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@ Both will sample rows with probability proportional to length
squared.
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Agenda: Sampling to deal with “big” matrices

@ Our definition of “Big data” Doesn't fit into RAM,

@ Obvious thought to deal with a big matrix: Sample some rows and
compute only on sampled rows.

@ Uniform Random Sampling won’t do: maybe only o(1) fraction of
rows/columns have significant entries.

@ This lecture: Two problems on matrices:

o (Approximate) Matrix Multiplication in “near-linear” time.
o Compressed Representation of a matrix. Uses Matrix Multiplication
Thm. twice in a curious way.

@ Both will sample rows with probability proportional to length
squared.

@ Will use Length Squared Sampling later also for SVD.

@ Thrpughout: Algorithm tosses coins. (“Randomized Algorithm”)
Data does not. [Data: Worst-case, not average case.]
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Matrix Multiplication

@ Matrix Multiplication : Amxn, Bnxg- Find AB. Exact (néive)
algorithm in O(mnq) time. Better Divide and Conquer Algorithms.
Can we do linear time O(mn + nq) approximately? What if A, B
cannot be stored in RAM ?
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Matrix Multiplication

@ Matrix Multiplication : Amxn, Bnxg- Find AB. Exact (néive)
algorithm in O(mnq) time. Better Divide and Conquer Algorithms.
Can we do linear time O(mn + nq) approximately? What if A, B
cannot be stored in RAM ?

o Can we just take a sample of A, B, multiply to get an approximation
to product ?

@ Sample some entries of A, B ? Need compatible dimensions to
multiply !

e Sample some rows/columns of A, B ?? Any rows/columns ?7?

@ AB = (1st Col of A)(1st row of B)+(2nd Col of A)(2nd row of B) +
-+-. Check.

@ The r.h.s = sum of n quantities (which happen to be matrices.)

@ Sample r of these n quantities and hope/prove that their sum
(times ) is a good estimate.

@ Tryu.ar. T C{1,2,...,n} with |T| = r. Does this work for any
A B?
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Matrix Multiplication-contd.

@ AB = (1st Col of A)(1st row of B)+(2nd Col of A)(2nd row of B) +..
n
AB=> A(,i)B(,:).
i=1
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Matrix Multiplication-contd.

e AB = (1st Col of A)(1st row of B)+(2nd Col of A)(2nd row of B) +
AB = Z A(,NB(i,:).

° Unn‘orm Sampllng does not work. General non-uniform Sampling:
Prob.s of picking columns: py,ps,...,pp>0; Sum = 1.
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e AB = (1st Col of A)(1st row of B)+(2nd Col of A)(2nd row of B) +
AB = Z A(,NB(i,:).

° Unn‘orm Sampllng does not work. General non-uniform Sampling:
Prob.s of picking columns: py,ps,...,pp>0; Sum = 1.

@ Pickjc {1,2,...,n} with Prob(j) = p; Let X = A(:,/)B(j,:). Xisa
matrix-valued r.v. Really want to take r i.i.d. copies of j, and of X
and take average. But enough to compute mean and variance of
one X.
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Matrix Multiplication-contd.

e AB = (1st Col of A)(1st row of B)+(2nd Col of A)(2nd row of B) +
AB = Z A(,NB(i,:).

° Unn‘orm Sampllng does not work. General non-uniform Sampling:
Prob.s of picking columns: py,ps,...,pp>0; Sum = 1.

@ Pickjc {1,2,...,n} with Prob(j) = p; Let X = A(:,/)B(j,:). Xisa
matrix-valued r.v. Really want to take r i.i.d. copies of j, and of X
and take average. But enough to compute mean and variance of
one X.

@ What is E(X) (entry-wise expectation)?

E(X) = 27:1 p; (A(:,/)B(J, :)). How we do we make it unbiased ?

@ Step back: Want to estimate the sum of n real numbers
ai,as,...,an. Pickaje {1,2,..., n} with probabilities
p1, P2, ..., Pn. How do we scale the picked a; so that it is an
unbiased estimator of sum?
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@ Pick g; from ay, ap, ..., ap with probabilities py, po, . .., pPp.
E(a/p) =3/ 18-
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@ Pick g; from ay, ap, ..., ap with probabilities py, po, . .., pPp.
E(ai/p)) = > L1 a -
o E (P}/A(;,j)B(j, ;)) — AB. Better have p; > 0.
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@ Pick g; from ay, ap, ..., ap with probabilities py, po, . .., pPp.
E(aj/p) = >/ 18 -

o E (P}/A(;,j)B(j, ;)) — AB. Better have p; > 0.

