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Introduction

@ ndata points in d space - each a row of Data Matrix A (n x d
matrix).
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Introduction

@ ndata points in d space - each a row of Data Matrix A (n x d
matrix).

@ Singular Value Decomposition (SVD) consists of best fit k
dimensional subspace for A, for every k, k = 1,2, .. .rank(A).

@ Best Fit in the sense of minimum sum of squared (perpendicular)
distances of data points to subspace. Will see best fit for every k
simultaneously.
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Introduction

@ ndata points in d space - each a row of Data Matrix A (n x d
matrix).

@ Singular Value Decomposition (SVD) consists of best fit k
dimensional subspace for A, for every k, k = 1,2, .. .rank(A).

@ Best Fit in the sense of minimum sum of squared (perpendicular)
distances of data points to subspace. Will see best fit for every k
simultaneously.

@ Equivalently, maximum sum of squares of the lengths of projection
of data points into subspace.
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Minimize distances = Maximize projections

Figure: The projection of the point a; onto the line through the origin in
the direction of v.
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Minimize distances = Maximize projections

Figure: The projection of the point a; onto the line through the origin in
the direction of v.

@ Min Y dist? = Max 3" proj? courtesy Pythogorus
i i
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Minimize distances = Maximize projections

Figure: The projection of the point a; onto the line through the origin in
the direction of v.

@ Min Y dist? = Max 3" proj? courtesy Pythogorus
i i

@ Contrast: “Least-Squares Fit”: Given (x;,y;),i =1,2,...,n
Ming p(ax; + b — yi)?. Dist.s “vertical”, not perp to line. [PICTURE]
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Minimize distances = Maximize projections

Figure: The projection of the point a; onto the line through the origin in
the direction of v.

@ Min Y dist? = Max 3" proj? courtesy Pythogorus
i i

@ Contrast: “Least-Squares Fit”: Given (x;,y;),i =1,2,...,n
Ming p(ax; + b — yi)?. Dist.s “vertical”, not perp to line. [PICTURE]
@ Least Squares- Not nec. through 0. But SVD : subspace, so has
0. See later: best-fit affine subspace passes through centroid of
data. Can translate to make centroid = 0.
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|
Will Show: Greedy works

@ First find the best-fit 1-dimensional subspace to data: line
(through the origin).
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|
Will Show: Greedy works

@ First find the best-fit 1-dimensional subspace to data: line
(through the origin).

@ Then, find best-fit line (through 0) perpendicular to first line.
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|
Will Show: Greedy works

@ First find the best-fit 1-dimensional subspace to data: line
(through the origin).

@ Then, find best-fit line (through 0) perpendicular to first line.

@ Atthe i th step, find best fit line perp to /i — 1 lines found so far.

Until: rank(A).
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|
Will Show: Greedy works

@ First find the best-fit 1-dimensional subspace to data: line
(through the origin).

@ Then, find best-fit line (through 0) perpendicular to first line.

@ Atthe i th step, find best fit line perp to /i — 1 lines found so far.
Until: rank(A).

@ Will Show: When done, we can write A= UDVT, where, columns
of V are unit vectors along lines found above; D is a diagonal
matrix with positive entries and columns of U, V are orthonormal.
[A= UDV' is called SVD.] Now focus on the just the best-fit lines,
not on the matrix factorization yet.
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First Singular Vector

@ Notation: A n x d data matrix; each row is a data point.
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First Singular Vector

@ Notation: A n x d data matrix; each row is a data point.
@ If v is the unit vector along the best-fit line, v minimizes among all
unit length vectors x the quantity:

ity ([ail? = (@i - x)?) = X0 [aif® — |Ax[%.
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First Singular Vector

@ Notation: A n x d data matrix; each row is a data point.

@ If v is the unit vector along the best-fit line, v minimizes among all
unit length vectors x the quantity:
S ([ — (ai-%)?) = L |aif® — |Ax[2.

@ Now, °;|aj|? = ||Al|2 does not depend on x. So (as we said
earlier), equivalent to maximizing |Ax|2.
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First Singular Vector

@ Notation: A n x d data matrix; each row is a data point.

