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MC’s with Constrictions

Figure: A network with a constriction. All edges have weight 1.
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Constriction 
caused by non-
convexity!
Does convex imply
rapid mixing ?
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Conductance, Rapid Mixing of Symmetric MC’s

Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.

For a connected MC, conductance Φ(S) of a subset S of states is

defined as
∑

i∈S,j∈S̄ πi Pij

min(π(S),π(S̄))
. (If symmetric, can drop πi and replace

π(S) by |S|. We stick to the first form.)
Conductance Φ of the MC is min over all S of Φ(S).
Informal Theorem MC converges to stationarity in time O(1/Φ2).
Lower bound: One needs time at least Ω(1/Φ) (Simpler than
Theorem).
Formally, for any ε > 0, the ε mixing time of a symmetric
connected MC is min t such that

∣∣a(t)− 1
n 1
∣∣
1 ≤ ε, where,

a(t) = 1
t (p(0) + p(1) + · · ·+ p(t− 1)).

Rapid Mixing Theorem: The ε mixing time of a connected
symmetric MC is O(ln n/Φ2ε3)

Rapid Mixing in Symmetric MC’s January 31, 2018 4 / 13



Conductance, Rapid Mixing of Symmetric MC’s

Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.
For a connected MC, conductance Φ(S) of a subset S of states is

defined as
∑

i∈S,j∈S̄ πi Pij

min(π(S),π(S̄))
. (If symmetric, can drop πi and replace

π(S) by |S|. We stick to the first form.)

Conductance Φ of the MC is min over all S of Φ(S).
Informal Theorem MC converges to stationarity in time O(1/Φ2).
Lower bound: One needs time at least Ω(1/Φ) (Simpler than
Theorem).
Formally, for any ε > 0, the ε mixing time of a symmetric
connected MC is min t such that

∣∣a(t)− 1
n 1
∣∣
1 ≤ ε, where,

a(t) = 1
t (p(0) + p(1) + · · ·+ p(t− 1)).

Rapid Mixing Theorem: The ε mixing time of a connected
symmetric MC is O(ln n/Φ2ε3)

Rapid Mixing in Symmetric MC’s January 31, 2018 4 / 13



Conductance, Rapid Mixing of Symmetric MC’s

Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.
For a connected MC, conductance Φ(S) of a subset S of states is

defined as
∑

i∈S,j∈S̄ πi Pij

min(π(S),π(S̄))
. (If symmetric, can drop πi and replace

π(S) by |S|. We stick to the first form.)
Conductance Φ of the MC is min over all S of Φ(S).

Informal Theorem MC converges to stationarity in time O(1/Φ2).
Lower bound: One needs time at least Ω(1/Φ) (Simpler than
Theorem).
Formally, for any ε > 0, the ε mixing time of a symmetric
connected MC is min t such that

∣∣a(t)− 1
n 1
∣∣
1 ≤ ε, where,

a(t) = 1
t (p(0) + p(1) + · · ·+ p(t− 1)).

Rapid Mixing Theorem: The ε mixing time of a connected
symmetric MC is O(ln n/Φ2ε3)

Rapid Mixing in Symmetric MC’s January 31, 2018 4 / 13



Conductance, Rapid Mixing of Symmetric MC’s

Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.
For a connected MC, conductance Φ(S) of a subset S of states is

defined as
∑

i∈S,j∈S̄ πi Pij

min(π(S),π(S̄))
. (If symmetric, can drop πi and replace

π(S) by |S|. We stick to the first form.)
Conductance Φ of the MC is min over all S of Φ(S).
Informal Theorem MC converges to stationarity in time O(1/Φ2).

Lower bound: One needs time at least Ω(1/Φ) (Simpler than
Theorem).
Formally, for any ε > 0, the ε mixing time of a symmetric
connected MC is min t such that

∣∣a(t)− 1
n 1
∣∣
1 ≤ ε, where,

a(t) = 1
t (p(0) + p(1) + · · ·+ p(t− 1)).

