

Lecture 6: Singular Value Decomposition - I

November 6, 2017

Introduction

- n data points in d space - each a row of *Data Matrix A* ($n \times d$ matrix).

Introduction

- n data points in d space - each a row of *Data Matrix A* ($n \times d$ matrix).
- Singular Value Decomposition (SVD) consists of *best fit* k dimensional subspace for A , for every $k, k = 1, 2, \dots, \text{rank}(A)$.

Introduction

- n data points in d space - each a row of *Data Matrix A* ($n \times d$ matrix).
- Singular Value Decomposition (SVD) consists of *best fit* k dimensional subspace for A , for every k , $k = 1, 2, \dots, \text{rank}(A)$.
- Best Fit in the sense of minimum sum of squared (perpendicular) distances of data points to subspace. Will see best fit for every k simultaneously.

Introduction

- n data points in d space - each a row of *Data Matrix A* ($n \times d$ matrix).
- Singular Value Decomposition (SVD) consists of *best fit* k dimensional subspace for A , for every k , $k = 1, 2, \dots, \text{rank}(A)$.
- Best Fit in the sense of minimum sum of squared (perpendicular) distances of data points to subspace. Will see best fit for every k simultaneously.
- Equivalently, maximum sum of squares of the lengths of projection of data points into subspace.

Minimize distances \equiv Maximize projections

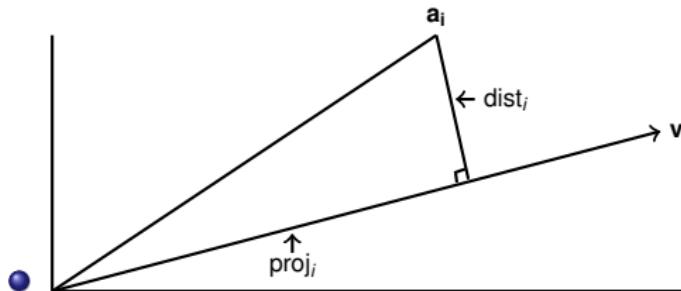


Figure: The projection of the point \mathbf{a}_i onto the line through the origin in the direction of \mathbf{v} .

Minimize distances \equiv Maximize projections

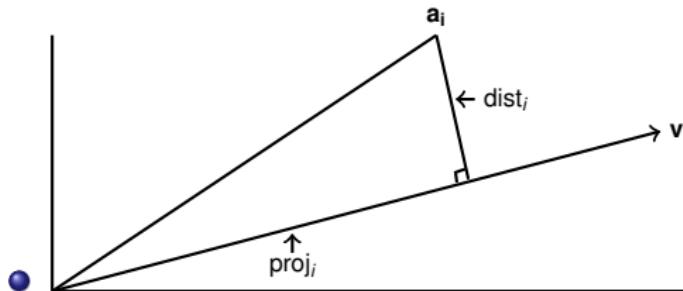


Figure: The projection of the point \mathbf{a}_i onto the line through the origin in the direction of \mathbf{v} .

- Min $\sum_i \text{dist}_i^2 \equiv \text{Max} \sum_i \text{proj}_i^2$ courtesy Pythagorus

Minimize distances \equiv Maximize projections

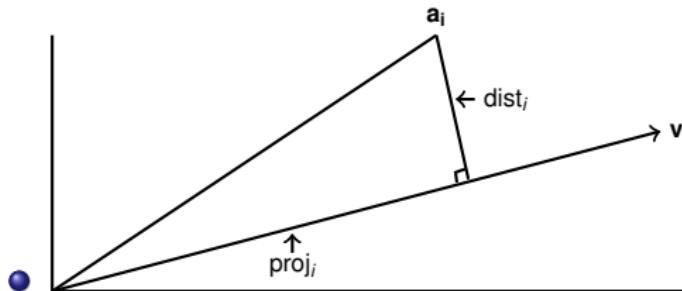


Figure: The projection of the point \mathbf{a}_i onto the line through the origin in the direction of \mathbf{v} .

- $\text{Min } \sum_i \text{dist}_i^2 \equiv \text{Max } \sum_i \text{proj}_i^2$ courtesy Pythagorus
- Contrast: “Least-Squares Fit”: Given $(x_i, y_i), i = 1, 2, \dots, n$
 $\text{Min}_{a,b} (ax_i + b - y_i)^2$. Dist.s “vertical”, not perp to line. [PICTURE]

Minimize distances \equiv Maximize projections

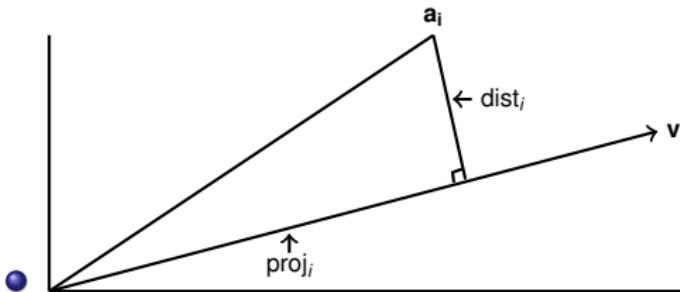


Figure: The projection of the point \mathbf{a}_i onto the line through the origin in the direction of \mathbf{v} .