@ If v is the unit vector along the best-fit line, v minimizes among all
unit length vectors x the quantity:
iy (Jaif® — (@i -x)?) = XLy [ail* — |Ax[%.

@ Now, °;|aj|? = ||Al|2 does not depend on x. So (as we said
earlier), equivalent to maximizing |Ax|2.

@ Define the first singular vector of A by:
vy = arg maxy|—1 |AV|
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First Singular Vector

@ Notation: A n x d data matrix; each row is a data point.

@ If v is the unit vector along the best-fit line, v minimizes among all
unit length vectors x the quantity:
Yo ([ai? = (@i - x)?) = Y7L [aif? — |Ax[%.

@ Now, °;|aj|? = ||Al|2 does not depend on x. So (as we said
earlier), equivalent to maximizing |Ax|?.

@ Define the first singular vector of A by:
vy = arg maxy|—1 |AV|

@ There can be ties. [What is an obvious tie for v4?] Break them
arbitrarily. Will use ArgMax for arb. broken ties.

_ Lecture 6: Singular Value Decomposition - | November 6, 2017 5/14



First Singular Vector

@ Notation: A n x d data matrix; each row is a data point.

@ If v is the unit vector along the best-fit line, v minimizes among all
unit length vectors x the quantity:
iy (Jaif® — (@i -x)?) = XLy [ail* — |Ax[%.

@ Now, °;|aj|? = ||Al|2 does not depend on x. So (as we said
earlier), equivalent to maximizing |Ax|2.

@ Define the first singular vector of A by:
vy = arg maxy|—1 |AV|

@ There can be ties. [What is an obvious tie for v4?] Break them
arbitrarily. Will use ArgMax for arb. broken ties.

@ Value o1(A) = |Av4| is called the first singular value of A.
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First Singular Vector

@ Notation: A n x d data matrix; each row is a data point.

@ If v is the unit vector along the best-fit line, v minimizes among all
unit length vectors x the quantity:
Yo ([ai? = (@i - x)?) = Y7L [aif? — |Ax[%.

@ Now, °;|aj|? = ||Al|2 does not depend on x. So (as we said
earlier), equivalent to maximizing |Ax|?.

@ Define the first singular vector of A by:
vy = arg maxy|—1 |AV|

@ There can be ties. [What is an obvious tie for v4?] Break them
arbitrarily. Will use ArgMax for arb. broken ties.

@ Value o1(A) = |Avq| is called the first singular value of A.

@ If all data points lie on a line through the origin, the line on which
projections are maximized is precisely the same line, so it is the
first singular vectors.
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First Singular Vector

@ Notation: A n x d data matrix; each row is a data point.

@ If v is the unit vector along the best-fit line, v minimizes among all
unit length vectors x the quantity:
iy (Jaif® — (@i -x)?) = XLy [ail* — |Ax[%.

@ Now, °;|aj|? = ||Al|2 does not depend on x. So (as we said
earlier), equivalent to maximizing |Ax|?.

@ Define the first singular vector of A by:
vy = arg maxy|—1 |AV|

@ There can be ties. [What is an obvious tie for v4?] Break them
arbitrarily. Will use ArgMax for arb. broken ties.

@ Value o1(A) = |Av4| is called the first singular value of A.

@ If all data points lie on a line through the origin, the line on which
projections are maximized is precisely the same line, so it is the
first singular vectors.

@ Further singular vectors. Think - what if data points are coplanar?

Would like to get two perpendicular vectors spanning the plane.
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Greedy and Definition of further singular vectors
@ How to define further singular vectors? Again, think coplanar data

points. Would like the 2-dim subspace maximizing sum of squared
projections.

_ Lecture 6: Singular Value Decomposition - | November 6, 2017 6/14



Greedy and Definition of further singular vectors

@ How to define further singular vectors? Again, think coplanar data
points. Would like the 2-dim subspace maximizing sum of squared
projections.

@ Try Greedy: Define the second singular vector v, as the one
(break ties arbitrarily) maximizing the sum of projections squared
subject to being perpendicular to first. Algebra: same as:
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Greedy and Definition of further singular vectors

@ How to define further singular vectors? Again, think coplanar data
points. Would like the 2-dim subspace maximizing sum of squared
projections.

