First Lecture

October 20, 2017

• For this course, each data point is a point in \mathbf{R}^d , where d is large.

First Lecture

2/1

- For this course, each data point is a point in \mathbf{R}^d , where d is large.
- Why? In many modern applications, there are many "features" (d features) and each data point has one component per feature which is the "importance" of that feature. [Eg. Image with d pixels: each component is the intensity of a pixel. Data here: Collection of images.]

- For this course, each data point is a point in \mathbf{R}^d , where d is large.
- Why? In many modern applications, there are many "features" (d features) and each data point has one component per feature which is the "importance" of that feature. [Eg. Image with d pixels: each component is the intensity of a pixel. Data here: Collection of images.]
- Two broad areas:

- For this course, each data point is a point in \mathbf{R}^d , where d is large.
- Why? In many modern applications, there are many "features" (d features) and each data point has one component per feature which is the "importance" of that feature. [Eg. Image with d pixels: each component is the intensity of a pixel. Data here: Collection of images.]
- Two broad areas:
 - Modeling Deciding what the features should be.

- For this course, each data point is a point in \mathbf{R}^d , where d is large.
- Why? In many modern applications, there are many "features" (d features) and each data point has one component per feature which is the "importance" of that feature. [Eg. Image with d pixels: each component is the intensity of a pixel. Data here: Collection of images.]
- Two broad areas:
 - Modeling Deciding what the features should be.
 - Understanding and Processing Data Mathematical structure, properties of data, algorithms.

- For this course, each data point is a point in \mathbf{R}^d , where d is large.
- Why? In many modern applications, there are many "features" (d features) and each data point has one component per feature which is the "importance" of that feature. [Eg. Image with d pixels: each component is the intensity of a pixel. Data here: Collection of images.]
- Two broad areas:
 - Modeling Deciding what the features should be.
 - Understanding and Processing Data Mathematical structure, properties of data, algorithms.
 - The course mainly deals with second area with occasional examples (as presently) of modeling.

Suppose we have a collection of documents.

- Suppose we have a collection of documents.
- The "vocabulary" of the documents has d words terms.

- Suppose we have a collection of documents.
- The "vocabulary" of the documents has d words terms.
- Represent each document as a d-vector, listing the

- Suppose we have a collection of documents.
- The "vocabulary" of the documents has d words terms.
- Represent each document as a d-vector, listing the
 - · frequency of each term in the document or

- Suppose we have a collection of documents.
- The "vocabulary" of the documents has d words terms.
- Represent each document as a d-vector, listing the
 - frequency of each term in the document or
 - function of frequency.

Document turned into a vector

• Collection of d URL's.

- Collection of d URL's.
- Each URL becomes a d vector with 0-1 coordinates.

- Collection of d URL's.
- Each URL becomes a d vector with 0-1 coordinates.
 - 1 in position *i* if there is a hypertext link from our URL to the *i* th one in the collection; 0 otherwise.

- Collection of d URL's.
- Each URL becomes a d vector with 0-1 coordinates.
 - 1 in position *i* if there is a hypertext link from our URL to the *i* th one in the collection; 0 otherwise.
- Detail: Very Sparse, so linked list instead of array representation.
 (Don't worry about this now.)

Is vector representation just a book keeping device?

 No. Correlation between a pair of URL's maybe defined as their dot product.

4□ > 4□ > 4 = > 4 = > = 90

6/1

Is vector representation just a book keeping device?

- No. Correlation between a pair of URL's maybe defined as their dot product.
 - Greater the number of common hypertext links (of two URL's), the higher their dot product or correlation. [We get a 1 in the dot product for each common hypertext link.]

6/1

Is vector representation just a book keeping device?

- No. Correlation between a pair of URL's maybe defined as their dot product.
 - Greater the number of common hypertext links (of two URL's), the higher their dot product or correlation. [We get a 1 in the dot product for each common hypertext link.]
- Dot Products, Angles, Linear Algebra quantities all have significance in Information Retrieval, Web and many other applications.

6/1

 Since data consists of points in high dim space, important to understand properties of high dim space which are quite different from our usual 2-d or 3-d intuition.

- Since data consists of points in high dim space, important to understand properties of high dim space which are quite different from our usual 2-d or 3-d intuition.
- First Volumes Surface Areas and integrals. Volume of cube of side 1 in 3-d is 1. In fact the volume of a cube of side 1 in R^d (see below) is still 1.

First Lecture

7 / 1

- Since data consists of points in high dim space, important to understand properties of high dim space which are quite different from our usual 2-d or 3-d intuition.
- First Volumes Surface Areas and integrals. Volume of cube of side 1 in 3-d is 1. In fact the volume of a cube of side 1 in R^d (see below) is still 1.
 - $\{\mathbf{x} = (x_1, x_2, \dots, x_d) : 0 \le x_i \le 1\}$

First Lecture

7 / 1

- Since data consists of points in high dim space, important to understand properties of high dim space which are quite different from our usual 2-d or 3-d intuition.
- First Volumes Surface Areas and integrals. Volume of cube of side 1 in 3-d is 1. In fact the volume of a cube of side 1 in R^d (see below) is still 1.
 - $\{\mathbf{x} = (x_1, x_2, \dots, x_d) : 0 \le x_i \le 1\}$
- What is the volume of d-dim cube of side 2?
 - Since each of d sides has doubled, volume goes up by a factor of 2^d.

