Volume of a Convex Set

February 2, 2018

• Computing areas and volumes: a classical problem.

- Computing areas and volumes: a classical problem.
- Closed form formulae for cubes, rectangular solids, simplices, spheres

- Computing areas and volumes: a classical problem.
- Closed form formulae for cubes, rectangular solids, simplices, spheres
- Here: MCMC method to estimate (to relative error) the volume of any n dimensional convex body (closed and bounded convex set) in time poly in n

- Computing areas and volumes: a classical problem.
- Closed form formulae for cubes, rectangular solids, simplices, spheres
- Here: MCMC method to estimate (to relative error) the volume of any n dimensional convex body (closed and bounded convex set) in time poly in n
- Recap: Alg of enclosing convex body K in a rectangular solid R and estimating proportion of random points from R (easy to draw) which fall in K does not work in general.

- Computing areas and volumes: a classical problem.
- Closed form formulae for cubes, rectangular solids, simplices, spheres
- Here: MCMC method to estimate (to relative error) the volume of any n dimensional convex body (closed and bounded convex set) in time poly in n
- Recap: Alg of enclosing convex body K in a rectangular solid R and estimating proportion of random points from R (easy to draw) which fall in K does not work in general.
- But: the volume estimation problem for convex bodies in Rⁿ can be reduced to (nearly) uniform sampling from convex sets in Rⁿ.

 Throughout, assume convex body K given only by a Membership oracle:

- Throughout, assume convex body K given only by a Membership oracle:
 - Presented with any $\mathbf{x} \in \mathbf{R}^n$, oracle tells us whether $\mathbf{x} \in K$.
- General, but: Not enough information. If "adversarial" oracle always says no, we never even get a single point of K, let alone its volume.

- Throughout, assume convex body K given only by a Membership oracle:
 - Presented with any $\mathbf{x} \in \mathbf{R}^n$, oracle tells us whether $\mathbf{x} \in K$.
- General, but: Not enough information. If "adversarial" oracle always says no, we never even get a single point of K, let alone its volume.
- Fix: Assume we are told a ball $B(\mathbf{0}, r)$ of radius r around the origin is contained in K. Problem of locating a single point in K solved, but....

- Throughout, assume convex body K given only by a Membership oracle:
 - Presented with any $\mathbf{x} \in \mathbf{R}^n$, oracle tells us whether $\mathbf{x} \in K$.
- General, but: Not enough information. If "adversarial" oracle always says no, we never even get a single point of K, let alone its volume.
- Fix: Assume we are told a ball $B(\mathbf{0}, r)$ of radius r around the origin is contained in K. Problem of locating a single point in K solved, but....
- Opposite problem: "Adversarial" oracle can always say yes and we never find "where K ends".

- Throughout, assume convex body K given only by a Membership oracle:
 - Presented with any $\mathbf{x} \in \mathbf{R}^n$, oracle tells us whether $\mathbf{x} \in K$.
- General, but: Not enough information. If "adversarial" oracle always says no, we never even get a single point of K, let alone its volume.
- Fix: Assume we are told a ball $B(\mathbf{0}, r)$ of radius r around the origin is contained in K. Problem of locating a single point in K solved, but....
- Opposite problem: "Adversarial" oracle can always say yes and we never find "where K ends".
- Henceforth assume: we are given K by a membership oracle and also given r, R: $B(\mathbf{0}, r) \subseteq K \subseteq B(\mathbf{0}, R)$.

- Throughout, assume convex body K given only by a Membership oracle:
 - Presented with any $\mathbf{x} \in \mathbf{R}^n$, oracle tells us whether $\mathbf{x} \in K$.
- General, but: Not enough information. If "adversarial" oracle always says no, we never even get a single point of K, let alone its volume.
- Fix: Assume we are told a ball $B(\mathbf{0}, r)$ of radius r around the origin is contained in K. Problem of locating a single point in K solved, but....
- Opposite problem: "Adversarial" oracle can always say yes and we never find "where K ends".
- Henceforth assume: we are given K by a membership oracle and also given r, R: $B(\mathbf{0}, r) \subseteq K \subseteq B(\mathbf{0}, R)$.
- Main Result: Given these, can estimate volume of K to relative error ε in time poly in $n \ln(R/r)/\varepsilon$.