@ Try Greedy: Define the second singular vector v, as the one
(break ties arbitrarily) maximizing the sum of projections squared
subject to being perpendicular to first. Algebra: same as:

@ Vo = arg maxviy, |AV/|.

lv|=1
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Greedy and Definition of further singular vectors

@ How to define further singular vectors? Again, think coplanar data
points. Would like the 2-dim subspace maximizing sum of squared
projections.

@ Try Greedy: Define the second singular vector v, as the one
(break ties arbitrarily) maximizing the sum of projections squared
subject to being perpendicular to first. Algebra: same as:

@ Vo = arg maxviy, |AV/|.

lv|=1

@ V3 = arg maxviv v, |AV/|.

lv|=1
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Greedy and Definition of further singular vectors

@ How to define further singular vectors? Again, think coplanar data
points. Would like the 2-dim subspace maximizing sum of squared
projections.

@ Try Greedy: Define the second singular vector v, as the one
(break ties arbitrarily) maximizing the sum of projections squared

subject to being perpendicular to first. Algebra: same as:
@ Vo = arg maxviy, |AV/|.
|v|=1

@ V3 = arg maxviv v, |AV/|.

lv|=1

@ Define o2(A) = |Avy| ; 03(A) = |Avs|... as the singular values of A.
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Greedy and Definition of further singular vectors

@ How to define further singular vectors? Again, think coplanar data
points. Would like the 2-dim subspace maximizing sum of squared
projections.

@ Try Greedy: Define the second singular vector v, as the one
(break ties arbitrarily) maximizing the sum of projections squared
subject to being perpendicular to first. Algebra: same as:

@ Vo = arg maxviy, |AV/|.

lv|=1

@ V3 = arg maxviv v, |AV/|.

[v]=1
@ Define o2(A) = |Avy| ; 03(A) = |Avs|... as the singular values of A.

@ Stop when vq, Vo, ...,V have been found and
MaXv.ivy,vy,... vy |AV| = 0

[v|=1
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Greedy and Definition of further singular vectors

@ How to define further singular vectors? Again, think coplanar data
points. Would like the 2-dim subspace maximizing sum of squared
projections.

@ Try Greedy: Define the second singular vector v, as the one
(break ties arbitrarily) maximizing the sum of projections squared
subject to being perpendicular to first. Algebra: same as:

@ Vo = arg maxviy, |AV/|.

lv|=1

@ V3 = arg maxviv v, |AV/|.

[v]=1
@ Define o2(A) = |Avy| ; 03(A) = |Avs|... as the singular values of A.
@ Stop when vq, Vo, ...,V have been found and
MaXv.ivy,vy,... vy |AV| = 0

[v|=1
@ Will prove: r = rank(A) and even if there are ties, the singular
values o1(A), o2(A), ... are unique.
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|
Greedy Works

@ Define best-fit k dim subspace for A as the one maximizing the
sum of squared projection lengths of data points into subspace
over all k dim subspaces.
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|
Greedy Works

@ Define best-fit k dim subspace for A as the one maximizing the
sum of squared projection lengths of data points into subspace
over all k dim subspaces.

@ Theorem (The Greedy Algorithm Works)

Let Abe an n x d matrix with singular vectors v4,Vs, ..., V. For
1 < k <r,let Vi be the subspace spanned by vq,vs, ..., vk. For
each k, V is the best-fit k-dimensional subspace for A.
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Proof

@ Proof by induction on k. Statement obvious for k = 1.
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Proof

@ Proof by induction on k. Statement obvious for k = 1.
@ Lets do k = 2. Assume W is the best-fit 2-d subspace.
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Proof

@ Proof by induction on k. Statement obvious for k = 1.
@ Lets do k = 2. Assume W is the best-fit 2-d subspace.
@ Claim Thereisaws € Ws.t. |wa| =1, wa vy =0.
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Proof

@ Proof by induction on k. Statement obvious for k = 1.
@ Lets do k = 2. Assume W is the best-fit 2-d subspace.
@ Claim Thereisaws € Ws.t. |wa| =1, wa vy =0.