- $\text{Min } \sum_i \text{dist}_i^2 \equiv \text{Max } \sum_i \text{proj}_i^2$ courtesy Pythagorus
- Contrast: “Least-Squares Fit”: Given $(x_i, y_i), i = 1, 2, \dots, n$
 $\text{Min}_{a,b} (ax_i + b - y_i)^2$. Dist.s “vertical”, not perp to line. [PICTURE]
- Least Squares- Not nec. through $\mathbf{0}$. But SVD : subspace, so has $\mathbf{0}$. See later: best-fit affine subspace passes through centroid of data. Can translate to make centroid = $\mathbf{0}$.

Will Show: Greedy works

- First find the best-fit 1-dimensional subspace to data: line (through the origin).

Will Show: Greedy works

- First find the best-fit 1-dimensional subspace to data: line (through the origin).
- Then, find best-fit line (through $\mathbf{0}$) perpendicular to first line.

Will Show: Greedy works

- First find the best-fit 1-dimensional subspace to data: line (through the origin).
- Then, find best-fit line (through $\mathbf{0}$) perpendicular to first line.
- At the i th step, find best fit line perp to $i - 1$ lines found so far. Until: $\text{rank}(A)$.

Will Show: Greedy works

- First find the best-fit 1-dimensional subspace to data: line (through the origin).
- Then, find best-fit line (through $\mathbf{0}$) perpendicular to first line.
- At the i th step, find best fit line perp to $i - 1$ lines found so far. Until: $\text{rank}(A)$.
- Will Show: When done, we can write $A = UDV^T$, where, columns of V are unit vectors along lines found above; D is a diagonal matrix with positive entries and columns of U, V are orthonormal. [$A = UDV^T$ is called SVD.] Now focus on the just the best-fit lines, not on the matrix factorization yet.

First Singular Vector

- Notation: A $n \times d$ data matrix; each row is a data point.

First Singular Vector

- Notation: A $n \times d$ data matrix; each row is a data point.
- If \mathbf{v} is the unit vector along the best-fit line, \mathbf{v} minimizes among all unit length vectors \mathbf{x} the quantity:

$$\sum_{i=1}^n (|\mathbf{a}_i|^2 - (\mathbf{a}_i \cdot \mathbf{x})^2) = \sum_{i=1}^n |\mathbf{a}_i|^2 - |\mathbf{Ax}|^2.$$

First Singular Vector

- Notation: A $n \times d$ data matrix; each row is a data point.
- If \mathbf{v} is the unit vector along the best-fit line, \mathbf{v} minimizes among all unit length vectors \mathbf{x} the quantity:
$$\sum_{i=1}^n (|\mathbf{a}_i|^2 - (\mathbf{a}_i \cdot \mathbf{x})^2) = \sum_{i=1}^n |\mathbf{a}_i|^2 - |\mathbf{A}\mathbf{x}|^2.$$
- Now, $\sum_i |\mathbf{a}_i|^2 = \|A\|_F^2$ does not depend on \mathbf{x} . So (as we said earlier), equivalent to maximizing $|\mathbf{A}\mathbf{x}|^2$.

First Singular Vector

- Notation: A $n \times d$ data matrix; each row is a data point.
- If \mathbf{v} is the unit vector along the best-fit line, \mathbf{v} minimizes among all unit length vectors \mathbf{x} the quantity:
$$\sum_{i=1}^n (|\mathbf{a}_i|^2 - (\mathbf{a}_i \cdot \mathbf{x})^2) = \sum_{i=1}^n |\mathbf{a}_i|^2 - |\mathbf{A}\mathbf{x}|^2.$$
- Now, $\sum_i |\mathbf{a}_i|^2 = \|A\|_F^2$ does not depend on \mathbf{x} . So (as we said earlier), equivalent to maximizing $|\mathbf{A}\mathbf{x}|^2$.
- Define the *first singular vector of A* by:
$$\mathbf{v}_1 = \arg \max_{|\mathbf{v}|=1} |\mathbf{A}\mathbf{v}|$$

First Singular Vector

- Notation: A $n \times d$ data matrix; each row is a data point.
- If \mathbf{v} is the unit vector along the best-fit line, \mathbf{v} minimizes among all unit length vectors \mathbf{x} the quantity:
$$\sum_{i=1}^n (|\mathbf{a}_i|^2 - (\mathbf{a}_i \cdot \mathbf{x})^2) = \sum_{i=1}^n |\mathbf{a}_i|^2 - |\mathbf{A}\mathbf{x}|^2.$$
- Now, $\sum_i |\mathbf{a}_i|^2 = \|A\|_F^2$ does not depend on \mathbf{x} . So (as we said earlier), equivalent to maximizing $|\mathbf{A}\mathbf{x}|^2$.
- Define the *first singular vector of A* by:
$$\mathbf{v}_1 = \arg \max_{|\mathbf{v}|=1} |\mathbf{A}\mathbf{v}|$$
- There can be ties. [What is an obvious tie for \mathbf{v}_1 ?] Break them arbitrarily. Will use ArgMax for arb. broken ties.