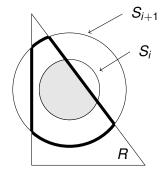
• Want estimate of Vol(K) for convex body K. Concentric spheres $S_1 \subseteq S_2 \subseteq ..., S_k : S_1 \subseteq K; K \subseteq S_k$

• Want estimate of Vol(K) for convex body K. Concentric spheres $S_1 \subseteq S_2 \subseteq ..., S_k : S_1 \subseteq K; K \subseteq S_k$

$$\bullet \ \mathsf{Vol}(K) = \frac{\mathsf{Vol}(S_k \cap K)}{\mathsf{Vol}(S_{k-1} \cap K)} \frac{\mathsf{Vol}(S_{k-1} \cap K)}{\mathsf{Vol}(S_{k-2} \cap K)} \cdots \frac{\mathsf{Vol}(S_2 \cap K)}{\mathsf{Vol}(S_1 \cap K)} \mathsf{Vol}(S_1)$$

- Want estimate of Vol(K) for convex body K. Concentric spheres $S_1 \subseteq S_2 \subseteq ..., S_k : S_1 \subseteq K; K \subseteq S_k$
- $\bullet \ \mathsf{Vol}(\mathcal{K}) = \frac{\mathsf{Vol}(\mathcal{S}_k \cap \mathcal{K})}{\mathsf{Vol}(\mathcal{S}_{k-1} \cap \mathcal{K})} \frac{\mathsf{Vol}(\mathcal{S}_{k-1} \cap \mathcal{K})}{\mathsf{Vol}(\mathcal{S}_{k-2} \cap \mathcal{K})} \cdots \frac{\mathsf{Vol}(\mathcal{S}_2 \cap \mathcal{K})}{\mathsf{Vol}(\mathcal{S}_1 \cap \mathcal{K})} \mathsf{Vol}(\mathcal{S}_1)$
- Random sampling can find $\frac{\text{Vol}(S_k \cap K)}{\text{Vol}(S_{k-1} \cap K)}$ But only if ratio \leq poly.

- Want estimate of Vol(K) for convex body K. Concentric spheres $S_1 \subseteq S_2 \subseteq ..., S_k : S_1 \subseteq K; K \subseteq S_k$
- $\bullet \ \mathsf{Vol}(\mathcal{K}) = \frac{\mathsf{Vol}(\mathcal{S}_k \cap \mathcal{K})}{\mathsf{Vol}(\mathcal{S}_{k-1} \cap \mathcal{K})} \frac{\mathsf{Vol}(\mathcal{S}_{k-1} \cap \mathcal{K})}{\mathsf{Vol}(\mathcal{S}_{k-2} \cap \mathcal{K})} \cdots \frac{\mathsf{Vol}(\mathcal{S}_2 \cap \mathcal{K})}{\mathsf{Vol}(\mathcal{S}_1 \cap \mathcal{K})} \mathsf{Vol}(\mathcal{S}_1)$
- Random sampling can find $\frac{\text{Vol}(S_k \cap K)}{\text{Vol}(S_{k-1} \cap K)}$ But only if ratio \leq poly.
- The ratio could be exponential in Radius of S_k / Radius of S_{k-1} .



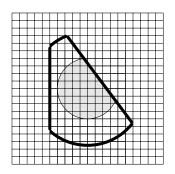


Figure: By sampling the area inside the dark line and determining the fraction of points in the shaded region we compute $\frac{Vol(S_{i+1} \cap R)}{Vol(S_i \cap R)}$.

• If Radius(S_i) = $(1 + \frac{1}{n})$ Radius(S_{i-1}):

- If Radius(S_i) = $(1 + \frac{1}{n})$ Radius(S_{i-1}):
 - $S_i \cap K \subseteq (1+\frac{1}{n}) (S_{i-1} \cap K) \Rightarrow \frac{\text{Vol}(S_i \cap K)}{\text{Vol}(S_{i-1} \cap K)} \leq e \text{ Implies } \frac{\text{Vol}(S_i \cap K)}{\text{Vol}(S_{i-1} \cap K)}$ can be estimated by rejection sampling. (Why?)

