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MC'’s with Constrictions

Figure: A network with a constriction. All edges have weight 1.
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|
Conductance, Rapid Mixing of Symmetric MC’s

@ Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.
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Conductance, Rapid Mixing of Symmetric MC’s

@ Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.

@ For a connected MC, conductance ®(S) of a subset S of states is
: Zies,‘eé”ipil' ; ,
defined as m (If §ymmetr|c, can drop 7; and replace
7(S) by |S|. We stick to the first form.)
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Conductance, Rapid Mixing of Symmetric MC’s

@ Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.
@ For a connected MC, conductance ®(S) of a subset S of states is

: Zies,‘eé”ipil' ; ,

defined as m (If §ymmetr|c, can drop 7; and replace
7(S) by |S|. We stick to the first form.)

@ Conductance @ of the MC is min over all S of ®(S).

@ Informal Theorem MC converges to stationarity in time O(1/®?2).
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Conductance, Rapid Mixing of Symmetric MC’s

@ Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.
@ For a connected MC, conductance ®(S) of a subset S of states is

defined as m (If §ymmetric, can drop 7; and replace
7(S) by |S|. We stick to the first form.)

@ Conductance ¢ of the MC is min over all S of ¢(S).

@ Informal Theorem MC converges to stationarity in time O(1/®?2).

@ Lower bound: One needs time at least Q(1/®) (Simpler than
Theorem).
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|
Conductance, Rapid Mixing of Symmetric MC’s

Deal with Symmetric Chains first for better intuition. Same
theorem for all time-reversible MC’s. Will prove later.
For a connected MC, conductance ¢(S) of a subset S of states is

defined as ﬁm (If §ymmetric, can drop 7; and replace
7(S) by |S|. We stick to the first form.)

Conductance ¢ of the MC is min over all S of ¢(S).

Informal Theorem MC converges to stationarity in time O(1/®?2).
Lower bound: One needs time at least Q(1/®) (Simpler than
Theorem).

Formally, for any £ > 0, the £ mixing time of a symmetric
connected MC is min ¢ such that |a(t) — 11|, <, where,

a(t) = $(p(0) +p(1) + -+ p(t—1)).

Rapid Mixing Theorem: The ¢ mixing time of a connected
symmetric MC is O(In n/®23)
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Idea of Proof

@ Recall proof of Fundamental Theorem: Showed first that if we run
one step starting from a(t), the change in the probability vector is
O(1/t)in Iy norm. Let v; = a(t);/m; = na;(t).
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Idea of Proof

@ Recall proof of Fundamental Theorem: Showed first that if we run
one step starting from a(t), the change in the probability vector is
O(1/t)in Iy norm. Let v; = a(t);/m; = na;(t).

@ Start with a(t), run 1 step. Net probability flow h(i,j) from i to j:
h(i,j) = L(viPj — viP;) = 1(v; — vj)Pj by symmetry.
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Idea of Proof

@ Recall proof of Fundamental Theorem: Showed first that if we run
one step starting from a(t), the change in the probability vector is
O(1/t)in Iy norm. Let v; = a(t);/m; = na;(t).

@ Start with a(t), run 1 step. Net probability flow h(i,j) from i to j:
h(i,j) = L(viPj — viP;) = 1(v; — vj)Pj by symmetry.

@ If v; > v;, h(i,j) > 0; net loss. Probability flows from “heavy” to
“light” vertices.

@ Probability Flow Lemma:
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Idea of Proof

@ Recall proof of Fundamental Theorem: Showed first that if we run
one step starting from a(t), the change in the probability vector is
O(1/t)in Iy norm. Let v; = a(t);/m; = na;(t).

@ Start with a(t), run 1 step. Net probability flow h(i,j) from i to j:
h(i,j) = L(viPj — viP;) = 1(v; — vj)Pj by symmetry.

@ If v; > v;, h(i,j) > 0; net loss. Probability flows from “heavy” to
“light” vertices.