Rapid Mixing Theorem: The ε mixing time of a connected
symmetric MC is O(ln n/Φ2ε3)

Rapid Mixing in Symmetric MC’s January 31, 2018 4 / 13



Conductance, Rapid Mixing of Symmetric MC’s

Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.
For a connected MC, conductance Φ(S) of a subset S of states is

defined as
∑

i∈S,j∈S̄ πi Pij

min(π(S),π(S̄))
. (If symmetric, can drop πi and replace

π(S) by |S|. We stick to the first form.)
Conductance Φ of the MC is min over all S of Φ(S).
Informal Theorem MC converges to stationarity in time O(1/Φ2).
Lower bound: One needs time at least Ω(1/Φ) (Simpler than
Theorem).

Formally, for any ε > 0, the ε mixing time of a symmetric
connected MC is min t such that

∣∣a(t)− 1
n 1
∣∣
1 ≤ ε, where,

a(t) = 1
t (p(0) + p(1) + · · ·+ p(t− 1)).

Rapid Mixing Theorem: The ε mixing time of a connected
symmetric MC is O(ln n/Φ2ε3)

Rapid Mixing in Symmetric MC’s January 31, 2018 4 / 13



Conductance, Rapid Mixing of Symmetric MC’s

Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.
For a connected MC, conductance Φ(S) of a subset S of states is

defined as
∑

i∈S,j∈S̄ πi Pij

min(π(S),π(S̄))
. (If symmetric, can drop πi and replace

π(S) by |S|. We stick to the first form.)
Conductance Φ of the MC is min over all S of Φ(S).
Informal Theorem MC converges to stationarity in time O(1/Φ2).
Lower bound: One needs time at least Ω(1/Φ) (Simpler than
Theorem).
Formally, for any ε > 0, the ε mixing time of a symmetric
connected MC is min t such that

∣∣a(t)− 1
n 1
∣∣
1 ≤ ε, where,

a(t) = 1
t (p(0) + p(1) + · · ·+ p(t− 1)).

Rapid Mixing Theorem: The ε mixing time of a connected
symmetric MC is O(ln n/Φ2ε3)

Rapid Mixing in Symmetric MC’s January 31, 2018 4 / 13



Idea of Proof

Recall proof of Fundamental Theorem: Showed first that if we run
one step starting from a(t), the change in the probability vector is
O(1/t) in l1 norm. Let vi = a(t)i/πi = nai(t).

Start with a(t), run 1 step. Net probability flow h(i , j) from i to j :
h(i , j) = 1

n (viPij − vjPji) = 1
n (vi − vj)Pij by symmetry.

If vi > vj , h(i , j) > 0; net loss. Probability flows from “heavy” to
“light” vertices.
Probability Flow Lemma:

Take two disjoint sets of vertices - with each vertex in 1st set
heavier by at least γ > 0 than each vertex in second set. This gives
lower bound in terms of γ on net flow from 1st set to 2nd.
But we showed (and will recap), net-flow from all heavy vertices to
all light vertices which is |a− aP|1 is O(1/t)→ 0.
So heavy vertices cannot be much heavier than the light ones (if
they were, flow would be greater than 1/t .)
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Proof of Rapid Mixing - I

Vertex i is Heavy if vi > 1. Renumber so that
v1 ≥ v2 . . . vi0 > 1 ≥ vi0+1 ≥ . . . vn. i0 is last heavy vertex.

Claim ||a− (1/n)||1 = 2
∑i0

i=1(ai − (1/n)). [So need only to
measure how heavy the heavy vertices are.]

Proof: Since
∑n

i=1 ai = 1,
∑i0

i=1(ai − (1/n)) =
∑n

i=i0+1((1/n)− ai ).
[Total heaviness of heavy vertices equals total lightness of light
vertices.]
Since ||a− (1/n)||1 =

∑n
i=1 |ai − (1/n)|, claim follows.

