x2 0

][
a+ x8 1

0 0

][
1 0

x7 0

]
[
a+ x2 1

0 0

][
1 0

x8 0

][
a+ x7 1

0 0

][
1 0

x1 0

]
Observe that we arrange in such a way that only the first variable in first linear polynomial of

L1t (which is also the last variable in the last linear polynomial of L2t) is not in the same order,

the other variables are in the same variable ordering. We show the corresponding directed

acyclic graph for these matrices when aligned as above in fig. 4.1. We have marked the input

and output nodes corresponding to L11 and L21 in fig. 4.1. We order the first variable in first

linear polynomial of L1t by breaking the second ROABP in two parts as shown in fig. 4.2. The

first part computes the polynomial in which x1 does not appear and the second part brings

the x1 to the beginning and computes the polynomial in which x1 appears and finally we add

these two parts by adding an extra layer. It is easy to see that, this method can be done on

all the k different sets of linear polynomials. Once we do this we get k different DAG’s which

are variable disjoint, and each has a consistent variable ordering. We are just left to connect

the k graphs. We connect the input nodes of the graph corresponding to L1r, L2r to the output

36



Figure 4.1: Directed acyclic graph corresponding to L11 and L21

Figure 4.2: Directed acyclic graph corresponding to L11 and L21 in the same variable ordering

37



Figure 4.3: Connecting L11, L21 and L12, L22 in the same variable ordering

nodes of L1(r+1), L2(r+1) respectively, where r ∈ [k − 1]. Figure 4.3 shows how to connect the

graphs corresponding to L11, L21 and L21, L22 in the above example. We connect the right ends

of the graph corresponding to L11, L21 to the left ends of L12, L22 such that the polynomial

computed still remains the same. We connect the output node corresponding to L11 (first

ROABP) to the input node corresponding to L21 by adding an edge of weight 1 between them.

Similarly we connect the output node corresponding to L21 (second ROABP) to the input node

corresponding to L22 by adding an edge of weight 1 between them. Finally we get a width

six ROABP in the same variable ordering computing the original polynomial. The connection

process is same for connecting all the k parts. Hence we see that any multilinear depth 3 circuit

having two product gates and at most two variables per linear polynomial can be computed by

a width six ROABP.

4.2 Lower Bounds for ROABPs

We saw in the previous section that a polynomial sized ROABP of constant width can be

constructed for a polynomial F (X) computed by a
∑∏∑

multlinear circuit C such that the

top fan-in of C is 2 and the number of variables per linear polynomial in any product gate is

at most 2. In this section we show that if we consider multilinear depth three circuits with

three product gates and two variables per linear polynomial or two product gates and three

variables per linear polynomial then there exists an explicit multilinear polynomial computed

by such a circuit family, such that any ROABP computing it requires exponential width. In

38



subsection 4.2.1 we prove the lower bound for a polynomial F1(X, Y ) computed by a multilinear

depth 3 circuit C1 such that the top fan-in of C1 is 3 and the number of variables per linear

polynomial is 2. In subsection 4.2.2 we prove the lower bound for a polynomial F2(X) computed

by a multilinear depth 3 circuit C2 such that the top fan-in of C2 is 2 but the number of

variables per linear polynomial is 3. In both subsection 4.2.1 and subsection 4.2.2 we construct

the required polynomials from an explicit bipartite, 3-regular expander graph. Slightly weaker

lower bound of 2Ω(
√
n) on the width of any ROABP computing

F (X, Y ) =
n∏
j=1

(1 + xj + yj) +
n∏
j=1

(1 + xj + yj+1 mod n)

+
n∏
j=1

(1 + xj + yj+q mod n) +
n∏
j=1

(1 + yj + xj+q mod n)

where q = n − 1.5
√
n

16ε
and 0 < ε < 1

8
, is given in section A.1. Also a 2Ω(n) lower bound on the

witdth of any ROABP computing

F (X, Y ) =

n
2
−1∑
i=0

n∏
j=1

(1 + xj + y(j+i) mod n)

is given in section A.2. The proofs in section A.1 and section A.2 do not use expander graphs,

but in one case the lower bound is weaker whereas in the other case the top fan-in of the explicit

multilinear depth 3 polynomial F (X, Y ) is Θ(n) (in contrast to the explicit polynomials used

in next sections that have top fan-in either 3 or 2).

4.2.1 Lower Bounds for multilinear depth 3 circuits with 3 product

gates and 2 base sets

We will construct a polynomial F1(X, Y ) with the desired property from an explicit degree 3

expander. Suppose G is an n vertex 3-regular expander graph. Explicit construction of such an

expander graph is given in subsection 2.5.2. Let H = (L∪R,E) be its double cover. We know

from subsection 2.5.3 h(H) >
2+ 1

104

2
. With each vertex in L we associate a unique variable in

X and similarly with each vertex in R we associate a unique variable in Y (X and Y represents

variable sets, stated in section 2). An edge between xi and yj will correspond to a linear

polynomial (1 + xi + yj) in F1(X, Y ). From lemma 2.5.1 we know a 3-regular bipartite graph

can be split into 3 edge disjoint perfect matchings. F1(X, Y ) will have three product gates

corresponding to the three edge disjoint perfect matchings. We will take the product of the

39



Figure 4.4: Double cover of Z5 shown in fig. 2.1

linear polynomials corresponding to the edges in a single matching and then take the sum of

these products corresponding to the three edge disjoint perfect matchings. It is easy to see that

each linear polynomial in every product (P1, P2 or P3) has exactly two variables; one belongs to

X and the other to Y . Hence polynomial F1(X, Y ) is computed by C1, a superposition of set-

multilinear depth 3 circuit with 2 base sets and top fan-in 3. Let us explain the reduction with

an example. Consider the double cover H of Z5 (fig. 2.1) shown in fig. 4.4. We split the edges in

H into three edge disjoint perfect matchings as follows: {(x0y0), (x1y1), (x2y3), (x3y2), (x4y4)},
{(x0y1), (x1y2), (x2y3), (x3, y4), (x4, y0)} and {(x0y4), (x1y0), (x2y1), (x3, y2), (x4, y3)}. Hence the

polynomial we get from this graph by our reduction is

F1(X, Y ) = (1 + x0 + y0)(1 + x1 + y1)(1 + x2 + y3)(1 + x3 + y2)(1 + x4 + y4)

+(1 + x0 + y1)(1 + x1 + y2)(1 + x2 + y3)(1 + x3 + y4)(1 + x4 + y0)

+(1 + x0 + y4)(1 + x1 + y0)(1 + x2 + y1)(1 + x3 + y2)(1 + x4 + y3)

We will now compute the size of the circuit C1. The bottom fan-in (fan-in of the sum gates

at layer 3 from top) is 3, since there are 2 variables and a field constant per linear polynomial.

The fan-in of every product gate is n. Since there are 3 product gates the total number of nodes

40



in C1 is 4 + 3(n(1 + 3)) = 4 + 12n = O(n). Hence the size of the circuit C1 is O(n). We wish

to prove a lower bound on the width of any ROABP that computes the polynomial F1(X, Y ).

Theorem 4.2.1 (Main Theorem) Any ROABP that computes the polynomial F1(X, Y ) con-

structed as above has width 2Ω(n).

Proof Outline: To prove the lower bound in theorem 4.2.1 we use evaluation dimension men-

tioned in section 2.4, as the measure. First we show that there exists a set of fixed size ‘s’ such

that evaluation dimension of the polynomial F1(X, Y ) with respect to this set is always less

than or equal to the width of the ROABP computing it. We then prove that for any set of

size ‘s’ the evaluation dimension of the polynomial F1(X, Y ) with respect to it is at least 2Ω(n).

This would imply any ROABP computing F1(X, Y ) has width 2Ω(n).

Suppose R is a width-k ROABP that computes F1(X, Y ). R has an associated variable or-

dering (t1, t2, ..., t2n) of X and Y variables. Below we give an upper bound on the evaluation

dimension of F1(X, Y ) with respect to a set of size n
10

in terms of the width of R.

Lemma 4.2.1 If R is a width-k ROABP that computes F1(X, Y ) then there exists a set S ⊆
X ∪ Y of size n

10
such that EvaldimS[F1(X, Y )] ≤ k.

Proof: R can be viewed as the product of 2n matrices. Hence,

F1(X, Y ) = T1T2...T2n

where T1 ∈ F[t1]1×k, T2n ∈ F[t2n]k×1 and Ti ∈ F[ti]
k×k for all i ∈ [2, ..., 2n − 1]. Fix S =

{t1, t2, ..., t n
10
}. Consider any F-evaluation of the S variables in F1(X, Y ). Denote the resulting

polynomial by F1eval(X, Y ) ∈ F[tn/10+1, ..., t2n]. Hence,

F1eval(X, Y ) = TevalT n
10

+1, ..., T2n

where Teval ∈ F1×k. Thus,

F1eval(X, Y ) = TevalTp

where Tp ∈ F[t n
10

+1, ..., t2n]1×k. Thus F1eval(X, Y ) is a linear combination of some fixed k poly-

nomials in the variables {t n
10

+1, ...., t2n}. For any evaluation of the first n
10

variables these k

polynomials remain fixed. Hence, evaluation dimension of F1(X, Y ) with respect to S is less

than equal to k, i.e EvaldimS[F1(X, Y )] ≤ k. 2

We will now prove a lower bound on the evaluation dimension of F1(X, Y ) with respect to every

41



subset S of X ∪ Y variables where |S| = n
10

.

Theorem 4.2.2 For any set S ⊆ X ∪ Y with size equal to n
10

, the EvaldimS[F1(X, Y )] is at

least 2εn where ε is a constant greater than zero.

