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Agenda: Sampling to deal with “big” matrices

Our definition of “Big data” Doesn’t fit into RAM,

Obvious thought to deal with a big matrix: Sample some rows and
compute only on sampled rows.
Uniform Random Sampling won’t do: maybe only o(1) fraction of
rows/columns have significant entries.
This lecture: Two problems on matrices:

(Approximate) Matrix Multiplication in “near-linear” time.
Compressed Representation of a matrix. Uses Matrix Multiplication
Thm. twice in a curious way.

Both will sample rows with probability proportional to length
squared.
Will use Length Squared Sampling later also for SVD.
Thrpughout: Algorithm tosses coins. (“Randomized Algorithm”)
Data does not. [Data: Worst-case, not average case.]
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Matrix Multiplication

Matrix Multiplication : Am×n,Bn×q. Find AB. Exact (näive)
algorithm in O(mnq) time. Better Divide and Conquer Algorithms.
Can we do linear time O(mn + nq) approximately? What if A,B
cannot be stored in RAM ?

Can we just take a sample of A,B, multiply to get an approximation
to product ?
Sample some entries of A,B ? Need compatible dimensions to
multiply !
Sample some rows/columns of A,B ?? Any rows/columns ??

AB = (1st Col of A)(1st row of B)+(2nd Col of A)(2nd row of B) +
· · · . Check.
The r.h.s = sum of n quantities (which happen to be matrices.)
Sample r of these n quantities and hope/prove that their sum
(times n

r ) is a good estimate.
Try u.a.r. T ⊂ {1,2, . . . ,n} with |T | = r . Does this work for any
A,B?
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Matrix Multiplication-contd.

AB = (1st Col of A)(1st row of B)+(2nd Col of A)(2nd row of B) +..

AB =
n∑

i=1
A (:, i)B (i , :) .

Uniform Sampling does not work. General non-uniform Sampling:
Prob.s of picking columns: p1,p2, . . . ,pn ≥ 0 ; Sum = 1.
Pick j ∈ {1,2, . . . ,n} with Prob(j) = pj Let X = A(:, j)B(j , :). X is a
matrix-valued r.v. Really want to take r i.i.d. copies of j , and of X
and take average. But enough to compute mean and variance of
one X .
What is E(X ) (entry-wise expectation)?
E(X ) =

∑n
j=1 pj (A(:, j)B(j , :)). How we do we make it unbiased ?

Step back: Want to estimate the sum of n real numbers
a1,a2, . . . ,an. Pick a j ∈ {1,2, . . . ,n} with probabilities
p1,p2, . . . ,pn. How do we scale the picked aj so that it is an
unbiased estimator of sum?
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Pick aj from a1,a2, . . . ,an with probabilities p1,p2, . . . ,pn.
E(aj/pj) =

∑n
j=1 aj .

E
(

1
pj

A(:, j)B(j , :)
)

= AB. Better have pj > 0.

What about the error ?
Try writing down the variance of one entry, say the (i , j) th entry.
First try the second moment.

n∑
l=1

pl
1
p2

l
A2

il B
2
lj .

How do we bound it for different (i , j) ?
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Variance of the Matrix

Simple Idea (but without it, very complicated): Bound
∑

of
variances of entries of X . Let Var(X ) denote

∑
i,j Var(Xij).

Var(X ) =
∑m

i=1

q∑
j=1

Var
(
xij
)
≤
∑
ij

E
(

x2
ij

)
≤
∑
ij

∑
l

pl
1
p2

l
a2

il b
2
lj .

Exchange order of summations:∑
l

1
pl

∑
i

a2
il
∑

j
b2

lj =
∑

l

1
pl
|A (:, l) |2|B (l , :) |2.

What is the best choice of pj ? It is the one which minimizes the
variance of X .
Suffices to minimize second moment, since E(X ) does not
depend on pl (Unbiased)!
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depend on pl (Unbiased)!
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Probabilities which minimize variance

Choose pk to minimize
∑

k
1
pk
|A(:, k)|2|B(k , :)|2.

Calculus: If a1,a2, . . . ,an are any positive reals, the p1,p2, . . . ,pn
minimizing

∑ al
pl

subject to pl ≥ 0,
∑

l pl = 1 are proportional to√
al . Check.

Best Choice- pk ∝ |A(:, k)| |B(k , :)|, i.e.,
pk = |A(:, k)| |B(k , :)|/

∑
l |A(:, l)| |B(l , :)|

In the important special case when B = AT , pk = |A(:, k)|2/||A||2F ,
where,
||A||2F =

∑
i,j A2

ij is called the Frobenius norm of A.
Pick columns of A with probabilities proportional to the
squared length of the columns. . Length-Squared Sampling.
With these probabilities, we have
Var(X ) ≤

∑
k
|A(:,k)|2|B(k ,:)|2
|A(:,k)| |B(k ,:)|

∑n
l=1 |A(:, l)| |B(l , :)|

= (
∑

l |A(:, l)| |B(l , :)|)2 ≤ ||A||2F ||B||2F . [Why?]
Another set of probabilities (really length squared):
pk = |A(:, k)|2/||A||2F , also→ ||A||2F ||B||2F .
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Approximately Length Squared

Suppose pk ≥ c|A(:, k)|2/||A||2F for some c ∈ Ω(1). It may be
possible to find such pk more easily than finding exact lengths.
[For eg. by sampling.]