Define f : [0, i0/n] by f (x) = vi − 1 for x ∈ [(i − 1)/n, i/n) for
i = 1,2 . . . , i0. [Picture coming.]∑i0

i=1(ai − (1/n)) = 1
n
∑i0

i=1(vi − 1) =
∫ i0/n

0 f (x) dx .

Henceforth: Want to prove:
∫ i0/n

0 f (x) dx ≤ ε.
||a− (1/n)||1 called Total Variation.
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x

f (x)

g(x)

G1 = {1}; G2 = {2,3,4}; G3 = {5}.

1/n 2/n 3/n 4/n 5/n

Figure: Bounding l1 distance.
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Proof-II: Groups and Probability Flows

1 Recall central to proof: Probability Flow Lemma Verbally: “Take
two disjoint sets of vertices - with each vertex in 1st set heavier by
at least γ > 0 than each vertex in second set. Get a lower bound
in terms of γ, the “heaviness gap” on net flow from 1st set to 2nd.”

2 Will implement this by dividing {1,2, . . . , i0} into groups
G1,G2, . . .Gr , where, if Gs ends in some k , Gs+1 is
{k + 1, k + 2, . . . , l} for some l ≥ k + 1. Will specify the technical
detail of groups later.

3 But, point of groups will be: we will take as “1st set”
G1 ∪G2 ∪ . . .Gs (for each s) and “2nd set” Gs+2,Gs+3, . . .. In
other words, “net flow from 1st set to 2nd set” is really the “flow
across” Gs+1. To implement the intuitive idea, we need to (i)
express the total variation distance in terms of the γ above, which
we do first (this is the more technical part) and (ii) prove Prob.
Flow Lemma, later. (See (1)).
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Flow Lemma, later. (See (1)).
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Groups and Prob Flows -II

1 Now, more rigorously: Assume we have the groups. Define for
s = 1,2, . . . , r : us = Maxj∈Gsvj and ur+1 = 1. Define
g(x) = us − 1forx ∈ ∪i∈Gs [(i − 1)/n, i/n).

2 g(x) ≥ f (x)∀x . So enough to bound
∫

g(x).
3 Intuition for next assertion:∫ i0/n

0 g(x)︸︷︷︸
Y

dx︸︷︷︸
dX

= [xg(x)]
i0/n
0︸ ︷︷ ︸

0

−
∫ i0/n

0 xg′(x)dx .

4 Total Variation =
∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1).....(∗)
5 Direct Proof of (*), by expansion:∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1) = π(G1)(u1 − u2) + (π(G1) +
π(G2))(u2 − u3) + · · ·+ (π(G1) + π(G2) + · · ·+ π(Gr ))(ur − 1) =
π(G1)u1 + π(G2)u2 + π(G3)u3 + · · ·+ π(Gr )ur − (π(G1) + π(G2) +
· · ·+ π(Gr )). =

∑r
s=1 π(Gs)(us − 1).

6 Integrals only for intuition on “integration by parts”.
7 Now, we have TV in terms of the “heaviness gap”: us − us+1.

Rapid Mixing in Symmetric MC’s January 31, 2018 9 / 13



Groups and Prob Flows -II

1 Now, more rigorously: Assume we have the groups. Define for
s = 1,2, . . . , r : us = Maxj∈Gsvj and ur+1 = 1. Define
g(x) = us − 1forx ∈ ∪i∈Gs [(i − 1)/n, i/n).

2 g(x) ≥ f (x)∀x . So enough to bound
∫

g(x).

3 Intuition for next assertion:∫ i0/n
0 g(x)︸︷︷︸

Y

dx︸︷︷︸
dX

= [xg(x)]
i0/n
0︸ ︷︷ ︸

0

−
∫ i0/n

0 xg′(x)dx .