- If Radius(S_i) = $(1 + \frac{1}{n})$ Radius(S_{i-1}):
 - $S_i \cap K \subseteq (1 + \frac{1}{n}) (S_{i-1} \cap K) \Rightarrow \frac{\text{Vol}(S_i \cap K)}{\text{Vol}(S_{i-1} \cap K)} \leq e \text{ Implies } \frac{\text{Vol}(S_i \cap K)}{\text{Vol}(S_{i-1} \cap K)}$ can be estimated by rejection sampling. (Why?)
 - Number of spheres $O(\log_{1+(1/n)}\rho) = O(n \ln \rho)$ where $\rho = \text{Radius}(S_k)/\text{Radius}(S_1) \leq R/r$. Suffices to estimate each ratio to $(1 \pm \frac{\epsilon}{e n \ln \rho})$ to get $1 \pm \epsilon$ total error.

- If Radius(S_i) = $(1 + \frac{1}{n})$ Radius(S_{i-1}):
 - $S_i \cap K \subseteq (1 + \frac{1}{n}) (S_{i-1} \cap K) \Rightarrow \frac{\text{Vol}(S_i \cap K)}{\text{Vol}(S_{i-1} \cap K)} \leq e \text{ Implies } \frac{\text{Vol}(S_i \cap K)}{\text{Vol}(S_{i-1} \cap K)}$ can be estimated by rejection sampling. (Why?)
 - Number of spheres $O(\log_{1+(1/n)}\rho) = O(n \ln \rho)$ where $\rho = \text{Radius}(S_k)/\text{Radius}(S_1) \le R/r$. Suffices to estimate each ratio to $(1 \pm \frac{\epsilon}{e n \ln \rho})$ to get $1 \pm \epsilon$ total error.
 - TO estimate a product of N things to relative error ε , enough to estimate each to relative error ε/N .

- If Radius(S_i) = $(1 + \frac{1}{n})$ Radius(S_{i-1}):
 - $S_i \cap K \subseteq (1 + \frac{1}{n}) (S_{i-1} \cap K) \Rightarrow \frac{\text{Vol}(S_i \cap K)}{\text{Vol}(S_{i-1} \cap K)} \leq e \text{ Implies } \frac{\text{Vol}(S_i \cap K)}{\text{Vol}(S_{i-1} \cap K)}$ can be estimated by rejection sampling. (Why?)
 - Number of spheres $O(\log_{1+(1/n)}\rho) = O(n \ln \rho)$ where $\rho = \text{Radius}(S_k)/\text{Radius}(S_1) \le R/r$. Suffices to estimate each ratio to $(1 \pm \frac{\epsilon}{e n \ln \rho})$ to get $1 \pm \epsilon$ total error.
 - TO estimate a product of N things to relative error ε , enough to estimate each to relative error ε/N .
- So, we have give a poly time reduction of volume estimation to random sampling from a convex set.

- If Radius(S_i) = $(1 + \frac{1}{n})$ Radius(S_{i-1}):
 - $S_i \cap K \subseteq (1 + \frac{1}{n}) (S_{i-1} \cap K) \Rightarrow \frac{\text{Vol}(S_i \cap K)}{\text{Vol}(S_{i-1} \cap K)} \leq e \text{ Implies } \frac{\text{Vol}(S_i \cap K)}{\text{Vol}(S_{i-1} \cap K)}$ can be estimated by rejection sampling. (Why?)
 - Number of spheres $O(\log_{1+(1/n)}\rho) = O(n \ln \rho)$ where $\rho = \text{Radius}(S_k)/\text{Radius}(S_1) \le R/r$. Suffices to estimate each ratio to $(1 \pm \frac{\epsilon}{e n \ln \rho})$ to get $1 \pm \epsilon$ total error.
 - TO estimate a product of N things to relative error ε , enough to estimate each to relative error ε/N .
- So, we have give a poly time reduction of volume estimation to random sampling from a convex set.
- Don't need exact uniform sampling approximate (in Total Variation dist) is all we know how to do by MCMC. Is that enough? Care: Now additive error. But OK, not done explicitly here.

• We use a random walk to draw samples from a convex body *K*.

- We use a random walk to draw samples from a convex body *K*.
- Impose a "fine" grid of side length δ on space. States of the MC: set of grid cubes which intersect (the interior of) K.