Proof: Take any subset of n
10

variables from X ∪ Y . Call this set S. With respect to set

S we have three types of linear polynomials in F1(X, Y ): untouched, partially touched and

completely touched. A linear polynomials is untouched in F1(X, Y ) if both the variables, one

from X and the other from Y do not belong to S, whereas it is partially touched if exactly one

of the two variables belongs to S and it is completely touched if both the variables belong to

S. Sometimes we group the partially touched and completely touched linear polynomials and

call them touched linear polynomials, i.e a linear polynomial is touched if at least one of the

variables in the linear polynomial belongs to S. Here is an example.

Let X = {x1, x2, x3} , Y = {y1, y2, y3} and S = {x1, x2, y3} then the linear polynomial

l1 = (1 + x3 + y2) is an untouched linear polynomial since no variable in l1 belongs to S

whereas linear polynomials l2 = (1 + x2 + y3), l3 = (1 + x1 + y2) and l4 = (1 + x3 + y3) are

touched linear polynomials since l2, l3 and l4 contain at least one variable in S. Linear poly-

nomial l2 is a completely touched linear polynomial since both the variables in l2, x2 and y3

belong to S. Linear polynomials l3 and l4 are partially touched linear polynomials since the

variables x1 in l3 and y3 in l4 belong to S.

For i ∈ [3], let Ai, Bi and Ci be the set of untouched, the set of partially touched and the set of

completely touched linear polynomials in Pi respectively. To prove theorem 4.2.2 we first show

that for any chosen subset S of size n
10

, the size of the set of partially touched linear polynomials

is at least εn in one of the product gates, i.e ∃ i such that, |Bi| ≥ εn. We then show that if size

of the set of partially touched linear polynomials is at least εn in one of the product gates then

EvaldimS[F1(X, Y )] is at least 2εn.

Lemma 4.2.2 The size of the set containing the partially touched linear polynomials is greater

than or equal to εn in at least one of the product gates.

Proof: The objective of this lemma is to show that the number of partially touched linear

polynomials in one of the product gates is at least εn, i.e ∃i ∈ [3] such that, |Bi| ≥ εn. Let T be

such that, for all i ∈ [3], |Bi| ≤ T . We now look at H the bipartite expander graph from which

the polynomial F1(X, Y ) was constructed. Recall that in the construction we had labelled the

vertices as variables and the edges as linear polynomials. Let A be the set of vertices in H

42



corresponding to the variables in S, thus |A| = n
10

. Now using the expansion property of H we

get

|E(A,A)| ≥ h(H) · |A| ≥
2 + 1

104

2
·
( n

10

)
Each edge in E(A,A) connects a vertex in A to a vertex outside A. Since A corresponds to

variables in S and A corresponds to variables not in S, each edge in E(A,A) corresponds to

a partially touched linear polynomial. Since the degree of H is 3 at least |E(A,A)|
3

of the edges

correspond to unique partially touched linear polynomials. From our initial assumption the

total number of such partially touched linear polynomials is at most 3T ; T from each product

gate. Hence,

⇒ 3T ≥ |E(A,A)|
3

≥
2 + 1

104

6
·
( n

10

)
⇒ T ≥ εn

where ε = 0.11 greater than 0. 2

Lemma 4.2.2 shows that size of either B1, B2 or B3 is greater than equal to εn. We will use

the next lemma to complete the proof of theorem 4.2.4.

Lemma 4.2.3 If size of one of B1, B2 or B3 is greater than or equal to εn then EvaldimS[F1(X, Y )]

is at least 2εn.

Proof: For notational convenience we again let T = εn. Suppose |Bi| ≥ T where i ∈ [3]. We

prove lemma 4.2.3 in two parts. In the first part we make appropriate substitutions of some

variables such that product gates Pj and Pk compute the zero polynomial where j, k ∈ [3] and

j 6= k 6= i. We ensure that Pi remains non-zero after these substitutions. We then show that

evaluation dimension with respect to S of the polynomial we achieve after these substitutions is

less than or equal to the evaluation dimension of F1(X, Y ) with respect to S. In the next part we

show that the evaluation dimension with respect to S of the polynomial we achieve after these

substitutions is at least 2εn. Thus part 1 and part 2 would together imply EvaldimS[F1(X, Y )]

is at least 2εn.

Part 1: We wish to perform substitutions such that Pj and Pk compute the zero polyno-

mial but Pi still computes a non-zero polynomial. The easiest way to make any product gate

compute the zero polynomial is by picking an untouched linear polynomial l = (1 + xr + ym) in

that product gate, where xr ∈ X and ym ∈ Y , and substituting xr = −1− ym. The untouched

linear polynomial l is such that it does not appear in Pi. Hence after the substitution Pi is

43



non-zero. Also we want to ensure that the variable we perform substitution on, ‘xr’ in the

above example, appears in an untouched linear polynomial in all the product gates. This would

imply the partially touched linear polynomials in Pi are not affected by these substitutions.

This helps to simplify the proof in the second part. Now we show via a small argument that

there are sufficient number of X variables that appear in an untouched linear polynomial in all

the product gates.

Recall the size of S is equal to n
10

. Hence the number of touched linear polynomials in all

the product gates together is at most 3n
10

and thus the number of variables appearing in these

touched linear polynomials is at most 6n
10

. This implies at least 4n
10
X variables appear in an

untouched linear polynomial in all the product gates. Now F1(X, Y ) is constructed from H

such that, a linear polynomial l appears in two product gates if and only if there is a double

edge between the endpoints of the edge corresponding to the linear polynomial l in H. Recall

H is the double cover of G, a 3-regular expander graph. As mentioned in subsection 2.5.2, G

belongs to a family of ‘3-regular p vertex graphs’ for every prime p not equal to 2. Each vertex

x in this graph is connected to x + 1,x− 1 and to its inverse x−1 (operations are mod p and

inverse of 0 is 0 ). There exists a double edge in G if and only if any two of x + 1,x − 1 and

x−1 are equal. If x + 1 = x− 1 mod p, then 2 = 0 mod p. This cannot be true unless p = 2.

Hence x + 1 is not equal to x − 1 when p is a prime not equal to 2. Moreover x + 1 = x−1

mod p and x− 1 = x−1 mod p, each have at most two solutions. Hence there can be at most

four double edges. Each double edge in G corresponds to two double edges in H, four of which

corresponds to the X variables. Hence at least
(

4n
10
− 4
)
X variables are such that they appear

in an untouched linear polynomial in all the product gates and the untouched linear polyno-

mials in which they appear are unique to a product gate. We pick two of these variables xr1

and xr2 where xr1 , xr2 ∈ X, that appear in an untouched linear polynomial in all the product

gates and the untouched linear polynomials in which they appear are unique to a product gate.

Let the linear polynomials that xr1 appears in Pj and xr2 appears in Pk, where j 6= k 6= i be,

lj = (1 + xr1 + yj1) and lk = (1 + xr2 + yk1) where yj1 , yk1 ∈ Y . We go modulo lj and lk by

substituting xr1 = −(1 + yj1) and xr2 = −(1 + yk1). For all m ∈ [3] let P
′
m correspond to Pm

after these substitutions. Let F
′
1(X, Y ), l

′
j and l

′

k correspond to F1(X, Y ), lj and lk after these

substitutions. These substitutions would ensure l
′
j = 0 and l

′

k = 0 which implies P
′
j = P

′

k = 0.

Since the linear polynomials lj and lk corresponding to xr1 and xr2 appear only in Pj and Pk

respectively (the untouched linear forms in which xr1 and xr2 appear are unique to a product

gate), P
′
i 6= 0 .Thus we have F

′
1(X, Y ) = P

′
i 6= 0. Below we prove that the evaluation dimension

of F
′
1(X, Y ) with respect to S is at most the evaluation dimension of F1(X, Y ) with respect to

44



S.

Claim 4.2.1 EvaldimS[F1(X, Y )] ≥ EvaldimS[F
′
1(X, Y )]

Proof: Let

E = span{F1(X, Y )|∀xm∈S xm=αm : ∀xm ∈ S αm ∈ F}

E
′
= span{F ′1(X, Y )|∀xm∈S xm=αm : ∀xm ∈ S αm ∈ F}

and

EvaldimS[F1(X, Y )] = t

This implies every polynomial in E can be written as a linear combination of t linearly in-

dependent polynomials. First observe that the variables we have substituted, ‘xr1 ’ and ‘xr2 ’

are not in S. Once we make the substitutions, xr1 = −(1 + xj1) and xr2 = −(1 + xk1), two

scenarios are possible. These t polynomials may still be linearly independent in which case

EvaldimS[F
′
1(X, Y )] = t. These t polynomials might become linearly dependent in which case

every polynomial in E
′

can be written as a linear combination of some linearly independent

subset of these t polynomials. 2

We now go to the second part of the proof of lemma 4.2.3 where we show that EvaldimS[F
′
1(X, Y )] ≥

2εn.

Part 2: Observe that the substitutions we did in part 1 do not affect the partially touched

linear polynomials in Pi. Hence P
′
i has at least T partially touched linear polynomials. Each of

these partially touched linear polynomials contains a field constant ‘1’ and two variables; one

of which belongs to S and the other does not. We pick exactly T of these partially touched

linear polynomials. Choose one variable from each of these partially touched linear polynomials

such that they belong to set S. Call them ZT = {z1, z2, ..., zT}, here ZT ⊆ X ∪ Y . Now we

substitute some more variables. This is done in two steps. First we substitute all variables in

S except those in ZT to 1. In the second step, we focus on the linear polynomials in which the

variables from ZT appear in product gate P
′
i . Let us call the set of these linear polynomials as

LT = {l1, l2, ..., lT} such that zr ∈ ZT appears in the linear polynomial lr. For each lr ∈ LT ,

lr = (1 + zr + u) where zr ∈ ZT and u ∈ X ∪ Y , we substitute u = u− 1. These substitutions

would ensure each linear polynomial in LT contains no field constants and exactly two variables;

one belongs to S and the other does not. Call the polynomial we get after these substitutions

as F
′′
1 (X, Y ) and the linear polynomial in which zr ∈ ZT appears as l

′′
r . Let L

′′
T correspond to

LT after these substitutions.