@ Because the projection of v4 onto W spans a (at most) one dim
subspace W' of W. Take wy, € W perp to W'.
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Proof

@ Proof by induction on k. Statement obvious for k = 1.

@ Lets do k = 2. Assume W is the best-fit 2-d subspace.

@ Claim Thereisaws € Ws.t. |wa| =1, wa vy =0.

@ Because the projection of v4 onto W spans a (at most) one dim
subspace W' of W. Take wy, € W perp to W'.

@ Choose wy € W of unit length perpendicular to wa. wq, wa form a
(orthonormal) basis for W. [Convention: Basis means
orthonormal..]
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Proof

@ Proof by induction on k. Statement obvious for k = 1.

@ Lets do k = 2. Assume W is the best-fit 2-d subspace.

@ Claim Thereisaws € Ws.t. |wa| =1, wa vy =0.

@ Because the projection of v4 onto W spans a (at most) one dim
subspace W' of W. Take wa € W perp to W'.

@ Choose wy € W of unit length perpendicular to wa. wq, wa form a
(orthonormal) basis for W. [Convention: Basis means
orthonormal..]

@ Sum of squared projections of data points into W equals
|Aw4|2 + |Awy |2 - Why ? Algebra..
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Proof

@ Proof by induction on k. Statement obvious for k = 1.

@ Lets do k = 2. Assume W is the best-fit 2-d subspace.

@ Claim Thereisaws € Ws.t. |wa| =1, wa vy =0.

@ Because the projection of v4 onto W spans a (at most) one dim
subspace W' of W. Take wa € W perp to W'.

@ Choose wy € W of unit length perpendicular to wa. wq, wa form a
(orthonormal) basis for W. [Convention: Basis means
orthonormal..]

@ Sum of squared projections of data points into W equals
|Aw4|2 + |Awy |2 - Why ? Algebra..

o |Aw, 2 < |Av4[2 (Why?)

_ Lecture 6: Singular Value Decomposition - | November 6, 2017 8/14



Proof

@ Proof by induction on k. Statement obvious for k = 1.
@ Lets do k = 2. Assume W is the best-fit 2-d subspace.
@ Claim Thereisaws € Ws.t. |wa| =1, wa vy =0.

@ Because the projection of v4 onto W spans a (at most) one dim
subspace W' of W. Take wy, € W perp to W'.

@ Choose wy € W of unit length perpendicular to wa. wq, wa form a
(orthonormal) basis for W. [Convention: Basis means
orthonormal..]

@ Sum of squared projections of data points into W equals
|Aw4|2 + |Awy |2 - Why ? Algebra..

o |Awy[2 < |Av4[2 (Why?)
@ |Aw,|? < |Avy|? (why?) Add to get: V5 as good as W.
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Proof for general k > 2

@ Inductive hypothesis implies: Vj_4 is best-fit kK — 1 dim subspace.
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Proof for general k > 2

@ Inductive hypothesis implies: Vj_4 is best-fit kK — 1 dim subspace.

@ Suppose W is best-fit k dim subspace. Claim There is a unit
length vector wy in W perpendicular to Vi_¢ because: projections
of vq,Va, ..., Vvk_q onto W span a (at most) k — 1 dimensional
subspace of W, so there is a wg perpendicular to this in W.
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Proof for general k > 2

@ Inductive hypothesis implies: Vj_4 is best-fit kK — 1 dim subspace.

@ Suppose W is best-fit k dim subspace. Claim There is a unit
length vector wy in W perpendicular to Vi_¢ because: projections
of vq,Va, ..., Vvk_q onto W span a (at most) k — 1 dimensional
subspace of W, so there is a wg perpendicular to this in W.

@ Choose a basis wq,Wa, ... wy of W.
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Proof for general k > 2

@ Inductive hypothesis implies: Vj_; is best-fit kK — 1 dim subspace.

@ Suppose W is best-fit k dim subspace. Claim There is a unit
length vector wy in W perpendicular to Vi_¢ because: projections
of vq,Va, ..., Vvk_q onto W span a (at most) k — 1 dimensional
subspace of W, so there is a wg perpendicular to this in W.