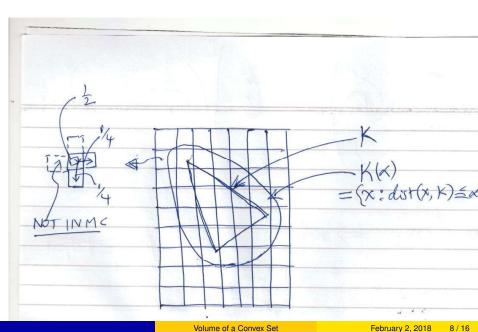
- We use a random walk to draw samples from a convex body K.
- Impose a "fine" grid of side length δ on space. States of the MC: set of grid cubes which intersect (the interior of) K.
- Transitions: From each grid cube intersecting K, there is a
 probability of 1/2n of going to each adjacent grid cube intersecting
 K. Stay with remaining probability. [Picture next slide.]

- We use a random walk to draw samples from a convex body K.
- Impose a "fine" grid of side length δ on space. States of the MC: set of grid cubes which intersect (the interior of) K.
- Transitions: From each grid cube intersecting K, there is a probability of 1/2n of going to each adjacent grid cube intersecting K. Stay with remaining probability. [Picture next slide.]
- Is the MC connected?

- We use a random walk to draw samples from a convex body K.
- Impose a "fine" grid of side length δ on space. States of the MC: set of grid cubes which intersect (the interior of) K.
- Transitions: From each grid cube intersecting K, there is a
 probability of 1/2n of going to each adjacent grid cube intersecting
 K. Stay with remaining probability. [Picture next slide.]
- Is the MC connected?
 - Yes, by convexity: if two cubes intersect the interior of K the entire line joining them does and by perturbing the line a bit, make sure it only passes through n-1 dim's faces of cubes...

- We use a random walk to draw samples from a convex body K.
- Impose a "fine" grid of side length δ on space. States of the MC: set of grid cubes which intersect (the interior of) K.
- Transitions: From each grid cube intersecting K, there is a probability of 1/2n of going to each adjacent grid cube intersecting K. Stay with remaining probability. [Picture next slide.]
- Is the MC connected?
 - Yes, by convexity: if two cubes intersect the interior of K the entire line joining them does and by perturbing the line a bit, make sure it only passes through n-1 dim's faces of cubes...
- What is the stationary distribution?

- We use a random walk to draw samples from a convex body K.
- Impose a "fine" grid of side length δ on space. States of the MC: set of grid cubes which intersect (the interior of) K.
- Transitions: From each grid cube intersecting K, there is a probability of 1/2n of going to each adjacent grid cube intersecting K. Stay with remaining probability. [Picture next slide.]
- Is the MC connected?
 - Yes, by convexity: if two cubes intersect the interior of K the entire line joining them does and by perturbing the line a bit, make sure it only passes through n-1 dim's faces of cubes...
- What is the stationary distribution?
- Uniform (symmetric MC)



• Subset *S* of states (cubes intersecting *K*). Want to know:

$$\Phi(S) = \frac{\sum_{i \in S, j \in \bar{S}} \pi_i P_{ij}}{\min(\pi(S), \pi(\bar{S}))} = \frac{1}{2n} \underbrace{\frac{|(S, \bar{S})|}{\min(|S|, |\bar{S}|)}}_{\Phi'(S)}$$

Subset S of states (cubes intersecting K). Want to know:

$$\Phi(S) = \frac{\sum_{i \in S, j \in \bar{S}} \pi_i P_{ij}}{\min(\pi(S), \pi(\bar{S}))} = \frac{1}{2n} \underbrace{\frac{|(S, \bar{S})|}{\min(|S|, |\bar{S}|)}}_{\Phi'(S)}$$

• Since we are only interested in poly Vs non-poly, enough to show $\Phi'(S) \ge 1/\text{poly}$ for all S.