First Singular Vector

- Notation: A $n \times d$ data matrix; each row is a data point.
- If \mathbf{v} is the unit vector along the best-fit line, \mathbf{v} minimizes among all unit length vectors \mathbf{x} the quantity:
$$\sum_{i=1}^n (|\mathbf{a}_i|^2 - (\mathbf{a}_i \cdot \mathbf{x})^2) = \sum_{i=1}^n |\mathbf{a}_i|^2 - |\mathbf{A}\mathbf{x}|^2.$$
- Now, $\sum_i |\mathbf{a}_i|^2 = \|A\|_F^2$ does not depend on \mathbf{x} . So (as we said earlier), equivalent to maximizing $|\mathbf{A}\mathbf{x}|^2$.
- Define the *first singular vector of A* by:
$$\mathbf{v}_1 = \arg \max_{|\mathbf{v}|=1} |\mathbf{A}\mathbf{v}|$$
- There can be ties. [What is an obvious tie for \mathbf{v}_1 ?] Break them arbitrarily. Will use ArgMax for arb. broken ties.
- Value $\sigma_1(A) = |\mathbf{A}\mathbf{v}_1|$ is called the *first singular value of A* .

First Singular Vector

- Notation: A $n \times d$ data matrix; each row is a data point.
- If \mathbf{v} is the unit vector along the best-fit line, \mathbf{v} minimizes among all unit length vectors \mathbf{x} the quantity:
$$\sum_{i=1}^n (|\mathbf{a}_i|^2 - (\mathbf{a}_i \cdot \mathbf{x})^2) = \sum_{i=1}^n |\mathbf{a}_i|^2 - |\mathbf{A}\mathbf{x}|^2.$$
- Now, $\sum_i |\mathbf{a}_i|^2 = \|A\|_F^2$ does not depend on \mathbf{x} . So (as we said earlier), equivalent to maximizing $|\mathbf{A}\mathbf{x}|^2$.
- Define the *first singular vector of A* by:
$$\mathbf{v}_1 = \arg \max_{\|\mathbf{v}\|=1} |\mathbf{A}\mathbf{v}|$$
- There can be ties. [What is an obvious tie for \mathbf{v}_1 ?] Break them arbitrarily. Will use ArgMax for arb. broken ties.
- Value $\sigma_1(A) = |\mathbf{A}\mathbf{v}_1|$ is called the *first singular value* of A .
- If all data points lie on a line through the origin, the line on which projections are maximized is precisely the same line, so it is the first singular vectors.

First Singular Vector

- Notation: A $n \times d$ data matrix; each row is a data point.
- If \mathbf{v} is the unit vector along the best-fit line, \mathbf{v} minimizes among all unit length vectors \mathbf{x} the quantity:
$$\sum_{i=1}^n (|\mathbf{a}_i|^2 - (\mathbf{a}_i \cdot \mathbf{x})^2) = \sum_{i=1}^n |\mathbf{a}_i|^2 - |\mathbf{A}\mathbf{x}|^2.$$
- Now, $\sum_i |\mathbf{a}_i|^2 = \|A\|_F^2$ does not depend on \mathbf{x} . So (as we said earlier), equivalent to maximizing $|\mathbf{A}\mathbf{x}|^2$.
- Define the *first singular vector of A* by:
$$\mathbf{v}_1 = \arg \max_{|\mathbf{v}|=1} |\mathbf{A}\mathbf{v}|$$
- There can be ties. [What is an obvious tie for \mathbf{v}_1 ?] Break them arbitrarily. Will use ArgMax for arb. broken ties.
- Value $\sigma_1(A) = |\mathbf{A}\mathbf{v}_1|$ is called the *first singular value* of A .
- If all data points lie on a line through the origin, the line on which projections are maximized is precisely the same line, so it is the first singular vectors.
- Further singular vectors. Think - what if data points are coplanar? Would like to get two perpendicular vectors spanning the plane.

Greedy and Definition of further singular vectors

- How to define further singular vectors? Again, think coplanar data points. Would like the 2-dim subspace maximizing sum of squared projections.

Greedy and Definition of further singular vectors

- How to define further singular vectors? Again, think coplanar data points. Would like the 2-dim subspace maximizing sum of squared projections.
- Try Greedy: Define the second singular vector \mathbf{v}_2 as the one (break ties arbitrarily) maximizing the sum of projections squared subject to being perpendicular to first. Algebra: same as:

Greedy and Definition of further singular vectors

- How to define further singular vectors? Again, think coplanar data points. Would like the 2-dim subspace maximizing sum of squared projections.
- Try Greedy: Define the second singular vector \mathbf{v}_2 as the one (break ties arbitrarily) maximizing the sum of projections squared subject to being perpendicular to first. Algebra: same as:
- $\mathbf{v}_2 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1 \\ \|\mathbf{v}\|=1}} |\mathbf{A}\mathbf{v}|.$

Greedy and Definition of further singular vectors

- How to define further singular vectors? Again, think coplanar data points. Would like the 2-dim subspace maximizing sum of squared projections.
- Try Greedy: Define the second singular vector \mathbf{v}_2 as the one (break ties arbitrarily) maximizing the sum of projections squared subject to being perpendicular to first. Algebra: same as:
 - $\mathbf{v}_2 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1 \\ \|\mathbf{v}\|=1}} |\mathbf{A}\mathbf{v}|$.
 - $\mathbf{v}_3 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2 \\ \|\mathbf{v}\|=1}} |\mathbf{A}\mathbf{v}|$.

Greedy and Definition of further singular vectors

- How to define further singular vectors? Again, think coplanar data points. Would like the 2-dim subspace maximizing sum of squared projections.
- Try Greedy: Define the second singular vector \mathbf{v}_2 as the one (break ties arbitrarily) maximizing the sum of projections squared subject to being perpendicular to first. Algebra: same as:
 - $\mathbf{v}_2 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1 \\ \|\mathbf{v}\|=1}} |\mathbf{A}\mathbf{v}|$.
 - $\mathbf{v}_3 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2 \\ \|\mathbf{v}\|=1}} |\mathbf{A}\mathbf{v}|$.
 - Define $\sigma_2(A) = |\mathbf{A}\mathbf{v}_2|$; $\sigma_3(A) = |\mathbf{A}\mathbf{v}_3|$... as the singular values of A .