4 Total Variation =
∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1).....(∗)
5 Direct Proof of (*), by expansion:∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1) = π(G1)(u1 − u2) + (π(G1) +
π(G2))(u2 − u3) + · · ·+ (π(G1) + π(G2) + · · ·+ π(Gr ))(ur − 1) =
π(G1)u1 + π(G2)u2 + π(G3)u3 + · · ·+ π(Gr )ur − (π(G1) + π(G2) +
· · ·+ π(Gr )). =

∑r
s=1 π(Gs)(us − 1).

6 Integrals only for intuition on “integration by parts”.
7 Now, we have TV in terms of the “heaviness gap”: us − us+1.

Rapid Mixing in Symmetric MC’s January 31, 2018 9 / 13



Groups and Prob Flows -II

1 Now, more rigorously: Assume we have the groups. Define for
s = 1,2, . . . , r : us = Maxj∈Gsvj and ur+1 = 1. Define
g(x) = us − 1forx ∈ ∪i∈Gs [(i − 1)/n, i/n).

2 g(x) ≥ f (x)∀x . So enough to bound
∫

g(x).
3 Intuition for next assertion:∫ i0/n

0 g(x)︸︷︷︸
Y

dx︸︷︷︸
dX

= [xg(x)]
i0/n
0︸ ︷︷ ︸

0

−
∫ i0/n

0 xg′(x)dx .

4 Total Variation =
∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1).....(∗)
5 Direct Proof of (*), by expansion:∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1) = π(G1)(u1 − u2) + (π(G1) +
π(G2))(u2 − u3) + · · ·+ (π(G1) + π(G2) + · · ·+ π(Gr ))(ur − 1) =
π(G1)u1 + π(G2)u2 + π(G3)u3 + · · ·+ π(Gr )ur − (π(G1) + π(G2) +
· · ·+ π(Gr )). =

∑r
s=1 π(Gs)(us − 1).

6 Integrals only for intuition on “integration by parts”.
7 Now, we have TV in terms of the “heaviness gap”: us − us+1.

Rapid Mixing in Symmetric MC’s January 31, 2018 9 / 13



Groups and Prob Flows -II

1 Now, more rigorously: Assume we have the groups. Define for
s = 1,2, . . . , r : us = Maxj∈Gsvj and ur+1 = 1. Define
g(x) = us − 1forx ∈ ∪i∈Gs [(i − 1)/n, i/n).

2 g(x) ≥ f (x)∀x . So enough to bound
∫

g(x).
3 Intuition for next assertion:∫ i0/n

0 g(x)︸︷︷︸
Y

dx︸︷︷︸
dX

= [xg(x)]
i0/n
0︸ ︷︷ ︸

0

−
∫ i0/n

0 xg′(x)dx .

4 Total Variation =
∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1).....(∗)

5 Direct Proof of (*), by expansion:∑r
s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1) = π(G1)(u1 − u2) + (π(G1) +

π(G2))(u2 − u3) + · · ·+ (π(G1) + π(G2) + · · ·+ π(Gr ))(ur − 1) =
π(G1)u1 + π(G2)u2 + π(G3)u3 + · · ·+ π(Gr )ur − (π(G1) + π(G2) +
· · ·+ π(Gr )). =

∑r
s=1 π(Gs)(us − 1).

6 Integrals only for intuition on “integration by parts”.
7 Now, we have TV in terms of the “heaviness gap”: us − us+1.

Rapid Mixing in Symmetric MC’s January 31, 2018 9 / 13



Groups and Prob Flows -II

1 Now, more rigorously: Assume we have the groups. Define for
s = 1,2, . . . , r : us = Maxj∈Gsvj and ur+1 = 1. Define
g(x) = us − 1forx ∈ ∪i∈Gs [(i − 1)/n, i/n).

2 g(x) ≥ f (x)∀x . So enough to bound
∫

g(x).
3 Intuition for next assertion:∫ i0/n

0 g(x)︸︷︷︸
Y

dx︸︷︷︸
dX

= [xg(x)]
i0/n
0︸ ︷︷ ︸

0

−
∫ i0/n

0 xg′(x)dx .

