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Areas and Volumes

Computing areas and volumes: a classical problem.

Closed form formulae for cubes, rectangular solids, simplices,
spheres
Here: MCMC method to estimate (to relative error) the volume of
any n dimensional convex body (closed and bounded convex set)
in time poly in n
Recap: Alg of enclosing convex body K in a rectangular solid R
and estimating proportion of random points from R (easy to draw)
which fall in K does not work in general.
But: the volume estimation problem for convex bodies in Rn can
be reduced to (nearly) uniform sampling from convex sets in Rn.
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Input: Convex body K

Throughout, assume convex body K given only by a Membership
oracle:

Presented with any x ∈ Rn, oracle tells us whether x ∈ K .
General, but: Not enough information. If “adversarial” oracle
always says no, we never even get a single point of K , let alone its
volume.
Fix: Assume we are told a ball B(0, r) of radius r around the origin
is contained in K . Problem of locating a single point in K solved,
but....
Opposite problem: “Adversarial” oracle can always say yes and
we never find “where K ends”.
Henceforth assume: we are given K by a membership oracle and
also given r ,R: B(0, r) ⊆ K ⊆ B(0,R).

Main Result: Given these, can estimate volume of K to relative
error ε in time poly in n ln(R/r)/ε.
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Volume estimation via random sampling

Want estimate of Vol(K ) for convex body K . Concentric spheres
S1 ⊆ S2 ⊆ . . . ,Sk : S1 ⊆ K ; K ⊆ Sk

Vol(K ) = Vol(Sk∩K )

Vol(Sk−1∩K )

Vol(Sk−1∩K )

Vol(Sk−2∩K )
· · · Vol(S2∩K )

Vol(S1∩K )
Vol(S1)

Random sampling can find Vol(Sk∩K )

Vol(Sk−1∩K )
....But only if ratio ≤ poly.

The ratio could be exponential in Radius of Sk / Radius of Sk−1.
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Si+1

Si

R

Figure: By sampling the area inside the dark line and determining the fraction
of points in the shaded region we compute Vol(Si+1∩R)

Vol(Si∩R) .
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Making ratios bounded

If Radius(Si) =
(
1 + 1

n

)
Radius(Si−1):

Si ∩ K ⊆
(
1 + 1

n

)
(Si−1 ∩ K ) ⇒ Vol(Si∩K )

Vol(Si−1∩K )
≤ e Implies Vol(Si∩K )

Vol(Si−1∩K )

can be estimated by rejection sampling. (Why?)
Number of spheres O(log1+(1/n) ρ) = O(n ln ρ) where
ρ =Radius(Sk )/Radius (S1) ≤ R/r . Suffices to estimate each ratio
to (1± ε

en ln ρ ) to get 1± ε total error.
TO estimate a product of N things to relative error ε, enough to
estimate each to relative error ε/N.

So, we have give a poly time reduction of volume estimation to
random sampling from a convex set.
Don’t need exact uniform sampling - approximate (in Total
Variation dist) is all we know how to do by MCMC. Is that enough?
Care: Now additive error. But OK, not done explicitly here.
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The Random walk

We use a random walk to draw samples from a convex body K .

Impose a “fine” grid of side length δ on space. States of the MC:
set of grid cubes which intersect (the interior of) K .
Transitions: From each grid cube intersecting K , there is a
probability of 1/2n of going to each adjacent grid cube intersecting
K . Stay with remaining probability. [Picture next slide.]
Is the MC connected?

Yes, by convexity: if two cubes intersect the interior of K the entire
line joining them does and by perturbing the line a bit, make sure it
only passes through n − 1 dim’s faces of cubes...

What is the stationary distribution ?
Uniform (symmetric MC)
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Conductance

Subset S of states (cubes intersecting K ). Want to know:

Φ(S) =
∑

i∈S,j∈S̄ πi Pij

min(π(S),π(S̄))
= 1

2n
|(S, S̄)|

min(|S|, |S̄|)︸ ︷︷ ︸
Φ′(S)

Since we are only interested in poly Vs non-poly, enough to show
Φ′(S) ≥ 1/poly for all S.
Pretend for now (not true) that all cubes in S are wholly in K and
so too for S̄. Then, |S| = δ−nVol(S); |S̄| = δ−nVol(S̄) and
|(S, S̄)| = δ−(n−1)Voln−1(∂S), where, ∂S is the surface of S interior
to K . [See Picture Next slide.] δ will be 1/poly, so, seek to show:
Purely Geometric Theorem: (Relative) Isoperimetry: For any
partition of a convex body in Rn into two (measurable) sets S, S̄,
Surface area of ∂S is at least some γ times Min(Vol(S),Vol(S̄)).
What is best possible γ ? Can’t beat O(1/diameter of K ). Will
prove this. [Central Result for bounding Φ.]
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prove this. [Central Result for bounding Φ.]
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Proof of Isoperimetry - I

Lower dimensional surface ∂S presents continuity issues. Instead,
let S2 = {x ∈ K : dist(x, ∂S) ≤ ε} [Think of ε as
small-infinitesimal.]