Greedy and Definition of further singular vectors

- How to define further singular vectors? Again, think coplanar data points. Would like the 2-dim subspace maximizing sum of squared projections.
- Try Greedy: Define the second singular vector \mathbf{v}_2 as the one (break ties arbitrarily) maximizing the sum of projections squared subject to being perpendicular to first. Algebra: same as:
 - $\mathbf{v}_2 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1 \\ |\mathbf{v}|=1}} |\mathbf{A}\mathbf{v}|$.
 - $\mathbf{v}_3 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2 \\ |\mathbf{v}|=1}} |\mathbf{A}\mathbf{v}|$.
 - Define $\sigma_2(A) = |\mathbf{A}\mathbf{v}_2|$; $\sigma_3(A) = |\mathbf{A}\mathbf{v}_3|$... as the singular values of A .
 - Stop when $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ have been found and
$$\max_{\substack{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r \\ |\mathbf{v}|=1}} |\mathbf{A}\mathbf{v}| = 0.$$

Greedy and Definition of further singular vectors

- How to define further singular vectors? Again, think coplanar data points. Would like the 2-dim subspace maximizing sum of squared projections.
- Try Greedy: Define the second singular vector \mathbf{v}_2 as the one (break ties arbitrarily) maximizing the sum of projections squared subject to being perpendicular to first. Algebra: same as:
- $\mathbf{v}_2 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1 \\ |\mathbf{v}|=1}} |\mathbf{A}\mathbf{v}|$.
- $\mathbf{v}_3 = \arg \max_{\substack{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2 \\ |\mathbf{v}|=1}} |\mathbf{A}\mathbf{v}|$.
- Define $\sigma_2(A) = |\mathbf{A}\mathbf{v}_2|$; $\sigma_3(A) = |\mathbf{A}\mathbf{v}_3|$... as the singular values of A .
- Stop when $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ have been found and $\max_{\substack{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r \\ |\mathbf{v}|=1}} |\mathbf{A}\mathbf{v}| = 0$.
- Will prove: $r = \text{rank}(A)$ and even if there are ties, the singular values $\sigma_1(A), \sigma_2(A), \dots$ are unique.

Greedy Works

- Define *best-fit k dim subspace for A* as the one maximizing the sum of squared projection lengths of data points into subspace over all k dim subspaces.

- Define *best-fit k dim subspace for A* as the one maximizing the sum of squared projection lengths of data points into subspace over all k dim subspaces.
- **Theorem (The Greedy Algorithm Works)**
Let A be an $n \times d$ matrix with singular vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$. For $1 \leq k \leq r$, let V_k be the subspace spanned by $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$. For each k , V_k is the best-fit k -dimensional subspace for A .

Proof

- Proof by induction on k . Statement obvious for $k = 1$.

Proof

- Proof by induction on k . Statement obvious for $k = 1$.
- Lets do $k = 2$. Assume W is the best-fit 2-d subspace.

Proof

- Proof by induction on k . Statement obvious for $k = 1$.
- Lets do $k = 2$. Assume W is the best-fit 2-d subspace.
- **Claim** There is a $\mathbf{w}_2 \in W$ s.t. $|\mathbf{w}_2| = 1$, $\mathbf{w}_2 \cdot \mathbf{v}_1 = 0$.

Proof

- Proof by induction on k . Statement obvious for $k = 1$.
- Lets do $k = 2$. Assume W is the best-fit 2-d subspace.
- **Claim** There is a $\mathbf{w}_2 \in W$ s.t. $|\mathbf{w}_2| = 1$, $\mathbf{w}_2 \cdot \mathbf{v}_1 = 0$.
- Because the projection of \mathbf{v}_1 onto W spans a (at most) one dim subspace W' of W . Take $\mathbf{w}_2 \in W$ perp to W' .

Proof

- Proof by induction on k . Statement obvious for $k = 1$.
- Lets do $k = 2$. Assume W is the best-fit 2-d subspace.
- **Claim** There is a $\mathbf{w}_2 \in W$ s.t. $|\mathbf{w}_2| = 1$, $\mathbf{w}_2 \cdot \mathbf{v}_1 = 0$.
- Because the projection of \mathbf{v}_1 onto W spans a (at most) one dim subspace W' of W . Take $\mathbf{w}_2 \in W$ perp to W' .
- Choose $\mathbf{w}_1 \in W$ of unit length perpendicular to \mathbf{w}_2 . $\mathbf{w}_1, \mathbf{w}_2$ form a (orthonormal) basis for W . [Convention: Basis means orthonormal..]

Proof

- Proof by induction on k . Statement obvious for $k = 1$.
- Lets do $k = 2$. Assume W is the best-fit 2-d subspace.
- **Claim** There is a $\mathbf{w}_2 \in W$ s.t. $|\mathbf{w}_2| = 1$, $\mathbf{w}_2 \cdot \mathbf{v}_1 = 0$.
- Because the projection of \mathbf{v}_1 onto W spans a (at most) one dim subspace W' of W . Take $\mathbf{w}_2 \in W$ perp to W' .
- Choose $\mathbf{w}_1 \in W$ of unit length perpendicular to \mathbf{w}_2 . $\mathbf{w}_1, \mathbf{w}_2$ form a (orthonormal) basis for W . [Convention: Basis means orthonormal..]
- Sum of squared projections of data points into W equals $|\mathbf{Aw}_1|^2 + |\mathbf{Aw}_2|^2$ - Why ? Algebra..