@ Probability Flow Lemma:

o Take two disjoint sets of vertices - with each vertex in 1st set

heavier by at least v > 0 than each vertex in second set. This gives
lower bound in terms of v on net flow from 1st set to 2nd.
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Idea of Proof

@ Recall proof of Fundamental Theorem: Showed first that if we run
one step starting from a(t), the change in the probability vector is
O(1/t)in Iy norm. Let v; = a(t);/m; = na;(t).

@ Start with a(t), run 1 step. Net probability flow h(i,j) from i to j:
h(i,j) = L(viPj — viP;) = 1(v; — vj)Pj by symmetry.

@ If v; > v;, h(i,j) > 0; net loss. Probability flows from “heavy” to
“light” vertices.

@ Probability Flow Lemma:

o Take two disjoint sets of vertices - with each vertex in 1st set
heavier by at least v > 0 than each vertex in second set. This gives
lower bound in terms of v on net flow from 1st set to 2nd.

e But we showed (and will recap), net-flow from all heavy vertices to
all light vertices which is |a — aP|; is O(1/t) — 0.
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Idea of Proof

@ Recall proof of Fundamental Theorem: Showed first that if we run
one step starting from a(t), the change in the probability vector is
O(1/t)in Iy norm. Let v; = a(t);/m; = na;(t).

@ Start with a(t), run 1 step. Net probability flow h(i,j) from i to j:
h(i.j) = 3(viPy — viP) = 3(vi — v;)P; by symmetry.

@ If v; > v;, h(i,j) > 0; net loss. Probability flows from “heavy” to
“light” vertices.

@ Probability Flow Lemma:

o Take two disjoint sets of vertices - with each vertex in 1st set
heavier by at least v > 0 than each vertex in second set. This gives
lower bound in terms of v on net flow from 1st set to 2nd.

e But we showed (and will recap), net-flow from all heavy vertices to
all light vertices which is |a —aP|; is O(1/t) — 0.

e So heavy vertices cannot be much heavier than the light ones (if
they were, flow would be greater than 1/t.)
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Proof of Rapid Mixing - |

@ Vertex i is Heavy if v; > 1. Renumber so that
Vi>Vo...Vip >12>Vv 1 >... Vs fpis last heavy vertex.
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Proof of Rapid Mixing - |

@ Vertex i is Heavy if v; > 1. Renumber so that
Vi>Vo...Vip >12>Vv 1 >... Vs fpis last heavy vertex.

@ Claim |ja— (1/n)||; = 22;":1(a,- —(1/n)). [So need only to
measure how heavy the heavy vertices are.]
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Proof of Rapid Mixing - |

@ Vertex i is Heavy if v; > 1. Renumber so that
Vi>Vo...Vip >12>Vv 1 >... Vs fpis last heavy vertex.
@ Claim |ja— (1/n)||; = 22;":1(a,- —(1/n)). [So need only to
measure how heavy the heavy vertices are.]
e Proof: Since Y./ a; =1, Y2 (ai — (1/n)) = X1, 11((1/n) — a).
[Total heaviness of heavy vertices equals total lightness of light
vertices.]
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Proof of Rapid Mixing - |

@ Vertex i is Heavy if v; > 1. Renumber so that
Vi>Vo...Vip >12>Vv 1 >... Vs fpis last heavy vertex.
@ Claim |ja— (1/n)||; = 22;":1(a,- —(1/n)). [So need only to
measure how heavy the heavy vertices are.]
o Proof: Since 37y & =1, X0 (& — (1/m) = 7 ,4((1/n) — &).
[Total heaviness of heavy vertices equals total lightness of light

vertices.]
e Since [la— (1/n)||s =3I, |ai — (1/n)|, claim follows.
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Proof of Rapid Mixing - |

@ Vertex i is Heavy if v; > 1. Renumber so that
Vi>Vo...Vip >12>Vv 1 >... Vs fpis last heavy vertex.