45



Claim 4.2.2 EvaldimS[F
′
1(X, Y )] ≥ EvaldimZT [F

′′
1 (X, Y )]

Proof: We have made two types of substitutions to arrive at F
′′
1 (X, Y ) from F

′
1(X, Y ). In

first set of substitutions we have put some of the variables in S as 1. It is easy to see that

the evaluation dimension of the polynomial with respect to ZT ⊆ S after substituting some

of the variables in S to 1 is always going to be at most the original evaluation dimension of

the polynomial with respect to S. The second set of substitutions subtract ‘1’ from some of

the variables. It follows from claim 4.2.1 that this procedure does not increase the evaluation

dimension. 2

We will now show EvaldimZT [F2 (X)] ≥ 2εn. Let L
′′

= {l′′1 , l
′′
2 , . . . , l

′′
N} be the set of linear

polynomials in P
′′
1 . Observe that the linear polynomials in L

′′ \L′′T contain only variables from

the set (X ∪ Y ) \ ZT . Let f((X ∪ Y ) \ ZT ) =
∏

l′′∈(L′′\L′′T ) l
′′
. Hence we can write

F
′′

1 (X, Y ) = (
∏
l′′∈LT

l
′′
)f((X ∪ Y ) \ ZT )

F
′′

1 (X, Y ) =
t=2T∑

t=1;Et⊆ZT

zEtfEt((X ∪ Y ) \ ZT )f((X ∪ Y ) \ ZT )

where for Et ⊆ ZT , zEt =
∏

zi∈Et zi and fEt((X ∪ Y ) \ ZT ) are just monomials in the variables

(X∪Y \ZT ) appearing in linear polynomials in L
′′
T . If we show the set of polynomials {fE1((X∪

Y )\ZT )f((X∪Y )\ZT ), fE2((X∪Y )\ZT )f((X∪Y )\ZT ), . . . , fE
2T

((X∪Y )\ZT )f((X∪Y )\ZT )}
where each polynomial corresponds to a subset of ZT , are linearly independent then we can use

claim 2.4.1 to claim that EvaldimZT [F
′′
1 (X, Y )] = 2T since the variables in the set of polynomials

{fE1((X ∪ Y ) \ ZT )f((X ∪ Y ) \ ZT ), fE2((X ∪ Y ) \ ZT )f((X ∪ Y ) \ ZT ), . . . , fE
2T

((X ∪ Y ) \
ZT )f((X ∪ Y ) \ ZT )} are completely disjoint from the variables in ZT .

Claim 4.2.3 The set of polynomials {fE1((X∪Y )\ZT )f((X∪Y )\ZT ), fE2((X∪Y )\ZT )f((X∪
Y )\ZT ), . . . , fE

2T
((X∪Y )\ZT )f((X∪Y )\ZT )} where each polynomial corresponds to a subset

of ZT , are linearly independent.

Proof: Assume for contradiction that there exists a linear dependence between the given

polynomials. This implies there exists α1, . . . , α2T ∈ F such that not all αi is equal to 0 where

i ∈ [2T ] and
t=2T∑

t=1;Et⊆ZT

αtfEt((X ∪ Y ) \ ZT )f((X ∪ Y ) \ ZT ) = 0

46



⇒
t=2T∑

t=1;Et⊆ZT

αtfEt((X ∪ Y ) \ ZT ) = 0

But fE1 , fE2 , . . . , fE2T
are distinct monomials which implies α1 = α2 = · · · = α2T = 0. Hence a

contradiction. 2

Hence EvaldimS[F1(X, Y )] ≥ EvaldimS[F
′
1(X, Y )] ≥ EvaldimZT [F

′′
1 (X, Y )] = 2T ≥ 2εn. 2

Combining lemma 4.2.2 and lemma 4.2.3 we can conclude for any set S ⊆ X ∪ Y with size

equal to n
10

the EvaldimS[F1(X, Y )] is at least 2εn. 2

To complete the proof of theorem 4.2.1 we look at lemma 4.2.1 which tells us that there exists a

choice of n
10

variables such that the evaluation dimension of F1(X, Y ) is less than the width of the

ROABP that computes F1(X, Y ), but theorem 4.2.2 on the other hand states that evaluation

dimension of F1(X, Y ) with respect to any subset of X of size n
10

is at least 2εn. This implies

that any ROABP that computes the polynomial F1(X, Y ) has width equal to 2Ω(n).

4.2.2 Lower Bounds for multilinear depth 3 circuits with 2 product

gates and 3 base sets

Like F1(X, Y ) we will construct the polynomial F2(X) with the desired property from an explicit

degree 3 bipartite expander graph. Suppose G is an N vertex 3-regular expander graph. Explicit

construction of such an expander graph is given in subsection 2.5.2. Let H = (L∪R,E) be its

double cover. We know from subsection 2.5.3 h(H) >
2+ 1

104

2
. Unlike the previous construction

we associate a unique variable from the set X with every edge in the graph H. The number of

variables is thus equal to n = 3N . The three variables, say xi, xj and xk correspondng to each

edge incident on a vertex u in H form a linear polynomial (1+xi+xj +xk), i.e we have a linear

polynomial corresponding to every vertex in H. Observe that this is complete contrast to the

construction in subsection 4.2.1, where we associated the variables with vertices and the linear

polynomials with edges. We will take the product of the linear polynomials corresponding to

vertices in L and R separately and then add this two products. It is easy to see F2(X) can

be computed by
∑∏∑

circuit C2 with top fan-in just two. Again by lemma 2.5.1 we know

a 3-regular bipartite graph can be split into three edge disjoint perfect matchings. Each linear

polynomial in F2(X) contains three variables corresponding to edges from three edge disjoint

perfect matchings. We can group the variables corresponding to edges in a single matching into

a single base set. This implies the variables can be split into three distinct base sets. Hence C2

47



is a superposition of set-multilinear depth three circuits with three base sets and the top fan-in

of C2 is two. Let us explain the reduction with an example. Consider the double cover H of Z5

graph shown in fig. 4.4. If there is an edge (xiyj) we label the edge by xij The polynomial we

get from this graph by our reduction is

F2(X) = (1+x00+x01+x04)(1+x10+x11+x13)(1+x21+x23+x23)(1+x32+x32+x34)(1+x40+x43+x44)

+(1+x00 +x10 +x41)(1+x01 +x11 +x21)(1+x12 +x32 +x32)(1+x23 +x23 +x43)(1+x04 +x34 +x44)

To compute the size of C2 we will compute the number of nodes in C2 which is equal to

1 + 2 + 2(N(1 + 4)) = 3 + 10N = O(n). Hence the size of the circuit C2 is equal to O(n). We

prove the following for F2(X).

Theorem 4.2.3 (Main Theorem) Any ROABP that computes the polynomial F2(X) con-

structed as above has width 2Ω(n).

Proof Outline: The proof strategy for theorem 4.2.3 is similar to theorem 4.2.1. We use

evaluation dimension mentioned in section 2.4 as the measure to prove the lower bound. First

we show that there exists a set of fixed size ‘s’ such that evaluation dimension of the polynomial

F2(X) with respect to this set is always less than or equal to the width of the ROABP com-

puting it. We then prove that for any set of size ‘s’ the evaluation dimension of the polynomial

F2(X) with respect to it is at least 2Ω(n). This would imply any ROABP computing F2(X) has

width 2Ω(n).

Suppose R is a width-k ROABP that computes F2(X). R has an associated variable ordering

(t1, t2, ..., tn) of X variables. Below we give an upper bound on the evaluation dimension of

F2(X) with respect to a set of size n
10

in terms of the width of R.

Lemma 4.2.4 If R is a width-k ROABP that computes F2(X) then there exists a set S ⊆ X∪Y
of size n

10
such that EvaldimS[F2(X)] ≤ k.

The proof of lemma 4.2.4 is similar to lemma 4.2.1. From lemma 4.2.1 it follows that if we fix

S to be the first n
10

variables in the ordering (t1, t2, ..., tn) then the evaluation dimension of the

polynomial with respect to S is less than the width of the ROABP computing it. We will now

prove a lower bound on the evaluation dimension of F2(X) with respect to every subset S of

X variables where the |S| = n
10

.

Theorem 4.2.4 For any set S ⊆ X with size equal to n
10

the EvaldimS[F2(X)] is at least 2εn

where ε is a constant greater than 0.

48



Proof: Take any subset of n
10

variables from X. Call this set S. With respect to set S we

have three types of linear polynomials in F2(X): untouched, partially touched and completely

touched linear polynomials. A linear polynomial is untouched in F2(X) if all the variables in

the linear polynomial do not belong to S, whereas it is partially touched if either one or two of

the three variables in the linear polynomial belongs to S and it is completely touched if all the

variables in the linear polynomial belongs to S. Sometimes we group the partially touched and

completely touched linear polynomials and call them touched linear polynomials, i.e a linear

polynomial is touched if at least one of the variables in the linear polynomial belongs to S. Let

us illustrate this with an example.

Let X = {x1, x2, ..., x6} and S = {x1, x2, x3} then the linear polynomial l1 = (1 + x4 + x5 + x6)

is an untouched linear polynomial since no variable in l1 belongs to S whereas the linear poly-

nomials l2 = (1 + x1 + x2 + x3), l3 = (1 + x1 + x2 + x4) and l4 = (1 + x2 + x4 + x5) are touched

linear polynomials since l2, l3 and l4 contain at least one variable in S. Linear polynomial l2 is

a completely touched linear polynomial since all the variables in l2, x1, x2 and x3 belong to S.

Linear polynomials l3 and l4 are partially touched linear polynomials since the variables x1, x2

in l3 and the variable x2 in l4 belong to S.