Proof

- Proof by induction on k . Statement obvious for $k = 1$.
- Lets do $k = 2$. Assume W is the best-fit 2-d subspace.
- **Claim** There is a $\mathbf{w}_2 \in W$ s.t. $|\mathbf{w}_2| = 1$, $\mathbf{w}_2 \cdot \mathbf{v}_1 = 0$.
- Because the projection of \mathbf{v}_1 onto W spans a (at most) one dim subspace W' of W . Take $\mathbf{w}_2 \in W$ perp to W' .
- Choose $\mathbf{w}_1 \in W$ of unit length perpendicular to \mathbf{w}_2 . $\mathbf{w}_1, \mathbf{w}_2$ form a (orthonormal) basis for W . [Convention: Basis means orthonormal..]
- Sum of squared projections of data points into W equals $|\mathcal{A}\mathbf{w}_1|^2 + |\mathcal{A}\mathbf{w}_2|^2$ - Why ? Algebra..
- $|\mathcal{A}\mathbf{w}_1|^2 \leq |\mathcal{A}\mathbf{v}_1|^2$ (Why?)

Proof

- Proof by induction on k . Statement obvious for $k = 1$.
- Lets do $k = 2$. Assume W is the best-fit 2-d subspace.
- **Claim** There is a $\mathbf{w}_2 \in W$ s.t. $|\mathbf{w}_2| = 1$, $\mathbf{w}_2 \cdot \mathbf{v}_1 = 0$.
- Because the projection of \mathbf{v}_1 onto W spans a (at most) one dim subspace W' of W . Take $\mathbf{w}_2 \in W$ perp to W' .
- Choose $\mathbf{w}_1 \in W$ of unit length perpendicular to \mathbf{w}_2 . $\mathbf{w}_1, \mathbf{w}_2$ form a (orthonormal) basis for W . [Convention: Basis means orthonormal..]
- Sum of squared projections of data points into W equals $|\mathbf{Aw}_1|^2 + |\mathbf{Aw}_2|^2$ - Why ? Algebra..
- $|\mathbf{Aw}_1|^2 \leq |\mathbf{Av}_1|^2$ (Why?)
- $|\mathbf{Aw}_2|^2 \leq |\mathbf{Av}_2|^2$ (why?) Add to get: V_2 as good as W .

Proof for general $k > 2$

- Inductive hypothesis implies: V_{k-1} is best-fit $k - 1$ dim subspace.

Proof for general $k > 2$

- Inductive hypothesis implies: V_{k-1} is best-fit $k - 1$ dim subspace.
- Suppose W is best-fit k dim subspace. **Claim** There is a unit length vector \mathbf{w}_k in W perpendicular to V_{k-1} because: projections of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k-1}$ onto W span a (at most) $k - 1$ dimensional subspace of W , so there is a \mathbf{w}_k perpendicular to this in W .

Proof for general $k > 2$

- Inductive hypothesis implies: V_{k-1} is best-fit $k-1$ dim subspace.
- Suppose W is best-fit k dim subspace. **Claim** There is a unit length vector \mathbf{w}_k in W perpendicular to V_{k-1} because: projections of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k-1}$ onto W span a (at most) $k-1$ dimensional subspace of W , so there is a \mathbf{w}_k perpendicular to this in W .
- Choose a basis $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ of W .

Proof for general $k > 2$

- Inductive hypothesis implies: V_{k-1} is best-fit $k-1$ dim subspace.
- Suppose W is best-fit k dim subspace. **Claim** There is a unit length vector \mathbf{w}_k in W perpendicular to V_{k-1} because: projections of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k-1}$ onto W span a (at most) $k-1$ dimensional subspace of W , so there is a \mathbf{w}_k perpendicular to this in W .
- Choose a basis $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ of W .
- $|A\mathbf{w}_1|^2 + |A\mathbf{w}_2|^2 + \dots + |A\mathbf{w}_{k-1}|^2 \leq |A\mathbf{v}_1|^2 + |A\mathbf{v}_2|^2 + \dots + |A\mathbf{v}_{k-1}|^2$
- Why?

Proof for general $k > 2$

- Inductive hypothesis implies: V_{k-1} is best-fit $k-1$ dim subspace.
- Suppose W is best-fit k dim subspace. **Claim** There is a unit length vector \mathbf{w}_k in W perpendicular to V_{k-1} because: projections of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k-1}$ onto W span a (at most) $k-1$ dimensional subspace of W , so there is a \mathbf{w}_k perpendicular to this in W .
- Choose a basis $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ of W .
- $|A\mathbf{w}_1|^2 + |A\mathbf{w}_2|^2 + \dots + |A\mathbf{w}_{k-1}|^2 \leq |A\mathbf{v}_1|^2 + |A\mathbf{v}_2|^2 + \dots + |A\mathbf{v}_{k-1}|^2$
 - Why?
 - Induction.