@ Choose a basis wq,Wa, ... wy of W.
© |Awq[? + |Awa [ + - - + |Awg_1[* < [Avq[? +[AV[? + - -+ |Avg_4[?
- Why?
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Proof for general k > 2

@ Inductive hypothesis implies: Vj_4 is best-fit kK — 1 dim subspace.

@ Suppose W is best-fit k dim subspace. Claim There is a unit
length vector wy in W perpendicular to Vi_¢ because: projections
of vq,Va, ..., Vvk_q onto W span a (at most) k — 1 dimensional
subspace of W, so there is a wg perpendicular to this in W.

@ Choose a basis wq,Wa, ... wy of W.

© |Awq[? + |Awa [ + - - + |Awg_1[* < [Avq[? +[AV[? + - -+ |Avg_4[?
- Why?

e Induction.
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Proof for general k > 2

@ Inductive hypothesis implies: Vj_4 is best-fit kK — 1 dim subspace.

@ Suppose W is best-fit k dim subspace. Claim There is a unit
length vector wy in W perpendicular to Vi_¢ because: projections
of vq,Va, ..., Vvk_q onto W span a (at most) k — 1 dimensional
subspace of W, so there is a wg perpendicular to this in W.

@ Choose a basis wq,Wa, ... wy of W.

@ |AWq|% + |AWa |2 4 - + |AWk_1 |2 < |AVq[2 + |AVa 2 + - - + |Avk_¢ |2
- Why?

@ Induction.
@ |Awg|? < |Avk/?. Why? Add to get V as good as W. QED
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Consequences

@ Theorem Proves: o1(A), o2(A), ... are unique even if there were
ties for the singular vectors.
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Consequences

@ Theorem Proves: o1(A), o2(A), ... are unique even if there were
ties for the singular vectors.

@ Proof: o1(A) obviously (first) exists (closed, bounded etc.) and is
unique.
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Consequences

@ Theorem Proves: o1(A), o2(A), ... are unique even if there were
ties for the singular vectors.

@ Proof: o1(A) obviously (first) exists (closed, bounded etc.) and is
unique.

@ Now, there is a unique value of the maximum over all 2-d
subspaces of sum of projections squared onto subspace, because
the set of 2-d subspaces in closed etc.; call this value pus».
Theorem says: o1(A)? + 03(A) = |Avq]2 + |Ava|? = 5. So,

03(A) = up — 02(A) is unique.
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Consequences

@ Theorem Proves: o1(A), o2(A), ... are unique even if there were
ties for the singular vectors.

@ Proof: o1(A) obviously (first) exists (closed, bounded etc.) and is
unique.

@ Now, there is a unique value of the maximum over all 2-d
subspaces of sum of projections squared onto subspace, because
the set of 2-d subspaces in closed etc.; call this value pus».
Theorem says: o1(A)? + 03(A) = |Avq]2 + |Ava|? = 5. So,

03(A) = up — 02(A) is unique.

@ General k: assume o41(A),02(A),...,0k_1(A) are unique. Let ux
be the maximum over all k—d subspaces of the sum of squared
projections onto the subspace. Then, theorem implies that
02(A) + 03(A) + - - - + ok(A)? = k. Using inductive hypothesis,
now, o(A) is unique. Provided . exists - Prove.
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Aside: Convergence of Subspaces

@ Suppose Vi, Vs, ... are an infinite sequence of k dimensional
subspaces of RY. There is a convergent sub-sequence. [Caution:
Subspaces seem to be unbounded objects.]
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Aside: Convergence of Subspaces

@ Suppose Vi, Vs, ... are an infinite sequence of k dimensional
subspaces of RY. There is a convergent sub-sequence. [Caution:
Subspaces seem to be unbounded objects.]

@ Choose a basis for each V. First take a subsequence of { V;} in
which the first basis vector converges.
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Aside: Convergence of Subspaces

@ Suppose Vi, Vs, ... are an infinite sequence of k dimensional
subspaces of RY. There is a convergent sub-sequence. [Caution:
Subspaces seem to be unbounded objects.]