4 Total Variation =
∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1).....(∗)
5 Direct Proof of (*), by expansion:∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1) = π(G1)(u1 − u2) + (π(G1) +
π(G2))(u2 − u3) + · · ·+ (π(G1) + π(G2) + · · ·+ π(Gr ))(ur − 1) =
π(G1)u1 + π(G2)u2 + π(G3)u3 + · · ·+ π(Gr )ur − (π(G1) + π(G2) +
· · ·+ π(Gr )). =

∑r
s=1 π(Gs)(us − 1).

6 Integrals only for intuition on “integration by parts”.
7 Now, we have TV in terms of the “heaviness gap”: us − us+1.

Rapid Mixing in Symmetric MC’s January 31, 2018 9 / 13



Groups and Prob Flows -II

1 Now, more rigorously: Assume we have the groups. Define for
s = 1,2, . . . , r : us = Maxj∈Gsvj and ur+1 = 1. Define
g(x) = us − 1forx ∈ ∪i∈Gs [(i − 1)/n, i/n).

2 g(x) ≥ f (x)∀x . So enough to bound
∫

g(x).
3 Intuition for next assertion:∫ i0/n

0 g(x)︸︷︷︸
Y

dx︸︷︷︸
dX

= [xg(x)]
i0/n
0︸ ︷︷ ︸

0

−
∫ i0/n

0 xg′(x)dx .

4 Total Variation =
∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1).....(∗)
5 Direct Proof of (*), by expansion:∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1) = π(G1)(u1 − u2) + (π(G1) +
π(G2))(u2 − u3) + · · ·+ (π(G1) + π(G2) + · · ·+ π(Gr ))(ur − 1) =
π(G1)u1 + π(G2)u2 + π(G3)u3 + · · ·+ π(Gr )ur − (π(G1) + π(G2) +
· · ·+ π(Gr )). =

∑r
s=1 π(Gs)(us − 1).

6 Integrals only for intuition on “integration by parts”.

7 Now, we have TV in terms of the “heaviness gap”: us − us+1.

Rapid Mixing in Symmetric MC’s January 31, 2018 9 / 13



Groups and Prob Flows -II

1 Now, more rigorously: Assume we have the groups. Define for
s = 1,2, . . . , r : us = Maxj∈Gsvj and ur+1 = 1. Define
g(x) = us − 1forx ∈ ∪i∈Gs [(i − 1)/n, i/n).

2 g(x) ≥ f (x)∀x . So enough to bound
∫

g(x).
3 Intuition for next assertion:∫ i0/n

0 g(x)︸︷︷︸
Y

dx︸︷︷︸
dX

= [xg(x)]
i0/n
0︸ ︷︷ ︸

0

−
∫ i0/n

0 xg′(x)dx .

4 Total Variation =
∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1).....(∗)
5 Direct Proof of (*), by expansion:∑r

s=1 π(G1 ∪G2 ∪ . . .Gs)(us − us+1) = π(G1)(u1 − u2) + (π(G1) +
π(G2))(u2 − u3) + · · ·+ (π(G1) + π(G2) + · · ·+ π(Gr ))(ur − 1) =
π(G1)u1 + π(G2)u2 + π(G3)u3 + · · ·+ π(Gr )ur − (π(G1) + π(G2) +
· · ·+ π(Gr )). =

∑r
s=1 π(Gs)(us − 1).

6 Integrals only for intuition on “integration by parts”.
7 Now, we have TV in terms of the “heaviness gap”: us − us+1.

Rapid Mixing in Symmetric MC’s January 31, 2018 9 / 13



Probability Flow Lemma

Definition of groups: Intuitively: If G1,G2, . . . ,Gs−1 are already
defined, Gs has the next εΦ

4 (|G1 ∪G2 ∪ . . .Gs−1|) vertices. (Sizes
of |G1 ∪G2 ∪ . . .Gs| grow as (1 + (εΦ/4)s.) More precisely,

Start with G1 = {1}.
If G1,G2, . . . ,Gs−1 have been defined, let is = 1+(end of Gs−1).
Define l , the last element of Gs to be the largest integer in
{is, is, . . . , i0} such that l − is + 1 ≤ εΦ(is−1)

4 .