For i ∈ [2], let Ai be equal to the set of untouched linear polynomials, Bi be equal to the

set of partially touched linear polynomials and Ci be equal to the set of completely touched

linear polynomials in Pi. To prove theorem 4.2.4 we first show that for any chosen subset S of

size n
10

, the size of the set of partially touched linear polynomials is at least εn in one of the

product gates, i.e ∃ i ∈ [2] such that |Bi| ≥ εn. We then show that if size of the set of partially

touched linear polynomials is at least εn in one of the product gates then EvaldimS[F2(X)] is

at least 2εn.

Lemma 4.2.5 The size of the set containing the partially touched linear polynomials is greater

than or equal to εn in at least one of the product gates.

Proof: The objective of this lemma is to show that the number of partially touched linear

polynomials in one of the product gates is at least εn, i.e ∃i ∈ [2], such that |Bi| ≥ εn. Let T

be such that, for all i ∈ [2], |Bi| ≤ T . Observe that if a linear polynomial is partially touched

then the number of variables that belong to S from that linear polynomial is at most 2, since

the number of variables per linear polynomial is 3. This implies the number of variables that

belong to S and appearing in a partially touched linear polynomial in any of the product gates

is at most 4T ; 2T from each product gate. Hence at least n
10
− 4T variables in S, appear in a

49



completely touched linear polynomial in both the product gates. Since the number of variables

per linear polynomial is 3, the number of completely touched linear polynomials in both the

product gates together is at least 2 ·
(
n
30
− 4T

3

)
, i.e |C1|+ |C2| is at least n

15
− 8T

3
. Now we look at

H the bipartite expander graph from which the polynomial F1(X, Y ) was reduced. Recall that

in the reduction we had labelled the edges as variables and the variables as linear polynomials.

Let C be the set of vertices corresponding to the completely touched linear polynomials in both

the product gates, thus |C| = |C1| + |C2| ≥ n
15
− 8T

3
. Now using the expansion property of H

we get

|E(C,C)| ≥ h(H) · |C| ≥
2 + 1

104

2
·
(
n

15
− 8T

3

)
Each edge in E(C,C) connects a vertex in C to a vertex in C. Since C contains those vertices

which correspond to completely touched linear polynomials, the edges in E(C,C) correspond to

variables which are in S. This implies each edge in E(C,C) connects a vertex which corresponds

to a completely touched linear polynomial to a vertex which corresponds to a partially touched

linear polynomial. Since edges in E(C,C) correspond to variables in S, a vertex corresponding

to a partially touched linear polynomial would have at most two edges incident to it from

E(C,C). Hence the number of vertices corresponding to partially touched linear polynomials is

at least E(C,C)
2

. But from our initial assumption we know that the number of partially touched

linear polynomials is at most 2T ; T from each product gate. Thus the number of vertices

corresponding to partially touched linear polynomials is at most 2T . Hence we get

2T ≥ |E(C,C)|
2

≥
2 + 1

104

2
· |C| ≥

2 + 1
104

2
·
(
n

15
− 8T

3

)
⇒ T ≥ εn

where ε = 0.025 greater than 0. 2

Lemma 4.2.5 shows that size of either B1 or B2 is greater than equal to εn. We will use the

next lemma to complete the proof of theorem 4.2.4.

Lemma 4.2.6 If size B1 or B2 is greater than or equal to εn then EvaldimS[F2(X)] is at least

2εn.

Proof: For notational convenience we again let T = εn. Suppose |Bi| ≥ T where i ∈ [2]. We

prove lemma 4.2.6 in two parts. In the first part we make appropriate substitutions of some

variables such that product gate Pj computes the zero polynomial where j ∈ [2] and j 6= i.

We ensure that Pi remains non-zero after these substitutions. We then show that evaluation

50



dimension with respect to S of the polynomial we achieve after these substitutions is less than

or equal to the evaluation dimension of F2(X) with respect to S. In the next part we show that

the evaluation dimension with respect to S of the polynomial we achieve after these substitu-

tions is at least 2εn. Thus part 1 and part 2 together would imply EvaldimS[F2(X)] is at least 2εn.

Part 1: We wish to perform substitutions such that Pj computes the zero polynomial but

Pi still computes a non-zero polynomial. The easiest way to make any product gate compute

the zero polynomial is by picking an untouched linear polynomial l = (1 + x1 + x2 + x3) in

that product gate, where x1, x2, x3 ∈ [X] and substituting x1 = −1 − x2 − x3. Since no two

vertices in H have all the three edges in common, the linear polynomial l is unique to a product

gate, i.e if l is a linear factor of Pj then l is not a linear factor of Pi. Hence Pi computes a

non-zero polynomial after this substitution. Moreover we want to ensure that the variable we

perform substitution on, ‘x1’ in the above example, appears in an untouched linear polynomial

in both the product gates. This would imply the partially touched linear polynomials in Pi are

not affected by these substitutions. This helps to simplify the proof in the second part. Now

we show via a small argument that there are sufficient number of variables that appear in an

untouched linear polynomial in both the product gates.

Recall the size of S is equal to n
10

. Hence the number of touched linear polynomials in ei-

ther of the product gates is at most 2n
10

; n
10

from each product gate. Thus the number of

variables appearing in these touched linear polynomials is at most 6n
10

. This implies at least 4n
10

variables appear in an untouched linear polynomial in both the product gates. We pick one

such variable xr that appears in an untouched linear polynomial in both product gates. Let

the linear polynomials xr appears in Pi and Pj where j 6= i be li = (1 + xr + xi1 + xi2) and

lj = (1+xr+xj1 +xj2). We go modulo lj by substituting xr = −(1+xj1 +xj2). For all m ∈ [2],

let l
′
m,P

′
m, and F

′
2(X) correspond to lm,Pm and F2(X) after this substitution respectively. This

substitution would ensure l
′
j = 0 which implies P

′
j = 0 and l

′
i = (xi1 +xi2−xj1−xj2) 6= 0 which

implies P
′
i 6= 0. Hence we have F

′
2(X) = P

′
i 6= 0. Below we prove that the evaluation dimension

of F
′
2(X) with respect to S is at most the evaluation dimension of F2(X) with respect to S.

Claim 4.2.4 EvaldimS[F2(X)] ≥ EvaldimS[F
′
2(X)]

Proof: Let

E = span{F2(X)|∀xm∈S xm=αm : ∀xm ∈ S αm ∈ F}

E
′
= span{F ′2(X)|∀xm∈S xm=αm : ∀xm ∈ S αm ∈ F}

51



and

EvaldimS[F2(X)] = t

This implies every polynomial in E can be written as a linear combination of t linearly indepen-

dent polynomials. After substituting xr = −(1 + xj1 + xj2) two scenarios are possible. These

t polynomials may still be linearly independent in which case EvaldimS[F
′
2(X)] = t. These

t polynomials might become linearly dependent in which case every polynomial in E
′

can be

written as a linear combination of some linearly independent subset of these t polynomials. 2

We now go to the second part of the proof of lemma 4.2.6 where we show that EvaldimS[F
′
2(X)] ≥

2εn.

Part 2: Observe that the substitutions we did in part 1 do not affect the partially touched

linear polynomials in Pi. Hence P
′
i has at least T partially touched linear polynomials. Each

of these partially touched linear polynomials contains a field constant ‘1’ and three variables;

at least one of which does not belong to S. We pick exactly T of these partially touched linear

polynomials. Choose one variable from each of these partially touched linear polynomials such

that they belong to set S. Call them XT = {xj1 , xj2 , ..., xjT }. Substitute all the variables in

S except those in XT to 1. Once we have made these substitutions we focus on the linear

polynomials in which the XT variables appear in product gate P
′
i . Let us call the set of these

linear polynomials as LT = {l1, l2, ..., lT} such that xjr ∈ XT appears in the linear polynomial

lr. For each lr ∈ LT if lr = (1 + xjr + xu + xv) where xr ∈ XT and xu, xv ∈ X \ S we substitute

xu = −1 else if lr = (2 + xjr + xu) where xr ∈ XT and xu ∈ X \ S we substitute xu = xu − 2.

This substitution would ensure each linear polynomial in LT contains no field constants and

exactly two variables; one belongs to S and the other does not. Call the polynomial we get

after these substitutions as F
′′
2 (X) and the linear polynomial in which xjr ∈ XT appears as l

′′
r .

Let L
′′
T correspond to LT and P

′′
i correspond to P

′
i after these substitutions.

Claim 4.2.5 EvaldimS[F
′
2(X)] ≥ EvaldimXT [F

′′
2 (X)]

Proof: We have made two types of substitutions to arrive at F
′′
2 (X) from F

′
2(X). In the

first set of substitutions we have put some of the variables in S as 1. It is easy to see that

the evaluation dimension of the polynomial after substituting some of the variables in S to 1

is always going to be at most the original evaluation dimension of the polynomial with respect

to S. The second set of substitutions eliminates the extra variable and the field constant so

that each linear polynomial in L
′′
T has only two variables and no field constants. It follows from

52



claim 4.2.4 that this procedure does not increase the evaluation dimension. 2

We will now show EvaldimXT [F
′′
2 (X)] ≥ 2εn. Let L

′′
= {l′′1 , l

′′
2 , . . . , l

′′
N} be the set of linear

polynomials in P
′′
1 . Observe that the linear polynomials in L

′′ \L′′T contain only variables from

the set X \XT . Let f(X \XT ) =
∏

l′′∈(L′′\L′′T ) l
′′
. Hence we can write

F
′′

2 (X) = (
∏
l′′∈L′′T

l
′′
)f(X \XT )

F
′′

2 (X) =
t=2T∑

t=1;Et⊆XT

xEtfEt(X \XT )f(X \XT )

where for Et ⊆ XT , xEt =
∏

xi∈Et xi and fEt(X \ XT ) are just monomials in the variables

(X \ XT ) appearing in linear polynomials in L
′′
T . If we show the set of polynomials {fE1(X \

XT )f(X \ XT ), fE2(X \ XT )f(X \ XT ), . . . , fE
2T

(X \ XT )f(X \ XT )} where each polynomial

corresponds to a subset of XT , are linearly independent then we can use claim 2.4.1 to claim

that EvaldimXT [F
′′
1 (X, Y )] = 2T , since the set of polynomials {fE1(X \XT )f(X \XT ), fE2(X \

XT )f(X \XT ), . . . , fE
2T

(X \XT )f(X \XT )} are defined on variables completely disjoint from

XT .