Proof for general $k > 2$

- Inductive hypothesis implies: V_{k-1} is best-fit $k-1$ dim subspace.
- Suppose W is best-fit k dim subspace. **Claim** There is a unit length vector \mathbf{w}_k in W perpendicular to V_{k-1} because: projections of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k-1}$ onto W span a (at most) $k-1$ dimensional subspace of W , so there is a \mathbf{w}_k perpendicular to this in W .
- Choose a basis $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ of W .
- $|A\mathbf{w}_1|^2 + |A\mathbf{w}_2|^2 + \dots + |A\mathbf{w}_{k-1}|^2 \leq |A\mathbf{v}_1|^2 + |A\mathbf{v}_2|^2 + \dots + |A\mathbf{v}_{k-1}|^2$
 - Why?
 - Induction.
- $|A\mathbf{w}_k|^2 \leq |A\mathbf{v}_k|^2$. Why? Add to get V_k as good as W . QED

Consequences

- Theorem Proves: $\sigma_1(A), \sigma_2(A), \dots$ are unique even if there were ties for the singular vectors.

Consequences

- Theorem Proves: $\sigma_1(A), \sigma_2(A), \dots$ are unique even if there were ties for the singular vectors.
- Proof: $\sigma_1(A)$ obviously (first) exists (closed, bounded etc.) and is unique.

Consequences

- Theorem Proves: $\sigma_1(A), \sigma_2(A), \dots$ are unique even if there were ties for the singular vectors.
- Proof: $\sigma_1(A)$ obviously (first) exists (closed, bounded etc.) and is unique.
- Now, there is a unique value of the maximum over all 2-d subspaces of sum of projections squared onto subspace, because the set of 2-d subspaces is closed etc.; call this value μ_2 .
Theorem says: $\sigma_1(A)^2 + \sigma_2^2(A) = |A\mathbf{v}_1|^2 + |A\mathbf{v}_2|^2 = \mu_2$. So, $\sigma_2^2(A) = \mu_2 - \sigma_1^2(A)$ is unique.

Consequences

- Theorem Proves: $\sigma_1(A), \sigma_2(A), \dots$ are unique even if there were ties for the singular vectors.
- Proof: $\sigma_1(A)$ obviously (first) exists (closed, bounded etc.) and is unique.
- Now, there is a unique value of the maximum over all 2-d subspaces of sum of projections squared onto subspace, because the set of 2-d subspaces is closed etc.; call this value μ_2 . Theorem says: $\sigma_1(A)^2 + \sigma_2^2(A) = |A\mathbf{v}_1|^2 + |A\mathbf{v}_2|^2 = \mu_2$. So, $\sigma_2^2(A) = \mu_2 - \sigma_1^2(A)$ is unique.
- General k : assume $\sigma_1(A), \sigma_2(A), \dots, \sigma_{k-1}(A)$ are unique. Let μ_k be the maximum over all k -d subspaces of the sum of squared projections onto the subspace. Then, theorem implies that $\sigma_1^2(A) + \sigma_2^2(A) + \dots + \sigma_k^2(A) = \mu_k$. Using inductive hypothesis, now, $\sigma_k(A)$ is unique. **Provided μ_k exists - Prove.**

Aside: Convergence of Subspaces

- Suppose V_1, V_2, \dots are an infinite sequence of k dimensional subspaces of \mathbf{R}^d . There is a convergent sub-sequence. [Caution: Subspaces seem to be unbounded objects.]

Aside: Convergence of Subspaces

- Suppose V_1, V_2, \dots are an infinite sequence of k dimensional subspaces of \mathbb{R}^d . There is a convergent sub-sequence. [Caution: Subspaces seem to be unbounded objects.]
- Choose a basis for each V_i . First take a subsequence of $\{V_i\}$ in which the first basis vector converges.

Aside: Convergence of Subspaces

- Suppose V_1, V_2, \dots are an infinite sequence of k dimensional subspaces of \mathbb{R}^d . There is a convergent sub-sequence. [Caution: Subspaces seem to be unbounded objects.]
- Choose a basis for each V_i . First take a subsequence of $\{V_i\}$ in which the first basis vector converges.
- Then take subsequence of the subsequence where the second basis vector converges. Repeat.

Aside: Convergence of Subspaces

- Suppose V_1, V_2, \dots are an infinite sequence of k dimensional subspaces of \mathbb{R}^d . There is a convergent sub-sequence. [Caution: Subspaces seem to be unbounded objects.]
- Choose a basis for each V_i . First take a subsequence of $\{V_i\}$ in which the first basis vector converges.
- Then take subsequence of the subsequence where the second basis vector converges. Repeat.
- Finally, get a subsequence with each basis vector converging. Prove: in the limit, each “basis vector” is of length 1 and they are orthonormal. [Just convergent sequence of reals.]

Singular Values and Norm

- $A\mathbf{v}_1$ is list of lengths (with signs) of projections of rows of A onto \mathbf{v}_1 .

Singular Values and Norm

- $A\mathbf{v}_1$ is list of lengths (with signs) of projections of rows of A onto \mathbf{v}_1 .
- So, $\sigma_1(A) = |A\mathbf{v}_1|$ may be viewed as “component” of A along \mathbf{v}_1 .

Singular Values and Norm

- $A\mathbf{v}_1$ is list of lengths (with signs) of projections of rows of A onto \mathbf{v}_1 .
- So, $\sigma_1(A) = |A\mathbf{v}_1|$ may be viewed as “component” of A along \mathbf{v}_1 .
- $\sigma_2(A)$ is “component” of A along \mathbf{v}_2 Analogous to decomposing a vector into its components along the basis vectors.