Still X = A(:, k)B(k , :)/pk is unbiased estimator of AB (in fact for
any pk !

Now, Var(X ) ≤
∑

k
|A(:,k)|2|B(k ,:)|2

pk
= 1

c ||A||
2
F ||B||2F . Loose only a

factor of 1/c2.
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Reducing Variance

We saw for r.v. X , we have: E(X ) = AB and Var(X ) ≤ ||A||F ||B||F .
Good Enough ?

But ||AB||F ≤ ||A||F ||B||F and equality could hold. So in best case,
error is as much as ||AB||F ! No good.
What is a general method of reducing the variance ?
Take s i.i.d copies of X and take average. Variance cut down by a
factor of s.
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Matrix Multiplication Theorem

A m × n. B n × q.
AB ≈ CB̃, where,

C = [ 1
pj1

A(:, j1)| 1
pj2

A(:, j2) . . . | 1
pjs

A(; , js)], where, j1, j2, . . . , js are
picked in i.i.d trials according to {pj : j = 1,2, . . . ,n} satisfying
pj ≥ c|A(:, j)|2/||A||2F∀j .
B̃ is the s × q matrix of corresponding rows of B.

E
(
||AB − CB̃||2F

)
≤ ||A||

2
F ||B||

2
F

cs . Implies

E
(
||AB − CB̃||F

)
≤ ||A||F ||B||F√

cs .

Words: Frobenius norm error goes down as 1/
√

s.
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Big Data: Implement in 2 passes

“Big Data” = Cannot be held in RAM.

Do one pass through A,B to compute all the probabilities pk .
With pk on hand, toss coins to figure out which set of s columns of
A (and corresponding rows of B) we are going to sample.
Make a second pass through A,B and pull out the sample.
Multiply the sample in RAM and return result.
For error ≤ ε||A||F ||B||F in expectation, s ≥ c/ε2 suffices. For
ε ∈ Ω(1), s ∈ O(1).
If s ∈ O(1), then RAM space needed is linear in mn + nq.

Length Squared Sampling in Matrices November 2, 2017 11 / 1



Big Data: Implement in 2 passes

“Big Data” = Cannot be held in RAM.
Do one pass through A,B to compute all the probabilities pk .

With pk on hand, toss coins to figure out which set of s columns of
A (and corresponding rows of B) we are going to sample.
Make a second pass through A,B and pull out the sample.
Multiply the sample in RAM and return result.
For error ≤ ε||A||F ||B||F in expectation, s ≥ c/ε2 suffices. For
ε ∈ Ω(1), s ∈ O(1).
If s ∈ O(1), then RAM space needed is linear in mn + nq.

Length Squared Sampling in Matrices November 2, 2017 11 / 1



Big Data: Implement in 2 passes

“Big Data” = Cannot be held in RAM.
Do one pass through A,B to compute all the probabilities pk .
With pk on hand, toss coins to figure out which set of s columns of
A (and corresponding rows of B) we are going to sample.

Make a second pass through A,B and pull out the sample.
Multiply the sample in RAM and return result.
For error ≤ ε||A||F ||B||F in expectation, s ≥ c/ε2 suffices. For
ε ∈ Ω(1), s ∈ O(1).
If s ∈ O(1), then RAM space needed is linear in mn + nq.

Length Squared Sampling in Matrices November 2, 2017 11 / 1



Big Data: Implement in 2 passes

“Big Data” = Cannot be held in RAM.
Do one pass through A,B to compute all the probabilities pk .
With pk on hand, toss coins to figure out which set of s columns of
A (and corresponding rows of B) we are going to sample.
Make a second pass through A,B and pull out the sample.

Multiply the sample in RAM and return result.
For error ≤ ε||A||F ||B||F in expectation, s ≥ c/ε2 suffices. For
ε ∈ Ω(1), s ∈ O(1).
If s ∈ O(1), then RAM space needed is linear in mn + nq.

Length Squared Sampling in Matrices November 2, 2017 11 / 1



Big Data: Implement in 2 passes

“Big Data” = Cannot be held in RAM.
Do one pass through A,B to compute all the probabilities pk .
With pk on hand, toss coins to figure out which set of s columns of
A (and corresponding rows of B) we are going to sample.
Make a second pass through A,B and pull out the sample.
Multiply the sample in RAM and return result.
For error ≤ ε||A||F ||B||F in expectation, s ≥ c/ε2 suffices. For
ε ∈ Ω(1), s ∈ O(1).

If s ∈ O(1), then RAM space needed is linear in mn + nq.