Claim 4.2.6 The set of polynomials {fE1(X\XT )f(X\XT ), fE2(X\XT )f(X\XT ), . . . , fE
2T

(X\
XT )f(X \XT )} where each polynomial corresponds to a subset of XT , are linearly independent.

Proof: Assume for contradiction that there exists a linear dependence between the given

polynomials. This implies there exists α1, . . . , α2T ∈ F such that not all αi is equal to 0 where

i ∈ [2T ] and
t=2T∑

t=1;Et⊆XT

αtfEt(X \XT )f(X \XT ) = 0

⇒
t=2T∑

t=1;Et⊆XT

αtfEt(X \XT ) = 0

But fE1 , fE2 , . . . , fE2T
are distinct monomials which implies α1 = α2 = · · · = α2T = 0. Hence a

contradiction. 2

Hence EvaldimS[F2(X)] ≥ EvaldimS[F
′
2(X)] ≥ EvaldimXT [F

′′
2 (X)] = 2T ≥ 2εn. 2

Combining lemma 4.2.5 and lemma 4.2.6 we can conclude for any set S ⊆ X ∪ Y with size

53



equal to n
10

the EvaldimS[F2(X)] is at least 2εn. 2

To complete the proof of theorem 4.2.3 we look at lemma 4.2.4 which tells us that there exists

a choice of n
10

variables such that the evaluation dimension of FS(X) is less than the width of

the ROABP that computes F (X), but theorem 4.2.4 on the other hand states that evaluation

dimension of F (X, Y ) with respect to any subset of X of size n
10

is at least 2
εn
2 . This implies

that any ROABP that computes the polynomial F2(X) has width equal to 2Ω(n).

54



Chapter 5

Future Work

At this point we have many interesting questions to resolve. Firstly we would like to show a

complete separation between ROABPs and multlinear depth three circuits. As part of this work

we have partly resolved this. In section 4.2 we show an explicit polynomial which is computed

by a polynomial sized multlinear depth three circuit but every ROABP computing it requires

exponential sized width. We wish to show a similar result in the opposite direction, i.e show an

explicit polynomial that can be computed by a polynomial sized ROABP but every multilinear

depth three circuit computing it requires exponential size. We plan to use ‘projected shifted

partial derivative’ as the measure, first used in [KLSS14], to show an exponential lower bound

for homogeneous depth four circuits. Precisely they show that any homogeneous depth four

circuit computing the Nisan-Wigderson polynomial (a polynomial in VNP) requires size nΩ(
√
n).

In [KS14] they have analyzed the shifted partial derivative for ‘Iterated Matrix Multiplication

(IMM)’ (a polynomial in VP) and proved that any homogeneous depth four circuit comput-

ing IMM requires size nΩ(
√
n) . To prove this they show a lower bound on ‘projected shifted

partial derivative’ for IMM. We need a slightly stronger lower bound on ‘projected shifted par-

tial derivative’ for IMM than that shown in [KS14], to show a complete separation between

ROABPs and multlinear depth three circuits.

An another interesting direction is to consider ‘sum of constantly many ROABPs’. Can we

show an explicit polynomial which is computed by a polynomial sized multlinear depth three

circuit that if computed by a sum of constantly many ROABPs, at least one ROABP among

them has super-polynomial width. [GKST15] gave a quasi-polynomial time hitting set for sum

of constantly many ROABPs.

We could also look at the algorithmic perspective and ask for PIT for the superposition model.

55



Can we give quasi-polynomial time hitting set for superposition of 2 set-multilinear circuits.

56



Appendix A

ROABP lower bound without

expanders

In this appendix we are including two self-contained ROABP lower bound proofs that does not

rely on explicit constructions of expander graphs. These bounds are weaker in certain senses -

one yields an exp(
√
n) lower bound as opposed to exp(n) lower bound achieved earlier, while

the other uses a multilinear depth three circuit with O(n) top fan-in unlike in chapter 4 where

the target hard polynomial has fanin either 2 or 3. We are including the full proofs of these

bounds in this appendix for completion (just to make the point that weaker ROABP lower

bounds can be proved without using expander graphs).

A.1 Exp(
√
n) lower bound against ROABPs

In this section we give a 2Ω(
√
n) lower bound against ROABP for a polynomial computable

by superposition of two set-multilinear circuits with singleton colors and having four product

gates, without using the expander graphs. The polynomial is the superposition of the following

two polynomials.

C1(X) =
4∑
i=1

n∏
j=1

(1 + xj)

i.e the top fan in of C1(X) is equal to four and the partition X11, X12, ..., X1n are singletons

containing x1, x2, ..., xn respectively. C2(Y ) is defined similarly i.e

C2(Y ) =
4∑
i=1

n∏
j=1

(1 + yj)

57



F (X, Y ) represents the superposition of C1(X) and C2(Y ).

F (X, Y ) =
n∏
j=1

(1 + xj + yj) +
n∏
j=1

(1 + xj + yj+1 mod n)

+
n∏
j=1

(1 + xj + yj+q mod n) +
n∏
j=1

(1 + yj + xj+q mod n)

where q = n− 1.5
√
n

16ε
and 0 < ε < 1

8
. 1

We follow the following convention in this section, n ≡ n mod n and n + 1 ≡ 1 mod n.

F (X, Y ) has four product gates represented by P1, P2, P3 and P4, i.e

P1 =
n∏
j=1

(1 + xj + yj)

P2 =
n∏
j=1

(1 + xj + yj+1 mod n)

P3 =
n∏
j=1

(1 + xj + yj+q mod n)

P4 =
n∏
j=1

(1 + yj + xj+q mod n)

We wish to prove a lower bound on the width of any ROABP that computes the polynomial

F (X, Y ).

Theorem A.1.1 (Main Theorem) Any ROABP that computes the polynomial

F (X, Y ) =
n∏
j=1

(1 + xj + yj) +
n∏
j=1

(1 + xj + yj+1 mod n)

+
n∏
j=1

(1 + xj + yj+q mod n) +
n∏
j=1

(1 + yj + xj+q mod n)

where q = n− 1.5
√
n

16ε
and 0 > ε < 1

8
has width 2Ω(

√
n).

1We are avoiding ceil\floor notations for simplicity of exposition. Assume that q is an integer.

58



We follow a similar proof strategy that we used in the proofs of theorem 4.2.1 and theorem 4.2.3.

Suppose R is a width-k ROABP that computes F (X, Y ). R has an associated variable ordering

(t1, t2, ..., t2n) of X and Y variables. First we give an upper bound on the EvaldimS[F (X, Y )]

in terms of the width of R.

Lemma A.1.1 If R is a width-k ROABP that computes F (X, Y ) then there exists a set S ⊆
X ∪ Y of size n

4
such that EvaldimS[F (X, Y )] ≤ k

The proof for lemma A.1.1 is similar to lemma 4.2.1. We will now prove a lower bound on the

evaluation dimension of F (X, Y ) with respect to every subset S of the X ∪ Y variables where

the |S| = n
4
.

Theorem A.1.2 For any set S ⊆ X ∪Y with size equal to n
4

the EvaldimS[F (X, Y )] is at least

2
ε
√
n

2 where ε < 1
8
.

Take any subset of n
4

variables from X∪Y . Call this set S. With respect to set S we have three

types of linear polynomials in F (X, Y ): untouched, partially touched and completely touched

linear polynomials. A linear polynomial is untouched in F (X, Y ) if both the variables one from

the set X and the other from set Y do not belong to the set S, whereas it is partially touched

if exactly one of the two variables belongs to the set S and its completely touched if both the

variables in the linear polynomial belongs to the set S. Let Ai=the set of untouched linear

polynomials in Pi, Bi=the set of partially touched linear polynomials in Pi and Ci=the set of

completely touched linear polynomials in Pi.

Lemma A.1.2 The size of the set containing the partially touched linear polynomials is greater

than or equal to ε
√
n in at least one of the product gates.

Proof: With respect to set S we have three types of linear polynomials in F (X, Y ): un-

touched, partially touched and completely touched linear polynomials. A linear polynomial is

untouched in F (X, Y ) if both the variables one from the set X and the other from set Y do not

belong to the set S, whereas it is partially touched if exactly one of the two variables belongs

to the set S and its completely touched if both the variables in the linear polynomial belongs

to the set S. Let Ai=the set of untouched linear polynomials in Pi, Bi=the set of partially

touched linear polynomials in Pi and Ci=the set of completely touched linear polynomials in Pi.

We are to show in this lemma that the number of partially touched linear polynomials in

one of the product gates is at least ε
√
n, i.e ∃i ∈ [4] |Bi| ≥ ε

√
n. Let T = ε

√
n, we assume for

contradiction for all i ∈ [4] |Bi| < T . Since |S| = n
4
, we have at least n

8
variables which are

59



either completely X variables or completely Y variables.

Case 1: Assume the n
8

variables are completely X variables.

Of these n
8
X variables at least (n

8
−T ) variables appear in the linear polynomials in set C1. We

want to see how many of these (n
8
− T ) X variables are continuous chunks, where a continuous

chunk is a set of variables that are sequential based on the ordering (x1, ..., xn). For example

(x1, x2, x3) is a continuous chunk whereas (x1, x2, x3, x6) is not a continuous chunk. Holes are

the set of variables that appear between the continuous chunks. For example say (x1, x2, x3, x6)

appear in the linear polynomials in set C1 whereas (x4, x5) does not, then (x4, x5) is a hole . It

is easy to see that the number of holes is equal to the number of continuous chunks of variables

(that appear in the linear polynomials in set C1).