@ What about the error ?
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@ Pick g; from ay, ap, ..., ap with probabilities py, po, . .., pPp.
E(aj/p) = >/ 18 -

o E (P}/A(;,j)B(j, ;)) — AB. Better have p; > 0.

@ What about the error ?

@ Try writing down the variance of one entry, say the (i, j) th entry.
First try the second moment.

SN
p—5AZB2.
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@ Pick g; from ay, ap, ..., ap with probabilities py, po, . .., pPp.
E(aj/p) = >/ 18 -

o E (P}/A(;,j)B(j, ;)) — AB. Better have p; > 0.

@ What about the error ?

@ Try writing down the variance of one entry, say the (i, j) th entry.
First try the second moment.

SN
p—5AZB2.

@ How do we bound it for different (i, j) ?
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Variance of the Matrix

@ Simple Idea (but without it, very complicated): Bound > of
variances of entries of X. Let Var(X) denote 3 _; ; Var(Xj).

_ Length Squared Sampling in Matrices November 2, 2017 6/1



Variance of the Matrix

@ Simple Idea (but without it, very complicated): Bound > of
variances of entries of X. Let Var(X) denote 3 _; ; Var(Xj).

q
e Var(X) =124 z%Var (xj) < ZE(X,)?) < Z;Plﬁlza;‘}bﬁ-
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Variance of the Matrix

@ Simple Idea (but without it, very complicated): Bound > of
variances of entries of X. Let Var(X) denote 3 _; ; Var(Xj).

® Var(X) = 1" 1ZVar(Xu)<ZE( ) < ST pigdth

° Exchange order of summations:

DEDEIE S IICRLIUOTS
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@ What is the best choice of p; ? It is the one which minimizes the
variance of X.
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Variance of the Matrix

@ Simple Idea (but without it, very complicated): Bound > of
variances of entries of X. Let Var(X) denote 3 _; ; Var(Xj).

@ Var(X)=Y" 1ZVar(x,,)<ZE( )<ZZp/ > &)

° Exchange order of summations:

DEDEIE S IICRLIUOTS

@ What is the best choice of p; ? It is the one which minimizes the
variance of X.

@ Suffices to minimize second moment, since E(X) does not
depend on p; (Unbiased)!
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Probabilities which minimize variance

@ Choose p to minimize 3=, o-|A(:, k)|?|B(k, :)[%.
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minimizing Z% subjectto p; > 0,> ", py = 1 are proportional to
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@ Calculus: If ay, a», ..., ap are any positive reals, the py, po, ..., pn
minimizing Z% subjectto p; > 0,> ", py = 1 are proportional to
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@ Best Choice- px « |A(:, k)| |B(k,:)|, i.e.,
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@ In the important special case when B = AT, px = |A(;, k)|?/||A||%,
where,
|AljZ2 = 3, A is called the Frobenius norm of A.
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where,
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Probabilities which minimize variance

® Choose p to minimize 3-, o-|A(:, k)|?|B(k, :)[%.

@ Calculus: If a1, a», ..., a, are any positive reals, the py,po, ..., pn
minimizing Z% subjectto p; > 0,> ", py = 1 are proportional to
va. Check.

@ Best Choice- px « |A(:, k)| |B(k,:)|, i.e.,
P = |AG, K)| 1Bk, )|/ o 1AG. )] 1B,

@ In the important special case when B = AT, px = |A(;, k)|?/||A||%,
where,
|AljZ2 = 3=, A% is called the Frobenius norm of A.

@ Pick columns of A with probabilities proportional to the
squared length of the columns. . Length-Squared Sampling.

@ With these probabilities, we have

var(X) < 3, %z& A 1B
= (X 1AG, D] 1B(L:)))? < [JAI2]BI[2. [Why?]
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Probabilities which minimize variance

® Choose p to minimize 3-, o-|A(:, k)|?|B(k, :)[%.