@ Choose a basis for each V. First take a subsequence of { V;} in
which the first basis vector converges.

@ Then take subsequence of the subsequence where the second
basis vector converges. Repeat.
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Aside: Convergence of Subspaces

@ Suppose Vi, Vs, ... are an infinite sequence of k dimensional
subspaces of RY. There is a convergent sub-sequence. [Caution:
Subspaces seem to be unbounded objects.]

@ Choose a basis for each V. First take a subsequence of { V;} in
which the first basis vector converges.

@ Then take subsequence of the subsequence where the second
basis vector converges. Repeat.

@ Finally, get a subsequence with each basis vector converging.
Prove: in the limit, each “basis vector” is of length 1 and they are
orthonormal. [Just convergent sequence of reals.]
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Singular Values and Norm

@ Av; is list of lengths (with signs) of projections of rows of A onto
Vq.
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I
Singular Values and Norm
@ Av, is list of lengths (with signs) of projections of rows of A onto

Vq.
@ So, 01(A) = |Av4| may be viewed as “component” of A along vy.
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Singular Values and Norm

@ Av, is list of lengths (with signs) of projections of rows of A onto
Vq.

@ So, 01(A) = |Av4| may be viewed as “component” of A along vy.

@ o0o(A) is “component” of A along v,.... Analogous to decomposing
a vector into its components along the basis vectors.
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Singular Values and Norm

@ Av, is list of lengths (with signs) of projections of rows of A onto
Vq.

@ So, 01(A) = |Av4| may be viewed as “component” of A along vy.

@ o0o(A) is “component” of A along v,.... Analogous to decomposing
a vector into its components along the basis vectors.

@ Better have sum of squares of components = whole to complete
the analogy.
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Singular Values and Norm

@ Av, is list of lengths (with signs) of projections of rows of A onto
Vq.

@ So, 01(A) = |Av4| may be viewed as “component” of A along vy.

@ o0o(A) is “component” of A along v,.... Analogous to decomposing
a vector into its components along the basis vectors.

@ Better have sum of squares of components = whole to complete
the analogy.
@ Sinceaj-v=0forallv L vq,va,...,Vv; (Wwhy?), we have:

>oioq (@i vi)? = a2
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Singular Values and Norm

@ Av, is list of lengths (with signs) of projections of rows of A onto
Vq.

@ So, 01(A) = |Av4| may be viewed as “component” of A along v.

@ o0o(A) is “component” of A along v,.... Analogous to decomposing
a vector into its components along the basis vectors.

@ Better have sum of squares of components = whole to complete
the analogy.

@ Sinceaj-v=0forallv L vq,va,...,Vv; (Wwhy?), we have:

>oioq (@i vi)? = a2
r

n n r
o Y lak=Y Y (a-vi2=Y Y (a-vi)2 =Y |AvP =
j:1 j:1 i=1 i=1 j:1 i=1
r

> oZ(A).

i=1
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Singular Values and Norm

@ Av, is list of lengths (with signs) of projections of rows of A onto
Vq.

@ So, 01(A) = |Av4| may be viewed as “component” of A along vy.

@ o0o(A) is “component” of A along v,.... Analogous to decomposing
a vector into its components along the basis vectors.

@ Better have sum of squares of components = whole to complete
the analogy.
@ Sinceaj-v=0forallv L vq,va,...,Vv; (Wwhy?), we have:

>oioq (@i vi)? = a2
r

Ojé ‘aj’2: iZ(a]‘,vi)ZZ Z (aj'vi)Qzlé |AVi‘2:

j:1 i=1 i=1 j:1

e Lemma Y ;_, 02(A) = ||A||2.
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Right and left singular vectors

@ Vq,Va,...,V; are called the right-singular vectors.
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Right and left singular vectors

@ Vq,Va,...,V; are called the right-singular vectors.

@ The vectors Av; form a fundamental set of vectors. Normalize to
length 1: u; = ﬁAvi.
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Right and left singular vectors

@ Vq,Va,...,V; are called the right-singular vectors.