Probability Flow Lemma: Suppose groups
G1,G2, . . . ,Gr ,u1.u2, . . . ,ur ,ur+1 are as above. Then,

π(G1 ∪G2 ∪ . . .Gs)(us − us+1) ≤ 8
tΦε

.

Rapid Mixing in Symmetric MC’s January 31, 2018 10 / 13



Probability Flow Lemma

Definition of groups: Intuitively: If G1,G2, . . . ,Gs−1 are already
defined, Gs has the next εΦ

4 (|G1 ∪G2 ∪ . . .Gs−1|) vertices. (Sizes
of |G1 ∪G2 ∪ . . .Gs| grow as (1 + (εΦ/4)s.) More precisely,

Start with G1 = {1}.

If G1,G2, . . . ,Gs−1 have been defined, let is = 1+(end of Gs−1).
Define l , the last element of Gs to be the largest integer in
{is, is, . . . , i0} such that l − is + 1 ≤ εΦ(is−1)

4 .

Probability Flow Lemma: Suppose groups
G1,G2, . . . ,Gr ,u1.u2, . . . ,ur ,ur+1 are as above. Then,

π(G1 ∪G2 ∪ . . .Gs)(us − us+1) ≤ 8
tΦε

.

Rapid Mixing in Symmetric MC’s January 31, 2018 10 / 13



Probability Flow Lemma

Definition of groups: Intuitively: If G1,G2, . . . ,Gs−1 are already
defined, Gs has the next εΦ

4 (|G1 ∪G2 ∪ . . .Gs−1|) vertices. (Sizes
of |G1 ∪G2 ∪ . . .Gs| grow as (1 + (εΦ/4)s.) More precisely,

Start with G1 = {1}.
If G1,G2, . . . ,Gs−1 have been defined, let is = 1+(end of Gs−1).

Define l , the last element of Gs to be the largest integer in
{is, is, . . . , i0} such that l − is + 1 ≤ εΦ(is−1)

4 .

Probability Flow Lemma: Suppose groups
G1,G2, . . . ,Gr ,u1.u2, . . . ,ur ,ur+1 are as above. Then,

π(G1 ∪G2 ∪ . . .Gs)(us − us+1) ≤ 8
tΦε

.

Rapid Mixing in Symmetric MC’s January 31, 2018 10 / 13



Probability Flow Lemma

Definition of groups: Intuitively: If G1,G2, . . . ,Gs−1 are already
defined, Gs has the next εΦ

4 (|G1 ∪G2 ∪ . . .Gs−1|) vertices. (Sizes
of |G1 ∪G2 ∪ . . .Gs| grow as (1 + (εΦ/4)s.) More precisely,

Start with G1 = {1}.
If G1,G2, . . . ,Gs−1 have been defined, let is = 1+(end of Gs−1).
Define l , the last element of Gs to be the largest integer in
{is, is, . . . , i0} such that l − is + 1 ≤ εΦ(is−1)

4 .

Probability Flow Lemma: Suppose groups
G1,G2, . . . ,Gr ,u1.u2, . . . ,ur ,ur+1 are as above. Then,

π(G1 ∪G2 ∪ . . .Gs)(us − us+1) ≤ 8
tΦε

.

Rapid Mixing in Symmetric MC’s January 31, 2018 10 / 13



Probability Flow Lemma

Definition of groups: Intuitively: If G1,G2, . . . ,Gs−1 are already
defined, Gs has the next εΦ

4 (|G1 ∪G2 ∪ . . .Gs−1|) vertices. (Sizes
of |G1 ∪G2 ∪ . . .Gs| grow as (1 + (εΦ/4)s.) More precisely,

Start with G1 = {1}.
If G1,G2, . . . ,Gs−1 have been defined, let is = 1+(end of Gs−1).
Define l , the last element of Gs to be the largest integer in
{is, is, . . . , i0} such that l − is + 1 ≤ εΦ(is−1)

4 .