@ Calculus: If a1, a», ..., a, are any positive reals, the py,po, ..., pn
minimizing Z% subjectto p; > 0,> ", py = 1 are proportional to
va. Check.

@ Best Choice- px « |A(:, k)| |B(k,:)|, i.e.,
P = |AG, K)| 1Bk, )|/ o 1AG. )] 1B,

@ In the important special case when B = AT, px = |A(;, k)|?/||A||%,
where,
|AljZ2 = 3=, A% is called the Frobenius norm of A.

@ Pick columns of A with probabilities proportional to the
squared length of the columns. . Length-Squared Sampling.

@ With these probabilities, we have

2
Var(X) < ¥ %2721 AG, 1] IB(,)]

= (X 1AG: DI [BU,))? < [JAIIZ|B]1Z. [Why?]
@ Another set of probabllltles (reaIIy Iength squared):
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Approximately Length Squared

@ Suppose px > c|A(:, k)[?/||Al|2 for some ¢ € Q(1). It may be

possible to find such px more easily than finding exact lengths.

[For eg. by sampling.]
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@ Suppose px > c|A(:, k)[?/||Al|2 for some ¢ € Q(1). It may be
possible to find such px more easily than finding exact lengths.
[For eg. by sampling.]

@ Still X = A(:, k)B(k,:)/px is unbiased estimator of AB (in fact for
any py!
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Approximately Length Squared

@ Suppose px > c|A(:, k)[?/||Al|2 for some ¢ € Q(1). It may be
possible to find such px more easily than finding exact lengths.
[For eg. by sampling.]

@ Still X = A(:, k)B(k,:)/px is unbiased estimator of AB (in fact for
any py!

@ Now, Var(X) < 3, % 11|A/|2]|B]|2. Loose only a
factor of 1/c?.
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Reducing Variance

@ We saw for r.v. X, we have: E(X) = AB and Var(X) < ||Al|F||B||F-
Good Enough ?
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Reducing Variance

@ We saw for r.v. X, we have: E(X) = AB and Var(X) < ||Al|F||B||F-
Good Enough ?

@ But ||AB||r < ||A||F||B||r and equality could hold. So in best case,
error is as much as ||AB||r! No good.
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Reducing Variance

@ We saw for r.v. X, we have: E(X) = AB and Var(X) < ||Al|F||B||F-
Good Enough ?

@ But ||AB||r < ||A||F||B||r and equality could hold. So in best case,
error is as much as ||AB||r! No good.

@ What is a general method of reducing the variance ?

@ Take si.i.d copies of X and take average. Variance cut down by a
factor of s.

_ Length Squared Sampling in Matrices November 2, 2017 9/1



Matrix Multiplication Theorem
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Matrix Multiplication Theorem

@ Amxn Bnxq.
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Matrix Multiplication Theorem
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@ AB =~ CB, where,
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Matrix Multiplication Theorem

@ Amxn Bnxq.
@ AB =~ CB, where,
e C= [;TA(:,j1)|p‘72A(:,j2) . |p1?A(; ,Js)], where, ji, o, ..., js are
picked in i.i.d trials according to {p; : j = 1,2,..., n} satisfying
p; > ClAG. )P/ || AlIZY).
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Matrix Multiplication Theorem

@ Amxn Bnxq.
@ AB =~ CB, where,
e C= [;TA(:,j1)|p‘72A(:,j2) . |p1?A(; ,Js)], where, ji, o, ..., js are
picked in i.i.d trials according to {p; : j = 1,2,..., n} satisfying
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o Bis the s x @ matrix of corresponding rows of B.
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Matrix Multiplication Theorem

@ Amxn Bnxq.
@ AB =~ CB, where,
o C=1[5-Al0)p AC ) - [5;AG . Js)), where, ji. . .. Js are
picked in i.i.d trials according to {p; : j = 1,2,..., n} satisfying
P > ClA()P/I|Al2].
o Bis the s x @ matrix of corresponding rows of B.
E (11AB CB 2 HAH% ||B||?—‘ I li
o E(||AB - CBI2) < MMELPE mplies

E (1AB - CBlr) < lAlelBle,
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Matrix Multiplication Theorem