Claim A.1.1 Number of holes between the continuous chunks of variables that appear in the

linear polynomials in set C1 is less than 2T .

Proof: Let δ denote the number of holes that exist between the continuous chunks of variables

(that appear in the linear polynomials in the set C1). If δ holes exist then there exists δ distinct

i′s in [n− 1] such that, xi does not appear in in any of the linear polynomials in the set C1 and

xi+1 appears in one of the linear polynomials in the set C1.

SubClaim A.1.1 For all i ∈ [n − 1] xi does not appear in any of the linear polynomials in

C1 and xi+1 appears in one of the linear polynomials in C1 ⇒ xi appears in one of the linear

polynomials in B1 or B2.

Proof: There are 2 possibilities xi ∈ S or xi /∈ S. xi ∈ S ⇒ xi appears in one of the linear

polynomials in B1 since xi does not appear in any of the linear polynomials in C1. xi+1 appears

in one of the linear polynomials in C1 implies yi+1 ∈ S. Thus xi /∈ S ⇒ xi appears in one of

the linear polynomials in B2 2

Using subClaim A.1.1 we conclude that the number of distinct i′s in [n−1] such that xi does not

appear in any of the linear polynomials in C1 and xi+1 appears in one of the linear polynomials

in C1 is less than 2T . This implies δ is less than 2T . 2

As the number of holes is equal to the number of continuous chunks of variables (that appear

in the linear polynomials in set C1), we infer that the number of continuous chunks of variables

(appearing in the linear polynomials in set C1) is equal to δ which is less than 2T . Let these

continuous chunks of variables be d1, d2, ...dδ.

60



Figure A.1: Depiction of the X variables appearing in the linear polynomials in C1

Since the number of x variables appearing in C1 is at least n
8
− T ,

δ<2T∑
i=1

|di| ≥
n

8
− T

Let dmax represent the continuous chunk of variables (that appear in the linear polynomials in

the set C1) with maximum size, i.e |dmax| = maxi∈[δ]|di|. Then

dmax ≥
n
8
− T
2T

:= 4

The continuous chunk dmax has at least 4 variables that are sequential based on the ordering

(x1, x2, ..., xn). W.l.o.g we can assume the 4 variables at the end in dmax to be x1, x2, ..., x4.

Since x1, x2, ..., x4 appear in the linear polynomials in set C1 we know y1, y2, ..., y4 ∈ S. In

P3 the variable yi appears with x(i+n−q) mod n. We wish that there is no overlap between the

61



continous chunk of variables: x1, ..., xδ and x(1+n−q) mod n, ..., x(4+n−q) mod n. Observe that

4 =
n
8
− ε
√
n

2ε
√
n

=

√
n

16ε
− 1

2
≤ 1.5

√
n

16ε
= n− q

⇒ (1 + (i+ 1)n− q) mod n > 4+ i(n− q) ∀i ∈ N \ {0}

i.e x(1+n−q) mod n appears after x4 in the sequential ordering (x1, ..., xn). In general x(1+(i+1)(n−q)) mod n

appears after x4+i(n−q) in the sequential ordering (x1, ..., xn) as shown in figure 1.

In P3 y1, y2, ..., y4 appear with x(1+n−q) mod n, x(2+n−q) mod n, ..., x(4+n−q) mod n respectively. Some

of these x variables among x(1+n−q) mod n, x(2+n−q) mod n, ..., x(4+n−q) mod n might appear in

the linear polynomials in C1. We want to determine the number of X variables among

x(1+n−q) mod n, x(2+n−q) mod n, ..., x(4+n−q) mod n that appear in the linear polynomials in C1.

Let the number of X variables between x(1+n−q) mod n to x(4+n−q) mod n appearing in the linear

polynomials in C1 be (4− δ1). Note that if xi appears in C1 then yi ∈ S

Now consider the Y variables y(1+n−q) mod n, ..., y(4+n−q) mod n. Among these atleast 4−δ vari-

ables are in S. TheX variables that appear with these Y variables y(1+n−q) mod n, ..., y(4+n−q) mod n

in P3 are x(1+2(n−q)) mod n, ..., x(4+2(n−q)) mod n. We only consider the (4− δ1) X variables that

appear with those Y variables in P3 which we know are definitely in S. Let the number of vari-

ables among these (4 - δ1) X variables between x(1+2(n−q)) mod n to x(4+2(n−q)) mod n appearing

in the linear polynomials in C1 be (4 − δ1 − δ2). We can visualize this process using figure

1 which depicts the X variables on a circle and shows the variables that appear in the linear

polynomials in C1 between each interval we take into consideration.

We repeat the above process p times where p = 8ε
√
n and finally have (4− (δ1 + δ2 + ....+ δp))

many X variables between x(1+p(n−q)) mod n to x(4+p(n−q)) mod n that appear in the linear poly-

nomials in C1.

Note that

4+ p(n− q) =

√
n

16ε
− 1

2
+ 8ε
√
n× 1.5

√
n

16ε
< n

This implies

(4+ p(n− q)) mod n < n

62



Claim A.1.2 The number of X variables such that for all i ∈ [4] and j ∈ [p] when yi ∈ S

then x(i+j(n−q)) mod n does not appear in any of the linear forms in C1 is less than 2T .

Proof: For all i ∈ [4] and j ∈ [p] there are 2 possibilities x(i+j(n−q)) mod n ∈ S or x(i+j(n−q)) mod n /∈
S. x(i+j(n−q)) mod n ∈ S ⇒ x(i+j(n−q)) mod n appears in one of the linear forms in B1

since x(i+j(n−q)) mod n does not appear in any of the linear forms in C1. x(i+j(n−q)) mod n /∈
S ⇒ x(i+j(n−q)) mod n appears in one of the linear forms in B3 since yi ∈ S. Since the sizes of

B1 and B3 are less than T , the claim is proved. 2

Using claim A.1.2, we claim
∑p

i=1 δi ≤ 2T . Hence at least (4−2T ) variables among x(1+i(n−q)) mod n

to x(4+(i+1)(n−q)) mod n appear in the linear forms in C1, for every i ∈ [0, ..., p]. This implies at

least (4− 2T )(p+ 1) X variables appear in the linear forms in C1 and thus belong to S. But

(4− 2T )(p+ 1) = (

√
n

16ε
− 1

2
− 2ε
√
n)(8ε

√
n+ 1)

≈ n(
8ε

16ε
− 16ε2)

>
n

4
= |S| (for ε <

1

8
)

This gives us a contradiction. So our initial assumption is wrong.

Case 2: Assume the n
8

variables are completely Y variables.

We can handle case 2 similarly by again using the relationship between the X and Y variables

in P1 and P2 to ascertain the number holes between the continuous chunks of Y variables that

appear in the linear forms in C1 is less than 2T (similar to claim A.1.1). Then we use the

relationship between the X and Y variables in P1 and P4 to arrive at a contradiction as we did

in case 1. 2

lemma A.1.2 shows that the size of at least one of the sets among B1, B2, B3 and B4 is greater

than equal to ε
√
n. We will use the next lemma to complete the proof of theorem A.2.1.

Lemma A.1.3 If the size of any one of the sets among B1, B2, B3 and B4 is greater than or

equal to ε
√
n then EvaldimS(F (X, Y )) is at least 2

ε
√
n

2 .

Proof: Assume |B1| ≥ T where T = ε
√
n (the other cases will be similar). Since |B1| ≥ T we

have at least T variables in S appearing in the linear forms in B1. At least T
2

of these variables

are entirely X variables or Y variables. W.l.o.g assume T
2

of these variables are entirely X

variables.

63



Let these T
2
X variables be Xj = {xj1 , xj2 , ...., xjT

2

}. FXj(X, Y ) represents the polynomial where

the other n
4
− T

2
variables in S are substituted as 1. It is easy to see that EvaldimXj [FXj(X, Y )] ≤

EvaldimS[F (X, Y )].

Claim A.1.3 EvaldimXj [FXj(X, Y )] ≥ 2
T
2

Proof: For all i ∈ [4] Pi looks like

(xj1 + ...)× (xj2 + ...)× ....× (xjT
2

+ ...)fi(X, Y )

Along with each of the xj1 , xj2 , ...., xjT
2

variables one of the Y variables may appear. Also notice

that xj1 , xj2 , ..., xjT
2

variables do not appear in fi(X, Y ).

⇒ ∀i ∈ [4] Pi = (
∑
St⊆[T

2
]

xSt × hit)fi(X, Y )

Here xSt =
∏

k∈St xjk and hit is a polynomial in the Y variables that are summed with xjk
where k ∈ [T

2
] \ St

After we pick n
4

variables we are left with with 7n
4

variables that are not in S. From these
7n
4

variables atleast 3n
4

are X variables. These 3n
4
X variables appear in all the 4 polynomials

f1(X, Y ), f2(X, Y ), f3(X, Y ) and f4(X, Y ). Pick 3 variables from these 3n
4
X variables. Let

them be xi1 , xi2 and xi3 . Substitute

xi1 = −y(i1+1) mod (n), xi2 = −y(i2+q) mod (n)

xi3 = −y(i3+n−q) mod (n)

After these substitutions we have f2(X, Y ) = f3(X, Y ) = f4(X, Y ) = 0 and f1(X, Y ) 6= 0. Let

F
′
Xj

(X, Y ) be the polynomial after we have made the above substitutions to FXj(X, Y ).