• Subset *S* of states (cubes intersecting *K*). Want to know:

$$\Phi(S) = \frac{\sum_{i \in S, j \in \bar{S}} \pi_i P_{ij}}{\min(\pi(S), \pi(\bar{S}))} = \frac{1}{2n} \underbrace{\frac{|(S, \bar{S})|}{\min(|S|, |\bar{S}|)}}_{\Phi'(S)}$$

- Since we are only interested in poly Vs non-poly, enough to show Φ'(S) ≥ 1/poly for all S.
- Pretend for now (not true) that all cubes in S are wholly in K and so too for \bar{S} . Then, $|S| = \delta^{-n} \text{Vol}(S)$; $|\bar{S}| = \delta^{-n} \text{Vol}(\bar{S})$ and $|(S, \bar{S})| = \delta^{-(n-1)} \text{Vol}_{n-1}(\partial S)$, where, ∂S is the surface of S interior to K. [See Picture Next slide.] δ will be 1/poly, so, seek to show:

Subset S of states (cubes intersecting K). Want to know:

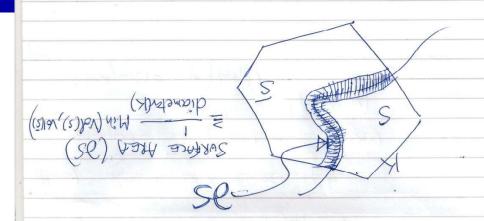
$$\Phi(S) = \frac{\sum_{i \in S, j \in \bar{S}} \pi_i P_{ij}}{\min(\pi(S), \pi(\bar{S}))} = \frac{1}{2n} \underbrace{\frac{|(S, \bar{S})|}{\min(|S|, |\bar{S}|)}}_{\Phi'(S)}$$

- Since we are only interested in poly Vs non-poly, enough to show Φ'(S) ≥ 1/poly for all S.
- Pretend for now (not true) that all cubes in S are wholly in K and so too for \bar{S} . Then, $|S| = \delta^{-n} \text{Vol}(S)$; $|\bar{S}| = \delta^{-n} \text{Vol}(\bar{S})$ and $|(S, \bar{S})| = \delta^{-(n-1)} \text{Vol}_{n-1}(\partial S)$, where, ∂S is the surface of S interior to K. [See Picture Next slide.] δ will be 1/poly, so, seek to show:
- Purely Geometric Theorem: (**Relative**) Isoperimetry: For any partition of a convex body in \mathbf{R}^n into two (measurable) sets S, \bar{S} , Surface area of ∂S is at least some γ times $\mathsf{Min}(\mathsf{Vol}(S), \mathsf{Vol}(\bar{S}))$.

Subset S of states (cubes intersecting K). Want to know:

$$\Phi(S) = \frac{\sum_{i \in S, j \in \bar{S}} \pi_i P_{ij}}{\min(\pi(S), \pi(\bar{S}))} = \frac{1}{2n} \underbrace{\frac{|(S, \bar{S})|}{\min(|S|, |\bar{S}|)}}_{\Phi'(S)}$$

- Since we are only interested in poly Vs non-poly, enough to show Φ'(S) ≥ 1/poly for all S.
- Pretend for now (not true) that all cubes in S are wholly in K and so too for \bar{S} . Then, $|S| = \delta^{-n} \text{Vol}(S)$; $|\bar{S}| = \delta^{-n} \text{Vol}(\bar{S})$ and $|(S, \bar{S})| = \delta^{-(n-1)} \text{Vol}_{n-1}(\partial S)$, where, ∂S is the surface of S interior to K. [See Picture Next slide.] δ will be 1/poly, so, seek to show:
- Purely Geometric Theorem: (**Relative**) Isoperimetry: For any partition of a convex body in \mathbf{R}^n into two (measurable) sets S, \bar{S} , Surface area of ∂S is at least some γ times $\mathrm{Min}(\mathrm{Vol}(S),\mathrm{Vol}(\bar{S}))$.
- What is best possible γ ? Can't beat O(1/diameter of K). Will prove this. [Central Result for bounding Φ .]



• Lower dimensional surface ∂S presents continuity issues. Instead, let $S_2 = \{\mathbf{x} \in K : \operatorname{dist}(\mathbf{x}, \partial S) \leq \varepsilon\}$ [Think of ε as small-infinitesimal.]