@ Amxn Bnxq.
@ AB =~ CB, where,
o C= [p171A(7./1)|p172A(>]2) s |;;IA(Y 7j5)]’ where, j1 7j27 s ajS are
picked in i.i.d trials according to {p; : j = 1,2,..., n} satisfying
P > ClA()P/I|Al2].
o Bis the s x @ matrix of corresponding rows of B.
B2 |IAIZ |1B| 12 Imoli
° E(HAB— C HF) < =% Implies
F Ale 1B
E(HAB— CBHF) < I ||\F/% lle

@ Words: Frobenius norm error goes down as 1/+/s.
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Big Data: Implement in 2 passes

@ “Big Data” = Cannot be held in RAM.
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Big Data: Implement in 2 passes

@ “Big Data” = Cannot be held in RAM.
@ Do one pass through A, B to compute all the probabilities py.

@ With px on hand, toss coins to figure out which set of s columns of
A (and corresponding rows of B) we are going to sample.
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Big Data: Implement in 2 passes

@ “Big Data” = Cannot be held in RAM.
@ Do one pass through A, B to compute all the probabilities py.

@ With px on hand, toss coins to figure out which set of s columns of
A (and corresponding rows of B) we are going to sample.

@ Make a second pass through A, B and pull out the sample.
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Big Data: Implement in 2 passes
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@ Do one pass through A, B to compute all the probabilities py.

@ With px on hand, toss coins to figure out which set of s columns of
A (and corresponding rows of B) we are going to sample.

@ Make a second pass through A, B and pull out the sample.
@ Multiply the sample in RAM and return result.

@ For error < ¢||A||r||B||F in expectation, s > ¢/<? suffices. For
ee€Q1),se O(1).
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Big Data: Implement in 2 passes

@ “Big Data” = Cannot be held in RAM.
@ Do one pass through A, B to compute all the probabilities py.

@ With px on hand, toss coins to figure out which set of s columns of
A (and corresponding rows of B) we are going to sample.

@ Make a second pass through A, B and pull out the sample.

@ Multiply the sample in RAM and return result.

@ For error < ¢||A||£||B||r in expectation, s > ¢/<? suffices. For
ee€Q1),se O(1).

@ If s € O(1), then RAM space needed is linear in mn + nq.
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Problems solved by length squared and its cousins

@ Matrix Multiplication.
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Problems solved by length squared and its cousins

@ Matrix Multiplication.

@ Sketch (Compressed representation) of a matrix (Discussed Next)
@ Principal Component Analysis (SVD) (Coming)

@ Tensor Optimization

@ Graph Sparsification
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Sketch of a large Matrix

@ Ais a mx nmatrix. m, nlarge.
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@ Will show: A can be approximated given just a random sample of
rows of A and a random sample of columns of A, provided, the
sampling is length-squared. (Not known for other probabilities.)
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@ Will show: A can be approximated given just a random sample of
rows of A and a random sample of columns of A, provided, the
sampling is length-squared. (Not known for other probabilities.)

@ Can we sketch (approximate) a matrix by a sample of rows ? No.
Sample tells us noting about unsampled rows.
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Sketch of a large Matrix

@ Ais a mx nmatrix. m, nlarge.

@ Will show: A can be approximated given just a random sample of
rows of A and a random sample of columns of A, provided, the
sampling is length-squared. (Not known for other probabilities.)

@ Can we sketch (approximate) a matrix by a sample of rows ? No.
Sample tells us noting about unsampled rows.

@ Say: rank(A) = k << m, n. If in “general position”, a sample of
100k rows should pin down row space. Still don’t know for an
unsampled row, what linear combination of sampled rows it is.
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@ Can we sketch (approximate) a matrix by a sample of rows ? No.
Sample tells us noting about unsampled rows.

@ Say: rank(A) = k << m, n. If in “general position”, a sample of
100k rows should pin down row space. Still don’t know for an
unsampled row, what linear combination of sampled rows it is.

@ A sample of O(k) columns should yield this information.
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-]
Sketch of a large Matrix

@ Ais a mx nmatrix. m, nlarge.

@ Will show: A can be approximated given just a random sample of
rows of A and a random sample of columns of A, provided, the
sampling is length-squared. (Not known for other probabilities.)

