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Introduction

n data points in d space - each a row of Data Matrix A (n × d
matrix).

Singular Value Decomposition (SVD) consists of best fit k
dimensional subspace for A, for every k , k = 1,2, . . .rank(A).
Best Fit in the sense of minimum sum of squared (perpendicular)
distances of data points to subspace. Will see best fit for every k
simultaneously.
Equivalently, maximum sum of squares of the lengths of projection
of data points into subspace.
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Minimize distances ≡ Maximize projections

v

ai

disti

proji

Figure: The projection of the point ai onto the line through the origin in
the direction of v.

Min
∑

i
dist2i ≡ Max

∑
i

proj2i courtesy Pythogorus

Contrast: “Least-Squares Fit”: Given (xi , yi), i = 1,2, . . . ,n
Mina,b(axi + b − yi)

2. Dist.s “vertical”, not perp to line. [PICTURE]
Least Squares- Not nec. through 0. But SVD : subspace, so has
0. See later: best-fit affine subspace passes through centroid of
data. Can translate to make centroid = 0.
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Will Show: Greedy works

First find the best-fit 1-dimensional subspace to data: line
(through the origin).

Then, find best-fit line (through 0) perpendicular to first line.
At the i th step, find best fit line perp to i − 1 lines found so far.
Until: rank(A).
Will Show: When done, we can write A = UDV T , where, columns
of V are unit vectors along lines found above; D is a diagonal
matrix with positive entries and columns of U,V are orthonormal.
[A = UDV T is called SVD.] Now focus on the just the best-fit lines,
not on the matrix factorization yet.
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First Singular Vector

Notation: A n × d data matrix; each row is a data point.

If v is the unit vector along the best-fit line, v minimizes among all
unit length vectors x the quantity:∑n

i=1
(
|ai|2 − (ai · x)2) =∑n

i=1 |ai|2 − |Ax|2.
Now,

∑
i |ai|2 = ||A||2F does not depend on x. So (as we said

earlier), equivalent to maximizing |Ax|2.
Define the first singular vector of A by:
v1 = argmax|v|=1 |Av|
There can be ties. [What is an obvious tie for v1?] Break them
arbitrarily. Will use ArgMax for arb. broken ties.
Value σ1(A) = |Av1| is called the first singular value of A.
If all data points lie on a line through the origin, the line on which
projections are maximized is precisely the same line, so it is the
first singular vectors.
Further singular vectors. Think - what if data points are coplanar?
Would like to get two perpendicular vectors spanning the plane.
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Greedy and Definition of further singular vectors

How to define further singular vectors? Again, think coplanar data
points. Would like the 2-dim subspace maximizing sum of squared
projections.

Try Greedy: Define the second singular vector v2 as the one
(break ties arbitrarily) maximizing the sum of projections squared
subject to being perpendicular to first. Algebra: same as:
v2 = argmax v⊥v1

|v|=1
|Av|.

v3 = argmax v⊥v1,v2
|v|=1

|Av|.

Define σ2(A) = |Av2| ; σ3(A) = |Av3|... as the singular values of A.
Stop when v1,v2, . . . ,vr have been found and
max v⊥v1,v2,...,vr

|v|=1
|Av| = 0.

Will prove: r = rank(A) and even if there are ties, the singular
values σ1(A), σ2(A), . . . are unique.
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Greedy Works

Define best-fit k dim subspace for A as the one maximizing the
sum of squared projection lengths of data points into subspace
over all k dim subspaces.

Theorem (The Greedy Algorithm Works)
Let A be an n × d matrix with singular vectors v1,v2, . . . ,vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1,v2, . . . ,vk. For
each k , Vk is the best-fit k -dimensional subspace for A.
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Proof

Proof by induction on k . Statement obvious for k = 1.

Lets do k = 2. Assume W is the best-fit 2-d subspace.
Claim There is a w2 ∈W s.t. |w2| = 1, w2 · v1 = 0.
Because the projection of v1 onto W spans a (at most) one dim
subspace W ′ of W . Take w2 ∈W perp to W ′.
Choose w1 ∈W of unit length perpendicular to w2. w1,w2 form a
(orthonormal) basis for W . [Convention: Basis means
orthonormal..]
Sum of squared projections of data points into W equals
|Aw1|2 + |Aw2|2 - Why ? Algebra..
|Aw1|2 ≤ |Av1|2 (Why?)
|Aw2|2 ≤ |Av2|2 (why?) Add to get: V2 as good as W .
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Proof for general k > 2

Inductive hypothesis implies: Vk−1 is best-fit k − 1 dim subspace.