@ Claim |ja— (1/n)||; = 22;":1(a,- —(1/n)). [So need only to
measure how heavy the heavy vertices are.]

e Proof: Since Y./ a; =1, Y2 (ai — (1/n)) = X1, 11((1/n) — a).
[Total heaviness of heavy vertices equals total lightness of light
vertices.]

e Since [la— (1/n)||s =3I, |ai — (1/n)|, claim follows.

@ Define f: [0,ip/n] by f(x) =v;—1forx € [(i—1)/n,i/n) for
i=1,2...,l. [Picture coming.]
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Proof of Rapid Mixing - |

@ Vertex i is Heavy if v; > 1. Renumber so that
Vi>Vo...Vip >12>Vv 1 >... Vs fpis last heavy vertex.

@ Claim |ja— (1/n)||; = 22;":1(a,- —(1/n)). [So need only to
measure how heavy the heavy vertices are.]

e Proof: Since Y./ a; =1, Y2 (ai — (1/n)) = X1, 11((1/n) — a).
[Total heaviness of heavy vertices equals total lightness of light
vertices.]

e Since [la— (1/n)||s =3I, |ai — (1/n)|, claim follows.

@ Define f: [0,ip/n] by f(x) =v;—1forx € [(i—1)/n,i/n) for
i=1,2...,l. [Picture coming.]

0 30 (a—(1/n) =130 (v —1) = /" f(x) dx.
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Proof of Rapid Mixing - |

@ Vertex i is Heavy if v; > 1. Renumber so that
Vi>Vo...Vip >12>Vv 1 >... Vs fpis last heavy vertex.

@ Claim |ja— (1/n)||; = 22;":1(a,- —(1/n)). [So need only to
measure how heavy the heavy vertices are.]

e Proof: Since Y./ a; =1, Y2 (ai — (1/n)) = X1, 11((1/n) — a).
[Total heaviness of heavy vertices equals total lightness of light
vertices.]

e Since [la— (1/n)||s =3I, |ai — (1/n)|, claim follows.

@ Define f: [0,ip/n] by f(x) =v;—1forx € [(i—1)/n,i/n) for
i=1,2...,l. [Picture coming.]

0 30 (a—(1/n) =130 (v —1) = /" f(x) dx.

@ Henceforth: Want to prove: /" f(x) dx < e.
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Proof of Rapid Mixing - |

@ Vertex i is Heavy if v; > 1. Renumber so that
Vi>Vo...Vip >12>Vv 1 >... Vs fpis last heavy vertex.

@ Claim |ja— (1/n)||; = 22;":1(a,- —(1/n)). [So need only to
measure how heavy the heavy vertices are.]

e Proof: Since Y./ a; =1, Y2 (ai — (1/n)) = X1, 11((1/n) — a).
[Total heaviness of heavy vertices equals total lightness of light
vertices.]

e Since [la— (1/n)||s =3I, |ai — (1/n)|, claim follows.

@ Define f: [0,ip/n] by f(x) =v;—1forx € [(i—1)/n,i/n) for
i=1,2...,l. [Picture coming.]

o YR y(ai—(1/m) =1 P (vi—1) = [§/"f(x) dx.

@ Henceforth: Want to prove: /" f(x) dx < e.

@ ||a— (1/n)||; called Total Variation.
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.............. g(x)
f(X) Gy ={1};G> =1{2,3,4}, G3 = {5}.
............ 1/n2/n3/n4/n5/n J

Figure: Bounding / distance.
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Proof-1l: Groups and Probability Flows

@ Recall central to proof: Probability Flow Lemma Verbally: “Take
two disjoint sets of vertices - with each vertex in 1st set heavier by
at least v > 0 than each vertex in second set. Get a lower bound
in terms of ~, the “heaviness gap” on net flow from 1st set to 2nd.”
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Proof-1l: Groups and Probability Flows

@ Recall central to proof: Probability Flow Lemma Verbally: “Take
two disjoint sets of vertices - with each vertex in 1st set heavier by
at least v > 0 than each vertex in second set. Get a lower bound
in terms of ~, the “heaviness gap” on net flow from 1st set to 2nd.”