F
′

Xj
(X, Y ) = (

∑
St⊆[T

2
]

xSt × h1t)f1(X, Y )

Let h∼1t = h1tf1(X, Y ). Hence

F
′

Xj
(X, Y ) = (

∑
St⊆[T

2
]

xSt × h∼1t)

64



Below we show that of evaluation dimension of F
′
Xj

(X, Y ) with respect to Xj is at most evalu-

ation dimension of FXj(X, Y ) with respect to Xj.

Claim A.1.4 EvaldimXj [FXj(X, Y )] ≥ EvaldimXj [F
′
Xj

(X, Y )]

The proof of claim A.1.4 is similar to claim 4.2.1. Since EvaldimXj [FXj(X, Y )] ≥ EvaldimXj [F
′
Xj

(X, Y )]

it is sufficient to show EvaldimXj [F
′
Xj

(X, Y )] ≥ 2
T
2 .

SubClaim A.1.2 The polynomials h∼1t corresponding to St ⊆ [T
2
] as defined above are all lin-

early independent.

Proof: Let us say for contradiction that there exists a linear dependence between the poly-

nomials h∼1t corresponding to St ⊆ [T
2
]

⇒
∑
St⊆[T

2
]

αth
∼
1t = 0

⇒
∑
St⊆[T

2
]

αth1tf1(X, Y ) = 0

⇒
∑
St⊆[T

2
]

αth1t = 0

xj1 , xj2 , ..., xjT
2

appear in the partially set linear forms in the product gate P1. Hence the Y

variables yj1 , yj2 , ..., yjT
2

does not belong to the set S. This implies in F
′
Xj

(X, Y ) the linear forms

containing the variables xj1 , xj2 , ..., xjT
2

are (xj1 + yj1 + 1), (xj2 + yj2 + 1), ...., (xjT
2

+ yjT
2

+ 1)

respectively. Observe that each h1t is a product of some of these Y variables, i.e

h1t =
∏

i∈[T
2

]\St(1 + yji)

Now substitute yji = yji − 1. Let h
′
1t represent h1t after substitution.

⇒ h
′
1t =

∏
i∈[T

2
]\St(yji)

⇒ h′1ts are distinct monomials.

⇒ for all Sj⊆[T
2

] αj = 0 , a contradiction

⇒ The polynomials h∼1t corresponding to Sj ⊆ [T
2
] are all linearly independent. 2

Since the polynomials h∼1t corresponding to St ⊆ [T
2
] are all linearly dependent we can use

claim 2.4.1 to finish the proof of this claim. Hence EvaldimXj [FXj(X, Y )] ≥ 2
T
2 . 2

As stated earlier EvaldimS[F (X, Y )] ≥ EvaldimXj [FXj(X, Y )] . Hence EvaldimS[F (X, Y )] ≥

65



2
T
2 = 2

ε
√
n

2 . 2

Combining lemma A.1.2 and lemma A.1.3 we can conclude for any set S ⊆ X ∪ Y with size

equal to n
4

the EvaldimS(F (X, Y )) is at least 2
ε
√
n

2 . This concludes the proof for theorem A.2.1.

To complete the proof of theorem A.1.1 we look at lemma A.1.1 which tells us that there exists a

choice of n
4

variables such that the evaluation dimension of F (X, Y ) is less than the width of the

ROABP that computes F (X, Y ), but theorem A.2.1 on the other hand states that evaluation

dimension of F (X, Y ) with respect to any subset of X ∪ Y of size n
4

is at least 2
ε
√
n

2 . This

implies that any ROABP that computes the polynomial F (X, Y ) has width equal to 2Ω(
√
n).

A.2 Exponential lower bound against ROABPs for mul-

tilinear depth three circuit with O(n) top fan-in

In this section, we show a 2Ω(n) lower bound on the width of any ROABP that computes the

polynomial

F (X, Y ) =

n
2
−1∑
i=0

n∏
j=1

(1 + xj + y(j+i) mod n)

Theorem A.2.1 (Main Theorem) Any ROABP that computes the polynomial

F (X, Y ) =

n
2
−1∑
i=0

n∏
j=1

(1 + xj + y(j+i) mod n)

has width 2Ω(n).

The proof strategy remains essentially same that of theorem A.1.1, theorem 4.2.1 and theo-

rem 4.2.3. Suppose R is a width k ROABP that computes F (X, Y ). R has an associated

variable ordering {t1, ..., t2n} of the X and Y variables. Let T = {t1, ..., tn
2
}. From lemma 4.2.1

we know EvaldimT [F (X, Y )] < k. We will now show that for every choice of n
2

variables, the

evaluation dimension of F (X, Y ) with respect to these n
2

varibales is 2Ω(n). This would imply a

2Ω(n) lower bound on the width of any ROABP that computes the polynomial F (X, Y ).

Theorem A.2.2 For any set S ⊆ X ∪Y with size equal to n
2

the EvaldimS[F (X, Y )] is at least

2
n
8 .

66



Choose any set S ⊆ X∪Y such that |S| = n
2
. Let S consists of a X variables and b Y variables.

⇒ a+ b =
n

2
(A.1)

We denote by Pi the ith product gate
∏n

j=1(1 + xj + yj+i) of F (X, Y ). After choosing S we

have three types of linear forms in each product gate: Ai =the set of untouched linear forms in

Pi, Bi=the set of partially touched linear forms in Pi, Ci=the set of completely touched linear

forms in Pi, where i ∈ {0} ∪ [n
2
− 1].

Lemma A.2.1 The size of the set containing the partially touched linear forms is greater than

or equal to T = n
4

in at least one of the product gates.

Proof: Let us assume for contradiction that for all i ∈ {0}∪ [n
2
− 1] |Bi| < T . This implies in

each product gate at least (n
2
−T ) variables appear in linear forms which are completely touched.

Since a linear form contains exactly two variables, we have for all product gates i ∈ {0}∪ [n
2
−1],

|Ai| > n
4
− T

2
. Observe that for all i, j ∈ {0} ∪ [n

2
− 1], Ai ∩ Aj = φ. Recall S consists of ‘a’

X variables and ‘b Y variables. Hence the maximum possible number of completely touched

linear forms is at most ab. Thus we have

ab >
n∑
i=1

(|Ai|) >
n

2
(
n

4
− T

2
)

Applying AM>GM inequality we have,

(a+ b)2

4
>
n

2
(
n

4
− T

2
)

nT

4
>
n2

16

T >
n

4

2

lemma A.2.1 shows that the size of at least one of the sets among {B0, B1, ...Bn
2
−1} is greater

than equal to n
4
. We will use the next lemma to complete the proof of theorem A.2.2.

Lemma A.2.2 If the size of any one of the sets among {B0, B1, ...Bn
2
−1} is greater than or

equal to n
4

then EvaldimS(F (X, Y )) is at least 2
n
8 .

Proof: Assume |Bi| ≥ T where i ∈ {0, ..., (n
2
− 1)} and T = n

4
. Since |Bi| ≥ T we have at

least T variables in S appearing in the linear forms in Bi. At least T
2

of these variables are

67



entirely X variables or Y variables. W.l.o.g assume T
2

of these variables are entirely X variables.

Let these T
2
X variables be Xj = {xj1 , xj2 , ...., xjT

2

}. FXj(X, Y ) represents the polynomial where

the other n
4
− T

2
variables in S are substituted as 1. It is easy to see that EvaldimXj [FXj(X, Y )] ≤

EvaldimS[F (X, Y )].

Claim A.2.1 EvaldimXj [FXj(X, Y )] ≥ 2
T
2

Proof: For all i ∈ {0} ∪ [n
2
− 1] Pi looks like

(xj1 + ...)× (xj2 + ...)× ....× (xjT
2

+ ...)fi(X, Y )

Along with each of the xj1 , xj2 , ...., xjT
2

variables one of the Y variables may appear. Also notice

that xj1 , xj2 , ..., xjT
2

variables do not appear in fi(X, Y ).

⇒ ∀i ∈ {0} ∪ [
n

2
− 1] Pi = (

∑
St⊆[T

2
]

xSt × hit)fi(X, Y )

Here xSt =
∏

k∈St xjk and hit is a polynomial in the Y variables that are summed with xjk
where k ∈ [T

2
] \ St

After we pick n
2

variables we are left with with 3n
2

variables that are not in S. From these
3n
2

variables at least n
2

are X variables. These n
2
X variables appear in all the n

2
polynomials

f1(X, Y ), f2(X, Y ), ..., fn
2
(X, Y ). Pick n

2
− 1 variables from these n

2
X variables, that are not in

S. Let them be {xr0 , xr1 , ..., xri−1
, xri+1

, ...,

xrn
2−1
} such that the variable xrw corresponds to the wth product gate . For all w ∈ {0, ..., (n

2
−

1)} \ {i}, substitute

xrw = −y((rw+w) mod (n)) − 1

After these substitutions we have For all w ∈ {0, ..., (n
2
−1)}\{i}, fw(X, Y ) = 0 and fi(X, Y ) 6=

0. Let F
′
Xj

(X, Y ) be the polynomial after we have made the above substitutions to FXj(X, Y ).

F
′

Xj
(X, Y ) = (

∑
St⊆[T

2
]

xSt × hit)fi(X, Y )

Let h∼it = hitfi(X, Y ). Hence

F
′

Xj
(X, Y ) = (

∑
St⊆[T

2
]

xSt × h∼it)

68



Below we show that of evaluation dimension of F
′
Xj

(X, Y ) with respect to Xj is at most evalu-

ation dimension of FXj(X, Y ) with respect to Xj.

Claim A.2.2 EvaldimXj [FXj(X, Y )] ≥ EvaldimXj [F
′
Xj

(X, Y )]

The proof of claim A.2.2 is similar to claim 4.2.1. Since EvaldimXj [FXj(X, Y )] ≥ EvaldimXj [F
′
Xj

(X, Y )]

it is sufficient to show EvaldimXj [F
′
Xj

(X, Y )] ≥ 2
T
2 .