- Lower dimensional surface ∂S presents continuity issues. Instead, let $S_2 = \{\mathbf{x} \in K : \operatorname{dist}(\mathbf{x}, \partial S) \leq \varepsilon\}$ [Think of ε as small-infinitesimal.]
- Known: $\lim_{\varepsilon \to 0} \frac{\operatorname{Vol}_n(\mathcal{S}_2)}{\varepsilon} = 2\operatorname{Vol}_{n-1}(\partial \mathcal{S}).$

- Lower dimensional surface ∂S presents continuity issues. Instead, let $S_2 = \{\mathbf{x} \in K : \operatorname{dist}(\mathbf{x}, \partial S) \leq \varepsilon\}$ [Think of ε as small-infinitesimal.]
- Known: $\lim_{\varepsilon \to 0} \frac{\operatorname{Vol}_n(S_2)}{\varepsilon} = 2\operatorname{Vol}_{n-1}(\partial S)$.
- (Brief) Proof: For ε small enough, $\partial(S)$ locally looks flat i.e., like a part of a hyperplane H. If \mathbf{v} is the normal to H, locally S_2 is like a rectangular solid of height 2ε .

- Lower dimensional surface ∂S presents continuity issues. Instead, let $S_2 = \{\mathbf{x} \in K : \operatorname{dist}(\mathbf{x}, \partial S) \leq \varepsilon\}$ [Think of ε as small-infinitesimal.]
- Known: $\lim_{\varepsilon \to 0} \frac{\operatorname{Vol}_n(S_2)}{\varepsilon} = 2\operatorname{Vol}_{n-1}(\partial S)$.
- (Brief) Proof: For ε small enough, $\partial(S)$ locally looks flat i.e., like a part of a hyperplane H. If \mathbf{v} is the normal to H, locally S_2 is like a rectangular solid of height 2ε .
- Isoperimetry Restated: For any partition of a convex into three pieces: S_1, S_2, S_3 with $\operatorname{dist}(x, y) \ge \varepsilon \forall x \in S_1, y \in S_3$, prove $\operatorname{Vol}(S_2) \ge \gamma \varepsilon \min(\operatorname{Vol}(S_1), \operatorname{Vol}(S_3))$.

Isoperimetry reduced to some integrals

• Let $g_1(\mathbf{x}), g_2(\mathbf{x}), g_3(\mathbf{x})$ be indicator functions of S_1, S_2, S_3 respy.

Isoperimetry reduced to some integrals

- Let $g_1(\mathbf{x}), g_2(\mathbf{x}), g_3(\mathbf{x})$ be indicator functions of S_1, S_2, S_3 respy.
- $g = g_1 \lambda g_2$; $h(\mathbf{x}) = g_3 \lambda g_2$, where, $\lambda > 0$ suitably chosen.
- If isoperimetry fails, we have that $\int_{\mathbf{R}^n} g(\mathbf{x}) d\mathbf{x} > 0$; $\int_{\mathbf{R}^n} h(\mathbf{x}) d\mathbf{x} > 0$.

Isoperimetry reduced to some integrals

- Let $g_1(\mathbf{x}), g_2(\mathbf{x}), g_3(\mathbf{x})$ be indicator functions of S_1, S_2, S_3 respy.
- $g = g_1 \lambda g_2$; $h(\mathbf{x}) = g_3 \lambda g_2$, where, $\lambda > 0$ suitably chosen.
- If isoperimetry fails, we have that $\int_{\mathbf{R}^n} g(\mathbf{x}) d\mathbf{x} > 0$; $\int_{\mathbf{R}^n} h(\mathbf{x}) d\mathbf{x} > 0$.
- The central part of the proof of Isoperimetry is to reduce this to a 1-dimensional case and then prove (for contradiction) that for any 1-d case, these two inequalities cannot hold.

• Localization Lemma Suppose K is a convex body and g,h are lower semi-continuous functions on K with $\int_K g, \int_K h > 0$. Then for any $\varepsilon > 0$, (think ε infinitesimal) there is a convex set $P \subseteq K$ and points $a,b \in P$ such that

- **Localization Lemma** Suppose K is a convex body and g, h are lower semi-continuous functions on K with $\int_K g, \int_K h > 0$. Then for any $\varepsilon > 0$, (think ε infinitesimal) there is a convex set $P \subseteq K$ and points $a, b \in P$ such that
 - P is nearly 1-dimensional: $P \subseteq \varepsilon$ -neighbouhood of line segment $a \to b$.