Singular Values and Norm

- $A\mathbf{v}_1$ is list of lengths (with signs) of projections of rows of A onto \mathbf{v}_1 .
- So, $\sigma_1(A) = |A\mathbf{v}_1|$ may be viewed as “component” of A along \mathbf{v}_1 .
- $\sigma_2(A)$ is “component” of A along \mathbf{v}_2 Analogous to decomposing a vector into its components along the basis vectors.
- Better have sum of squares of components = whole to complete the analogy.

Singular Values and Norm

- $A\mathbf{v}_1$ is list of lengths (with signs) of projections of rows of A onto \mathbf{v}_1 .
- So, $\sigma_1(A) = |A\mathbf{v}_1|$ may be viewed as “component” of A along \mathbf{v}_1 .
- $\sigma_2(A)$ is “component” of A along \mathbf{v}_2 Analogous to decomposing a vector into its components along the basis vectors.
- Better have sum of squares of components = whole to complete the analogy.
- Since $\mathbf{a}_i \cdot \mathbf{v} = 0$ for all $\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ (why?), we have:
$$\sum_{t=1}^r (\mathbf{a}_i \cdot \mathbf{v}_t)^2 = |\mathbf{a}_i|^2.$$

Singular Values and Norm

- $A\mathbf{v}_1$ is list of lengths (with signs) of projections of rows of A onto \mathbf{v}_1 .
- So, $\sigma_1(A) = |A\mathbf{v}_1|$ may be viewed as “component” of A along \mathbf{v}_1 .
- $\sigma_2(A)$ is “component” of A along \mathbf{v}_2 Analogous to decomposing a vector into its components along the basis vectors.
- Better have sum of squares of components = whole to complete the analogy.
- Since $\mathbf{a}_i \cdot \mathbf{v} = 0$ for all $\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ (why?), we have:
$$\sum_{t=1}^r (\mathbf{a}_i \cdot \mathbf{v}_t)^2 = |\mathbf{a}_i|^2.$$
- $$\sum_{j=1}^n |\mathbf{a}_j|^2 = \sum_{j=1}^n \sum_{i=1}^r (\mathbf{a}_j \cdot \mathbf{v}_i)^2 = \sum_{i=1}^r \sum_{j=1}^n (\mathbf{a}_j \cdot \mathbf{v}_i)^2 = \sum_{i=1}^r |A\mathbf{v}_i|^2 = \sum_{i=1}^r \sigma_i^2(A).$$

Singular Values and Norm

- $A\mathbf{v}_1$ is list of lengths (with signs) of projections of rows of A onto \mathbf{v}_1 .
- So, $\sigma_1(A) = |A\mathbf{v}_1|$ may be viewed as “component” of A along \mathbf{v}_1 .
- $\sigma_2(A)$ is “component” of A along \mathbf{v}_2 Analogous to decomposing a vector into its components along the basis vectors.
- Better have sum of squares of components = whole to complete the analogy.
- Since $\mathbf{a}_i \cdot \mathbf{v} = 0$ for all $\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ (why?), we have:
$$\sum_{t=1}^r (\mathbf{a}_i \cdot \mathbf{v}_t)^2 = |\mathbf{a}_i|^2.$$
- $$\sum_{j=1}^n |\mathbf{a}_j|^2 = \sum_{j=1}^n \sum_{i=1}^r (\mathbf{a}_j \cdot \mathbf{v}_i)^2 = \sum_{i=1}^r \sum_{j=1}^n (\mathbf{a}_j \cdot \mathbf{v}_i)^2 = \sum_{i=1}^r |A\mathbf{v}_i|^2 = \sum_{i=1}^r \sigma_i^2(A).$$
- **Lemma** $\sum_{t=1}^r \sigma_t^2(A) = \|A\|_F^2$.

Right and left singular vectors

- $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are called the *right-singular vectors*.

Right and left singular vectors

- $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are called the *right-singular vectors*.
- The vectors $A\mathbf{v}_i$ form a fundamental set of vectors. Normalize to length 1: $\mathbf{u}_i = \frac{1}{\sigma_i(A)} A\mathbf{v}_i$.

Right and left singular vectors

- $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are called the *right-singular vectors*.
- The vectors $A\mathbf{v}_i$ form a fundamental set of vectors. Normalize to length 1: $\mathbf{u}_i = \frac{1}{\sigma_i(A)} A\mathbf{v}_i$.
- Will show later \mathbf{u}_i similarly maximizes $|\mathbf{u}^T A|$ over all \mathbf{u} perpendicular to $\mathbf{u}_1, \dots, \mathbf{u}_{i-1}$.

Right and left singular vectors

- $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are called the *right-singular vectors*.
- The vectors $A\mathbf{v}_i$ form a fundamental set of vectors. Normalize to length 1: $\mathbf{u}_i = \frac{1}{\sigma_i(A)} A\mathbf{v}_i$.
- Will show later \mathbf{u}_i similarly maximizes $|\mathbf{u}^T A|$ over all \mathbf{u} perpendicular to $\mathbf{u}_1, \dots, \mathbf{u}_{i-1}$.
- \mathbf{u}_i are called the *left-singular vectors*.