@ The vectors Av; form a fundamental set of vectors. Normalize to

length 1: u; = ﬁAvi.

@ Will show later u; similarly maximizes |u” A| over all u
perpendicularto uq,...,U;_1.
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Right and left singular vectors

@ Vq,Va,...,V; are called the right-singular vectors.

@ The vectors Av; form a fundamental set of vectors. Normalize to

length 1: u; = ﬁAvi.

@ Will show later u; similarly maximizes |u” A| over all u
perpendicularto uq,...,U;_1.

@ u, are called the left-singular vectors.
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Right and left singular vectors

@ Vq,Va,...,V; are called the right-singular vectors.

@ The vectors Av; form a fundamental set of vectors. Normalize to

length 1: u; = ﬁAvi.

@ Will show later u; similarly maximizes |u” A| over all u
perpendicularto uq,...,U;_1.

@ u, are called the left-singular vectors.

@ By definition, the right-singular vectors are orthogonal.
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Right and left singular vectors

@ Vq,Va,...,V; are called the right-singular vectors.

@ The vectors Av; form a fundamental set of vectors. Normalize to

length 1: u; = ﬁAvi.

@ Will show later u; similarly maximizes |u” A| over all u
perpendicularto uq,...,U;_1.

@ u, are called the left-singular vectors.
@ By definition, the right-singular vectors are orthogonal.
@ Will show later that the left-singular vectors are also orthogonal.
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Singular Value Decomposition
@ Aany matrix, v, t=1,2,...,r, u,t=1,2,....r,

o, t=1,2,...,r,its right singular vectors, left singular vectors
and singular values respy.
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Singular Value Decomposition

@ Aany matrix, v, t=1,2,...,r, u,t=1,2,....r,
o, t=1,2,...,r,its right singular vectors, left singular vectors
and singular values respy.

@ Theorem (Singular Value Decomposition A = Z§:1 otUVy! .
Sum of r outer products.
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Singular Value Decomposition

@ Aany matrix, v, t=1,2,...,r, u,t=1,2,....r,
o, t=1,2,...,r,its right singular vectors, left singular vectors
and singular values respy.

@ Theorem (Singular Value Decomposition A = Z§:1 otV
Sum of r outer products.

@ Claim Matrices A, B are identical iff for all v, we have Av = Buv. [f
Av = Bv for all v, this holds for each unit vector e; and so j th col
of A, B are the same for all j.
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Singular Value Decomposition

@ Aany matrix, v, t=1,2,...,r, u,t=1,2,....r,

o, t=1,2,...,r,its right singular vectors, left singular vectors
and singular values respy.

@ Theorem (Singular Value Decomposition A = Z§:1 otV
Sum of r outer products.

@ Claim Matrices A, B are identical iff for all v, we have Av = Buv. [f
Av = Bv for all v, this holds for each unit vector e; and so j th col
of A, B are the same for all j.

o LetB= Zfﬂ oiuvi ' . Want to show Av = Buv for all v. Enough to
show for a set of v forming a basis of space. Take a convienient
basis: v{,Va,...,Vr, Vriq,..., Vg, CcONtaining the r singular vectors
of A. [Such a basis exists. Why?]
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Singular Value Decomposition

@ Aany matrix, v, t=1,2,...,r, u,t=1,2,....r,

o, t=1,2,...,r,its right singular vectors, left singular vectors
and singular values respy.

@ Theorem (Singular Value Decomposition A = Z§:1 otV
Sum of r outer products.

@ Claim Matrices A, B are identical iff for all v, we have Av = Buv. [f
Av = Bv for all v, this holds for each unit vector e; and so j th col
of A, B are the same for all j.

o LetB= 2521 oiuvi ' . Want to show Av = Buv for all v. Enough to
show for a set of v forming a basis of space. Take a convienient

basis: v{,Va,...,Vr, Vriq,..., Vg, CcONtaining the r singular vectors
of A. [Such a basis exists. Why?]

@ Fort=1,2,...,r: Avt = o:uy and Bvy = o;v; too by the ortho
nomrality of v¢, ..., V.

@ Fort>r+1, Avy = 0 (Why?) and so is Bvi. QED
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