@ Can we sketch (approximate) a matrix by a sample of rows ? No.
Sample tells us noting about unsampled rows.

@ Say: rank(A) = k << m, n. If in “general position”, a sample of
100k rows should pin down row space. Still don’t know for an
unsampled row, what linear combination of sampled rows it is.

@ A sample of O(k) columns should yield this information.
@ Will rigourously prove error bound without assuming A is low rank.
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Using CUR- an example

@ Large Corpus of documents. Each doc is a word-frequency vector.
Forms a column of large word-doc matrix A.
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Forms a column of large word-doc matrix A.

@ New Document v comes in. Want its similarity to each doc in
corpus. If similarity = dot product, then, want v’ A.
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Using CUR- an example

@ Large Corpus of documents. Each doc is a word-frequency vector.
Forms a column of large word-doc matrix A.

@ New Document v comes in. Want its similarity to each doc in
corpus. If similarity = dot product, then, want v’ A.

@ Problem: Preprocess A, so that at “query time” given v, can find
approximate v A fast. But must bound error for EVERY v. Say we
want to find u so that |u — vT A < §|v|.
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@ New Document v comes in. Want its similarity to each doc in
corpus. If similarity = dot product, then, want v’ A.

@ Problem: Preprocess A, so that at “query time” given v, can find
approximate v A fast. But must bound error for EVERY v. Say we
want to find u so that |u — vT A| < §|v|.

@ Will set u = v CUR. Fast: Do v’ C then times U then times R.
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Using CUR- an example

@ Large Corpus of documents. Each doc is a word-frequency vector.
Forms a column of large word-doc matrix A.

@ New Document v comes in. Want its similarity to each doc in
corpus. If similarity = dot product, then, want v’ A.

@ Problem: Preprocess A, so that at “query time” given v, can find
approximate v A fast. But must bound error for EVERY v. Say we
want to find u so that |u — vT A| < §|v|.

@ Will set u = v CUR. Fast: Do v’ C then times U then times R.

@ Want
Maxy v’ (CUR — A)| /|v| < é.
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Using CUR- an example

Large Corpus of documents. Each doc is a word-frequency vector.
Forms a column of large word-doc matrix A.

New Document v comes in. Want its similarity to each doc in
corpus. If similarity = dot product, then, want v’ A.

Problem: Preprocess A, so that at “query time” given v, can find
approximate v A fast. But must bound error for EVERY v. Say we
want to find u so that |u — vT A < §|v|.

Will set u = v" CUR. Fast: Do v’ C then times U then times R.

Want
Maxy

v (CUR — A)‘ /Iv| < 6.

The maximum has a name - Spectral norm of A— CUR. So, want

A~ CURI|5 < 6. Will show E (||A— CURI2) < Az where s =

number of sampled columns. Number of sampled rows = r.
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Idea

@ Write A = Al. Pretend multiplying A with / by sampling s columns
of A. Proved: Error < [|A[|¢[|/||r//s = || Al r2.
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@ Write A = Al. Pretend multiplying A with / by sampling s columns

of A. Proved: Error < [|A[|¢[|/||r//s = || Al r2.
@ Needs s > nto get error < ||A||r. Useless. Why?
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@ Assume RR' is invertible. [true if A is not degenerate. Why?]
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@ Write A = Al. Pretend multiplying A with / by sampling s columns
of A. Proved: Error < [|A[|¢[|/||r//s = || Al r2.

@ Needs s > nto get error < ||A||r. Useless. Why?

@ Assume RR' is invertible. [true if A is not degenerate. Why?]
@ P=RT(RR")~"R acts as identity on row space of R:
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Idea

@ Write A = Al. Pretend multiplying A with / by sampling s columns
of A. Proved: Error < ||A||F||/||r/v/s = HAH,:%.

@ Needs s > nto get error < ||A||r. Useless. Why?

@ Assume RR' is invertible. [true if A is not degenerate. Why?]

@ P = R"(RR')~'R acts as identity on row space of R:
e (1)xeV=x"=y"R. So, Px=RT(RR")"'RRTy = Ry = x.

@ Instead of the pretend Al, do pretend AP.
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Idea

@ Write A = Al. Pretend multiplying A with / by sampling s columns
of A. Proved: Error < ||A||F||/||r/v/s = HAH,:%.