@ Will implement this by dividing {1,2, ..., i} into groups
Gy, G, ... Gy, where, if Gs ends in some k, Gg1 is
{k+1,k+2,...,1} for some | > k + 1. Will specify the technical
detail of groups later.
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-]
Proof-1l: Groups and Probability Flows

@ Recall central to proof: Probability Flow Lemma Verbally: “Take
two disjoint sets of vertices - with each vertex in 1st set heavier by
at least v > 0 than each vertex in second set. Get a lower bound
in terms of ~, the “heaviness gap” on net flow from 1st set to 2nd.”

@ Will implement this by dividing {1,2, ..., i} into groups
Gy, G, ... Gy, where, if Gs ends in some k, Gg1 is
{k+1,k+2,...,1} forsome | > k + 1. Will specify the technical
detail of groups later.

© But, point of groups will be: we will take as “1st set”

G1 U GoU...G;s (for each s) and “2nd set” Gg.2, Gsy3,.... In
other words, “net flow from 1st set to 2nd set” is really the “flow
across” Gg1. To implement the intuitive idea, we need to (i)
express the total variation distance in terms of the v above, which
we do first (this is the more technical part) and (ii) prove Prob.
Flow Lemma, later. (See (1)).
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Groups and Prob Flows -l
@ Now, more rigorously: Assume we have the groups. Define for

s=1,2,...,r us = Maxjeg,v; and u;, 1 = 1. Define
g(x) = us — 1forx € Ujeg (i —1)/n,i/n).
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Groups and Prob Flows -l

@ Now, more rigorously: Assume we have the groups. Define for
s=1,2,...,r us = Maxjeg,v; and u;, 1 = 1. Define
g(x) = us — 1forx € Ujeg (i —1)/n,i/n).

@ g(x) > f(x)vx. So enough to bound [ g(x).
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Groups and Prob Flows -l

@ Now, more rigorously: Assume we have the groups. Define for
s=1,2,...,r us = Maxjeg,v; and u;, 1 = 1. Define
g(x) = us — 1forx € Ujeg (i —1)/n,i/n).
@ g(x) > f(x)vx. So enough to bound [ g(x)
Q Infu/Jri7tion for next asserti?r) n
lo _ 0 o
Jo g(;)% [xg();) o' —Jo"" xg'(x)dx.
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Groups and Prob Flows -l

@ Now, more rigorously: Assume we have the groups. Define for

s=1,2,...,r us = Maxjeg,v; and u;, 1 = 1. Define

g(x) = us — 1forx € Ujeg (i —1)/n,i/n).
@ g(x) > f(x)vx. So enough to bound [ g(x)
Q Infu/Jition for next assertiqr) )

/M g(x) dx = [xg(x)]0" — [/" xg' (x)dx.
S/ g(x) dx, = [xg(IE"" — [/ xg' (x)dx
y aX 0

© Total Variation = >"¢_, 7(G1 U Go U ... Gs)(Us — Usy1).....(*)
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Groups and Prob Flows -l

@ Now, more rigorously: Assume we have the groups. Define for
s=1,2,...,r us = Maxjeg,v; and u;, 1 = 1. Define
g(x) = us — 1forx € Ujeg (i —1)/n,i/n).

@ g(x) > f(x)vx. So enough to bound [ g(x)

© Intuition for next assertion:

o/n io/n ’o/”
o 9(x) dx = [xg(x)], xg'(x)dx.
YW v

© Total Variation = >"¢_, 7(G1 U Go U ... Gs)(Us — Usy1).....(*)
@ Direct Proof of (*), by expansion:
2221 7T(G1 UGoU... Gs)(US — US+1) = 7T(G1)(U1 — U2) + (7T(G1) +
m(G2)) (U2 —uz) + -+ (7(Gy) + 7(G2) + - - - + n(G))(ur — 1) =
m(Gy)uy + m(G2)Uo + w(Gs)us + - - - + (Gr)ur — (7(Gy) + 7(G2) +
4 1(Gr)). = Yoy m(Gs)(us — 1)
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Groups and Prob Flows -l

@ Now, more rigorously: Assume we have the groups. Define for
s=1,2,...,r us = Maxjeg,v; and u;, 1 = 1. Define
g(x) = us — 1forx € Ujeg (i —1)/n,i/n).