Right and left singular vectors

- $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are called the *right-singular vectors*.
- The vectors $A\mathbf{v}_i$ form a fundamental set of vectors. Normalize to length 1: $\mathbf{u}_i = \frac{1}{\sigma_i(A)} A\mathbf{v}_i$.
- Will show later \mathbf{u}_i similarly maximizes $|\mathbf{u}^T A|$ over all \mathbf{u} perpendicular to $\mathbf{u}_1, \dots, \mathbf{u}_{i-1}$.
- \mathbf{u}_i are called the *left-singular vectors*.
- By definition, the right-singular vectors are orthogonal.

Right and left singular vectors

- $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are called the *right-singular vectors*.
- The vectors $A\mathbf{v}_i$ form a fundamental set of vectors. Normalize to length 1: $\mathbf{u}_i = \frac{1}{\sigma_i(A)} A\mathbf{v}_i$.
- Will show later \mathbf{u}_i similarly maximizes $|\mathbf{u}^T A|$ over all \mathbf{u} perpendicular to $\mathbf{u}_1, \dots, \mathbf{u}_{i-1}$.
- \mathbf{u}_i are called the *left-singular vectors*.
- By definition, the right-singular vectors are orthogonal.
- Will show later that the left-singular vectors are also orthogonal.

Singular Value Decomposition

- A any matrix, $\mathbf{v}_t, t = 1, 2, \dots, r$, $\mathbf{u}_t, t = 1, 2, \dots, r$,
 $\sigma_t, t = 1, 2, \dots, r$, its right singular vectors, left singular vectors
and singular values resp.

Singular Value Decomposition

- A any matrix, $\mathbf{v}_t, t = 1, 2, \dots, r$, $\mathbf{u}_t, t = 1, 2, \dots, r$,
 $\sigma_t, t = 1, 2, \dots, r$, its right singular vectors, left singular vectors
and singular values resp.
- **Theorem (Singular Value Decomposition)** $A = \sum_{t=1}^r \sigma_t \mathbf{u}_t \mathbf{v}_t^T$.
Sum of r outer products.

Singular Value Decomposition

- A any matrix, $\mathbf{v}_t, t = 1, 2, \dots, r$, $\mathbf{u}_t, t = 1, 2, \dots, r$,
 $\sigma_t, t = 1, 2, \dots, r$, its right singular vectors, left singular vectors
and singular values resp.
- **Theorem (Singular Value Decomposition)** $A = \sum_{t=1}^r \sigma_t \mathbf{u}_t \mathbf{v}_t^T$.
Sum of r outer products.
- **Claim** Matrices A, B are identical iff for all \mathbf{v} , we have $A\mathbf{v} = B\mathbf{v}$. If
 $A\mathbf{v} = B\mathbf{v}$ for all \mathbf{v} , this holds for each unit vector e_j and so j th col
of A, B are the same for all j .

Singular Value Decomposition

- A any matrix, $\mathbf{v}_t, t = 1, 2, \dots, r$, $\mathbf{u}_t, t = 1, 2, \dots, r$, $\sigma_t, t = 1, 2, \dots, r$, its right singular vectors, left singular vectors and singular values resp.
- **Theorem (Singular Value Decomposition)** $A = \sum_{t=1}^r \sigma_t \mathbf{u}_t \mathbf{v}_t^T$.
Sum of r outer products.
- **Claim** Matrices A, B are identical iff for all \mathbf{v} , we have $A\mathbf{v} = B\mathbf{v}$. If $A\mathbf{v} = B\mathbf{v}$ for all \mathbf{v} , this holds for each unit vector e_j and so j th col of A, B are the same for all j .
- Let $B = \sum_{t=1}^r \sigma_t \mathbf{u}_t \mathbf{v}_t^T$. Want to show $A\mathbf{v} = B\mathbf{v}$ for all \mathbf{v} . Enough to show for a set of \mathbf{v} forming a basis of space. Take a convenient basis: $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}, \dots, \mathbf{v}_d$, containing the r singular vectors of A . [Such a basis exists. Why?]

Singular Value Decomposition

- A any matrix, $\mathbf{v}_t, t = 1, 2, \dots, r$, $\mathbf{u}_t, t = 1, 2, \dots, r$, $\sigma_t, t = 1, 2, \dots, r$, its right singular vectors, left singular vectors and singular values resp.
- **Theorem (Singular Value Decomposition)** $A = \sum_{t=1}^r \sigma_t \mathbf{u}_t \mathbf{v}_t^T$.
Sum of r outer products.
- **Claim** Matrices A, B are identical iff for all \mathbf{v} , we have $A\mathbf{v} = B\mathbf{v}$. If $A\mathbf{v} = B\mathbf{v}$ for all \mathbf{v} , this holds for each unit vector e_j and so j th col of A, B are the same for all j .
- Let $B = \sum_{t=1}^r \sigma_t \mathbf{u}_t \mathbf{v}_t^T$. Want to show $A\mathbf{v} = B\mathbf{v}$ for all \mathbf{v} . Enough to show for a set of \mathbf{v} forming a basis of space. Take a convenient basis: $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}, \dots, \mathbf{v}_d$, containing the r singular vectors of A . [Such a basis exists. Why?]
- For $t = 1, 2, \dots, r$: $A\mathbf{v}_t = \sigma_t \mathbf{u}_t$ and $B\mathbf{v}_t = \sigma_t \mathbf{v}_t$ too by the orthogonality of $\mathbf{v}_1, \dots, \mathbf{v}_r$.
- For $t \geq r + 1$, $A\mathbf{v}_t = \mathbf{0}$ (Why?) and so is $B\mathbf{v}_t$. QED