SubClaim A.2.1 The polynomials h∼it corresponding to St ⊆ [T
2
] as defined above are all lin-

early independent.

For the proof of subClaim A.2.1 refer to the proof of subClaim A.1.2. Since the polynomials

h∼1t corresponding to St ⊆ [T
2
] are all linearly dependent we can use claim 2.4.1 to finish the

proof of this claim. Hence EvaldimXj [FXj(X, Y )] ≥ 2
T
2 . 2

As stated earlier EvaldimS[F (X, Y )] ≥ EvaldimXj [FXj(X, Y )] . Hence EvaldimS[F (X, Y )] ≥
2
T
2 = 2

n
8 . 2

Combining lemma A.2.1 and lemma A.2.2 we can conclude for any set S ⊆ X∪Y with size equal

to n
4

the EvaldimS(F (X, Y )) is at least 2
ε
√
n

2 . This concludes the proof for theorem A.2.2. To

complete the proof of theorem A.2.1 we know there exists a choice of n
2

variables such that the

evaluation dimension of F (X, Y ) is less than the width of the ROABP that computes F (X, Y ),

but theorem A.2.2 on the other hand states that evaluation dimension of F (X, Y ) with respect

to any subset of X ∪ Y of size n
2

is at least 2
n
8 . This implies that any ROABP that computes

the polynomial F (X, Y ) has width equal to 2Ω(n).

69



Bibliography

[Aga05] M. Agarwal. Proving lower bounds via pseudo-random generators. In Proc. 25th An-

nual Conference on Foundations of Software Technology and Theoretical Computer

Science. lncs, 2005. 1, 12

[AGKS14] M. Agarwal, R. Gurjar, A. Korwar, and N. Saxena. Hitting-sets for roabp and sum of

set-multilinear circuits. Electronic Colloquium on Computational Complexity, 2014.

i, ii, 4, 5

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and

the hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

2

[Alo86] N. Alon. Eigenvalues and expanders. Combinatorica, 1986. 16

[AM85] N. Alon and V. D. Milman. isoperimetric inequalities for graphs and superconcen-

trators. J. Combin. Theory Ser., 1985. 16

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of

np. Journal of the ACM, 45(1):70–122, 1998. 2

[ASS12] M. Agarwal, C. Saha, and N. Saxena. Quasi-polynomial hitting set for set-depth-

delta formulas. In Proc. 45th Annual ACM Symposium on the Theory of Computing.

ACM, 2012. i, ii, 3, 5, 21, 22, 25, 26

[AV08] M. Agarwal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proc.

49th Annual IEEE Symposium on Foundations of Computer Science, pages 67–75,

2008. 3

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-

prover interactive protocols. Computational Complexity, 1991. 2

70



BIBLIOGRAPHY

[BOC92] M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number

of registers. SIAM Journal on Computing, 21(1):54–58, 1992. 12

[Bus82] P. Buser. A note on the isopoermitric constant. Annual Science Ecole Norm.,

4(15):213–230, 1982. 16

[Che70] J. Cheeger. Lower bound for the smallest eigenvalue of the laplacian. Problems in

analysis, pages 195–199, 1970. 16

[CRS95] S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique element iso-

lation with applications to perfect matching and related problems. SIAM Journal

on Computing, 24(5):1036–1050, 1995. 1

[Dod84] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain

random walks. SIAM Journal on Computing, 284(2):787–794, 1984. 16

[FS13] M. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-

commutative and read-once oblivious algebraic branching programs. In Proc. 54th

Annual IEEE Symposium on Foundations of Computer Science, pages 243–252,

2013. i, 13

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators.

J. Comput. Syst. Sci., 22(3):407–420, 1981. 15

[GKKS13] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Arithmetic circuits: A chasm

at depth four. In Proc. 54th Annual IEEE Symposium on Foundations of Computer

Science, pages 578–587, 2013. 3

[GKST15] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic

identity testing for sum of read once abps. Computational Complexity, 2015. 7, 25,

55

[Hal35] Philip Hall. On representatives of subsets. J. London Math. Soc., 10(1):26–30, 1935.

19

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their

applications. Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

15, 16, 17

71



BIBLIOGRAPHY

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute. In

Proc. 12th Annual ACM Symposium on the Theory of Computing. ACM, 1980. 1,

12

[KB93] A. N. Kolmogorov and Ya. M. Barzdi. On the realization of networks in three-

dimensional space. Selected works of Kolmogorov, 3, 1993. 15

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means

proving circuit lower bounds. Computational Complexity, 2004. 1, 11

[KLSS14] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An expo-

nential lower bound for homogeneous depth four arithmetic formulas. In Proc. 55th

Annual IEEE Symposium on Foundations of Computer Science, pages 61–70, 2014.

55

[KMS98] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring

by semidefinite programming. J. ACM, 45(2):246–265, 1998. 5, 6, 24

[Koi12] P. Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theoretical

Computer Science, 448:56–65, 2012. 3

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of

multivariate polynomials. In Proc. 33rd Annual ACM Symposium on the Theory of

Computing, pages 216–223, 2001. 21, 26, 32

[KS14] Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arith-

metic circuits. In Proc. 55th Annual IEEE Symposium on Foundations of Computer

Science, pages 364–373, 2014. 55

[KUW86] R. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random

nc. Combinatorica, 6(2):35–48, 1986. 1

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive

proof systems. Journal of the ACM, 39(4):859–868, 1992. 2

[Lov79] L. Lovasz. On determinants matchings and random algorithms. Fundamentals of

Computing Theory, 1979. 1

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Com-

binatorica, 8(3):261–277, 1988. 15

72



BIBLIOGRAPHY

[Mar73] G. A. Margulis. Explicit constructions of expanders. Problemy Peredaci Informacii,

9(7):71–80, 1973. 15

[Mar88] G. A. Margulis. Explicit group-theoretic constructions and combinatorial schemes

and their applications in the construction of expanders and concentrators. Problems

of Information Transmission, 24(1):39–46, 1988. 15

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.

Combinatorica, 7(1):105–113, 1987. 1

[Nis91] N. Nisan. Lower bounds for non commutative computation. In Proc. 23rd Annual

ACM Symposium on the Theory of Computing. ACM, 1991. 12

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combinator-

ica, 12(4):449–461, 1992. 13

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial

derivatives. Computational Complexity, 6(3):217–234, 1997. 3

[ORW02] S. Vadhan O. Reingold and A. Wigderson. Entropy waves, the zig-zag graph prod-

uct, and new constant-degree expanders. Annals of Mathematics, 2(155):157–187,

2002. 15

[OSV15] Rafael Mendes De Oliveira, Amir Shpilka, and Ben Lee Volk. Subexponential size

hitting sets for bounded depth multilinear formulas. Computational Complexity,

2015. i, ii, 4, 6

[Pin73] M. Pinsker. On the complexity of a concentrator. International Telegrafic Confer-

ence, 1973. 15

[Raz10] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. In Proc. 42nd

Annual ACM Symposium on the Theory of Computing, pages 659–666, 2010. 10

[RS05] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non-

commutative models. In Computational Complexity, pages 1–19, 2005. 4

[RY09] R. Raz and A. Yehudayof. Lower bounds and separations for constant depth mul-

tilinear circuits. In Computational Complexity, pages 128–139, 2009. 13, 14

[Sha92] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992. 2

73



BIBLIOGRAPHY

[SSS09] C. Saha, R. Saptharishi, and N. Saxena. The power of depth 2 circuits over alge-

bras. In Proc. 29th Annual Conference on Foundations of Software Technology and

Theoretical Computer Science. lncs, 2009. 12

[SV85] Sven Skyum and Leslie G. Valiant. A complexity theory based on boolean algebra.

J. ACM, 32(2):484–502, 1985. 1

[SY10] A. Shpilka and A. Yehudayof. Arithmetic circuits:a survey of recent results and open

questions. Technical report, 2010. Available at ”http://www.cs.technion.ac.il/ sh-

pilka/publications/SY10.pdf”. 3

[Tav13] S. Tavenas. Improved bounds for reduction to depth 4 and depth 3. In Mathematical

Foundations of Computer Science, page 813824, 2013. 3

[Val79a] L. G. Valiant. Completeness classes in algebra. In Proc. 11th Annual ACM Sympo-

sium on the Theory of Computing, pages 249–261, 1979. 1, 11

[Val79b] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8(2):189–201, 1979. 1, 11

74


	Acknowledgements
	Abstract
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation and Related Works
	1.2 Contributions of thesis
	1.3 Organization of thesis

	2 Preliminaries
	2.1 Arithmetic Circuits
	2.2 Connections between polynomial identity testing and arithmetic circuit lower bounds
	2.3 Algebraic Branching Programs
	2.3.1 Read-Once Oblivious Algebraic Branching Program

	2.4 Evaluation Dimension
	2.5 Expander Graphs
	2.5.1 Spectral gap and its connections to edge expansion
	2.5.2 Explicit construction of degree three expanders
	2.5.3 Double Cover


	3 Superposition of set-multilinear depth 3 circuits
	3.1 Whitebox PIT for superposition of two set-multilinear depth three circuits
	3.2 NP-hardness and approximation algorithm
	3.3 Hitting sets for superposition of set-multilinear depth three circuits

	4 Lower bounds for ROABP's against multilinear depth 3 circuits
	4.1 Constructing a polynomial sized ROABP
	4.2 Lower Bounds for ROABPs
	4.2.1 Lower Bounds for multilinear depth 3 circuits with 3 product gates and 2 base sets
	4.2.2 Lower Bounds for multilinear depth 3 circuits with 2 product gates and 3 base sets


	5 Future Work
	A ROABP lower bound without expanders
	A.1 Exp(n) lower bound against ROABPs
	A.2 Exponential lower bound against ROABPs for multilinear depth three circuit with O(n) top fan-in 

	Bibliography