@ g(x) > f(x)vx. So enough to bound [ g(x)

© Intuition for next assertion:

o/n io/n ’o/”
o 9(x) dx = [xg(x)], xg'(x)dx.
YW v

© Total Variation = >"¢_, 7(G1 U Go U ... Gs)(Us — Usy1).....(*)
@ Direct Proof of (*), by expansion:
2221 7T(G1 UGoU... Gs)(US — US+1) = 7T(G1)(U1 — U2) + (7T(G1) +
m(G2))(U2 — U3) + -+ + (7(G1) + 7(G2) + - - - + 7(Gp))(ur — 1) =
m(Gy)uy + m(G2)Uo + w(Gs)us + - - - + (Gr)ur — (7(Gy) + 7(G2) +
4 m(Gr)). = Yooy m(Gs)(us — 1)
Q@ Integrals only for intuition on “integration by parts”.
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Groups and Prob Flows -l

@ Now, more rigorously: Assume we have the groups. Define for
s=1,2,...,r us = Maxjeg,v; and u;, 1 = 1. Define
g(x) = us — 1forx € Ujeg (i —1)/n,i/n).

@ g(x) > f(x)vx. So enough to bound [ g(x)

© Intuition for next assertion:

0" 9(x) 9x = g0l — [ xg' (x)dx.
y aX 0
© Total Variation = >"¢_, 7(G1 U Go U ... Gs)(Us — Usy1).....(*)
@ Direct Proof of (*), by expansion:
2221 7T(G1 UGoU... Gs)(US — US+1) = 7T(G1)(U1 — U2) + (7T(G1) +
m(Gp)) (2 — Ug) + -+ + (m(Gy) + m(G2) + - - - + 7(Gp))(ur — 1) =
m(Gy)uy + m(G2)Uo + w(Gs)us + - - - + (Gr)ur — (7(Gy) + 7(G2) +
4 m(Gr)). = Yooy m(Gs)(us — 1)
Q@ Integrals only for intuition on “integration by parts”.
@ Now, we have TV in terms of the “heaviness gap”™: us — Us. 1.
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Probability Flow Lemma

@ Definition of groups: Intuitively: If Gy, Go, ..., Gs_1 are already
defined, G has the next ¥(|G1 UGoU...Gs_1|) vertices. (Sizes
of |GiUGo U...Gg| grow as (1 + (e®/4)°.) More precisely,
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Probability Flow Lemma

@ Definition of groups: Intuitively: If Gy, Go, ..., Gs_1 are already
defined, G has the next ¥(|G1 UGoU...Gs_1|) vertices. (Sizes
of |GiUGo U...Gg| grow as (1 + (e®/4)°.) More precisely,

e Startwith G; = {1}.
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Probability Flow Lemma

@ Definition of groups: Intuitively: If Gy, Go, ..., Gs_1 are already
defined, G has the next ¥(|G1 UGoU...Gs_1|) vertices. (Sizes
of |GiUGo U...Gg| grow as (1 + (e®/4)°.) More precisely,

e Startwith G; = {1}.
o If Gy, Gy, ..., Gs_1 have been defined, let is = 1+(end of Gs_1).
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Probability Flow Lemma

@ Definition of groups: Intuitively: If Gy, Go, ..., Gs_1 are already
defined, G has the next ¥(|G1 UGoU...Gs_1|) vertices. (Sizes
of |GiUGo U...Gg| grow as (1 + (e®/4)°.) More precisely,

o Start with Gy = {1}.
o If Gy, Gy, ..., Gs_1 have been defined, let is = 1+(end of Gs_1).
o Define /, the last element of G to be the largest integer in