- Localization Lemma Suppose K is a convex body and g, h are lower semi-continuous functions on K with $\int_K g$, $\int_K h > 0$. Then for any $\varepsilon > 0$, (think ε infinitesimal) there is a convex set $P \subseteq K$ and points $a, b \in P$ such that
 - *P* is nearly 1-dimensional: $P \subseteq \varepsilon$ -neighbouhood of line segment
 - $a \to b$. $\int_{x=a}^b g(x)p(x)$, $\int_{x=a}^b h(x)p(x) > 0$, where, for $x \in ab$, p(x) is the area of $P \cap H(x)$, with H(x) the hyperplane perpendicular to abthrough x.

- **Localization Lemma** Suppose K is a convex body and g, h are lower semi-continuous functions on K with $\int_K g, \int_K h > 0$. Then for any $\varepsilon > 0$, (think ε infinitesimal) there is a convex set $P \subseteq K$ and points $a, b \in P$ such that
 - P is nearly 1-dimensional: $P \subseteq \varepsilon$ -neighbouhood of line segment $a \to b$.
 - $a \to b$. • $\int_{x=a}^b g(x)p(x)$, $\int_{x=a}^b h(x)p(x) > 0$, where, for $x \in ab$, p(x) is the area of $P \cap H(x)$, with H(x) the hyperplane perpendicular to ab through x.
- Idea of proof: Use (simple version of) Borsuk-Ulam theorem to cut the domain of integration repeatedly, preserving $\int g$, $\int h > 0$

• Claim There is a sequence of convex bodies $K \supseteq K_1 \supseteq K_2 \dots$ such that:

- Claim There is a sequence of convex bodies $K \supseteq K_1 \supseteq K_2 \dots$ such that:
 - The interesection of all the convex bodies is a point or a line segment.

- **Claim** There is a sequence of convex bodies $K \supseteq K_1 \supseteq K_2 \dots$ such that:
 - The interesection of all the convex bodies is a point or a line segment.
 - $\int_{K_i} g, \int_{K_i} h > 0$ for all i.

- Claim There is a sequence of convex bodies $K \supseteq K_1 \supseteq K_2 \dots$ such that:
 - The interesection of all the convex bodies is a point or a line segment.
 - $\int_{K_i} g, \int_{K_i} h > 0$ for all i.
- Once we have K_i , we choose a half-space H such that it bisects both $\int_{K_i} g$ and $\int_{K_i} h$ and set $K_{i+1} = K_i \cap H$.

- Claim There is a sequence of convex bodies $K \supseteq K_1 \supseteq K_2 \dots$ such that:
 - The interesection of all the convex bodies is a point or a line segment.
 - $\int_{K_i} g$, $\int_{K_i} h > 0$ for all i.
- Once we have K_i , we choose a half-space H such that it bisects both $\int_{K_i} g$ and $\int_{K_i} h$ and set $K_{i+1} = K_i \cap H$.
- Borsuk-Ulam guarantees that given any 2-dim subspace V, we can choose such an H whose normal lies in V.

- Claim There is a sequence of convex bodies $K \supseteq K_1 \supseteq K_2 \dots$ such that:
 - The interesection of all the convex bodies is a point or a line segment.
 - $\int_{K_i} g$, $\int_{K_i} h > 0$ for all i.
- Once we have K_i , we choose a half-space H such that it bisects both $\int_{K_i} g$ and $\int_{K_i} h$ and set $K_{i+1} = K_i \cap H$.
- Borsuk-Ulam guarantees that given any 2-dim subspace V, we can choose such an H whose normal lies in V.
- Choose V to be the space spanned by the two largest axes of the min vol ellipsoid containing K_i . This process will ensure that no two axes of K_i can both remail long as $i \to \infty$, hence, K_i become needle-like

Proof for the needle

• Claim If P is a convex body with $P \subseteq \varepsilon$ -neighbouhood of line segment $a \to b$, where, $\varepsilon \to 0$ and let p(x) be the cross-sectional area of P at $x \in ab$. Suppose S_1, S_2, S_3 is a partition of ab with $\operatorname{dist}(x,y) \ge \delta \forall x \in S_1, y \in S_3$. Then, $\int_{x \in (ab) \cap S_2} p(x) \ge \min(\int_{x \in S_1} p(x), \int_{x \in S_3} p(x)/\operatorname{dia}(P) - \varepsilon', \text{ where } \varepsilon' \to 0$