Probability Flow Lemma: Suppose groups
G1,G2, . . . ,Gr ,u1.u2, . . . ,ur ,ur+1 are as above. Then,

π(G1 ∪G2 ∪ . . .Gs)(us − us+1) ≤ 8
tΦε

.

Rapid Mixing in Symmetric MC’s January 31, 2018 10 / 13



Proof of Prob flow lemma

This is the main lemma. Use two ways of calculating prob flow
from heavy to light states when we execute one step of MC
starting at a. Prob’s after that step is aP. a− aP is net loss of prob
for each state.

Suppose group Gs = {k , k + 1, . . . , l}. First consider case: k < i0.
Let A = {1,2, . . . , k}. Net loss of prob flow from A is∑k

i=1(ai − (aP)i) which ≤ 2
t by the proof of Fund Thm.

But also, net prob flow from A is
(Net flow from A to Gs) + (Net flow from A to {l + 1, l + 2, . . . ,n}).
Saw: Net flow from i to j is non-negative when i is heavier than j ,
so Net flow from A to Gs is non-negative.
So Net flow from A ≥ (Net flow from A to {l + 1, l + 2, . . . ,n})
≥
∑

i≤k
j>l

πjpji(vi − vj) ≥ (vk − vl+1)
∑

i≤k
j>l

πjpji .
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Prob Flow Lemma-contd.

Net loss of flow ≤ 2/t (from proof of Fund Thm). So:

(vk − vl+1)
∑
i≤k
j>l

πjpji ≤
2
t
. (1)

∑k
i=1
∑l

j=k+1 πjpji ≤
∑l

j=k+1 πj ≤ εΦπ(A)/4.

By defn of Φ:
∑

i≤k<j πjpji ≥ Φmin(π(A), π(Ā)) ≥ εΦk/(2n),

(assuming π(Ā) ≥ επ(A)/2 (to prove later).)∑
i≤k
j>l

πjpji =
∑

i≤k<j πjpji −
∑

i≤k ;j≤l πjpji ≥ εΦk/4n.

k
n (vk − vl+1) ≤ 8

tεΦ ≡ (π(G1) + π(G2) + · · ·π(Gs))(us − us+1) ≤ 8
tεΦ

proving lemma provided k < i0.
If k = i0, the proof is similar but simpler.
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(vk − vl+1)
∑
i≤k
j>l

πjpji ≤
2
t
. (1)

∑k
i=1
∑l

j=k+1 πjpji ≤
∑l

j=k+1 πj ≤ εΦπ(A)/4.

By defn of Φ:
∑

i≤k<j πjpji ≥ Φmin(π(A), π(Ā)) ≥ εΦk/(2n),

(assuming π(Ā) ≥ επ(A)/2 (to prove later).)∑
i≤k
j>l

πjpji =
∑

i≤k<j πjpji −
∑

i≤k ;j≤l πjpji ≥ εΦk/4n.

k
n (vk − vl+1) ≤ 8

tεΦ ≡ (π(G1) + π(G2) + · · ·π(Gs))(us − us+1) ≤ 8
tεΦ
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Bounding number of groups

If
∑

i>i0(1− vi)πi ≤ ε, we would be done. Wlg assume∑
i>i0(1− vi)πi > ε implies π(Ā) ≥ ε. [Needed in last slide.]

Proved: (π(G1) + π(G2) + · · ·π(Gs))(us − us+1) ≤ 8
tεΦ , but TV is

sum over all s. Need now to bound the number of groups.
Since group sizes grow geometrically, get number r of groups is at
most: r ≤ ln1+(εΦ/2)(1/π1) + 2 ≤ ln(1/π1)/(εΦ/2) + 2. π1 = 1/n,
so get an extra log factor.
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