Suppose W is best-fit k dim subspace. Claim There is a unit
length vector wk in W perpendicular to Vk−1 because: projections
of v1,v2, . . . ,vk−1 onto W span a (at most) k − 1 dimensional
subspace of W , so there is a wk perpendicular to this in W .
Choose a basis w1,w2, . . .wk of W .
|Aw1|2 + |Aw2|2 + · · ·+ |Awk−1|2 ≤ |Av1|2 + |Av2|2 + · · ·+ |Avk−1|2
- Why?

Induction.

|Awk|2 ≤ |Avk|2. Why? Add to get Vk as good as W . QED
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Consequences

Theorem Proves: σ1(A), σ2(A), . . . are unique even if there were
ties for the singular vectors.

Proof: σ1(A) obviously (first) exists (closed, bounded etc.) and is
unique.
Now, there is a unique value of the maximum over all 2-d
subspaces of sum of projections squared onto subspace, because
the set of 2-d subspaces in closed etc.; call this value µ2.
Theorem says: σ1(A)2 + σ2

2(A) = |Av1|2 + |Av2|2 = µ2. So,
σ2

2(A) = µ2 − σ2
1(A) is unique.

General k : assume σ1(A), σ2(A), . . . , σk−1(A) are unique. Let µk
be the maximum over all k−d subspaces of the sum of squared
projections onto the subspace. Then, theorem implies that
σ2

1(A) + σ2
2(A) + · · ·+ σk (A)2 = µk . Using inductive hypothesis,

now, σk (A) is unique. Provided µk exists - Prove.
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Aside: Convergence of Subspaces

Suppose V1,V2, . . . are an infinite sequence of k dimensional
subspaces of Rd . There is a convergent sub-sequence. [Caution:
Subspaces seem to be unbounded objects.]

Choose a basis for each Vi . First take a subsequence of {Vi} in
which the first basis vector converges.
Then take subsequence of the subsequence where the second
basis vector converges. Repeat.
Finally, get a subsequence with each basis vector converging.
Prove: in the limit, each “basis vector” is of length 1 and they are
orthonormal. [Just convergent sequence of reals.]
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Singular Values and Norm

Av1 is list of lengths (with signs) of projections of rows of A onto
v1.

So, σ1(A) = |Av1| may be viewed as “component” of A along v1.
σ2(A) is “component” of A along v2.... Analogous to decomposing
a vector into its components along the basis vectors.
Better have sum of squares of components = whole to complete
the analogy.
Since ai · v = 0 for all v ⊥ v1,v2, . . . ,vr (why?), we have:∑r

t=1(ai · vt)
2 = |ai|2.

n∑
j=1
|aj|2 =

n∑
j=1

r∑
i=1

(aj · vi)
2 =

r∑
i=1

n∑
j=1

(aj · vi)
2 =

r∑
i=1
|Avi|2 =

r∑
i=1

σ2
i (A).

Lemma
∑r

t=1 σ
2
t (A) = ||A||2F .
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Right and left singular vectors

v1,v2, . . . ,vr are called the right-singular vectors.

The vectors Avi form a fundamental set of vectors. Normalize to
length 1: ui =

1
σi (A)

Avi.

Will show later ui similarly maximizes |uT A| over all u
perpendicular to u1, . . . ,ui−1.
ui are called the left-singular vectors.
By definition, the right-singular vectors are orthogonal.
Will show later that the left-singular vectors are also orthogonal.
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Singular Value Decomposition

A any matrix, vt, t = 1,2, . . . , r , ut, t = 1,2, . . . , r ,
σt , t = 1,2, . . . , r , its right singular vectors, left singular vectors
and singular values respy.

Theorem (Singular Value Decomposition A =
∑r

t=1 σtutvt
T .

Sum of r outer products.
Claim Matrices A,B are identical iff for all v, we have Av = Bv. If
Av = Bv for all v, this holds for each unit vector ej and so j th col
of A,B are the same for all j .
Let B =

∑r
t=1 σtutvt

T . Want to show Av = Bv for all v. Enough to
show for a set of v forming a basis of space. Take a convienient
basis: v1,v2, . . . ,vr,vr+1, . . . ,vd, containing the r singular vectors
of A. [Such a basis exists. Why?]
For t = 1,2, . . . , r : Avt = σtut and Bvt = σtvt too by the ortho
nomrality of v1, . . . ,vr.
For t ≥ r + 1, Avt = 0 (Why?) and so is Bvt. QED
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