Length Squared Sampling in Matrices November 2, 2017 11 / 1



Big Data: Implement in 2 passes

“Big Data” = Cannot be held in RAM.
Do one pass through A,B to compute all the probabilities pk .
With pk on hand, toss coins to figure out which set of s columns of
A (and corresponding rows of B) we are going to sample.
Make a second pass through A,B and pull out the sample.
Multiply the sample in RAM and return result.
For error ≤ ε||A||F ||B||F in expectation, s ≥ c/ε2 suffices. For
ε ∈ Ω(1), s ∈ O(1).
If s ∈ O(1), then RAM space needed is linear in mn + nq.

Length Squared Sampling in Matrices November 2, 2017 11 / 1



Problems solved by length squared and its cousins

Matrix Multiplication.

Sketch (Compressed representation) of a matrix (Discussed Next)
Principal Component Analysis (SVD) (Coming)
Tensor Optimization
Graph Sparsification
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Sketch of a large Matrix

A is a m × n matrix. m,n large.

Will show: A can be approximated given just a random sample of
rows of A and a random sample of columns of A, provided, the
sampling is length-squared. (Not known for other probabilities.)
Can we sketch (approximate) a matrix by a sample of rows ? No.
Sample tells us noting about unsampled rows.
Say: rank(A) = k << m,n. If in “general position”, a sample of
100k rows should pin down row space. Still don’t know for an
unsampled row, what linear combination of sampled rows it is.
A sample of O(k) columns should yield this information.
Will rigourously prove error bound without assuming A is low rank.
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Using CUR- an example

Large Corpus of documents. Each doc is a word-frequency vector.
Forms a column of large word-doc matrix A.

New Document v comes in. Want its similarity to each doc in
corpus. If similarity = dot product, then, want vT A.
Problem: Preprocess A, so that at “query time” given v, can find
approximate vT A fast. But must bound error for EVERY v. Say we
want to find u so that |u− vT A| ≤ δ|v|.
Will set u = vT CUR. Fast: Do vT C then times U then times R.
Want

Maxv

∣∣∣vT (CUR − A)
∣∣∣ /|v| ≤ δ.

The maximum has a name - Spectral norm of A− CUR. So, want
||A− CUR||2 ≤ δ. Will show E

(
||A− CUR||22

)
≤ ||A||

2
F

s1/3 , where s =
number of sampled columns. Number of sampled rows = r .
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Idea

Write A = AI. Pretend multiplying A with I by sampling s columns
of A. Proved: Error ≤ ||A||F ||I||F/

√
s = ||A||F

√
n√
s .

Needs s ≥ n to get error ≤ ||A||F . Useless. Why?
Assume RRT is invertible. [true if A is not degenerate. Why?]
P = RT (RRT )−1R acts as identity on row space of R:

(1) x ∈ V ⇒ xT = yT R. So, Px = RT (RRT )−1RRT y = RT y = x.
(2) If x ∈ V⊥, then, Px = RT (RRT )−1Rx = 0.

Instead of the pretend AI, do pretend AP.
Will prove two things which together imply ||A− CUR|| is small:

||A− AP||2 is small from (1) and (2).
C = length squared sample of col.s of A. Corres rows of P- can be
written as UR. [Hint: P ends in R. Note: R ’s rows do not corres to
col.s of C.] So, ||AP − CUR|| small.
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Proofs

Proposition A ≈ AP. I.e., E
(
||A− AP||22

)
is at most 1√

r ||A||
2
F .

Recall: ||A− AP||22 = max{x:|x|=1} |(A− AP)x|2.
If x in the row space V of R, Px = x, so, (A− AP)x = 0.
Every vector is sum of a vector in V plus a vector in V⊥. So, max
at some x ∈ V⊥ and so Px = 0; (A− AP)x = Ax.
|Ax|2 = xT AT Ax = xT (AT A− RT R)x ≤ ||AT A− RT R||2|x|2 ≤
||AT A− RT R||2.
Suffices to prove ||AT A− RT R||22 ≤ ||A||4F/r .
Matrix Multiplication Theorem! Why?
Pretend we are multiplying AT by A by picking col.s of A by length
squared sampling....
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Proof -II

Lemma AP ≈ CUR.

C is a length squared sample of cols of A.
Want to pick corres rows of P = RT (RRT )−1R. Can be written as
UR for some U.
Error E(||AP − CUR||2F ) ≤ ||A||2F ||P||2F/s by Matrix Mult Thm.
Bound ||P||F : P has rank r and is an identity matrix on an r dim
subspace. Prove any such P has ||P||2F = r .

Putting together, we get E(||A− CUR||22) ≤ ||A||2F
(

1√
r + r

s

)
.

Optimal choice: r = s2/3.
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CUR Theorem

Hypothesis: A m × n matrix. r and s be positive integers.

Hypothesis: C an m× s matrix of s columns of A picked according
to length squared sampling and R a matrix of r rows of A picked
according to length squared sampling.
Conclusion: We can find from C and R an s × r matrix U so that

E
(
||A− CUR||22

)
≤ ||A||2F

(
2√
r

+
2r
s

)
= ||A||2F O(1/s1/3),

choosing r = s2/3
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