Known: limε→0
Voln(S2)

ε = 2Voln−1(∂S).
(Brief) Proof: For ε small enough, ∂(S) locally looks flat - i.e., like
a part of a hyperplane H. If v is the normal to H, locally S2 is like a
rectangular solid of height 2ε.
Isoperimetry Restated: For any partition of a convex into three
pieces: S1,S2,S3 with dist(x , y) ≥ ε∀x ∈ S1, y ∈ S3, prove
Vol(S2) ≥ γεmin(Vol(S1),Vol(S3)).
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Isoperimetry reduced to some integrals

Let g1(x),g2(x),g3(x) be indicator functions of S1,S2,S3 respy.

g = g1 − λg2 ; h(x) = g3 − λg2, where, λ > 0 suitably chosen.
If isoperimetry fails, we have that∫

Rn g(x)dx > 0 ;
∫

Rn h(x)dx > 0.
The central part of the proof of Isoperimetry is to reduce this to a
1-dimensional case and then prove (for contradiction) that for any
1-d case, these two inequalities cannot hold.
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Reduction to “Needle-like” case

Localization Lemma Suppose K is a convex body and g,h are
lower semi-continuous functions on K with

∫
K g,

∫
K h > 0. Then

for any ε > 0, (think ε infinitesimal) there is a convex set P ⊆ K
and points a,b ∈ P such that

P is nearly 1-dimensional: P ⊆ ε−neighbouhood of line segment
a→ b.∫ b

x=a g(x)p(x) ,
∫ b

x=a h(x)p(x) > 0, where, for x ∈ ab, p(x) is the
area of P ∩ H(x), with H(x) the hyperplane perpendicular to ab
through x .

Idea of proof: Use (simple version of) Borsuk-Ulam theorem to cut
the domain of integration repeatedly, preserving

∫
g,
∫

h > 0
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Proof of Localization

Claim There is a sequence of convex bodies K ⊇ K1 ⊇ K2 . . .
such that:

The interesection of all the convex bodies is a point or a line
segment.∫

Ki
g,
∫

Ki
h > 0 for all i .

Once we have Ki , we choose a half-space H such that it bisects
both

∫
Ki

g and
∫

Ki
h and set Ki+1 = Ki ∩ H.

Borsuk-Ulam guarantees that given any 2-dim subspace V , we
can choose such an H whose normal lies in V .
Choose V to be the space spanned by the two largest axes of the
min vol ellipsoid containing Ki . This process will ensure that no
two axes of Ki can both remail long as i →∞, hence, Ki become
needle-like.
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Proof for the needle

Claim If P is a convex body with P ⊆ ε−neighbouhood of line
segment a→ b, where, ε→ 0 and let p(x) be the cross-sectional
area of P at x ∈ ab. Suppose S1,S2,S3 is a partition of ab with
dist(x , y) ≥ δ∀x ∈ S1, y ∈ S3. Then,∫

x∈(ab)∩S2
p(x) ≥ min(

∫
x∈S1

p(x),
∫

x∈S3
p(x)/dia(P)− ε′, where

ε′ → 0.

Follows from the fact that the cross-sectional area p(x) is
unimodal - i.e., does not decrease and then increase. So, for any
x ∈ (ab) ∩ S2, p(y) ≤ p(x) either for all y > x or for all y < x .
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Making diameter of K small

For any convex body K in Rn, we can find an affine non-singular
transformation τ so that
B ⊆ τK ⊆ 2n3/2B,

where, B is the unit ball: {x : |x| ≤ 1}.
Vol(τK ) = Vol(K )|det(τ)|, so enough to get Vol(τK ) to relative
error ε.
τK is said to be well-rounded.
Several “well-rounding” transforms:

John Ellipsoid Take the maximum volume ellipsoid E in K and
take τ to be the transformation that sends E to B.
Inertial Ellipsoid Moment-of-inertia: Matrix M with Mij = EK (xixj ).
For τ = M−1/2, EτK (xixj ) = B.

Need also worry about border cubes (proof so far only assuming
most/all cubes intersecting K have sizable fraction of volume in K .
... Technical... Start with K replaced by the smoother
K (α) = {x : dist(x ,K ) ≤ α}...
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