{is,fs, .., io} such that | — js + 1 < <221,
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Probability Flow Lemma

@ Definition of groups: Intuitively: If Gy, Go, ..., Gs_1 are already
defined, G has the next ¥(|G1 UGoU...Gs_1|) vertices. (Sizes
of |GiUGo U...Gg| grow as (1 + (e®/4)°.) More precisely,

e Start with Gy = {1}.
o If Gy,Go,...,Gs_1 have been defined, let is = 1+(end of Gs_+).

e Define /, the last element of G; to be the largest integer in
{is,is, ..., Io} such that | — js + 1 < =26:=1)

@ Probability Flow Lemma: Suppose groups
G1,Go,...,Gr,Uq.Uo, ..., Ur, U, 1 are as above. Then,

TF(G1 UGQU...GS)(US—US+1) < toe

January 31, 2018 10/13



Proof of Prob flow lemma

@ This is the main lemma. Use two ways of calculating prob flow
from heavy to light states when we execute one step of MC
starting at a. Prob’s after that step is aP. a — aP is net loss of prob
for each state.
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Proof of Prob flow lemma

@ This is the main lemma. Use two ways of calculating prob flow
from heavy to light states when we execute one step of MC
starting at a. Prob’s after that step is aP. a — aP is net loss of prob
for each state.

@ Suppose group Gs = {k,k +1,...,/}. First consider case: k < y.
Let A= {1,2,...,k}. Net loss of prob flow from A is
S°% ,(a — (aP);) which < 2 by the proof of Fund Thm.
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Proof of Prob flow lemma

@ This is the main lemma. Use two ways of calculating prob flow
from heavy to light states when we execute one step of MC
starting at a. Prob’s after that step is aP. a — aP is net loss of prob
for each state.

@ Suppose group Gs = {k,k +1,...,/}. First consider case: k < y.
Let A= {1,2,...,k}. Net loss of prob flow from A is
S°% ,(a — (aP);) which < 2 by the proof of Fund Thm.

@ But also, net prob flow from A is
(Net flow from Ato Gs) + (Net flow from Ato {/+1,/+2,...,n}).
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Proof of Prob flow lemma

@ This is the main lemma. Use two ways of calculating prob flow
from heavy to light states when we execute one step of MC
starting at a. Prob’s after that step is aP. a — aP is net loss of prob
for each state.

@ Suppose group Gs = {k,k +1,...,/}. First consider case: k < y.
Let A= {1,2,...,k}. Net loss of prob flow from A is
S°% ,(a — (aP);) which < 2 by the proof of Fund Thm.

@ But also, net prob flow from A is
(Net flow from Ato Gs) + (Net flow from Ato {/+1,/+2,...,n}).

@ Saw: Net flow from / to j is non-negative when i is heavier than j,
so Net flow from A to Gs is non-negative.
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Proof of Prob flow lemma

@ This is the main lemma. Use two ways of calculating prob flow
from heavy to light states when we execute one step of MC
starting at a. Prob’s after that step is aP. a — aP is net loss of prob
for each state.

@ Suppose group Gs = {k,k +1,...,/}. First consider case: k < y.
Let A= {1,2,...,k}. Net loss of prob flow from A is
S°% ,(a — (aP);) which < 2 by the proof of Fund Thm.
@ But also, net prob flow from Ais
(Net flow from Ato Gs) + (Net flow from Ato {/+1,/+2,...,n}).
@ Saw: Net flow from / to j is non-negative when i is heavier than j,
so Net flow from A to Gs is non-negative.
@ So Net flow from A > (Net flow from Ato {/+1,/+2,...,n})
> > i<k TiPji(Vi — Vi) = (Vk = Vi) i<k TiPji-
> >l
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Prob Flow Lemma-contd.