@ Needs s > nto get error < ||A||r. Useless. Why?

@ Assume RR' is invertible. [true if A is not degenerate. Why?]

@ P = R"(RR')~'R acts as identity on row space of R:
e (1)xeV=x"=y"R. So, Px=R7(RR")"'RRTy = Ry = x.
e (2)Ifx € V*, then, Px = RT(RRT)"'Rx = 0.

@ Instead of the pretend Al, do pretend AP.
@ Will prove two things which together imply ||A — CUR]| is small:
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Idea

@ Write A = Al. Pretend multiplying A with / by sampling s columns
of A. Proved: Error < ||A||F||/||r/v/s = HAH,:%.

@ Needs s > nto get error < ||A||r. Useless. Why?

@ Assume RR' is invertible. [true if A is not degenerate. Why?]

@ P = R"(RR')~'R acts as identity on row space of R:
e (1)xeV=x"=y"R. So, Px=R7(RR")"'RRTy = Ry = x.
e (2)Ifx € V*, then, Px = RT(RRT)"'Rx = 0.

@ Instead of the pretend Al, do pretend AP.

@ Will prove two things which together imply ||A — CUR]| is small:
o ||A— AP||z is small from (1) and (2).
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Idea

@ Write A = Al. Pretend multiplying A with / by sampling s columns
of A. Proved: Error < [|A[|¢[|/||r//s = || Al r2.
@ Needs s > nto get error < ||A||r. Useless. Why?
@ Assume RR' is invertible. [true if A is not degenerate. Why?]
@ P = R"(RR')~'R acts as identity on row space of R:
e (1)xeV=x"=y"R. So, Px=R7(RR")"'RRTy = Ry = x.
e (2)Ifx € V*, then, Px = RT(RRT)"'Rx = 0.
@ Instead of the pretend Al, do pretend AP.
@ Will prove two things which together imply ||A — CUR]| is small:
e ||A— AP||, is small from (1) and (2).
e C = length squared sample of col.s of A. Corres rows of P- can be

written as UR. [Hint: P ends in R. Note: R ’s rows do not corres to
col.s of C.] So, ||AP — CUR|| small.
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Proofs

@ Proposition A~ AP. l.e., E (||A— AP||3) is at most - FIAIE .
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@ Recall: ||A — AP||§ = MaXix:|x|=1} ’(A — AP)X‘2
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Proofs

@ Proposition A~ AP. l.e., E (||A— AP||3) is at most - FIAIE .

@ Recall: ||A — AP||§ = MaXix:|x|=1} ’(A — AP)X‘2
@ If x in the row space V of R, Px =X, so, (A— AP)x =0.
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Proofs

e Proposition A~ AP. l.e., E (||[A— AP|[2) is at most - FIAIE .

@ Recall: ||A — AP||§ = MaXix:|x|=1} ’(A — AP)X‘2
@ If x in the row space V of R, Px =X, so, (A— AP)x =0.

@ Every vector is sum of a vector in V plus a vector in V+. So, max
at some x € V+ and so Px = 0; (A — AP)x = Ax.
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Proofs

e Proposition A~ AP. l.e., E (||[A— AP|[2) is at most - FIAIE .
@ Recall: ||A — AP||§ = MaXix:|x|=1} ’(A — AP)X‘2

@ If x in the row space V of R, Px =X, so, (A— AP)x =0.

@ Every vector is sum of a vector in V plus a vector in V+. So, max
at some x € V+ and so Px = 0; (A — AP)x = Ax.

|Ax|2 = xTATAx = x"(ATA— RTR)x < ||ATA— RTR||s|x[? <
I|IATA— RTR.
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Proofs

e Proposition A~ AP. l.e., E (||[A— AP|[2) is at most - FIAIE .
@ Recall: ||A — AP||§ = MaXix:|x|=1} ’(A — AP)X‘2

@ If x in the row space V of R, Px =X, so, (A— AP)x =0.

o

Every vector is sum of a vector in V plus a vector in V. So, max
at some x € V+ and so Px = 0; (A — AP)x = Ax.

|Ax|2 = xTATAx = x"(ATA— RTR)x < ||ATA— RTR||s|x[? <
|IATA— RTR|,.

e Suffices to prove ||ATA— RTR|3 < ||A|[£/r.