Proof for the needle

- Claim If P is a convex body with $P \subseteq \varepsilon$ -neighbouhood of line segment $a \to b$, where, $\varepsilon \to 0$ and let p(x) be the cross-sectional area of P at $x \in ab$. Suppose S_1, S_2, S_3 is a partition of ab with $\operatorname{dist}(x,y) \ge \delta \forall x \in S_1, y \in S_3$. Then, $\int_{x \in (ab) \cap S_2} p(x) \ge \min(\int_{x \in S_1} p(x), \int_{x \in S_3} p(x)/\operatorname{dia}(P) \varepsilon', \text{ where } \varepsilon' \to 0$
- Follows from the fact that the cross-sectional area p(x) is unimodal i.e., does not decrease and then increase. So, for any $x \in (ab) \cap S_2$, $p(y) \le p(x)$ either for all y > x or for all y < x.

• For any convex body K in \mathbb{R}^n , we can find an affine non-singular transformation τ so that $B \subseteq \tau K \subseteq 2n^{3/2}B$,

- For any convex body K in \mathbf{R}^n , we can find an affine non-singular transformation τ so that $B \subseteq \tau K \subseteq 2n^{3/2}B$,
 - where, B is the unit ball: $\{x : |x| \le 1\}$.
- $Vol(\tau K) = Vol(K)|det(\tau)|$, so enough to get $Vol(\tau K)$ to relative error ε .

- For any convex body K in \mathbf{R}^n , we can find an affine non-singular transformation τ so that $B \subseteq \tau K \subseteq 2n^{3/2}B$,
 - where, B is the unit ball: $\{x : |x| \le 1\}$.
- $Vol(\tau K) = Vol(K)|det(\tau)|$, so enough to get $Vol(\tau K)$ to relative error ε .
- τK is said to be well-rounded.

- For any convex body K in \mathbf{R}^n , we can find an affine non-singular transformation τ so that $B \subseteq \tau K \subseteq 2n^{3/2}B$,
 - where, B is the unit ball: $\{x : |x| \le 1\}$.
- $Vol(\tau K) = Vol(K)|det(\tau)|$, so enough to get $Vol(\tau K)$ to relative error ε .
- τK is said to be well-rounded.
- Several "well-rounding" transforms:

- For any convex body K in \mathbf{R}^n , we can find an affine non-singular transformation τ so that $B \subseteq \tau K \subseteq 2n^{3/2}B$,
 - where, B is the unit ball: $\{x : |x| \le 1\}$.
- $Vol(\tau K) = Vol(K)|det(\tau)|$, so enough to get $Vol(\tau K)$ to relative error ε .
- τK is said to be well-rounded.
- Several "well-rounding" transforms:
 - **John Ellipsoid** Take the maximum volume ellipsoid E in K and take τ to be the transformation that sends E to B.
- Need also worry about border cubes (proof so far only assuming most/all cubes intersecting K have sizable fraction of volume in K. ... Technical... Start with K replaced by the smoother K(α) = {x : dist(x, K) ≤ α}...

- For any convex body K in \mathbb{R}^n , we can find an affine non-singular transformation τ so that $B \subseteq \tau K \subseteq 2n^{3/2}B$.
 - where, *B* is the unit ball: $\{x : |x| \le 1\}$.
- $Vol(\tau K) = Vol(K)|det(\tau)|$, so enough to get $Vol(\tau K)$ to relative error ε .
- τK is said to be well-rounded.
- Several "well-rounding" transforms:
 - John Ellipsoid Take the maximum volume ellipsoid E in K and take τ to be the transformation that sends E to B.
 - Inertial Ellipsoid Moment-of-inertia: Matrix M with $M_{ii} = E_K(x_i x_i)$. For $\tau = M^{-1/2}$, $E_{\tau K}(x_i x_i) = B$.
- Need also worry about border cubes (proof so far only assuming most/all cubes intersecting K have sizable fraction of volume in K. ... Technical... Start with K replaced by the smoother $K(\alpha) = \{x : dist(x, K) < \alpha\}...$