First Lecture

- Since data consists of points in high dim space, important to understand properties of high dim space which are quite different from our usual 2-d or 3-d intuition.
- First Volumes Surface Areas and integrals. Volume of cube of side 1 in 3-d is 1. In fact the volume of a cube of side 1 in R^d (see below) is still 1.
 - $\{\mathbf{x} = (x_1, x_2, \dots, x_d) : 0 \le x_i \le 1\}$
- What is the volume of d-dim cube of side 2?
 - Since each of d sides has doubled, volume goes up by a factor of 2^d.
 - Similarly, the volume of a d dimensional sphere of radius 2 is 2^d times the volume of a d dim sphere of radius 1.

- Since data consists of points in high dim space, important to understand properties of high dim space which are quite different from our usual 2-d or 3-d intuition.
- First Volumes Surface Areas and integrals. Volume of cube of side 1 in 3-d is 1. In fact the volume of a cube of side 1 in R^d (see below) is still 1.
 - $\{\mathbf{x} = (x_1, x_2, \dots, x_d) : 0 \le x_i \le 1\}$
- What is the volume of d-dim cube of side 2?
 - Since each of d sides has doubled, volume goes up by a factor of 2^d.
 - Similarly, the volume of a d dimensional sphere of radius 2 is 2^d times the volume of a d dim sphere of radius 1.
 - Follows by integration since each infinitesimal cube has its sides doubled.

"Surprises"

The volume of a *d* dim hypersphere of radius 1 goes to 0 as *d* goes to infinity. The course will prove such statements properly. Try this one at home. In any case, review your multivariate Calculus immediately.

Figure: Illustration of the relationship between the sphere (radius 1) and the

First Lecture October 20, 2017

8/1

The Best-Fit Document-direction

Best-fit direction for a set of vectors minimizes the sum of squared perpendicular distances to all documents (best-fit line).

Given a set of vectors, find the best-fit direction v₁.

- Given a set of vectors, find the best-fit direction v₁.
- Find the best fit direction v₂ perpendicular to v₁.

- Given a set of vectors, find the best-fit direction v₁.
- Find the best fit direction v₂ perpendicular to v₁.
- Find the best-fit direction v_3 perpendicular to both v_1 and v_2 .

- Given a set of vectors, find the best-fit direction v₁.
- Find the best fit direction v₂ perpendicular to v₁.
- Find the best-fit direction v₃ perpendicular to both v₁ and v₂.
- Find k such directions.

- Given a set of vectors, find the best-fit direction v₁.
- Find the best fit direction v₂ perpendicular to v₁.
- Find the best-fit direction v₃ perpendicular to both v₁ and v₂.
- Find k such directions.
- Project all data to space spanned by these k directions.

- Given a set of vectors, find the best-fit direction v₁.
- Find the best fit direction v₂ perpendicular to v₁.
- Find the best-fit direction v_3 perpendicular to both v_1 and v_2 .
- Find k such directions.
- Project all data to space spanned by these k directions.
- Do something in the projection.

- Given a set of vectors, find the best-fit direction v₁.
- Find the best fit direction v₂ perpendicular to v₁.
- Find the best-fit direction v_3 perpendicular to both v_1 and v_2 .
- Find k such directions.
- Project all data to space spanned by these k directions.
- Do something in the projection.
- Very widely used Algorithm. Course will see properties/algorithm for finding these directions.

 Review / be current on your basic Probability: Random Variables, Mean, Variance, Independence, Conditional expectations, Central Limit Theorem (statement). Variance-Covarince matrix. Multi-variate Gaussian density.

- Review / be current on your basic Probability: Random Variables, Mean, Variance, Independence, Conditional expectations, Central Limit Theorem (statement). Variance-Covarince matrix.
 Multi-variate Gaussian density.
- If a data quantity is the average of many (independent) quantities, it behaves like a Gaussian random variable.

First Lecture

- Review / be current on your basic Probability: Random Variables, Mean, Variance, Independence, Conditional expectations, Central Limit Theorem (statement). Variance-Covarince matrix. Multi-variate Gaussian density.
- If a data quantity is the average of many (independent) quantities, it behaves like a Gaussian random variable.
- Many analogies between vectors of d independent random variables and points from d dimensional hypersphere.

- Review / be current on your basic Probability: Random Variables, Mean, Variance, Independence, Conditional expectations, Central Limit Theorem (statement). Variance-Covarince matrix. Multi-variate Gaussian density.
- If a data quantity is the average of many (independent) quantities, it behaves like a Gaussian random variable.
- Many analogies between vectors of d independent random variables and points from d dimensional hypersphere.
- Example: If $x_1, x_2, \dots x_d$ are independent mean 0 Gaussians, their sum is close to 0.

- Review / be current on your basic Probability: Random Variables, Mean, Variance, Independence, Conditional expectations, Central Limit Theorem (statement). Variance-Covarince matrix.
 Multi-variate Gaussian density.
- If a data quantity is the average of many (independent) quantities, it behaves like a Gaussian random variable.
- Many analogies between vectors of d independent random variables and points from d dimensional hypersphere.
- Example: If $x_1, x_2, \dots x_d$ are independent mean 0 Gaussians, their sum is close to 0.
- If **x** is a random point from the *d* dim hypersphere centered at the origin, then $\sum_{i=1}^{d} x_i \approx 0$. Most of the mass of the hypersphere is close to the equator.

11 / 1