_ Length Squared Sampling in Matrices November 2, 2017 17 /1



Proofs

e Proposition A~ AP. l.e., E (||[A— AP|[2) is at most - FIAIE .
@ Recall: ||A — AP||§ = MaXix:|x|=1} ’(A — AP)X‘2

@ If x in the row space V of R, Px =X, so, (A— AP)x =0.

o

Every vector is sum of a vector in V plus a vector in V. So, max
at some x € V+ and so Px = 0; (A — AP)x = Ax.

|Ax|2 = xTATAx = x"(ATA— RTR)x < ||ATA— RTR||s|x[? <
|IATA— RTR.

e Suffices to prove ||ATA— RTR|3 < ||A|[£/r.

@ Matrix Multiplication Theorem! Why?
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Proofs

Proposition A~ AP. l.e., E (||A— AP|[3) is at most —- FIAIE .
Recall: ||A — AP||§ = MaXix:|x|=1} ’(A — AP)X‘2
If x in the row space V of R, Px = x, so, (A— AP)x =0.

Every vector is sum of a vector in V plus a vector in V. So, max
at some x € V+ and so Px = 0; (A — AP)x = Ax.

o [AxPP =xTATAx=xT(ATA— RTR)x < ||ATA— RTR||5|x|? <
I|IATA - RTR||>.

e Suffices to prove ||ATA— RTR|3 < ||A|[£/r.

@ Matrix Multiplication Theorem! Why?

@ Pretend we are multiplying AT by A by picking col.s of A by length
squared sampling....
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Proof -Il

@ Lemma AP ~ CUR.

_ Length Squared Sampling in Matrices November 2, 2017 18/1



.
Proof -Il

@ Lemma AP ~ CUR.
@ Cis alength squared sample of cols of A.

_ Length Squared Sampling in Matrices November 2, 2017 18/1



.
Proof -Il

@ Lemma AP ~ CUR.
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@ Want to pick corres rows of P = RT(RRT)~'R. Can be written as
UR for some U.
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Proof -Il

@ Lemma AP ~ CUR.
@ Cis alength squared sample of cols of A.

@ Want to pick corres rows of P = RT(RRT)~'R. Can be written as
UR for some U.

@ Error E(||AP — CUR||2) < ||A||2||P||2/s by Matrix Mult Thm.
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Proof -Il

Lemma AP ~ CUR.
C is a length squared sample of cols of A.

Want to pick corres rows of P = RT(RR")~"R. Can be written as
UR for some U.

Error E(||AP — CUR||2) < ||A||2||P||2/s by Matrix Mult Thm.

Bound ||P||r: P has rank r and is an identity matrix on an r dim
subspace. Prove any such P has ||P||2 = r.
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.
Proof -Il

Lemma AP ~ CUR.
C is a length squared sample of cols of A.

Want to pick corres rows of P = RT(RR")~"R. Can be written as
UR for some U.

Error E(||AP — CUR||2) < ||A||2||P||2/s by Matrix Mult Thm.
Bound ||P||r: P has rank r and is an identity matrix on an r dim
subspace. Prove any such P has ||P||2 = r.

Putting together, we get E(||A— CUR|3) < ||Al|2 (\% + £>,

S
Optimal choice: r = s%/3,
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CUR Theorem

@ Hypothesis: A m x n matrix. r and s be positive integers.
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CUR Theorem

@ Hypothesis: A m x n matrix. r and s be positive integers.

@ Hypothesis: C an m x s matrix of s columns of A picked according
to length squared sampling and R a matrix of r rows of A picked
according to length squared sampling.
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N
CUR Theorem

@ Hypothesis: A m x n matrix. r and s be positive integers.

@ Hypothesis: C an m x s matrix of s columns of A picked according
to length squared sampling and R a matrix of r rows of A picked
according to length squared sampling.

@ Conclusion: We can find from C and R an s x r matrix U so that

2 2r
E(IIA- CURIB) < IIAI2 (\ﬁ + S) = ||AIFO(1/s"%),

choosing r = s%/3

_ Length Squared Sampling in Matrices November 2, 2017 19/1