@ Net loss of flow < 2/t (from proof of Fund Thm). So:

2
(Vk—VI-H)ZijjiS?- (1)

i<k
>l
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Prob Flow Lemma-contd.

@ Net loss of flow < 2/t (from proof of Fund Thm). So:

2
(Vk—VI-H)ZijjiS?- (1)

i<k
>l

k / /
© D> it Djmkit TP S Djmkyr T < ePm(A) /4.
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Prob Flow Lemma-contd.

@ Net loss of flow < 2/t (from proof of Fund Thm). So:

2
(Vk—VI-H)ZijjiS?- (1)

i<k
j>1

k / /
© D> it Djmkit TP S Djmkyr T < ePm(A) /4.

o By defn of ®: Y=, _;m;pj > dmin(w(A), w(A)) > edk/(2n),

(assuming 7(A) > en(A)/2 (to prove later).)
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Prob Flow Lemma-contd.

@ Net loss of flow < 2/t (from proof of Fund Thm). So:

2
(Vk—VI-H)ZijjiS?- (1)

i<k
j>1

k / /
© D> it Djmkit TP S Djmkyr T < ePm(A) /4.

o By defn of ®: Y=, _;m;pj > dmin(w(A), w(A)) > edk/(2n),

(assuming 7(A) > en(A)/2 (to prove later).)
© > MiPji = D ick<j iPji = 2i<kij<i TiPji = EPK/AN.

i<k
>l
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Prob Flow Lemma-contd.

@ Net loss of flow < 2/t (from proof of Fund Thm). So:

2
(Vk—VI-H)ZijjiS?- (1)

i<k
>
O I ki T S g T < £PT(A) /4.
o By defn of ®: Y=, _;m;pj > dmin(w(A), w(A)) > edk/(2n),
(assuming 7(A) > e7(A)/2 (to prove later).)
© > MiPji = D ick<j iPji = 2i<kij<i TiPji = EPK/AN.
i<k
Iy
® K(vk —vip1) < 55 = (7(Gr) +7(G2) + - - - 7(Gs)) (Us — Us 1) < 155
proving lemma provided k < .
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Prob Flow Lemma-contd.

@ Net loss of flow < 2/t (from proof of Fund Thm). So:

2
(Vk—VI-H)ZijjiS?- (1)

i<k
>l
O Sy Skt TP < iy My < £OT(A)/4.
o By defn of ®: Y=, _;m;pj > dmin(w(A), w(A)) > edk/(2n),
(assuming 7(A) > en(A)/2 (to prove later).)
© D WP = Lick<j TiPji — Li<kij<i TiPji = ®k/4n.
5
® K(vk —vip1) < 55 = (7(Gr) +7(G2) + - - - 7(Gs)) (Us — Us 1) < 155
proving lemma provided k < iy.
@ If k = iy, the proof is similar but simpler.
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Bounding number of groups

o If > ., (1 —v)m < e, we would be done. Wlg assume

>isip(1 = vi)mj > e implies m(A) > e. [Needed in last slide.]
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Bounding number of groups

o If > ., (1 —v)m < e, we would be done. Wlg assume

>isip(1 = vi)mj > e implies m(A) > e. [Needed in last slide.]
@ Proved: (7(Gy) + (Gz) + - - m(Gs))(Us — Uss1) < 755, but TV is

sum over all s. Need now to bound the number of groups.
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Bounding number of groups

o If > ., (1 —v)m < e, we would be done. Wlg assume

>isip(1 = vi)mj > e implies m(A) > e. [Needed in last slide.]
@ Proved: (7(Gy) + (Gz) + - - m(Gs))(Us — Uss1) < 755, but TV is
sum over all s. Need now to bound the number of groups.

@ Since group sizes grow geometrically, get number r of groups is at
most: r < |n1+(5¢/2)(1/7r1) +2< |n(1/71'1)/(8¢/2) +2.m = 1/[7,
so get an extra log factor.
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